fe2e387eed29c64207a237612abb905753b3fd77
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/pkt_cls.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 #include <linux/crash_dump.h>
141 #include <linux/sctp.h>
142 #include <net/udp_tunnel.h>
143 #include <linux/net_namespace.h>
144 #include <linux/indirect_call_wrapper.h>
145 #include <net/devlink.h>
146 #include <linux/pm_runtime.h>
147
148 #include "net-sysfs.h"
149
150 #define MAX_GRO_SKBS 8
151
152 /* This should be increased if a protocol with a bigger head is added. */
153 #define GRO_MAX_HEAD (MAX_HEADER + 128)
154
155 static DEFINE_SPINLOCK(ptype_lock);
156 static DEFINE_SPINLOCK(offload_lock);
157 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158 struct list_head ptype_all __read_mostly;       /* Taps */
159 static struct list_head offload_base __read_mostly;
160
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163                                          struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165                                            struct net_device *dev,
166                                            struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static DECLARE_RWSEM(devnet_rename_sem);
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222         spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229         spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
234                                                        const char *name)
235 {
236         struct netdev_name_node *name_node;
237
238         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
239         if (!name_node)
240                 return NULL;
241         INIT_HLIST_NODE(&name_node->hlist);
242         name_node->dev = dev;
243         name_node->name = name;
244         return name_node;
245 }
246
247 static struct netdev_name_node *
248 netdev_name_node_head_alloc(struct net_device *dev)
249 {
250         struct netdev_name_node *name_node;
251
252         name_node = netdev_name_node_alloc(dev, dev->name);
253         if (!name_node)
254                 return NULL;
255         INIT_LIST_HEAD(&name_node->list);
256         return name_node;
257 }
258
259 static void netdev_name_node_free(struct netdev_name_node *name_node)
260 {
261         kfree(name_node);
262 }
263
264 static void netdev_name_node_add(struct net *net,
265                                  struct netdev_name_node *name_node)
266 {
267         hlist_add_head_rcu(&name_node->hlist,
268                            dev_name_hash(net, name_node->name));
269 }
270
271 static void netdev_name_node_del(struct netdev_name_node *name_node)
272 {
273         hlist_del_rcu(&name_node->hlist);
274 }
275
276 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
277                                                         const char *name)
278 {
279         struct hlist_head *head = dev_name_hash(net, name);
280         struct netdev_name_node *name_node;
281
282         hlist_for_each_entry(name_node, head, hlist)
283                 if (!strcmp(name_node->name, name))
284                         return name_node;
285         return NULL;
286 }
287
288 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
289                                                             const char *name)
290 {
291         struct hlist_head *head = dev_name_hash(net, name);
292         struct netdev_name_node *name_node;
293
294         hlist_for_each_entry_rcu(name_node, head, hlist)
295                 if (!strcmp(name_node->name, name))
296                         return name_node;
297         return NULL;
298 }
299
300 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
301 {
302         struct netdev_name_node *name_node;
303         struct net *net = dev_net(dev);
304
305         name_node = netdev_name_node_lookup(net, name);
306         if (name_node)
307                 return -EEXIST;
308         name_node = netdev_name_node_alloc(dev, name);
309         if (!name_node)
310                 return -ENOMEM;
311         netdev_name_node_add(net, name_node);
312         /* The node that holds dev->name acts as a head of per-device list. */
313         list_add_tail(&name_node->list, &dev->name_node->list);
314
315         return 0;
316 }
317 EXPORT_SYMBOL(netdev_name_node_alt_create);
318
319 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
320 {
321         list_del(&name_node->list);
322         netdev_name_node_del(name_node);
323         kfree(name_node->name);
324         netdev_name_node_free(name_node);
325 }
326
327 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (!name_node)
334                 return -ENOENT;
335         /* lookup might have found our primary name or a name belonging
336          * to another device.
337          */
338         if (name_node == dev->name_node || name_node->dev != dev)
339                 return -EINVAL;
340
341         __netdev_name_node_alt_destroy(name_node);
342
343         return 0;
344 }
345 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
346
347 static void netdev_name_node_alt_flush(struct net_device *dev)
348 {
349         struct netdev_name_node *name_node, *tmp;
350
351         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
352                 __netdev_name_node_alt_destroy(name_node);
353 }
354
355 /* Device list insertion */
356 static void list_netdevice(struct net_device *dev)
357 {
358         struct net *net = dev_net(dev);
359
360         ASSERT_RTNL();
361
362         write_lock_bh(&dev_base_lock);
363         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
364         netdev_name_node_add(net, dev->name_node);
365         hlist_add_head_rcu(&dev->index_hlist,
366                            dev_index_hash(net, dev->ifindex));
367         write_unlock_bh(&dev_base_lock);
368
369         dev_base_seq_inc(net);
370 }
371
372 /* Device list removal
373  * caller must respect a RCU grace period before freeing/reusing dev
374  */
375 static void unlist_netdevice(struct net_device *dev)
376 {
377         ASSERT_RTNL();
378
379         /* Unlink dev from the device chain */
380         write_lock_bh(&dev_base_lock);
381         list_del_rcu(&dev->dev_list);
382         netdev_name_node_del(dev->name_node);
383         hlist_del_rcu(&dev->index_hlist);
384         write_unlock_bh(&dev_base_lock);
385
386         dev_base_seq_inc(dev_net(dev));
387 }
388
389 /*
390  *      Our notifier list
391  */
392
393 static RAW_NOTIFIER_HEAD(netdev_chain);
394
395 /*
396  *      Device drivers call our routines to queue packets here. We empty the
397  *      queue in the local softnet handler.
398  */
399
400 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
401 EXPORT_PER_CPU_SYMBOL(softnet_data);
402
403 #ifdef CONFIG_LOCKDEP
404 /*
405  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
406  * according to dev->type
407  */
408 static const unsigned short netdev_lock_type[] = {
409          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
410          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
411          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
412          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
413          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
414          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
415          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
416          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
417          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
418          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
419          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
420          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
421          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
422          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
423          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
424
425 static const char *const netdev_lock_name[] = {
426         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
427         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
428         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
429         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
430         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
431         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
432         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
433         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
434         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
435         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
436         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
437         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
438         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
439         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
440         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
441
442 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
443 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
444
445 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
446 {
447         int i;
448
449         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
450                 if (netdev_lock_type[i] == dev_type)
451                         return i;
452         /* the last key is used by default */
453         return ARRAY_SIZE(netdev_lock_type) - 1;
454 }
455
456 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
457                                                  unsigned short dev_type)
458 {
459         int i;
460
461         i = netdev_lock_pos(dev_type);
462         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
463                                    netdev_lock_name[i]);
464 }
465
466 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
467 {
468         int i;
469
470         i = netdev_lock_pos(dev->type);
471         lockdep_set_class_and_name(&dev->addr_list_lock,
472                                    &netdev_addr_lock_key[i],
473                                    netdev_lock_name[i]);
474 }
475 #else
476 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
477                                                  unsigned short dev_type)
478 {
479 }
480
481 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
482 {
483 }
484 #endif
485
486 /*******************************************************************************
487  *
488  *              Protocol management and registration routines
489  *
490  *******************************************************************************/
491
492
493 /*
494  *      Add a protocol ID to the list. Now that the input handler is
495  *      smarter we can dispense with all the messy stuff that used to be
496  *      here.
497  *
498  *      BEWARE!!! Protocol handlers, mangling input packets,
499  *      MUST BE last in hash buckets and checking protocol handlers
500  *      MUST start from promiscuous ptype_all chain in net_bh.
501  *      It is true now, do not change it.
502  *      Explanation follows: if protocol handler, mangling packet, will
503  *      be the first on list, it is not able to sense, that packet
504  *      is cloned and should be copied-on-write, so that it will
505  *      change it and subsequent readers will get broken packet.
506  *                                                      --ANK (980803)
507  */
508
509 static inline struct list_head *ptype_head(const struct packet_type *pt)
510 {
511         if (pt->type == htons(ETH_P_ALL))
512                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
513         else
514                 return pt->dev ? &pt->dev->ptype_specific :
515                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
516 }
517
518 /**
519  *      dev_add_pack - add packet handler
520  *      @pt: packet type declaration
521  *
522  *      Add a protocol handler to the networking stack. The passed &packet_type
523  *      is linked into kernel lists and may not be freed until it has been
524  *      removed from the kernel lists.
525  *
526  *      This call does not sleep therefore it can not
527  *      guarantee all CPU's that are in middle of receiving packets
528  *      will see the new packet type (until the next received packet).
529  */
530
531 void dev_add_pack(struct packet_type *pt)
532 {
533         struct list_head *head = ptype_head(pt);
534
535         spin_lock(&ptype_lock);
536         list_add_rcu(&pt->list, head);
537         spin_unlock(&ptype_lock);
538 }
539 EXPORT_SYMBOL(dev_add_pack);
540
541 /**
542  *      __dev_remove_pack        - remove packet handler
543  *      @pt: packet type declaration
544  *
545  *      Remove a protocol handler that was previously added to the kernel
546  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
547  *      from the kernel lists and can be freed or reused once this function
548  *      returns.
549  *
550  *      The packet type might still be in use by receivers
551  *      and must not be freed until after all the CPU's have gone
552  *      through a quiescent state.
553  */
554 void __dev_remove_pack(struct packet_type *pt)
555 {
556         struct list_head *head = ptype_head(pt);
557         struct packet_type *pt1;
558
559         spin_lock(&ptype_lock);
560
561         list_for_each_entry(pt1, head, list) {
562                 if (pt == pt1) {
563                         list_del_rcu(&pt->list);
564                         goto out;
565                 }
566         }
567
568         pr_warn("dev_remove_pack: %p not found\n", pt);
569 out:
570         spin_unlock(&ptype_lock);
571 }
572 EXPORT_SYMBOL(__dev_remove_pack);
573
574 /**
575  *      dev_remove_pack  - remove packet handler
576  *      @pt: packet type declaration
577  *
578  *      Remove a protocol handler that was previously added to the kernel
579  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
580  *      from the kernel lists and can be freed or reused once this function
581  *      returns.
582  *
583  *      This call sleeps to guarantee that no CPU is looking at the packet
584  *      type after return.
585  */
586 void dev_remove_pack(struct packet_type *pt)
587 {
588         __dev_remove_pack(pt);
589
590         synchronize_net();
591 }
592 EXPORT_SYMBOL(dev_remove_pack);
593
594
595 /**
596  *      dev_add_offload - register offload handlers
597  *      @po: protocol offload declaration
598  *
599  *      Add protocol offload handlers to the networking stack. The passed
600  *      &proto_offload is linked into kernel lists and may not be freed until
601  *      it has been removed from the kernel lists.
602  *
603  *      This call does not sleep therefore it can not
604  *      guarantee all CPU's that are in middle of receiving packets
605  *      will see the new offload handlers (until the next received packet).
606  */
607 void dev_add_offload(struct packet_offload *po)
608 {
609         struct packet_offload *elem;
610
611         spin_lock(&offload_lock);
612         list_for_each_entry(elem, &offload_base, list) {
613                 if (po->priority < elem->priority)
614                         break;
615         }
616         list_add_rcu(&po->list, elem->list.prev);
617         spin_unlock(&offload_lock);
618 }
619 EXPORT_SYMBOL(dev_add_offload);
620
621 /**
622  *      __dev_remove_offload     - remove offload handler
623  *      @po: packet offload declaration
624  *
625  *      Remove a protocol offload handler that was previously added to the
626  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
627  *      is removed from the kernel lists and can be freed or reused once this
628  *      function returns.
629  *
630  *      The packet type might still be in use by receivers
631  *      and must not be freed until after all the CPU's have gone
632  *      through a quiescent state.
633  */
634 static void __dev_remove_offload(struct packet_offload *po)
635 {
636         struct list_head *head = &offload_base;
637         struct packet_offload *po1;
638
639         spin_lock(&offload_lock);
640
641         list_for_each_entry(po1, head, list) {
642                 if (po == po1) {
643                         list_del_rcu(&po->list);
644                         goto out;
645                 }
646         }
647
648         pr_warn("dev_remove_offload: %p not found\n", po);
649 out:
650         spin_unlock(&offload_lock);
651 }
652
653 /**
654  *      dev_remove_offload       - remove packet offload handler
655  *      @po: packet offload declaration
656  *
657  *      Remove a packet offload handler that was previously added to the kernel
658  *      offload handlers by dev_add_offload(). The passed &offload_type is
659  *      removed from the kernel lists and can be freed or reused once this
660  *      function returns.
661  *
662  *      This call sleeps to guarantee that no CPU is looking at the packet
663  *      type after return.
664  */
665 void dev_remove_offload(struct packet_offload *po)
666 {
667         __dev_remove_offload(po);
668
669         synchronize_net();
670 }
671 EXPORT_SYMBOL(dev_remove_offload);
672
673 /******************************************************************************
674  *
675  *                    Device Boot-time Settings Routines
676  *
677  ******************************************************************************/
678
679 /* Boot time configuration table */
680 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
681
682 /**
683  *      netdev_boot_setup_add   - add new setup entry
684  *      @name: name of the device
685  *      @map: configured settings for the device
686  *
687  *      Adds new setup entry to the dev_boot_setup list.  The function
688  *      returns 0 on error and 1 on success.  This is a generic routine to
689  *      all netdevices.
690  */
691 static int netdev_boot_setup_add(char *name, struct ifmap *map)
692 {
693         struct netdev_boot_setup *s;
694         int i;
695
696         s = dev_boot_setup;
697         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
698                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
699                         memset(s[i].name, 0, sizeof(s[i].name));
700                         strlcpy(s[i].name, name, IFNAMSIZ);
701                         memcpy(&s[i].map, map, sizeof(s[i].map));
702                         break;
703                 }
704         }
705
706         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
707 }
708
709 /**
710  * netdev_boot_setup_check      - check boot time settings
711  * @dev: the netdevice
712  *
713  * Check boot time settings for the device.
714  * The found settings are set for the device to be used
715  * later in the device probing.
716  * Returns 0 if no settings found, 1 if they are.
717  */
718 int netdev_boot_setup_check(struct net_device *dev)
719 {
720         struct netdev_boot_setup *s = dev_boot_setup;
721         int i;
722
723         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
724                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
725                     !strcmp(dev->name, s[i].name)) {
726                         dev->irq = s[i].map.irq;
727                         dev->base_addr = s[i].map.base_addr;
728                         dev->mem_start = s[i].map.mem_start;
729                         dev->mem_end = s[i].map.mem_end;
730                         return 1;
731                 }
732         }
733         return 0;
734 }
735 EXPORT_SYMBOL(netdev_boot_setup_check);
736
737
738 /**
739  * netdev_boot_base     - get address from boot time settings
740  * @prefix: prefix for network device
741  * @unit: id for network device
742  *
743  * Check boot time settings for the base address of device.
744  * The found settings are set for the device to be used
745  * later in the device probing.
746  * Returns 0 if no settings found.
747  */
748 unsigned long netdev_boot_base(const char *prefix, int unit)
749 {
750         const struct netdev_boot_setup *s = dev_boot_setup;
751         char name[IFNAMSIZ];
752         int i;
753
754         sprintf(name, "%s%d", prefix, unit);
755
756         /*
757          * If device already registered then return base of 1
758          * to indicate not to probe for this interface
759          */
760         if (__dev_get_by_name(&init_net, name))
761                 return 1;
762
763         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
764                 if (!strcmp(name, s[i].name))
765                         return s[i].map.base_addr;
766         return 0;
767 }
768
769 /*
770  * Saves at boot time configured settings for any netdevice.
771  */
772 int __init netdev_boot_setup(char *str)
773 {
774         int ints[5];
775         struct ifmap map;
776
777         str = get_options(str, ARRAY_SIZE(ints), ints);
778         if (!str || !*str)
779                 return 0;
780
781         /* Save settings */
782         memset(&map, 0, sizeof(map));
783         if (ints[0] > 0)
784                 map.irq = ints[1];
785         if (ints[0] > 1)
786                 map.base_addr = ints[2];
787         if (ints[0] > 2)
788                 map.mem_start = ints[3];
789         if (ints[0] > 3)
790                 map.mem_end = ints[4];
791
792         /* Add new entry to the list */
793         return netdev_boot_setup_add(str, &map);
794 }
795
796 __setup("netdev=", netdev_boot_setup);
797
798 /*******************************************************************************
799  *
800  *                          Device Interface Subroutines
801  *
802  *******************************************************************************/
803
804 /**
805  *      dev_get_iflink  - get 'iflink' value of a interface
806  *      @dev: targeted interface
807  *
808  *      Indicates the ifindex the interface is linked to.
809  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
810  */
811
812 int dev_get_iflink(const struct net_device *dev)
813 {
814         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
815                 return dev->netdev_ops->ndo_get_iflink(dev);
816
817         return dev->ifindex;
818 }
819 EXPORT_SYMBOL(dev_get_iflink);
820
821 /**
822  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
823  *      @dev: targeted interface
824  *      @skb: The packet.
825  *
826  *      For better visibility of tunnel traffic OVS needs to retrieve
827  *      egress tunnel information for a packet. Following API allows
828  *      user to get this info.
829  */
830 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
831 {
832         struct ip_tunnel_info *info;
833
834         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
835                 return -EINVAL;
836
837         info = skb_tunnel_info_unclone(skb);
838         if (!info)
839                 return -ENOMEM;
840         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
841                 return -EINVAL;
842
843         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
844 }
845 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
846
847 /**
848  *      __dev_get_by_name       - find a device by its name
849  *      @net: the applicable net namespace
850  *      @name: name to find
851  *
852  *      Find an interface by name. Must be called under RTNL semaphore
853  *      or @dev_base_lock. If the name is found a pointer to the device
854  *      is returned. If the name is not found then %NULL is returned. The
855  *      reference counters are not incremented so the caller must be
856  *      careful with locks.
857  */
858
859 struct net_device *__dev_get_by_name(struct net *net, const char *name)
860 {
861         struct netdev_name_node *node_name;
862
863         node_name = netdev_name_node_lookup(net, name);
864         return node_name ? node_name->dev : NULL;
865 }
866 EXPORT_SYMBOL(__dev_get_by_name);
867
868 /**
869  * dev_get_by_name_rcu  - find a device by its name
870  * @net: the applicable net namespace
871  * @name: name to find
872  *
873  * Find an interface by name.
874  * If the name is found a pointer to the device is returned.
875  * If the name is not found then %NULL is returned.
876  * The reference counters are not incremented so the caller must be
877  * careful with locks. The caller must hold RCU lock.
878  */
879
880 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
881 {
882         struct netdev_name_node *node_name;
883
884         node_name = netdev_name_node_lookup_rcu(net, name);
885         return node_name ? node_name->dev : NULL;
886 }
887 EXPORT_SYMBOL(dev_get_by_name_rcu);
888
889 /**
890  *      dev_get_by_name         - find a device by its name
891  *      @net: the applicable net namespace
892  *      @name: name to find
893  *
894  *      Find an interface by name. This can be called from any
895  *      context and does its own locking. The returned handle has
896  *      the usage count incremented and the caller must use dev_put() to
897  *      release it when it is no longer needed. %NULL is returned if no
898  *      matching device is found.
899  */
900
901 struct net_device *dev_get_by_name(struct net *net, const char *name)
902 {
903         struct net_device *dev;
904
905         rcu_read_lock();
906         dev = dev_get_by_name_rcu(net, name);
907         if (dev)
908                 dev_hold(dev);
909         rcu_read_unlock();
910         return dev;
911 }
912 EXPORT_SYMBOL(dev_get_by_name);
913
914 /**
915  *      __dev_get_by_index - find a device by its ifindex
916  *      @net: the applicable net namespace
917  *      @ifindex: index of device
918  *
919  *      Search for an interface by index. Returns %NULL if the device
920  *      is not found or a pointer to the device. The device has not
921  *      had its reference counter increased so the caller must be careful
922  *      about locking. The caller must hold either the RTNL semaphore
923  *      or @dev_base_lock.
924  */
925
926 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
927 {
928         struct net_device *dev;
929         struct hlist_head *head = dev_index_hash(net, ifindex);
930
931         hlist_for_each_entry(dev, head, index_hlist)
932                 if (dev->ifindex == ifindex)
933                         return dev;
934
935         return NULL;
936 }
937 EXPORT_SYMBOL(__dev_get_by_index);
938
939 /**
940  *      dev_get_by_index_rcu - find a device by its ifindex
941  *      @net: the applicable net namespace
942  *      @ifindex: index of device
943  *
944  *      Search for an interface by index. Returns %NULL if the device
945  *      is not found or a pointer to the device. The device has not
946  *      had its reference counter increased so the caller must be careful
947  *      about locking. The caller must hold RCU lock.
948  */
949
950 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
951 {
952         struct net_device *dev;
953         struct hlist_head *head = dev_index_hash(net, ifindex);
954
955         hlist_for_each_entry_rcu(dev, head, index_hlist)
956                 if (dev->ifindex == ifindex)
957                         return dev;
958
959         return NULL;
960 }
961 EXPORT_SYMBOL(dev_get_by_index_rcu);
962
963
964 /**
965  *      dev_get_by_index - find a device by its ifindex
966  *      @net: the applicable net namespace
967  *      @ifindex: index of device
968  *
969  *      Search for an interface by index. Returns NULL if the device
970  *      is not found or a pointer to the device. The device returned has
971  *      had a reference added and the pointer is safe until the user calls
972  *      dev_put to indicate they have finished with it.
973  */
974
975 struct net_device *dev_get_by_index(struct net *net, int ifindex)
976 {
977         struct net_device *dev;
978
979         rcu_read_lock();
980         dev = dev_get_by_index_rcu(net, ifindex);
981         if (dev)
982                 dev_hold(dev);
983         rcu_read_unlock();
984         return dev;
985 }
986 EXPORT_SYMBOL(dev_get_by_index);
987
988 /**
989  *      dev_get_by_napi_id - find a device by napi_id
990  *      @napi_id: ID of the NAPI struct
991  *
992  *      Search for an interface by NAPI ID. Returns %NULL if the device
993  *      is not found or a pointer to the device. The device has not had
994  *      its reference counter increased so the caller must be careful
995  *      about locking. The caller must hold RCU lock.
996  */
997
998 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
999 {
1000         struct napi_struct *napi;
1001
1002         WARN_ON_ONCE(!rcu_read_lock_held());
1003
1004         if (napi_id < MIN_NAPI_ID)
1005                 return NULL;
1006
1007         napi = napi_by_id(napi_id);
1008
1009         return napi ? napi->dev : NULL;
1010 }
1011 EXPORT_SYMBOL(dev_get_by_napi_id);
1012
1013 /**
1014  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1015  *      @net: network namespace
1016  *      @name: a pointer to the buffer where the name will be stored.
1017  *      @ifindex: the ifindex of the interface to get the name from.
1018  */
1019 int netdev_get_name(struct net *net, char *name, int ifindex)
1020 {
1021         struct net_device *dev;
1022         int ret;
1023
1024         down_read(&devnet_rename_sem);
1025         rcu_read_lock();
1026
1027         dev = dev_get_by_index_rcu(net, ifindex);
1028         if (!dev) {
1029                 ret = -ENODEV;
1030                 goto out;
1031         }
1032
1033         strcpy(name, dev->name);
1034
1035         ret = 0;
1036 out:
1037         rcu_read_unlock();
1038         up_read(&devnet_rename_sem);
1039         return ret;
1040 }
1041
1042 /**
1043  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1044  *      @net: the applicable net namespace
1045  *      @type: media type of device
1046  *      @ha: hardware address
1047  *
1048  *      Search for an interface by MAC address. Returns NULL if the device
1049  *      is not found or a pointer to the device.
1050  *      The caller must hold RCU or RTNL.
1051  *      The returned device has not had its ref count increased
1052  *      and the caller must therefore be careful about locking
1053  *
1054  */
1055
1056 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1057                                        const char *ha)
1058 {
1059         struct net_device *dev;
1060
1061         for_each_netdev_rcu(net, dev)
1062                 if (dev->type == type &&
1063                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1064                         return dev;
1065
1066         return NULL;
1067 }
1068 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1069
1070 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1071 {
1072         struct net_device *dev;
1073
1074         ASSERT_RTNL();
1075         for_each_netdev(net, dev)
1076                 if (dev->type == type)
1077                         return dev;
1078
1079         return NULL;
1080 }
1081 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1082
1083 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1084 {
1085         struct net_device *dev, *ret = NULL;
1086
1087         rcu_read_lock();
1088         for_each_netdev_rcu(net, dev)
1089                 if (dev->type == type) {
1090                         dev_hold(dev);
1091                         ret = dev;
1092                         break;
1093                 }
1094         rcu_read_unlock();
1095         return ret;
1096 }
1097 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1098
1099 /**
1100  *      __dev_get_by_flags - find any device with given flags
1101  *      @net: the applicable net namespace
1102  *      @if_flags: IFF_* values
1103  *      @mask: bitmask of bits in if_flags to check
1104  *
1105  *      Search for any interface with the given flags. Returns NULL if a device
1106  *      is not found or a pointer to the device. Must be called inside
1107  *      rtnl_lock(), and result refcount is unchanged.
1108  */
1109
1110 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1111                                       unsigned short mask)
1112 {
1113         struct net_device *dev, *ret;
1114
1115         ASSERT_RTNL();
1116
1117         ret = NULL;
1118         for_each_netdev(net, dev) {
1119                 if (((dev->flags ^ if_flags) & mask) == 0) {
1120                         ret = dev;
1121                         break;
1122                 }
1123         }
1124         return ret;
1125 }
1126 EXPORT_SYMBOL(__dev_get_by_flags);
1127
1128 /**
1129  *      dev_valid_name - check if name is okay for network device
1130  *      @name: name string
1131  *
1132  *      Network device names need to be valid file names to
1133  *      to allow sysfs to work.  We also disallow any kind of
1134  *      whitespace.
1135  */
1136 bool dev_valid_name(const char *name)
1137 {
1138         if (*name == '\0')
1139                 return false;
1140         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1141                 return false;
1142         if (!strcmp(name, ".") || !strcmp(name, ".."))
1143                 return false;
1144
1145         while (*name) {
1146                 if (*name == '/' || *name == ':' || isspace(*name))
1147                         return false;
1148                 name++;
1149         }
1150         return true;
1151 }
1152 EXPORT_SYMBOL(dev_valid_name);
1153
1154 /**
1155  *      __dev_alloc_name - allocate a name for a device
1156  *      @net: network namespace to allocate the device name in
1157  *      @name: name format string
1158  *      @buf:  scratch buffer and result name string
1159  *
1160  *      Passed a format string - eg "lt%d" it will try and find a suitable
1161  *      id. It scans list of devices to build up a free map, then chooses
1162  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1163  *      while allocating the name and adding the device in order to avoid
1164  *      duplicates.
1165  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1166  *      Returns the number of the unit assigned or a negative errno code.
1167  */
1168
1169 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1170 {
1171         int i = 0;
1172         const char *p;
1173         const int max_netdevices = 8*PAGE_SIZE;
1174         unsigned long *inuse;
1175         struct net_device *d;
1176
1177         if (!dev_valid_name(name))
1178                 return -EINVAL;
1179
1180         p = strchr(name, '%');
1181         if (p) {
1182                 /*
1183                  * Verify the string as this thing may have come from
1184                  * the user.  There must be either one "%d" and no other "%"
1185                  * characters.
1186                  */
1187                 if (p[1] != 'd' || strchr(p + 2, '%'))
1188                         return -EINVAL;
1189
1190                 /* Use one page as a bit array of possible slots */
1191                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1192                 if (!inuse)
1193                         return -ENOMEM;
1194
1195                 for_each_netdev(net, d) {
1196                         if (!sscanf(d->name, name, &i))
1197                                 continue;
1198                         if (i < 0 || i >= max_netdevices)
1199                                 continue;
1200
1201                         /*  avoid cases where sscanf is not exact inverse of printf */
1202                         snprintf(buf, IFNAMSIZ, name, i);
1203                         if (!strncmp(buf, d->name, IFNAMSIZ))
1204                                 set_bit(i, inuse);
1205                 }
1206
1207                 i = find_first_zero_bit(inuse, max_netdevices);
1208                 free_page((unsigned long) inuse);
1209         }
1210
1211         snprintf(buf, IFNAMSIZ, name, i);
1212         if (!__dev_get_by_name(net, buf))
1213                 return i;
1214
1215         /* It is possible to run out of possible slots
1216          * when the name is long and there isn't enough space left
1217          * for the digits, or if all bits are used.
1218          */
1219         return -ENFILE;
1220 }
1221
1222 static int dev_alloc_name_ns(struct net *net,
1223                              struct net_device *dev,
1224                              const char *name)
1225 {
1226         char buf[IFNAMSIZ];
1227         int ret;
1228
1229         BUG_ON(!net);
1230         ret = __dev_alloc_name(net, name, buf);
1231         if (ret >= 0)
1232                 strlcpy(dev->name, buf, IFNAMSIZ);
1233         return ret;
1234 }
1235
1236 /**
1237  *      dev_alloc_name - allocate a name for a device
1238  *      @dev: device
1239  *      @name: name format string
1240  *
1241  *      Passed a format string - eg "lt%d" it will try and find a suitable
1242  *      id. It scans list of devices to build up a free map, then chooses
1243  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1244  *      while allocating the name and adding the device in order to avoid
1245  *      duplicates.
1246  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1247  *      Returns the number of the unit assigned or a negative errno code.
1248  */
1249
1250 int dev_alloc_name(struct net_device *dev, const char *name)
1251 {
1252         return dev_alloc_name_ns(dev_net(dev), dev, name);
1253 }
1254 EXPORT_SYMBOL(dev_alloc_name);
1255
1256 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1257                               const char *name)
1258 {
1259         BUG_ON(!net);
1260
1261         if (!dev_valid_name(name))
1262                 return -EINVAL;
1263
1264         if (strchr(name, '%'))
1265                 return dev_alloc_name_ns(net, dev, name);
1266         else if (__dev_get_by_name(net, name))
1267                 return -EEXIST;
1268         else if (dev->name != name)
1269                 strlcpy(dev->name, name, IFNAMSIZ);
1270
1271         return 0;
1272 }
1273
1274 /**
1275  *      dev_change_name - change name of a device
1276  *      @dev: device
1277  *      @newname: name (or format string) must be at least IFNAMSIZ
1278  *
1279  *      Change name of a device, can pass format strings "eth%d".
1280  *      for wildcarding.
1281  */
1282 int dev_change_name(struct net_device *dev, const char *newname)
1283 {
1284         unsigned char old_assign_type;
1285         char oldname[IFNAMSIZ];
1286         int err = 0;
1287         int ret;
1288         struct net *net;
1289
1290         ASSERT_RTNL();
1291         BUG_ON(!dev_net(dev));
1292
1293         net = dev_net(dev);
1294
1295         /* Some auto-enslaved devices e.g. failover slaves are
1296          * special, as userspace might rename the device after
1297          * the interface had been brought up and running since
1298          * the point kernel initiated auto-enslavement. Allow
1299          * live name change even when these slave devices are
1300          * up and running.
1301          *
1302          * Typically, users of these auto-enslaving devices
1303          * don't actually care about slave name change, as
1304          * they are supposed to operate on master interface
1305          * directly.
1306          */
1307         if (dev->flags & IFF_UP &&
1308             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1309                 return -EBUSY;
1310
1311         down_write(&devnet_rename_sem);
1312
1313         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1314                 up_write(&devnet_rename_sem);
1315                 return 0;
1316         }
1317
1318         memcpy(oldname, dev->name, IFNAMSIZ);
1319
1320         err = dev_get_valid_name(net, dev, newname);
1321         if (err < 0) {
1322                 up_write(&devnet_rename_sem);
1323                 return err;
1324         }
1325
1326         if (oldname[0] && !strchr(oldname, '%'))
1327                 netdev_info(dev, "renamed from %s\n", oldname);
1328
1329         old_assign_type = dev->name_assign_type;
1330         dev->name_assign_type = NET_NAME_RENAMED;
1331
1332 rollback:
1333         ret = device_rename(&dev->dev, dev->name);
1334         if (ret) {
1335                 memcpy(dev->name, oldname, IFNAMSIZ);
1336                 dev->name_assign_type = old_assign_type;
1337                 up_write(&devnet_rename_sem);
1338                 return ret;
1339         }
1340
1341         up_write(&devnet_rename_sem);
1342
1343         netdev_adjacent_rename_links(dev, oldname);
1344
1345         write_lock_bh(&dev_base_lock);
1346         netdev_name_node_del(dev->name_node);
1347         write_unlock_bh(&dev_base_lock);
1348
1349         synchronize_rcu();
1350
1351         write_lock_bh(&dev_base_lock);
1352         netdev_name_node_add(net, dev->name_node);
1353         write_unlock_bh(&dev_base_lock);
1354
1355         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1356         ret = notifier_to_errno(ret);
1357
1358         if (ret) {
1359                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1360                 if (err >= 0) {
1361                         err = ret;
1362                         down_write(&devnet_rename_sem);
1363                         memcpy(dev->name, oldname, IFNAMSIZ);
1364                         memcpy(oldname, newname, IFNAMSIZ);
1365                         dev->name_assign_type = old_assign_type;
1366                         old_assign_type = NET_NAME_RENAMED;
1367                         goto rollback;
1368                 } else {
1369                         pr_err("%s: name change rollback failed: %d\n",
1370                                dev->name, ret);
1371                 }
1372         }
1373
1374         return err;
1375 }
1376
1377 /**
1378  *      dev_set_alias - change ifalias of a device
1379  *      @dev: device
1380  *      @alias: name up to IFALIASZ
1381  *      @len: limit of bytes to copy from info
1382  *
1383  *      Set ifalias for a device,
1384  */
1385 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1386 {
1387         struct dev_ifalias *new_alias = NULL;
1388
1389         if (len >= IFALIASZ)
1390                 return -EINVAL;
1391
1392         if (len) {
1393                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1394                 if (!new_alias)
1395                         return -ENOMEM;
1396
1397                 memcpy(new_alias->ifalias, alias, len);
1398                 new_alias->ifalias[len] = 0;
1399         }
1400
1401         mutex_lock(&ifalias_mutex);
1402         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1403                                         mutex_is_locked(&ifalias_mutex));
1404         mutex_unlock(&ifalias_mutex);
1405
1406         if (new_alias)
1407                 kfree_rcu(new_alias, rcuhead);
1408
1409         return len;
1410 }
1411 EXPORT_SYMBOL(dev_set_alias);
1412
1413 /**
1414  *      dev_get_alias - get ifalias of a device
1415  *      @dev: device
1416  *      @name: buffer to store name of ifalias
1417  *      @len: size of buffer
1418  *
1419  *      get ifalias for a device.  Caller must make sure dev cannot go
1420  *      away,  e.g. rcu read lock or own a reference count to device.
1421  */
1422 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1423 {
1424         const struct dev_ifalias *alias;
1425         int ret = 0;
1426
1427         rcu_read_lock();
1428         alias = rcu_dereference(dev->ifalias);
1429         if (alias)
1430                 ret = snprintf(name, len, "%s", alias->ifalias);
1431         rcu_read_unlock();
1432
1433         return ret;
1434 }
1435
1436 /**
1437  *      netdev_features_change - device changes features
1438  *      @dev: device to cause notification
1439  *
1440  *      Called to indicate a device has changed features.
1441  */
1442 void netdev_features_change(struct net_device *dev)
1443 {
1444         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1445 }
1446 EXPORT_SYMBOL(netdev_features_change);
1447
1448 /**
1449  *      netdev_state_change - device changes state
1450  *      @dev: device to cause notification
1451  *
1452  *      Called to indicate a device has changed state. This function calls
1453  *      the notifier chains for netdev_chain and sends a NEWLINK message
1454  *      to the routing socket.
1455  */
1456 void netdev_state_change(struct net_device *dev)
1457 {
1458         if (dev->flags & IFF_UP) {
1459                 struct netdev_notifier_change_info change_info = {
1460                         .info.dev = dev,
1461                 };
1462
1463                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1464                                               &change_info.info);
1465                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1466         }
1467 }
1468 EXPORT_SYMBOL(netdev_state_change);
1469
1470 /**
1471  * netdev_notify_peers - notify network peers about existence of @dev
1472  * @dev: network device
1473  *
1474  * Generate traffic such that interested network peers are aware of
1475  * @dev, such as by generating a gratuitous ARP. This may be used when
1476  * a device wants to inform the rest of the network about some sort of
1477  * reconfiguration such as a failover event or virtual machine
1478  * migration.
1479  */
1480 void netdev_notify_peers(struct net_device *dev)
1481 {
1482         rtnl_lock();
1483         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1484         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1485         rtnl_unlock();
1486 }
1487 EXPORT_SYMBOL(netdev_notify_peers);
1488
1489 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1490 {
1491         const struct net_device_ops *ops = dev->netdev_ops;
1492         int ret;
1493
1494         ASSERT_RTNL();
1495
1496         if (!netif_device_present(dev)) {
1497                 /* may be detached because parent is runtime-suspended */
1498                 if (dev->dev.parent)
1499                         pm_runtime_resume(dev->dev.parent);
1500                 if (!netif_device_present(dev))
1501                         return -ENODEV;
1502         }
1503
1504         /* Block netpoll from trying to do any rx path servicing.
1505          * If we don't do this there is a chance ndo_poll_controller
1506          * or ndo_poll may be running while we open the device
1507          */
1508         netpoll_poll_disable(dev);
1509
1510         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1511         ret = notifier_to_errno(ret);
1512         if (ret)
1513                 return ret;
1514
1515         set_bit(__LINK_STATE_START, &dev->state);
1516
1517         if (ops->ndo_validate_addr)
1518                 ret = ops->ndo_validate_addr(dev);
1519
1520         if (!ret && ops->ndo_open)
1521                 ret = ops->ndo_open(dev);
1522
1523         netpoll_poll_enable(dev);
1524
1525         if (ret)
1526                 clear_bit(__LINK_STATE_START, &dev->state);
1527         else {
1528                 dev->flags |= IFF_UP;
1529                 dev_set_rx_mode(dev);
1530                 dev_activate(dev);
1531                 add_device_randomness(dev->dev_addr, dev->addr_len);
1532         }
1533
1534         return ret;
1535 }
1536
1537 /**
1538  *      dev_open        - prepare an interface for use.
1539  *      @dev: device to open
1540  *      @extack: netlink extended ack
1541  *
1542  *      Takes a device from down to up state. The device's private open
1543  *      function is invoked and then the multicast lists are loaded. Finally
1544  *      the device is moved into the up state and a %NETDEV_UP message is
1545  *      sent to the netdev notifier chain.
1546  *
1547  *      Calling this function on an active interface is a nop. On a failure
1548  *      a negative errno code is returned.
1549  */
1550 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1551 {
1552         int ret;
1553
1554         if (dev->flags & IFF_UP)
1555                 return 0;
1556
1557         ret = __dev_open(dev, extack);
1558         if (ret < 0)
1559                 return ret;
1560
1561         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1562         call_netdevice_notifiers(NETDEV_UP, dev);
1563
1564         return ret;
1565 }
1566 EXPORT_SYMBOL(dev_open);
1567
1568 static void __dev_close_many(struct list_head *head)
1569 {
1570         struct net_device *dev;
1571
1572         ASSERT_RTNL();
1573         might_sleep();
1574
1575         list_for_each_entry(dev, head, close_list) {
1576                 /* Temporarily disable netpoll until the interface is down */
1577                 netpoll_poll_disable(dev);
1578
1579                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1580
1581                 clear_bit(__LINK_STATE_START, &dev->state);
1582
1583                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1584                  * can be even on different cpu. So just clear netif_running().
1585                  *
1586                  * dev->stop() will invoke napi_disable() on all of it's
1587                  * napi_struct instances on this device.
1588                  */
1589                 smp_mb__after_atomic(); /* Commit netif_running(). */
1590         }
1591
1592         dev_deactivate_many(head);
1593
1594         list_for_each_entry(dev, head, close_list) {
1595                 const struct net_device_ops *ops = dev->netdev_ops;
1596
1597                 /*
1598                  *      Call the device specific close. This cannot fail.
1599                  *      Only if device is UP
1600                  *
1601                  *      We allow it to be called even after a DETACH hot-plug
1602                  *      event.
1603                  */
1604                 if (ops->ndo_stop)
1605                         ops->ndo_stop(dev);
1606
1607                 dev->flags &= ~IFF_UP;
1608                 netpoll_poll_enable(dev);
1609         }
1610 }
1611
1612 static void __dev_close(struct net_device *dev)
1613 {
1614         LIST_HEAD(single);
1615
1616         list_add(&dev->close_list, &single);
1617         __dev_close_many(&single);
1618         list_del(&single);
1619 }
1620
1621 void dev_close_many(struct list_head *head, bool unlink)
1622 {
1623         struct net_device *dev, *tmp;
1624
1625         /* Remove the devices that don't need to be closed */
1626         list_for_each_entry_safe(dev, tmp, head, close_list)
1627                 if (!(dev->flags & IFF_UP))
1628                         list_del_init(&dev->close_list);
1629
1630         __dev_close_many(head);
1631
1632         list_for_each_entry_safe(dev, tmp, head, close_list) {
1633                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1634                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1635                 if (unlink)
1636                         list_del_init(&dev->close_list);
1637         }
1638 }
1639 EXPORT_SYMBOL(dev_close_many);
1640
1641 /**
1642  *      dev_close - shutdown an interface.
1643  *      @dev: device to shutdown
1644  *
1645  *      This function moves an active device into down state. A
1646  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1647  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1648  *      chain.
1649  */
1650 void dev_close(struct net_device *dev)
1651 {
1652         if (dev->flags & IFF_UP) {
1653                 LIST_HEAD(single);
1654
1655                 list_add(&dev->close_list, &single);
1656                 dev_close_many(&single, true);
1657                 list_del(&single);
1658         }
1659 }
1660 EXPORT_SYMBOL(dev_close);
1661
1662
1663 /**
1664  *      dev_disable_lro - disable Large Receive Offload on a device
1665  *      @dev: device
1666  *
1667  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1668  *      called under RTNL.  This is needed if received packets may be
1669  *      forwarded to another interface.
1670  */
1671 void dev_disable_lro(struct net_device *dev)
1672 {
1673         struct net_device *lower_dev;
1674         struct list_head *iter;
1675
1676         dev->wanted_features &= ~NETIF_F_LRO;
1677         netdev_update_features(dev);
1678
1679         if (unlikely(dev->features & NETIF_F_LRO))
1680                 netdev_WARN(dev, "failed to disable LRO!\n");
1681
1682         netdev_for_each_lower_dev(dev, lower_dev, iter)
1683                 dev_disable_lro(lower_dev);
1684 }
1685 EXPORT_SYMBOL(dev_disable_lro);
1686
1687 /**
1688  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1689  *      @dev: device
1690  *
1691  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1692  *      called under RTNL.  This is needed if Generic XDP is installed on
1693  *      the device.
1694  */
1695 static void dev_disable_gro_hw(struct net_device *dev)
1696 {
1697         dev->wanted_features &= ~NETIF_F_GRO_HW;
1698         netdev_update_features(dev);
1699
1700         if (unlikely(dev->features & NETIF_F_GRO_HW))
1701                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1702 }
1703
1704 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1705 {
1706 #define N(val)                                          \
1707         case NETDEV_##val:                              \
1708                 return "NETDEV_" __stringify(val);
1709         switch (cmd) {
1710         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1711         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1712         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1713         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1714         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1715         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1716         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1717         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1718         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1719         N(PRE_CHANGEADDR)
1720         }
1721 #undef N
1722         return "UNKNOWN_NETDEV_EVENT";
1723 }
1724 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1725
1726 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1727                                    struct net_device *dev)
1728 {
1729         struct netdev_notifier_info info = {
1730                 .dev = dev,
1731         };
1732
1733         return nb->notifier_call(nb, val, &info);
1734 }
1735
1736 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1737                                              struct net_device *dev)
1738 {
1739         int err;
1740
1741         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1742         err = notifier_to_errno(err);
1743         if (err)
1744                 return err;
1745
1746         if (!(dev->flags & IFF_UP))
1747                 return 0;
1748
1749         call_netdevice_notifier(nb, NETDEV_UP, dev);
1750         return 0;
1751 }
1752
1753 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1754                                                 struct net_device *dev)
1755 {
1756         if (dev->flags & IFF_UP) {
1757                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1758                                         dev);
1759                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1760         }
1761         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1762 }
1763
1764 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1765                                                  struct net *net)
1766 {
1767         struct net_device *dev;
1768         int err;
1769
1770         for_each_netdev(net, dev) {
1771                 err = call_netdevice_register_notifiers(nb, dev);
1772                 if (err)
1773                         goto rollback;
1774         }
1775         return 0;
1776
1777 rollback:
1778         for_each_netdev_continue_reverse(net, dev)
1779                 call_netdevice_unregister_notifiers(nb, dev);
1780         return err;
1781 }
1782
1783 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1784                                                     struct net *net)
1785 {
1786         struct net_device *dev;
1787
1788         for_each_netdev(net, dev)
1789                 call_netdevice_unregister_notifiers(nb, dev);
1790 }
1791
1792 static int dev_boot_phase = 1;
1793
1794 /**
1795  * register_netdevice_notifier - register a network notifier block
1796  * @nb: notifier
1797  *
1798  * Register a notifier to be called when network device events occur.
1799  * The notifier passed is linked into the kernel structures and must
1800  * not be reused until it has been unregistered. A negative errno code
1801  * is returned on a failure.
1802  *
1803  * When registered all registration and up events are replayed
1804  * to the new notifier to allow device to have a race free
1805  * view of the network device list.
1806  */
1807
1808 int register_netdevice_notifier(struct notifier_block *nb)
1809 {
1810         struct net *net;
1811         int err;
1812
1813         /* Close race with setup_net() and cleanup_net() */
1814         down_write(&pernet_ops_rwsem);
1815         rtnl_lock();
1816         err = raw_notifier_chain_register(&netdev_chain, nb);
1817         if (err)
1818                 goto unlock;
1819         if (dev_boot_phase)
1820                 goto unlock;
1821         for_each_net(net) {
1822                 err = call_netdevice_register_net_notifiers(nb, net);
1823                 if (err)
1824                         goto rollback;
1825         }
1826
1827 unlock:
1828         rtnl_unlock();
1829         up_write(&pernet_ops_rwsem);
1830         return err;
1831
1832 rollback:
1833         for_each_net_continue_reverse(net)
1834                 call_netdevice_unregister_net_notifiers(nb, net);
1835
1836         raw_notifier_chain_unregister(&netdev_chain, nb);
1837         goto unlock;
1838 }
1839 EXPORT_SYMBOL(register_netdevice_notifier);
1840
1841 /**
1842  * unregister_netdevice_notifier - unregister a network notifier block
1843  * @nb: notifier
1844  *
1845  * Unregister a notifier previously registered by
1846  * register_netdevice_notifier(). The notifier is unlinked into the
1847  * kernel structures and may then be reused. A negative errno code
1848  * is returned on a failure.
1849  *
1850  * After unregistering unregister and down device events are synthesized
1851  * for all devices on the device list to the removed notifier to remove
1852  * the need for special case cleanup code.
1853  */
1854
1855 int unregister_netdevice_notifier(struct notifier_block *nb)
1856 {
1857         struct net *net;
1858         int err;
1859
1860         /* Close race with setup_net() and cleanup_net() */
1861         down_write(&pernet_ops_rwsem);
1862         rtnl_lock();
1863         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1864         if (err)
1865                 goto unlock;
1866
1867         for_each_net(net)
1868                 call_netdevice_unregister_net_notifiers(nb, net);
1869
1870 unlock:
1871         rtnl_unlock();
1872         up_write(&pernet_ops_rwsem);
1873         return err;
1874 }
1875 EXPORT_SYMBOL(unregister_netdevice_notifier);
1876
1877 static int __register_netdevice_notifier_net(struct net *net,
1878                                              struct notifier_block *nb,
1879                                              bool ignore_call_fail)
1880 {
1881         int err;
1882
1883         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1884         if (err)
1885                 return err;
1886         if (dev_boot_phase)
1887                 return 0;
1888
1889         err = call_netdevice_register_net_notifiers(nb, net);
1890         if (err && !ignore_call_fail)
1891                 goto chain_unregister;
1892
1893         return 0;
1894
1895 chain_unregister:
1896         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1897         return err;
1898 }
1899
1900 static int __unregister_netdevice_notifier_net(struct net *net,
1901                                                struct notifier_block *nb)
1902 {
1903         int err;
1904
1905         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1906         if (err)
1907                 return err;
1908
1909         call_netdevice_unregister_net_notifiers(nb, net);
1910         return 0;
1911 }
1912
1913 /**
1914  * register_netdevice_notifier_net - register a per-netns network notifier block
1915  * @net: network namespace
1916  * @nb: notifier
1917  *
1918  * Register a notifier to be called when network device events occur.
1919  * The notifier passed is linked into the kernel structures and must
1920  * not be reused until it has been unregistered. A negative errno code
1921  * is returned on a failure.
1922  *
1923  * When registered all registration and up events are replayed
1924  * to the new notifier to allow device to have a race free
1925  * view of the network device list.
1926  */
1927
1928 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1929 {
1930         int err;
1931
1932         rtnl_lock();
1933         err = __register_netdevice_notifier_net(net, nb, false);
1934         rtnl_unlock();
1935         return err;
1936 }
1937 EXPORT_SYMBOL(register_netdevice_notifier_net);
1938
1939 /**
1940  * unregister_netdevice_notifier_net - unregister a per-netns
1941  *                                     network notifier block
1942  * @net: network namespace
1943  * @nb: notifier
1944  *
1945  * Unregister a notifier previously registered by
1946  * register_netdevice_notifier(). The notifier is unlinked into the
1947  * kernel structures and may then be reused. A negative errno code
1948  * is returned on a failure.
1949  *
1950  * After unregistering unregister and down device events are synthesized
1951  * for all devices on the device list to the removed notifier to remove
1952  * the need for special case cleanup code.
1953  */
1954
1955 int unregister_netdevice_notifier_net(struct net *net,
1956                                       struct notifier_block *nb)
1957 {
1958         int err;
1959
1960         rtnl_lock();
1961         err = __unregister_netdevice_notifier_net(net, nb);
1962         rtnl_unlock();
1963         return err;
1964 }
1965 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1966
1967 int register_netdevice_notifier_dev_net(struct net_device *dev,
1968                                         struct notifier_block *nb,
1969                                         struct netdev_net_notifier *nn)
1970 {
1971         int err;
1972
1973         rtnl_lock();
1974         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1975         if (!err) {
1976                 nn->nb = nb;
1977                 list_add(&nn->list, &dev->net_notifier_list);
1978         }
1979         rtnl_unlock();
1980         return err;
1981 }
1982 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1983
1984 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1985                                           struct notifier_block *nb,
1986                                           struct netdev_net_notifier *nn)
1987 {
1988         int err;
1989
1990         rtnl_lock();
1991         list_del(&nn->list);
1992         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1993         rtnl_unlock();
1994         return err;
1995 }
1996 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1997
1998 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1999                                              struct net *net)
2000 {
2001         struct netdev_net_notifier *nn;
2002
2003         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2004                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2005                 __register_netdevice_notifier_net(net, nn->nb, true);
2006         }
2007 }
2008
2009 /**
2010  *      call_netdevice_notifiers_info - call all network notifier blocks
2011  *      @val: value passed unmodified to notifier function
2012  *      @info: notifier information data
2013  *
2014  *      Call all network notifier blocks.  Parameters and return value
2015  *      are as for raw_notifier_call_chain().
2016  */
2017
2018 static int call_netdevice_notifiers_info(unsigned long val,
2019                                          struct netdev_notifier_info *info)
2020 {
2021         struct net *net = dev_net(info->dev);
2022         int ret;
2023
2024         ASSERT_RTNL();
2025
2026         /* Run per-netns notifier block chain first, then run the global one.
2027          * Hopefully, one day, the global one is going to be removed after
2028          * all notifier block registrators get converted to be per-netns.
2029          */
2030         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2031         if (ret & NOTIFY_STOP_MASK)
2032                 return ret;
2033         return raw_notifier_call_chain(&netdev_chain, val, info);
2034 }
2035
2036 static int call_netdevice_notifiers_extack(unsigned long val,
2037                                            struct net_device *dev,
2038                                            struct netlink_ext_ack *extack)
2039 {
2040         struct netdev_notifier_info info = {
2041                 .dev = dev,
2042                 .extack = extack,
2043         };
2044
2045         return call_netdevice_notifiers_info(val, &info);
2046 }
2047
2048 /**
2049  *      call_netdevice_notifiers - call all network notifier blocks
2050  *      @val: value passed unmodified to notifier function
2051  *      @dev: net_device pointer passed unmodified to notifier function
2052  *
2053  *      Call all network notifier blocks.  Parameters and return value
2054  *      are as for raw_notifier_call_chain().
2055  */
2056
2057 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2058 {
2059         return call_netdevice_notifiers_extack(val, dev, NULL);
2060 }
2061 EXPORT_SYMBOL(call_netdevice_notifiers);
2062
2063 /**
2064  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2065  *      @val: value passed unmodified to notifier function
2066  *      @dev: net_device pointer passed unmodified to notifier function
2067  *      @arg: additional u32 argument passed to the notifier function
2068  *
2069  *      Call all network notifier blocks.  Parameters and return value
2070  *      are as for raw_notifier_call_chain().
2071  */
2072 static int call_netdevice_notifiers_mtu(unsigned long val,
2073                                         struct net_device *dev, u32 arg)
2074 {
2075         struct netdev_notifier_info_ext info = {
2076                 .info.dev = dev,
2077                 .ext.mtu = arg,
2078         };
2079
2080         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2081
2082         return call_netdevice_notifiers_info(val, &info.info);
2083 }
2084
2085 #ifdef CONFIG_NET_INGRESS
2086 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2087
2088 void net_inc_ingress_queue(void)
2089 {
2090         static_branch_inc(&ingress_needed_key);
2091 }
2092 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2093
2094 void net_dec_ingress_queue(void)
2095 {
2096         static_branch_dec(&ingress_needed_key);
2097 }
2098 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2099 #endif
2100
2101 #ifdef CONFIG_NET_EGRESS
2102 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2103
2104 void net_inc_egress_queue(void)
2105 {
2106         static_branch_inc(&egress_needed_key);
2107 }
2108 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2109
2110 void net_dec_egress_queue(void)
2111 {
2112         static_branch_dec(&egress_needed_key);
2113 }
2114 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2115 #endif
2116
2117 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2118 #ifdef CONFIG_JUMP_LABEL
2119 static atomic_t netstamp_needed_deferred;
2120 static atomic_t netstamp_wanted;
2121 static void netstamp_clear(struct work_struct *work)
2122 {
2123         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2124         int wanted;
2125
2126         wanted = atomic_add_return(deferred, &netstamp_wanted);
2127         if (wanted > 0)
2128                 static_branch_enable(&netstamp_needed_key);
2129         else
2130                 static_branch_disable(&netstamp_needed_key);
2131 }
2132 static DECLARE_WORK(netstamp_work, netstamp_clear);
2133 #endif
2134
2135 void net_enable_timestamp(void)
2136 {
2137 #ifdef CONFIG_JUMP_LABEL
2138         int wanted;
2139
2140         while (1) {
2141                 wanted = atomic_read(&netstamp_wanted);
2142                 if (wanted <= 0)
2143                         break;
2144                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2145                         return;
2146         }
2147         atomic_inc(&netstamp_needed_deferred);
2148         schedule_work(&netstamp_work);
2149 #else
2150         static_branch_inc(&netstamp_needed_key);
2151 #endif
2152 }
2153 EXPORT_SYMBOL(net_enable_timestamp);
2154
2155 void net_disable_timestamp(void)
2156 {
2157 #ifdef CONFIG_JUMP_LABEL
2158         int wanted;
2159
2160         while (1) {
2161                 wanted = atomic_read(&netstamp_wanted);
2162                 if (wanted <= 1)
2163                         break;
2164                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2165                         return;
2166         }
2167         atomic_dec(&netstamp_needed_deferred);
2168         schedule_work(&netstamp_work);
2169 #else
2170         static_branch_dec(&netstamp_needed_key);
2171 #endif
2172 }
2173 EXPORT_SYMBOL(net_disable_timestamp);
2174
2175 static inline void net_timestamp_set(struct sk_buff *skb)
2176 {
2177         skb->tstamp = 0;
2178         if (static_branch_unlikely(&netstamp_needed_key))
2179                 __net_timestamp(skb);
2180 }
2181
2182 #define net_timestamp_check(COND, SKB)                          \
2183         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2184                 if ((COND) && !(SKB)->tstamp)                   \
2185                         __net_timestamp(SKB);                   \
2186         }                                                       \
2187
2188 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2189 {
2190         unsigned int len;
2191
2192         if (!(dev->flags & IFF_UP))
2193                 return false;
2194
2195         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2196         if (skb->len <= len)
2197                 return true;
2198
2199         /* if TSO is enabled, we don't care about the length as the packet
2200          * could be forwarded without being segmented before
2201          */
2202         if (skb_is_gso(skb))
2203                 return true;
2204
2205         return false;
2206 }
2207 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2208
2209 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2210 {
2211         int ret = ____dev_forward_skb(dev, skb);
2212
2213         if (likely(!ret)) {
2214                 skb->protocol = eth_type_trans(skb, dev);
2215                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2216         }
2217
2218         return ret;
2219 }
2220 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2221
2222 /**
2223  * dev_forward_skb - loopback an skb to another netif
2224  *
2225  * @dev: destination network device
2226  * @skb: buffer to forward
2227  *
2228  * return values:
2229  *      NET_RX_SUCCESS  (no congestion)
2230  *      NET_RX_DROP     (packet was dropped, but freed)
2231  *
2232  * dev_forward_skb can be used for injecting an skb from the
2233  * start_xmit function of one device into the receive queue
2234  * of another device.
2235  *
2236  * The receiving device may be in another namespace, so
2237  * we have to clear all information in the skb that could
2238  * impact namespace isolation.
2239  */
2240 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2241 {
2242         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2243 }
2244 EXPORT_SYMBOL_GPL(dev_forward_skb);
2245
2246 static inline int deliver_skb(struct sk_buff *skb,
2247                               struct packet_type *pt_prev,
2248                               struct net_device *orig_dev)
2249 {
2250         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2251                 return -ENOMEM;
2252         refcount_inc(&skb->users);
2253         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2254 }
2255
2256 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2257                                           struct packet_type **pt,
2258                                           struct net_device *orig_dev,
2259                                           __be16 type,
2260                                           struct list_head *ptype_list)
2261 {
2262         struct packet_type *ptype, *pt_prev = *pt;
2263
2264         list_for_each_entry_rcu(ptype, ptype_list, list) {
2265                 if (ptype->type != type)
2266                         continue;
2267                 if (pt_prev)
2268                         deliver_skb(skb, pt_prev, orig_dev);
2269                 pt_prev = ptype;
2270         }
2271         *pt = pt_prev;
2272 }
2273
2274 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2275 {
2276         if (!ptype->af_packet_priv || !skb->sk)
2277                 return false;
2278
2279         if (ptype->id_match)
2280                 return ptype->id_match(ptype, skb->sk);
2281         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2282                 return true;
2283
2284         return false;
2285 }
2286
2287 /**
2288  * dev_nit_active - return true if any network interface taps are in use
2289  *
2290  * @dev: network device to check for the presence of taps
2291  */
2292 bool dev_nit_active(struct net_device *dev)
2293 {
2294         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2295 }
2296 EXPORT_SYMBOL_GPL(dev_nit_active);
2297
2298 /*
2299  *      Support routine. Sends outgoing frames to any network
2300  *      taps currently in use.
2301  */
2302
2303 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2304 {
2305         struct packet_type *ptype;
2306         struct sk_buff *skb2 = NULL;
2307         struct packet_type *pt_prev = NULL;
2308         struct list_head *ptype_list = &ptype_all;
2309
2310         rcu_read_lock();
2311 again:
2312         list_for_each_entry_rcu(ptype, ptype_list, list) {
2313                 if (ptype->ignore_outgoing)
2314                         continue;
2315
2316                 /* Never send packets back to the socket
2317                  * they originated from - MvS (miquels@drinkel.ow.org)
2318                  */
2319                 if (skb_loop_sk(ptype, skb))
2320                         continue;
2321
2322                 if (pt_prev) {
2323                         deliver_skb(skb2, pt_prev, skb->dev);
2324                         pt_prev = ptype;
2325                         continue;
2326                 }
2327
2328                 /* need to clone skb, done only once */
2329                 skb2 = skb_clone(skb, GFP_ATOMIC);
2330                 if (!skb2)
2331                         goto out_unlock;
2332
2333                 net_timestamp_set(skb2);
2334
2335                 /* skb->nh should be correctly
2336                  * set by sender, so that the second statement is
2337                  * just protection against buggy protocols.
2338                  */
2339                 skb_reset_mac_header(skb2);
2340
2341                 if (skb_network_header(skb2) < skb2->data ||
2342                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2343                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2344                                              ntohs(skb2->protocol),
2345                                              dev->name);
2346                         skb_reset_network_header(skb2);
2347                 }
2348
2349                 skb2->transport_header = skb2->network_header;
2350                 skb2->pkt_type = PACKET_OUTGOING;
2351                 pt_prev = ptype;
2352         }
2353
2354         if (ptype_list == &ptype_all) {
2355                 ptype_list = &dev->ptype_all;
2356                 goto again;
2357         }
2358 out_unlock:
2359         if (pt_prev) {
2360                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2361                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2362                 else
2363                         kfree_skb(skb2);
2364         }
2365         rcu_read_unlock();
2366 }
2367 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2368
2369 /**
2370  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2371  * @dev: Network device
2372  * @txq: number of queues available
2373  *
2374  * If real_num_tx_queues is changed the tc mappings may no longer be
2375  * valid. To resolve this verify the tc mapping remains valid and if
2376  * not NULL the mapping. With no priorities mapping to this
2377  * offset/count pair it will no longer be used. In the worst case TC0
2378  * is invalid nothing can be done so disable priority mappings. If is
2379  * expected that drivers will fix this mapping if they can before
2380  * calling netif_set_real_num_tx_queues.
2381  */
2382 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2383 {
2384         int i;
2385         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2386
2387         /* If TC0 is invalidated disable TC mapping */
2388         if (tc->offset + tc->count > txq) {
2389                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2390                 dev->num_tc = 0;
2391                 return;
2392         }
2393
2394         /* Invalidated prio to tc mappings set to TC0 */
2395         for (i = 1; i < TC_BITMASK + 1; i++) {
2396                 int q = netdev_get_prio_tc_map(dev, i);
2397
2398                 tc = &dev->tc_to_txq[q];
2399                 if (tc->offset + tc->count > txq) {
2400                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2401                                 i, q);
2402                         netdev_set_prio_tc_map(dev, i, 0);
2403                 }
2404         }
2405 }
2406
2407 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2408 {
2409         if (dev->num_tc) {
2410                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2411                 int i;
2412
2413                 /* walk through the TCs and see if it falls into any of them */
2414                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2415                         if ((txq - tc->offset) < tc->count)
2416                                 return i;
2417                 }
2418
2419                 /* didn't find it, just return -1 to indicate no match */
2420                 return -1;
2421         }
2422
2423         return 0;
2424 }
2425 EXPORT_SYMBOL(netdev_txq_to_tc);
2426
2427 #ifdef CONFIG_XPS
2428 struct static_key xps_needed __read_mostly;
2429 EXPORT_SYMBOL(xps_needed);
2430 struct static_key xps_rxqs_needed __read_mostly;
2431 EXPORT_SYMBOL(xps_rxqs_needed);
2432 static DEFINE_MUTEX(xps_map_mutex);
2433 #define xmap_dereference(P)             \
2434         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2435
2436 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2437                              int tci, u16 index)
2438 {
2439         struct xps_map *map = NULL;
2440         int pos;
2441
2442         if (dev_maps)
2443                 map = xmap_dereference(dev_maps->attr_map[tci]);
2444         if (!map)
2445                 return false;
2446
2447         for (pos = map->len; pos--;) {
2448                 if (map->queues[pos] != index)
2449                         continue;
2450
2451                 if (map->len > 1) {
2452                         map->queues[pos] = map->queues[--map->len];
2453                         break;
2454                 }
2455
2456                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2457                 kfree_rcu(map, rcu);
2458                 return false;
2459         }
2460
2461         return true;
2462 }
2463
2464 static bool remove_xps_queue_cpu(struct net_device *dev,
2465                                  struct xps_dev_maps *dev_maps,
2466                                  int cpu, u16 offset, u16 count)
2467 {
2468         int num_tc = dev->num_tc ? : 1;
2469         bool active = false;
2470         int tci;
2471
2472         for (tci = cpu * num_tc; num_tc--; tci++) {
2473                 int i, j;
2474
2475                 for (i = count, j = offset; i--; j++) {
2476                         if (!remove_xps_queue(dev_maps, tci, j))
2477                                 break;
2478                 }
2479
2480                 active |= i < 0;
2481         }
2482
2483         return active;
2484 }
2485
2486 static void reset_xps_maps(struct net_device *dev,
2487                            struct xps_dev_maps *dev_maps,
2488                            bool is_rxqs_map)
2489 {
2490         if (is_rxqs_map) {
2491                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2492                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2493         } else {
2494                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2495         }
2496         static_key_slow_dec_cpuslocked(&xps_needed);
2497         kfree_rcu(dev_maps, rcu);
2498 }
2499
2500 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2501                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2502                            u16 offset, u16 count, bool is_rxqs_map)
2503 {
2504         bool active = false;
2505         int i, j;
2506
2507         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2508              j < nr_ids;)
2509                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2510                                                count);
2511         if (!active)
2512                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2513
2514         if (!is_rxqs_map) {
2515                 for (i = offset + (count - 1); count--; i--) {
2516                         netdev_queue_numa_node_write(
2517                                 netdev_get_tx_queue(dev, i),
2518                                 NUMA_NO_NODE);
2519                 }
2520         }
2521 }
2522
2523 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2524                                    u16 count)
2525 {
2526         const unsigned long *possible_mask = NULL;
2527         struct xps_dev_maps *dev_maps;
2528         unsigned int nr_ids;
2529
2530         if (!static_key_false(&xps_needed))
2531                 return;
2532
2533         cpus_read_lock();
2534         mutex_lock(&xps_map_mutex);
2535
2536         if (static_key_false(&xps_rxqs_needed)) {
2537                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2538                 if (dev_maps) {
2539                         nr_ids = dev->num_rx_queues;
2540                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2541                                        offset, count, true);
2542                 }
2543         }
2544
2545         dev_maps = xmap_dereference(dev->xps_cpus_map);
2546         if (!dev_maps)
2547                 goto out_no_maps;
2548
2549         if (num_possible_cpus() > 1)
2550                 possible_mask = cpumask_bits(cpu_possible_mask);
2551         nr_ids = nr_cpu_ids;
2552         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2553                        false);
2554
2555 out_no_maps:
2556         mutex_unlock(&xps_map_mutex);
2557         cpus_read_unlock();
2558 }
2559
2560 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2561 {
2562         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2563 }
2564
2565 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2566                                       u16 index, bool is_rxqs_map)
2567 {
2568         struct xps_map *new_map;
2569         int alloc_len = XPS_MIN_MAP_ALLOC;
2570         int i, pos;
2571
2572         for (pos = 0; map && pos < map->len; pos++) {
2573                 if (map->queues[pos] != index)
2574                         continue;
2575                 return map;
2576         }
2577
2578         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2579         if (map) {
2580                 if (pos < map->alloc_len)
2581                         return map;
2582
2583                 alloc_len = map->alloc_len * 2;
2584         }
2585
2586         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2587          *  map
2588          */
2589         if (is_rxqs_map)
2590                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2591         else
2592                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2593                                        cpu_to_node(attr_index));
2594         if (!new_map)
2595                 return NULL;
2596
2597         for (i = 0; i < pos; i++)
2598                 new_map->queues[i] = map->queues[i];
2599         new_map->alloc_len = alloc_len;
2600         new_map->len = pos;
2601
2602         return new_map;
2603 }
2604
2605 /* Must be called under cpus_read_lock */
2606 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2607                           u16 index, bool is_rxqs_map)
2608 {
2609         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2610         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2611         int i, j, tci, numa_node_id = -2;
2612         int maps_sz, num_tc = 1, tc = 0;
2613         struct xps_map *map, *new_map;
2614         bool active = false;
2615         unsigned int nr_ids;
2616
2617         if (dev->num_tc) {
2618                 /* Do not allow XPS on subordinate device directly */
2619                 num_tc = dev->num_tc;
2620                 if (num_tc < 0)
2621                         return -EINVAL;
2622
2623                 /* If queue belongs to subordinate dev use its map */
2624                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2625
2626                 tc = netdev_txq_to_tc(dev, index);
2627                 if (tc < 0)
2628                         return -EINVAL;
2629         }
2630
2631         mutex_lock(&xps_map_mutex);
2632         if (is_rxqs_map) {
2633                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2634                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2635                 nr_ids = dev->num_rx_queues;
2636         } else {
2637                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2638                 if (num_possible_cpus() > 1) {
2639                         online_mask = cpumask_bits(cpu_online_mask);
2640                         possible_mask = cpumask_bits(cpu_possible_mask);
2641                 }
2642                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2643                 nr_ids = nr_cpu_ids;
2644         }
2645
2646         if (maps_sz < L1_CACHE_BYTES)
2647                 maps_sz = L1_CACHE_BYTES;
2648
2649         /* allocate memory for queue storage */
2650         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2651              j < nr_ids;) {
2652                 if (!new_dev_maps)
2653                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2654                 if (!new_dev_maps) {
2655                         mutex_unlock(&xps_map_mutex);
2656                         return -ENOMEM;
2657                 }
2658
2659                 tci = j * num_tc + tc;
2660                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2661                                  NULL;
2662
2663                 map = expand_xps_map(map, j, index, is_rxqs_map);
2664                 if (!map)
2665                         goto error;
2666
2667                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2668         }
2669
2670         if (!new_dev_maps)
2671                 goto out_no_new_maps;
2672
2673         if (!dev_maps) {
2674                 /* Increment static keys at most once per type */
2675                 static_key_slow_inc_cpuslocked(&xps_needed);
2676                 if (is_rxqs_map)
2677                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2678         }
2679
2680         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2681              j < nr_ids;) {
2682                 /* copy maps belonging to foreign traffic classes */
2683                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2684                         /* fill in the new device map from the old device map */
2685                         map = xmap_dereference(dev_maps->attr_map[tci]);
2686                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2687                 }
2688
2689                 /* We need to explicitly update tci as prevous loop
2690                  * could break out early if dev_maps is NULL.
2691                  */
2692                 tci = j * num_tc + tc;
2693
2694                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2695                     netif_attr_test_online(j, online_mask, nr_ids)) {
2696                         /* add tx-queue to CPU/rx-queue maps */
2697                         int pos = 0;
2698
2699                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700                         while ((pos < map->len) && (map->queues[pos] != index))
2701                                 pos++;
2702
2703                         if (pos == map->len)
2704                                 map->queues[map->len++] = index;
2705 #ifdef CONFIG_NUMA
2706                         if (!is_rxqs_map) {
2707                                 if (numa_node_id == -2)
2708                                         numa_node_id = cpu_to_node(j);
2709                                 else if (numa_node_id != cpu_to_node(j))
2710                                         numa_node_id = -1;
2711                         }
2712 #endif
2713                 } else if (dev_maps) {
2714                         /* fill in the new device map from the old device map */
2715                         map = xmap_dereference(dev_maps->attr_map[tci]);
2716                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2717                 }
2718
2719                 /* copy maps belonging to foreign traffic classes */
2720                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2721                         /* fill in the new device map from the old device map */
2722                         map = xmap_dereference(dev_maps->attr_map[tci]);
2723                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2724                 }
2725         }
2726
2727         if (is_rxqs_map)
2728                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2729         else
2730                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2731
2732         /* Cleanup old maps */
2733         if (!dev_maps)
2734                 goto out_no_old_maps;
2735
2736         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2737              j < nr_ids;) {
2738                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2739                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2740                         map = xmap_dereference(dev_maps->attr_map[tci]);
2741                         if (map && map != new_map)
2742                                 kfree_rcu(map, rcu);
2743                 }
2744         }
2745
2746         kfree_rcu(dev_maps, rcu);
2747
2748 out_no_old_maps:
2749         dev_maps = new_dev_maps;
2750         active = true;
2751
2752 out_no_new_maps:
2753         if (!is_rxqs_map) {
2754                 /* update Tx queue numa node */
2755                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2756                                              (numa_node_id >= 0) ?
2757                                              numa_node_id : NUMA_NO_NODE);
2758         }
2759
2760         if (!dev_maps)
2761                 goto out_no_maps;
2762
2763         /* removes tx-queue from unused CPUs/rx-queues */
2764         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2765              j < nr_ids;) {
2766                 for (i = tc, tci = j * num_tc; i--; tci++)
2767                         active |= remove_xps_queue(dev_maps, tci, index);
2768                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2769                     !netif_attr_test_online(j, online_mask, nr_ids))
2770                         active |= remove_xps_queue(dev_maps, tci, index);
2771                 for (i = num_tc - tc, tci++; --i; tci++)
2772                         active |= remove_xps_queue(dev_maps, tci, index);
2773         }
2774
2775         /* free map if not active */
2776         if (!active)
2777                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2778
2779 out_no_maps:
2780         mutex_unlock(&xps_map_mutex);
2781
2782         return 0;
2783 error:
2784         /* remove any maps that we added */
2785         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2786              j < nr_ids;) {
2787                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2788                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2789                         map = dev_maps ?
2790                               xmap_dereference(dev_maps->attr_map[tci]) :
2791                               NULL;
2792                         if (new_map && new_map != map)
2793                                 kfree(new_map);
2794                 }
2795         }
2796
2797         mutex_unlock(&xps_map_mutex);
2798
2799         kfree(new_dev_maps);
2800         return -ENOMEM;
2801 }
2802 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2803
2804 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2805                         u16 index)
2806 {
2807         int ret;
2808
2809         cpus_read_lock();
2810         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2811         cpus_read_unlock();
2812
2813         return ret;
2814 }
2815 EXPORT_SYMBOL(netif_set_xps_queue);
2816
2817 #endif
2818 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2819 {
2820         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2821
2822         /* Unbind any subordinate channels */
2823         while (txq-- != &dev->_tx[0]) {
2824                 if (txq->sb_dev)
2825                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2826         }
2827 }
2828
2829 void netdev_reset_tc(struct net_device *dev)
2830 {
2831 #ifdef CONFIG_XPS
2832         netif_reset_xps_queues_gt(dev, 0);
2833 #endif
2834         netdev_unbind_all_sb_channels(dev);
2835
2836         /* Reset TC configuration of device */
2837         dev->num_tc = 0;
2838         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2839         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2840 }
2841 EXPORT_SYMBOL(netdev_reset_tc);
2842
2843 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2844 {
2845         if (tc >= dev->num_tc)
2846                 return -EINVAL;
2847
2848 #ifdef CONFIG_XPS
2849         netif_reset_xps_queues(dev, offset, count);
2850 #endif
2851         dev->tc_to_txq[tc].count = count;
2852         dev->tc_to_txq[tc].offset = offset;
2853         return 0;
2854 }
2855 EXPORT_SYMBOL(netdev_set_tc_queue);
2856
2857 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2858 {
2859         if (num_tc > TC_MAX_QUEUE)
2860                 return -EINVAL;
2861
2862 #ifdef CONFIG_XPS
2863         netif_reset_xps_queues_gt(dev, 0);
2864 #endif
2865         netdev_unbind_all_sb_channels(dev);
2866
2867         dev->num_tc = num_tc;
2868         return 0;
2869 }
2870 EXPORT_SYMBOL(netdev_set_num_tc);
2871
2872 void netdev_unbind_sb_channel(struct net_device *dev,
2873                               struct net_device *sb_dev)
2874 {
2875         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2876
2877 #ifdef CONFIG_XPS
2878         netif_reset_xps_queues_gt(sb_dev, 0);
2879 #endif
2880         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2881         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2882
2883         while (txq-- != &dev->_tx[0]) {
2884                 if (txq->sb_dev == sb_dev)
2885                         txq->sb_dev = NULL;
2886         }
2887 }
2888 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2889
2890 int netdev_bind_sb_channel_queue(struct net_device *dev,
2891                                  struct net_device *sb_dev,
2892                                  u8 tc, u16 count, u16 offset)
2893 {
2894         /* Make certain the sb_dev and dev are already configured */
2895         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2896                 return -EINVAL;
2897
2898         /* We cannot hand out queues we don't have */
2899         if ((offset + count) > dev->real_num_tx_queues)
2900                 return -EINVAL;
2901
2902         /* Record the mapping */
2903         sb_dev->tc_to_txq[tc].count = count;
2904         sb_dev->tc_to_txq[tc].offset = offset;
2905
2906         /* Provide a way for Tx queue to find the tc_to_txq map or
2907          * XPS map for itself.
2908          */
2909         while (count--)
2910                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2911
2912         return 0;
2913 }
2914 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2915
2916 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2917 {
2918         /* Do not use a multiqueue device to represent a subordinate channel */
2919         if (netif_is_multiqueue(dev))
2920                 return -ENODEV;
2921
2922         /* We allow channels 1 - 32767 to be used for subordinate channels.
2923          * Channel 0 is meant to be "native" mode and used only to represent
2924          * the main root device. We allow writing 0 to reset the device back
2925          * to normal mode after being used as a subordinate channel.
2926          */
2927         if (channel > S16_MAX)
2928                 return -EINVAL;
2929
2930         dev->num_tc = -channel;
2931
2932         return 0;
2933 }
2934 EXPORT_SYMBOL(netdev_set_sb_channel);
2935
2936 /*
2937  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2938  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2939  */
2940 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2941 {
2942         bool disabling;
2943         int rc;
2944
2945         disabling = txq < dev->real_num_tx_queues;
2946
2947         if (txq < 1 || txq > dev->num_tx_queues)
2948                 return -EINVAL;
2949
2950         if (dev->reg_state == NETREG_REGISTERED ||
2951             dev->reg_state == NETREG_UNREGISTERING) {
2952                 ASSERT_RTNL();
2953
2954                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2955                                                   txq);
2956                 if (rc)
2957                         return rc;
2958
2959                 if (dev->num_tc)
2960                         netif_setup_tc(dev, txq);
2961
2962                 dev->real_num_tx_queues = txq;
2963
2964                 if (disabling) {
2965                         synchronize_net();
2966                         qdisc_reset_all_tx_gt(dev, txq);
2967 #ifdef CONFIG_XPS
2968                         netif_reset_xps_queues_gt(dev, txq);
2969 #endif
2970                 }
2971         } else {
2972                 dev->real_num_tx_queues = txq;
2973         }
2974
2975         return 0;
2976 }
2977 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2978
2979 #ifdef CONFIG_SYSFS
2980 /**
2981  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2982  *      @dev: Network device
2983  *      @rxq: Actual number of RX queues
2984  *
2985  *      This must be called either with the rtnl_lock held or before
2986  *      registration of the net device.  Returns 0 on success, or a
2987  *      negative error code.  If called before registration, it always
2988  *      succeeds.
2989  */
2990 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2991 {
2992         int rc;
2993
2994         if (rxq < 1 || rxq > dev->num_rx_queues)
2995                 return -EINVAL;
2996
2997         if (dev->reg_state == NETREG_REGISTERED) {
2998                 ASSERT_RTNL();
2999
3000                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3001                                                   rxq);
3002                 if (rc)
3003                         return rc;
3004         }
3005
3006         dev->real_num_rx_queues = rxq;
3007         return 0;
3008 }
3009 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3010 #endif
3011
3012 /**
3013  * netif_get_num_default_rss_queues - default number of RSS queues
3014  *
3015  * This routine should set an upper limit on the number of RSS queues
3016  * used by default by multiqueue devices.
3017  */
3018 int netif_get_num_default_rss_queues(void)
3019 {
3020         return is_kdump_kernel() ?
3021                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3022 }
3023 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3024
3025 static void __netif_reschedule(struct Qdisc *q)
3026 {
3027         struct softnet_data *sd;
3028         unsigned long flags;
3029
3030         local_irq_save(flags);
3031         sd = this_cpu_ptr(&softnet_data);
3032         q->next_sched = NULL;
3033         *sd->output_queue_tailp = q;
3034         sd->output_queue_tailp = &q->next_sched;
3035         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3036         local_irq_restore(flags);
3037 }
3038
3039 void __netif_schedule(struct Qdisc *q)
3040 {
3041         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3042                 __netif_reschedule(q);
3043 }
3044 EXPORT_SYMBOL(__netif_schedule);
3045
3046 struct dev_kfree_skb_cb {
3047         enum skb_free_reason reason;
3048 };
3049
3050 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3051 {
3052         return (struct dev_kfree_skb_cb *)skb->cb;
3053 }
3054
3055 void netif_schedule_queue(struct netdev_queue *txq)
3056 {
3057         rcu_read_lock();
3058         if (!netif_xmit_stopped(txq)) {
3059                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3060
3061                 __netif_schedule(q);
3062         }
3063         rcu_read_unlock();
3064 }
3065 EXPORT_SYMBOL(netif_schedule_queue);
3066
3067 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3068 {
3069         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3070                 struct Qdisc *q;
3071
3072                 rcu_read_lock();
3073                 q = rcu_dereference(dev_queue->qdisc);
3074                 __netif_schedule(q);
3075                 rcu_read_unlock();
3076         }
3077 }
3078 EXPORT_SYMBOL(netif_tx_wake_queue);
3079
3080 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3081 {
3082         unsigned long flags;
3083
3084         if (unlikely(!skb))
3085                 return;
3086
3087         if (likely(refcount_read(&skb->users) == 1)) {
3088                 smp_rmb();
3089                 refcount_set(&skb->users, 0);
3090         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3091                 return;
3092         }
3093         get_kfree_skb_cb(skb)->reason = reason;
3094         local_irq_save(flags);
3095         skb->next = __this_cpu_read(softnet_data.completion_queue);
3096         __this_cpu_write(softnet_data.completion_queue, skb);
3097         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098         local_irq_restore(flags);
3099 }
3100 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3101
3102 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3103 {
3104         if (in_irq() || irqs_disabled())
3105                 __dev_kfree_skb_irq(skb, reason);
3106         else
3107                 dev_kfree_skb(skb);
3108 }
3109 EXPORT_SYMBOL(__dev_kfree_skb_any);
3110
3111
3112 /**
3113  * netif_device_detach - mark device as removed
3114  * @dev: network device
3115  *
3116  * Mark device as removed from system and therefore no longer available.
3117  */
3118 void netif_device_detach(struct net_device *dev)
3119 {
3120         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3121             netif_running(dev)) {
3122                 netif_tx_stop_all_queues(dev);
3123         }
3124 }
3125 EXPORT_SYMBOL(netif_device_detach);
3126
3127 /**
3128  * netif_device_attach - mark device as attached
3129  * @dev: network device
3130  *
3131  * Mark device as attached from system and restart if needed.
3132  */
3133 void netif_device_attach(struct net_device *dev)
3134 {
3135         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3136             netif_running(dev)) {
3137                 netif_tx_wake_all_queues(dev);
3138                 __netdev_watchdog_up(dev);
3139         }
3140 }
3141 EXPORT_SYMBOL(netif_device_attach);
3142
3143 /*
3144  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3145  * to be used as a distribution range.
3146  */
3147 static u16 skb_tx_hash(const struct net_device *dev,
3148                        const struct net_device *sb_dev,
3149                        struct sk_buff *skb)
3150 {
3151         u32 hash;
3152         u16 qoffset = 0;
3153         u16 qcount = dev->real_num_tx_queues;
3154
3155         if (dev->num_tc) {
3156                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3157
3158                 qoffset = sb_dev->tc_to_txq[tc].offset;
3159                 qcount = sb_dev->tc_to_txq[tc].count;
3160         }
3161
3162         if (skb_rx_queue_recorded(skb)) {
3163                 hash = skb_get_rx_queue(skb);
3164                 if (hash >= qoffset)
3165                         hash -= qoffset;
3166                 while (unlikely(hash >= qcount))
3167                         hash -= qcount;
3168                 return hash + qoffset;
3169         }
3170
3171         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3172 }
3173
3174 static void skb_warn_bad_offload(const struct sk_buff *skb)
3175 {
3176         static const netdev_features_t null_features;
3177         struct net_device *dev = skb->dev;
3178         const char *name = "";
3179
3180         if (!net_ratelimit())
3181                 return;
3182
3183         if (dev) {
3184                 if (dev->dev.parent)
3185                         name = dev_driver_string(dev->dev.parent);
3186                 else
3187                         name = netdev_name(dev);
3188         }
3189         skb_dump(KERN_WARNING, skb, false);
3190         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3191              name, dev ? &dev->features : &null_features,
3192              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3193 }
3194
3195 /*
3196  * Invalidate hardware checksum when packet is to be mangled, and
3197  * complete checksum manually on outgoing path.
3198  */
3199 int skb_checksum_help(struct sk_buff *skb)
3200 {
3201         __wsum csum;
3202         int ret = 0, offset;
3203
3204         if (skb->ip_summed == CHECKSUM_COMPLETE)
3205                 goto out_set_summed;
3206
3207         if (unlikely(skb_shinfo(skb)->gso_size)) {
3208                 skb_warn_bad_offload(skb);
3209                 return -EINVAL;
3210         }
3211
3212         /* Before computing a checksum, we should make sure no frag could
3213          * be modified by an external entity : checksum could be wrong.
3214          */
3215         if (skb_has_shared_frag(skb)) {
3216                 ret = __skb_linearize(skb);
3217                 if (ret)
3218                         goto out;
3219         }
3220
3221         offset = skb_checksum_start_offset(skb);
3222         BUG_ON(offset >= skb_headlen(skb));
3223         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3224
3225         offset += skb->csum_offset;
3226         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3227
3228         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3229         if (ret)
3230                 goto out;
3231
3232         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3233 out_set_summed:
3234         skb->ip_summed = CHECKSUM_NONE;
3235 out:
3236         return ret;
3237 }
3238 EXPORT_SYMBOL(skb_checksum_help);
3239
3240 int skb_crc32c_csum_help(struct sk_buff *skb)
3241 {
3242         __le32 crc32c_csum;
3243         int ret = 0, offset, start;
3244
3245         if (skb->ip_summed != CHECKSUM_PARTIAL)
3246                 goto out;
3247
3248         if (unlikely(skb_is_gso(skb)))
3249                 goto out;
3250
3251         /* Before computing a checksum, we should make sure no frag could
3252          * be modified by an external entity : checksum could be wrong.
3253          */
3254         if (unlikely(skb_has_shared_frag(skb))) {
3255                 ret = __skb_linearize(skb);
3256                 if (ret)
3257                         goto out;
3258         }
3259         start = skb_checksum_start_offset(skb);
3260         offset = start + offsetof(struct sctphdr, checksum);
3261         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3262                 ret = -EINVAL;
3263                 goto out;
3264         }
3265
3266         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3267         if (ret)
3268                 goto out;
3269
3270         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3271                                                   skb->len - start, ~(__u32)0,
3272                                                   crc32c_csum_stub));
3273         *(__le32 *)(skb->data + offset) = crc32c_csum;
3274         skb->ip_summed = CHECKSUM_NONE;
3275         skb->csum_not_inet = 0;
3276 out:
3277         return ret;
3278 }
3279
3280 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3281 {
3282         __be16 type = skb->protocol;
3283
3284         /* Tunnel gso handlers can set protocol to ethernet. */
3285         if (type == htons(ETH_P_TEB)) {
3286                 struct ethhdr *eth;
3287
3288                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3289                         return 0;
3290
3291                 eth = (struct ethhdr *)skb->data;
3292                 type = eth->h_proto;
3293         }
3294
3295         return __vlan_get_protocol(skb, type, depth);
3296 }
3297
3298 /**
3299  *      skb_mac_gso_segment - mac layer segmentation handler.
3300  *      @skb: buffer to segment
3301  *      @features: features for the output path (see dev->features)
3302  */
3303 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3304                                     netdev_features_t features)
3305 {
3306         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3307         struct packet_offload *ptype;
3308         int vlan_depth = skb->mac_len;
3309         __be16 type = skb_network_protocol(skb, &vlan_depth);
3310
3311         if (unlikely(!type))
3312                 return ERR_PTR(-EINVAL);
3313
3314         __skb_pull(skb, vlan_depth);
3315
3316         rcu_read_lock();
3317         list_for_each_entry_rcu(ptype, &offload_base, list) {
3318                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3319                         segs = ptype->callbacks.gso_segment(skb, features);
3320                         break;
3321                 }
3322         }
3323         rcu_read_unlock();
3324
3325         __skb_push(skb, skb->data - skb_mac_header(skb));
3326
3327         return segs;
3328 }
3329 EXPORT_SYMBOL(skb_mac_gso_segment);
3330
3331
3332 /* openvswitch calls this on rx path, so we need a different check.
3333  */
3334 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3335 {
3336         if (tx_path)
3337                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3338                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3339
3340         return skb->ip_summed == CHECKSUM_NONE;
3341 }
3342
3343 /**
3344  *      __skb_gso_segment - Perform segmentation on skb.
3345  *      @skb: buffer to segment
3346  *      @features: features for the output path (see dev->features)
3347  *      @tx_path: whether it is called in TX path
3348  *
3349  *      This function segments the given skb and returns a list of segments.
3350  *
3351  *      It may return NULL if the skb requires no segmentation.  This is
3352  *      only possible when GSO is used for verifying header integrity.
3353  *
3354  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3355  */
3356 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3357                                   netdev_features_t features, bool tx_path)
3358 {
3359         struct sk_buff *segs;
3360
3361         if (unlikely(skb_needs_check(skb, tx_path))) {
3362                 int err;
3363
3364                 /* We're going to init ->check field in TCP or UDP header */
3365                 err = skb_cow_head(skb, 0);
3366                 if (err < 0)
3367                         return ERR_PTR(err);
3368         }
3369
3370         /* Only report GSO partial support if it will enable us to
3371          * support segmentation on this frame without needing additional
3372          * work.
3373          */
3374         if (features & NETIF_F_GSO_PARTIAL) {
3375                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3376                 struct net_device *dev = skb->dev;
3377
3378                 partial_features |= dev->features & dev->gso_partial_features;
3379                 if (!skb_gso_ok(skb, features | partial_features))
3380                         features &= ~NETIF_F_GSO_PARTIAL;
3381         }
3382
3383         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3384                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3385
3386         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3387         SKB_GSO_CB(skb)->encap_level = 0;
3388
3389         skb_reset_mac_header(skb);
3390         skb_reset_mac_len(skb);
3391
3392         segs = skb_mac_gso_segment(skb, features);
3393
3394         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3395                 skb_warn_bad_offload(skb);
3396
3397         return segs;
3398 }
3399 EXPORT_SYMBOL(__skb_gso_segment);
3400
3401 /* Take action when hardware reception checksum errors are detected. */
3402 #ifdef CONFIG_BUG
3403 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3404 {
3405         if (net_ratelimit()) {
3406                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3407                 skb_dump(KERN_ERR, skb, true);
3408                 dump_stack();
3409         }
3410 }
3411 EXPORT_SYMBOL(netdev_rx_csum_fault);
3412 #endif
3413
3414 /* XXX: check that highmem exists at all on the given machine. */
3415 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3416 {
3417 #ifdef CONFIG_HIGHMEM
3418         int i;
3419
3420         if (!(dev->features & NETIF_F_HIGHDMA)) {
3421                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3422                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3423
3424                         if (PageHighMem(skb_frag_page(frag)))
3425                                 return 1;
3426                 }
3427         }
3428 #endif
3429         return 0;
3430 }
3431
3432 /* If MPLS offload request, verify we are testing hardware MPLS features
3433  * instead of standard features for the netdev.
3434  */
3435 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3436 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3437                                            netdev_features_t features,
3438                                            __be16 type)
3439 {
3440         if (eth_p_mpls(type))
3441                 features &= skb->dev->mpls_features;
3442
3443         return features;
3444 }
3445 #else
3446 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3447                                            netdev_features_t features,
3448                                            __be16 type)
3449 {
3450         return features;
3451 }
3452 #endif
3453
3454 static netdev_features_t harmonize_features(struct sk_buff *skb,
3455         netdev_features_t features)
3456 {
3457         int tmp;
3458         __be16 type;
3459
3460         type = skb_network_protocol(skb, &tmp);
3461         features = net_mpls_features(skb, features, type);
3462
3463         if (skb->ip_summed != CHECKSUM_NONE &&
3464             !can_checksum_protocol(features, type)) {
3465                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3466         }
3467         if (illegal_highdma(skb->dev, skb))
3468                 features &= ~NETIF_F_SG;
3469
3470         return features;
3471 }
3472
3473 netdev_features_t passthru_features_check(struct sk_buff *skb,
3474                                           struct net_device *dev,
3475                                           netdev_features_t features)
3476 {
3477         return features;
3478 }
3479 EXPORT_SYMBOL(passthru_features_check);
3480
3481 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3482                                              struct net_device *dev,
3483                                              netdev_features_t features)
3484 {
3485         return vlan_features_check(skb, features);
3486 }
3487
3488 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3489                                             struct net_device *dev,
3490                                             netdev_features_t features)
3491 {
3492         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3493
3494         if (gso_segs > dev->gso_max_segs)
3495                 return features & ~NETIF_F_GSO_MASK;
3496
3497         /* Support for GSO partial features requires software
3498          * intervention before we can actually process the packets
3499          * so we need to strip support for any partial features now
3500          * and we can pull them back in after we have partially
3501          * segmented the frame.
3502          */
3503         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3504                 features &= ~dev->gso_partial_features;
3505
3506         /* Make sure to clear the IPv4 ID mangling feature if the
3507          * IPv4 header has the potential to be fragmented.
3508          */
3509         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3510                 struct iphdr *iph = skb->encapsulation ?
3511                                     inner_ip_hdr(skb) : ip_hdr(skb);
3512
3513                 if (!(iph->frag_off & htons(IP_DF)))
3514                         features &= ~NETIF_F_TSO_MANGLEID;
3515         }
3516
3517         return features;
3518 }
3519
3520 netdev_features_t netif_skb_features(struct sk_buff *skb)
3521 {
3522         struct net_device *dev = skb->dev;
3523         netdev_features_t features = dev->features;
3524
3525         if (skb_is_gso(skb))
3526                 features = gso_features_check(skb, dev, features);
3527
3528         /* If encapsulation offload request, verify we are testing
3529          * hardware encapsulation features instead of standard
3530          * features for the netdev
3531          */
3532         if (skb->encapsulation)
3533                 features &= dev->hw_enc_features;
3534
3535         if (skb_vlan_tagged(skb))
3536                 features = netdev_intersect_features(features,
3537                                                      dev->vlan_features |
3538                                                      NETIF_F_HW_VLAN_CTAG_TX |
3539                                                      NETIF_F_HW_VLAN_STAG_TX);
3540
3541         if (dev->netdev_ops->ndo_features_check)
3542                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3543                                                                 features);
3544         else
3545                 features &= dflt_features_check(skb, dev, features);
3546
3547         return harmonize_features(skb, features);
3548 }
3549 EXPORT_SYMBOL(netif_skb_features);
3550
3551 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3552                     struct netdev_queue *txq, bool more)
3553 {
3554         unsigned int len;
3555         int rc;
3556
3557         if (dev_nit_active(dev))
3558                 dev_queue_xmit_nit(skb, dev);
3559
3560         len = skb->len;
3561         trace_net_dev_start_xmit(skb, dev);
3562         rc = netdev_start_xmit(skb, dev, txq, more);
3563         trace_net_dev_xmit(skb, rc, dev, len);
3564
3565         return rc;
3566 }
3567
3568 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3569                                     struct netdev_queue *txq, int *ret)
3570 {
3571         struct sk_buff *skb = first;
3572         int rc = NETDEV_TX_OK;
3573
3574         while (skb) {
3575                 struct sk_buff *next = skb->next;
3576
3577                 skb_mark_not_on_list(skb);
3578                 rc = xmit_one(skb, dev, txq, next != NULL);
3579                 if (unlikely(!dev_xmit_complete(rc))) {
3580                         skb->next = next;
3581                         goto out;
3582                 }
3583
3584                 skb = next;
3585                 if (netif_tx_queue_stopped(txq) && skb) {
3586                         rc = NETDEV_TX_BUSY;
3587                         break;
3588                 }
3589         }
3590
3591 out:
3592         *ret = rc;
3593         return skb;
3594 }
3595
3596 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3597                                           netdev_features_t features)
3598 {
3599         if (skb_vlan_tag_present(skb) &&
3600             !vlan_hw_offload_capable(features, skb->vlan_proto))
3601                 skb = __vlan_hwaccel_push_inside(skb);
3602         return skb;
3603 }
3604
3605 int skb_csum_hwoffload_help(struct sk_buff *skb,
3606                             const netdev_features_t features)
3607 {
3608         if (unlikely(skb->csum_not_inet))
3609                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3610                         skb_crc32c_csum_help(skb);
3611
3612         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3613 }
3614 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3615
3616 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3617 {
3618         netdev_features_t features;
3619
3620         features = netif_skb_features(skb);
3621         skb = validate_xmit_vlan(skb, features);
3622         if (unlikely(!skb))
3623                 goto out_null;
3624
3625         skb = sk_validate_xmit_skb(skb, dev);
3626         if (unlikely(!skb))
3627                 goto out_null;
3628
3629         if (netif_needs_gso(skb, features)) {
3630                 struct sk_buff *segs;
3631
3632                 segs = skb_gso_segment(skb, features);
3633                 if (IS_ERR(segs)) {
3634                         goto out_kfree_skb;
3635                 } else if (segs) {
3636                         consume_skb(skb);
3637                         skb = segs;
3638                 }
3639         } else {
3640                 if (skb_needs_linearize(skb, features) &&
3641                     __skb_linearize(skb))
3642                         goto out_kfree_skb;
3643
3644                 /* If packet is not checksummed and device does not
3645                  * support checksumming for this protocol, complete
3646                  * checksumming here.
3647                  */
3648                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3649                         if (skb->encapsulation)
3650                                 skb_set_inner_transport_header(skb,
3651                                                                skb_checksum_start_offset(skb));
3652                         else
3653                                 skb_set_transport_header(skb,
3654                                                          skb_checksum_start_offset(skb));
3655                         if (skb_csum_hwoffload_help(skb, features))
3656                                 goto out_kfree_skb;
3657                 }
3658         }
3659
3660         skb = validate_xmit_xfrm(skb, features, again);
3661
3662         return skb;
3663
3664 out_kfree_skb:
3665         kfree_skb(skb);
3666 out_null:
3667         atomic_long_inc(&dev->tx_dropped);
3668         return NULL;
3669 }
3670
3671 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3672 {
3673         struct sk_buff *next, *head = NULL, *tail;
3674
3675         for (; skb != NULL; skb = next) {
3676                 next = skb->next;
3677                 skb_mark_not_on_list(skb);
3678
3679                 /* in case skb wont be segmented, point to itself */
3680                 skb->prev = skb;
3681
3682                 skb = validate_xmit_skb(skb, dev, again);
3683                 if (!skb)
3684                         continue;
3685
3686                 if (!head)
3687                         head = skb;
3688                 else
3689                         tail->next = skb;
3690                 /* If skb was segmented, skb->prev points to
3691                  * the last segment. If not, it still contains skb.
3692                  */
3693                 tail = skb->prev;
3694         }
3695         return head;
3696 }
3697 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3698
3699 static void qdisc_pkt_len_init(struct sk_buff *skb)
3700 {
3701         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3702
3703         qdisc_skb_cb(skb)->pkt_len = skb->len;
3704
3705         /* To get more precise estimation of bytes sent on wire,
3706          * we add to pkt_len the headers size of all segments
3707          */
3708         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3709                 unsigned int hdr_len;
3710                 u16 gso_segs = shinfo->gso_segs;
3711
3712                 /* mac layer + network layer */
3713                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3714
3715                 /* + transport layer */
3716                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3717                         const struct tcphdr *th;
3718                         struct tcphdr _tcphdr;
3719
3720                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3721                                                 sizeof(_tcphdr), &_tcphdr);
3722                         if (likely(th))
3723                                 hdr_len += __tcp_hdrlen(th);
3724                 } else {
3725                         struct udphdr _udphdr;
3726
3727                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3728                                                sizeof(_udphdr), &_udphdr))
3729                                 hdr_len += sizeof(struct udphdr);
3730                 }
3731
3732                 if (shinfo->gso_type & SKB_GSO_DODGY)
3733                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3734                                                 shinfo->gso_size);
3735
3736                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3737         }
3738 }
3739
3740 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3741                                  struct net_device *dev,
3742                                  struct netdev_queue *txq)
3743 {
3744         spinlock_t *root_lock = qdisc_lock(q);
3745         struct sk_buff *to_free = NULL;
3746         bool contended;
3747         int rc;
3748
3749         qdisc_calculate_pkt_len(skb, q);
3750
3751         if (q->flags & TCQ_F_NOLOCK) {
3752                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3753                 qdisc_run(q);
3754
3755                 if (unlikely(to_free))
3756                         kfree_skb_list(to_free);
3757                 return rc;
3758         }
3759
3760         /*
3761          * Heuristic to force contended enqueues to serialize on a
3762          * separate lock before trying to get qdisc main lock.
3763          * This permits qdisc->running owner to get the lock more
3764          * often and dequeue packets faster.
3765          */
3766         contended = qdisc_is_running(q);
3767         if (unlikely(contended))
3768                 spin_lock(&q->busylock);
3769
3770         spin_lock(root_lock);
3771         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3772                 __qdisc_drop(skb, &to_free);
3773                 rc = NET_XMIT_DROP;
3774         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3775                    qdisc_run_begin(q)) {
3776                 /*
3777                  * This is a work-conserving queue; there are no old skbs
3778                  * waiting to be sent out; and the qdisc is not running -
3779                  * xmit the skb directly.
3780                  */
3781
3782                 qdisc_bstats_update(q, skb);
3783
3784                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3785                         if (unlikely(contended)) {
3786                                 spin_unlock(&q->busylock);
3787                                 contended = false;
3788                         }
3789                         __qdisc_run(q);
3790                 }
3791
3792                 qdisc_run_end(q);
3793                 rc = NET_XMIT_SUCCESS;
3794         } else {
3795                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3796                 if (qdisc_run_begin(q)) {
3797                         if (unlikely(contended)) {
3798                                 spin_unlock(&q->busylock);
3799                                 contended = false;
3800                         }
3801                         __qdisc_run(q);
3802                         qdisc_run_end(q);
3803                 }
3804         }
3805         spin_unlock(root_lock);
3806         if (unlikely(to_free))
3807                 kfree_skb_list(to_free);
3808         if (unlikely(contended))
3809                 spin_unlock(&q->busylock);
3810         return rc;
3811 }
3812
3813 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3814 static void skb_update_prio(struct sk_buff *skb)
3815 {
3816         const struct netprio_map *map;
3817         const struct sock *sk;
3818         unsigned int prioidx;
3819
3820         if (skb->priority)
3821                 return;
3822         map = rcu_dereference_bh(skb->dev->priomap);
3823         if (!map)
3824                 return;
3825         sk = skb_to_full_sk(skb);
3826         if (!sk)
3827                 return;
3828
3829         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3830
3831         if (prioidx < map->priomap_len)
3832                 skb->priority = map->priomap[prioidx];
3833 }
3834 #else
3835 #define skb_update_prio(skb)
3836 #endif
3837
3838 /**
3839  *      dev_loopback_xmit - loop back @skb
3840  *      @net: network namespace this loopback is happening in
3841  *      @sk:  sk needed to be a netfilter okfn
3842  *      @skb: buffer to transmit
3843  */
3844 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3845 {
3846         skb_reset_mac_header(skb);
3847         __skb_pull(skb, skb_network_offset(skb));
3848         skb->pkt_type = PACKET_LOOPBACK;
3849         skb->ip_summed = CHECKSUM_UNNECESSARY;
3850         WARN_ON(!skb_dst(skb));
3851         skb_dst_force(skb);
3852         netif_rx_ni(skb);
3853         return 0;
3854 }
3855 EXPORT_SYMBOL(dev_loopback_xmit);
3856
3857 #ifdef CONFIG_NET_EGRESS
3858 static struct sk_buff *
3859 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3860 {
3861         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3862         struct tcf_result cl_res;
3863
3864         if (!miniq)
3865                 return skb;
3866
3867         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3868         mini_qdisc_bstats_cpu_update(miniq, skb);
3869
3870         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3871         case TC_ACT_OK:
3872         case TC_ACT_RECLASSIFY:
3873                 skb->tc_index = TC_H_MIN(cl_res.classid);
3874                 break;
3875         case TC_ACT_SHOT:
3876                 mini_qdisc_qstats_cpu_drop(miniq);
3877                 *ret = NET_XMIT_DROP;
3878                 kfree_skb(skb);
3879                 return NULL;
3880         case TC_ACT_STOLEN:
3881         case TC_ACT_QUEUED:
3882         case TC_ACT_TRAP:
3883                 *ret = NET_XMIT_SUCCESS;
3884                 consume_skb(skb);
3885                 return NULL;
3886         case TC_ACT_REDIRECT:
3887                 /* No need to push/pop skb's mac_header here on egress! */
3888                 skb_do_redirect(skb);
3889                 *ret = NET_XMIT_SUCCESS;
3890                 return NULL;
3891         default:
3892                 break;
3893         }
3894
3895         return skb;
3896 }
3897 #endif /* CONFIG_NET_EGRESS */
3898
3899 #ifdef CONFIG_XPS
3900 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3901                                struct xps_dev_maps *dev_maps, unsigned int tci)
3902 {
3903         struct xps_map *map;
3904         int queue_index = -1;
3905
3906         if (dev->num_tc) {
3907                 tci *= dev->num_tc;
3908                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3909         }
3910
3911         map = rcu_dereference(dev_maps->attr_map[tci]);
3912         if (map) {
3913                 if (map->len == 1)
3914                         queue_index = map->queues[0];
3915                 else
3916                         queue_index = map->queues[reciprocal_scale(
3917                                                 skb_get_hash(skb), map->len)];
3918                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3919                         queue_index = -1;
3920         }
3921         return queue_index;
3922 }
3923 #endif
3924
3925 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3926                          struct sk_buff *skb)
3927 {
3928 #ifdef CONFIG_XPS
3929         struct xps_dev_maps *dev_maps;
3930         struct sock *sk = skb->sk;
3931         int queue_index = -1;
3932
3933         if (!static_key_false(&xps_needed))
3934                 return -1;
3935
3936         rcu_read_lock();
3937         if (!static_key_false(&xps_rxqs_needed))
3938                 goto get_cpus_map;
3939
3940         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3941         if (dev_maps) {
3942                 int tci = sk_rx_queue_get(sk);
3943
3944                 if (tci >= 0 && tci < dev->num_rx_queues)
3945                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3946                                                           tci);
3947         }
3948
3949 get_cpus_map:
3950         if (queue_index < 0) {
3951                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3952                 if (dev_maps) {
3953                         unsigned int tci = skb->sender_cpu - 1;
3954
3955                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3956                                                           tci);
3957                 }
3958         }
3959         rcu_read_unlock();
3960
3961         return queue_index;
3962 #else
3963         return -1;
3964 #endif
3965 }
3966
3967 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3968                      struct net_device *sb_dev)
3969 {
3970         return 0;
3971 }
3972 EXPORT_SYMBOL(dev_pick_tx_zero);
3973
3974 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3975                        struct net_device *sb_dev)
3976 {
3977         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3978 }
3979 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3980
3981 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3982                      struct net_device *sb_dev)
3983 {
3984         struct sock *sk = skb->sk;
3985         int queue_index = sk_tx_queue_get(sk);
3986
3987         sb_dev = sb_dev ? : dev;
3988
3989         if (queue_index < 0 || skb->ooo_okay ||
3990             queue_index >= dev->real_num_tx_queues) {
3991                 int new_index = get_xps_queue(dev, sb_dev, skb);
3992
3993                 if (new_index < 0)
3994                         new_index = skb_tx_hash(dev, sb_dev, skb);
3995
3996                 if (queue_index != new_index && sk &&
3997                     sk_fullsock(sk) &&
3998                     rcu_access_pointer(sk->sk_dst_cache))
3999                         sk_tx_queue_set(sk, new_index);
4000
4001                 queue_index = new_index;
4002         }
4003
4004         return queue_index;
4005 }
4006 EXPORT_SYMBOL(netdev_pick_tx);
4007
4008 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4009                                          struct sk_buff *skb,
4010                                          struct net_device *sb_dev)
4011 {
4012         int queue_index = 0;
4013
4014 #ifdef CONFIG_XPS
4015         u32 sender_cpu = skb->sender_cpu - 1;
4016
4017         if (sender_cpu >= (u32)NR_CPUS)
4018                 skb->sender_cpu = raw_smp_processor_id() + 1;
4019 #endif
4020
4021         if (dev->real_num_tx_queues != 1) {
4022                 const struct net_device_ops *ops = dev->netdev_ops;
4023
4024                 if (ops->ndo_select_queue)
4025                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4026                 else
4027                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4028
4029                 queue_index = netdev_cap_txqueue(dev, queue_index);
4030         }
4031
4032         skb_set_queue_mapping(skb, queue_index);
4033         return netdev_get_tx_queue(dev, queue_index);
4034 }
4035
4036 /**
4037  *      __dev_queue_xmit - transmit a buffer
4038  *      @skb: buffer to transmit
4039  *      @sb_dev: suboordinate device used for L2 forwarding offload
4040  *
4041  *      Queue a buffer for transmission to a network device. The caller must
4042  *      have set the device and priority and built the buffer before calling
4043  *      this function. The function can be called from an interrupt.
4044  *
4045  *      A negative errno code is returned on a failure. A success does not
4046  *      guarantee the frame will be transmitted as it may be dropped due
4047  *      to congestion or traffic shaping.
4048  *
4049  * -----------------------------------------------------------------------------------
4050  *      I notice this method can also return errors from the queue disciplines,
4051  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4052  *      be positive.
4053  *
4054  *      Regardless of the return value, the skb is consumed, so it is currently
4055  *      difficult to retry a send to this method.  (You can bump the ref count
4056  *      before sending to hold a reference for retry if you are careful.)
4057  *
4058  *      When calling this method, interrupts MUST be enabled.  This is because
4059  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4060  *          --BLG
4061  */
4062 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4063 {
4064         struct net_device *dev = skb->dev;
4065         struct netdev_queue *txq;
4066         struct Qdisc *q;
4067         int rc = -ENOMEM;
4068         bool again = false;
4069
4070         skb_reset_mac_header(skb);
4071
4072         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4073                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4074
4075         /* Disable soft irqs for various locks below. Also
4076          * stops preemption for RCU.
4077          */
4078         rcu_read_lock_bh();
4079
4080         skb_update_prio(skb);
4081
4082         qdisc_pkt_len_init(skb);
4083 #ifdef CONFIG_NET_CLS_ACT
4084         skb->tc_at_ingress = 0;
4085 # ifdef CONFIG_NET_EGRESS
4086         if (static_branch_unlikely(&egress_needed_key)) {
4087                 skb = sch_handle_egress(skb, &rc, dev);
4088                 if (!skb)
4089                         goto out;
4090         }
4091 # endif
4092 #endif
4093         /* If device/qdisc don't need skb->dst, release it right now while
4094          * its hot in this cpu cache.
4095          */
4096         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4097                 skb_dst_drop(skb);
4098         else
4099                 skb_dst_force(skb);
4100
4101         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4102         q = rcu_dereference_bh(txq->qdisc);
4103
4104         trace_net_dev_queue(skb);
4105         if (q->enqueue) {
4106                 rc = __dev_xmit_skb(skb, q, dev, txq);
4107                 goto out;
4108         }
4109
4110         /* The device has no queue. Common case for software devices:
4111          * loopback, all the sorts of tunnels...
4112
4113          * Really, it is unlikely that netif_tx_lock protection is necessary
4114          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4115          * counters.)
4116          * However, it is possible, that they rely on protection
4117          * made by us here.
4118
4119          * Check this and shot the lock. It is not prone from deadlocks.
4120          *Either shot noqueue qdisc, it is even simpler 8)
4121          */
4122         if (dev->flags & IFF_UP) {
4123                 int cpu = smp_processor_id(); /* ok because BHs are off */
4124
4125                 if (txq->xmit_lock_owner != cpu) {
4126                         if (dev_xmit_recursion())
4127                                 goto recursion_alert;
4128
4129                         skb = validate_xmit_skb(skb, dev, &again);
4130                         if (!skb)
4131                                 goto out;
4132
4133                         HARD_TX_LOCK(dev, txq, cpu);
4134
4135                         if (!netif_xmit_stopped(txq)) {
4136                                 dev_xmit_recursion_inc();
4137                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4138                                 dev_xmit_recursion_dec();
4139                                 if (dev_xmit_complete(rc)) {
4140                                         HARD_TX_UNLOCK(dev, txq);
4141                                         goto out;
4142                                 }
4143                         }
4144                         HARD_TX_UNLOCK(dev, txq);
4145                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4146                                              dev->name);
4147                 } else {
4148                         /* Recursion is detected! It is possible,
4149                          * unfortunately
4150                          */
4151 recursion_alert:
4152                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4153                                              dev->name);
4154                 }
4155         }
4156
4157         rc = -ENETDOWN;
4158         rcu_read_unlock_bh();
4159
4160         atomic_long_inc(&dev->tx_dropped);
4161         kfree_skb_list(skb);
4162         return rc;
4163 out:
4164         rcu_read_unlock_bh();
4165         return rc;
4166 }
4167
4168 int dev_queue_xmit(struct sk_buff *skb)
4169 {
4170         return __dev_queue_xmit(skb, NULL);
4171 }
4172 EXPORT_SYMBOL(dev_queue_xmit);
4173
4174 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4175 {
4176         return __dev_queue_xmit(skb, sb_dev);
4177 }
4178 EXPORT_SYMBOL(dev_queue_xmit_accel);
4179
4180 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4181 {
4182         struct net_device *dev = skb->dev;
4183         struct sk_buff *orig_skb = skb;
4184         struct netdev_queue *txq;
4185         int ret = NETDEV_TX_BUSY;
4186         bool again = false;
4187
4188         if (unlikely(!netif_running(dev) ||
4189                      !netif_carrier_ok(dev)))
4190                 goto drop;
4191
4192         skb = validate_xmit_skb_list(skb, dev, &again);
4193         if (skb != orig_skb)
4194                 goto drop;
4195
4196         skb_set_queue_mapping(skb, queue_id);
4197         txq = skb_get_tx_queue(dev, skb);
4198
4199         local_bh_disable();
4200
4201         dev_xmit_recursion_inc();
4202         HARD_TX_LOCK(dev, txq, smp_processor_id());
4203         if (!netif_xmit_frozen_or_drv_stopped(txq))
4204                 ret = netdev_start_xmit(skb, dev, txq, false);
4205         HARD_TX_UNLOCK(dev, txq);
4206         dev_xmit_recursion_dec();
4207
4208         local_bh_enable();
4209
4210         if (!dev_xmit_complete(ret))
4211                 kfree_skb(skb);
4212
4213         return ret;
4214 drop:
4215         atomic_long_inc(&dev->tx_dropped);
4216         kfree_skb_list(skb);
4217         return NET_XMIT_DROP;
4218 }
4219 EXPORT_SYMBOL(dev_direct_xmit);
4220
4221 /*************************************************************************
4222  *                      Receiver routines
4223  *************************************************************************/
4224
4225 int netdev_max_backlog __read_mostly = 1000;
4226 EXPORT_SYMBOL(netdev_max_backlog);
4227
4228 int netdev_tstamp_prequeue __read_mostly = 1;
4229 int netdev_budget __read_mostly = 300;
4230 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4231 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4232 int weight_p __read_mostly = 64;           /* old backlog weight */
4233 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4234 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4235 int dev_rx_weight __read_mostly = 64;
4236 int dev_tx_weight __read_mostly = 64;
4237 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4238 int gro_normal_batch __read_mostly = 8;
4239
4240 /* Called with irq disabled */
4241 static inline void ____napi_schedule(struct softnet_data *sd,
4242                                      struct napi_struct *napi)
4243 {
4244         list_add_tail(&napi->poll_list, &sd->poll_list);
4245         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4246 }
4247
4248 #ifdef CONFIG_RPS
4249
4250 /* One global table that all flow-based protocols share. */
4251 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4252 EXPORT_SYMBOL(rps_sock_flow_table);
4253 u32 rps_cpu_mask __read_mostly;
4254 EXPORT_SYMBOL(rps_cpu_mask);
4255
4256 struct static_key_false rps_needed __read_mostly;
4257 EXPORT_SYMBOL(rps_needed);
4258 struct static_key_false rfs_needed __read_mostly;
4259 EXPORT_SYMBOL(rfs_needed);
4260
4261 static struct rps_dev_flow *
4262 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4263             struct rps_dev_flow *rflow, u16 next_cpu)
4264 {
4265         if (next_cpu < nr_cpu_ids) {
4266 #ifdef CONFIG_RFS_ACCEL
4267                 struct netdev_rx_queue *rxqueue;
4268                 struct rps_dev_flow_table *flow_table;
4269                 struct rps_dev_flow *old_rflow;
4270                 u32 flow_id;
4271                 u16 rxq_index;
4272                 int rc;
4273
4274                 /* Should we steer this flow to a different hardware queue? */
4275                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4276                     !(dev->features & NETIF_F_NTUPLE))
4277                         goto out;
4278                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4279                 if (rxq_index == skb_get_rx_queue(skb))
4280                         goto out;
4281
4282                 rxqueue = dev->_rx + rxq_index;
4283                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4284                 if (!flow_table)
4285                         goto out;
4286                 flow_id = skb_get_hash(skb) & flow_table->mask;
4287                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4288                                                         rxq_index, flow_id);
4289                 if (rc < 0)
4290                         goto out;
4291                 old_rflow = rflow;
4292                 rflow = &flow_table->flows[flow_id];
4293                 rflow->filter = rc;
4294                 if (old_rflow->filter == rflow->filter)
4295                         old_rflow->filter = RPS_NO_FILTER;
4296         out:
4297 #endif
4298                 rflow->last_qtail =
4299                         per_cpu(softnet_data, next_cpu).input_queue_head;
4300         }
4301
4302         rflow->cpu = next_cpu;
4303         return rflow;
4304 }
4305
4306 /*
4307  * get_rps_cpu is called from netif_receive_skb and returns the target
4308  * CPU from the RPS map of the receiving queue for a given skb.
4309  * rcu_read_lock must be held on entry.
4310  */
4311 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4312                        struct rps_dev_flow **rflowp)
4313 {
4314         const struct rps_sock_flow_table *sock_flow_table;
4315         struct netdev_rx_queue *rxqueue = dev->_rx;
4316         struct rps_dev_flow_table *flow_table;
4317         struct rps_map *map;
4318         int cpu = -1;
4319         u32 tcpu;
4320         u32 hash;
4321
4322         if (skb_rx_queue_recorded(skb)) {
4323                 u16 index = skb_get_rx_queue(skb);
4324
4325                 if (unlikely(index >= dev->real_num_rx_queues)) {
4326                         WARN_ONCE(dev->real_num_rx_queues > 1,
4327                                   "%s received packet on queue %u, but number "
4328                                   "of RX queues is %u\n",
4329                                   dev->name, index, dev->real_num_rx_queues);
4330                         goto done;
4331                 }
4332                 rxqueue += index;
4333         }
4334
4335         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4336
4337         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4338         map = rcu_dereference(rxqueue->rps_map);
4339         if (!flow_table && !map)
4340                 goto done;
4341
4342         skb_reset_network_header(skb);
4343         hash = skb_get_hash(skb);
4344         if (!hash)
4345                 goto done;
4346
4347         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4348         if (flow_table && sock_flow_table) {
4349                 struct rps_dev_flow *rflow;
4350                 u32 next_cpu;
4351                 u32 ident;
4352
4353                 /* First check into global flow table if there is a match */
4354                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4355                 if ((ident ^ hash) & ~rps_cpu_mask)
4356                         goto try_rps;
4357
4358                 next_cpu = ident & rps_cpu_mask;
4359
4360                 /* OK, now we know there is a match,
4361                  * we can look at the local (per receive queue) flow table
4362                  */
4363                 rflow = &flow_table->flows[hash & flow_table->mask];
4364                 tcpu = rflow->cpu;
4365
4366                 /*
4367                  * If the desired CPU (where last recvmsg was done) is
4368                  * different from current CPU (one in the rx-queue flow
4369                  * table entry), switch if one of the following holds:
4370                  *   - Current CPU is unset (>= nr_cpu_ids).
4371                  *   - Current CPU is offline.
4372                  *   - The current CPU's queue tail has advanced beyond the
4373                  *     last packet that was enqueued using this table entry.
4374                  *     This guarantees that all previous packets for the flow
4375                  *     have been dequeued, thus preserving in order delivery.
4376                  */
4377                 if (unlikely(tcpu != next_cpu) &&
4378                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4379                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4380                       rflow->last_qtail)) >= 0)) {
4381                         tcpu = next_cpu;
4382                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4383                 }
4384
4385                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4386                         *rflowp = rflow;
4387                         cpu = tcpu;
4388                         goto done;
4389                 }
4390         }
4391
4392 try_rps:
4393
4394         if (map) {
4395                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4396                 if (cpu_online(tcpu)) {
4397                         cpu = tcpu;
4398                         goto done;
4399                 }
4400         }
4401
4402 done:
4403         return cpu;
4404 }
4405
4406 #ifdef CONFIG_RFS_ACCEL
4407
4408 /**
4409  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4410  * @dev: Device on which the filter was set
4411  * @rxq_index: RX queue index
4412  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4413  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4414  *
4415  * Drivers that implement ndo_rx_flow_steer() should periodically call
4416  * this function for each installed filter and remove the filters for
4417  * which it returns %true.
4418  */
4419 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4420                          u32 flow_id, u16 filter_id)
4421 {
4422         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4423         struct rps_dev_flow_table *flow_table;
4424         struct rps_dev_flow *rflow;
4425         bool expire = true;
4426         unsigned int cpu;
4427
4428         rcu_read_lock();
4429         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4430         if (flow_table && flow_id <= flow_table->mask) {
4431                 rflow = &flow_table->flows[flow_id];
4432                 cpu = READ_ONCE(rflow->cpu);
4433                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4434                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4435                            rflow->last_qtail) <
4436                      (int)(10 * flow_table->mask)))
4437                         expire = false;
4438         }
4439         rcu_read_unlock();
4440         return expire;
4441 }
4442 EXPORT_SYMBOL(rps_may_expire_flow);
4443
4444 #endif /* CONFIG_RFS_ACCEL */
4445
4446 /* Called from hardirq (IPI) context */
4447 static void rps_trigger_softirq(void *data)
4448 {
4449         struct softnet_data *sd = data;
4450
4451         ____napi_schedule(sd, &sd->backlog);
4452         sd->received_rps++;
4453 }
4454
4455 #endif /* CONFIG_RPS */
4456
4457 /*
4458  * Check if this softnet_data structure is another cpu one
4459  * If yes, queue it to our IPI list and return 1
4460  * If no, return 0
4461  */
4462 static int rps_ipi_queued(struct softnet_data *sd)
4463 {
4464 #ifdef CONFIG_RPS
4465         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4466
4467         if (sd != mysd) {
4468                 sd->rps_ipi_next = mysd->rps_ipi_list;
4469                 mysd->rps_ipi_list = sd;
4470
4471                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4472                 return 1;
4473         }
4474 #endif /* CONFIG_RPS */
4475         return 0;
4476 }
4477
4478 #ifdef CONFIG_NET_FLOW_LIMIT
4479 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4480 #endif
4481
4482 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4483 {
4484 #ifdef CONFIG_NET_FLOW_LIMIT
4485         struct sd_flow_limit *fl;
4486         struct softnet_data *sd;
4487         unsigned int old_flow, new_flow;
4488
4489         if (qlen < (netdev_max_backlog >> 1))
4490                 return false;
4491
4492         sd = this_cpu_ptr(&softnet_data);
4493
4494         rcu_read_lock();
4495         fl = rcu_dereference(sd->flow_limit);
4496         if (fl) {
4497                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4498                 old_flow = fl->history[fl->history_head];
4499                 fl->history[fl->history_head] = new_flow;
4500
4501                 fl->history_head++;
4502                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4503
4504                 if (likely(fl->buckets[old_flow]))
4505                         fl->buckets[old_flow]--;
4506
4507                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4508                         fl->count++;
4509                         rcu_read_unlock();
4510                         return true;
4511                 }
4512         }
4513         rcu_read_unlock();
4514 #endif
4515         return false;
4516 }
4517
4518 /*
4519  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4520  * queue (may be a remote CPU queue).
4521  */
4522 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4523                               unsigned int *qtail)
4524 {
4525         struct softnet_data *sd;
4526         unsigned long flags;
4527         unsigned int qlen;
4528
4529         sd = &per_cpu(softnet_data, cpu);
4530
4531         local_irq_save(flags);
4532
4533         rps_lock(sd);
4534         if (!netif_running(skb->dev))
4535                 goto drop;
4536         qlen = skb_queue_len(&sd->input_pkt_queue);
4537         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4538                 if (qlen) {
4539 enqueue:
4540                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4541                         input_queue_tail_incr_save(sd, qtail);
4542                         rps_unlock(sd);
4543                         local_irq_restore(flags);
4544                         return NET_RX_SUCCESS;
4545                 }
4546
4547                 /* Schedule NAPI for backlog device
4548                  * We can use non atomic operation since we own the queue lock
4549                  */
4550                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4551                         if (!rps_ipi_queued(sd))
4552                                 ____napi_schedule(sd, &sd->backlog);
4553                 }
4554                 goto enqueue;
4555         }
4556
4557 drop:
4558         sd->dropped++;
4559         rps_unlock(sd);
4560
4561         local_irq_restore(flags);
4562
4563         atomic_long_inc(&skb->dev->rx_dropped);
4564         kfree_skb(skb);
4565         return NET_RX_DROP;
4566 }
4567
4568 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4569 {
4570         struct net_device *dev = skb->dev;
4571         struct netdev_rx_queue *rxqueue;
4572
4573         rxqueue = dev->_rx;
4574
4575         if (skb_rx_queue_recorded(skb)) {
4576                 u16 index = skb_get_rx_queue(skb);
4577
4578                 if (unlikely(index >= dev->real_num_rx_queues)) {
4579                         WARN_ONCE(dev->real_num_rx_queues > 1,
4580                                   "%s received packet on queue %u, but number "
4581                                   "of RX queues is %u\n",
4582                                   dev->name, index, dev->real_num_rx_queues);
4583
4584                         return rxqueue; /* Return first rxqueue */
4585                 }
4586                 rxqueue += index;
4587         }
4588         return rxqueue;
4589 }
4590
4591 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4592                                      struct xdp_buff *xdp,
4593                                      struct bpf_prog *xdp_prog)
4594 {
4595         struct netdev_rx_queue *rxqueue;
4596         void *orig_data, *orig_data_end;
4597         u32 metalen, act = XDP_DROP;
4598         __be16 orig_eth_type;
4599         struct ethhdr *eth;
4600         bool orig_bcast;
4601         int hlen, off;
4602         u32 mac_len;
4603
4604         /* Reinjected packets coming from act_mirred or similar should
4605          * not get XDP generic processing.
4606          */
4607         if (skb_is_redirected(skb))
4608                 return XDP_PASS;
4609
4610         /* XDP packets must be linear and must have sufficient headroom
4611          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4612          * native XDP provides, thus we need to do it here as well.
4613          */
4614         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4615             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4616                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4617                 int troom = skb->tail + skb->data_len - skb->end;
4618
4619                 /* In case we have to go down the path and also linearize,
4620                  * then lets do the pskb_expand_head() work just once here.
4621                  */
4622                 if (pskb_expand_head(skb,
4623                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4624                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4625                         goto do_drop;
4626                 if (skb_linearize(skb))
4627                         goto do_drop;
4628         }
4629
4630         /* The XDP program wants to see the packet starting at the MAC
4631          * header.
4632          */
4633         mac_len = skb->data - skb_mac_header(skb);
4634         hlen = skb_headlen(skb) + mac_len;
4635         xdp->data = skb->data - mac_len;
4636         xdp->data_meta = xdp->data;
4637         xdp->data_end = xdp->data + hlen;
4638         xdp->data_hard_start = skb->data - skb_headroom(skb);
4639
4640         /* SKB "head" area always have tailroom for skb_shared_info */
4641         xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4642         xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4643
4644         orig_data_end = xdp->data_end;
4645         orig_data = xdp->data;
4646         eth = (struct ethhdr *)xdp->data;
4647         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4648         orig_eth_type = eth->h_proto;
4649
4650         rxqueue = netif_get_rxqueue(skb);
4651         xdp->rxq = &rxqueue->xdp_rxq;
4652
4653         act = bpf_prog_run_xdp(xdp_prog, xdp);
4654
4655         /* check if bpf_xdp_adjust_head was used */
4656         off = xdp->data - orig_data;
4657         if (off) {
4658                 if (off > 0)
4659                         __skb_pull(skb, off);
4660                 else if (off < 0)
4661                         __skb_push(skb, -off);
4662
4663                 skb->mac_header += off;
4664                 skb_reset_network_header(skb);
4665         }
4666
4667         /* check if bpf_xdp_adjust_tail was used */
4668         off = xdp->data_end - orig_data_end;
4669         if (off != 0) {
4670                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4671                 skb->len += off; /* positive on grow, negative on shrink */
4672         }
4673
4674         /* check if XDP changed eth hdr such SKB needs update */
4675         eth = (struct ethhdr *)xdp->data;
4676         if ((orig_eth_type != eth->h_proto) ||
4677             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4678                 __skb_push(skb, ETH_HLEN);
4679                 skb->protocol = eth_type_trans(skb, skb->dev);
4680         }
4681
4682         switch (act) {
4683         case XDP_REDIRECT:
4684         case XDP_TX:
4685                 __skb_push(skb, mac_len);
4686                 break;
4687         case XDP_PASS:
4688                 metalen = xdp->data - xdp->data_meta;
4689                 if (metalen)
4690                         skb_metadata_set(skb, metalen);
4691                 break;
4692         default:
4693                 bpf_warn_invalid_xdp_action(act);
4694                 /* fall through */
4695         case XDP_ABORTED:
4696                 trace_xdp_exception(skb->dev, xdp_prog, act);
4697                 /* fall through */
4698         case XDP_DROP:
4699         do_drop:
4700                 kfree_skb(skb);
4701                 break;
4702         }
4703
4704         return act;
4705 }
4706
4707 /* When doing generic XDP we have to bypass the qdisc layer and the
4708  * network taps in order to match in-driver-XDP behavior.
4709  */
4710 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4711 {
4712         struct net_device *dev = skb->dev;
4713         struct netdev_queue *txq;
4714         bool free_skb = true;
4715         int cpu, rc;
4716
4717         txq = netdev_core_pick_tx(dev, skb, NULL);
4718         cpu = smp_processor_id();
4719         HARD_TX_LOCK(dev, txq, cpu);
4720         if (!netif_xmit_stopped(txq)) {
4721                 rc = netdev_start_xmit(skb, dev, txq, 0);
4722                 if (dev_xmit_complete(rc))
4723                         free_skb = false;
4724         }
4725         HARD_TX_UNLOCK(dev, txq);
4726         if (free_skb) {
4727                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4728                 kfree_skb(skb);
4729         }
4730 }
4731
4732 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4733
4734 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4735 {
4736         if (xdp_prog) {
4737                 struct xdp_buff xdp;
4738                 u32 act;
4739                 int err;
4740
4741                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4742                 if (act != XDP_PASS) {
4743                         switch (act) {
4744                         case XDP_REDIRECT:
4745                                 err = xdp_do_generic_redirect(skb->dev, skb,
4746                                                               &xdp, xdp_prog);
4747                                 if (err)
4748                                         goto out_redir;
4749                                 break;
4750                         case XDP_TX:
4751                                 generic_xdp_tx(skb, xdp_prog);
4752                                 break;
4753                         }
4754                         return XDP_DROP;
4755                 }
4756         }
4757         return XDP_PASS;
4758 out_redir:
4759         kfree_skb(skb);
4760         return XDP_DROP;
4761 }
4762 EXPORT_SYMBOL_GPL(do_xdp_generic);
4763
4764 static int netif_rx_internal(struct sk_buff *skb)
4765 {
4766         int ret;
4767
4768         net_timestamp_check(netdev_tstamp_prequeue, skb);
4769
4770         trace_netif_rx(skb);
4771
4772 #ifdef CONFIG_RPS
4773         if (static_branch_unlikely(&rps_needed)) {
4774                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4775                 int cpu;
4776
4777                 preempt_disable();
4778                 rcu_read_lock();
4779
4780                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4781                 if (cpu < 0)
4782                         cpu = smp_processor_id();
4783
4784                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4785
4786                 rcu_read_unlock();
4787                 preempt_enable();
4788         } else
4789 #endif
4790         {
4791                 unsigned int qtail;
4792
4793                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4794                 put_cpu();
4795         }
4796         return ret;
4797 }
4798
4799 /**
4800  *      netif_rx        -       post buffer to the network code
4801  *      @skb: buffer to post
4802  *
4803  *      This function receives a packet from a device driver and queues it for
4804  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4805  *      may be dropped during processing for congestion control or by the
4806  *      protocol layers.
4807  *
4808  *      return values:
4809  *      NET_RX_SUCCESS  (no congestion)
4810  *      NET_RX_DROP     (packet was dropped)
4811  *
4812  */
4813
4814 int netif_rx(struct sk_buff *skb)
4815 {
4816         int ret;
4817
4818         trace_netif_rx_entry(skb);
4819
4820         ret = netif_rx_internal(skb);
4821         trace_netif_rx_exit(ret);
4822
4823         return ret;
4824 }
4825 EXPORT_SYMBOL(netif_rx);
4826
4827 int netif_rx_ni(struct sk_buff *skb)
4828 {
4829         int err;
4830
4831         trace_netif_rx_ni_entry(skb);
4832
4833         preempt_disable();
4834         err = netif_rx_internal(skb);
4835         if (local_softirq_pending())
4836                 do_softirq();
4837         preempt_enable();
4838         trace_netif_rx_ni_exit(err);
4839
4840         return err;
4841 }
4842 EXPORT_SYMBOL(netif_rx_ni);
4843
4844 static __latent_entropy void net_tx_action(struct softirq_action *h)
4845 {
4846         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4847
4848         if (sd->completion_queue) {
4849                 struct sk_buff *clist;
4850
4851                 local_irq_disable();
4852                 clist = sd->completion_queue;
4853                 sd->completion_queue = NULL;
4854                 local_irq_enable();
4855
4856                 while (clist) {
4857                         struct sk_buff *skb = clist;
4858
4859                         clist = clist->next;
4860
4861                         WARN_ON(refcount_read(&skb->users));
4862                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4863                                 trace_consume_skb(skb);
4864                         else
4865                                 trace_kfree_skb(skb, net_tx_action);
4866
4867                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4868                                 __kfree_skb(skb);
4869                         else
4870                                 __kfree_skb_defer(skb);
4871                 }
4872
4873                 __kfree_skb_flush();
4874         }
4875
4876         if (sd->output_queue) {
4877                 struct Qdisc *head;
4878
4879                 local_irq_disable();
4880                 head = sd->output_queue;
4881                 sd->output_queue = NULL;
4882                 sd->output_queue_tailp = &sd->output_queue;
4883                 local_irq_enable();
4884
4885                 while (head) {
4886                         struct Qdisc *q = head;
4887                         spinlock_t *root_lock = NULL;
4888
4889                         head = head->next_sched;
4890
4891                         if (!(q->flags & TCQ_F_NOLOCK)) {
4892                                 root_lock = qdisc_lock(q);
4893                                 spin_lock(root_lock);
4894                         }
4895                         /* We need to make sure head->next_sched is read
4896                          * before clearing __QDISC_STATE_SCHED
4897                          */
4898                         smp_mb__before_atomic();
4899                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4900                         qdisc_run(q);
4901                         if (root_lock)
4902                                 spin_unlock(root_lock);
4903                 }
4904         }
4905
4906         xfrm_dev_backlog(sd);
4907 }
4908
4909 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4910 /* This hook is defined here for ATM LANE */
4911 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4912                              unsigned char *addr) __read_mostly;
4913 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4914 #endif
4915
4916 static inline struct sk_buff *
4917 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4918                    struct net_device *orig_dev)
4919 {
4920 #ifdef CONFIG_NET_CLS_ACT
4921         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4922         struct tcf_result cl_res;
4923
4924         /* If there's at least one ingress present somewhere (so
4925          * we get here via enabled static key), remaining devices
4926          * that are not configured with an ingress qdisc will bail
4927          * out here.
4928          */
4929         if (!miniq)
4930                 return skb;
4931
4932         if (*pt_prev) {
4933                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4934                 *pt_prev = NULL;
4935         }
4936
4937         qdisc_skb_cb(skb)->pkt_len = skb->len;
4938         skb->tc_at_ingress = 1;
4939         mini_qdisc_bstats_cpu_update(miniq, skb);
4940
4941         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4942                                      &cl_res, false)) {
4943         case TC_ACT_OK:
4944         case TC_ACT_RECLASSIFY:
4945                 skb->tc_index = TC_H_MIN(cl_res.classid);
4946                 break;
4947         case TC_ACT_SHOT:
4948                 mini_qdisc_qstats_cpu_drop(miniq);
4949                 kfree_skb(skb);
4950                 return NULL;
4951         case TC_ACT_STOLEN:
4952         case TC_ACT_QUEUED:
4953         case TC_ACT_TRAP:
4954                 consume_skb(skb);
4955                 return NULL;
4956         case TC_ACT_REDIRECT:
4957                 /* skb_mac_header check was done by cls/act_bpf, so
4958                  * we can safely push the L2 header back before
4959                  * redirecting to another netdev
4960                  */
4961                 __skb_push(skb, skb->mac_len);
4962                 skb_do_redirect(skb);
4963                 return NULL;
4964         case TC_ACT_CONSUMED:
4965                 return NULL;
4966         default:
4967                 break;
4968         }
4969 #endif /* CONFIG_NET_CLS_ACT */
4970         return skb;
4971 }
4972
4973 /**
4974  *      netdev_is_rx_handler_busy - check if receive handler is registered
4975  *      @dev: device to check
4976  *
4977  *      Check if a receive handler is already registered for a given device.
4978  *      Return true if there one.
4979  *
4980  *      The caller must hold the rtnl_mutex.
4981  */
4982 bool netdev_is_rx_handler_busy(struct net_device *dev)
4983 {
4984         ASSERT_RTNL();
4985         return dev && rtnl_dereference(dev->rx_handler);
4986 }
4987 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4988
4989 /**
4990  *      netdev_rx_handler_register - register receive handler
4991  *      @dev: device to register a handler for
4992  *      @rx_handler: receive handler to register
4993  *      @rx_handler_data: data pointer that is used by rx handler
4994  *
4995  *      Register a receive handler for a device. This handler will then be
4996  *      called from __netif_receive_skb. A negative errno code is returned
4997  *      on a failure.
4998  *
4999  *      The caller must hold the rtnl_mutex.
5000  *
5001  *      For a general description of rx_handler, see enum rx_handler_result.
5002  */
5003 int netdev_rx_handler_register(struct net_device *dev,
5004                                rx_handler_func_t *rx_handler,
5005                                void *rx_handler_data)
5006 {
5007         if (netdev_is_rx_handler_busy(dev))
5008                 return -EBUSY;
5009
5010         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5011                 return -EINVAL;
5012
5013         /* Note: rx_handler_data must be set before rx_handler */
5014         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5015         rcu_assign_pointer(dev->rx_handler, rx_handler);
5016
5017         return 0;
5018 }
5019 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5020
5021 /**
5022  *      netdev_rx_handler_unregister - unregister receive handler
5023  *      @dev: device to unregister a handler from
5024  *
5025  *      Unregister a receive handler from a device.
5026  *
5027  *      The caller must hold the rtnl_mutex.
5028  */
5029 void netdev_rx_handler_unregister(struct net_device *dev)
5030 {
5031
5032         ASSERT_RTNL();
5033         RCU_INIT_POINTER(dev->rx_handler, NULL);
5034         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5035          * section has a guarantee to see a non NULL rx_handler_data
5036          * as well.
5037          */
5038         synchronize_net();
5039         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5040 }
5041 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5042
5043 /*
5044  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5045  * the special handling of PFMEMALLOC skbs.
5046  */
5047 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5048 {
5049         switch (skb->protocol) {
5050         case htons(ETH_P_ARP):
5051         case htons(ETH_P_IP):
5052         case htons(ETH_P_IPV6):
5053         case htons(ETH_P_8021Q):
5054         case htons(ETH_P_8021AD):
5055                 return true;
5056         default:
5057                 return false;
5058         }
5059 }
5060
5061 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5062                              int *ret, struct net_device *orig_dev)
5063 {
5064         if (nf_hook_ingress_active(skb)) {
5065                 int ingress_retval;
5066
5067                 if (*pt_prev) {
5068                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5069                         *pt_prev = NULL;
5070                 }
5071
5072                 rcu_read_lock();
5073                 ingress_retval = nf_hook_ingress(skb);
5074                 rcu_read_unlock();
5075                 return ingress_retval;
5076         }
5077         return 0;
5078 }
5079
5080 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5081                                     struct packet_type **ppt_prev)
5082 {
5083         struct packet_type *ptype, *pt_prev;
5084         rx_handler_func_t *rx_handler;
5085         struct sk_buff *skb = *pskb;
5086         struct net_device *orig_dev;
5087         bool deliver_exact = false;
5088         int ret = NET_RX_DROP;
5089         __be16 type;
5090
5091         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5092
5093         trace_netif_receive_skb(skb);
5094
5095         orig_dev = skb->dev;
5096
5097         skb_reset_network_header(skb);
5098         if (!skb_transport_header_was_set(skb))
5099                 skb_reset_transport_header(skb);
5100         skb_reset_mac_len(skb);
5101
5102         pt_prev = NULL;
5103
5104 another_round:
5105         skb->skb_iif = skb->dev->ifindex;
5106
5107         __this_cpu_inc(softnet_data.processed);
5108
5109         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5110                 int ret2;
5111
5112                 preempt_disable();
5113                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5114                 preempt_enable();
5115
5116                 if (ret2 != XDP_PASS) {
5117                         ret = NET_RX_DROP;
5118                         goto out;
5119                 }
5120                 skb_reset_mac_len(skb);
5121         }
5122
5123         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5124             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5125                 skb = skb_vlan_untag(skb);
5126                 if (unlikely(!skb))
5127                         goto out;
5128         }
5129
5130         if (skb_skip_tc_classify(skb))
5131                 goto skip_classify;
5132
5133         if (pfmemalloc)
5134                 goto skip_taps;
5135
5136         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5137                 if (pt_prev)
5138                         ret = deliver_skb(skb, pt_prev, orig_dev);
5139                 pt_prev = ptype;
5140         }
5141
5142         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5143                 if (pt_prev)
5144                         ret = deliver_skb(skb, pt_prev, orig_dev);
5145                 pt_prev = ptype;
5146         }
5147
5148 skip_taps:
5149 #ifdef CONFIG_NET_INGRESS
5150         if (static_branch_unlikely(&ingress_needed_key)) {
5151                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5152                 if (!skb)
5153                         goto out;
5154
5155                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5156                         goto out;
5157         }
5158 #endif
5159         skb_reset_redirect(skb);
5160 skip_classify:
5161         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5162                 goto drop;
5163
5164         if (skb_vlan_tag_present(skb)) {
5165                 if (pt_prev) {
5166                         ret = deliver_skb(skb, pt_prev, orig_dev);
5167                         pt_prev = NULL;
5168                 }
5169                 if (vlan_do_receive(&skb))
5170                         goto another_round;
5171                 else if (unlikely(!skb))
5172                         goto out;
5173         }
5174
5175         rx_handler = rcu_dereference(skb->dev->rx_handler);
5176         if (rx_handler) {
5177                 if (pt_prev) {
5178                         ret = deliver_skb(skb, pt_prev, orig_dev);
5179                         pt_prev = NULL;
5180                 }
5181                 switch (rx_handler(&skb)) {
5182                 case RX_HANDLER_CONSUMED:
5183                         ret = NET_RX_SUCCESS;
5184                         goto out;
5185                 case RX_HANDLER_ANOTHER:
5186                         goto another_round;
5187                 case RX_HANDLER_EXACT:
5188                         deliver_exact = true;
5189                 case RX_HANDLER_PASS:
5190                         break;
5191                 default:
5192                         BUG();
5193                 }
5194         }
5195
5196         if (unlikely(skb_vlan_tag_present(skb))) {
5197 check_vlan_id:
5198                 if (skb_vlan_tag_get_id(skb)) {
5199                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5200                          * find vlan device.
5201                          */
5202                         skb->pkt_type = PACKET_OTHERHOST;
5203                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5204                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5205                         /* Outer header is 802.1P with vlan 0, inner header is
5206                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5207                          * not find vlan dev for vlan id 0.
5208                          */
5209                         __vlan_hwaccel_clear_tag(skb);
5210                         skb = skb_vlan_untag(skb);
5211                         if (unlikely(!skb))
5212                                 goto out;
5213                         if (vlan_do_receive(&skb))
5214                                 /* After stripping off 802.1P header with vlan 0
5215                                  * vlan dev is found for inner header.
5216                                  */
5217                                 goto another_round;
5218                         else if (unlikely(!skb))
5219                                 goto out;
5220                         else
5221                                 /* We have stripped outer 802.1P vlan 0 header.
5222                                  * But could not find vlan dev.
5223                                  * check again for vlan id to set OTHERHOST.
5224                                  */
5225                                 goto check_vlan_id;
5226                 }
5227                 /* Note: we might in the future use prio bits
5228                  * and set skb->priority like in vlan_do_receive()
5229                  * For the time being, just ignore Priority Code Point
5230                  */
5231                 __vlan_hwaccel_clear_tag(skb);
5232         }
5233
5234         type = skb->protocol;
5235
5236         /* deliver only exact match when indicated */
5237         if (likely(!deliver_exact)) {
5238                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5239                                        &ptype_base[ntohs(type) &
5240                                                    PTYPE_HASH_MASK]);
5241         }
5242
5243         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5244                                &orig_dev->ptype_specific);
5245
5246         if (unlikely(skb->dev != orig_dev)) {
5247                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5248                                        &skb->dev->ptype_specific);
5249         }
5250
5251         if (pt_prev) {
5252                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5253                         goto drop;
5254                 *ppt_prev = pt_prev;
5255         } else {
5256 drop:
5257                 if (!deliver_exact)
5258                         atomic_long_inc(&skb->dev->rx_dropped);
5259                 else
5260                         atomic_long_inc(&skb->dev->rx_nohandler);
5261                 kfree_skb(skb);
5262                 /* Jamal, now you will not able to escape explaining
5263                  * me how you were going to use this. :-)
5264                  */
5265                 ret = NET_RX_DROP;
5266         }
5267
5268 out:
5269         /* The invariant here is that if *ppt_prev is not NULL
5270          * then skb should also be non-NULL.
5271          *
5272          * Apparently *ppt_prev assignment above holds this invariant due to
5273          * skb dereferencing near it.
5274          */
5275         *pskb = skb;
5276         return ret;
5277 }
5278
5279 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5280 {
5281         struct net_device *orig_dev = skb->dev;
5282         struct packet_type *pt_prev = NULL;
5283         int ret;
5284
5285         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5286         if (pt_prev)
5287                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5288                                          skb->dev, pt_prev, orig_dev);
5289         return ret;
5290 }
5291
5292 /**
5293  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5294  *      @skb: buffer to process
5295  *
5296  *      More direct receive version of netif_receive_skb().  It should
5297  *      only be used by callers that have a need to skip RPS and Generic XDP.
5298  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5299  *
5300  *      This function may only be called from softirq context and interrupts
5301  *      should be enabled.
5302  *
5303  *      Return values (usually ignored):
5304  *      NET_RX_SUCCESS: no congestion
5305  *      NET_RX_DROP: packet was dropped
5306  */
5307 int netif_receive_skb_core(struct sk_buff *skb)
5308 {
5309         int ret;
5310
5311         rcu_read_lock();
5312         ret = __netif_receive_skb_one_core(skb, false);
5313         rcu_read_unlock();
5314
5315         return ret;
5316 }
5317 EXPORT_SYMBOL(netif_receive_skb_core);
5318
5319 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5320                                                   struct packet_type *pt_prev,
5321                                                   struct net_device *orig_dev)
5322 {
5323         struct sk_buff *skb, *next;
5324
5325         if (!pt_prev)
5326                 return;
5327         if (list_empty(head))
5328                 return;
5329         if (pt_prev->list_func != NULL)
5330                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5331                                    ip_list_rcv, head, pt_prev, orig_dev);
5332         else
5333                 list_for_each_entry_safe(skb, next, head, list) {
5334                         skb_list_del_init(skb);
5335                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5336                 }
5337 }
5338
5339 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5340 {
5341         /* Fast-path assumptions:
5342          * - There is no RX handler.
5343          * - Only one packet_type matches.
5344          * If either of these fails, we will end up doing some per-packet
5345          * processing in-line, then handling the 'last ptype' for the whole
5346          * sublist.  This can't cause out-of-order delivery to any single ptype,
5347          * because the 'last ptype' must be constant across the sublist, and all
5348          * other ptypes are handled per-packet.
5349          */
5350         /* Current (common) ptype of sublist */
5351         struct packet_type *pt_curr = NULL;
5352         /* Current (common) orig_dev of sublist */
5353         struct net_device *od_curr = NULL;
5354         struct list_head sublist;
5355         struct sk_buff *skb, *next;
5356
5357         INIT_LIST_HEAD(&sublist);
5358         list_for_each_entry_safe(skb, next, head, list) {
5359                 struct net_device *orig_dev = skb->dev;
5360                 struct packet_type *pt_prev = NULL;
5361
5362                 skb_list_del_init(skb);
5363                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5364                 if (!pt_prev)
5365                         continue;
5366                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5367                         /* dispatch old sublist */
5368                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5369                         /* start new sublist */
5370                         INIT_LIST_HEAD(&sublist);
5371                         pt_curr = pt_prev;
5372                         od_curr = orig_dev;
5373                 }
5374                 list_add_tail(&skb->list, &sublist);
5375         }
5376
5377         /* dispatch final sublist */
5378         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5379 }
5380
5381 static int __netif_receive_skb(struct sk_buff *skb)
5382 {
5383         int ret;
5384
5385         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5386                 unsigned int noreclaim_flag;
5387
5388                 /*
5389                  * PFMEMALLOC skbs are special, they should
5390                  * - be delivered to SOCK_MEMALLOC sockets only
5391                  * - stay away from userspace
5392                  * - have bounded memory usage
5393                  *
5394                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5395                  * context down to all allocation sites.
5396                  */
5397                 noreclaim_flag = memalloc_noreclaim_save();
5398                 ret = __netif_receive_skb_one_core(skb, true);
5399                 memalloc_noreclaim_restore(noreclaim_flag);
5400         } else
5401                 ret = __netif_receive_skb_one_core(skb, false);
5402
5403         return ret;
5404 }
5405
5406 static void __netif_receive_skb_list(struct list_head *head)
5407 {
5408         unsigned long noreclaim_flag = 0;
5409         struct sk_buff *skb, *next;
5410         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5411
5412         list_for_each_entry_safe(skb, next, head, list) {
5413                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5414                         struct list_head sublist;
5415
5416                         /* Handle the previous sublist */
5417                         list_cut_before(&sublist, head, &skb->list);
5418                         if (!list_empty(&sublist))
5419                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5420                         pfmemalloc = !pfmemalloc;
5421                         /* See comments in __netif_receive_skb */
5422                         if (pfmemalloc)
5423                                 noreclaim_flag = memalloc_noreclaim_save();
5424                         else
5425                                 memalloc_noreclaim_restore(noreclaim_flag);
5426                 }
5427         }
5428         /* Handle the remaining sublist */
5429         if (!list_empty(head))
5430                 __netif_receive_skb_list_core(head, pfmemalloc);
5431         /* Restore pflags */
5432         if (pfmemalloc)
5433                 memalloc_noreclaim_restore(noreclaim_flag);
5434 }
5435
5436 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5437 {
5438         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5439         struct bpf_prog *new = xdp->prog;
5440         int ret = 0;
5441
5442         if (new) {
5443                 u32 i;
5444
5445                 /* generic XDP does not work with DEVMAPs that can
5446                  * have a bpf_prog installed on an entry
5447                  */
5448                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5449                         if (dev_map_can_have_prog(new->aux->used_maps[i]))
5450                                 return -EINVAL;
5451                         if (cpu_map_prog_allowed(new->aux->used_maps[i]))
5452                                 return -EINVAL;
5453                 }
5454         }
5455
5456         switch (xdp->command) {
5457         case XDP_SETUP_PROG:
5458                 rcu_assign_pointer(dev->xdp_prog, new);
5459                 if (old)
5460                         bpf_prog_put(old);
5461
5462                 if (old && !new) {
5463                         static_branch_dec(&generic_xdp_needed_key);
5464                 } else if (new && !old) {
5465                         static_branch_inc(&generic_xdp_needed_key);
5466                         dev_disable_lro(dev);
5467                         dev_disable_gro_hw(dev);
5468                 }
5469                 break;
5470
5471         case XDP_QUERY_PROG:
5472                 xdp->prog_id = old ? old->aux->id : 0;
5473                 break;
5474
5475         default:
5476                 ret = -EINVAL;
5477                 break;
5478         }
5479
5480         return ret;
5481 }
5482
5483 static int netif_receive_skb_internal(struct sk_buff *skb)
5484 {
5485         int ret;
5486
5487         net_timestamp_check(netdev_tstamp_prequeue, skb);
5488
5489         if (skb_defer_rx_timestamp(skb))
5490                 return NET_RX_SUCCESS;
5491
5492         rcu_read_lock();
5493 #ifdef CONFIG_RPS
5494         if (static_branch_unlikely(&rps_needed)) {
5495                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5496                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5497
5498                 if (cpu >= 0) {
5499                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5500                         rcu_read_unlock();
5501                         return ret;
5502                 }
5503         }
5504 #endif
5505         ret = __netif_receive_skb(skb);
5506         rcu_read_unlock();
5507         return ret;
5508 }
5509
5510 static void netif_receive_skb_list_internal(struct list_head *head)
5511 {
5512         struct sk_buff *skb, *next;
5513         struct list_head sublist;
5514
5515         INIT_LIST_HEAD(&sublist);
5516         list_for_each_entry_safe(skb, next, head, list) {
5517                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5518                 skb_list_del_init(skb);
5519                 if (!skb_defer_rx_timestamp(skb))
5520                         list_add_tail(&skb->list, &sublist);
5521         }
5522         list_splice_init(&sublist, head);
5523
5524         rcu_read_lock();
5525 #ifdef CONFIG_RPS
5526         if (static_branch_unlikely(&rps_needed)) {
5527                 list_for_each_entry_safe(skb, next, head, list) {
5528                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5529                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5530
5531                         if (cpu >= 0) {
5532                                 /* Will be handled, remove from list */
5533                                 skb_list_del_init(skb);
5534                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5535                         }
5536                 }
5537         }
5538 #endif
5539         __netif_receive_skb_list(head);
5540         rcu_read_unlock();
5541 }
5542
5543 /**
5544  *      netif_receive_skb - process receive buffer from network
5545  *      @skb: buffer to process
5546  *
5547  *      netif_receive_skb() is the main receive data processing function.
5548  *      It always succeeds. The buffer may be dropped during processing
5549  *      for congestion control or by the protocol layers.
5550  *
5551  *      This function may only be called from softirq context and interrupts
5552  *      should be enabled.
5553  *
5554  *      Return values (usually ignored):
5555  *      NET_RX_SUCCESS: no congestion
5556  *      NET_RX_DROP: packet was dropped
5557  */
5558 int netif_receive_skb(struct sk_buff *skb)
5559 {
5560         int ret;
5561
5562         trace_netif_receive_skb_entry(skb);
5563
5564         ret = netif_receive_skb_internal(skb);
5565         trace_netif_receive_skb_exit(ret);
5566
5567         return ret;
5568 }
5569 EXPORT_SYMBOL(netif_receive_skb);
5570
5571 /**
5572  *      netif_receive_skb_list - process many receive buffers from network
5573  *      @head: list of skbs to process.
5574  *
5575  *      Since return value of netif_receive_skb() is normally ignored, and
5576  *      wouldn't be meaningful for a list, this function returns void.
5577  *
5578  *      This function may only be called from softirq context and interrupts
5579  *      should be enabled.
5580  */
5581 void netif_receive_skb_list(struct list_head *head)
5582 {
5583         struct sk_buff *skb;
5584
5585         if (list_empty(head))
5586                 return;
5587         if (trace_netif_receive_skb_list_entry_enabled()) {
5588                 list_for_each_entry(skb, head, list)
5589                         trace_netif_receive_skb_list_entry(skb);
5590         }
5591         netif_receive_skb_list_internal(head);
5592         trace_netif_receive_skb_list_exit(0);
5593 }
5594 EXPORT_SYMBOL(netif_receive_skb_list);
5595
5596 static DEFINE_PER_CPU(struct work_struct, flush_works);
5597
5598 /* Network device is going away, flush any packets still pending */
5599 static void flush_backlog(struct work_struct *work)
5600 {
5601         struct sk_buff *skb, *tmp;
5602         struct softnet_data *sd;
5603
5604         local_bh_disable();
5605         sd = this_cpu_ptr(&softnet_data);
5606
5607         local_irq_disable();
5608         rps_lock(sd);
5609         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5610                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5611                         __skb_unlink(skb, &sd->input_pkt_queue);
5612                         dev_kfree_skb_irq(skb);
5613                         input_queue_head_incr(sd);
5614                 }
5615         }
5616         rps_unlock(sd);
5617         local_irq_enable();
5618
5619         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5620                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5621                         __skb_unlink(skb, &sd->process_queue);
5622                         kfree_skb(skb);
5623                         input_queue_head_incr(sd);
5624                 }
5625         }
5626         local_bh_enable();
5627 }
5628
5629 static void flush_all_backlogs(void)
5630 {
5631         unsigned int cpu;
5632
5633         get_online_cpus();
5634
5635         for_each_online_cpu(cpu)
5636                 queue_work_on(cpu, system_highpri_wq,
5637                               per_cpu_ptr(&flush_works, cpu));
5638
5639         for_each_online_cpu(cpu)
5640                 flush_work(per_cpu_ptr(&flush_works, cpu));
5641
5642         put_online_cpus();
5643 }
5644
5645 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5646 static void gro_normal_list(struct napi_struct *napi)
5647 {
5648         if (!napi->rx_count)
5649                 return;
5650         netif_receive_skb_list_internal(&napi->rx_list);
5651         INIT_LIST_HEAD(&napi->rx_list);
5652         napi->rx_count = 0;
5653 }
5654
5655 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5656  * pass the whole batch up to the stack.
5657  */
5658 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5659 {
5660         list_add_tail(&skb->list, &napi->rx_list);
5661         if (++napi->rx_count >= gro_normal_batch)
5662                 gro_normal_list(napi);
5663 }
5664
5665 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5666 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5667 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5668 {
5669         struct packet_offload *ptype;
5670         __be16 type = skb->protocol;
5671         struct list_head *head = &offload_base;
5672         int err = -ENOENT;
5673
5674         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5675
5676         if (NAPI_GRO_CB(skb)->count == 1) {
5677                 skb_shinfo(skb)->gso_size = 0;
5678                 goto out;
5679         }
5680
5681         rcu_read_lock();
5682         list_for_each_entry_rcu(ptype, head, list) {
5683                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5684                         continue;
5685
5686                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5687                                          ipv6_gro_complete, inet_gro_complete,
5688                                          skb, 0);
5689                 break;
5690         }
5691         rcu_read_unlock();
5692
5693         if (err) {
5694                 WARN_ON(&ptype->list == head);
5695                 kfree_skb(skb);
5696                 return NET_RX_SUCCESS;
5697         }
5698
5699 out:
5700         gro_normal_one(napi, skb);
5701         return NET_RX_SUCCESS;
5702 }
5703
5704 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5705                                    bool flush_old)
5706 {
5707         struct list_head *head = &napi->gro_hash[index].list;
5708         struct sk_buff *skb, *p;
5709
5710         list_for_each_entry_safe_reverse(skb, p, head, list) {
5711                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5712                         return;
5713                 skb_list_del_init(skb);
5714                 napi_gro_complete(napi, skb);
5715                 napi->gro_hash[index].count--;
5716         }
5717
5718         if (!napi->gro_hash[index].count)
5719                 __clear_bit(index, &napi->gro_bitmask);
5720 }
5721
5722 /* napi->gro_hash[].list contains packets ordered by age.
5723  * youngest packets at the head of it.
5724  * Complete skbs in reverse order to reduce latencies.
5725  */
5726 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5727 {
5728         unsigned long bitmask = napi->gro_bitmask;
5729         unsigned int i, base = ~0U;
5730
5731         while ((i = ffs(bitmask)) != 0) {
5732                 bitmask >>= i;
5733                 base += i;
5734                 __napi_gro_flush_chain(napi, base, flush_old);
5735         }
5736 }
5737 EXPORT_SYMBOL(napi_gro_flush);
5738
5739 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5740                                           struct sk_buff *skb)
5741 {
5742         unsigned int maclen = skb->dev->hard_header_len;
5743         u32 hash = skb_get_hash_raw(skb);
5744         struct list_head *head;
5745         struct sk_buff *p;
5746
5747         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5748         list_for_each_entry(p, head, list) {
5749                 unsigned long diffs;
5750
5751                 NAPI_GRO_CB(p)->flush = 0;
5752
5753                 if (hash != skb_get_hash_raw(p)) {
5754                         NAPI_GRO_CB(p)->same_flow = 0;
5755                         continue;
5756                 }
5757
5758                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5759                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5760                 if (skb_vlan_tag_present(p))
5761                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5762                 diffs |= skb_metadata_dst_cmp(p, skb);
5763                 diffs |= skb_metadata_differs(p, skb);
5764                 if (maclen == ETH_HLEN)
5765                         diffs |= compare_ether_header(skb_mac_header(p),
5766                                                       skb_mac_header(skb));
5767                 else if (!diffs)
5768                         diffs = memcmp(skb_mac_header(p),
5769                                        skb_mac_header(skb),
5770                                        maclen);
5771                 NAPI_GRO_CB(p)->same_flow = !diffs;
5772         }
5773
5774         return head;
5775 }
5776
5777 static void skb_gro_reset_offset(struct sk_buff *skb)
5778 {
5779         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5780         const skb_frag_t *frag0 = &pinfo->frags[0];
5781
5782         NAPI_GRO_CB(skb)->data_offset = 0;
5783         NAPI_GRO_CB(skb)->frag0 = NULL;
5784         NAPI_GRO_CB(skb)->frag0_len = 0;
5785
5786         if (!skb_headlen(skb) && pinfo->nr_frags &&
5787             !PageHighMem(skb_frag_page(frag0))) {
5788                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5789                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5790                                                     skb_frag_size(frag0),
5791                                                     skb->end - skb->tail);
5792         }
5793 }
5794
5795 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5796 {
5797         struct skb_shared_info *pinfo = skb_shinfo(skb);
5798
5799         BUG_ON(skb->end - skb->tail < grow);
5800
5801         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5802
5803         skb->data_len -= grow;
5804         skb->tail += grow;
5805
5806         skb_frag_off_add(&pinfo->frags[0], grow);
5807         skb_frag_size_sub(&pinfo->frags[0], grow);
5808
5809         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5810                 skb_frag_unref(skb, 0);
5811                 memmove(pinfo->frags, pinfo->frags + 1,
5812                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5813         }
5814 }
5815
5816 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5817 {
5818         struct sk_buff *oldest;
5819
5820         oldest = list_last_entry(head, struct sk_buff, list);
5821
5822         /* We are called with head length >= MAX_GRO_SKBS, so this is
5823          * impossible.
5824          */
5825         if (WARN_ON_ONCE(!oldest))
5826                 return;
5827
5828         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5829          * SKB to the chain.
5830          */
5831         skb_list_del_init(oldest);
5832         napi_gro_complete(napi, oldest);
5833 }
5834
5835 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5836                                                            struct sk_buff *));
5837 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5838                                                            struct sk_buff *));
5839 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5840 {
5841         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5842         struct list_head *head = &offload_base;
5843         struct packet_offload *ptype;
5844         __be16 type = skb->protocol;
5845         struct list_head *gro_head;
5846         struct sk_buff *pp = NULL;
5847         enum gro_result ret;
5848         int same_flow;
5849         int grow;
5850
5851         if (netif_elide_gro(skb->dev))
5852                 goto normal;
5853
5854         gro_head = gro_list_prepare(napi, skb);
5855
5856         rcu_read_lock();
5857         list_for_each_entry_rcu(ptype, head, list) {
5858                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5859                         continue;
5860
5861                 skb_set_network_header(skb, skb_gro_offset(skb));
5862                 skb_reset_mac_len(skb);
5863                 NAPI_GRO_CB(skb)->same_flow = 0;
5864                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5865                 NAPI_GRO_CB(skb)->free = 0;
5866                 NAPI_GRO_CB(skb)->encap_mark = 0;
5867                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5868                 NAPI_GRO_CB(skb)->is_fou = 0;
5869                 NAPI_GRO_CB(skb)->is_atomic = 1;
5870                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5871
5872                 /* Setup for GRO checksum validation */
5873                 switch (skb->ip_summed) {
5874                 case CHECKSUM_COMPLETE:
5875                         NAPI_GRO_CB(skb)->csum = skb->csum;
5876                         NAPI_GRO_CB(skb)->csum_valid = 1;
5877                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5878                         break;
5879                 case CHECKSUM_UNNECESSARY:
5880                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5881                         NAPI_GRO_CB(skb)->csum_valid = 0;
5882                         break;
5883                 default:
5884                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5885                         NAPI_GRO_CB(skb)->csum_valid = 0;
5886                 }
5887
5888                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5889                                         ipv6_gro_receive, inet_gro_receive,
5890                                         gro_head, skb);
5891                 break;
5892         }
5893         rcu_read_unlock();
5894
5895         if (&ptype->list == head)
5896                 goto normal;
5897
5898         if (PTR_ERR(pp) == -EINPROGRESS) {
5899                 ret = GRO_CONSUMED;
5900                 goto ok;
5901         }
5902
5903         same_flow = NAPI_GRO_CB(skb)->same_flow;
5904         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5905
5906         if (pp) {
5907                 skb_list_del_init(pp);
5908                 napi_gro_complete(napi, pp);
5909                 napi->gro_hash[hash].count--;
5910         }
5911
5912         if (same_flow)
5913                 goto ok;
5914
5915         if (NAPI_GRO_CB(skb)->flush)
5916                 goto normal;
5917
5918         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5919                 gro_flush_oldest(napi, gro_head);
5920         } else {
5921                 napi->gro_hash[hash].count++;
5922         }
5923         NAPI_GRO_CB(skb)->count = 1;
5924         NAPI_GRO_CB(skb)->age = jiffies;
5925         NAPI_GRO_CB(skb)->last = skb;
5926         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5927         list_add(&skb->list, gro_head);
5928         ret = GRO_HELD;
5929
5930 pull:
5931         grow = skb_gro_offset(skb) - skb_headlen(skb);
5932         if (grow > 0)
5933                 gro_pull_from_frag0(skb, grow);
5934 ok:
5935         if (napi->gro_hash[hash].count) {
5936                 if (!test_bit(hash, &napi->gro_bitmask))
5937                         __set_bit(hash, &napi->gro_bitmask);
5938         } else if (test_bit(hash, &napi->gro_bitmask)) {
5939                 __clear_bit(hash, &napi->gro_bitmask);
5940         }
5941
5942         return ret;
5943
5944 normal:
5945         ret = GRO_NORMAL;
5946         goto pull;
5947 }
5948
5949 struct packet_offload *gro_find_receive_by_type(__be16 type)
5950 {
5951         struct list_head *offload_head = &offload_base;
5952         struct packet_offload *ptype;
5953
5954         list_for_each_entry_rcu(ptype, offload_head, list) {
5955                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5956                         continue;
5957                 return ptype;
5958         }
5959         return NULL;
5960 }
5961 EXPORT_SYMBOL(gro_find_receive_by_type);
5962
5963 struct packet_offload *gro_find_complete_by_type(__be16 type)
5964 {
5965         struct list_head *offload_head = &offload_base;
5966         struct packet_offload *ptype;
5967
5968         list_for_each_entry_rcu(ptype, offload_head, list) {
5969                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5970                         continue;
5971                 return ptype;
5972         }
5973         return NULL;
5974 }
5975 EXPORT_SYMBOL(gro_find_complete_by_type);
5976
5977 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5978 {
5979         skb_dst_drop(skb);
5980         skb_ext_put(skb);
5981         kmem_cache_free(skbuff_head_cache, skb);
5982 }
5983
5984 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5985                                     struct sk_buff *skb,
5986                                     gro_result_t ret)
5987 {
5988         switch (ret) {
5989         case GRO_NORMAL:
5990                 gro_normal_one(napi, skb);
5991                 break;
5992
5993         case GRO_DROP:
5994                 kfree_skb(skb);
5995                 break;
5996
5997         case GRO_MERGED_FREE:
5998                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5999                         napi_skb_free_stolen_head(skb);
6000                 else
6001                         __kfree_skb(skb);
6002                 break;
6003
6004         case GRO_HELD:
6005         case GRO_MERGED:
6006         case GRO_CONSUMED:
6007                 break;
6008         }
6009
6010         return ret;
6011 }
6012
6013 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6014 {
6015         gro_result_t ret;
6016
6017         skb_mark_napi_id(skb, napi);
6018         trace_napi_gro_receive_entry(skb);
6019
6020         skb_gro_reset_offset(skb);
6021
6022         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6023         trace_napi_gro_receive_exit(ret);
6024
6025         return ret;
6026 }
6027 EXPORT_SYMBOL(napi_gro_receive);
6028
6029 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6030 {
6031         if (unlikely(skb->pfmemalloc)) {
6032                 consume_skb(skb);
6033                 return;
6034         }
6035         __skb_pull(skb, skb_headlen(skb));
6036         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6037         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6038         __vlan_hwaccel_clear_tag(skb);
6039         skb->dev = napi->dev;
6040         skb->skb_iif = 0;
6041
6042         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6043         skb->pkt_type = PACKET_HOST;
6044
6045         skb->encapsulation = 0;
6046         skb_shinfo(skb)->gso_type = 0;
6047         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6048         skb_ext_reset(skb);
6049
6050         napi->skb = skb;
6051 }
6052
6053 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6054 {
6055         struct sk_buff *skb = napi->skb;
6056
6057         if (!skb) {
6058                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6059                 if (skb) {
6060                         napi->skb = skb;
6061                         skb_mark_napi_id(skb, napi);
6062                 }
6063         }
6064         return skb;
6065 }
6066 EXPORT_SYMBOL(napi_get_frags);
6067
6068 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6069                                       struct sk_buff *skb,
6070                                       gro_result_t ret)
6071 {
6072         switch (ret) {
6073         case GRO_NORMAL:
6074         case GRO_HELD:
6075                 __skb_push(skb, ETH_HLEN);
6076                 skb->protocol = eth_type_trans(skb, skb->dev);
6077                 if (ret == GRO_NORMAL)
6078                         gro_normal_one(napi, skb);
6079                 break;
6080
6081         case GRO_DROP:
6082                 napi_reuse_skb(napi, skb);
6083                 break;
6084
6085         case GRO_MERGED_FREE:
6086                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6087                         napi_skb_free_stolen_head(skb);
6088                 else
6089                         napi_reuse_skb(napi, skb);
6090                 break;
6091
6092         case GRO_MERGED:
6093         case GRO_CONSUMED:
6094                 break;
6095         }
6096
6097         return ret;
6098 }
6099
6100 /* Upper GRO stack assumes network header starts at gro_offset=0
6101  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6102  * We copy ethernet header into skb->data to have a common layout.
6103  */
6104 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6105 {
6106         struct sk_buff *skb = napi->skb;
6107         const struct ethhdr *eth;
6108         unsigned int hlen = sizeof(*eth);
6109
6110         napi->skb = NULL;
6111
6112         skb_reset_mac_header(skb);
6113         skb_gro_reset_offset(skb);
6114
6115         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6116                 eth = skb_gro_header_slow(skb, hlen, 0);
6117                 if (unlikely(!eth)) {
6118                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6119                                              __func__, napi->dev->name);
6120                         napi_reuse_skb(napi, skb);
6121                         return NULL;
6122                 }
6123         } else {
6124                 eth = (const struct ethhdr *)skb->data;
6125                 gro_pull_from_frag0(skb, hlen);
6126                 NAPI_GRO_CB(skb)->frag0 += hlen;
6127                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6128         }
6129         __skb_pull(skb, hlen);
6130
6131         /*
6132          * This works because the only protocols we care about don't require
6133          * special handling.
6134          * We'll fix it up properly in napi_frags_finish()
6135          */
6136         skb->protocol = eth->h_proto;
6137
6138         return skb;
6139 }
6140
6141 gro_result_t napi_gro_frags(struct napi_struct *napi)
6142 {
6143         gro_result_t ret;
6144         struct sk_buff *skb = napi_frags_skb(napi);
6145
6146         if (!skb)
6147                 return GRO_DROP;
6148
6149         trace_napi_gro_frags_entry(skb);
6150
6151         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6152         trace_napi_gro_frags_exit(ret);
6153
6154         return ret;
6155 }
6156 EXPORT_SYMBOL(napi_gro_frags);
6157
6158 /* Compute the checksum from gro_offset and return the folded value
6159  * after adding in any pseudo checksum.
6160  */
6161 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6162 {
6163         __wsum wsum;
6164         __sum16 sum;
6165
6166         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6167
6168         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6169         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6170         /* See comments in __skb_checksum_complete(). */
6171         if (likely(!sum)) {
6172                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6173                     !skb->csum_complete_sw)
6174                         netdev_rx_csum_fault(skb->dev, skb);
6175         }
6176
6177         NAPI_GRO_CB(skb)->csum = wsum;
6178         NAPI_GRO_CB(skb)->csum_valid = 1;
6179
6180         return sum;
6181 }
6182 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6183
6184 static void net_rps_send_ipi(struct softnet_data *remsd)
6185 {
6186 #ifdef CONFIG_RPS
6187         while (remsd) {
6188                 struct softnet_data *next = remsd->rps_ipi_next;
6189
6190                 if (cpu_online(remsd->cpu))
6191                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6192                 remsd = next;
6193         }
6194 #endif
6195 }
6196
6197 /*
6198  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6199  * Note: called with local irq disabled, but exits with local irq enabled.
6200  */
6201 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6202 {
6203 #ifdef CONFIG_RPS
6204         struct softnet_data *remsd = sd->rps_ipi_list;
6205
6206         if (remsd) {
6207                 sd->rps_ipi_list = NULL;
6208
6209                 local_irq_enable();
6210
6211                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6212                 net_rps_send_ipi(remsd);
6213         } else
6214 #endif
6215                 local_irq_enable();
6216 }
6217
6218 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6219 {
6220 #ifdef CONFIG_RPS
6221         return sd->rps_ipi_list != NULL;
6222 #else
6223         return false;
6224 #endif
6225 }
6226
6227 static int process_backlog(struct napi_struct *napi, int quota)
6228 {
6229         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6230         bool again = true;
6231         int work = 0;
6232
6233         /* Check if we have pending ipi, its better to send them now,
6234          * not waiting net_rx_action() end.
6235          */
6236         if (sd_has_rps_ipi_waiting(sd)) {
6237                 local_irq_disable();
6238                 net_rps_action_and_irq_enable(sd);
6239         }
6240
6241         napi->weight = dev_rx_weight;
6242         while (again) {
6243                 struct sk_buff *skb;
6244
6245                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6246                         rcu_read_lock();
6247                         __netif_receive_skb(skb);
6248                         rcu_read_unlock();
6249                         input_queue_head_incr(sd);
6250                         if (++work >= quota)
6251                                 return work;
6252
6253                 }
6254
6255                 local_irq_disable();
6256                 rps_lock(sd);
6257                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6258                         /*
6259                          * Inline a custom version of __napi_complete().
6260                          * only current cpu owns and manipulates this napi,
6261                          * and NAPI_STATE_SCHED is the only possible flag set
6262                          * on backlog.
6263                          * We can use a plain write instead of clear_bit(),
6264                          * and we dont need an smp_mb() memory barrier.
6265                          */
6266                         napi->state = 0;
6267                         again = false;
6268                 } else {
6269                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6270                                                    &sd->process_queue);
6271                 }
6272                 rps_unlock(sd);
6273                 local_irq_enable();
6274         }
6275
6276         return work;
6277 }
6278
6279 /**
6280  * __napi_schedule - schedule for receive
6281  * @n: entry to schedule
6282  *
6283  * The entry's receive function will be scheduled to run.
6284  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6285  */
6286 void __napi_schedule(struct napi_struct *n)
6287 {
6288         unsigned long flags;
6289
6290         local_irq_save(flags);
6291         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6292         local_irq_restore(flags);
6293 }
6294 EXPORT_SYMBOL(__napi_schedule);
6295
6296 /**
6297  *      napi_schedule_prep - check if napi can be scheduled
6298  *      @n: napi context
6299  *
6300  * Test if NAPI routine is already running, and if not mark
6301  * it as running.  This is used as a condition variable
6302  * insure only one NAPI poll instance runs.  We also make
6303  * sure there is no pending NAPI disable.
6304  */
6305 bool napi_schedule_prep(struct napi_struct *n)
6306 {
6307         unsigned long val, new;
6308
6309         do {
6310                 val = READ_ONCE(n->state);
6311                 if (unlikely(val & NAPIF_STATE_DISABLE))
6312                         return false;
6313                 new = val | NAPIF_STATE_SCHED;
6314
6315                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6316                  * This was suggested by Alexander Duyck, as compiler
6317                  * emits better code than :
6318                  * if (val & NAPIF_STATE_SCHED)
6319                  *     new |= NAPIF_STATE_MISSED;
6320                  */
6321                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6322                                                    NAPIF_STATE_MISSED;
6323         } while (cmpxchg(&n->state, val, new) != val);
6324
6325         return !(val & NAPIF_STATE_SCHED);
6326 }
6327 EXPORT_SYMBOL(napi_schedule_prep);
6328
6329 /**
6330  * __napi_schedule_irqoff - schedule for receive
6331  * @n: entry to schedule
6332  *
6333  * Variant of __napi_schedule() assuming hard irqs are masked
6334  */
6335 void __napi_schedule_irqoff(struct napi_struct *n)
6336 {
6337         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6338 }
6339 EXPORT_SYMBOL(__napi_schedule_irqoff);
6340
6341 bool napi_complete_done(struct napi_struct *n, int work_done)
6342 {
6343         unsigned long flags, val, new, timeout = 0;
6344         bool ret = true;
6345
6346         /*
6347          * 1) Don't let napi dequeue from the cpu poll list
6348          *    just in case its running on a different cpu.
6349          * 2) If we are busy polling, do nothing here, we have
6350          *    the guarantee we will be called later.
6351          */
6352         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6353                                  NAPIF_STATE_IN_BUSY_POLL)))
6354                 return false;
6355
6356         if (work_done) {
6357                 if (n->gro_bitmask)
6358                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6359                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6360         }
6361         if (n->defer_hard_irqs_count > 0) {
6362                 n->defer_hard_irqs_count--;
6363                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6364                 if (timeout)
6365                         ret = false;
6366         }
6367         if (n->gro_bitmask) {
6368                 /* When the NAPI instance uses a timeout and keeps postponing
6369                  * it, we need to bound somehow the time packets are kept in
6370                  * the GRO layer
6371                  */
6372                 napi_gro_flush(n, !!timeout);
6373         }
6374
6375         gro_normal_list(n);
6376
6377         if (unlikely(!list_empty(&n->poll_list))) {
6378                 /* If n->poll_list is not empty, we need to mask irqs */
6379                 local_irq_save(flags);
6380                 list_del_init(&n->poll_list);
6381                 local_irq_restore(flags);
6382         }
6383
6384         do {
6385                 val = READ_ONCE(n->state);
6386
6387                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6388
6389                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6390
6391                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6392                  * because we will call napi->poll() one more time.
6393                  * This C code was suggested by Alexander Duyck to help gcc.
6394                  */
6395                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6396                                                     NAPIF_STATE_SCHED;
6397         } while (cmpxchg(&n->state, val, new) != val);
6398
6399         if (unlikely(val & NAPIF_STATE_MISSED)) {
6400                 __napi_schedule(n);
6401                 return false;
6402         }
6403
6404         if (timeout)
6405                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6406                               HRTIMER_MODE_REL_PINNED);
6407         return ret;
6408 }
6409 EXPORT_SYMBOL(napi_complete_done);
6410
6411 /* must be called under rcu_read_lock(), as we dont take a reference */
6412 static struct napi_struct *napi_by_id(unsigned int napi_id)
6413 {
6414         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6415         struct napi_struct *napi;
6416
6417         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6418                 if (napi->napi_id == napi_id)
6419                         return napi;
6420
6421         return NULL;
6422 }
6423
6424 #if defined(CONFIG_NET_RX_BUSY_POLL)
6425
6426 #define BUSY_POLL_BUDGET 8
6427
6428 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6429 {
6430         int rc;
6431
6432         /* Busy polling means there is a high chance device driver hard irq
6433          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6434          * set in napi_schedule_prep().
6435          * Since we are about to call napi->poll() once more, we can safely
6436          * clear NAPI_STATE_MISSED.
6437          *
6438          * Note: x86 could use a single "lock and ..." instruction
6439          * to perform these two clear_bit()
6440          */
6441         clear_bit(NAPI_STATE_MISSED, &napi->state);
6442         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6443
6444         local_bh_disable();
6445
6446         /* All we really want here is to re-enable device interrupts.
6447          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6448          */
6449         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6450         /* We can't gro_normal_list() here, because napi->poll() might have
6451          * rearmed the napi (napi_complete_done()) in which case it could
6452          * already be running on another CPU.
6453          */
6454         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6455         netpoll_poll_unlock(have_poll_lock);
6456         if (rc == BUSY_POLL_BUDGET) {
6457                 /* As the whole budget was spent, we still own the napi so can
6458                  * safely handle the rx_list.
6459                  */
6460                 gro_normal_list(napi);
6461                 __napi_schedule(napi);
6462         }
6463         local_bh_enable();
6464 }
6465
6466 void napi_busy_loop(unsigned int napi_id,
6467                     bool (*loop_end)(void *, unsigned long),
6468                     void *loop_end_arg)
6469 {
6470         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6471         int (*napi_poll)(struct napi_struct *napi, int budget);
6472         void *have_poll_lock = NULL;
6473         struct napi_struct *napi;
6474
6475 restart:
6476         napi_poll = NULL;
6477
6478         rcu_read_lock();
6479
6480         napi = napi_by_id(napi_id);
6481         if (!napi)
6482                 goto out;
6483
6484         preempt_disable();
6485         for (;;) {
6486                 int work = 0;
6487
6488                 local_bh_disable();
6489                 if (!napi_poll) {
6490                         unsigned long val = READ_ONCE(napi->state);
6491
6492                         /* If multiple threads are competing for this napi,
6493                          * we avoid dirtying napi->state as much as we can.
6494                          */
6495                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6496                                    NAPIF_STATE_IN_BUSY_POLL))
6497                                 goto count;
6498                         if (cmpxchg(&napi->state, val,
6499                                     val | NAPIF_STATE_IN_BUSY_POLL |
6500                                           NAPIF_STATE_SCHED) != val)
6501                                 goto count;
6502                         have_poll_lock = netpoll_poll_lock(napi);
6503                         napi_poll = napi->poll;
6504                 }
6505                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6506                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6507                 gro_normal_list(napi);
6508 count:
6509                 if (work > 0)
6510                         __NET_ADD_STATS(dev_net(napi->dev),
6511                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6512                 local_bh_enable();
6513
6514                 if (!loop_end || loop_end(loop_end_arg, start_time))
6515                         break;
6516
6517                 if (unlikely(need_resched())) {
6518                         if (napi_poll)
6519                                 busy_poll_stop(napi, have_poll_lock);
6520                         preempt_enable();
6521                         rcu_read_unlock();
6522                         cond_resched();
6523                         if (loop_end(loop_end_arg, start_time))
6524                                 return;
6525                         goto restart;
6526                 }
6527                 cpu_relax();
6528         }
6529         if (napi_poll)
6530                 busy_poll_stop(napi, have_poll_lock);
6531         preempt_enable();
6532 out:
6533         rcu_read_unlock();
6534 }
6535 EXPORT_SYMBOL(napi_busy_loop);
6536
6537 #endif /* CONFIG_NET_RX_BUSY_POLL */
6538
6539 static void napi_hash_add(struct napi_struct *napi)
6540 {
6541         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6542             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6543                 return;
6544
6545         spin_lock(&napi_hash_lock);
6546
6547         /* 0..NR_CPUS range is reserved for sender_cpu use */
6548         do {
6549                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6550                         napi_gen_id = MIN_NAPI_ID;
6551         } while (napi_by_id(napi_gen_id));
6552         napi->napi_id = napi_gen_id;
6553
6554         hlist_add_head_rcu(&napi->napi_hash_node,
6555                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6556
6557         spin_unlock(&napi_hash_lock);
6558 }
6559
6560 /* Warning : caller is responsible to make sure rcu grace period
6561  * is respected before freeing memory containing @napi
6562  */
6563 bool napi_hash_del(struct napi_struct *napi)
6564 {
6565         bool rcu_sync_needed = false;
6566
6567         spin_lock(&napi_hash_lock);
6568
6569         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6570                 rcu_sync_needed = true;
6571                 hlist_del_rcu(&napi->napi_hash_node);
6572         }
6573         spin_unlock(&napi_hash_lock);
6574         return rcu_sync_needed;
6575 }
6576 EXPORT_SYMBOL_GPL(napi_hash_del);
6577
6578 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6579 {
6580         struct napi_struct *napi;
6581
6582         napi = container_of(timer, struct napi_struct, timer);
6583
6584         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6585          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6586          */
6587         if (!napi_disable_pending(napi) &&
6588             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6589                 __napi_schedule_irqoff(napi);
6590
6591         return HRTIMER_NORESTART;
6592 }
6593
6594 static void init_gro_hash(struct napi_struct *napi)
6595 {
6596         int i;
6597
6598         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6599                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6600                 napi->gro_hash[i].count = 0;
6601         }
6602         napi->gro_bitmask = 0;
6603 }
6604
6605 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6606                     int (*poll)(struct napi_struct *, int), int weight)
6607 {
6608         INIT_LIST_HEAD(&napi->poll_list);
6609         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6610         napi->timer.function = napi_watchdog;
6611         init_gro_hash(napi);
6612         napi->skb = NULL;
6613         INIT_LIST_HEAD(&napi->rx_list);
6614         napi->rx_count = 0;
6615         napi->poll = poll;
6616         if (weight > NAPI_POLL_WEIGHT)
6617                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6618                                 weight);
6619         napi->weight = weight;
6620         list_add(&napi->dev_list, &dev->napi_list);
6621         napi->dev = dev;
6622 #ifdef CONFIG_NETPOLL
6623         napi->poll_owner = -1;
6624 #endif
6625         set_bit(NAPI_STATE_SCHED, &napi->state);
6626         napi_hash_add(napi);
6627 }
6628 EXPORT_SYMBOL(netif_napi_add);
6629
6630 void napi_disable(struct napi_struct *n)
6631 {
6632         might_sleep();
6633         set_bit(NAPI_STATE_DISABLE, &n->state);
6634
6635         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6636                 msleep(1);
6637         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6638                 msleep(1);
6639
6640         hrtimer_cancel(&n->timer);
6641
6642         clear_bit(NAPI_STATE_DISABLE, &n->state);
6643 }
6644 EXPORT_SYMBOL(napi_disable);
6645
6646 static void flush_gro_hash(struct napi_struct *napi)
6647 {
6648         int i;
6649
6650         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6651                 struct sk_buff *skb, *n;
6652
6653                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6654                         kfree_skb(skb);
6655                 napi->gro_hash[i].count = 0;
6656         }
6657 }
6658
6659 /* Must be called in process context */
6660 void netif_napi_del(struct napi_struct *napi)
6661 {
6662         might_sleep();
6663         if (napi_hash_del(napi))
6664                 synchronize_net();
6665         list_del_init(&napi->dev_list);
6666         napi_free_frags(napi);
6667
6668         flush_gro_hash(napi);
6669         napi->gro_bitmask = 0;
6670 }
6671 EXPORT_SYMBOL(netif_napi_del);
6672
6673 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6674 {
6675         void *have;
6676         int work, weight;
6677
6678         list_del_init(&n->poll_list);
6679
6680         have = netpoll_poll_lock(n);
6681
6682         weight = n->weight;
6683
6684         /* This NAPI_STATE_SCHED test is for avoiding a race
6685          * with netpoll's poll_napi().  Only the entity which
6686          * obtains the lock and sees NAPI_STATE_SCHED set will
6687          * actually make the ->poll() call.  Therefore we avoid
6688          * accidentally calling ->poll() when NAPI is not scheduled.
6689          */
6690         work = 0;
6691         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6692                 work = n->poll(n, weight);
6693                 trace_napi_poll(n, work, weight);
6694         }
6695
6696         if (unlikely(work > weight))
6697                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6698                             n->poll, work, weight);
6699
6700         if (likely(work < weight))
6701                 goto out_unlock;
6702
6703         /* Drivers must not modify the NAPI state if they
6704          * consume the entire weight.  In such cases this code
6705          * still "owns" the NAPI instance and therefore can
6706          * move the instance around on the list at-will.
6707          */
6708         if (unlikely(napi_disable_pending(n))) {
6709                 napi_complete(n);
6710                 goto out_unlock;
6711         }
6712
6713         if (n->gro_bitmask) {
6714                 /* flush too old packets
6715                  * If HZ < 1000, flush all packets.
6716                  */
6717                 napi_gro_flush(n, HZ >= 1000);
6718         }
6719
6720         gro_normal_list(n);
6721
6722         /* Some drivers may have called napi_schedule
6723          * prior to exhausting their budget.
6724          */
6725         if (unlikely(!list_empty(&n->poll_list))) {
6726                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6727                              n->dev ? n->dev->name : "backlog");
6728                 goto out_unlock;
6729         }
6730
6731         list_add_tail(&n->poll_list, repoll);
6732
6733 out_unlock:
6734         netpoll_poll_unlock(have);
6735
6736         return work;
6737 }
6738
6739 static __latent_entropy void net_rx_action(struct softirq_action *h)
6740 {
6741         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6742         unsigned long time_limit = jiffies +
6743                 usecs_to_jiffies(netdev_budget_usecs);
6744         int budget = netdev_budget;
6745         LIST_HEAD(list);
6746         LIST_HEAD(repoll);
6747
6748         local_irq_disable();
6749         list_splice_init(&sd->poll_list, &list);
6750         local_irq_enable();
6751
6752         for (;;) {
6753                 struct napi_struct *n;
6754
6755                 if (list_empty(&list)) {
6756                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6757                                 goto out;
6758                         break;
6759                 }
6760
6761                 n = list_first_entry(&list, struct napi_struct, poll_list);
6762                 budget -= napi_poll(n, &repoll);
6763
6764                 /* If softirq window is exhausted then punt.
6765                  * Allow this to run for 2 jiffies since which will allow
6766                  * an average latency of 1.5/HZ.
6767                  */
6768                 if (unlikely(budget <= 0 ||
6769                              time_after_eq(jiffies, time_limit))) {
6770                         sd->time_squeeze++;
6771                         break;
6772                 }
6773         }
6774
6775         local_irq_disable();
6776
6777         list_splice_tail_init(&sd->poll_list, &list);
6778         list_splice_tail(&repoll, &list);
6779         list_splice(&list, &sd->poll_list);
6780         if (!list_empty(&sd->poll_list))
6781                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6782
6783         net_rps_action_and_irq_enable(sd);
6784 out:
6785         __kfree_skb_flush();
6786 }
6787
6788 struct netdev_adjacent {
6789         struct net_device *dev;
6790
6791         /* upper master flag, there can only be one master device per list */
6792         bool master;
6793
6794         /* lookup ignore flag */
6795         bool ignore;
6796
6797         /* counter for the number of times this device was added to us */
6798         u16 ref_nr;
6799
6800         /* private field for the users */
6801         void *private;
6802
6803         struct list_head list;
6804         struct rcu_head rcu;
6805 };
6806
6807 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6808                                                  struct list_head *adj_list)
6809 {
6810         struct netdev_adjacent *adj;
6811
6812         list_for_each_entry(adj, adj_list, list) {
6813                 if (adj->dev == adj_dev)
6814                         return adj;
6815         }
6816         return NULL;
6817 }
6818
6819 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6820 {
6821         struct net_device *dev = data;
6822
6823         return upper_dev == dev;
6824 }
6825
6826 /**
6827  * netdev_has_upper_dev - Check if device is linked to an upper device
6828  * @dev: device
6829  * @upper_dev: upper device to check
6830  *
6831  * Find out if a device is linked to specified upper device and return true
6832  * in case it is. Note that this checks only immediate upper device,
6833  * not through a complete stack of devices. The caller must hold the RTNL lock.
6834  */
6835 bool netdev_has_upper_dev(struct net_device *dev,
6836                           struct net_device *upper_dev)
6837 {
6838         ASSERT_RTNL();
6839
6840         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6841                                              upper_dev);
6842 }
6843 EXPORT_SYMBOL(netdev_has_upper_dev);
6844
6845 /**
6846  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6847  * @dev: device
6848  * @upper_dev: upper device to check
6849  *
6850  * Find out if a device is linked to specified upper device and return true
6851  * in case it is. Note that this checks the entire upper device chain.
6852  * The caller must hold rcu lock.
6853  */
6854
6855 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6856                                   struct net_device *upper_dev)
6857 {
6858         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6859                                                upper_dev);
6860 }
6861 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6862
6863 /**
6864  * netdev_has_any_upper_dev - Check if device is linked to some device
6865  * @dev: device
6866  *
6867  * Find out if a device is linked to an upper device and return true in case
6868  * it is. The caller must hold the RTNL lock.
6869  */
6870 bool netdev_has_any_upper_dev(struct net_device *dev)
6871 {
6872         ASSERT_RTNL();
6873
6874         return !list_empty(&dev->adj_list.upper);
6875 }
6876 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6877
6878 /**
6879  * netdev_master_upper_dev_get - Get master upper device
6880  * @dev: device
6881  *
6882  * Find a master upper device and return pointer to it or NULL in case
6883  * it's not there. The caller must hold the RTNL lock.
6884  */
6885 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6886 {
6887         struct netdev_adjacent *upper;
6888
6889         ASSERT_RTNL();
6890
6891         if (list_empty(&dev->adj_list.upper))
6892                 return NULL;
6893
6894         upper = list_first_entry(&dev->adj_list.upper,
6895                                  struct netdev_adjacent, list);
6896         if (likely(upper->master))
6897                 return upper->dev;
6898         return NULL;
6899 }
6900 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6901
6902 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6903 {
6904         struct netdev_adjacent *upper;
6905
6906         ASSERT_RTNL();
6907
6908         if (list_empty(&dev->adj_list.upper))
6909                 return NULL;
6910
6911         upper = list_first_entry(&dev->adj_list.upper,
6912                                  struct netdev_adjacent, list);
6913         if (likely(upper->master) && !upper->ignore)
6914                 return upper->dev;
6915         return NULL;
6916 }
6917
6918 /**
6919  * netdev_has_any_lower_dev - Check if device is linked to some device
6920  * @dev: device
6921  *
6922  * Find out if a device is linked to a lower device and return true in case
6923  * it is. The caller must hold the RTNL lock.
6924  */
6925 static bool netdev_has_any_lower_dev(struct net_device *dev)
6926 {
6927         ASSERT_RTNL();
6928
6929         return !list_empty(&dev->adj_list.lower);
6930 }
6931
6932 void *netdev_adjacent_get_private(struct list_head *adj_list)
6933 {
6934         struct netdev_adjacent *adj;
6935
6936         adj = list_entry(adj_list, struct netdev_adjacent, list);
6937
6938         return adj->private;
6939 }
6940 EXPORT_SYMBOL(netdev_adjacent_get_private);
6941
6942 /**
6943  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6944  * @dev: device
6945  * @iter: list_head ** of the current position
6946  *
6947  * Gets the next device from the dev's upper list, starting from iter
6948  * position. The caller must hold RCU read lock.
6949  */
6950 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6951                                                  struct list_head **iter)
6952 {
6953         struct netdev_adjacent *upper;
6954
6955         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6956
6957         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6958
6959         if (&upper->list == &dev->adj_list.upper)
6960                 return NULL;
6961
6962         *iter = &upper->list;
6963
6964         return upper->dev;
6965 }
6966 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6967
6968 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6969                                                   struct list_head **iter,
6970                                                   bool *ignore)
6971 {
6972         struct netdev_adjacent *upper;
6973
6974         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6975
6976         if (&upper->list == &dev->adj_list.upper)
6977                 return NULL;
6978
6979         *iter = &upper->list;
6980         *ignore = upper->ignore;
6981
6982         return upper->dev;
6983 }
6984
6985 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6986                                                     struct list_head **iter)
6987 {
6988         struct netdev_adjacent *upper;
6989
6990         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6991
6992         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6993
6994         if (&upper->list == &dev->adj_list.upper)
6995                 return NULL;
6996
6997         *iter = &upper->list;
6998
6999         return upper->dev;
7000 }
7001
7002 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7003                                        int (*fn)(struct net_device *dev,
7004                                                  void *data),
7005                                        void *data)
7006 {
7007         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7008         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7009         int ret, cur = 0;
7010         bool ignore;
7011
7012         now = dev;
7013         iter = &dev->adj_list.upper;
7014
7015         while (1) {
7016                 if (now != dev) {
7017                         ret = fn(now, data);
7018                         if (ret)
7019                                 return ret;
7020                 }
7021
7022                 next = NULL;
7023                 while (1) {
7024                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7025                         if (!udev)
7026                                 break;
7027                         if (ignore)
7028                                 continue;
7029
7030                         next = udev;
7031                         niter = &udev->adj_list.upper;
7032                         dev_stack[cur] = now;
7033                         iter_stack[cur++] = iter;
7034                         break;
7035                 }
7036
7037                 if (!next) {
7038                         if (!cur)
7039                                 return 0;
7040                         next = dev_stack[--cur];
7041                         niter = iter_stack[cur];
7042                 }
7043
7044                 now = next;
7045                 iter = niter;
7046         }
7047
7048         return 0;
7049 }
7050
7051 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7052                                   int (*fn)(struct net_device *dev,
7053                                             void *data),
7054                                   void *data)
7055 {
7056         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7057         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7058         int ret, cur = 0;
7059
7060         now = dev;
7061         iter = &dev->adj_list.upper;
7062
7063         while (1) {
7064                 if (now != dev) {
7065                         ret = fn(now, data);
7066                         if (ret)
7067                                 return ret;
7068                 }
7069
7070                 next = NULL;
7071                 while (1) {
7072                         udev = netdev_next_upper_dev_rcu(now, &iter);
7073                         if (!udev)
7074                                 break;
7075
7076                         next = udev;
7077                         niter = &udev->adj_list.upper;
7078                         dev_stack[cur] = now;
7079                         iter_stack[cur++] = iter;
7080                         break;
7081                 }
7082
7083                 if (!next) {
7084                         if (!cur)
7085                                 return 0;
7086                         next = dev_stack[--cur];
7087                         niter = iter_stack[cur];
7088                 }
7089
7090                 now = next;
7091                 iter = niter;
7092         }
7093
7094         return 0;
7095 }
7096 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7097
7098 static bool __netdev_has_upper_dev(struct net_device *dev,
7099                                    struct net_device *upper_dev)
7100 {
7101         ASSERT_RTNL();
7102
7103         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7104                                            upper_dev);
7105 }
7106
7107 /**
7108  * netdev_lower_get_next_private - Get the next ->private from the
7109  *                                 lower neighbour list
7110  * @dev: device
7111  * @iter: list_head ** of the current position
7112  *
7113  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7114  * list, starting from iter position. The caller must hold either hold the
7115  * RTNL lock or its own locking that guarantees that the neighbour lower
7116  * list will remain unchanged.
7117  */
7118 void *netdev_lower_get_next_private(struct net_device *dev,
7119                                     struct list_head **iter)
7120 {
7121         struct netdev_adjacent *lower;
7122
7123         lower = list_entry(*iter, struct netdev_adjacent, list);
7124
7125         if (&lower->list == &dev->adj_list.lower)
7126                 return NULL;
7127
7128         *iter = lower->list.next;
7129
7130         return lower->private;
7131 }
7132 EXPORT_SYMBOL(netdev_lower_get_next_private);
7133
7134 /**
7135  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7136  *                                     lower neighbour list, RCU
7137  *                                     variant
7138  * @dev: device
7139  * @iter: list_head ** of the current position
7140  *
7141  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7142  * list, starting from iter position. The caller must hold RCU read lock.
7143  */
7144 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7145                                         struct list_head **iter)
7146 {
7147         struct netdev_adjacent *lower;
7148
7149         WARN_ON_ONCE(!rcu_read_lock_held());
7150
7151         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7152
7153         if (&lower->list == &dev->adj_list.lower)
7154                 return NULL;
7155
7156         *iter = &lower->list;
7157
7158         return lower->private;
7159 }
7160 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7161
7162 /**
7163  * netdev_lower_get_next - Get the next device from the lower neighbour
7164  *                         list
7165  * @dev: device
7166  * @iter: list_head ** of the current position
7167  *
7168  * Gets the next netdev_adjacent from the dev's lower neighbour
7169  * list, starting from iter position. The caller must hold RTNL lock or
7170  * its own locking that guarantees that the neighbour lower
7171  * list will remain unchanged.
7172  */
7173 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7174 {
7175         struct netdev_adjacent *lower;
7176
7177         lower = list_entry(*iter, struct netdev_adjacent, list);
7178
7179         if (&lower->list == &dev->adj_list.lower)
7180                 return NULL;
7181
7182         *iter = lower->list.next;
7183
7184         return lower->dev;
7185 }
7186 EXPORT_SYMBOL(netdev_lower_get_next);
7187
7188 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7189                                                 struct list_head **iter)
7190 {
7191         struct netdev_adjacent *lower;
7192
7193         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7194
7195         if (&lower->list == &dev->adj_list.lower)
7196                 return NULL;
7197
7198         *iter = &lower->list;
7199
7200         return lower->dev;
7201 }
7202
7203 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7204                                                   struct list_head **iter,
7205                                                   bool *ignore)
7206 {
7207         struct netdev_adjacent *lower;
7208
7209         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7210
7211         if (&lower->list == &dev->adj_list.lower)
7212                 return NULL;
7213
7214         *iter = &lower->list;
7215         *ignore = lower->ignore;
7216
7217         return lower->dev;
7218 }
7219
7220 int netdev_walk_all_lower_dev(struct net_device *dev,
7221                               int (*fn)(struct net_device *dev,
7222                                         void *data),
7223                               void *data)
7224 {
7225         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7226         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7227         int ret, cur = 0;
7228
7229         now = dev;
7230         iter = &dev->adj_list.lower;
7231
7232         while (1) {
7233                 if (now != dev) {
7234                         ret = fn(now, data);
7235                         if (ret)
7236                                 return ret;
7237                 }
7238
7239                 next = NULL;
7240                 while (1) {
7241                         ldev = netdev_next_lower_dev(now, &iter);
7242                         if (!ldev)
7243                                 break;
7244
7245                         next = ldev;
7246                         niter = &ldev->adj_list.lower;
7247                         dev_stack[cur] = now;
7248                         iter_stack[cur++] = iter;
7249                         break;
7250                 }
7251
7252                 if (!next) {
7253                         if (!cur)
7254                                 return 0;
7255                         next = dev_stack[--cur];
7256                         niter = iter_stack[cur];
7257                 }
7258
7259                 now = next;
7260                 iter = niter;
7261         }
7262
7263         return 0;
7264 }
7265 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7266
7267 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7268                                        int (*fn)(struct net_device *dev,
7269                                                  void *data),
7270                                        void *data)
7271 {
7272         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7273         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7274         int ret, cur = 0;
7275         bool ignore;
7276
7277         now = dev;
7278         iter = &dev->adj_list.lower;
7279
7280         while (1) {
7281                 if (now != dev) {
7282                         ret = fn(now, data);
7283                         if (ret)
7284                                 return ret;
7285                 }
7286
7287                 next = NULL;
7288                 while (1) {
7289                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7290                         if (!ldev)
7291                                 break;
7292                         if (ignore)
7293                                 continue;
7294
7295                         next = ldev;
7296                         niter = &ldev->adj_list.lower;
7297                         dev_stack[cur] = now;
7298                         iter_stack[cur++] = iter;
7299                         break;
7300                 }
7301
7302                 if (!next) {
7303                         if (!cur)
7304                                 return 0;
7305                         next = dev_stack[--cur];
7306                         niter = iter_stack[cur];
7307                 }
7308
7309                 now = next;
7310                 iter = niter;
7311         }
7312
7313         return 0;
7314 }
7315
7316 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7317                                              struct list_head **iter)
7318 {
7319         struct netdev_adjacent *lower;
7320
7321         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7322         if (&lower->list == &dev->adj_list.lower)
7323                 return NULL;
7324
7325         *iter = &lower->list;
7326
7327         return lower->dev;
7328 }
7329 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7330
7331 static u8 __netdev_upper_depth(struct net_device *dev)
7332 {
7333         struct net_device *udev;
7334         struct list_head *iter;
7335         u8 max_depth = 0;
7336         bool ignore;
7337
7338         for (iter = &dev->adj_list.upper,
7339              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7340              udev;
7341              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7342                 if (ignore)
7343                         continue;
7344                 if (max_depth < udev->upper_level)
7345                         max_depth = udev->upper_level;
7346         }
7347
7348         return max_depth;
7349 }
7350
7351 static u8 __netdev_lower_depth(struct net_device *dev)
7352 {
7353         struct net_device *ldev;
7354         struct list_head *iter;
7355         u8 max_depth = 0;
7356         bool ignore;
7357
7358         for (iter = &dev->adj_list.lower,
7359              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7360              ldev;
7361              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7362                 if (ignore)
7363                         continue;
7364                 if (max_depth < ldev->lower_level)
7365                         max_depth = ldev->lower_level;
7366         }
7367
7368         return max_depth;
7369 }
7370
7371 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7372 {
7373         dev->upper_level = __netdev_upper_depth(dev) + 1;
7374         return 0;
7375 }
7376
7377 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7378 {
7379         dev->lower_level = __netdev_lower_depth(dev) + 1;
7380         return 0;
7381 }
7382
7383 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7384                                   int (*fn)(struct net_device *dev,
7385                                             void *data),
7386                                   void *data)
7387 {
7388         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7389         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7390         int ret, cur = 0;
7391
7392         now = dev;
7393         iter = &dev->adj_list.lower;
7394
7395         while (1) {
7396                 if (now != dev) {
7397                         ret = fn(now, data);
7398                         if (ret)
7399                                 return ret;
7400                 }
7401
7402                 next = NULL;
7403                 while (1) {
7404                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7405                         if (!ldev)
7406                                 break;
7407
7408                         next = ldev;
7409                         niter = &ldev->adj_list.lower;
7410                         dev_stack[cur] = now;
7411                         iter_stack[cur++] = iter;
7412                         break;
7413                 }
7414
7415                 if (!next) {
7416                         if (!cur)
7417                                 return 0;
7418                         next = dev_stack[--cur];
7419                         niter = iter_stack[cur];
7420                 }
7421
7422                 now = next;
7423                 iter = niter;
7424         }
7425
7426         return 0;
7427 }
7428 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7429
7430 /**
7431  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7432  *                                     lower neighbour list, RCU
7433  *                                     variant
7434  * @dev: device
7435  *
7436  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7437  * list. The caller must hold RCU read lock.
7438  */
7439 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7440 {
7441         struct netdev_adjacent *lower;
7442
7443         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7444                         struct netdev_adjacent, list);
7445         if (lower)
7446                 return lower->private;
7447         return NULL;
7448 }
7449 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7450
7451 /**
7452  * netdev_master_upper_dev_get_rcu - Get master upper device
7453  * @dev: device
7454  *
7455  * Find a master upper device and return pointer to it or NULL in case
7456  * it's not there. The caller must hold the RCU read lock.
7457  */
7458 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7459 {
7460         struct netdev_adjacent *upper;
7461
7462         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7463                                        struct netdev_adjacent, list);
7464         if (upper && likely(upper->master))
7465                 return upper->dev;
7466         return NULL;
7467 }
7468 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7469
7470 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7471                               struct net_device *adj_dev,
7472                               struct list_head *dev_list)
7473 {
7474         char linkname[IFNAMSIZ+7];
7475
7476         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7477                 "upper_%s" : "lower_%s", adj_dev->name);
7478         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7479                                  linkname);
7480 }
7481 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7482                                char *name,
7483                                struct list_head *dev_list)
7484 {
7485         char linkname[IFNAMSIZ+7];
7486
7487         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7488                 "upper_%s" : "lower_%s", name);
7489         sysfs_remove_link(&(dev->dev.kobj), linkname);
7490 }
7491
7492 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7493                                                  struct net_device *adj_dev,
7494                                                  struct list_head *dev_list)
7495 {
7496         return (dev_list == &dev->adj_list.upper ||
7497                 dev_list == &dev->adj_list.lower) &&
7498                 net_eq(dev_net(dev), dev_net(adj_dev));
7499 }
7500
7501 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7502                                         struct net_device *adj_dev,
7503                                         struct list_head *dev_list,
7504                                         void *private, bool master)
7505 {
7506         struct netdev_adjacent *adj;
7507         int ret;
7508
7509         adj = __netdev_find_adj(adj_dev, dev_list);
7510
7511         if (adj) {
7512                 adj->ref_nr += 1;
7513                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7514                          dev->name, adj_dev->name, adj->ref_nr);
7515
7516                 return 0;
7517         }
7518
7519         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7520         if (!adj)
7521                 return -ENOMEM;
7522
7523         adj->dev = adj_dev;
7524         adj->master = master;
7525         adj->ref_nr = 1;
7526         adj->private = private;
7527         adj->ignore = false;
7528         dev_hold(adj_dev);
7529
7530         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7531                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7532
7533         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7534                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7535                 if (ret)
7536                         goto free_adj;
7537         }
7538
7539         /* Ensure that master link is always the first item in list. */
7540         if (master) {
7541                 ret = sysfs_create_link(&(dev->dev.kobj),
7542                                         &(adj_dev->dev.kobj), "master");
7543                 if (ret)
7544                         goto remove_symlinks;
7545
7546                 list_add_rcu(&adj->list, dev_list);
7547         } else {
7548                 list_add_tail_rcu(&adj->list, dev_list);
7549         }
7550
7551         return 0;
7552
7553 remove_symlinks:
7554         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7555                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7556 free_adj:
7557         kfree(adj);
7558         dev_put(adj_dev);
7559
7560         return ret;
7561 }
7562
7563 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7564                                          struct net_device *adj_dev,
7565                                          u16 ref_nr,
7566                                          struct list_head *dev_list)
7567 {
7568         struct netdev_adjacent *adj;
7569
7570         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7571                  dev->name, adj_dev->name, ref_nr);
7572
7573         adj = __netdev_find_adj(adj_dev, dev_list);
7574
7575         if (!adj) {
7576                 pr_err("Adjacency does not exist for device %s from %s\n",
7577                        dev->name, adj_dev->name);
7578                 WARN_ON(1);
7579                 return;
7580         }
7581
7582         if (adj->ref_nr > ref_nr) {
7583                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7584                          dev->name, adj_dev->name, ref_nr,
7585                          adj->ref_nr - ref_nr);
7586                 adj->ref_nr -= ref_nr;
7587                 return;
7588         }
7589
7590         if (adj->master)
7591                 sysfs_remove_link(&(dev->dev.kobj), "master");
7592
7593         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7594                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7595
7596         list_del_rcu(&adj->list);
7597         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7598                  adj_dev->name, dev->name, adj_dev->name);
7599         dev_put(adj_dev);
7600         kfree_rcu(adj, rcu);
7601 }
7602
7603 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7604                                             struct net_device *upper_dev,
7605                                             struct list_head *up_list,
7606                                             struct list_head *down_list,
7607                                             void *private, bool master)
7608 {
7609         int ret;
7610
7611         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7612                                            private, master);
7613         if (ret)
7614                 return ret;
7615
7616         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7617                                            private, false);
7618         if (ret) {
7619                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7620                 return ret;
7621         }
7622
7623         return 0;
7624 }
7625
7626 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7627                                                struct net_device *upper_dev,
7628                                                u16 ref_nr,
7629                                                struct list_head *up_list,
7630                                                struct list_head *down_list)
7631 {
7632         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7633         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7634 }
7635
7636 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7637                                                 struct net_device *upper_dev,
7638                                                 void *private, bool master)
7639 {
7640         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7641                                                 &dev->adj_list.upper,
7642                                                 &upper_dev->adj_list.lower,
7643                                                 private, master);
7644 }
7645
7646 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7647                                                    struct net_device *upper_dev)
7648 {
7649         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7650                                            &dev->adj_list.upper,
7651                                            &upper_dev->adj_list.lower);
7652 }
7653
7654 static int __netdev_upper_dev_link(struct net_device *dev,
7655                                    struct net_device *upper_dev, bool master,
7656                                    void *upper_priv, void *upper_info,
7657                                    struct netlink_ext_ack *extack)
7658 {
7659         struct netdev_notifier_changeupper_info changeupper_info = {
7660                 .info = {
7661                         .dev = dev,
7662                         .extack = extack,
7663                 },
7664                 .upper_dev = upper_dev,
7665                 .master = master,
7666                 .linking = true,
7667                 .upper_info = upper_info,
7668         };
7669         struct net_device *master_dev;
7670         int ret = 0;
7671
7672         ASSERT_RTNL();
7673
7674         if (dev == upper_dev)
7675                 return -EBUSY;
7676
7677         /* To prevent loops, check if dev is not upper device to upper_dev. */
7678         if (__netdev_has_upper_dev(upper_dev, dev))
7679                 return -EBUSY;
7680
7681         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7682                 return -EMLINK;
7683
7684         if (!master) {
7685                 if (__netdev_has_upper_dev(dev, upper_dev))
7686                         return -EEXIST;
7687         } else {
7688                 master_dev = __netdev_master_upper_dev_get(dev);
7689                 if (master_dev)
7690                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7691         }
7692
7693         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7694                                             &changeupper_info.info);
7695         ret = notifier_to_errno(ret);
7696         if (ret)
7697                 return ret;
7698
7699         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7700                                                    master);
7701         if (ret)
7702                 return ret;
7703
7704         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7705                                             &changeupper_info.info);
7706         ret = notifier_to_errno(ret);
7707         if (ret)
7708                 goto rollback;
7709
7710         __netdev_update_upper_level(dev, NULL);
7711         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7712
7713         __netdev_update_lower_level(upper_dev, NULL);
7714         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7715                                     NULL);
7716
7717         return 0;
7718
7719 rollback:
7720         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7721
7722         return ret;
7723 }
7724
7725 /**
7726  * netdev_upper_dev_link - Add a link to the upper device
7727  * @dev: device
7728  * @upper_dev: new upper device
7729  * @extack: netlink extended ack
7730  *
7731  * Adds a link to device which is upper to this one. The caller must hold
7732  * the RTNL lock. On a failure a negative errno code is returned.
7733  * On success the reference counts are adjusted and the function
7734  * returns zero.
7735  */
7736 int netdev_upper_dev_link(struct net_device *dev,
7737                           struct net_device *upper_dev,
7738                           struct netlink_ext_ack *extack)
7739 {
7740         return __netdev_upper_dev_link(dev, upper_dev, false,
7741                                        NULL, NULL, extack);
7742 }
7743 EXPORT_SYMBOL(netdev_upper_dev_link);
7744
7745 /**
7746  * netdev_master_upper_dev_link - Add a master link to the upper device
7747  * @dev: device
7748  * @upper_dev: new upper device
7749  * @upper_priv: upper device private
7750  * @upper_info: upper info to be passed down via notifier
7751  * @extack: netlink extended ack
7752  *
7753  * Adds a link to device which is upper to this one. In this case, only
7754  * one master upper device can be linked, although other non-master devices
7755  * might be linked as well. The caller must hold the RTNL lock.
7756  * On a failure a negative errno code is returned. On success the reference
7757  * counts are adjusted and the function returns zero.
7758  */
7759 int netdev_master_upper_dev_link(struct net_device *dev,
7760                                  struct net_device *upper_dev,
7761                                  void *upper_priv, void *upper_info,
7762                                  struct netlink_ext_ack *extack)
7763 {
7764         return __netdev_upper_dev_link(dev, upper_dev, true,
7765                                        upper_priv, upper_info, extack);
7766 }
7767 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7768
7769 /**
7770  * netdev_upper_dev_unlink - Removes a link to upper device
7771  * @dev: device
7772  * @upper_dev: new upper device
7773  *
7774  * Removes a link to device which is upper to this one. The caller must hold
7775  * the RTNL lock.
7776  */
7777 void netdev_upper_dev_unlink(struct net_device *dev,
7778                              struct net_device *upper_dev)
7779 {
7780         struct netdev_notifier_changeupper_info changeupper_info = {
7781                 .info = {
7782                         .dev = dev,
7783                 },
7784                 .upper_dev = upper_dev,
7785                 .linking = false,
7786         };
7787
7788         ASSERT_RTNL();
7789
7790         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7791
7792         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7793                                       &changeupper_info.info);
7794
7795         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7796
7797         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7798                                       &changeupper_info.info);
7799
7800         __netdev_update_upper_level(dev, NULL);
7801         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7802
7803         __netdev_update_lower_level(upper_dev, NULL);
7804         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7805                                     NULL);
7806 }
7807 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7808
7809 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7810                                       struct net_device *lower_dev,
7811                                       bool val)
7812 {
7813         struct netdev_adjacent *adj;
7814
7815         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7816         if (adj)
7817                 adj->ignore = val;
7818
7819         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7820         if (adj)
7821                 adj->ignore = val;
7822 }
7823
7824 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7825                                         struct net_device *lower_dev)
7826 {
7827         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7828 }
7829
7830 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7831                                        struct net_device *lower_dev)
7832 {
7833         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7834 }
7835
7836 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7837                                    struct net_device *new_dev,
7838                                    struct net_device *dev,
7839                                    struct netlink_ext_ack *extack)
7840 {
7841         int err;
7842
7843         if (!new_dev)
7844                 return 0;
7845
7846         if (old_dev && new_dev != old_dev)
7847                 netdev_adjacent_dev_disable(dev, old_dev);
7848
7849         err = netdev_upper_dev_link(new_dev, dev, extack);
7850         if (err) {
7851                 if (old_dev && new_dev != old_dev)
7852                         netdev_adjacent_dev_enable(dev, old_dev);
7853                 return err;
7854         }
7855
7856         return 0;
7857 }
7858 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7859
7860 void netdev_adjacent_change_commit(struct net_device *old_dev,
7861                                    struct net_device *new_dev,
7862                                    struct net_device *dev)
7863 {
7864         if (!new_dev || !old_dev)
7865                 return;
7866
7867         if (new_dev == old_dev)
7868                 return;
7869
7870         netdev_adjacent_dev_enable(dev, old_dev);
7871         netdev_upper_dev_unlink(old_dev, dev);
7872 }
7873 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7874
7875 void netdev_adjacent_change_abort(struct net_device *old_dev,
7876                                   struct net_device *new_dev,
7877                                   struct net_device *dev)
7878 {
7879         if (!new_dev)
7880                 return;
7881
7882         if (old_dev && new_dev != old_dev)
7883                 netdev_adjacent_dev_enable(dev, old_dev);
7884
7885         netdev_upper_dev_unlink(new_dev, dev);
7886 }
7887 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7888
7889 /**
7890  * netdev_bonding_info_change - Dispatch event about slave change
7891  * @dev: device
7892  * @bonding_info: info to dispatch
7893  *
7894  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7895  * The caller must hold the RTNL lock.
7896  */
7897 void netdev_bonding_info_change(struct net_device *dev,
7898                                 struct netdev_bonding_info *bonding_info)
7899 {
7900         struct netdev_notifier_bonding_info info = {
7901                 .info.dev = dev,
7902         };
7903
7904         memcpy(&info.bonding_info, bonding_info,
7905                sizeof(struct netdev_bonding_info));
7906         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7907                                       &info.info);
7908 }
7909 EXPORT_SYMBOL(netdev_bonding_info_change);
7910
7911 /**
7912  * netdev_get_xmit_slave - Get the xmit slave of master device
7913  * @dev: device
7914  * @skb: The packet
7915  * @all_slaves: assume all the slaves are active
7916  *
7917  * The reference counters are not incremented so the caller must be
7918  * careful with locks. The caller must hold RCU lock.
7919  * %NULL is returned if no slave is found.
7920  */
7921
7922 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7923                                          struct sk_buff *skb,
7924                                          bool all_slaves)
7925 {
7926         const struct net_device_ops *ops = dev->netdev_ops;
7927
7928         if (!ops->ndo_get_xmit_slave)
7929                 return NULL;
7930         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7931 }
7932 EXPORT_SYMBOL(netdev_get_xmit_slave);
7933
7934 static void netdev_adjacent_add_links(struct net_device *dev)
7935 {
7936         struct netdev_adjacent *iter;
7937
7938         struct net *net = dev_net(dev);
7939
7940         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7941                 if (!net_eq(net, dev_net(iter->dev)))
7942                         continue;
7943                 netdev_adjacent_sysfs_add(iter->dev, dev,
7944                                           &iter->dev->adj_list.lower);
7945                 netdev_adjacent_sysfs_add(dev, iter->dev,
7946                                           &dev->adj_list.upper);
7947         }
7948
7949         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7950                 if (!net_eq(net, dev_net(iter->dev)))
7951                         continue;
7952                 netdev_adjacent_sysfs_add(iter->dev, dev,
7953                                           &iter->dev->adj_list.upper);
7954                 netdev_adjacent_sysfs_add(dev, iter->dev,
7955                                           &dev->adj_list.lower);
7956         }
7957 }
7958
7959 static void netdev_adjacent_del_links(struct net_device *dev)
7960 {
7961         struct netdev_adjacent *iter;
7962
7963         struct net *net = dev_net(dev);
7964
7965         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7966                 if (!net_eq(net, dev_net(iter->dev)))
7967                         continue;
7968                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7969                                           &iter->dev->adj_list.lower);
7970                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7971                                           &dev->adj_list.upper);
7972         }
7973
7974         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7975                 if (!net_eq(net, dev_net(iter->dev)))
7976                         continue;
7977                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7978                                           &iter->dev->adj_list.upper);
7979                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7980                                           &dev->adj_list.lower);
7981         }
7982 }
7983
7984 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7985 {
7986         struct netdev_adjacent *iter;
7987
7988         struct net *net = dev_net(dev);
7989
7990         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7991                 if (!net_eq(net, dev_net(iter->dev)))
7992                         continue;
7993                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7994                                           &iter->dev->adj_list.lower);
7995                 netdev_adjacent_sysfs_add(iter->dev, dev,
7996                                           &iter->dev->adj_list.lower);
7997         }
7998
7999         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8000                 if (!net_eq(net, dev_net(iter->dev)))
8001                         continue;
8002                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8003                                           &iter->dev->adj_list.upper);
8004                 netdev_adjacent_sysfs_add(iter->dev, dev,
8005                                           &iter->dev->adj_list.upper);
8006         }
8007 }
8008
8009 void *netdev_lower_dev_get_private(struct net_device *dev,
8010                                    struct net_device *lower_dev)
8011 {
8012         struct netdev_adjacent *lower;
8013
8014         if (!lower_dev)
8015                 return NULL;
8016         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8017         if (!lower)
8018                 return NULL;
8019
8020         return lower->private;
8021 }
8022 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8023
8024
8025 /**
8026  * netdev_lower_change - Dispatch event about lower device state change
8027  * @lower_dev: device
8028  * @lower_state_info: state to dispatch
8029  *
8030  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8031  * The caller must hold the RTNL lock.
8032  */
8033 void netdev_lower_state_changed(struct net_device *lower_dev,
8034                                 void *lower_state_info)
8035 {
8036         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8037                 .info.dev = lower_dev,
8038         };
8039
8040         ASSERT_RTNL();
8041         changelowerstate_info.lower_state_info = lower_state_info;
8042         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8043                                       &changelowerstate_info.info);
8044 }
8045 EXPORT_SYMBOL(netdev_lower_state_changed);
8046
8047 static void dev_change_rx_flags(struct net_device *dev, int flags)
8048 {
8049         const struct net_device_ops *ops = dev->netdev_ops;
8050
8051         if (ops->ndo_change_rx_flags)
8052                 ops->ndo_change_rx_flags(dev, flags);
8053 }
8054
8055 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8056 {
8057         unsigned int old_flags = dev->flags;
8058         kuid_t uid;
8059         kgid_t gid;
8060
8061         ASSERT_RTNL();
8062
8063         dev->flags |= IFF_PROMISC;
8064         dev->promiscuity += inc;
8065         if (dev->promiscuity == 0) {
8066                 /*
8067                  * Avoid overflow.
8068                  * If inc causes overflow, untouch promisc and return error.
8069                  */
8070                 if (inc < 0)
8071                         dev->flags &= ~IFF_PROMISC;
8072                 else {
8073                         dev->promiscuity -= inc;
8074                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8075                                 dev->name);
8076                         return -EOVERFLOW;
8077                 }
8078         }
8079         if (dev->flags != old_flags) {
8080                 pr_info("device %s %s promiscuous mode\n",
8081                         dev->name,
8082                         dev->flags & IFF_PROMISC ? "entered" : "left");
8083                 if (audit_enabled) {
8084                         current_uid_gid(&uid, &gid);
8085                         audit_log(audit_context(), GFP_ATOMIC,
8086                                   AUDIT_ANOM_PROMISCUOUS,
8087                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8088                                   dev->name, (dev->flags & IFF_PROMISC),
8089                                   (old_flags & IFF_PROMISC),
8090                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8091                                   from_kuid(&init_user_ns, uid),
8092                                   from_kgid(&init_user_ns, gid),
8093                                   audit_get_sessionid(current));
8094                 }
8095
8096                 dev_change_rx_flags(dev, IFF_PROMISC);
8097         }
8098         if (notify)
8099                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8100         return 0;
8101 }
8102
8103 /**
8104  *      dev_set_promiscuity     - update promiscuity count on a device
8105  *      @dev: device
8106  *      @inc: modifier
8107  *
8108  *      Add or remove promiscuity from a device. While the count in the device
8109  *      remains above zero the interface remains promiscuous. Once it hits zero
8110  *      the device reverts back to normal filtering operation. A negative inc
8111  *      value is used to drop promiscuity on the device.
8112  *      Return 0 if successful or a negative errno code on error.
8113  */
8114 int dev_set_promiscuity(struct net_device *dev, int inc)
8115 {
8116         unsigned int old_flags = dev->flags;
8117         int err;
8118
8119         err = __dev_set_promiscuity(dev, inc, true);
8120         if (err < 0)
8121                 return err;
8122         if (dev->flags != old_flags)
8123                 dev_set_rx_mode(dev);
8124         return err;
8125 }
8126 EXPORT_SYMBOL(dev_set_promiscuity);
8127
8128 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8129 {
8130         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8131
8132         ASSERT_RTNL();
8133
8134         dev->flags |= IFF_ALLMULTI;
8135         dev->allmulti += inc;
8136         if (dev->allmulti == 0) {
8137                 /*
8138                  * Avoid overflow.
8139                  * If inc causes overflow, untouch allmulti and return error.
8140                  */
8141                 if (inc < 0)
8142                         dev->flags &= ~IFF_ALLMULTI;
8143                 else {
8144                         dev->allmulti -= inc;
8145                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8146                                 dev->name);
8147                         return -EOVERFLOW;
8148                 }
8149         }
8150         if (dev->flags ^ old_flags) {
8151                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8152                 dev_set_rx_mode(dev);
8153                 if (notify)
8154                         __dev_notify_flags(dev, old_flags,
8155                                            dev->gflags ^ old_gflags);
8156         }
8157         return 0;
8158 }
8159
8160 /**
8161  *      dev_set_allmulti        - update allmulti count on a device
8162  *      @dev: device
8163  *      @inc: modifier
8164  *
8165  *      Add or remove reception of all multicast frames to a device. While the
8166  *      count in the device remains above zero the interface remains listening
8167  *      to all interfaces. Once it hits zero the device reverts back to normal
8168  *      filtering operation. A negative @inc value is used to drop the counter
8169  *      when releasing a resource needing all multicasts.
8170  *      Return 0 if successful or a negative errno code on error.
8171  */
8172
8173 int dev_set_allmulti(struct net_device *dev, int inc)
8174 {
8175         return __dev_set_allmulti(dev, inc, true);
8176 }
8177 EXPORT_SYMBOL(dev_set_allmulti);
8178
8179 /*
8180  *      Upload unicast and multicast address lists to device and
8181  *      configure RX filtering. When the device doesn't support unicast
8182  *      filtering it is put in promiscuous mode while unicast addresses
8183  *      are present.
8184  */
8185 void __dev_set_rx_mode(struct net_device *dev)
8186 {
8187         const struct net_device_ops *ops = dev->netdev_ops;
8188
8189         /* dev_open will call this function so the list will stay sane. */
8190         if (!(dev->flags&IFF_UP))
8191                 return;
8192
8193         if (!netif_device_present(dev))
8194                 return;
8195
8196         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8197                 /* Unicast addresses changes may only happen under the rtnl,
8198                  * therefore calling __dev_set_promiscuity here is safe.
8199                  */
8200                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8201                         __dev_set_promiscuity(dev, 1, false);
8202                         dev->uc_promisc = true;
8203                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8204                         __dev_set_promiscuity(dev, -1, false);
8205                         dev->uc_promisc = false;
8206                 }
8207         }
8208
8209         if (ops->ndo_set_rx_mode)
8210                 ops->ndo_set_rx_mode(dev);
8211 }
8212
8213 void dev_set_rx_mode(struct net_device *dev)
8214 {
8215         netif_addr_lock_bh(dev);
8216         __dev_set_rx_mode(dev);
8217         netif_addr_unlock_bh(dev);
8218 }
8219
8220 /**
8221  *      dev_get_flags - get flags reported to userspace
8222  *      @dev: device
8223  *
8224  *      Get the combination of flag bits exported through APIs to userspace.
8225  */
8226 unsigned int dev_get_flags(const struct net_device *dev)
8227 {
8228         unsigned int flags;
8229
8230         flags = (dev->flags & ~(IFF_PROMISC |
8231                                 IFF_ALLMULTI |
8232                                 IFF_RUNNING |
8233                                 IFF_LOWER_UP |
8234                                 IFF_DORMANT)) |
8235                 (dev->gflags & (IFF_PROMISC |
8236                                 IFF_ALLMULTI));
8237
8238         if (netif_running(dev)) {
8239                 if (netif_oper_up(dev))
8240                         flags |= IFF_RUNNING;
8241                 if (netif_carrier_ok(dev))
8242                         flags |= IFF_LOWER_UP;
8243                 if (netif_dormant(dev))
8244                         flags |= IFF_DORMANT;
8245         }
8246
8247         return flags;
8248 }
8249 EXPORT_SYMBOL(dev_get_flags);
8250
8251 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8252                        struct netlink_ext_ack *extack)
8253 {
8254         unsigned int old_flags = dev->flags;
8255         int ret;
8256
8257         ASSERT_RTNL();
8258
8259         /*
8260          *      Set the flags on our device.
8261          */
8262
8263         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8264                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8265                                IFF_AUTOMEDIA)) |
8266                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8267                                     IFF_ALLMULTI));
8268
8269         /*
8270          *      Load in the correct multicast list now the flags have changed.
8271          */
8272
8273         if ((old_flags ^ flags) & IFF_MULTICAST)
8274                 dev_change_rx_flags(dev, IFF_MULTICAST);
8275
8276         dev_set_rx_mode(dev);
8277
8278         /*
8279          *      Have we downed the interface. We handle IFF_UP ourselves
8280          *      according to user attempts to set it, rather than blindly
8281          *      setting it.
8282          */
8283
8284         ret = 0;
8285         if ((old_flags ^ flags) & IFF_UP) {
8286                 if (old_flags & IFF_UP)
8287                         __dev_close(dev);
8288                 else
8289                         ret = __dev_open(dev, extack);
8290         }
8291
8292         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8293                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8294                 unsigned int old_flags = dev->flags;
8295
8296                 dev->gflags ^= IFF_PROMISC;
8297
8298                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8299                         if (dev->flags != old_flags)
8300                                 dev_set_rx_mode(dev);
8301         }
8302
8303         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8304          * is important. Some (broken) drivers set IFF_PROMISC, when
8305          * IFF_ALLMULTI is requested not asking us and not reporting.
8306          */
8307         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8308                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8309
8310                 dev->gflags ^= IFF_ALLMULTI;
8311                 __dev_set_allmulti(dev, inc, false);
8312         }
8313
8314         return ret;
8315 }
8316
8317 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8318                         unsigned int gchanges)
8319 {
8320         unsigned int changes = dev->flags ^ old_flags;
8321
8322         if (gchanges)
8323                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8324
8325         if (changes & IFF_UP) {
8326                 if (dev->flags & IFF_UP)
8327                         call_netdevice_notifiers(NETDEV_UP, dev);
8328                 else
8329                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8330         }
8331
8332         if (dev->flags & IFF_UP &&
8333             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8334                 struct netdev_notifier_change_info change_info = {
8335                         .info = {
8336                                 .dev = dev,
8337                         },
8338                         .flags_changed = changes,
8339                 };
8340
8341                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8342         }
8343 }
8344
8345 /**
8346  *      dev_change_flags - change device settings
8347  *      @dev: device
8348  *      @flags: device state flags
8349  *      @extack: netlink extended ack
8350  *
8351  *      Change settings on device based state flags. The flags are
8352  *      in the userspace exported format.
8353  */
8354 int dev_change_flags(struct net_device *dev, unsigned int flags,
8355                      struct netlink_ext_ack *extack)
8356 {
8357         int ret;
8358         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8359
8360         ret = __dev_change_flags(dev, flags, extack);
8361         if (ret < 0)
8362                 return ret;
8363
8364         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8365         __dev_notify_flags(dev, old_flags, changes);
8366         return ret;
8367 }
8368 EXPORT_SYMBOL(dev_change_flags);
8369
8370 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8371 {
8372         const struct net_device_ops *ops = dev->netdev_ops;
8373
8374         if (ops->ndo_change_mtu)
8375                 return ops->ndo_change_mtu(dev, new_mtu);
8376
8377         /* Pairs with all the lockless reads of dev->mtu in the stack */
8378         WRITE_ONCE(dev->mtu, new_mtu);
8379         return 0;
8380 }
8381 EXPORT_SYMBOL(__dev_set_mtu);
8382
8383 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8384                      struct netlink_ext_ack *extack)
8385 {
8386         /* MTU must be positive, and in range */
8387         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8388                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8389                 return -EINVAL;
8390         }
8391
8392         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8393                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8394                 return -EINVAL;
8395         }
8396         return 0;
8397 }
8398
8399 /**
8400  *      dev_set_mtu_ext - Change maximum transfer unit
8401  *      @dev: device
8402  *      @new_mtu: new transfer unit
8403  *      @extack: netlink extended ack
8404  *
8405  *      Change the maximum transfer size of the network device.
8406  */
8407 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8408                     struct netlink_ext_ack *extack)
8409 {
8410         int err, orig_mtu;
8411
8412         if (new_mtu == dev->mtu)
8413                 return 0;
8414
8415         err = dev_validate_mtu(dev, new_mtu, extack);
8416         if (err)
8417                 return err;
8418
8419         if (!netif_device_present(dev))
8420                 return -ENODEV;
8421
8422         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8423         err = notifier_to_errno(err);
8424         if (err)
8425                 return err;
8426
8427         orig_mtu = dev->mtu;
8428         err = __dev_set_mtu(dev, new_mtu);
8429
8430         if (!err) {
8431                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8432                                                    orig_mtu);
8433                 err = notifier_to_errno(err);
8434                 if (err) {
8435                         /* setting mtu back and notifying everyone again,
8436                          * so that they have a chance to revert changes.
8437                          */
8438                         __dev_set_mtu(dev, orig_mtu);
8439                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8440                                                      new_mtu);
8441                 }
8442         }
8443         return err;
8444 }
8445
8446 int dev_set_mtu(struct net_device *dev, int new_mtu)
8447 {
8448         struct netlink_ext_ack extack;
8449         int err;
8450
8451         memset(&extack, 0, sizeof(extack));
8452         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8453         if (err && extack._msg)
8454                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8455         return err;
8456 }
8457 EXPORT_SYMBOL(dev_set_mtu);
8458
8459 /**
8460  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8461  *      @dev: device
8462  *      @new_len: new tx queue length
8463  */
8464 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8465 {
8466         unsigned int orig_len = dev->tx_queue_len;
8467         int res;
8468
8469         if (new_len != (unsigned int)new_len)
8470                 return -ERANGE;
8471
8472         if (new_len != orig_len) {
8473                 dev->tx_queue_len = new_len;
8474                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8475                 res = notifier_to_errno(res);
8476                 if (res)
8477                         goto err_rollback;
8478                 res = dev_qdisc_change_tx_queue_len(dev);
8479                 if (res)
8480                         goto err_rollback;
8481         }
8482
8483         return 0;
8484
8485 err_rollback:
8486         netdev_err(dev, "refused to change device tx_queue_len\n");
8487         dev->tx_queue_len = orig_len;
8488         return res;
8489 }
8490
8491 /**
8492  *      dev_set_group - Change group this device belongs to
8493  *      @dev: device
8494  *      @new_group: group this device should belong to
8495  */
8496 void dev_set_group(struct net_device *dev, int new_group)
8497 {
8498         dev->group = new_group;
8499 }
8500 EXPORT_SYMBOL(dev_set_group);
8501
8502 /**
8503  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8504  *      @dev: device
8505  *      @addr: new address
8506  *      @extack: netlink extended ack
8507  */
8508 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8509                               struct netlink_ext_ack *extack)
8510 {
8511         struct netdev_notifier_pre_changeaddr_info info = {
8512                 .info.dev = dev,
8513                 .info.extack = extack,
8514                 .dev_addr = addr,
8515         };
8516         int rc;
8517
8518         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8519         return notifier_to_errno(rc);
8520 }
8521 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8522
8523 /**
8524  *      dev_set_mac_address - Change Media Access Control Address
8525  *      @dev: device
8526  *      @sa: new address
8527  *      @extack: netlink extended ack
8528  *
8529  *      Change the hardware (MAC) address of the device
8530  */
8531 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8532                         struct netlink_ext_ack *extack)
8533 {
8534         const struct net_device_ops *ops = dev->netdev_ops;
8535         int err;
8536
8537         if (!ops->ndo_set_mac_address)
8538                 return -EOPNOTSUPP;
8539         if (sa->sa_family != dev->type)
8540                 return -EINVAL;
8541         if (!netif_device_present(dev))
8542                 return -ENODEV;
8543         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8544         if (err)
8545                 return err;
8546         err = ops->ndo_set_mac_address(dev, sa);
8547         if (err)
8548                 return err;
8549         dev->addr_assign_type = NET_ADDR_SET;
8550         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8551         add_device_randomness(dev->dev_addr, dev->addr_len);
8552         return 0;
8553 }
8554 EXPORT_SYMBOL(dev_set_mac_address);
8555
8556 /**
8557  *      dev_change_carrier - Change device carrier
8558  *      @dev: device
8559  *      @new_carrier: new value
8560  *
8561  *      Change device carrier
8562  */
8563 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8564 {
8565         const struct net_device_ops *ops = dev->netdev_ops;
8566
8567         if (!ops->ndo_change_carrier)
8568                 return -EOPNOTSUPP;
8569         if (!netif_device_present(dev))
8570                 return -ENODEV;
8571         return ops->ndo_change_carrier(dev, new_carrier);
8572 }
8573 EXPORT_SYMBOL(dev_change_carrier);
8574
8575 /**
8576  *      dev_get_phys_port_id - Get device physical port ID
8577  *      @dev: device
8578  *      @ppid: port ID
8579  *
8580  *      Get device physical port ID
8581  */
8582 int dev_get_phys_port_id(struct net_device *dev,
8583                          struct netdev_phys_item_id *ppid)
8584 {
8585         const struct net_device_ops *ops = dev->netdev_ops;
8586
8587         if (!ops->ndo_get_phys_port_id)
8588                 return -EOPNOTSUPP;
8589         return ops->ndo_get_phys_port_id(dev, ppid);
8590 }
8591 EXPORT_SYMBOL(dev_get_phys_port_id);
8592
8593 /**
8594  *      dev_get_phys_port_name - Get device physical port name
8595  *      @dev: device
8596  *      @name: port name
8597  *      @len: limit of bytes to copy to name
8598  *
8599  *      Get device physical port name
8600  */
8601 int dev_get_phys_port_name(struct net_device *dev,
8602                            char *name, size_t len)
8603 {
8604         const struct net_device_ops *ops = dev->netdev_ops;
8605         int err;
8606
8607         if (ops->ndo_get_phys_port_name) {
8608                 err = ops->ndo_get_phys_port_name(dev, name, len);
8609                 if (err != -EOPNOTSUPP)
8610                         return err;
8611         }
8612         return devlink_compat_phys_port_name_get(dev, name, len);
8613 }
8614 EXPORT_SYMBOL(dev_get_phys_port_name);
8615
8616 /**
8617  *      dev_get_port_parent_id - Get the device's port parent identifier
8618  *      @dev: network device
8619  *      @ppid: pointer to a storage for the port's parent identifier
8620  *      @recurse: allow/disallow recursion to lower devices
8621  *
8622  *      Get the devices's port parent identifier
8623  */
8624 int dev_get_port_parent_id(struct net_device *dev,
8625                            struct netdev_phys_item_id *ppid,
8626                            bool recurse)
8627 {
8628         const struct net_device_ops *ops = dev->netdev_ops;
8629         struct netdev_phys_item_id first = { };
8630         struct net_device *lower_dev;
8631         struct list_head *iter;
8632         int err;
8633
8634         if (ops->ndo_get_port_parent_id) {
8635                 err = ops->ndo_get_port_parent_id(dev, ppid);
8636                 if (err != -EOPNOTSUPP)
8637                         return err;
8638         }
8639
8640         err = devlink_compat_switch_id_get(dev, ppid);
8641         if (!err || err != -EOPNOTSUPP)
8642                 return err;
8643
8644         if (!recurse)
8645                 return -EOPNOTSUPP;
8646
8647         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8648                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8649                 if (err)
8650                         break;
8651                 if (!first.id_len)
8652                         first = *ppid;
8653                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8654                         return -ENODATA;
8655         }
8656
8657         return err;
8658 }
8659 EXPORT_SYMBOL(dev_get_port_parent_id);
8660
8661 /**
8662  *      netdev_port_same_parent_id - Indicate if two network devices have
8663  *      the same port parent identifier
8664  *      @a: first network device
8665  *      @b: second network device
8666  */
8667 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8668 {
8669         struct netdev_phys_item_id a_id = { };
8670         struct netdev_phys_item_id b_id = { };
8671
8672         if (dev_get_port_parent_id(a, &a_id, true) ||
8673             dev_get_port_parent_id(b, &b_id, true))
8674                 return false;
8675
8676         return netdev_phys_item_id_same(&a_id, &b_id);
8677 }
8678 EXPORT_SYMBOL(netdev_port_same_parent_id);
8679
8680 /**
8681  *      dev_change_proto_down - update protocol port state information
8682  *      @dev: device
8683  *      @proto_down: new value
8684  *
8685  *      This info can be used by switch drivers to set the phys state of the
8686  *      port.
8687  */
8688 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8689 {
8690         const struct net_device_ops *ops = dev->netdev_ops;
8691
8692         if (!ops->ndo_change_proto_down)
8693                 return -EOPNOTSUPP;
8694         if (!netif_device_present(dev))
8695                 return -ENODEV;
8696         return ops->ndo_change_proto_down(dev, proto_down);
8697 }
8698 EXPORT_SYMBOL(dev_change_proto_down);
8699
8700 /**
8701  *      dev_change_proto_down_generic - generic implementation for
8702  *      ndo_change_proto_down that sets carrier according to
8703  *      proto_down.
8704  *
8705  *      @dev: device
8706  *      @proto_down: new value
8707  */
8708 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8709 {
8710         if (proto_down)
8711                 netif_carrier_off(dev);
8712         else
8713                 netif_carrier_on(dev);
8714         dev->proto_down = proto_down;
8715         return 0;
8716 }
8717 EXPORT_SYMBOL(dev_change_proto_down_generic);
8718
8719 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8720                     enum bpf_netdev_command cmd)
8721 {
8722         struct netdev_bpf xdp;
8723
8724         if (!bpf_op)
8725                 return 0;
8726
8727         memset(&xdp, 0, sizeof(xdp));
8728         xdp.command = cmd;
8729
8730         /* Query must always succeed. */
8731         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8732
8733         return xdp.prog_id;
8734 }
8735
8736 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8737                            struct netlink_ext_ack *extack, u32 flags,
8738                            struct bpf_prog *prog)
8739 {
8740         bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8741         struct bpf_prog *prev_prog = NULL;
8742         struct netdev_bpf xdp;
8743         int err;
8744
8745         if (non_hw) {
8746                 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8747                                                            XDP_QUERY_PROG));
8748                 if (IS_ERR(prev_prog))
8749                         prev_prog = NULL;
8750         }
8751
8752         memset(&xdp, 0, sizeof(xdp));
8753         if (flags & XDP_FLAGS_HW_MODE)
8754                 xdp.command = XDP_SETUP_PROG_HW;
8755         else
8756                 xdp.command = XDP_SETUP_PROG;
8757         xdp.extack = extack;
8758         xdp.flags = flags;
8759         xdp.prog = prog;
8760
8761         err = bpf_op(dev, &xdp);
8762         if (!err && non_hw)
8763                 bpf_prog_change_xdp(prev_prog, prog);
8764
8765         if (prev_prog)
8766                 bpf_prog_put(prev_prog);
8767
8768         return err;
8769 }
8770
8771 static void dev_xdp_uninstall(struct net_device *dev)
8772 {
8773         struct netdev_bpf xdp;
8774         bpf_op_t ndo_bpf;
8775
8776         /* Remove generic XDP */
8777         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8778
8779         /* Remove from the driver */
8780         ndo_bpf = dev->netdev_ops->ndo_bpf;
8781         if (!ndo_bpf)
8782                 return;
8783
8784         memset(&xdp, 0, sizeof(xdp));
8785         xdp.command = XDP_QUERY_PROG;
8786         WARN_ON(ndo_bpf(dev, &xdp));
8787         if (xdp.prog_id)
8788                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8789                                         NULL));
8790
8791         /* Remove HW offload */
8792         memset(&xdp, 0, sizeof(xdp));
8793         xdp.command = XDP_QUERY_PROG_HW;
8794         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8795                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8796                                         NULL));
8797 }
8798
8799 /**
8800  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8801  *      @dev: device
8802  *      @extack: netlink extended ack
8803  *      @fd: new program fd or negative value to clear
8804  *      @expected_fd: old program fd that userspace expects to replace or clear
8805  *      @flags: xdp-related flags
8806  *
8807  *      Set or clear a bpf program for a device
8808  */
8809 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8810                       int fd, int expected_fd, u32 flags)
8811 {
8812         const struct net_device_ops *ops = dev->netdev_ops;
8813         enum bpf_netdev_command query;
8814         u32 prog_id, expected_id = 0;
8815         bpf_op_t bpf_op, bpf_chk;
8816         struct bpf_prog *prog;
8817         bool offload;
8818         int err;
8819
8820         ASSERT_RTNL();
8821
8822         offload = flags & XDP_FLAGS_HW_MODE;
8823         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8824
8825         bpf_op = bpf_chk = ops->ndo_bpf;
8826         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8827                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8828                 return -EOPNOTSUPP;
8829         }
8830         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8831                 bpf_op = generic_xdp_install;
8832         if (bpf_op == bpf_chk)
8833                 bpf_chk = generic_xdp_install;
8834
8835         prog_id = __dev_xdp_query(dev, bpf_op, query);
8836         if (flags & XDP_FLAGS_REPLACE) {
8837                 if (expected_fd >= 0) {
8838                         prog = bpf_prog_get_type_dev(expected_fd,
8839                                                      BPF_PROG_TYPE_XDP,
8840                                                      bpf_op == ops->ndo_bpf);
8841                         if (IS_ERR(prog))
8842                                 return PTR_ERR(prog);
8843                         expected_id = prog->aux->id;
8844                         bpf_prog_put(prog);
8845                 }
8846
8847                 if (prog_id != expected_id) {
8848                         NL_SET_ERR_MSG(extack, "Active program does not match expected");
8849                         return -EEXIST;
8850                 }
8851         }
8852         if (fd >= 0) {
8853                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8854                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8855                         return -EEXIST;
8856                 }
8857
8858                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8859                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8860                         return -EBUSY;
8861                 }
8862
8863                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8864                                              bpf_op == ops->ndo_bpf);
8865                 if (IS_ERR(prog))
8866                         return PTR_ERR(prog);
8867
8868                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8869                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8870                         bpf_prog_put(prog);
8871                         return -EINVAL;
8872                 }
8873
8874                 if (prog->expected_attach_type == BPF_XDP_DEVMAP) {
8875                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8876                         bpf_prog_put(prog);
8877                         return -EINVAL;
8878                 }
8879
8880                 if (prog->expected_attach_type == BPF_XDP_CPUMAP) {
8881                         NL_SET_ERR_MSG(extack,
8882                                        "BPF_XDP_CPUMAP programs can not be attached to a device");
8883                         bpf_prog_put(prog);
8884                         return -EINVAL;
8885                 }
8886
8887                 /* prog->aux->id may be 0 for orphaned device-bound progs */
8888                 if (prog->aux->id && prog->aux->id == prog_id) {
8889                         bpf_prog_put(prog);
8890                         return 0;
8891                 }
8892         } else {
8893                 if (!prog_id)
8894                         return 0;
8895                 prog = NULL;
8896         }
8897
8898         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8899         if (err < 0 && prog)
8900                 bpf_prog_put(prog);
8901
8902         return err;
8903 }
8904
8905 /**
8906  *      dev_new_index   -       allocate an ifindex
8907  *      @net: the applicable net namespace
8908  *
8909  *      Returns a suitable unique value for a new device interface
8910  *      number.  The caller must hold the rtnl semaphore or the
8911  *      dev_base_lock to be sure it remains unique.
8912  */
8913 static int dev_new_index(struct net *net)
8914 {
8915         int ifindex = net->ifindex;
8916
8917         for (;;) {
8918                 if (++ifindex <= 0)
8919                         ifindex = 1;
8920                 if (!__dev_get_by_index(net, ifindex))
8921                         return net->ifindex = ifindex;
8922         }
8923 }
8924
8925 /* Delayed registration/unregisteration */
8926 static LIST_HEAD(net_todo_list);
8927 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8928
8929 static void net_set_todo(struct net_device *dev)
8930 {
8931         list_add_tail(&dev->todo_list, &net_todo_list);
8932         dev_net(dev)->dev_unreg_count++;
8933 }
8934
8935 static void rollback_registered_many(struct list_head *head)
8936 {
8937         struct net_device *dev, *tmp;
8938         LIST_HEAD(close_head);
8939
8940         BUG_ON(dev_boot_phase);
8941         ASSERT_RTNL();
8942
8943         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8944                 /* Some devices call without registering
8945                  * for initialization unwind. Remove those
8946                  * devices and proceed with the remaining.
8947                  */
8948                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8949                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8950                                  dev->name, dev);
8951
8952                         WARN_ON(1);
8953                         list_del(&dev->unreg_list);
8954                         continue;
8955                 }
8956                 dev->dismantle = true;
8957                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8958         }
8959
8960         /* If device is running, close it first. */
8961         list_for_each_entry(dev, head, unreg_list)
8962                 list_add_tail(&dev->close_list, &close_head);
8963         dev_close_many(&close_head, true);
8964
8965         list_for_each_entry(dev, head, unreg_list) {
8966                 /* And unlink it from device chain. */
8967                 unlist_netdevice(dev);
8968
8969                 dev->reg_state = NETREG_UNREGISTERING;
8970         }
8971         flush_all_backlogs();
8972
8973         synchronize_net();
8974
8975         list_for_each_entry(dev, head, unreg_list) {
8976                 struct sk_buff *skb = NULL;
8977
8978                 /* Shutdown queueing discipline. */
8979                 dev_shutdown(dev);
8980
8981                 dev_xdp_uninstall(dev);
8982
8983                 /* Notify protocols, that we are about to destroy
8984                  * this device. They should clean all the things.
8985                  */
8986                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8987
8988                 if (!dev->rtnl_link_ops ||
8989                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8990                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8991                                                      GFP_KERNEL, NULL, 0);
8992
8993                 /*
8994                  *      Flush the unicast and multicast chains
8995                  */
8996                 dev_uc_flush(dev);
8997                 dev_mc_flush(dev);
8998
8999                 netdev_name_node_alt_flush(dev);
9000                 netdev_name_node_free(dev->name_node);
9001
9002                 if (dev->netdev_ops->ndo_uninit)
9003                         dev->netdev_ops->ndo_uninit(dev);
9004
9005                 if (skb)
9006                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9007
9008                 /* Notifier chain MUST detach us all upper devices. */
9009                 WARN_ON(netdev_has_any_upper_dev(dev));
9010                 WARN_ON(netdev_has_any_lower_dev(dev));
9011
9012                 /* Remove entries from kobject tree */
9013                 netdev_unregister_kobject(dev);
9014 #ifdef CONFIG_XPS
9015                 /* Remove XPS queueing entries */
9016                 netif_reset_xps_queues_gt(dev, 0);
9017 #endif
9018         }
9019
9020         synchronize_net();
9021
9022         list_for_each_entry(dev, head, unreg_list)
9023                 dev_put(dev);
9024 }
9025
9026 static void rollback_registered(struct net_device *dev)
9027 {
9028         LIST_HEAD(single);
9029
9030         list_add(&dev->unreg_list, &single);
9031         rollback_registered_many(&single);
9032         list_del(&single);
9033 }
9034
9035 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9036         struct net_device *upper, netdev_features_t features)
9037 {
9038         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9039         netdev_features_t feature;
9040         int feature_bit;
9041
9042         for_each_netdev_feature(upper_disables, feature_bit) {
9043                 feature = __NETIF_F_BIT(feature_bit);
9044                 if (!(upper->wanted_features & feature)
9045                     && (features & feature)) {
9046                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9047                                    &feature, upper->name);
9048                         features &= ~feature;
9049                 }
9050         }
9051
9052         return features;
9053 }
9054
9055 static void netdev_sync_lower_features(struct net_device *upper,
9056         struct net_device *lower, netdev_features_t features)
9057 {
9058         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9059         netdev_features_t feature;
9060         int feature_bit;
9061
9062         for_each_netdev_feature(upper_disables, feature_bit) {
9063                 feature = __NETIF_F_BIT(feature_bit);
9064                 if (!(features & feature) && (lower->features & feature)) {
9065                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9066                                    &feature, lower->name);
9067                         lower->wanted_features &= ~feature;
9068                         __netdev_update_features(lower);
9069
9070                         if (unlikely(lower->features & feature))
9071                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9072                                             &feature, lower->name);
9073                         else
9074                                 netdev_features_change(lower);
9075                 }
9076         }
9077 }
9078
9079 static netdev_features_t netdev_fix_features(struct net_device *dev,
9080         netdev_features_t features)
9081 {
9082         /* Fix illegal checksum combinations */
9083         if ((features & NETIF_F_HW_CSUM) &&
9084             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9085                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9086                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9087         }
9088
9089         /* TSO requires that SG is present as well. */
9090         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9091                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9092                 features &= ~NETIF_F_ALL_TSO;
9093         }
9094
9095         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9096                                         !(features & NETIF_F_IP_CSUM)) {
9097                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9098                 features &= ~NETIF_F_TSO;
9099                 features &= ~NETIF_F_TSO_ECN;
9100         }
9101
9102         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9103                                          !(features & NETIF_F_IPV6_CSUM)) {
9104                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9105                 features &= ~NETIF_F_TSO6;
9106         }
9107
9108         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9109         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9110                 features &= ~NETIF_F_TSO_MANGLEID;
9111
9112         /* TSO ECN requires that TSO is present as well. */
9113         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9114                 features &= ~NETIF_F_TSO_ECN;
9115
9116         /* Software GSO depends on SG. */
9117         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9118                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9119                 features &= ~NETIF_F_GSO;
9120         }
9121
9122         /* GSO partial features require GSO partial be set */
9123         if ((features & dev->gso_partial_features) &&
9124             !(features & NETIF_F_GSO_PARTIAL)) {
9125                 netdev_dbg(dev,
9126                            "Dropping partially supported GSO features since no GSO partial.\n");
9127                 features &= ~dev->gso_partial_features;
9128         }
9129
9130         if (!(features & NETIF_F_RXCSUM)) {
9131                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9132                  * successfully merged by hardware must also have the
9133                  * checksum verified by hardware.  If the user does not
9134                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9135                  */
9136                 if (features & NETIF_F_GRO_HW) {
9137                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9138                         features &= ~NETIF_F_GRO_HW;
9139                 }
9140         }
9141
9142         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9143         if (features & NETIF_F_RXFCS) {
9144                 if (features & NETIF_F_LRO) {
9145                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9146                         features &= ~NETIF_F_LRO;
9147                 }
9148
9149                 if (features & NETIF_F_GRO_HW) {
9150                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9151                         features &= ~NETIF_F_GRO_HW;
9152                 }
9153         }
9154
9155         return features;
9156 }
9157
9158 int __netdev_update_features(struct net_device *dev)
9159 {
9160         struct net_device *upper, *lower;
9161         netdev_features_t features;
9162         struct list_head *iter;
9163         int err = -1;
9164
9165         ASSERT_RTNL();
9166
9167         features = netdev_get_wanted_features(dev);
9168
9169         if (dev->netdev_ops->ndo_fix_features)
9170                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9171
9172         /* driver might be less strict about feature dependencies */
9173         features = netdev_fix_features(dev, features);
9174
9175         /* some features can't be enabled if they're off an an upper device */
9176         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9177                 features = netdev_sync_upper_features(dev, upper, features);
9178
9179         if (dev->features == features)
9180                 goto sync_lower;
9181
9182         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9183                 &dev->features, &features);
9184
9185         if (dev->netdev_ops->ndo_set_features)
9186                 err = dev->netdev_ops->ndo_set_features(dev, features);
9187         else
9188                 err = 0;
9189
9190         if (unlikely(err < 0)) {
9191                 netdev_err(dev,
9192                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9193                         err, &features, &dev->features);
9194                 /* return non-0 since some features might have changed and
9195                  * it's better to fire a spurious notification than miss it
9196                  */
9197                 return -1;
9198         }
9199
9200 sync_lower:
9201         /* some features must be disabled on lower devices when disabled
9202          * on an upper device (think: bonding master or bridge)
9203          */
9204         netdev_for_each_lower_dev(dev, lower, iter)
9205                 netdev_sync_lower_features(dev, lower, features);
9206
9207         if (!err) {
9208                 netdev_features_t diff = features ^ dev->features;
9209
9210                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9211                         /* udp_tunnel_{get,drop}_rx_info both need
9212                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9213                          * device, or they won't do anything.
9214                          * Thus we need to update dev->features
9215                          * *before* calling udp_tunnel_get_rx_info,
9216                          * but *after* calling udp_tunnel_drop_rx_info.
9217                          */
9218                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9219                                 dev->features = features;
9220                                 udp_tunnel_get_rx_info(dev);
9221                         } else {
9222                                 udp_tunnel_drop_rx_info(dev);
9223                         }
9224                 }
9225
9226                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9227                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9228                                 dev->features = features;
9229                                 err |= vlan_get_rx_ctag_filter_info(dev);
9230                         } else {
9231                                 vlan_drop_rx_ctag_filter_info(dev);
9232                         }
9233                 }
9234
9235                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9236                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9237                                 dev->features = features;
9238                                 err |= vlan_get_rx_stag_filter_info(dev);
9239                         } else {
9240                                 vlan_drop_rx_stag_filter_info(dev);
9241                         }
9242                 }
9243
9244                 dev->features = features;
9245         }
9246
9247         return err < 0 ? 0 : 1;
9248 }
9249
9250 /**
9251  *      netdev_update_features - recalculate device features
9252  *      @dev: the device to check
9253  *
9254  *      Recalculate dev->features set and send notifications if it
9255  *      has changed. Should be called after driver or hardware dependent
9256  *      conditions might have changed that influence the features.
9257  */
9258 void netdev_update_features(struct net_device *dev)
9259 {
9260         if (__netdev_update_features(dev))
9261                 netdev_features_change(dev);
9262 }
9263 EXPORT_SYMBOL(netdev_update_features);
9264
9265 /**
9266  *      netdev_change_features - recalculate device features
9267  *      @dev: the device to check
9268  *
9269  *      Recalculate dev->features set and send notifications even
9270  *      if they have not changed. Should be called instead of
9271  *      netdev_update_features() if also dev->vlan_features might
9272  *      have changed to allow the changes to be propagated to stacked
9273  *      VLAN devices.
9274  */
9275 void netdev_change_features(struct net_device *dev)
9276 {
9277         __netdev_update_features(dev);
9278         netdev_features_change(dev);
9279 }
9280 EXPORT_SYMBOL(netdev_change_features);
9281
9282 /**
9283  *      netif_stacked_transfer_operstate -      transfer operstate
9284  *      @rootdev: the root or lower level device to transfer state from
9285  *      @dev: the device to transfer operstate to
9286  *
9287  *      Transfer operational state from root to device. This is normally
9288  *      called when a stacking relationship exists between the root
9289  *      device and the device(a leaf device).
9290  */
9291 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9292                                         struct net_device *dev)
9293 {
9294         if (rootdev->operstate == IF_OPER_DORMANT)
9295                 netif_dormant_on(dev);
9296         else
9297                 netif_dormant_off(dev);
9298
9299         if (rootdev->operstate == IF_OPER_TESTING)
9300                 netif_testing_on(dev);
9301         else
9302                 netif_testing_off(dev);
9303
9304         if (netif_carrier_ok(rootdev))
9305                 netif_carrier_on(dev);
9306         else
9307                 netif_carrier_off(dev);
9308 }
9309 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9310
9311 static int netif_alloc_rx_queues(struct net_device *dev)
9312 {
9313         unsigned int i, count = dev->num_rx_queues;
9314         struct netdev_rx_queue *rx;
9315         size_t sz = count * sizeof(*rx);
9316         int err = 0;
9317
9318         BUG_ON(count < 1);
9319
9320         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9321         if (!rx)
9322                 return -ENOMEM;
9323
9324         dev->_rx = rx;
9325
9326         for (i = 0; i < count; i++) {
9327                 rx[i].dev = dev;
9328
9329                 /* XDP RX-queue setup */
9330                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9331                 if (err < 0)
9332                         goto err_rxq_info;
9333         }
9334         return 0;
9335
9336 err_rxq_info:
9337         /* Rollback successful reg's and free other resources */
9338         while (i--)
9339                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9340         kvfree(dev->_rx);
9341         dev->_rx = NULL;
9342         return err;
9343 }
9344
9345 static void netif_free_rx_queues(struct net_device *dev)
9346 {
9347         unsigned int i, count = dev->num_rx_queues;
9348
9349         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9350         if (!dev->_rx)
9351                 return;
9352
9353         for (i = 0; i < count; i++)
9354                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9355
9356         kvfree(dev->_rx);
9357 }
9358
9359 static void netdev_init_one_queue(struct net_device *dev,
9360                                   struct netdev_queue *queue, void *_unused)
9361 {
9362         /* Initialize queue lock */
9363         spin_lock_init(&queue->_xmit_lock);
9364         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9365         queue->xmit_lock_owner = -1;
9366         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9367         queue->dev = dev;
9368 #ifdef CONFIG_BQL
9369         dql_init(&queue->dql, HZ);
9370 #endif
9371 }
9372
9373 static void netif_free_tx_queues(struct net_device *dev)
9374 {
9375         kvfree(dev->_tx);
9376 }
9377
9378 static int netif_alloc_netdev_queues(struct net_device *dev)
9379 {
9380         unsigned int count = dev->num_tx_queues;
9381         struct netdev_queue *tx;
9382         size_t sz = count * sizeof(*tx);
9383
9384         if (count < 1 || count > 0xffff)
9385                 return -EINVAL;
9386
9387         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9388         if (!tx)
9389                 return -ENOMEM;
9390
9391         dev->_tx = tx;
9392
9393         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9394         spin_lock_init(&dev->tx_global_lock);
9395
9396         return 0;
9397 }
9398
9399 void netif_tx_stop_all_queues(struct net_device *dev)
9400 {
9401         unsigned int i;
9402
9403         for (i = 0; i < dev->num_tx_queues; i++) {
9404                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9405
9406                 netif_tx_stop_queue(txq);
9407         }
9408 }
9409 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9410
9411 /**
9412  *      register_netdevice      - register a network device
9413  *      @dev: device to register
9414  *
9415  *      Take a completed network device structure and add it to the kernel
9416  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9417  *      chain. 0 is returned on success. A negative errno code is returned
9418  *      on a failure to set up the device, or if the name is a duplicate.
9419  *
9420  *      Callers must hold the rtnl semaphore. You may want
9421  *      register_netdev() instead of this.
9422  *
9423  *      BUGS:
9424  *      The locking appears insufficient to guarantee two parallel registers
9425  *      will not get the same name.
9426  */
9427
9428 int register_netdevice(struct net_device *dev)
9429 {
9430         int ret;
9431         struct net *net = dev_net(dev);
9432
9433         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9434                      NETDEV_FEATURE_COUNT);
9435         BUG_ON(dev_boot_phase);
9436         ASSERT_RTNL();
9437
9438         might_sleep();
9439
9440         /* When net_device's are persistent, this will be fatal. */
9441         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9442         BUG_ON(!net);
9443
9444         ret = ethtool_check_ops(dev->ethtool_ops);
9445         if (ret)
9446                 return ret;
9447
9448         spin_lock_init(&dev->addr_list_lock);
9449         netdev_set_addr_lockdep_class(dev);
9450
9451         ret = dev_get_valid_name(net, dev, dev->name);
9452         if (ret < 0)
9453                 goto out;
9454
9455         ret = -ENOMEM;
9456         dev->name_node = netdev_name_node_head_alloc(dev);
9457         if (!dev->name_node)
9458                 goto out;
9459
9460         /* Init, if this function is available */
9461         if (dev->netdev_ops->ndo_init) {
9462                 ret = dev->netdev_ops->ndo_init(dev);
9463                 if (ret) {
9464                         if (ret > 0)
9465                                 ret = -EIO;
9466                         goto err_free_name;
9467                 }
9468         }
9469
9470         if (((dev->hw_features | dev->features) &
9471              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9472             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9473              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9474                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9475                 ret = -EINVAL;
9476                 goto err_uninit;
9477         }
9478
9479         ret = -EBUSY;
9480         if (!dev->ifindex)
9481                 dev->ifindex = dev_new_index(net);
9482         else if (__dev_get_by_index(net, dev->ifindex))
9483                 goto err_uninit;
9484
9485         /* Transfer changeable features to wanted_features and enable
9486          * software offloads (GSO and GRO).
9487          */
9488         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9489         dev->features |= NETIF_F_SOFT_FEATURES;
9490
9491         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9492                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9493                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9494         }
9495
9496         dev->wanted_features = dev->features & dev->hw_features;
9497
9498         if (!(dev->flags & IFF_LOOPBACK))
9499                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9500
9501         /* If IPv4 TCP segmentation offload is supported we should also
9502          * allow the device to enable segmenting the frame with the option
9503          * of ignoring a static IP ID value.  This doesn't enable the
9504          * feature itself but allows the user to enable it later.
9505          */
9506         if (dev->hw_features & NETIF_F_TSO)
9507                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9508         if (dev->vlan_features & NETIF_F_TSO)
9509                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9510         if (dev->mpls_features & NETIF_F_TSO)
9511                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9512         if (dev->hw_enc_features & NETIF_F_TSO)
9513                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9514
9515         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9516          */
9517         dev->vlan_features |= NETIF_F_HIGHDMA;
9518
9519         /* Make NETIF_F_SG inheritable to tunnel devices.
9520          */
9521         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9522
9523         /* Make NETIF_F_SG inheritable to MPLS.
9524          */
9525         dev->mpls_features |= NETIF_F_SG;
9526
9527         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9528         ret = notifier_to_errno(ret);
9529         if (ret)
9530                 goto err_uninit;
9531
9532         ret = netdev_register_kobject(dev);
9533         if (ret) {
9534                 dev->reg_state = NETREG_UNREGISTERED;
9535                 goto err_uninit;
9536         }
9537         dev->reg_state = NETREG_REGISTERED;
9538
9539         __netdev_update_features(dev);
9540
9541         /*
9542          *      Default initial state at registry is that the
9543          *      device is present.
9544          */
9545
9546         set_bit(__LINK_STATE_PRESENT, &dev->state);
9547
9548         linkwatch_init_dev(dev);
9549
9550         dev_init_scheduler(dev);
9551         dev_hold(dev);
9552         list_netdevice(dev);
9553         add_device_randomness(dev->dev_addr, dev->addr_len);
9554
9555         /* If the device has permanent device address, driver should
9556          * set dev_addr and also addr_assign_type should be set to
9557          * NET_ADDR_PERM (default value).
9558          */
9559         if (dev->addr_assign_type == NET_ADDR_PERM)
9560                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9561
9562         /* Notify protocols, that a new device appeared. */
9563         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9564         ret = notifier_to_errno(ret);
9565         if (ret) {
9566                 rollback_registered(dev);
9567                 rcu_barrier();
9568
9569                 dev->reg_state = NETREG_UNREGISTERED;
9570                 /* We should put the kobject that hold in
9571                  * netdev_unregister_kobject(), otherwise
9572                  * the net device cannot be freed when
9573                  * driver calls free_netdev(), because the
9574                  * kobject is being hold.
9575                  */
9576                 kobject_put(&dev->dev.kobj);
9577         }
9578         /*
9579          *      Prevent userspace races by waiting until the network
9580          *      device is fully setup before sending notifications.
9581          */
9582         if (!dev->rtnl_link_ops ||
9583             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9584                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9585
9586 out:
9587         return ret;
9588
9589 err_uninit:
9590         if (dev->netdev_ops->ndo_uninit)
9591                 dev->netdev_ops->ndo_uninit(dev);
9592         if (dev->priv_destructor)
9593                 dev->priv_destructor(dev);
9594 err_free_name:
9595         netdev_name_node_free(dev->name_node);
9596         goto out;
9597 }
9598 EXPORT_SYMBOL(register_netdevice);
9599
9600 /**
9601  *      init_dummy_netdev       - init a dummy network device for NAPI
9602  *      @dev: device to init
9603  *
9604  *      This takes a network device structure and initialize the minimum
9605  *      amount of fields so it can be used to schedule NAPI polls without
9606  *      registering a full blown interface. This is to be used by drivers
9607  *      that need to tie several hardware interfaces to a single NAPI
9608  *      poll scheduler due to HW limitations.
9609  */
9610 int init_dummy_netdev(struct net_device *dev)
9611 {
9612         /* Clear everything. Note we don't initialize spinlocks
9613          * are they aren't supposed to be taken by any of the
9614          * NAPI code and this dummy netdev is supposed to be
9615          * only ever used for NAPI polls
9616          */
9617         memset(dev, 0, sizeof(struct net_device));
9618
9619         /* make sure we BUG if trying to hit standard
9620          * register/unregister code path
9621          */
9622         dev->reg_state = NETREG_DUMMY;
9623
9624         /* NAPI wants this */
9625         INIT_LIST_HEAD(&dev->napi_list);
9626
9627         /* a dummy interface is started by default */
9628         set_bit(__LINK_STATE_PRESENT, &dev->state);
9629         set_bit(__LINK_STATE_START, &dev->state);
9630
9631         /* napi_busy_loop stats accounting wants this */
9632         dev_net_set(dev, &init_net);
9633
9634         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9635          * because users of this 'device' dont need to change
9636          * its refcount.
9637          */
9638
9639         return 0;
9640 }
9641 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9642
9643
9644 /**
9645  *      register_netdev - register a network device
9646  *      @dev: device to register
9647  *
9648  *      Take a completed network device structure and add it to the kernel
9649  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9650  *      chain. 0 is returned on success. A negative errno code is returned
9651  *      on a failure to set up the device, or if the name is a duplicate.
9652  *
9653  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9654  *      and expands the device name if you passed a format string to
9655  *      alloc_netdev.
9656  */
9657 int register_netdev(struct net_device *dev)
9658 {
9659         int err;
9660
9661         if (rtnl_lock_killable())
9662                 return -EINTR;
9663         err = register_netdevice(dev);
9664         rtnl_unlock();
9665         return err;
9666 }
9667 EXPORT_SYMBOL(register_netdev);
9668
9669 int netdev_refcnt_read(const struct net_device *dev)
9670 {
9671         int i, refcnt = 0;
9672
9673         for_each_possible_cpu(i)
9674                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9675         return refcnt;
9676 }
9677 EXPORT_SYMBOL(netdev_refcnt_read);
9678
9679 /**
9680  * netdev_wait_allrefs - wait until all references are gone.
9681  * @dev: target net_device
9682  *
9683  * This is called when unregistering network devices.
9684  *
9685  * Any protocol or device that holds a reference should register
9686  * for netdevice notification, and cleanup and put back the
9687  * reference if they receive an UNREGISTER event.
9688  * We can get stuck here if buggy protocols don't correctly
9689  * call dev_put.
9690  */
9691 static void netdev_wait_allrefs(struct net_device *dev)
9692 {
9693         unsigned long rebroadcast_time, warning_time;
9694         int refcnt;
9695
9696         linkwatch_forget_dev(dev);
9697
9698         rebroadcast_time = warning_time = jiffies;
9699         refcnt = netdev_refcnt_read(dev);
9700
9701         while (refcnt != 0) {
9702                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9703                         rtnl_lock();
9704
9705                         /* Rebroadcast unregister notification */
9706                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9707
9708                         __rtnl_unlock();
9709                         rcu_barrier();
9710                         rtnl_lock();
9711
9712                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9713                                      &dev->state)) {
9714                                 /* We must not have linkwatch events
9715                                  * pending on unregister. If this
9716                                  * happens, we simply run the queue
9717                                  * unscheduled, resulting in a noop
9718                                  * for this device.
9719                                  */
9720                                 linkwatch_run_queue();
9721                         }
9722
9723                         __rtnl_unlock();
9724
9725                         rebroadcast_time = jiffies;
9726                 }
9727
9728                 msleep(250);
9729
9730                 refcnt = netdev_refcnt_read(dev);
9731
9732                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9733                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9734                                  dev->name, refcnt);
9735                         warning_time = jiffies;
9736                 }
9737         }
9738 }
9739
9740 /* The sequence is:
9741  *
9742  *      rtnl_lock();
9743  *      ...
9744  *      register_netdevice(x1);
9745  *      register_netdevice(x2);
9746  *      ...
9747  *      unregister_netdevice(y1);
9748  *      unregister_netdevice(y2);
9749  *      ...
9750  *      rtnl_unlock();
9751  *      free_netdev(y1);
9752  *      free_netdev(y2);
9753  *
9754  * We are invoked by rtnl_unlock().
9755  * This allows us to deal with problems:
9756  * 1) We can delete sysfs objects which invoke hotplug
9757  *    without deadlocking with linkwatch via keventd.
9758  * 2) Since we run with the RTNL semaphore not held, we can sleep
9759  *    safely in order to wait for the netdev refcnt to drop to zero.
9760  *
9761  * We must not return until all unregister events added during
9762  * the interval the lock was held have been completed.
9763  */
9764 void netdev_run_todo(void)
9765 {
9766         struct list_head list;
9767
9768         /* Snapshot list, allow later requests */
9769         list_replace_init(&net_todo_list, &list);
9770
9771         __rtnl_unlock();
9772
9773
9774         /* Wait for rcu callbacks to finish before next phase */
9775         if (!list_empty(&list))
9776                 rcu_barrier();
9777
9778         while (!list_empty(&list)) {
9779                 struct net_device *dev
9780                         = list_first_entry(&list, struct net_device, todo_list);
9781                 list_del(&dev->todo_list);
9782
9783                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9784                         pr_err("network todo '%s' but state %d\n",
9785                                dev->name, dev->reg_state);
9786                         dump_stack();
9787                         continue;
9788                 }
9789
9790                 dev->reg_state = NETREG_UNREGISTERED;
9791
9792                 netdev_wait_allrefs(dev);
9793
9794                 /* paranoia */
9795                 BUG_ON(netdev_refcnt_read(dev));
9796                 BUG_ON(!list_empty(&dev->ptype_all));
9797                 BUG_ON(!list_empty(&dev->ptype_specific));
9798                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9799                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9800 #if IS_ENABLED(CONFIG_DECNET)
9801                 WARN_ON(dev->dn_ptr);
9802 #endif
9803                 if (dev->priv_destructor)
9804                         dev->priv_destructor(dev);
9805                 if (dev->needs_free_netdev)
9806                         free_netdev(dev);
9807
9808                 /* Report a network device has been unregistered */
9809                 rtnl_lock();
9810                 dev_net(dev)->dev_unreg_count--;
9811                 __rtnl_unlock();
9812                 wake_up(&netdev_unregistering_wq);
9813
9814                 /* Free network device */
9815                 kobject_put(&dev->dev.kobj);
9816         }
9817 }
9818
9819 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9820  * all the same fields in the same order as net_device_stats, with only
9821  * the type differing, but rtnl_link_stats64 may have additional fields
9822  * at the end for newer counters.
9823  */
9824 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9825                              const struct net_device_stats *netdev_stats)
9826 {
9827 #if BITS_PER_LONG == 64
9828         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9829         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9830         /* zero out counters that only exist in rtnl_link_stats64 */
9831         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9832                sizeof(*stats64) - sizeof(*netdev_stats));
9833 #else
9834         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9835         const unsigned long *src = (const unsigned long *)netdev_stats;
9836         u64 *dst = (u64 *)stats64;
9837
9838         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9839         for (i = 0; i < n; i++)
9840                 dst[i] = src[i];
9841         /* zero out counters that only exist in rtnl_link_stats64 */
9842         memset((char *)stats64 + n * sizeof(u64), 0,
9843                sizeof(*stats64) - n * sizeof(u64));
9844 #endif
9845 }
9846 EXPORT_SYMBOL(netdev_stats_to_stats64);
9847
9848 /**
9849  *      dev_get_stats   - get network device statistics
9850  *      @dev: device to get statistics from
9851  *      @storage: place to store stats
9852  *
9853  *      Get network statistics from device. Return @storage.
9854  *      The device driver may provide its own method by setting
9855  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9856  *      otherwise the internal statistics structure is used.
9857  */
9858 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9859                                         struct rtnl_link_stats64 *storage)
9860 {
9861         const struct net_device_ops *ops = dev->netdev_ops;
9862
9863         if (ops->ndo_get_stats64) {
9864                 memset(storage, 0, sizeof(*storage));
9865                 ops->ndo_get_stats64(dev, storage);
9866         } else if (ops->ndo_get_stats) {
9867                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9868         } else {
9869                 netdev_stats_to_stats64(storage, &dev->stats);
9870         }
9871         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9872         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9873         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9874         return storage;
9875 }
9876 EXPORT_SYMBOL(dev_get_stats);
9877
9878 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9879 {
9880         struct netdev_queue *queue = dev_ingress_queue(dev);
9881
9882 #ifdef CONFIG_NET_CLS_ACT
9883         if (queue)
9884                 return queue;
9885         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9886         if (!queue)
9887                 return NULL;
9888         netdev_init_one_queue(dev, queue, NULL);
9889         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9890         queue->qdisc_sleeping = &noop_qdisc;
9891         rcu_assign_pointer(dev->ingress_queue, queue);
9892 #endif
9893         return queue;
9894 }
9895
9896 static const struct ethtool_ops default_ethtool_ops;
9897
9898 void netdev_set_default_ethtool_ops(struct net_device *dev,
9899                                     const struct ethtool_ops *ops)
9900 {
9901         if (dev->ethtool_ops == &default_ethtool_ops)
9902                 dev->ethtool_ops = ops;
9903 }
9904 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9905
9906 void netdev_freemem(struct net_device *dev)
9907 {
9908         char *addr = (char *)dev - dev->padded;
9909
9910         kvfree(addr);
9911 }
9912
9913 /**
9914  * alloc_netdev_mqs - allocate network device
9915  * @sizeof_priv: size of private data to allocate space for
9916  * @name: device name format string
9917  * @name_assign_type: origin of device name
9918  * @setup: callback to initialize device
9919  * @txqs: the number of TX subqueues to allocate
9920  * @rxqs: the number of RX subqueues to allocate
9921  *
9922  * Allocates a struct net_device with private data area for driver use
9923  * and performs basic initialization.  Also allocates subqueue structs
9924  * for each queue on the device.
9925  */
9926 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9927                 unsigned char name_assign_type,
9928                 void (*setup)(struct net_device *),
9929                 unsigned int txqs, unsigned int rxqs)
9930 {
9931         struct net_device *dev;
9932         unsigned int alloc_size;
9933         struct net_device *p;
9934
9935         BUG_ON(strlen(name) >= sizeof(dev->name));
9936
9937         if (txqs < 1) {
9938                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9939                 return NULL;
9940         }
9941
9942         if (rxqs < 1) {
9943                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9944                 return NULL;
9945         }
9946
9947         alloc_size = sizeof(struct net_device);
9948         if (sizeof_priv) {
9949                 /* ensure 32-byte alignment of private area */
9950                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9951                 alloc_size += sizeof_priv;
9952         }
9953         /* ensure 32-byte alignment of whole construct */
9954         alloc_size += NETDEV_ALIGN - 1;
9955
9956         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9957         if (!p)
9958                 return NULL;
9959
9960         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9961         dev->padded = (char *)dev - (char *)p;
9962
9963         dev->pcpu_refcnt = alloc_percpu(int);
9964         if (!dev->pcpu_refcnt)
9965                 goto free_dev;
9966
9967         if (dev_addr_init(dev))
9968                 goto free_pcpu;
9969
9970         dev_mc_init(dev);
9971         dev_uc_init(dev);
9972
9973         dev_net_set(dev, &init_net);
9974
9975         dev->gso_max_size = GSO_MAX_SIZE;
9976         dev->gso_max_segs = GSO_MAX_SEGS;
9977         dev->upper_level = 1;
9978         dev->lower_level = 1;
9979
9980         INIT_LIST_HEAD(&dev->napi_list);
9981         INIT_LIST_HEAD(&dev->unreg_list);
9982         INIT_LIST_HEAD(&dev->close_list);
9983         INIT_LIST_HEAD(&dev->link_watch_list);
9984         INIT_LIST_HEAD(&dev->adj_list.upper);
9985         INIT_LIST_HEAD(&dev->adj_list.lower);
9986         INIT_LIST_HEAD(&dev->ptype_all);
9987         INIT_LIST_HEAD(&dev->ptype_specific);
9988         INIT_LIST_HEAD(&dev->net_notifier_list);
9989 #ifdef CONFIG_NET_SCHED
9990         hash_init(dev->qdisc_hash);
9991 #endif
9992         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9993         setup(dev);
9994
9995         if (!dev->tx_queue_len) {
9996                 dev->priv_flags |= IFF_NO_QUEUE;
9997                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9998         }
9999
10000         dev->num_tx_queues = txqs;
10001         dev->real_num_tx_queues = txqs;
10002         if (netif_alloc_netdev_queues(dev))
10003                 goto free_all;
10004
10005         dev->num_rx_queues = rxqs;
10006         dev->real_num_rx_queues = rxqs;
10007         if (netif_alloc_rx_queues(dev))
10008                 goto free_all;
10009
10010         strcpy(dev->name, name);
10011         dev->name_assign_type = name_assign_type;
10012         dev->group = INIT_NETDEV_GROUP;
10013         if (!dev->ethtool_ops)
10014                 dev->ethtool_ops = &default_ethtool_ops;
10015
10016         nf_hook_ingress_init(dev);
10017
10018         return dev;
10019
10020 free_all:
10021         free_netdev(dev);
10022         return NULL;
10023
10024 free_pcpu:
10025         free_percpu(dev->pcpu_refcnt);
10026 free_dev:
10027         netdev_freemem(dev);
10028         return NULL;
10029 }
10030 EXPORT_SYMBOL(alloc_netdev_mqs);
10031
10032 /**
10033  * free_netdev - free network device
10034  * @dev: device
10035  *
10036  * This function does the last stage of destroying an allocated device
10037  * interface. The reference to the device object is released. If this
10038  * is the last reference then it will be freed.Must be called in process
10039  * context.
10040  */
10041 void free_netdev(struct net_device *dev)
10042 {
10043         struct napi_struct *p, *n;
10044
10045         might_sleep();
10046         netif_free_tx_queues(dev);
10047         netif_free_rx_queues(dev);
10048
10049         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10050
10051         /* Flush device addresses */
10052         dev_addr_flush(dev);
10053
10054         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10055                 netif_napi_del(p);
10056
10057         free_percpu(dev->pcpu_refcnt);
10058         dev->pcpu_refcnt = NULL;
10059         free_percpu(dev->xdp_bulkq);
10060         dev->xdp_bulkq = NULL;
10061
10062         /*  Compatibility with error handling in drivers */
10063         if (dev->reg_state == NETREG_UNINITIALIZED) {
10064                 netdev_freemem(dev);
10065                 return;
10066         }
10067
10068         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10069         dev->reg_state = NETREG_RELEASED;
10070
10071         /* will free via device release */
10072         put_device(&dev->dev);
10073 }
10074 EXPORT_SYMBOL(free_netdev);
10075
10076 /**
10077  *      synchronize_net -  Synchronize with packet receive processing
10078  *
10079  *      Wait for packets currently being received to be done.
10080  *      Does not block later packets from starting.
10081  */
10082 void synchronize_net(void)
10083 {
10084         might_sleep();
10085         if (rtnl_is_locked())
10086                 synchronize_rcu_expedited();
10087         else
10088                 synchronize_rcu();
10089 }
10090 EXPORT_SYMBOL(synchronize_net);
10091
10092 /**
10093  *      unregister_netdevice_queue - remove device from the kernel
10094  *      @dev: device
10095  *      @head: list
10096  *
10097  *      This function shuts down a device interface and removes it
10098  *      from the kernel tables.
10099  *      If head not NULL, device is queued to be unregistered later.
10100  *
10101  *      Callers must hold the rtnl semaphore.  You may want
10102  *      unregister_netdev() instead of this.
10103  */
10104
10105 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10106 {
10107         ASSERT_RTNL();
10108
10109         if (head) {
10110                 list_move_tail(&dev->unreg_list, head);
10111         } else {
10112                 rollback_registered(dev);
10113                 /* Finish processing unregister after unlock */
10114                 net_set_todo(dev);
10115         }
10116 }
10117 EXPORT_SYMBOL(unregister_netdevice_queue);
10118
10119 /**
10120  *      unregister_netdevice_many - unregister many devices
10121  *      @head: list of devices
10122  *
10123  *  Note: As most callers use a stack allocated list_head,
10124  *  we force a list_del() to make sure stack wont be corrupted later.
10125  */
10126 void unregister_netdevice_many(struct list_head *head)
10127 {
10128         struct net_device *dev;
10129
10130         if (!list_empty(head)) {
10131                 rollback_registered_many(head);
10132                 list_for_each_entry(dev, head, unreg_list)
10133                         net_set_todo(dev);
10134                 list_del(head);
10135         }
10136 }
10137 EXPORT_SYMBOL(unregister_netdevice_many);
10138
10139 /**
10140  *      unregister_netdev - remove device from the kernel
10141  *      @dev: device
10142  *
10143  *      This function shuts down a device interface and removes it
10144  *      from the kernel tables.
10145  *
10146  *      This is just a wrapper for unregister_netdevice that takes
10147  *      the rtnl semaphore.  In general you want to use this and not
10148  *      unregister_netdevice.
10149  */
10150 void unregister_netdev(struct net_device *dev)
10151 {
10152         rtnl_lock();
10153         unregister_netdevice(dev);
10154         rtnl_unlock();
10155 }
10156 EXPORT_SYMBOL(unregister_netdev);
10157
10158 /**
10159  *      dev_change_net_namespace - move device to different nethost namespace
10160  *      @dev: device
10161  *      @net: network namespace
10162  *      @pat: If not NULL name pattern to try if the current device name
10163  *            is already taken in the destination network namespace.
10164  *
10165  *      This function shuts down a device interface and moves it
10166  *      to a new network namespace. On success 0 is returned, on
10167  *      a failure a netagive errno code is returned.
10168  *
10169  *      Callers must hold the rtnl semaphore.
10170  */
10171
10172 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10173 {
10174         struct net *net_old = dev_net(dev);
10175         int err, new_nsid, new_ifindex;
10176
10177         ASSERT_RTNL();
10178
10179         /* Don't allow namespace local devices to be moved. */
10180         err = -EINVAL;
10181         if (dev->features & NETIF_F_NETNS_LOCAL)
10182                 goto out;
10183
10184         /* Ensure the device has been registrered */
10185         if (dev->reg_state != NETREG_REGISTERED)
10186                 goto out;
10187
10188         /* Get out if there is nothing todo */
10189         err = 0;
10190         if (net_eq(net_old, net))
10191                 goto out;
10192
10193         /* Pick the destination device name, and ensure
10194          * we can use it in the destination network namespace.
10195          */
10196         err = -EEXIST;
10197         if (__dev_get_by_name(net, dev->name)) {
10198                 /* We get here if we can't use the current device name */
10199                 if (!pat)
10200                         goto out;
10201                 err = dev_get_valid_name(net, dev, pat);
10202                 if (err < 0)
10203                         goto out;
10204         }
10205
10206         /*
10207          * And now a mini version of register_netdevice unregister_netdevice.
10208          */
10209
10210         /* If device is running close it first. */
10211         dev_close(dev);
10212
10213         /* And unlink it from device chain */
10214         unlist_netdevice(dev);
10215
10216         synchronize_net();
10217
10218         /* Shutdown queueing discipline. */
10219         dev_shutdown(dev);
10220
10221         /* Notify protocols, that we are about to destroy
10222          * this device. They should clean all the things.
10223          *
10224          * Note that dev->reg_state stays at NETREG_REGISTERED.
10225          * This is wanted because this way 8021q and macvlan know
10226          * the device is just moving and can keep their slaves up.
10227          */
10228         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10229         rcu_barrier();
10230
10231         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10232         /* If there is an ifindex conflict assign a new one */
10233         if (__dev_get_by_index(net, dev->ifindex))
10234                 new_ifindex = dev_new_index(net);
10235         else
10236                 new_ifindex = dev->ifindex;
10237
10238         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10239                             new_ifindex);
10240
10241         /*
10242          *      Flush the unicast and multicast chains
10243          */
10244         dev_uc_flush(dev);
10245         dev_mc_flush(dev);
10246
10247         /* Send a netdev-removed uevent to the old namespace */
10248         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10249         netdev_adjacent_del_links(dev);
10250
10251         /* Move per-net netdevice notifiers that are following the netdevice */
10252         move_netdevice_notifiers_dev_net(dev, net);
10253
10254         /* Actually switch the network namespace */
10255         dev_net_set(dev, net);
10256         dev->ifindex = new_ifindex;
10257
10258         /* Send a netdev-add uevent to the new namespace */
10259         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10260         netdev_adjacent_add_links(dev);
10261
10262         /* Fixup kobjects */
10263         err = device_rename(&dev->dev, dev->name);
10264         WARN_ON(err);
10265
10266         /* Adapt owner in case owning user namespace of target network
10267          * namespace is different from the original one.
10268          */
10269         err = netdev_change_owner(dev, net_old, net);
10270         WARN_ON(err);
10271
10272         /* Add the device back in the hashes */
10273         list_netdevice(dev);
10274
10275         /* Notify protocols, that a new device appeared. */
10276         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10277
10278         /*
10279          *      Prevent userspace races by waiting until the network
10280          *      device is fully setup before sending notifications.
10281          */
10282         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10283
10284         synchronize_net();
10285         err = 0;
10286 out:
10287         return err;
10288 }
10289 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10290
10291 static int dev_cpu_dead(unsigned int oldcpu)
10292 {
10293         struct sk_buff **list_skb;
10294         struct sk_buff *skb;
10295         unsigned int cpu;
10296         struct softnet_data *sd, *oldsd, *remsd = NULL;
10297
10298         local_irq_disable();
10299         cpu = smp_processor_id();
10300         sd = &per_cpu(softnet_data, cpu);
10301         oldsd = &per_cpu(softnet_data, oldcpu);
10302
10303         /* Find end of our completion_queue. */
10304         list_skb = &sd->completion_queue;
10305         while (*list_skb)
10306                 list_skb = &(*list_skb)->next;
10307         /* Append completion queue from offline CPU. */
10308         *list_skb = oldsd->completion_queue;
10309         oldsd->completion_queue = NULL;
10310
10311         /* Append output queue from offline CPU. */
10312         if (oldsd->output_queue) {
10313                 *sd->output_queue_tailp = oldsd->output_queue;
10314                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10315                 oldsd->output_queue = NULL;
10316                 oldsd->output_queue_tailp = &oldsd->output_queue;
10317         }
10318         /* Append NAPI poll list from offline CPU, with one exception :
10319          * process_backlog() must be called by cpu owning percpu backlog.
10320          * We properly handle process_queue & input_pkt_queue later.
10321          */
10322         while (!list_empty(&oldsd->poll_list)) {
10323                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10324                                                             struct napi_struct,
10325                                                             poll_list);
10326
10327                 list_del_init(&napi->poll_list);
10328                 if (napi->poll == process_backlog)
10329                         napi->state = 0;
10330                 else
10331                         ____napi_schedule(sd, napi);
10332         }
10333
10334         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10335         local_irq_enable();
10336
10337 #ifdef CONFIG_RPS
10338         remsd = oldsd->rps_ipi_list;
10339         oldsd->rps_ipi_list = NULL;
10340 #endif
10341         /* send out pending IPI's on offline CPU */
10342         net_rps_send_ipi(remsd);
10343
10344         /* Process offline CPU's input_pkt_queue */
10345         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10346                 netif_rx_ni(skb);
10347                 input_queue_head_incr(oldsd);
10348         }
10349         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10350                 netif_rx_ni(skb);
10351                 input_queue_head_incr(oldsd);
10352         }
10353
10354         return 0;
10355 }
10356
10357 /**
10358  *      netdev_increment_features - increment feature set by one
10359  *      @all: current feature set
10360  *      @one: new feature set
10361  *      @mask: mask feature set
10362  *
10363  *      Computes a new feature set after adding a device with feature set
10364  *      @one to the master device with current feature set @all.  Will not
10365  *      enable anything that is off in @mask. Returns the new feature set.
10366  */
10367 netdev_features_t netdev_increment_features(netdev_features_t all,
10368         netdev_features_t one, netdev_features_t mask)
10369 {
10370         if (mask & NETIF_F_HW_CSUM)
10371                 mask |= NETIF_F_CSUM_MASK;
10372         mask |= NETIF_F_VLAN_CHALLENGED;
10373
10374         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10375         all &= one | ~NETIF_F_ALL_FOR_ALL;
10376
10377         /* If one device supports hw checksumming, set for all. */
10378         if (all & NETIF_F_HW_CSUM)
10379                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10380
10381         return all;
10382 }
10383 EXPORT_SYMBOL(netdev_increment_features);
10384
10385 static struct hlist_head * __net_init netdev_create_hash(void)
10386 {
10387         int i;
10388         struct hlist_head *hash;
10389
10390         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10391         if (hash != NULL)
10392                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10393                         INIT_HLIST_HEAD(&hash[i]);
10394
10395         return hash;
10396 }
10397
10398 /* Initialize per network namespace state */
10399 static int __net_init netdev_init(struct net *net)
10400 {
10401         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10402                      8 * sizeof_field(struct napi_struct, gro_bitmask));
10403
10404         if (net != &init_net)
10405                 INIT_LIST_HEAD(&net->dev_base_head);
10406
10407         net->dev_name_head = netdev_create_hash();
10408         if (net->dev_name_head == NULL)
10409                 goto err_name;
10410
10411         net->dev_index_head = netdev_create_hash();
10412         if (net->dev_index_head == NULL)
10413                 goto err_idx;
10414
10415         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10416
10417         return 0;
10418
10419 err_idx:
10420         kfree(net->dev_name_head);
10421 err_name:
10422         return -ENOMEM;
10423 }
10424
10425 /**
10426  *      netdev_drivername - network driver for the device
10427  *      @dev: network device
10428  *
10429  *      Determine network driver for device.
10430  */
10431 const char *netdev_drivername(const struct net_device *dev)
10432 {
10433         const struct device_driver *driver;
10434         const struct device *parent;
10435         const char *empty = "";
10436
10437         parent = dev->dev.parent;
10438         if (!parent)
10439                 return empty;
10440
10441         driver = parent->driver;
10442         if (driver && driver->name)
10443                 return driver->name;
10444         return empty;
10445 }
10446
10447 static void __netdev_printk(const char *level, const struct net_device *dev,
10448                             struct va_format *vaf)
10449 {
10450         if (dev && dev->dev.parent) {
10451                 dev_printk_emit(level[1] - '0',
10452                                 dev->dev.parent,
10453                                 "%s %s %s%s: %pV",
10454                                 dev_driver_string(dev->dev.parent),
10455                                 dev_name(dev->dev.parent),
10456                                 netdev_name(dev), netdev_reg_state(dev),
10457                                 vaf);
10458         } else if (dev) {
10459                 printk("%s%s%s: %pV",
10460                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
10461         } else {
10462                 printk("%s(NULL net_device): %pV", level, vaf);
10463         }
10464 }
10465
10466 void netdev_printk(const char *level, const struct net_device *dev,
10467                    const char *format, ...)
10468 {
10469         struct va_format vaf;
10470         va_list args;
10471
10472         va_start(args, format);
10473
10474         vaf.fmt = format;
10475         vaf.va = &args;
10476
10477         __netdev_printk(level, dev, &vaf);
10478
10479         va_end(args);
10480 }
10481 EXPORT_SYMBOL(netdev_printk);
10482
10483 #define define_netdev_printk_level(func, level)                 \
10484 void func(const struct net_device *dev, const char *fmt, ...)   \
10485 {                                                               \
10486         struct va_format vaf;                                   \
10487         va_list args;                                           \
10488                                                                 \
10489         va_start(args, fmt);                                    \
10490                                                                 \
10491         vaf.fmt = fmt;                                          \
10492         vaf.va = &args;                                         \
10493                                                                 \
10494         __netdev_printk(level, dev, &vaf);                      \
10495                                                                 \
10496         va_end(args);                                           \
10497 }                                                               \
10498 EXPORT_SYMBOL(func);
10499
10500 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10501 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10502 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10503 define_netdev_printk_level(netdev_err, KERN_ERR);
10504 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10505 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10506 define_netdev_printk_level(netdev_info, KERN_INFO);
10507
10508 static void __net_exit netdev_exit(struct net *net)
10509 {
10510         kfree(net->dev_name_head);
10511         kfree(net->dev_index_head);
10512         if (net != &init_net)
10513                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10514 }
10515
10516 static struct pernet_operations __net_initdata netdev_net_ops = {
10517         .init = netdev_init,
10518         .exit = netdev_exit,
10519 };
10520
10521 static void __net_exit default_device_exit(struct net *net)
10522 {
10523         struct net_device *dev, *aux;
10524         /*
10525          * Push all migratable network devices back to the
10526          * initial network namespace
10527          */
10528         rtnl_lock();
10529         for_each_netdev_safe(net, dev, aux) {
10530                 int err;
10531                 char fb_name[IFNAMSIZ];
10532
10533                 /* Ignore unmoveable devices (i.e. loopback) */
10534                 if (dev->features & NETIF_F_NETNS_LOCAL)
10535                         continue;
10536
10537                 /* Leave virtual devices for the generic cleanup */
10538                 if (dev->rtnl_link_ops)
10539                         continue;
10540
10541                 /* Push remaining network devices to init_net */
10542                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10543                 if (__dev_get_by_name(&init_net, fb_name))
10544                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10545                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10546                 if (err) {
10547                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10548                                  __func__, dev->name, err);
10549                         BUG();
10550                 }
10551         }
10552         rtnl_unlock();
10553 }
10554
10555 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10556 {
10557         /* Return with the rtnl_lock held when there are no network
10558          * devices unregistering in any network namespace in net_list.
10559          */
10560         struct net *net;
10561         bool unregistering;
10562         DEFINE_WAIT_FUNC(wait, woken_wake_function);
10563
10564         add_wait_queue(&netdev_unregistering_wq, &wait);
10565         for (;;) {
10566                 unregistering = false;
10567                 rtnl_lock();
10568                 list_for_each_entry(net, net_list, exit_list) {
10569                         if (net->dev_unreg_count > 0) {
10570                                 unregistering = true;
10571                                 break;
10572                         }
10573                 }
10574                 if (!unregistering)
10575                         break;
10576                 __rtnl_unlock();
10577
10578                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10579         }
10580         remove_wait_queue(&netdev_unregistering_wq, &wait);
10581 }
10582
10583 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10584 {
10585         /* At exit all network devices most be removed from a network
10586          * namespace.  Do this in the reverse order of registration.
10587          * Do this across as many network namespaces as possible to
10588          * improve batching efficiency.
10589          */
10590         struct net_device *dev;
10591         struct net *net;
10592         LIST_HEAD(dev_kill_list);
10593
10594         /* To prevent network device cleanup code from dereferencing
10595          * loopback devices or network devices that have been freed
10596          * wait here for all pending unregistrations to complete,
10597          * before unregistring the loopback device and allowing the
10598          * network namespace be freed.
10599          *
10600          * The netdev todo list containing all network devices
10601          * unregistrations that happen in default_device_exit_batch
10602          * will run in the rtnl_unlock() at the end of
10603          * default_device_exit_batch.
10604          */
10605         rtnl_lock_unregistering(net_list);
10606         list_for_each_entry(net, net_list, exit_list) {
10607                 for_each_netdev_reverse(net, dev) {
10608                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10609                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10610                         else
10611                                 unregister_netdevice_queue(dev, &dev_kill_list);
10612                 }
10613         }
10614         unregister_netdevice_many(&dev_kill_list);
10615         rtnl_unlock();
10616 }
10617
10618 static struct pernet_operations __net_initdata default_device_ops = {
10619         .exit = default_device_exit,
10620         .exit_batch = default_device_exit_batch,
10621 };
10622
10623 /*
10624  *      Initialize the DEV module. At boot time this walks the device list and
10625  *      unhooks any devices that fail to initialise (normally hardware not
10626  *      present) and leaves us with a valid list of present and active devices.
10627  *
10628  */
10629
10630 /*
10631  *       This is called single threaded during boot, so no need
10632  *       to take the rtnl semaphore.
10633  */
10634 static int __init net_dev_init(void)
10635 {
10636         int i, rc = -ENOMEM;
10637
10638         BUG_ON(!dev_boot_phase);
10639
10640         if (dev_proc_init())
10641                 goto out;
10642
10643         if (netdev_kobject_init())
10644                 goto out;
10645
10646         INIT_LIST_HEAD(&ptype_all);
10647         for (i = 0; i < PTYPE_HASH_SIZE; i++)
10648                 INIT_LIST_HEAD(&ptype_base[i]);
10649
10650         INIT_LIST_HEAD(&offload_base);
10651
10652         if (register_pernet_subsys(&netdev_net_ops))
10653                 goto out;
10654
10655         /*
10656          *      Initialise the packet receive queues.
10657          */
10658
10659         for_each_possible_cpu(i) {
10660                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10661                 struct softnet_data *sd = &per_cpu(softnet_data, i);
10662
10663                 INIT_WORK(flush, flush_backlog);
10664
10665                 skb_queue_head_init(&sd->input_pkt_queue);
10666                 skb_queue_head_init(&sd->process_queue);
10667 #ifdef CONFIG_XFRM_OFFLOAD
10668                 skb_queue_head_init(&sd->xfrm_backlog);
10669 #endif
10670                 INIT_LIST_HEAD(&sd->poll_list);
10671                 sd->output_queue_tailp = &sd->output_queue;
10672 #ifdef CONFIG_RPS
10673                 sd->csd.func = rps_trigger_softirq;
10674                 sd->csd.info = sd;
10675                 sd->cpu = i;
10676 #endif
10677
10678                 init_gro_hash(&sd->backlog);
10679                 sd->backlog.poll = process_backlog;
10680                 sd->backlog.weight = weight_p;
10681         }
10682
10683         dev_boot_phase = 0;
10684
10685         /* The loopback device is special if any other network devices
10686          * is present in a network namespace the loopback device must
10687          * be present. Since we now dynamically allocate and free the
10688          * loopback device ensure this invariant is maintained by
10689          * keeping the loopback device as the first device on the
10690          * list of network devices.  Ensuring the loopback devices
10691          * is the first device that appears and the last network device
10692          * that disappears.
10693          */
10694         if (register_pernet_device(&loopback_net_ops))
10695                 goto out;
10696
10697         if (register_pernet_device(&default_device_ops))
10698                 goto out;
10699
10700         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10701         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10702
10703         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10704                                        NULL, dev_cpu_dead);
10705         WARN_ON(rc < 0);
10706         rc = 0;
10707 out:
10708         return rc;
10709 }
10710
10711 subsys_initcall(net_dev_init);