f72f5c4ee7e2fbaa74ec27a9c466d4301c145a88
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "dev.h"
155 #include "net-sysfs.h"
156
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         netdev_name_node_del(name_node);
349         kfree(name_node->name);
350         netdev_name_node_free(name_node);
351 }
352
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355         struct netdev_name_node *name_node;
356         struct net *net = dev_net(dev);
357
358         name_node = netdev_name_node_lookup(net, name);
359         if (!name_node)
360                 return -ENOENT;
361         /* lookup might have found our primary name or a name belonging
362          * to another device.
363          */
364         if (name_node == dev->name_node || name_node->dev != dev)
365                 return -EINVAL;
366
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct net *net = dev_net(dev);
384
385         ASSERT_RTNL();
386
387         write_lock(&dev_base_lock);
388         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389         netdev_name_node_add(net, dev->name_node);
390         hlist_add_head_rcu(&dev->index_hlist,
391                            dev_index_hash(net, dev->ifindex));
392         write_unlock(&dev_base_lock);
393
394         dev_base_seq_inc(net);
395 }
396
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402         ASSERT_RTNL();
403
404         /* Unlink dev from the device chain */
405         if (lock)
406                 write_lock(&dev_base_lock);
407         list_del_rcu(&dev->dev_list);
408         netdev_name_node_del(dev->name_node);
409         hlist_del_rcu(&dev->index_hlist);
410         if (lock)
411                 write_unlock(&dev_base_lock);
412
413         dev_base_seq_inc(dev_net(dev));
414 }
415
416 /*
417  *      Our notifier list
418  */
419
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421
422 /*
423  *      Device drivers call our routines to queue packets here. We empty the
424  *      queue in the local softnet handler.
425  */
426
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452 static const char *const netdev_lock_name[] = {
453         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474         int i;
475
476         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477                 if (netdev_lock_type[i] == dev_type)
478                         return i;
479         /* the last key is used by default */
480         return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484                                                  unsigned short dev_type)
485 {
486         int i;
487
488         i = netdev_lock_pos(dev_type);
489         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490                                    netdev_lock_name[i]);
491 }
492
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495         int i;
496
497         i = netdev_lock_pos(dev->type);
498         lockdep_set_class_and_name(&dev->addr_list_lock,
499                                    &netdev_addr_lock_key[i],
500                                    netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504                                                  unsigned short dev_type)
505 {
506 }
507
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512
513 /*******************************************************************************
514  *
515  *              Protocol management and registration routines
516  *
517  *******************************************************************************/
518
519
520 /*
521  *      Add a protocol ID to the list. Now that the input handler is
522  *      smarter we can dispense with all the messy stuff that used to be
523  *      here.
524  *
525  *      BEWARE!!! Protocol handlers, mangling input packets,
526  *      MUST BE last in hash buckets and checking protocol handlers
527  *      MUST start from promiscuous ptype_all chain in net_bh.
528  *      It is true now, do not change it.
529  *      Explanation follows: if protocol handler, mangling packet, will
530  *      be the first on list, it is not able to sense, that packet
531  *      is cloned and should be copied-on-write, so that it will
532  *      change it and subsequent readers will get broken packet.
533  *                                                      --ANK (980803)
534  */
535
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538         if (pt->type == htons(ETH_P_ALL))
539                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540         else
541                 return pt->dev ? &pt->dev->ptype_specific :
542                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544
545 /**
546  *      dev_add_pack - add packet handler
547  *      @pt: packet type declaration
548  *
549  *      Add a protocol handler to the networking stack. The passed &packet_type
550  *      is linked into kernel lists and may not be freed until it has been
551  *      removed from the kernel lists.
552  *
553  *      This call does not sleep therefore it can not
554  *      guarantee all CPU's that are in middle of receiving packets
555  *      will see the new packet type (until the next received packet).
556  */
557
558 void dev_add_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561
562         spin_lock(&ptype_lock);
563         list_add_rcu(&pt->list, head);
564         spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567
568 /**
569  *      __dev_remove_pack        - remove packet handler
570  *      @pt: packet type declaration
571  *
572  *      Remove a protocol handler that was previously added to the kernel
573  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *      from the kernel lists and can be freed or reused once this function
575  *      returns.
576  *
577  *      The packet type might still be in use by receivers
578  *      and must not be freed until after all the CPU's have gone
579  *      through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583         struct list_head *head = ptype_head(pt);
584         struct packet_type *pt1;
585
586         spin_lock(&ptype_lock);
587
588         list_for_each_entry(pt1, head, list) {
589                 if (pt == pt1) {
590                         list_del_rcu(&pt->list);
591                         goto out;
592                 }
593         }
594
595         pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597         spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600
601 /**
602  *      dev_remove_pack  - remove packet handler
603  *      @pt: packet type declaration
604  *
605  *      Remove a protocol handler that was previously added to the kernel
606  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *      from the kernel lists and can be freed or reused once this function
608  *      returns.
609  *
610  *      This call sleeps to guarantee that no CPU is looking at the packet
611  *      type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615         __dev_remove_pack(pt);
616
617         synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620
621
622 /*******************************************************************************
623  *
624  *                          Device Interface Subroutines
625  *
626  *******************************************************************************/
627
628 /**
629  *      dev_get_iflink  - get 'iflink' value of a interface
630  *      @dev: targeted interface
631  *
632  *      Indicates the ifindex the interface is linked to.
633  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635
636 int dev_get_iflink(const struct net_device *dev)
637 {
638         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639                 return dev->netdev_ops->ndo_get_iflink(dev);
640
641         return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644
645 /**
646  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *      @dev: targeted interface
648  *      @skb: The packet.
649  *
650  *      For better visibility of tunnel traffic OVS needs to retrieve
651  *      egress tunnel information for a packet. Following API allows
652  *      user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656         struct ip_tunnel_info *info;
657
658         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659                 return -EINVAL;
660
661         info = skb_tunnel_info_unclone(skb);
662         if (!info)
663                 return -ENOMEM;
664         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665                 return -EINVAL;
666
667         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673         int k = stack->num_paths++;
674
675         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676                 return NULL;
677
678         return &stack->path[k];
679 }
680
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682                           struct net_device_path_stack *stack)
683 {
684         const struct net_device *last_dev;
685         struct net_device_path_ctx ctx = {
686                 .dev    = dev,
687         };
688         struct net_device_path *path;
689         int ret = 0;
690
691         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692         stack->num_paths = 0;
693         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694                 last_dev = ctx.dev;
695                 path = dev_fwd_path(stack);
696                 if (!path)
697                         return -1;
698
699                 memset(path, 0, sizeof(struct net_device_path));
700                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701                 if (ret < 0)
702                         return -1;
703
704                 if (WARN_ON_ONCE(last_dev == ctx.dev))
705                         return -1;
706         }
707
708         if (!ctx.dev)
709                 return ret;
710
711         path = dev_fwd_path(stack);
712         if (!path)
713                 return -1;
714         path->type = DEV_PATH_ETHERNET;
715         path->dev = ctx.dev;
716
717         return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721 /**
722  *      __dev_get_by_name       - find a device by its name
723  *      @net: the applicable net namespace
724  *      @name: name to find
725  *
726  *      Find an interface by name. Must be called under RTNL semaphore
727  *      or @dev_base_lock. If the name is found a pointer to the device
728  *      is returned. If the name is not found then %NULL is returned. The
729  *      reference counters are not incremented so the caller must be
730  *      careful with locks.
731  */
732
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735         struct netdev_name_node *node_name;
736
737         node_name = netdev_name_node_lookup(net, name);
738         return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741
742 /**
743  * dev_get_by_name_rcu  - find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756         struct netdev_name_node *node_name;
757
758         node_name = netdev_name_node_lookup_rcu(net, name);
759         return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764  *      dev_get_by_name         - find a device by its name
765  *      @net: the applicable net namespace
766  *      @name: name to find
767  *
768  *      Find an interface by name. This can be called from any
769  *      context and does its own locking. The returned handle has
770  *      the usage count incremented and the caller must use dev_put() to
771  *      release it when it is no longer needed. %NULL is returned if no
772  *      matching device is found.
773  */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777         struct net_device *dev;
778
779         rcu_read_lock();
780         dev = dev_get_by_name_rcu(net, name);
781         dev_hold(dev);
782         rcu_read_unlock();
783         return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786
787 /**
788  *      __dev_get_by_index - find a device by its ifindex
789  *      @net: the applicable net namespace
790  *      @ifindex: index of device
791  *
792  *      Search for an interface by index. Returns %NULL if the device
793  *      is not found or a pointer to the device. The device has not
794  *      had its reference counter increased so the caller must be careful
795  *      about locking. The caller must hold either the RTNL semaphore
796  *      or @dev_base_lock.
797  */
798
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801         struct net_device *dev;
802         struct hlist_head *head = dev_index_hash(net, ifindex);
803
804         hlist_for_each_entry(dev, head, index_hlist)
805                 if (dev->ifindex == ifindex)
806                         return dev;
807
808         return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811
812 /**
813  *      dev_get_by_index_rcu - find a device by its ifindex
814  *      @net: the applicable net namespace
815  *      @ifindex: index of device
816  *
817  *      Search for an interface by index. Returns %NULL if the device
818  *      is not found or a pointer to the device. The device has not
819  *      had its reference counter increased so the caller must be careful
820  *      about locking. The caller must hold RCU lock.
821  */
822
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825         struct net_device *dev;
826         struct hlist_head *head = dev_index_hash(net, ifindex);
827
828         hlist_for_each_entry_rcu(dev, head, index_hlist)
829                 if (dev->ifindex == ifindex)
830                         return dev;
831
832         return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837 /**
838  *      dev_get_by_index - find a device by its ifindex
839  *      @net: the applicable net namespace
840  *      @ifindex: index of device
841  *
842  *      Search for an interface by index. Returns NULL if the device
843  *      is not found or a pointer to the device. The device returned has
844  *      had a reference added and the pointer is safe until the user calls
845  *      dev_put to indicate they have finished with it.
846  */
847
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850         struct net_device *dev;
851
852         rcu_read_lock();
853         dev = dev_get_by_index_rcu(net, ifindex);
854         dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      dev_get_by_napi_id - find a device by napi_id
862  *      @napi_id: ID of the NAPI struct
863  *
864  *      Search for an interface by NAPI ID. Returns %NULL if the device
865  *      is not found or a pointer to the device. The device has not had
866  *      its reference counter increased so the caller must be careful
867  *      about locking. The caller must hold RCU lock.
868  */
869
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872         struct napi_struct *napi;
873
874         WARN_ON_ONCE(!rcu_read_lock_held());
875
876         if (napi_id < MIN_NAPI_ID)
877                 return NULL;
878
879         napi = napi_by_id(napi_id);
880
881         return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884
885 /**
886  *      netdev_get_name - get a netdevice name, knowing its ifindex.
887  *      @net: network namespace
888  *      @name: a pointer to the buffer where the name will be stored.
889  *      @ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893         struct net_device *dev;
894         int ret;
895
896         down_read(&devnet_rename_sem);
897         rcu_read_lock();
898
899         dev = dev_get_by_index_rcu(net, ifindex);
900         if (!dev) {
901                 ret = -ENODEV;
902                 goto out;
903         }
904
905         strcpy(name, dev->name);
906
907         ret = 0;
908 out:
909         rcu_read_unlock();
910         up_read(&devnet_rename_sem);
911         return ret;
912 }
913
914 /**
915  *      dev_getbyhwaddr_rcu - find a device by its hardware address
916  *      @net: the applicable net namespace
917  *      @type: media type of device
918  *      @ha: hardware address
919  *
920  *      Search for an interface by MAC address. Returns NULL if the device
921  *      is not found or a pointer to the device.
922  *      The caller must hold RCU or RTNL.
923  *      The returned device has not had its ref count increased
924  *      and the caller must therefore be careful about locking
925  *
926  */
927
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929                                        const char *ha)
930 {
931         struct net_device *dev;
932
933         for_each_netdev_rcu(net, dev)
934                 if (dev->type == type &&
935                     !memcmp(dev->dev_addr, ha, dev->addr_len))
936                         return dev;
937
938         return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944         struct net_device *dev, *ret = NULL;
945
946         rcu_read_lock();
947         for_each_netdev_rcu(net, dev)
948                 if (dev->type == type) {
949                         dev_hold(dev);
950                         ret = dev;
951                         break;
952                 }
953         rcu_read_unlock();
954         return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958 /**
959  *      __dev_get_by_flags - find any device with given flags
960  *      @net: the applicable net namespace
961  *      @if_flags: IFF_* values
962  *      @mask: bitmask of bits in if_flags to check
963  *
964  *      Search for any interface with the given flags. Returns NULL if a device
965  *      is not found or a pointer to the device. Must be called inside
966  *      rtnl_lock(), and result refcount is unchanged.
967  */
968
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970                                       unsigned short mask)
971 {
972         struct net_device *dev, *ret;
973
974         ASSERT_RTNL();
975
976         ret = NULL;
977         for_each_netdev(net, dev) {
978                 if (((dev->flags ^ if_flags) & mask) == 0) {
979                         ret = dev;
980                         break;
981                 }
982         }
983         return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986
987 /**
988  *      dev_valid_name - check if name is okay for network device
989  *      @name: name string
990  *
991  *      Network device names need to be valid file names to
992  *      allow sysfs to work.  We also disallow any kind of
993  *      whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997         if (*name == '\0')
998                 return false;
999         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000                 return false;
1001         if (!strcmp(name, ".") || !strcmp(name, ".."))
1002                 return false;
1003
1004         while (*name) {
1005                 if (*name == '/' || *name == ':' || isspace(*name))
1006                         return false;
1007                 name++;
1008         }
1009         return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012
1013 /**
1014  *      __dev_alloc_name - allocate a name for a device
1015  *      @net: network namespace to allocate the device name in
1016  *      @name: name format string
1017  *      @buf:  scratch buffer and result name string
1018  *
1019  *      Passed a format string - eg "lt%d" it will try and find a suitable
1020  *      id. It scans list of devices to build up a free map, then chooses
1021  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *      while allocating the name and adding the device in order to avoid
1023  *      duplicates.
1024  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *      Returns the number of the unit assigned or a negative errno code.
1026  */
1027
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030         int i = 0;
1031         const char *p;
1032         const int max_netdevices = 8*PAGE_SIZE;
1033         unsigned long *inuse;
1034         struct net_device *d;
1035
1036         if (!dev_valid_name(name))
1037                 return -EINVAL;
1038
1039         p = strchr(name, '%');
1040         if (p) {
1041                 /*
1042                  * Verify the string as this thing may have come from
1043                  * the user.  There must be either one "%d" and no other "%"
1044                  * characters.
1045                  */
1046                 if (p[1] != 'd' || strchr(p + 2, '%'))
1047                         return -EINVAL;
1048
1049                 /* Use one page as a bit array of possible slots */
1050                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051                 if (!inuse)
1052                         return -ENOMEM;
1053
1054                 for_each_netdev(net, d) {
1055                         struct netdev_name_node *name_node;
1056                         list_for_each_entry(name_node, &d->name_node->list, list) {
1057                                 if (!sscanf(name_node->name, name, &i))
1058                                         continue;
1059                                 if (i < 0 || i >= max_netdevices)
1060                                         continue;
1061
1062                                 /*  avoid cases where sscanf is not exact inverse of printf */
1063                                 snprintf(buf, IFNAMSIZ, name, i);
1064                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065                                         __set_bit(i, inuse);
1066                         }
1067                         if (!sscanf(d->name, name, &i))
1068                                 continue;
1069                         if (i < 0 || i >= max_netdevices)
1070                                 continue;
1071
1072                         /*  avoid cases where sscanf is not exact inverse of printf */
1073                         snprintf(buf, IFNAMSIZ, name, i);
1074                         if (!strncmp(buf, d->name, IFNAMSIZ))
1075                                 __set_bit(i, inuse);
1076                 }
1077
1078                 i = find_first_zero_bit(inuse, max_netdevices);
1079                 free_page((unsigned long) inuse);
1080         }
1081
1082         snprintf(buf, IFNAMSIZ, name, i);
1083         if (!netdev_name_in_use(net, buf))
1084                 return i;
1085
1086         /* It is possible to run out of possible slots
1087          * when the name is long and there isn't enough space left
1088          * for the digits, or if all bits are used.
1089          */
1090         return -ENFILE;
1091 }
1092
1093 static int dev_alloc_name_ns(struct net *net,
1094                              struct net_device *dev,
1095                              const char *name)
1096 {
1097         char buf[IFNAMSIZ];
1098         int ret;
1099
1100         BUG_ON(!net);
1101         ret = __dev_alloc_name(net, name, buf);
1102         if (ret >= 0)
1103                 strscpy(dev->name, buf, IFNAMSIZ);
1104         return ret;
1105 }
1106
1107 /**
1108  *      dev_alloc_name - allocate a name for a device
1109  *      @dev: device
1110  *      @name: name format string
1111  *
1112  *      Passed a format string - eg "lt%d" it will try and find a suitable
1113  *      id. It scans list of devices to build up a free map, then chooses
1114  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *      while allocating the name and adding the device in order to avoid
1116  *      duplicates.
1117  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *      Returns the number of the unit assigned or a negative errno code.
1119  */
1120
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123         return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128                               const char *name)
1129 {
1130         BUG_ON(!net);
1131
1132         if (!dev_valid_name(name))
1133                 return -EINVAL;
1134
1135         if (strchr(name, '%'))
1136                 return dev_alloc_name_ns(net, dev, name);
1137         else if (netdev_name_in_use(net, name))
1138                 return -EEXIST;
1139         else if (dev->name != name)
1140                 strscpy(dev->name, name, IFNAMSIZ);
1141
1142         return 0;
1143 }
1144
1145 /**
1146  *      dev_change_name - change name of a device
1147  *      @dev: device
1148  *      @newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *      Change name of a device, can pass format strings "eth%d".
1151  *      for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155         unsigned char old_assign_type;
1156         char oldname[IFNAMSIZ];
1157         int err = 0;
1158         int ret;
1159         struct net *net;
1160
1161         ASSERT_RTNL();
1162         BUG_ON(!dev_net(dev));
1163
1164         net = dev_net(dev);
1165
1166         down_write(&devnet_rename_sem);
1167
1168         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1169                 up_write(&devnet_rename_sem);
1170                 return 0;
1171         }
1172
1173         memcpy(oldname, dev->name, IFNAMSIZ);
1174
1175         err = dev_get_valid_name(net, dev, newname);
1176         if (err < 0) {
1177                 up_write(&devnet_rename_sem);
1178                 return err;
1179         }
1180
1181         if (oldname[0] && !strchr(oldname, '%'))
1182                 netdev_info(dev, "renamed from %s%s\n", oldname,
1183                             dev->flags & IFF_UP ? " (while UP)" : "");
1184
1185         old_assign_type = dev->name_assign_type;
1186         dev->name_assign_type = NET_NAME_RENAMED;
1187
1188 rollback:
1189         ret = device_rename(&dev->dev, dev->name);
1190         if (ret) {
1191                 memcpy(dev->name, oldname, IFNAMSIZ);
1192                 dev->name_assign_type = old_assign_type;
1193                 up_write(&devnet_rename_sem);
1194                 return ret;
1195         }
1196
1197         up_write(&devnet_rename_sem);
1198
1199         netdev_adjacent_rename_links(dev, oldname);
1200
1201         write_lock(&dev_base_lock);
1202         netdev_name_node_del(dev->name_node);
1203         write_unlock(&dev_base_lock);
1204
1205         synchronize_rcu();
1206
1207         write_lock(&dev_base_lock);
1208         netdev_name_node_add(net, dev->name_node);
1209         write_unlock(&dev_base_lock);
1210
1211         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1212         ret = notifier_to_errno(ret);
1213
1214         if (ret) {
1215                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1216                 if (err >= 0) {
1217                         err = ret;
1218                         down_write(&devnet_rename_sem);
1219                         memcpy(dev->name, oldname, IFNAMSIZ);
1220                         memcpy(oldname, newname, IFNAMSIZ);
1221                         dev->name_assign_type = old_assign_type;
1222                         old_assign_type = NET_NAME_RENAMED;
1223                         goto rollback;
1224                 } else {
1225                         netdev_err(dev, "name change rollback failed: %d\n",
1226                                    ret);
1227                 }
1228         }
1229
1230         return err;
1231 }
1232
1233 /**
1234  *      dev_set_alias - change ifalias of a device
1235  *      @dev: device
1236  *      @alias: name up to IFALIASZ
1237  *      @len: limit of bytes to copy from info
1238  *
1239  *      Set ifalias for a device,
1240  */
1241 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1242 {
1243         struct dev_ifalias *new_alias = NULL;
1244
1245         if (len >= IFALIASZ)
1246                 return -EINVAL;
1247
1248         if (len) {
1249                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1250                 if (!new_alias)
1251                         return -ENOMEM;
1252
1253                 memcpy(new_alias->ifalias, alias, len);
1254                 new_alias->ifalias[len] = 0;
1255         }
1256
1257         mutex_lock(&ifalias_mutex);
1258         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1259                                         mutex_is_locked(&ifalias_mutex));
1260         mutex_unlock(&ifalias_mutex);
1261
1262         if (new_alias)
1263                 kfree_rcu(new_alias, rcuhead);
1264
1265         return len;
1266 }
1267 EXPORT_SYMBOL(dev_set_alias);
1268
1269 /**
1270  *      dev_get_alias - get ifalias of a device
1271  *      @dev: device
1272  *      @name: buffer to store name of ifalias
1273  *      @len: size of buffer
1274  *
1275  *      get ifalias for a device.  Caller must make sure dev cannot go
1276  *      away,  e.g. rcu read lock or own a reference count to device.
1277  */
1278 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1279 {
1280         const struct dev_ifalias *alias;
1281         int ret = 0;
1282
1283         rcu_read_lock();
1284         alias = rcu_dereference(dev->ifalias);
1285         if (alias)
1286                 ret = snprintf(name, len, "%s", alias->ifalias);
1287         rcu_read_unlock();
1288
1289         return ret;
1290 }
1291
1292 /**
1293  *      netdev_features_change - device changes features
1294  *      @dev: device to cause notification
1295  *
1296  *      Called to indicate a device has changed features.
1297  */
1298 void netdev_features_change(struct net_device *dev)
1299 {
1300         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301 }
1302 EXPORT_SYMBOL(netdev_features_change);
1303
1304 /**
1305  *      netdev_state_change - device changes state
1306  *      @dev: device to cause notification
1307  *
1308  *      Called to indicate a device has changed state. This function calls
1309  *      the notifier chains for netdev_chain and sends a NEWLINK message
1310  *      to the routing socket.
1311  */
1312 void netdev_state_change(struct net_device *dev)
1313 {
1314         if (dev->flags & IFF_UP) {
1315                 struct netdev_notifier_change_info change_info = {
1316                         .info.dev = dev,
1317                 };
1318
1319                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1320                                               &change_info.info);
1321                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1322         }
1323 }
1324 EXPORT_SYMBOL(netdev_state_change);
1325
1326 /**
1327  * __netdev_notify_peers - notify network peers about existence of @dev,
1328  * to be called when rtnl lock is already held.
1329  * @dev: network device
1330  *
1331  * Generate traffic such that interested network peers are aware of
1332  * @dev, such as by generating a gratuitous ARP. This may be used when
1333  * a device wants to inform the rest of the network about some sort of
1334  * reconfiguration such as a failover event or virtual machine
1335  * migration.
1336  */
1337 void __netdev_notify_peers(struct net_device *dev)
1338 {
1339         ASSERT_RTNL();
1340         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1341         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1342 }
1343 EXPORT_SYMBOL(__netdev_notify_peers);
1344
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357         rtnl_lock();
1358         __netdev_notify_peers(dev);
1359         rtnl_unlock();
1360 }
1361 EXPORT_SYMBOL(netdev_notify_peers);
1362
1363 static int napi_threaded_poll(void *data);
1364
1365 static int napi_kthread_create(struct napi_struct *n)
1366 {
1367         int err = 0;
1368
1369         /* Create and wake up the kthread once to put it in
1370          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1371          * warning and work with loadavg.
1372          */
1373         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1374                                 n->dev->name, n->napi_id);
1375         if (IS_ERR(n->thread)) {
1376                 err = PTR_ERR(n->thread);
1377                 pr_err("kthread_run failed with err %d\n", err);
1378                 n->thread = NULL;
1379         }
1380
1381         return err;
1382 }
1383
1384 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1385 {
1386         const struct net_device_ops *ops = dev->netdev_ops;
1387         int ret;
1388
1389         ASSERT_RTNL();
1390         dev_addr_check(dev);
1391
1392         if (!netif_device_present(dev)) {
1393                 /* may be detached because parent is runtime-suspended */
1394                 if (dev->dev.parent)
1395                         pm_runtime_resume(dev->dev.parent);
1396                 if (!netif_device_present(dev))
1397                         return -ENODEV;
1398         }
1399
1400         /* Block netpoll from trying to do any rx path servicing.
1401          * If we don't do this there is a chance ndo_poll_controller
1402          * or ndo_poll may be running while we open the device
1403          */
1404         netpoll_poll_disable(dev);
1405
1406         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1407         ret = notifier_to_errno(ret);
1408         if (ret)
1409                 return ret;
1410
1411         set_bit(__LINK_STATE_START, &dev->state);
1412
1413         if (ops->ndo_validate_addr)
1414                 ret = ops->ndo_validate_addr(dev);
1415
1416         if (!ret && ops->ndo_open)
1417                 ret = ops->ndo_open(dev);
1418
1419         netpoll_poll_enable(dev);
1420
1421         if (ret)
1422                 clear_bit(__LINK_STATE_START, &dev->state);
1423         else {
1424                 dev->flags |= IFF_UP;
1425                 dev_set_rx_mode(dev);
1426                 dev_activate(dev);
1427                 add_device_randomness(dev->dev_addr, dev->addr_len);
1428         }
1429
1430         return ret;
1431 }
1432
1433 /**
1434  *      dev_open        - prepare an interface for use.
1435  *      @dev: device to open
1436  *      @extack: netlink extended ack
1437  *
1438  *      Takes a device from down to up state. The device's private open
1439  *      function is invoked and then the multicast lists are loaded. Finally
1440  *      the device is moved into the up state and a %NETDEV_UP message is
1441  *      sent to the netdev notifier chain.
1442  *
1443  *      Calling this function on an active interface is a nop. On a failure
1444  *      a negative errno code is returned.
1445  */
1446 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1447 {
1448         int ret;
1449
1450         if (dev->flags & IFF_UP)
1451                 return 0;
1452
1453         ret = __dev_open(dev, extack);
1454         if (ret < 0)
1455                 return ret;
1456
1457         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1458         call_netdevice_notifiers(NETDEV_UP, dev);
1459
1460         return ret;
1461 }
1462 EXPORT_SYMBOL(dev_open);
1463
1464 static void __dev_close_many(struct list_head *head)
1465 {
1466         struct net_device *dev;
1467
1468         ASSERT_RTNL();
1469         might_sleep();
1470
1471         list_for_each_entry(dev, head, close_list) {
1472                 /* Temporarily disable netpoll until the interface is down */
1473                 netpoll_poll_disable(dev);
1474
1475                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1476
1477                 clear_bit(__LINK_STATE_START, &dev->state);
1478
1479                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1480                  * can be even on different cpu. So just clear netif_running().
1481                  *
1482                  * dev->stop() will invoke napi_disable() on all of it's
1483                  * napi_struct instances on this device.
1484                  */
1485                 smp_mb__after_atomic(); /* Commit netif_running(). */
1486         }
1487
1488         dev_deactivate_many(head);
1489
1490         list_for_each_entry(dev, head, close_list) {
1491                 const struct net_device_ops *ops = dev->netdev_ops;
1492
1493                 /*
1494                  *      Call the device specific close. This cannot fail.
1495                  *      Only if device is UP
1496                  *
1497                  *      We allow it to be called even after a DETACH hot-plug
1498                  *      event.
1499                  */
1500                 if (ops->ndo_stop)
1501                         ops->ndo_stop(dev);
1502
1503                 dev->flags &= ~IFF_UP;
1504                 netpoll_poll_enable(dev);
1505         }
1506 }
1507
1508 static void __dev_close(struct net_device *dev)
1509 {
1510         LIST_HEAD(single);
1511
1512         list_add(&dev->close_list, &single);
1513         __dev_close_many(&single);
1514         list_del(&single);
1515 }
1516
1517 void dev_close_many(struct list_head *head, bool unlink)
1518 {
1519         struct net_device *dev, *tmp;
1520
1521         /* Remove the devices that don't need to be closed */
1522         list_for_each_entry_safe(dev, tmp, head, close_list)
1523                 if (!(dev->flags & IFF_UP))
1524                         list_del_init(&dev->close_list);
1525
1526         __dev_close_many(head);
1527
1528         list_for_each_entry_safe(dev, tmp, head, close_list) {
1529                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1530                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1531                 if (unlink)
1532                         list_del_init(&dev->close_list);
1533         }
1534 }
1535 EXPORT_SYMBOL(dev_close_many);
1536
1537 /**
1538  *      dev_close - shutdown an interface.
1539  *      @dev: device to shutdown
1540  *
1541  *      This function moves an active device into down state. A
1542  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1543  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1544  *      chain.
1545  */
1546 void dev_close(struct net_device *dev)
1547 {
1548         if (dev->flags & IFF_UP) {
1549                 LIST_HEAD(single);
1550
1551                 list_add(&dev->close_list, &single);
1552                 dev_close_many(&single, true);
1553                 list_del(&single);
1554         }
1555 }
1556 EXPORT_SYMBOL(dev_close);
1557
1558
1559 /**
1560  *      dev_disable_lro - disable Large Receive Offload on a device
1561  *      @dev: device
1562  *
1563  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1564  *      called under RTNL.  This is needed if received packets may be
1565  *      forwarded to another interface.
1566  */
1567 void dev_disable_lro(struct net_device *dev)
1568 {
1569         struct net_device *lower_dev;
1570         struct list_head *iter;
1571
1572         dev->wanted_features &= ~NETIF_F_LRO;
1573         netdev_update_features(dev);
1574
1575         if (unlikely(dev->features & NETIF_F_LRO))
1576                 netdev_WARN(dev, "failed to disable LRO!\n");
1577
1578         netdev_for_each_lower_dev(dev, lower_dev, iter)
1579                 dev_disable_lro(lower_dev);
1580 }
1581 EXPORT_SYMBOL(dev_disable_lro);
1582
1583 /**
1584  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1585  *      @dev: device
1586  *
1587  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1588  *      called under RTNL.  This is needed if Generic XDP is installed on
1589  *      the device.
1590  */
1591 static void dev_disable_gro_hw(struct net_device *dev)
1592 {
1593         dev->wanted_features &= ~NETIF_F_GRO_HW;
1594         netdev_update_features(dev);
1595
1596         if (unlikely(dev->features & NETIF_F_GRO_HW))
1597                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1598 }
1599
1600 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1601 {
1602 #define N(val)                                          \
1603         case NETDEV_##val:                              \
1604                 return "NETDEV_" __stringify(val);
1605         switch (cmd) {
1606         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1607         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1608         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1609         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1610         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1611         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1612         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1613         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1614         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1615         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1616         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1617         }
1618 #undef N
1619         return "UNKNOWN_NETDEV_EVENT";
1620 }
1621 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1622
1623 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1624                                    struct net_device *dev)
1625 {
1626         struct netdev_notifier_info info = {
1627                 .dev = dev,
1628         };
1629
1630         return nb->notifier_call(nb, val, &info);
1631 }
1632
1633 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1634                                              struct net_device *dev)
1635 {
1636         int err;
1637
1638         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639         err = notifier_to_errno(err);
1640         if (err)
1641                 return err;
1642
1643         if (!(dev->flags & IFF_UP))
1644                 return 0;
1645
1646         call_netdevice_notifier(nb, NETDEV_UP, dev);
1647         return 0;
1648 }
1649
1650 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1651                                                 struct net_device *dev)
1652 {
1653         if (dev->flags & IFF_UP) {
1654                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1655                                         dev);
1656                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1657         }
1658         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1659 }
1660
1661 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1662                                                  struct net *net)
1663 {
1664         struct net_device *dev;
1665         int err;
1666
1667         for_each_netdev(net, dev) {
1668                 err = call_netdevice_register_notifiers(nb, dev);
1669                 if (err)
1670                         goto rollback;
1671         }
1672         return 0;
1673
1674 rollback:
1675         for_each_netdev_continue_reverse(net, dev)
1676                 call_netdevice_unregister_notifiers(nb, dev);
1677         return err;
1678 }
1679
1680 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1681                                                     struct net *net)
1682 {
1683         struct net_device *dev;
1684
1685         for_each_netdev(net, dev)
1686                 call_netdevice_unregister_notifiers(nb, dev);
1687 }
1688
1689 static int dev_boot_phase = 1;
1690
1691 /**
1692  * register_netdevice_notifier - register a network notifier block
1693  * @nb: notifier
1694  *
1695  * Register a notifier to be called when network device events occur.
1696  * The notifier passed is linked into the kernel structures and must
1697  * not be reused until it has been unregistered. A negative errno code
1698  * is returned on a failure.
1699  *
1700  * When registered all registration and up events are replayed
1701  * to the new notifier to allow device to have a race free
1702  * view of the network device list.
1703  */
1704
1705 int register_netdevice_notifier(struct notifier_block *nb)
1706 {
1707         struct net *net;
1708         int err;
1709
1710         /* Close race with setup_net() and cleanup_net() */
1711         down_write(&pernet_ops_rwsem);
1712         rtnl_lock();
1713         err = raw_notifier_chain_register(&netdev_chain, nb);
1714         if (err)
1715                 goto unlock;
1716         if (dev_boot_phase)
1717                 goto unlock;
1718         for_each_net(net) {
1719                 err = call_netdevice_register_net_notifiers(nb, net);
1720                 if (err)
1721                         goto rollback;
1722         }
1723
1724 unlock:
1725         rtnl_unlock();
1726         up_write(&pernet_ops_rwsem);
1727         return err;
1728
1729 rollback:
1730         for_each_net_continue_reverse(net)
1731                 call_netdevice_unregister_net_notifiers(nb, net);
1732
1733         raw_notifier_chain_unregister(&netdev_chain, nb);
1734         goto unlock;
1735 }
1736 EXPORT_SYMBOL(register_netdevice_notifier);
1737
1738 /**
1739  * unregister_netdevice_notifier - unregister a network notifier block
1740  * @nb: notifier
1741  *
1742  * Unregister a notifier previously registered by
1743  * register_netdevice_notifier(). The notifier is unlinked into the
1744  * kernel structures and may then be reused. A negative errno code
1745  * is returned on a failure.
1746  *
1747  * After unregistering unregister and down device events are synthesized
1748  * for all devices on the device list to the removed notifier to remove
1749  * the need for special case cleanup code.
1750  */
1751
1752 int unregister_netdevice_notifier(struct notifier_block *nb)
1753 {
1754         struct net *net;
1755         int err;
1756
1757         /* Close race with setup_net() and cleanup_net() */
1758         down_write(&pernet_ops_rwsem);
1759         rtnl_lock();
1760         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1761         if (err)
1762                 goto unlock;
1763
1764         for_each_net(net)
1765                 call_netdevice_unregister_net_notifiers(nb, net);
1766
1767 unlock:
1768         rtnl_unlock();
1769         up_write(&pernet_ops_rwsem);
1770         return err;
1771 }
1772 EXPORT_SYMBOL(unregister_netdevice_notifier);
1773
1774 static int __register_netdevice_notifier_net(struct net *net,
1775                                              struct notifier_block *nb,
1776                                              bool ignore_call_fail)
1777 {
1778         int err;
1779
1780         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1781         if (err)
1782                 return err;
1783         if (dev_boot_phase)
1784                 return 0;
1785
1786         err = call_netdevice_register_net_notifiers(nb, net);
1787         if (err && !ignore_call_fail)
1788                 goto chain_unregister;
1789
1790         return 0;
1791
1792 chain_unregister:
1793         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1794         return err;
1795 }
1796
1797 static int __unregister_netdevice_notifier_net(struct net *net,
1798                                                struct notifier_block *nb)
1799 {
1800         int err;
1801
1802         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1803         if (err)
1804                 return err;
1805
1806         call_netdevice_unregister_net_notifiers(nb, net);
1807         return 0;
1808 }
1809
1810 /**
1811  * register_netdevice_notifier_net - register a per-netns network notifier block
1812  * @net: network namespace
1813  * @nb: notifier
1814  *
1815  * Register a notifier to be called when network device events occur.
1816  * The notifier passed is linked into the kernel structures and must
1817  * not be reused until it has been unregistered. A negative errno code
1818  * is returned on a failure.
1819  *
1820  * When registered all registration and up events are replayed
1821  * to the new notifier to allow device to have a race free
1822  * view of the network device list.
1823  */
1824
1825 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1826 {
1827         int err;
1828
1829         rtnl_lock();
1830         err = __register_netdevice_notifier_net(net, nb, false);
1831         rtnl_unlock();
1832         return err;
1833 }
1834 EXPORT_SYMBOL(register_netdevice_notifier_net);
1835
1836 /**
1837  * unregister_netdevice_notifier_net - unregister a per-netns
1838  *                                     network notifier block
1839  * @net: network namespace
1840  * @nb: notifier
1841  *
1842  * Unregister a notifier previously registered by
1843  * register_netdevice_notifier_net(). The notifier is unlinked from the
1844  * kernel structures and may then be reused. A negative errno code
1845  * is returned on a failure.
1846  *
1847  * After unregistering unregister and down device events are synthesized
1848  * for all devices on the device list to the removed notifier to remove
1849  * the need for special case cleanup code.
1850  */
1851
1852 int unregister_netdevice_notifier_net(struct net *net,
1853                                       struct notifier_block *nb)
1854 {
1855         int err;
1856
1857         rtnl_lock();
1858         err = __unregister_netdevice_notifier_net(net, nb);
1859         rtnl_unlock();
1860         return err;
1861 }
1862 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1863
1864 static void __move_netdevice_notifier_net(struct net *src_net,
1865                                           struct net *dst_net,
1866                                           struct notifier_block *nb)
1867 {
1868         __unregister_netdevice_notifier_net(src_net, nb);
1869         __register_netdevice_notifier_net(dst_net, nb, true);
1870 }
1871
1872 void move_netdevice_notifier_net(struct net *src_net, struct net *dst_net,
1873                                  struct notifier_block *nb)
1874 {
1875         rtnl_lock();
1876         __move_netdevice_notifier_net(src_net, dst_net, nb);
1877         rtnl_unlock();
1878 }
1879
1880 int register_netdevice_notifier_dev_net(struct net_device *dev,
1881                                         struct notifier_block *nb,
1882                                         struct netdev_net_notifier *nn)
1883 {
1884         int err;
1885
1886         rtnl_lock();
1887         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1888         if (!err) {
1889                 nn->nb = nb;
1890                 list_add(&nn->list, &dev->net_notifier_list);
1891         }
1892         rtnl_unlock();
1893         return err;
1894 }
1895 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1896
1897 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1898                                           struct notifier_block *nb,
1899                                           struct netdev_net_notifier *nn)
1900 {
1901         int err;
1902
1903         rtnl_lock();
1904         list_del(&nn->list);
1905         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1906         rtnl_unlock();
1907         return err;
1908 }
1909 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1910
1911 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1912                                              struct net *net)
1913 {
1914         struct netdev_net_notifier *nn;
1915
1916         list_for_each_entry(nn, &dev->net_notifier_list, list)
1917                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1918 }
1919
1920 /**
1921  *      call_netdevice_notifiers_info - call all network notifier blocks
1922  *      @val: value passed unmodified to notifier function
1923  *      @info: notifier information data
1924  *
1925  *      Call all network notifier blocks.  Parameters and return value
1926  *      are as for raw_notifier_call_chain().
1927  */
1928
1929 static int call_netdevice_notifiers_info(unsigned long val,
1930                                          struct netdev_notifier_info *info)
1931 {
1932         struct net *net = dev_net(info->dev);
1933         int ret;
1934
1935         ASSERT_RTNL();
1936
1937         /* Run per-netns notifier block chain first, then run the global one.
1938          * Hopefully, one day, the global one is going to be removed after
1939          * all notifier block registrators get converted to be per-netns.
1940          */
1941         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1942         if (ret & NOTIFY_STOP_MASK)
1943                 return ret;
1944         return raw_notifier_call_chain(&netdev_chain, val, info);
1945 }
1946
1947 /**
1948  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1949  *                                             for and rollback on error
1950  *      @val_up: value passed unmodified to notifier function
1951  *      @val_down: value passed unmodified to the notifier function when
1952  *                 recovering from an error on @val_up
1953  *      @info: notifier information data
1954  *
1955  *      Call all per-netns network notifier blocks, but not notifier blocks on
1956  *      the global notifier chain. Parameters and return value are as for
1957  *      raw_notifier_call_chain_robust().
1958  */
1959
1960 static int
1961 call_netdevice_notifiers_info_robust(unsigned long val_up,
1962                                      unsigned long val_down,
1963                                      struct netdev_notifier_info *info)
1964 {
1965         struct net *net = dev_net(info->dev);
1966
1967         ASSERT_RTNL();
1968
1969         return raw_notifier_call_chain_robust(&net->netdev_chain,
1970                                               val_up, val_down, info);
1971 }
1972
1973 static int call_netdevice_notifiers_extack(unsigned long val,
1974                                            struct net_device *dev,
1975                                            struct netlink_ext_ack *extack)
1976 {
1977         struct netdev_notifier_info info = {
1978                 .dev = dev,
1979                 .extack = extack,
1980         };
1981
1982         return call_netdevice_notifiers_info(val, &info);
1983 }
1984
1985 /**
1986  *      call_netdevice_notifiers - call all network notifier blocks
1987  *      @val: value passed unmodified to notifier function
1988  *      @dev: net_device pointer passed unmodified to notifier function
1989  *
1990  *      Call all network notifier blocks.  Parameters and return value
1991  *      are as for raw_notifier_call_chain().
1992  */
1993
1994 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1995 {
1996         return call_netdevice_notifiers_extack(val, dev, NULL);
1997 }
1998 EXPORT_SYMBOL(call_netdevice_notifiers);
1999
2000 /**
2001  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2002  *      @val: value passed unmodified to notifier function
2003  *      @dev: net_device pointer passed unmodified to notifier function
2004  *      @arg: additional u32 argument passed to the notifier function
2005  *
2006  *      Call all network notifier blocks.  Parameters and return value
2007  *      are as for raw_notifier_call_chain().
2008  */
2009 static int call_netdevice_notifiers_mtu(unsigned long val,
2010                                         struct net_device *dev, u32 arg)
2011 {
2012         struct netdev_notifier_info_ext info = {
2013                 .info.dev = dev,
2014                 .ext.mtu = arg,
2015         };
2016
2017         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2018
2019         return call_netdevice_notifiers_info(val, &info.info);
2020 }
2021
2022 #ifdef CONFIG_NET_INGRESS
2023 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2024
2025 void net_inc_ingress_queue(void)
2026 {
2027         static_branch_inc(&ingress_needed_key);
2028 }
2029 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2030
2031 void net_dec_ingress_queue(void)
2032 {
2033         static_branch_dec(&ingress_needed_key);
2034 }
2035 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2036 #endif
2037
2038 #ifdef CONFIG_NET_EGRESS
2039 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2040
2041 void net_inc_egress_queue(void)
2042 {
2043         static_branch_inc(&egress_needed_key);
2044 }
2045 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2046
2047 void net_dec_egress_queue(void)
2048 {
2049         static_branch_dec(&egress_needed_key);
2050 }
2051 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2052 #endif
2053
2054 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2055 EXPORT_SYMBOL(netstamp_needed_key);
2056 #ifdef CONFIG_JUMP_LABEL
2057 static atomic_t netstamp_needed_deferred;
2058 static atomic_t netstamp_wanted;
2059 static void netstamp_clear(struct work_struct *work)
2060 {
2061         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2062         int wanted;
2063
2064         wanted = atomic_add_return(deferred, &netstamp_wanted);
2065         if (wanted > 0)
2066                 static_branch_enable(&netstamp_needed_key);
2067         else
2068                 static_branch_disable(&netstamp_needed_key);
2069 }
2070 static DECLARE_WORK(netstamp_work, netstamp_clear);
2071 #endif
2072
2073 void net_enable_timestamp(void)
2074 {
2075 #ifdef CONFIG_JUMP_LABEL
2076         int wanted = atomic_read(&netstamp_wanted);
2077
2078         while (wanted > 0) {
2079                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2080                         return;
2081         }
2082         atomic_inc(&netstamp_needed_deferred);
2083         schedule_work(&netstamp_work);
2084 #else
2085         static_branch_inc(&netstamp_needed_key);
2086 #endif
2087 }
2088 EXPORT_SYMBOL(net_enable_timestamp);
2089
2090 void net_disable_timestamp(void)
2091 {
2092 #ifdef CONFIG_JUMP_LABEL
2093         int wanted = atomic_read(&netstamp_wanted);
2094
2095         while (wanted > 1) {
2096                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2097                         return;
2098         }
2099         atomic_dec(&netstamp_needed_deferred);
2100         schedule_work(&netstamp_work);
2101 #else
2102         static_branch_dec(&netstamp_needed_key);
2103 #endif
2104 }
2105 EXPORT_SYMBOL(net_disable_timestamp);
2106
2107 static inline void net_timestamp_set(struct sk_buff *skb)
2108 {
2109         skb->tstamp = 0;
2110         skb->mono_delivery_time = 0;
2111         if (static_branch_unlikely(&netstamp_needed_key))
2112                 skb->tstamp = ktime_get_real();
2113 }
2114
2115 #define net_timestamp_check(COND, SKB)                          \
2116         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2117                 if ((COND) && !(SKB)->tstamp)                   \
2118                         (SKB)->tstamp = ktime_get_real();       \
2119         }                                                       \
2120
2121 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2122 {
2123         return __is_skb_forwardable(dev, skb, true);
2124 }
2125 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2126
2127 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2128                               bool check_mtu)
2129 {
2130         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2131
2132         if (likely(!ret)) {
2133                 skb->protocol = eth_type_trans(skb, dev);
2134                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2135         }
2136
2137         return ret;
2138 }
2139
2140 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2141 {
2142         return __dev_forward_skb2(dev, skb, true);
2143 }
2144 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2145
2146 /**
2147  * dev_forward_skb - loopback an skb to another netif
2148  *
2149  * @dev: destination network device
2150  * @skb: buffer to forward
2151  *
2152  * return values:
2153  *      NET_RX_SUCCESS  (no congestion)
2154  *      NET_RX_DROP     (packet was dropped, but freed)
2155  *
2156  * dev_forward_skb can be used for injecting an skb from the
2157  * start_xmit function of one device into the receive queue
2158  * of another device.
2159  *
2160  * The receiving device may be in another namespace, so
2161  * we have to clear all information in the skb that could
2162  * impact namespace isolation.
2163  */
2164 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2165 {
2166         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2167 }
2168 EXPORT_SYMBOL_GPL(dev_forward_skb);
2169
2170 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2171 {
2172         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2173 }
2174
2175 static inline int deliver_skb(struct sk_buff *skb,
2176                               struct packet_type *pt_prev,
2177                               struct net_device *orig_dev)
2178 {
2179         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2180                 return -ENOMEM;
2181         refcount_inc(&skb->users);
2182         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2183 }
2184
2185 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2186                                           struct packet_type **pt,
2187                                           struct net_device *orig_dev,
2188                                           __be16 type,
2189                                           struct list_head *ptype_list)
2190 {
2191         struct packet_type *ptype, *pt_prev = *pt;
2192
2193         list_for_each_entry_rcu(ptype, ptype_list, list) {
2194                 if (ptype->type != type)
2195                         continue;
2196                 if (pt_prev)
2197                         deliver_skb(skb, pt_prev, orig_dev);
2198                 pt_prev = ptype;
2199         }
2200         *pt = pt_prev;
2201 }
2202
2203 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2204 {
2205         if (!ptype->af_packet_priv || !skb->sk)
2206                 return false;
2207
2208         if (ptype->id_match)
2209                 return ptype->id_match(ptype, skb->sk);
2210         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2211                 return true;
2212
2213         return false;
2214 }
2215
2216 /**
2217  * dev_nit_active - return true if any network interface taps are in use
2218  *
2219  * @dev: network device to check for the presence of taps
2220  */
2221 bool dev_nit_active(struct net_device *dev)
2222 {
2223         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2224 }
2225 EXPORT_SYMBOL_GPL(dev_nit_active);
2226
2227 /*
2228  *      Support routine. Sends outgoing frames to any network
2229  *      taps currently in use.
2230  */
2231
2232 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2233 {
2234         struct packet_type *ptype;
2235         struct sk_buff *skb2 = NULL;
2236         struct packet_type *pt_prev = NULL;
2237         struct list_head *ptype_list = &ptype_all;
2238
2239         rcu_read_lock();
2240 again:
2241         list_for_each_entry_rcu(ptype, ptype_list, list) {
2242                 if (ptype->ignore_outgoing)
2243                         continue;
2244
2245                 /* Never send packets back to the socket
2246                  * they originated from - MvS (miquels@drinkel.ow.org)
2247                  */
2248                 if (skb_loop_sk(ptype, skb))
2249                         continue;
2250
2251                 if (pt_prev) {
2252                         deliver_skb(skb2, pt_prev, skb->dev);
2253                         pt_prev = ptype;
2254                         continue;
2255                 }
2256
2257                 /* need to clone skb, done only once */
2258                 skb2 = skb_clone(skb, GFP_ATOMIC);
2259                 if (!skb2)
2260                         goto out_unlock;
2261
2262                 net_timestamp_set(skb2);
2263
2264                 /* skb->nh should be correctly
2265                  * set by sender, so that the second statement is
2266                  * just protection against buggy protocols.
2267                  */
2268                 skb_reset_mac_header(skb2);
2269
2270                 if (skb_network_header(skb2) < skb2->data ||
2271                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2272                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2273                                              ntohs(skb2->protocol),
2274                                              dev->name);
2275                         skb_reset_network_header(skb2);
2276                 }
2277
2278                 skb2->transport_header = skb2->network_header;
2279                 skb2->pkt_type = PACKET_OUTGOING;
2280                 pt_prev = ptype;
2281         }
2282
2283         if (ptype_list == &ptype_all) {
2284                 ptype_list = &dev->ptype_all;
2285                 goto again;
2286         }
2287 out_unlock:
2288         if (pt_prev) {
2289                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2290                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2291                 else
2292                         kfree_skb(skb2);
2293         }
2294         rcu_read_unlock();
2295 }
2296 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2297
2298 /**
2299  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2300  * @dev: Network device
2301  * @txq: number of queues available
2302  *
2303  * If real_num_tx_queues is changed the tc mappings may no longer be
2304  * valid. To resolve this verify the tc mapping remains valid and if
2305  * not NULL the mapping. With no priorities mapping to this
2306  * offset/count pair it will no longer be used. In the worst case TC0
2307  * is invalid nothing can be done so disable priority mappings. If is
2308  * expected that drivers will fix this mapping if they can before
2309  * calling netif_set_real_num_tx_queues.
2310  */
2311 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2312 {
2313         int i;
2314         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2315
2316         /* If TC0 is invalidated disable TC mapping */
2317         if (tc->offset + tc->count > txq) {
2318                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2319                 dev->num_tc = 0;
2320                 return;
2321         }
2322
2323         /* Invalidated prio to tc mappings set to TC0 */
2324         for (i = 1; i < TC_BITMASK + 1; i++) {
2325                 int q = netdev_get_prio_tc_map(dev, i);
2326
2327                 tc = &dev->tc_to_txq[q];
2328                 if (tc->offset + tc->count > txq) {
2329                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2330                                     i, q);
2331                         netdev_set_prio_tc_map(dev, i, 0);
2332                 }
2333         }
2334 }
2335
2336 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2337 {
2338         if (dev->num_tc) {
2339                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2340                 int i;
2341
2342                 /* walk through the TCs and see if it falls into any of them */
2343                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2344                         if ((txq - tc->offset) < tc->count)
2345                                 return i;
2346                 }
2347
2348                 /* didn't find it, just return -1 to indicate no match */
2349                 return -1;
2350         }
2351
2352         return 0;
2353 }
2354 EXPORT_SYMBOL(netdev_txq_to_tc);
2355
2356 #ifdef CONFIG_XPS
2357 static struct static_key xps_needed __read_mostly;
2358 static struct static_key xps_rxqs_needed __read_mostly;
2359 static DEFINE_MUTEX(xps_map_mutex);
2360 #define xmap_dereference(P)             \
2361         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2362
2363 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2364                              struct xps_dev_maps *old_maps, int tci, u16 index)
2365 {
2366         struct xps_map *map = NULL;
2367         int pos;
2368
2369         if (dev_maps)
2370                 map = xmap_dereference(dev_maps->attr_map[tci]);
2371         if (!map)
2372                 return false;
2373
2374         for (pos = map->len; pos--;) {
2375                 if (map->queues[pos] != index)
2376                         continue;
2377
2378                 if (map->len > 1) {
2379                         map->queues[pos] = map->queues[--map->len];
2380                         break;
2381                 }
2382
2383                 if (old_maps)
2384                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2385                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2386                 kfree_rcu(map, rcu);
2387                 return false;
2388         }
2389
2390         return true;
2391 }
2392
2393 static bool remove_xps_queue_cpu(struct net_device *dev,
2394                                  struct xps_dev_maps *dev_maps,
2395                                  int cpu, u16 offset, u16 count)
2396 {
2397         int num_tc = dev_maps->num_tc;
2398         bool active = false;
2399         int tci;
2400
2401         for (tci = cpu * num_tc; num_tc--; tci++) {
2402                 int i, j;
2403
2404                 for (i = count, j = offset; i--; j++) {
2405                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2406                                 break;
2407                 }
2408
2409                 active |= i < 0;
2410         }
2411
2412         return active;
2413 }
2414
2415 static void reset_xps_maps(struct net_device *dev,
2416                            struct xps_dev_maps *dev_maps,
2417                            enum xps_map_type type)
2418 {
2419         static_key_slow_dec_cpuslocked(&xps_needed);
2420         if (type == XPS_RXQS)
2421                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2422
2423         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2424
2425         kfree_rcu(dev_maps, rcu);
2426 }
2427
2428 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2429                            u16 offset, u16 count)
2430 {
2431         struct xps_dev_maps *dev_maps;
2432         bool active = false;
2433         int i, j;
2434
2435         dev_maps = xmap_dereference(dev->xps_maps[type]);
2436         if (!dev_maps)
2437                 return;
2438
2439         for (j = 0; j < dev_maps->nr_ids; j++)
2440                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2441         if (!active)
2442                 reset_xps_maps(dev, dev_maps, type);
2443
2444         if (type == XPS_CPUS) {
2445                 for (i = offset + (count - 1); count--; i--)
2446                         netdev_queue_numa_node_write(
2447                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2448         }
2449 }
2450
2451 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2452                                    u16 count)
2453 {
2454         if (!static_key_false(&xps_needed))
2455                 return;
2456
2457         cpus_read_lock();
2458         mutex_lock(&xps_map_mutex);
2459
2460         if (static_key_false(&xps_rxqs_needed))
2461                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2462
2463         clean_xps_maps(dev, XPS_CPUS, offset, count);
2464
2465         mutex_unlock(&xps_map_mutex);
2466         cpus_read_unlock();
2467 }
2468
2469 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2470 {
2471         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2472 }
2473
2474 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2475                                       u16 index, bool is_rxqs_map)
2476 {
2477         struct xps_map *new_map;
2478         int alloc_len = XPS_MIN_MAP_ALLOC;
2479         int i, pos;
2480
2481         for (pos = 0; map && pos < map->len; pos++) {
2482                 if (map->queues[pos] != index)
2483                         continue;
2484                 return map;
2485         }
2486
2487         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2488         if (map) {
2489                 if (pos < map->alloc_len)
2490                         return map;
2491
2492                 alloc_len = map->alloc_len * 2;
2493         }
2494
2495         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2496          *  map
2497          */
2498         if (is_rxqs_map)
2499                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2500         else
2501                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2502                                        cpu_to_node(attr_index));
2503         if (!new_map)
2504                 return NULL;
2505
2506         for (i = 0; i < pos; i++)
2507                 new_map->queues[i] = map->queues[i];
2508         new_map->alloc_len = alloc_len;
2509         new_map->len = pos;
2510
2511         return new_map;
2512 }
2513
2514 /* Copy xps maps at a given index */
2515 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2516                               struct xps_dev_maps *new_dev_maps, int index,
2517                               int tc, bool skip_tc)
2518 {
2519         int i, tci = index * dev_maps->num_tc;
2520         struct xps_map *map;
2521
2522         /* copy maps belonging to foreign traffic classes */
2523         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2524                 if (i == tc && skip_tc)
2525                         continue;
2526
2527                 /* fill in the new device map from the old device map */
2528                 map = xmap_dereference(dev_maps->attr_map[tci]);
2529                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2530         }
2531 }
2532
2533 /* Must be called under cpus_read_lock */
2534 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2535                           u16 index, enum xps_map_type type)
2536 {
2537         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2538         const unsigned long *online_mask = NULL;
2539         bool active = false, copy = false;
2540         int i, j, tci, numa_node_id = -2;
2541         int maps_sz, num_tc = 1, tc = 0;
2542         struct xps_map *map, *new_map;
2543         unsigned int nr_ids;
2544
2545         if (dev->num_tc) {
2546                 /* Do not allow XPS on subordinate device directly */
2547                 num_tc = dev->num_tc;
2548                 if (num_tc < 0)
2549                         return -EINVAL;
2550
2551                 /* If queue belongs to subordinate dev use its map */
2552                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2553
2554                 tc = netdev_txq_to_tc(dev, index);
2555                 if (tc < 0)
2556                         return -EINVAL;
2557         }
2558
2559         mutex_lock(&xps_map_mutex);
2560
2561         dev_maps = xmap_dereference(dev->xps_maps[type]);
2562         if (type == XPS_RXQS) {
2563                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2564                 nr_ids = dev->num_rx_queues;
2565         } else {
2566                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2567                 if (num_possible_cpus() > 1)
2568                         online_mask = cpumask_bits(cpu_online_mask);
2569                 nr_ids = nr_cpu_ids;
2570         }
2571
2572         if (maps_sz < L1_CACHE_BYTES)
2573                 maps_sz = L1_CACHE_BYTES;
2574
2575         /* The old dev_maps could be larger or smaller than the one we're
2576          * setting up now, as dev->num_tc or nr_ids could have been updated in
2577          * between. We could try to be smart, but let's be safe instead and only
2578          * copy foreign traffic classes if the two map sizes match.
2579          */
2580         if (dev_maps &&
2581             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2582                 copy = true;
2583
2584         /* allocate memory for queue storage */
2585         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2586              j < nr_ids;) {
2587                 if (!new_dev_maps) {
2588                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2589                         if (!new_dev_maps) {
2590                                 mutex_unlock(&xps_map_mutex);
2591                                 return -ENOMEM;
2592                         }
2593
2594                         new_dev_maps->nr_ids = nr_ids;
2595                         new_dev_maps->num_tc = num_tc;
2596                 }
2597
2598                 tci = j * num_tc + tc;
2599                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2600
2601                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2602                 if (!map)
2603                         goto error;
2604
2605                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2606         }
2607
2608         if (!new_dev_maps)
2609                 goto out_no_new_maps;
2610
2611         if (!dev_maps) {
2612                 /* Increment static keys at most once per type */
2613                 static_key_slow_inc_cpuslocked(&xps_needed);
2614                 if (type == XPS_RXQS)
2615                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2616         }
2617
2618         for (j = 0; j < nr_ids; j++) {
2619                 bool skip_tc = false;
2620
2621                 tci = j * num_tc + tc;
2622                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2623                     netif_attr_test_online(j, online_mask, nr_ids)) {
2624                         /* add tx-queue to CPU/rx-queue maps */
2625                         int pos = 0;
2626
2627                         skip_tc = true;
2628
2629                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2630                         while ((pos < map->len) && (map->queues[pos] != index))
2631                                 pos++;
2632
2633                         if (pos == map->len)
2634                                 map->queues[map->len++] = index;
2635 #ifdef CONFIG_NUMA
2636                         if (type == XPS_CPUS) {
2637                                 if (numa_node_id == -2)
2638                                         numa_node_id = cpu_to_node(j);
2639                                 else if (numa_node_id != cpu_to_node(j))
2640                                         numa_node_id = -1;
2641                         }
2642 #endif
2643                 }
2644
2645                 if (copy)
2646                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2647                                           skip_tc);
2648         }
2649
2650         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2651
2652         /* Cleanup old maps */
2653         if (!dev_maps)
2654                 goto out_no_old_maps;
2655
2656         for (j = 0; j < dev_maps->nr_ids; j++) {
2657                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2658                         map = xmap_dereference(dev_maps->attr_map[tci]);
2659                         if (!map)
2660                                 continue;
2661
2662                         if (copy) {
2663                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2664                                 if (map == new_map)
2665                                         continue;
2666                         }
2667
2668                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2669                         kfree_rcu(map, rcu);
2670                 }
2671         }
2672
2673         old_dev_maps = dev_maps;
2674
2675 out_no_old_maps:
2676         dev_maps = new_dev_maps;
2677         active = true;
2678
2679 out_no_new_maps:
2680         if (type == XPS_CPUS)
2681                 /* update Tx queue numa node */
2682                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2683                                              (numa_node_id >= 0) ?
2684                                              numa_node_id : NUMA_NO_NODE);
2685
2686         if (!dev_maps)
2687                 goto out_no_maps;
2688
2689         /* removes tx-queue from unused CPUs/rx-queues */
2690         for (j = 0; j < dev_maps->nr_ids; j++) {
2691                 tci = j * dev_maps->num_tc;
2692
2693                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2694                         if (i == tc &&
2695                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2696                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2697                                 continue;
2698
2699                         active |= remove_xps_queue(dev_maps,
2700                                                    copy ? old_dev_maps : NULL,
2701                                                    tci, index);
2702                 }
2703         }
2704
2705         if (old_dev_maps)
2706                 kfree_rcu(old_dev_maps, rcu);
2707
2708         /* free map if not active */
2709         if (!active)
2710                 reset_xps_maps(dev, dev_maps, type);
2711
2712 out_no_maps:
2713         mutex_unlock(&xps_map_mutex);
2714
2715         return 0;
2716 error:
2717         /* remove any maps that we added */
2718         for (j = 0; j < nr_ids; j++) {
2719                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2720                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2721                         map = copy ?
2722                               xmap_dereference(dev_maps->attr_map[tci]) :
2723                               NULL;
2724                         if (new_map && new_map != map)
2725                                 kfree(new_map);
2726                 }
2727         }
2728
2729         mutex_unlock(&xps_map_mutex);
2730
2731         kfree(new_dev_maps);
2732         return -ENOMEM;
2733 }
2734 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2735
2736 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2737                         u16 index)
2738 {
2739         int ret;
2740
2741         cpus_read_lock();
2742         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2743         cpus_read_unlock();
2744
2745         return ret;
2746 }
2747 EXPORT_SYMBOL(netif_set_xps_queue);
2748
2749 #endif
2750 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2751 {
2752         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2753
2754         /* Unbind any subordinate channels */
2755         while (txq-- != &dev->_tx[0]) {
2756                 if (txq->sb_dev)
2757                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2758         }
2759 }
2760
2761 void netdev_reset_tc(struct net_device *dev)
2762 {
2763 #ifdef CONFIG_XPS
2764         netif_reset_xps_queues_gt(dev, 0);
2765 #endif
2766         netdev_unbind_all_sb_channels(dev);
2767
2768         /* Reset TC configuration of device */
2769         dev->num_tc = 0;
2770         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2771         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2772 }
2773 EXPORT_SYMBOL(netdev_reset_tc);
2774
2775 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2776 {
2777         if (tc >= dev->num_tc)
2778                 return -EINVAL;
2779
2780 #ifdef CONFIG_XPS
2781         netif_reset_xps_queues(dev, offset, count);
2782 #endif
2783         dev->tc_to_txq[tc].count = count;
2784         dev->tc_to_txq[tc].offset = offset;
2785         return 0;
2786 }
2787 EXPORT_SYMBOL(netdev_set_tc_queue);
2788
2789 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2790 {
2791         if (num_tc > TC_MAX_QUEUE)
2792                 return -EINVAL;
2793
2794 #ifdef CONFIG_XPS
2795         netif_reset_xps_queues_gt(dev, 0);
2796 #endif
2797         netdev_unbind_all_sb_channels(dev);
2798
2799         dev->num_tc = num_tc;
2800         return 0;
2801 }
2802 EXPORT_SYMBOL(netdev_set_num_tc);
2803
2804 void netdev_unbind_sb_channel(struct net_device *dev,
2805                               struct net_device *sb_dev)
2806 {
2807         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2808
2809 #ifdef CONFIG_XPS
2810         netif_reset_xps_queues_gt(sb_dev, 0);
2811 #endif
2812         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2813         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2814
2815         while (txq-- != &dev->_tx[0]) {
2816                 if (txq->sb_dev == sb_dev)
2817                         txq->sb_dev = NULL;
2818         }
2819 }
2820 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2821
2822 int netdev_bind_sb_channel_queue(struct net_device *dev,
2823                                  struct net_device *sb_dev,
2824                                  u8 tc, u16 count, u16 offset)
2825 {
2826         /* Make certain the sb_dev and dev are already configured */
2827         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2828                 return -EINVAL;
2829
2830         /* We cannot hand out queues we don't have */
2831         if ((offset + count) > dev->real_num_tx_queues)
2832                 return -EINVAL;
2833
2834         /* Record the mapping */
2835         sb_dev->tc_to_txq[tc].count = count;
2836         sb_dev->tc_to_txq[tc].offset = offset;
2837
2838         /* Provide a way for Tx queue to find the tc_to_txq map or
2839          * XPS map for itself.
2840          */
2841         while (count--)
2842                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2843
2844         return 0;
2845 }
2846 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2847
2848 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2849 {
2850         /* Do not use a multiqueue device to represent a subordinate channel */
2851         if (netif_is_multiqueue(dev))
2852                 return -ENODEV;
2853
2854         /* We allow channels 1 - 32767 to be used for subordinate channels.
2855          * Channel 0 is meant to be "native" mode and used only to represent
2856          * the main root device. We allow writing 0 to reset the device back
2857          * to normal mode after being used as a subordinate channel.
2858          */
2859         if (channel > S16_MAX)
2860                 return -EINVAL;
2861
2862         dev->num_tc = -channel;
2863
2864         return 0;
2865 }
2866 EXPORT_SYMBOL(netdev_set_sb_channel);
2867
2868 /*
2869  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2870  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2871  */
2872 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2873 {
2874         bool disabling;
2875         int rc;
2876
2877         disabling = txq < dev->real_num_tx_queues;
2878
2879         if (txq < 1 || txq > dev->num_tx_queues)
2880                 return -EINVAL;
2881
2882         if (dev->reg_state == NETREG_REGISTERED ||
2883             dev->reg_state == NETREG_UNREGISTERING) {
2884                 ASSERT_RTNL();
2885
2886                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2887                                                   txq);
2888                 if (rc)
2889                         return rc;
2890
2891                 if (dev->num_tc)
2892                         netif_setup_tc(dev, txq);
2893
2894                 dev_qdisc_change_real_num_tx(dev, txq);
2895
2896                 dev->real_num_tx_queues = txq;
2897
2898                 if (disabling) {
2899                         synchronize_net();
2900                         qdisc_reset_all_tx_gt(dev, txq);
2901 #ifdef CONFIG_XPS
2902                         netif_reset_xps_queues_gt(dev, txq);
2903 #endif
2904                 }
2905         } else {
2906                 dev->real_num_tx_queues = txq;
2907         }
2908
2909         return 0;
2910 }
2911 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2912
2913 #ifdef CONFIG_SYSFS
2914 /**
2915  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2916  *      @dev: Network device
2917  *      @rxq: Actual number of RX queues
2918  *
2919  *      This must be called either with the rtnl_lock held or before
2920  *      registration of the net device.  Returns 0 on success, or a
2921  *      negative error code.  If called before registration, it always
2922  *      succeeds.
2923  */
2924 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2925 {
2926         int rc;
2927
2928         if (rxq < 1 || rxq > dev->num_rx_queues)
2929                 return -EINVAL;
2930
2931         if (dev->reg_state == NETREG_REGISTERED) {
2932                 ASSERT_RTNL();
2933
2934                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2935                                                   rxq);
2936                 if (rc)
2937                         return rc;
2938         }
2939
2940         dev->real_num_rx_queues = rxq;
2941         return 0;
2942 }
2943 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2944 #endif
2945
2946 /**
2947  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2948  *      @dev: Network device
2949  *      @txq: Actual number of TX queues
2950  *      @rxq: Actual number of RX queues
2951  *
2952  *      Set the real number of both TX and RX queues.
2953  *      Does nothing if the number of queues is already correct.
2954  */
2955 int netif_set_real_num_queues(struct net_device *dev,
2956                               unsigned int txq, unsigned int rxq)
2957 {
2958         unsigned int old_rxq = dev->real_num_rx_queues;
2959         int err;
2960
2961         if (txq < 1 || txq > dev->num_tx_queues ||
2962             rxq < 1 || rxq > dev->num_rx_queues)
2963                 return -EINVAL;
2964
2965         /* Start from increases, so the error path only does decreases -
2966          * decreases can't fail.
2967          */
2968         if (rxq > dev->real_num_rx_queues) {
2969                 err = netif_set_real_num_rx_queues(dev, rxq);
2970                 if (err)
2971                         return err;
2972         }
2973         if (txq > dev->real_num_tx_queues) {
2974                 err = netif_set_real_num_tx_queues(dev, txq);
2975                 if (err)
2976                         goto undo_rx;
2977         }
2978         if (rxq < dev->real_num_rx_queues)
2979                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2980         if (txq < dev->real_num_tx_queues)
2981                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2982
2983         return 0;
2984 undo_rx:
2985         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2986         return err;
2987 }
2988 EXPORT_SYMBOL(netif_set_real_num_queues);
2989
2990 /**
2991  * netif_set_tso_max_size() - set the max size of TSO frames supported
2992  * @dev:        netdev to update
2993  * @size:       max skb->len of a TSO frame
2994  *
2995  * Set the limit on the size of TSO super-frames the device can handle.
2996  * Unless explicitly set the stack will assume the value of
2997  * %GSO_LEGACY_MAX_SIZE.
2998  */
2999 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3000 {
3001         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3002         if (size < READ_ONCE(dev->gso_max_size))
3003                 netif_set_gso_max_size(dev, size);
3004 }
3005 EXPORT_SYMBOL(netif_set_tso_max_size);
3006
3007 /**
3008  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3009  * @dev:        netdev to update
3010  * @segs:       max number of TCP segments
3011  *
3012  * Set the limit on the number of TCP segments the device can generate from
3013  * a single TSO super-frame.
3014  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3015  */
3016 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3017 {
3018         dev->tso_max_segs = segs;
3019         if (segs < READ_ONCE(dev->gso_max_segs))
3020                 netif_set_gso_max_segs(dev, segs);
3021 }
3022 EXPORT_SYMBOL(netif_set_tso_max_segs);
3023
3024 /**
3025  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3026  * @to:         netdev to update
3027  * @from:       netdev from which to copy the limits
3028  */
3029 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3030 {
3031         netif_set_tso_max_size(to, from->tso_max_size);
3032         netif_set_tso_max_segs(to, from->tso_max_segs);
3033 }
3034 EXPORT_SYMBOL(netif_inherit_tso_max);
3035
3036 /**
3037  * netif_get_num_default_rss_queues - default number of RSS queues
3038  *
3039  * Default value is the number of physical cores if there are only 1 or 2, or
3040  * divided by 2 if there are more.
3041  */
3042 int netif_get_num_default_rss_queues(void)
3043 {
3044         cpumask_var_t cpus;
3045         int cpu, count = 0;
3046
3047         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3048                 return 1;
3049
3050         cpumask_copy(cpus, cpu_online_mask);
3051         for_each_cpu(cpu, cpus) {
3052                 ++count;
3053                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3054         }
3055         free_cpumask_var(cpus);
3056
3057         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3058 }
3059 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3060
3061 static void __netif_reschedule(struct Qdisc *q)
3062 {
3063         struct softnet_data *sd;
3064         unsigned long flags;
3065
3066         local_irq_save(flags);
3067         sd = this_cpu_ptr(&softnet_data);
3068         q->next_sched = NULL;
3069         *sd->output_queue_tailp = q;
3070         sd->output_queue_tailp = &q->next_sched;
3071         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3072         local_irq_restore(flags);
3073 }
3074
3075 void __netif_schedule(struct Qdisc *q)
3076 {
3077         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3078                 __netif_reschedule(q);
3079 }
3080 EXPORT_SYMBOL(__netif_schedule);
3081
3082 struct dev_kfree_skb_cb {
3083         enum skb_free_reason reason;
3084 };
3085
3086 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3087 {
3088         return (struct dev_kfree_skb_cb *)skb->cb;
3089 }
3090
3091 void netif_schedule_queue(struct netdev_queue *txq)
3092 {
3093         rcu_read_lock();
3094         if (!netif_xmit_stopped(txq)) {
3095                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3096
3097                 __netif_schedule(q);
3098         }
3099         rcu_read_unlock();
3100 }
3101 EXPORT_SYMBOL(netif_schedule_queue);
3102
3103 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3104 {
3105         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3106                 struct Qdisc *q;
3107
3108                 rcu_read_lock();
3109                 q = rcu_dereference(dev_queue->qdisc);
3110                 __netif_schedule(q);
3111                 rcu_read_unlock();
3112         }
3113 }
3114 EXPORT_SYMBOL(netif_tx_wake_queue);
3115
3116 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3117 {
3118         unsigned long flags;
3119
3120         if (unlikely(!skb))
3121                 return;
3122
3123         if (likely(refcount_read(&skb->users) == 1)) {
3124                 smp_rmb();
3125                 refcount_set(&skb->users, 0);
3126         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3127                 return;
3128         }
3129         get_kfree_skb_cb(skb)->reason = reason;
3130         local_irq_save(flags);
3131         skb->next = __this_cpu_read(softnet_data.completion_queue);
3132         __this_cpu_write(softnet_data.completion_queue, skb);
3133         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3134         local_irq_restore(flags);
3135 }
3136 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3137
3138 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3139 {
3140         if (in_hardirq() || irqs_disabled())
3141                 __dev_kfree_skb_irq(skb, reason);
3142         else
3143                 dev_kfree_skb(skb);
3144 }
3145 EXPORT_SYMBOL(__dev_kfree_skb_any);
3146
3147
3148 /**
3149  * netif_device_detach - mark device as removed
3150  * @dev: network device
3151  *
3152  * Mark device as removed from system and therefore no longer available.
3153  */
3154 void netif_device_detach(struct net_device *dev)
3155 {
3156         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3157             netif_running(dev)) {
3158                 netif_tx_stop_all_queues(dev);
3159         }
3160 }
3161 EXPORT_SYMBOL(netif_device_detach);
3162
3163 /**
3164  * netif_device_attach - mark device as attached
3165  * @dev: network device
3166  *
3167  * Mark device as attached from system and restart if needed.
3168  */
3169 void netif_device_attach(struct net_device *dev)
3170 {
3171         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3172             netif_running(dev)) {
3173                 netif_tx_wake_all_queues(dev);
3174                 __netdev_watchdog_up(dev);
3175         }
3176 }
3177 EXPORT_SYMBOL(netif_device_attach);
3178
3179 /*
3180  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3181  * to be used as a distribution range.
3182  */
3183 static u16 skb_tx_hash(const struct net_device *dev,
3184                        const struct net_device *sb_dev,
3185                        struct sk_buff *skb)
3186 {
3187         u32 hash;
3188         u16 qoffset = 0;
3189         u16 qcount = dev->real_num_tx_queues;
3190
3191         if (dev->num_tc) {
3192                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3193
3194                 qoffset = sb_dev->tc_to_txq[tc].offset;
3195                 qcount = sb_dev->tc_to_txq[tc].count;
3196                 if (unlikely(!qcount)) {
3197                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3198                                              sb_dev->name, qoffset, tc);
3199                         qoffset = 0;
3200                         qcount = dev->real_num_tx_queues;
3201                 }
3202         }
3203
3204         if (skb_rx_queue_recorded(skb)) {
3205                 hash = skb_get_rx_queue(skb);
3206                 if (hash >= qoffset)
3207                         hash -= qoffset;
3208                 while (unlikely(hash >= qcount))
3209                         hash -= qcount;
3210                 return hash + qoffset;
3211         }
3212
3213         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3214 }
3215
3216 static void skb_warn_bad_offload(const struct sk_buff *skb)
3217 {
3218         static const netdev_features_t null_features;
3219         struct net_device *dev = skb->dev;
3220         const char *name = "";
3221
3222         if (!net_ratelimit())
3223                 return;
3224
3225         if (dev) {
3226                 if (dev->dev.parent)
3227                         name = dev_driver_string(dev->dev.parent);
3228                 else
3229                         name = netdev_name(dev);
3230         }
3231         skb_dump(KERN_WARNING, skb, false);
3232         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3233              name, dev ? &dev->features : &null_features,
3234              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3235 }
3236
3237 /*
3238  * Invalidate hardware checksum when packet is to be mangled, and
3239  * complete checksum manually on outgoing path.
3240  */
3241 int skb_checksum_help(struct sk_buff *skb)
3242 {
3243         __wsum csum;
3244         int ret = 0, offset;
3245
3246         if (skb->ip_summed == CHECKSUM_COMPLETE)
3247                 goto out_set_summed;
3248
3249         if (unlikely(skb_is_gso(skb))) {
3250                 skb_warn_bad_offload(skb);
3251                 return -EINVAL;
3252         }
3253
3254         /* Before computing a checksum, we should make sure no frag could
3255          * be modified by an external entity : checksum could be wrong.
3256          */
3257         if (skb_has_shared_frag(skb)) {
3258                 ret = __skb_linearize(skb);
3259                 if (ret)
3260                         goto out;
3261         }
3262
3263         offset = skb_checksum_start_offset(skb);
3264         ret = -EINVAL;
3265         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3266                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3267                 goto out;
3268         }
3269         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3270
3271         offset += skb->csum_offset;
3272         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3273                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3274                 goto out;
3275         }
3276         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3277         if (ret)
3278                 goto out;
3279
3280         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3281 out_set_summed:
3282         skb->ip_summed = CHECKSUM_NONE;
3283 out:
3284         return ret;
3285 }
3286 EXPORT_SYMBOL(skb_checksum_help);
3287
3288 int skb_crc32c_csum_help(struct sk_buff *skb)
3289 {
3290         __le32 crc32c_csum;
3291         int ret = 0, offset, start;
3292
3293         if (skb->ip_summed != CHECKSUM_PARTIAL)
3294                 goto out;
3295
3296         if (unlikely(skb_is_gso(skb)))
3297                 goto out;
3298
3299         /* Before computing a checksum, we should make sure no frag could
3300          * be modified by an external entity : checksum could be wrong.
3301          */
3302         if (unlikely(skb_has_shared_frag(skb))) {
3303                 ret = __skb_linearize(skb);
3304                 if (ret)
3305                         goto out;
3306         }
3307         start = skb_checksum_start_offset(skb);
3308         offset = start + offsetof(struct sctphdr, checksum);
3309         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3310                 ret = -EINVAL;
3311                 goto out;
3312         }
3313
3314         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3315         if (ret)
3316                 goto out;
3317
3318         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3319                                                   skb->len - start, ~(__u32)0,
3320                                                   crc32c_csum_stub));
3321         *(__le32 *)(skb->data + offset) = crc32c_csum;
3322         skb->ip_summed = CHECKSUM_NONE;
3323         skb->csum_not_inet = 0;
3324 out:
3325         return ret;
3326 }
3327
3328 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3329 {
3330         __be16 type = skb->protocol;
3331
3332         /* Tunnel gso handlers can set protocol to ethernet. */
3333         if (type == htons(ETH_P_TEB)) {
3334                 struct ethhdr *eth;
3335
3336                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3337                         return 0;
3338
3339                 eth = (struct ethhdr *)skb->data;
3340                 type = eth->h_proto;
3341         }
3342
3343         return __vlan_get_protocol(skb, type, depth);
3344 }
3345
3346 /* openvswitch calls this on rx path, so we need a different check.
3347  */
3348 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3349 {
3350         if (tx_path)
3351                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3352                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3353
3354         return skb->ip_summed == CHECKSUM_NONE;
3355 }
3356
3357 /**
3358  *      __skb_gso_segment - Perform segmentation on skb.
3359  *      @skb: buffer to segment
3360  *      @features: features for the output path (see dev->features)
3361  *      @tx_path: whether it is called in TX path
3362  *
3363  *      This function segments the given skb and returns a list of segments.
3364  *
3365  *      It may return NULL if the skb requires no segmentation.  This is
3366  *      only possible when GSO is used for verifying header integrity.
3367  *
3368  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3369  */
3370 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3371                                   netdev_features_t features, bool tx_path)
3372 {
3373         struct sk_buff *segs;
3374
3375         if (unlikely(skb_needs_check(skb, tx_path))) {
3376                 int err;
3377
3378                 /* We're going to init ->check field in TCP or UDP header */
3379                 err = skb_cow_head(skb, 0);
3380                 if (err < 0)
3381                         return ERR_PTR(err);
3382         }
3383
3384         /* Only report GSO partial support if it will enable us to
3385          * support segmentation on this frame without needing additional
3386          * work.
3387          */
3388         if (features & NETIF_F_GSO_PARTIAL) {
3389                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3390                 struct net_device *dev = skb->dev;
3391
3392                 partial_features |= dev->features & dev->gso_partial_features;
3393                 if (!skb_gso_ok(skb, features | partial_features))
3394                         features &= ~NETIF_F_GSO_PARTIAL;
3395         }
3396
3397         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3398                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3399
3400         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3401         SKB_GSO_CB(skb)->encap_level = 0;
3402
3403         skb_reset_mac_header(skb);
3404         skb_reset_mac_len(skb);
3405
3406         segs = skb_mac_gso_segment(skb, features);
3407
3408         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3409                 skb_warn_bad_offload(skb);
3410
3411         return segs;
3412 }
3413 EXPORT_SYMBOL(__skb_gso_segment);
3414
3415 /* Take action when hardware reception checksum errors are detected. */
3416 #ifdef CONFIG_BUG
3417 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3418 {
3419         netdev_err(dev, "hw csum failure\n");
3420         skb_dump(KERN_ERR, skb, true);
3421         dump_stack();
3422 }
3423
3424 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3425 {
3426         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3427 }
3428 EXPORT_SYMBOL(netdev_rx_csum_fault);
3429 #endif
3430
3431 /* XXX: check that highmem exists at all on the given machine. */
3432 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3433 {
3434 #ifdef CONFIG_HIGHMEM
3435         int i;
3436
3437         if (!(dev->features & NETIF_F_HIGHDMA)) {
3438                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3439                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3440
3441                         if (PageHighMem(skb_frag_page(frag)))
3442                                 return 1;
3443                 }
3444         }
3445 #endif
3446         return 0;
3447 }
3448
3449 /* If MPLS offload request, verify we are testing hardware MPLS features
3450  * instead of standard features for the netdev.
3451  */
3452 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454                                            netdev_features_t features,
3455                                            __be16 type)
3456 {
3457         if (eth_p_mpls(type))
3458                 features &= skb->dev->mpls_features;
3459
3460         return features;
3461 }
3462 #else
3463 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3464                                            netdev_features_t features,
3465                                            __be16 type)
3466 {
3467         return features;
3468 }
3469 #endif
3470
3471 static netdev_features_t harmonize_features(struct sk_buff *skb,
3472         netdev_features_t features)
3473 {
3474         __be16 type;
3475
3476         type = skb_network_protocol(skb, NULL);
3477         features = net_mpls_features(skb, features, type);
3478
3479         if (skb->ip_summed != CHECKSUM_NONE &&
3480             !can_checksum_protocol(features, type)) {
3481                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3482         }
3483         if (illegal_highdma(skb->dev, skb))
3484                 features &= ~NETIF_F_SG;
3485
3486         return features;
3487 }
3488
3489 netdev_features_t passthru_features_check(struct sk_buff *skb,
3490                                           struct net_device *dev,
3491                                           netdev_features_t features)
3492 {
3493         return features;
3494 }
3495 EXPORT_SYMBOL(passthru_features_check);
3496
3497 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3498                                              struct net_device *dev,
3499                                              netdev_features_t features)
3500 {
3501         return vlan_features_check(skb, features);
3502 }
3503
3504 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3505                                             struct net_device *dev,
3506                                             netdev_features_t features)
3507 {
3508         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3509
3510         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3511                 return features & ~NETIF_F_GSO_MASK;
3512
3513         if (!skb_shinfo(skb)->gso_type) {
3514                 skb_warn_bad_offload(skb);
3515                 return features & ~NETIF_F_GSO_MASK;
3516         }
3517
3518         /* Support for GSO partial features requires software
3519          * intervention before we can actually process the packets
3520          * so we need to strip support for any partial features now
3521          * and we can pull them back in after we have partially
3522          * segmented the frame.
3523          */
3524         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3525                 features &= ~dev->gso_partial_features;
3526
3527         /* Make sure to clear the IPv4 ID mangling feature if the
3528          * IPv4 header has the potential to be fragmented.
3529          */
3530         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3531                 struct iphdr *iph = skb->encapsulation ?
3532                                     inner_ip_hdr(skb) : ip_hdr(skb);
3533
3534                 if (!(iph->frag_off & htons(IP_DF)))
3535                         features &= ~NETIF_F_TSO_MANGLEID;
3536         }
3537
3538         return features;
3539 }
3540
3541 netdev_features_t netif_skb_features(struct sk_buff *skb)
3542 {
3543         struct net_device *dev = skb->dev;
3544         netdev_features_t features = dev->features;
3545
3546         if (skb_is_gso(skb))
3547                 features = gso_features_check(skb, dev, features);
3548
3549         /* If encapsulation offload request, verify we are testing
3550          * hardware encapsulation features instead of standard
3551          * features for the netdev
3552          */
3553         if (skb->encapsulation)
3554                 features &= dev->hw_enc_features;
3555
3556         if (skb_vlan_tagged(skb))
3557                 features = netdev_intersect_features(features,
3558                                                      dev->vlan_features |
3559                                                      NETIF_F_HW_VLAN_CTAG_TX |
3560                                                      NETIF_F_HW_VLAN_STAG_TX);
3561
3562         if (dev->netdev_ops->ndo_features_check)
3563                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3564                                                                 features);
3565         else
3566                 features &= dflt_features_check(skb, dev, features);
3567
3568         return harmonize_features(skb, features);
3569 }
3570 EXPORT_SYMBOL(netif_skb_features);
3571
3572 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3573                     struct netdev_queue *txq, bool more)
3574 {
3575         unsigned int len;
3576         int rc;
3577
3578         if (dev_nit_active(dev))
3579                 dev_queue_xmit_nit(skb, dev);
3580
3581         len = skb->len;
3582         trace_net_dev_start_xmit(skb, dev);
3583         rc = netdev_start_xmit(skb, dev, txq, more);
3584         trace_net_dev_xmit(skb, rc, dev, len);
3585
3586         return rc;
3587 }
3588
3589 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3590                                     struct netdev_queue *txq, int *ret)
3591 {
3592         struct sk_buff *skb = first;
3593         int rc = NETDEV_TX_OK;
3594
3595         while (skb) {
3596                 struct sk_buff *next = skb->next;
3597
3598                 skb_mark_not_on_list(skb);
3599                 rc = xmit_one(skb, dev, txq, next != NULL);
3600                 if (unlikely(!dev_xmit_complete(rc))) {
3601                         skb->next = next;
3602                         goto out;
3603                 }
3604
3605                 skb = next;
3606                 if (netif_tx_queue_stopped(txq) && skb) {
3607                         rc = NETDEV_TX_BUSY;
3608                         break;
3609                 }
3610         }
3611
3612 out:
3613         *ret = rc;
3614         return skb;
3615 }
3616
3617 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3618                                           netdev_features_t features)
3619 {
3620         if (skb_vlan_tag_present(skb) &&
3621             !vlan_hw_offload_capable(features, skb->vlan_proto))
3622                 skb = __vlan_hwaccel_push_inside(skb);
3623         return skb;
3624 }
3625
3626 int skb_csum_hwoffload_help(struct sk_buff *skb,
3627                             const netdev_features_t features)
3628 {
3629         if (unlikely(skb_csum_is_sctp(skb)))
3630                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3631                         skb_crc32c_csum_help(skb);
3632
3633         if (features & NETIF_F_HW_CSUM)
3634                 return 0;
3635
3636         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3637                 switch (skb->csum_offset) {
3638                 case offsetof(struct tcphdr, check):
3639                 case offsetof(struct udphdr, check):
3640                         return 0;
3641                 }
3642         }
3643
3644         return skb_checksum_help(skb);
3645 }
3646 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3647
3648 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3649 {
3650         netdev_features_t features;
3651
3652         features = netif_skb_features(skb);
3653         skb = validate_xmit_vlan(skb, features);
3654         if (unlikely(!skb))
3655                 goto out_null;
3656
3657         skb = sk_validate_xmit_skb(skb, dev);
3658         if (unlikely(!skb))
3659                 goto out_null;
3660
3661         if (netif_needs_gso(skb, features)) {
3662                 struct sk_buff *segs;
3663
3664                 segs = skb_gso_segment(skb, features);
3665                 if (IS_ERR(segs)) {
3666                         goto out_kfree_skb;
3667                 } else if (segs) {
3668                         consume_skb(skb);
3669                         skb = segs;
3670                 }
3671         } else {
3672                 if (skb_needs_linearize(skb, features) &&
3673                     __skb_linearize(skb))
3674                         goto out_kfree_skb;
3675
3676                 /* If packet is not checksummed and device does not
3677                  * support checksumming for this protocol, complete
3678                  * checksumming here.
3679                  */
3680                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3681                         if (skb->encapsulation)
3682                                 skb_set_inner_transport_header(skb,
3683                                                                skb_checksum_start_offset(skb));
3684                         else
3685                                 skb_set_transport_header(skb,
3686                                                          skb_checksum_start_offset(skb));
3687                         if (skb_csum_hwoffload_help(skb, features))
3688                                 goto out_kfree_skb;
3689                 }
3690         }
3691
3692         skb = validate_xmit_xfrm(skb, features, again);
3693
3694         return skb;
3695
3696 out_kfree_skb:
3697         kfree_skb(skb);
3698 out_null:
3699         dev_core_stats_tx_dropped_inc(dev);
3700         return NULL;
3701 }
3702
3703 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3704 {
3705         struct sk_buff *next, *head = NULL, *tail;
3706
3707         for (; skb != NULL; skb = next) {
3708                 next = skb->next;
3709                 skb_mark_not_on_list(skb);
3710
3711                 /* in case skb wont be segmented, point to itself */
3712                 skb->prev = skb;
3713
3714                 skb = validate_xmit_skb(skb, dev, again);
3715                 if (!skb)
3716                         continue;
3717
3718                 if (!head)
3719                         head = skb;
3720                 else
3721                         tail->next = skb;
3722                 /* If skb was segmented, skb->prev points to
3723                  * the last segment. If not, it still contains skb.
3724                  */
3725                 tail = skb->prev;
3726         }
3727         return head;
3728 }
3729 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3730
3731 static void qdisc_pkt_len_init(struct sk_buff *skb)
3732 {
3733         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3734
3735         qdisc_skb_cb(skb)->pkt_len = skb->len;
3736
3737         /* To get more precise estimation of bytes sent on wire,
3738          * we add to pkt_len the headers size of all segments
3739          */
3740         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3741                 unsigned int hdr_len;
3742                 u16 gso_segs = shinfo->gso_segs;
3743
3744                 /* mac layer + network layer */
3745                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3746
3747                 /* + transport layer */
3748                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3749                         const struct tcphdr *th;
3750                         struct tcphdr _tcphdr;
3751
3752                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3753                                                 sizeof(_tcphdr), &_tcphdr);
3754                         if (likely(th))
3755                                 hdr_len += __tcp_hdrlen(th);
3756                 } else {
3757                         struct udphdr _udphdr;
3758
3759                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3760                                                sizeof(_udphdr), &_udphdr))
3761                                 hdr_len += sizeof(struct udphdr);
3762                 }
3763
3764                 if (shinfo->gso_type & SKB_GSO_DODGY)
3765                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3766                                                 shinfo->gso_size);
3767
3768                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3769         }
3770 }
3771
3772 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3773                              struct sk_buff **to_free,
3774                              struct netdev_queue *txq)
3775 {
3776         int rc;
3777
3778         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3779         if (rc == NET_XMIT_SUCCESS)
3780                 trace_qdisc_enqueue(q, txq, skb);
3781         return rc;
3782 }
3783
3784 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3785                                  struct net_device *dev,
3786                                  struct netdev_queue *txq)
3787 {
3788         spinlock_t *root_lock = qdisc_lock(q);
3789         struct sk_buff *to_free = NULL;
3790         bool contended;
3791         int rc;
3792
3793         qdisc_calculate_pkt_len(skb, q);
3794
3795         if (q->flags & TCQ_F_NOLOCK) {
3796                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3797                     qdisc_run_begin(q)) {
3798                         /* Retest nolock_qdisc_is_empty() within the protection
3799                          * of q->seqlock to protect from racing with requeuing.
3800                          */
3801                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3802                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3803                                 __qdisc_run(q);
3804                                 qdisc_run_end(q);
3805
3806                                 goto no_lock_out;
3807                         }
3808
3809                         qdisc_bstats_cpu_update(q, skb);
3810                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3811                             !nolock_qdisc_is_empty(q))
3812                                 __qdisc_run(q);
3813
3814                         qdisc_run_end(q);
3815                         return NET_XMIT_SUCCESS;
3816                 }
3817
3818                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3819                 qdisc_run(q);
3820
3821 no_lock_out:
3822                 if (unlikely(to_free))
3823                         kfree_skb_list_reason(to_free,
3824                                               SKB_DROP_REASON_QDISC_DROP);
3825                 return rc;
3826         }
3827
3828         /*
3829          * Heuristic to force contended enqueues to serialize on a
3830          * separate lock before trying to get qdisc main lock.
3831          * This permits qdisc->running owner to get the lock more
3832          * often and dequeue packets faster.
3833          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3834          * and then other tasks will only enqueue packets. The packets will be
3835          * sent after the qdisc owner is scheduled again. To prevent this
3836          * scenario the task always serialize on the lock.
3837          */
3838         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3839         if (unlikely(contended))
3840                 spin_lock(&q->busylock);
3841
3842         spin_lock(root_lock);
3843         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3844                 __qdisc_drop(skb, &to_free);
3845                 rc = NET_XMIT_DROP;
3846         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3847                    qdisc_run_begin(q)) {
3848                 /*
3849                  * This is a work-conserving queue; there are no old skbs
3850                  * waiting to be sent out; and the qdisc is not running -
3851                  * xmit the skb directly.
3852                  */
3853
3854                 qdisc_bstats_update(q, skb);
3855
3856                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3857                         if (unlikely(contended)) {
3858                                 spin_unlock(&q->busylock);
3859                                 contended = false;
3860                         }
3861                         __qdisc_run(q);
3862                 }
3863
3864                 qdisc_run_end(q);
3865                 rc = NET_XMIT_SUCCESS;
3866         } else {
3867                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3868                 if (qdisc_run_begin(q)) {
3869                         if (unlikely(contended)) {
3870                                 spin_unlock(&q->busylock);
3871                                 contended = false;
3872                         }
3873                         __qdisc_run(q);
3874                         qdisc_run_end(q);
3875                 }
3876         }
3877         spin_unlock(root_lock);
3878         if (unlikely(to_free))
3879                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3880         if (unlikely(contended))
3881                 spin_unlock(&q->busylock);
3882         return rc;
3883 }
3884
3885 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3886 static void skb_update_prio(struct sk_buff *skb)
3887 {
3888         const struct netprio_map *map;
3889         const struct sock *sk;
3890         unsigned int prioidx;
3891
3892         if (skb->priority)
3893                 return;
3894         map = rcu_dereference_bh(skb->dev->priomap);
3895         if (!map)
3896                 return;
3897         sk = skb_to_full_sk(skb);
3898         if (!sk)
3899                 return;
3900
3901         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3902
3903         if (prioidx < map->priomap_len)
3904                 skb->priority = map->priomap[prioidx];
3905 }
3906 #else
3907 #define skb_update_prio(skb)
3908 #endif
3909
3910 /**
3911  *      dev_loopback_xmit - loop back @skb
3912  *      @net: network namespace this loopback is happening in
3913  *      @sk:  sk needed to be a netfilter okfn
3914  *      @skb: buffer to transmit
3915  */
3916 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3917 {
3918         skb_reset_mac_header(skb);
3919         __skb_pull(skb, skb_network_offset(skb));
3920         skb->pkt_type = PACKET_LOOPBACK;
3921         if (skb->ip_summed == CHECKSUM_NONE)
3922                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3923         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3924         skb_dst_force(skb);
3925         netif_rx(skb);
3926         return 0;
3927 }
3928 EXPORT_SYMBOL(dev_loopback_xmit);
3929
3930 #ifdef CONFIG_NET_EGRESS
3931 static struct sk_buff *
3932 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3933 {
3934 #ifdef CONFIG_NET_CLS_ACT
3935         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3936         struct tcf_result cl_res;
3937
3938         if (!miniq)
3939                 return skb;
3940
3941         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3942         tc_skb_cb(skb)->mru = 0;
3943         tc_skb_cb(skb)->post_ct = false;
3944         mini_qdisc_bstats_cpu_update(miniq, skb);
3945
3946         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3947         case TC_ACT_OK:
3948         case TC_ACT_RECLASSIFY:
3949                 skb->tc_index = TC_H_MIN(cl_res.classid);
3950                 break;
3951         case TC_ACT_SHOT:
3952                 mini_qdisc_qstats_cpu_drop(miniq);
3953                 *ret = NET_XMIT_DROP;
3954                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3955                 return NULL;
3956         case TC_ACT_STOLEN:
3957         case TC_ACT_QUEUED:
3958         case TC_ACT_TRAP:
3959                 *ret = NET_XMIT_SUCCESS;
3960                 consume_skb(skb);
3961                 return NULL;
3962         case TC_ACT_REDIRECT:
3963                 /* No need to push/pop skb's mac_header here on egress! */
3964                 skb_do_redirect(skb);
3965                 *ret = NET_XMIT_SUCCESS;
3966                 return NULL;
3967         default:
3968                 break;
3969         }
3970 #endif /* CONFIG_NET_CLS_ACT */
3971
3972         return skb;
3973 }
3974
3975 static struct netdev_queue *
3976 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3977 {
3978         int qm = skb_get_queue_mapping(skb);
3979
3980         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3981 }
3982
3983 static bool netdev_xmit_txqueue_skipped(void)
3984 {
3985         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3986 }
3987
3988 void netdev_xmit_skip_txqueue(bool skip)
3989 {
3990         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3991 }
3992 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3993 #endif /* CONFIG_NET_EGRESS */
3994
3995 #ifdef CONFIG_XPS
3996 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3997                                struct xps_dev_maps *dev_maps, unsigned int tci)
3998 {
3999         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4000         struct xps_map *map;
4001         int queue_index = -1;
4002
4003         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4004                 return queue_index;
4005
4006         tci *= dev_maps->num_tc;
4007         tci += tc;
4008
4009         map = rcu_dereference(dev_maps->attr_map[tci]);
4010         if (map) {
4011                 if (map->len == 1)
4012                         queue_index = map->queues[0];
4013                 else
4014                         queue_index = map->queues[reciprocal_scale(
4015                                                 skb_get_hash(skb), map->len)];
4016                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4017                         queue_index = -1;
4018         }
4019         return queue_index;
4020 }
4021 #endif
4022
4023 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4024                          struct sk_buff *skb)
4025 {
4026 #ifdef CONFIG_XPS
4027         struct xps_dev_maps *dev_maps;
4028         struct sock *sk = skb->sk;
4029         int queue_index = -1;
4030
4031         if (!static_key_false(&xps_needed))
4032                 return -1;
4033
4034         rcu_read_lock();
4035         if (!static_key_false(&xps_rxqs_needed))
4036                 goto get_cpus_map;
4037
4038         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4039         if (dev_maps) {
4040                 int tci = sk_rx_queue_get(sk);
4041
4042                 if (tci >= 0)
4043                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4044                                                           tci);
4045         }
4046
4047 get_cpus_map:
4048         if (queue_index < 0) {
4049                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4050                 if (dev_maps) {
4051                         unsigned int tci = skb->sender_cpu - 1;
4052
4053                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4054                                                           tci);
4055                 }
4056         }
4057         rcu_read_unlock();
4058
4059         return queue_index;
4060 #else
4061         return -1;
4062 #endif
4063 }
4064
4065 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4066                      struct net_device *sb_dev)
4067 {
4068         return 0;
4069 }
4070 EXPORT_SYMBOL(dev_pick_tx_zero);
4071
4072 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4073                        struct net_device *sb_dev)
4074 {
4075         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4076 }
4077 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4078
4079 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4080                      struct net_device *sb_dev)
4081 {
4082         struct sock *sk = skb->sk;
4083         int queue_index = sk_tx_queue_get(sk);
4084
4085         sb_dev = sb_dev ? : dev;
4086
4087         if (queue_index < 0 || skb->ooo_okay ||
4088             queue_index >= dev->real_num_tx_queues) {
4089                 int new_index = get_xps_queue(dev, sb_dev, skb);
4090
4091                 if (new_index < 0)
4092                         new_index = skb_tx_hash(dev, sb_dev, skb);
4093
4094                 if (queue_index != new_index && sk &&
4095                     sk_fullsock(sk) &&
4096                     rcu_access_pointer(sk->sk_dst_cache))
4097                         sk_tx_queue_set(sk, new_index);
4098
4099                 queue_index = new_index;
4100         }
4101
4102         return queue_index;
4103 }
4104 EXPORT_SYMBOL(netdev_pick_tx);
4105
4106 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4107                                          struct sk_buff *skb,
4108                                          struct net_device *sb_dev)
4109 {
4110         int queue_index = 0;
4111
4112 #ifdef CONFIG_XPS
4113         u32 sender_cpu = skb->sender_cpu - 1;
4114
4115         if (sender_cpu >= (u32)NR_CPUS)
4116                 skb->sender_cpu = raw_smp_processor_id() + 1;
4117 #endif
4118
4119         if (dev->real_num_tx_queues != 1) {
4120                 const struct net_device_ops *ops = dev->netdev_ops;
4121
4122                 if (ops->ndo_select_queue)
4123                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4124                 else
4125                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4126
4127                 queue_index = netdev_cap_txqueue(dev, queue_index);
4128         }
4129
4130         skb_set_queue_mapping(skb, queue_index);
4131         return netdev_get_tx_queue(dev, queue_index);
4132 }
4133
4134 /**
4135  * __dev_queue_xmit() - transmit a buffer
4136  * @skb:        buffer to transmit
4137  * @sb_dev:     suboordinate device used for L2 forwarding offload
4138  *
4139  * Queue a buffer for transmission to a network device. The caller must
4140  * have set the device and priority and built the buffer before calling
4141  * this function. The function can be called from an interrupt.
4142  *
4143  * When calling this method, interrupts MUST be enabled. This is because
4144  * the BH enable code must have IRQs enabled so that it will not deadlock.
4145  *
4146  * Regardless of the return value, the skb is consumed, so it is currently
4147  * difficult to retry a send to this method. (You can bump the ref count
4148  * before sending to hold a reference for retry if you are careful.)
4149  *
4150  * Return:
4151  * * 0                          - buffer successfully transmitted
4152  * * positive qdisc return code - NET_XMIT_DROP etc.
4153  * * negative errno             - other errors
4154  */
4155 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4156 {
4157         struct net_device *dev = skb->dev;
4158         struct netdev_queue *txq = NULL;
4159         struct Qdisc *q;
4160         int rc = -ENOMEM;
4161         bool again = false;
4162
4163         skb_reset_mac_header(skb);
4164         skb_assert_len(skb);
4165
4166         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4167                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4168
4169         /* Disable soft irqs for various locks below. Also
4170          * stops preemption for RCU.
4171          */
4172         rcu_read_lock_bh();
4173
4174         skb_update_prio(skb);
4175
4176         qdisc_pkt_len_init(skb);
4177 #ifdef CONFIG_NET_CLS_ACT
4178         skb->tc_at_ingress = 0;
4179 #endif
4180 #ifdef CONFIG_NET_EGRESS
4181         if (static_branch_unlikely(&egress_needed_key)) {
4182                 if (nf_hook_egress_active()) {
4183                         skb = nf_hook_egress(skb, &rc, dev);
4184                         if (!skb)
4185                                 goto out;
4186                 }
4187
4188                 netdev_xmit_skip_txqueue(false);
4189
4190                 nf_skip_egress(skb, true);
4191                 skb = sch_handle_egress(skb, &rc, dev);
4192                 if (!skb)
4193                         goto out;
4194                 nf_skip_egress(skb, false);
4195
4196                 if (netdev_xmit_txqueue_skipped())
4197                         txq = netdev_tx_queue_mapping(dev, skb);
4198         }
4199 #endif
4200         /* If device/qdisc don't need skb->dst, release it right now while
4201          * its hot in this cpu cache.
4202          */
4203         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4204                 skb_dst_drop(skb);
4205         else
4206                 skb_dst_force(skb);
4207
4208         if (!txq)
4209                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4210
4211         q = rcu_dereference_bh(txq->qdisc);
4212
4213         trace_net_dev_queue(skb);
4214         if (q->enqueue) {
4215                 rc = __dev_xmit_skb(skb, q, dev, txq);
4216                 goto out;
4217         }
4218
4219         /* The device has no queue. Common case for software devices:
4220          * loopback, all the sorts of tunnels...
4221
4222          * Really, it is unlikely that netif_tx_lock protection is necessary
4223          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4224          * counters.)
4225          * However, it is possible, that they rely on protection
4226          * made by us here.
4227
4228          * Check this and shot the lock. It is not prone from deadlocks.
4229          *Either shot noqueue qdisc, it is even simpler 8)
4230          */
4231         if (dev->flags & IFF_UP) {
4232                 int cpu = smp_processor_id(); /* ok because BHs are off */
4233
4234                 /* Other cpus might concurrently change txq->xmit_lock_owner
4235                  * to -1 or to their cpu id, but not to our id.
4236                  */
4237                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4238                         if (dev_xmit_recursion())
4239                                 goto recursion_alert;
4240
4241                         skb = validate_xmit_skb(skb, dev, &again);
4242                         if (!skb)
4243                                 goto out;
4244
4245                         HARD_TX_LOCK(dev, txq, cpu);
4246
4247                         if (!netif_xmit_stopped(txq)) {
4248                                 dev_xmit_recursion_inc();
4249                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4250                                 dev_xmit_recursion_dec();
4251                                 if (dev_xmit_complete(rc)) {
4252                                         HARD_TX_UNLOCK(dev, txq);
4253                                         goto out;
4254                                 }
4255                         }
4256                         HARD_TX_UNLOCK(dev, txq);
4257                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4258                                              dev->name);
4259                 } else {
4260                         /* Recursion is detected! It is possible,
4261                          * unfortunately
4262                          */
4263 recursion_alert:
4264                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4265                                              dev->name);
4266                 }
4267         }
4268
4269         rc = -ENETDOWN;
4270         rcu_read_unlock_bh();
4271
4272         dev_core_stats_tx_dropped_inc(dev);
4273         kfree_skb_list(skb);
4274         return rc;
4275 out:
4276         rcu_read_unlock_bh();
4277         return rc;
4278 }
4279 EXPORT_SYMBOL(__dev_queue_xmit);
4280
4281 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4282 {
4283         struct net_device *dev = skb->dev;
4284         struct sk_buff *orig_skb = skb;
4285         struct netdev_queue *txq;
4286         int ret = NETDEV_TX_BUSY;
4287         bool again = false;
4288
4289         if (unlikely(!netif_running(dev) ||
4290                      !netif_carrier_ok(dev)))
4291                 goto drop;
4292
4293         skb = validate_xmit_skb_list(skb, dev, &again);
4294         if (skb != orig_skb)
4295                 goto drop;
4296
4297         skb_set_queue_mapping(skb, queue_id);
4298         txq = skb_get_tx_queue(dev, skb);
4299
4300         local_bh_disable();
4301
4302         dev_xmit_recursion_inc();
4303         HARD_TX_LOCK(dev, txq, smp_processor_id());
4304         if (!netif_xmit_frozen_or_drv_stopped(txq))
4305                 ret = netdev_start_xmit(skb, dev, txq, false);
4306         HARD_TX_UNLOCK(dev, txq);
4307         dev_xmit_recursion_dec();
4308
4309         local_bh_enable();
4310         return ret;
4311 drop:
4312         dev_core_stats_tx_dropped_inc(dev);
4313         kfree_skb_list(skb);
4314         return NET_XMIT_DROP;
4315 }
4316 EXPORT_SYMBOL(__dev_direct_xmit);
4317
4318 /*************************************************************************
4319  *                      Receiver routines
4320  *************************************************************************/
4321
4322 int netdev_max_backlog __read_mostly = 1000;
4323 EXPORT_SYMBOL(netdev_max_backlog);
4324
4325 int netdev_tstamp_prequeue __read_mostly = 1;
4326 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4327 int netdev_budget __read_mostly = 300;
4328 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4329 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4330 int weight_p __read_mostly = 64;           /* old backlog weight */
4331 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4332 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4333 int dev_rx_weight __read_mostly = 64;
4334 int dev_tx_weight __read_mostly = 64;
4335
4336 /* Called with irq disabled */
4337 static inline void ____napi_schedule(struct softnet_data *sd,
4338                                      struct napi_struct *napi)
4339 {
4340         struct task_struct *thread;
4341
4342         lockdep_assert_irqs_disabled();
4343
4344         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4345                 /* Paired with smp_mb__before_atomic() in
4346                  * napi_enable()/dev_set_threaded().
4347                  * Use READ_ONCE() to guarantee a complete
4348                  * read on napi->thread. Only call
4349                  * wake_up_process() when it's not NULL.
4350                  */
4351                 thread = READ_ONCE(napi->thread);
4352                 if (thread) {
4353                         /* Avoid doing set_bit() if the thread is in
4354                          * INTERRUPTIBLE state, cause napi_thread_wait()
4355                          * makes sure to proceed with napi polling
4356                          * if the thread is explicitly woken from here.
4357                          */
4358                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4359                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4360                         wake_up_process(thread);
4361                         return;
4362                 }
4363         }
4364
4365         list_add_tail(&napi->poll_list, &sd->poll_list);
4366         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4367 }
4368
4369 #ifdef CONFIG_RPS
4370
4371 /* One global table that all flow-based protocols share. */
4372 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4373 EXPORT_SYMBOL(rps_sock_flow_table);
4374 u32 rps_cpu_mask __read_mostly;
4375 EXPORT_SYMBOL(rps_cpu_mask);
4376
4377 struct static_key_false rps_needed __read_mostly;
4378 EXPORT_SYMBOL(rps_needed);
4379 struct static_key_false rfs_needed __read_mostly;
4380 EXPORT_SYMBOL(rfs_needed);
4381
4382 static struct rps_dev_flow *
4383 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4384             struct rps_dev_flow *rflow, u16 next_cpu)
4385 {
4386         if (next_cpu < nr_cpu_ids) {
4387 #ifdef CONFIG_RFS_ACCEL
4388                 struct netdev_rx_queue *rxqueue;
4389                 struct rps_dev_flow_table *flow_table;
4390                 struct rps_dev_flow *old_rflow;
4391                 u32 flow_id;
4392                 u16 rxq_index;
4393                 int rc;
4394
4395                 /* Should we steer this flow to a different hardware queue? */
4396                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4397                     !(dev->features & NETIF_F_NTUPLE))
4398                         goto out;
4399                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4400                 if (rxq_index == skb_get_rx_queue(skb))
4401                         goto out;
4402
4403                 rxqueue = dev->_rx + rxq_index;
4404                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4405                 if (!flow_table)
4406                         goto out;
4407                 flow_id = skb_get_hash(skb) & flow_table->mask;
4408                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4409                                                         rxq_index, flow_id);
4410                 if (rc < 0)
4411                         goto out;
4412                 old_rflow = rflow;
4413                 rflow = &flow_table->flows[flow_id];
4414                 rflow->filter = rc;
4415                 if (old_rflow->filter == rflow->filter)
4416                         old_rflow->filter = RPS_NO_FILTER;
4417         out:
4418 #endif
4419                 rflow->last_qtail =
4420                         per_cpu(softnet_data, next_cpu).input_queue_head;
4421         }
4422
4423         rflow->cpu = next_cpu;
4424         return rflow;
4425 }
4426
4427 /*
4428  * get_rps_cpu is called from netif_receive_skb and returns the target
4429  * CPU from the RPS map of the receiving queue for a given skb.
4430  * rcu_read_lock must be held on entry.
4431  */
4432 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4433                        struct rps_dev_flow **rflowp)
4434 {
4435         const struct rps_sock_flow_table *sock_flow_table;
4436         struct netdev_rx_queue *rxqueue = dev->_rx;
4437         struct rps_dev_flow_table *flow_table;
4438         struct rps_map *map;
4439         int cpu = -1;
4440         u32 tcpu;
4441         u32 hash;
4442
4443         if (skb_rx_queue_recorded(skb)) {
4444                 u16 index = skb_get_rx_queue(skb);
4445
4446                 if (unlikely(index >= dev->real_num_rx_queues)) {
4447                         WARN_ONCE(dev->real_num_rx_queues > 1,
4448                                   "%s received packet on queue %u, but number "
4449                                   "of RX queues is %u\n",
4450                                   dev->name, index, dev->real_num_rx_queues);
4451                         goto done;
4452                 }
4453                 rxqueue += index;
4454         }
4455
4456         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4457
4458         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4459         map = rcu_dereference(rxqueue->rps_map);
4460         if (!flow_table && !map)
4461                 goto done;
4462
4463         skb_reset_network_header(skb);
4464         hash = skb_get_hash(skb);
4465         if (!hash)
4466                 goto done;
4467
4468         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4469         if (flow_table && sock_flow_table) {
4470                 struct rps_dev_flow *rflow;
4471                 u32 next_cpu;
4472                 u32 ident;
4473
4474                 /* First check into global flow table if there is a match */
4475                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4476                 if ((ident ^ hash) & ~rps_cpu_mask)
4477                         goto try_rps;
4478
4479                 next_cpu = ident & rps_cpu_mask;
4480
4481                 /* OK, now we know there is a match,
4482                  * we can look at the local (per receive queue) flow table
4483                  */
4484                 rflow = &flow_table->flows[hash & flow_table->mask];
4485                 tcpu = rflow->cpu;
4486
4487                 /*
4488                  * If the desired CPU (where last recvmsg was done) is
4489                  * different from current CPU (one in the rx-queue flow
4490                  * table entry), switch if one of the following holds:
4491                  *   - Current CPU is unset (>= nr_cpu_ids).
4492                  *   - Current CPU is offline.
4493                  *   - The current CPU's queue tail has advanced beyond the
4494                  *     last packet that was enqueued using this table entry.
4495                  *     This guarantees that all previous packets for the flow
4496                  *     have been dequeued, thus preserving in order delivery.
4497                  */
4498                 if (unlikely(tcpu != next_cpu) &&
4499                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4500                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4501                       rflow->last_qtail)) >= 0)) {
4502                         tcpu = next_cpu;
4503                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4504                 }
4505
4506                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4507                         *rflowp = rflow;
4508                         cpu = tcpu;
4509                         goto done;
4510                 }
4511         }
4512
4513 try_rps:
4514
4515         if (map) {
4516                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4517                 if (cpu_online(tcpu)) {
4518                         cpu = tcpu;
4519                         goto done;
4520                 }
4521         }
4522
4523 done:
4524         return cpu;
4525 }
4526
4527 #ifdef CONFIG_RFS_ACCEL
4528
4529 /**
4530  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4531  * @dev: Device on which the filter was set
4532  * @rxq_index: RX queue index
4533  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4534  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4535  *
4536  * Drivers that implement ndo_rx_flow_steer() should periodically call
4537  * this function for each installed filter and remove the filters for
4538  * which it returns %true.
4539  */
4540 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4541                          u32 flow_id, u16 filter_id)
4542 {
4543         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4544         struct rps_dev_flow_table *flow_table;
4545         struct rps_dev_flow *rflow;
4546         bool expire = true;
4547         unsigned int cpu;
4548
4549         rcu_read_lock();
4550         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4551         if (flow_table && flow_id <= flow_table->mask) {
4552                 rflow = &flow_table->flows[flow_id];
4553                 cpu = READ_ONCE(rflow->cpu);
4554                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4555                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4556                            rflow->last_qtail) <
4557                      (int)(10 * flow_table->mask)))
4558                         expire = false;
4559         }
4560         rcu_read_unlock();
4561         return expire;
4562 }
4563 EXPORT_SYMBOL(rps_may_expire_flow);
4564
4565 #endif /* CONFIG_RFS_ACCEL */
4566
4567 /* Called from hardirq (IPI) context */
4568 static void rps_trigger_softirq(void *data)
4569 {
4570         struct softnet_data *sd = data;
4571
4572         ____napi_schedule(sd, &sd->backlog);
4573         sd->received_rps++;
4574 }
4575
4576 #endif /* CONFIG_RPS */
4577
4578 /* Called from hardirq (IPI) context */
4579 static void trigger_rx_softirq(void *data)
4580 {
4581         struct softnet_data *sd = data;
4582
4583         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4584         smp_store_release(&sd->defer_ipi_scheduled, 0);
4585 }
4586
4587 /*
4588  * Check if this softnet_data structure is another cpu one
4589  * If yes, queue it to our IPI list and return 1
4590  * If no, return 0
4591  */
4592 static int napi_schedule_rps(struct softnet_data *sd)
4593 {
4594         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4595
4596 #ifdef CONFIG_RPS
4597         if (sd != mysd) {
4598                 sd->rps_ipi_next = mysd->rps_ipi_list;
4599                 mysd->rps_ipi_list = sd;
4600
4601                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4602                 return 1;
4603         }
4604 #endif /* CONFIG_RPS */
4605         __napi_schedule_irqoff(&mysd->backlog);
4606         return 0;
4607 }
4608
4609 #ifdef CONFIG_NET_FLOW_LIMIT
4610 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4611 #endif
4612
4613 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4614 {
4615 #ifdef CONFIG_NET_FLOW_LIMIT
4616         struct sd_flow_limit *fl;
4617         struct softnet_data *sd;
4618         unsigned int old_flow, new_flow;
4619
4620         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4621                 return false;
4622
4623         sd = this_cpu_ptr(&softnet_data);
4624
4625         rcu_read_lock();
4626         fl = rcu_dereference(sd->flow_limit);
4627         if (fl) {
4628                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4629                 old_flow = fl->history[fl->history_head];
4630                 fl->history[fl->history_head] = new_flow;
4631
4632                 fl->history_head++;
4633                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4634
4635                 if (likely(fl->buckets[old_flow]))
4636                         fl->buckets[old_flow]--;
4637
4638                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4639                         fl->count++;
4640                         rcu_read_unlock();
4641                         return true;
4642                 }
4643         }
4644         rcu_read_unlock();
4645 #endif
4646         return false;
4647 }
4648
4649 /*
4650  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4651  * queue (may be a remote CPU queue).
4652  */
4653 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4654                               unsigned int *qtail)
4655 {
4656         enum skb_drop_reason reason;
4657         struct softnet_data *sd;
4658         unsigned long flags;
4659         unsigned int qlen;
4660
4661         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4662         sd = &per_cpu(softnet_data, cpu);
4663
4664         rps_lock_irqsave(sd, &flags);
4665         if (!netif_running(skb->dev))
4666                 goto drop;
4667         qlen = skb_queue_len(&sd->input_pkt_queue);
4668         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4669                 if (qlen) {
4670 enqueue:
4671                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4672                         input_queue_tail_incr_save(sd, qtail);
4673                         rps_unlock_irq_restore(sd, &flags);
4674                         return NET_RX_SUCCESS;
4675                 }
4676
4677                 /* Schedule NAPI for backlog device
4678                  * We can use non atomic operation since we own the queue lock
4679                  */
4680                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4681                         napi_schedule_rps(sd);
4682                 goto enqueue;
4683         }
4684         reason = SKB_DROP_REASON_CPU_BACKLOG;
4685
4686 drop:
4687         sd->dropped++;
4688         rps_unlock_irq_restore(sd, &flags);
4689
4690         dev_core_stats_rx_dropped_inc(skb->dev);
4691         kfree_skb_reason(skb, reason);
4692         return NET_RX_DROP;
4693 }
4694
4695 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4696 {
4697         struct net_device *dev = skb->dev;
4698         struct netdev_rx_queue *rxqueue;
4699
4700         rxqueue = dev->_rx;
4701
4702         if (skb_rx_queue_recorded(skb)) {
4703                 u16 index = skb_get_rx_queue(skb);
4704
4705                 if (unlikely(index >= dev->real_num_rx_queues)) {
4706                         WARN_ONCE(dev->real_num_rx_queues > 1,
4707                                   "%s received packet on queue %u, but number "
4708                                   "of RX queues is %u\n",
4709                                   dev->name, index, dev->real_num_rx_queues);
4710
4711                         return rxqueue; /* Return first rxqueue */
4712                 }
4713                 rxqueue += index;
4714         }
4715         return rxqueue;
4716 }
4717
4718 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4719                              struct bpf_prog *xdp_prog)
4720 {
4721         void *orig_data, *orig_data_end, *hard_start;
4722         struct netdev_rx_queue *rxqueue;
4723         bool orig_bcast, orig_host;
4724         u32 mac_len, frame_sz;
4725         __be16 orig_eth_type;
4726         struct ethhdr *eth;
4727         u32 metalen, act;
4728         int off;
4729
4730         /* The XDP program wants to see the packet starting at the MAC
4731          * header.
4732          */
4733         mac_len = skb->data - skb_mac_header(skb);
4734         hard_start = skb->data - skb_headroom(skb);
4735
4736         /* SKB "head" area always have tailroom for skb_shared_info */
4737         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4738         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4739
4740         rxqueue = netif_get_rxqueue(skb);
4741         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4742         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4743                          skb_headlen(skb) + mac_len, true);
4744
4745         orig_data_end = xdp->data_end;
4746         orig_data = xdp->data;
4747         eth = (struct ethhdr *)xdp->data;
4748         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4749         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4750         orig_eth_type = eth->h_proto;
4751
4752         act = bpf_prog_run_xdp(xdp_prog, xdp);
4753
4754         /* check if bpf_xdp_adjust_head was used */
4755         off = xdp->data - orig_data;
4756         if (off) {
4757                 if (off > 0)
4758                         __skb_pull(skb, off);
4759                 else if (off < 0)
4760                         __skb_push(skb, -off);
4761
4762                 skb->mac_header += off;
4763                 skb_reset_network_header(skb);
4764         }
4765
4766         /* check if bpf_xdp_adjust_tail was used */
4767         off = xdp->data_end - orig_data_end;
4768         if (off != 0) {
4769                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4770                 skb->len += off; /* positive on grow, negative on shrink */
4771         }
4772
4773         /* check if XDP changed eth hdr such SKB needs update */
4774         eth = (struct ethhdr *)xdp->data;
4775         if ((orig_eth_type != eth->h_proto) ||
4776             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4777                                                   skb->dev->dev_addr)) ||
4778             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4779                 __skb_push(skb, ETH_HLEN);
4780                 skb->pkt_type = PACKET_HOST;
4781                 skb->protocol = eth_type_trans(skb, skb->dev);
4782         }
4783
4784         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4785          * before calling us again on redirect path. We do not call do_redirect
4786          * as we leave that up to the caller.
4787          *
4788          * Caller is responsible for managing lifetime of skb (i.e. calling
4789          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4790          */
4791         switch (act) {
4792         case XDP_REDIRECT:
4793         case XDP_TX:
4794                 __skb_push(skb, mac_len);
4795                 break;
4796         case XDP_PASS:
4797                 metalen = xdp->data - xdp->data_meta;
4798                 if (metalen)
4799                         skb_metadata_set(skb, metalen);
4800                 break;
4801         }
4802
4803         return act;
4804 }
4805
4806 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4807                                      struct xdp_buff *xdp,
4808                                      struct bpf_prog *xdp_prog)
4809 {
4810         u32 act = XDP_DROP;
4811
4812         /* Reinjected packets coming from act_mirred or similar should
4813          * not get XDP generic processing.
4814          */
4815         if (skb_is_redirected(skb))
4816                 return XDP_PASS;
4817
4818         /* XDP packets must be linear and must have sufficient headroom
4819          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4820          * native XDP provides, thus we need to do it here as well.
4821          */
4822         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4823             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4824                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4825                 int troom = skb->tail + skb->data_len - skb->end;
4826
4827                 /* In case we have to go down the path and also linearize,
4828                  * then lets do the pskb_expand_head() work just once here.
4829                  */
4830                 if (pskb_expand_head(skb,
4831                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4832                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4833                         goto do_drop;
4834                 if (skb_linearize(skb))
4835                         goto do_drop;
4836         }
4837
4838         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4839         switch (act) {
4840         case XDP_REDIRECT:
4841         case XDP_TX:
4842         case XDP_PASS:
4843                 break;
4844         default:
4845                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4846                 fallthrough;
4847         case XDP_ABORTED:
4848                 trace_xdp_exception(skb->dev, xdp_prog, act);
4849                 fallthrough;
4850         case XDP_DROP:
4851         do_drop:
4852                 kfree_skb(skb);
4853                 break;
4854         }
4855
4856         return act;
4857 }
4858
4859 /* When doing generic XDP we have to bypass the qdisc layer and the
4860  * network taps in order to match in-driver-XDP behavior. This also means
4861  * that XDP packets are able to starve other packets going through a qdisc,
4862  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4863  * queues, so they do not have this starvation issue.
4864  */
4865 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4866 {
4867         struct net_device *dev = skb->dev;
4868         struct netdev_queue *txq;
4869         bool free_skb = true;
4870         int cpu, rc;
4871
4872         txq = netdev_core_pick_tx(dev, skb, NULL);
4873         cpu = smp_processor_id();
4874         HARD_TX_LOCK(dev, txq, cpu);
4875         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4876                 rc = netdev_start_xmit(skb, dev, txq, 0);
4877                 if (dev_xmit_complete(rc))
4878                         free_skb = false;
4879         }
4880         HARD_TX_UNLOCK(dev, txq);
4881         if (free_skb) {
4882                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4883                 dev_core_stats_tx_dropped_inc(dev);
4884                 kfree_skb(skb);
4885         }
4886 }
4887
4888 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4889
4890 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4891 {
4892         if (xdp_prog) {
4893                 struct xdp_buff xdp;
4894                 u32 act;
4895                 int err;
4896
4897                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4898                 if (act != XDP_PASS) {
4899                         switch (act) {
4900                         case XDP_REDIRECT:
4901                                 err = xdp_do_generic_redirect(skb->dev, skb,
4902                                                               &xdp, xdp_prog);
4903                                 if (err)
4904                                         goto out_redir;
4905                                 break;
4906                         case XDP_TX:
4907                                 generic_xdp_tx(skb, xdp_prog);
4908                                 break;
4909                         }
4910                         return XDP_DROP;
4911                 }
4912         }
4913         return XDP_PASS;
4914 out_redir:
4915         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4916         return XDP_DROP;
4917 }
4918 EXPORT_SYMBOL_GPL(do_xdp_generic);
4919
4920 static int netif_rx_internal(struct sk_buff *skb)
4921 {
4922         int ret;
4923
4924         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4925
4926         trace_netif_rx(skb);
4927
4928 #ifdef CONFIG_RPS
4929         if (static_branch_unlikely(&rps_needed)) {
4930                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4931                 int cpu;
4932
4933                 rcu_read_lock();
4934
4935                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4936                 if (cpu < 0)
4937                         cpu = smp_processor_id();
4938
4939                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4940
4941                 rcu_read_unlock();
4942         } else
4943 #endif
4944         {
4945                 unsigned int qtail;
4946
4947                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4948         }
4949         return ret;
4950 }
4951
4952 /**
4953  *      __netif_rx      -       Slightly optimized version of netif_rx
4954  *      @skb: buffer to post
4955  *
4956  *      This behaves as netif_rx except that it does not disable bottom halves.
4957  *      As a result this function may only be invoked from the interrupt context
4958  *      (either hard or soft interrupt).
4959  */
4960 int __netif_rx(struct sk_buff *skb)
4961 {
4962         int ret;
4963
4964         lockdep_assert_once(hardirq_count() | softirq_count());
4965
4966         trace_netif_rx_entry(skb);
4967         ret = netif_rx_internal(skb);
4968         trace_netif_rx_exit(ret);
4969         return ret;
4970 }
4971 EXPORT_SYMBOL(__netif_rx);
4972
4973 /**
4974  *      netif_rx        -       post buffer to the network code
4975  *      @skb: buffer to post
4976  *
4977  *      This function receives a packet from a device driver and queues it for
4978  *      the upper (protocol) levels to process via the backlog NAPI device. It
4979  *      always succeeds. The buffer may be dropped during processing for
4980  *      congestion control or by the protocol layers.
4981  *      The network buffer is passed via the backlog NAPI device. Modern NIC
4982  *      driver should use NAPI and GRO.
4983  *      This function can used from interrupt and from process context. The
4984  *      caller from process context must not disable interrupts before invoking
4985  *      this function.
4986  *
4987  *      return values:
4988  *      NET_RX_SUCCESS  (no congestion)
4989  *      NET_RX_DROP     (packet was dropped)
4990  *
4991  */
4992 int netif_rx(struct sk_buff *skb)
4993 {
4994         bool need_bh_off = !(hardirq_count() | softirq_count());
4995         int ret;
4996
4997         if (need_bh_off)
4998                 local_bh_disable();
4999         trace_netif_rx_entry(skb);
5000         ret = netif_rx_internal(skb);
5001         trace_netif_rx_exit(ret);
5002         if (need_bh_off)
5003                 local_bh_enable();
5004         return ret;
5005 }
5006 EXPORT_SYMBOL(netif_rx);
5007
5008 static __latent_entropy void net_tx_action(struct softirq_action *h)
5009 {
5010         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5011
5012         if (sd->completion_queue) {
5013                 struct sk_buff *clist;
5014
5015                 local_irq_disable();
5016                 clist = sd->completion_queue;
5017                 sd->completion_queue = NULL;
5018                 local_irq_enable();
5019
5020                 while (clist) {
5021                         struct sk_buff *skb = clist;
5022
5023                         clist = clist->next;
5024
5025                         WARN_ON(refcount_read(&skb->users));
5026                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5027                                 trace_consume_skb(skb);
5028                         else
5029                                 trace_kfree_skb(skb, net_tx_action,
5030                                                 SKB_DROP_REASON_NOT_SPECIFIED);
5031
5032                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5033                                 __kfree_skb(skb);
5034                         else
5035                                 __kfree_skb_defer(skb);
5036                 }
5037         }
5038
5039         if (sd->output_queue) {
5040                 struct Qdisc *head;
5041
5042                 local_irq_disable();
5043                 head = sd->output_queue;
5044                 sd->output_queue = NULL;
5045                 sd->output_queue_tailp = &sd->output_queue;
5046                 local_irq_enable();
5047
5048                 rcu_read_lock();
5049
5050                 while (head) {
5051                         struct Qdisc *q = head;
5052                         spinlock_t *root_lock = NULL;
5053
5054                         head = head->next_sched;
5055
5056                         /* We need to make sure head->next_sched is read
5057                          * before clearing __QDISC_STATE_SCHED
5058                          */
5059                         smp_mb__before_atomic();
5060
5061                         if (!(q->flags & TCQ_F_NOLOCK)) {
5062                                 root_lock = qdisc_lock(q);
5063                                 spin_lock(root_lock);
5064                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5065                                                      &q->state))) {
5066                                 /* There is a synchronize_net() between
5067                                  * STATE_DEACTIVATED flag being set and
5068                                  * qdisc_reset()/some_qdisc_is_busy() in
5069                                  * dev_deactivate(), so we can safely bail out
5070                                  * early here to avoid data race between
5071                                  * qdisc_deactivate() and some_qdisc_is_busy()
5072                                  * for lockless qdisc.
5073                                  */
5074                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5075                                 continue;
5076                         }
5077
5078                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5079                         qdisc_run(q);
5080                         if (root_lock)
5081                                 spin_unlock(root_lock);
5082                 }
5083
5084                 rcu_read_unlock();
5085         }
5086
5087         xfrm_dev_backlog(sd);
5088 }
5089
5090 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5091 /* This hook is defined here for ATM LANE */
5092 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5093                              unsigned char *addr) __read_mostly;
5094 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5095 #endif
5096
5097 static inline struct sk_buff *
5098 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5099                    struct net_device *orig_dev, bool *another)
5100 {
5101 #ifdef CONFIG_NET_CLS_ACT
5102         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5103         struct tcf_result cl_res;
5104
5105         /* If there's at least one ingress present somewhere (so
5106          * we get here via enabled static key), remaining devices
5107          * that are not configured with an ingress qdisc will bail
5108          * out here.
5109          */
5110         if (!miniq)
5111                 return skb;
5112
5113         if (*pt_prev) {
5114                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5115                 *pt_prev = NULL;
5116         }
5117
5118         qdisc_skb_cb(skb)->pkt_len = skb->len;
5119         tc_skb_cb(skb)->mru = 0;
5120         tc_skb_cb(skb)->post_ct = false;
5121         skb->tc_at_ingress = 1;
5122         mini_qdisc_bstats_cpu_update(miniq, skb);
5123
5124         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5125         case TC_ACT_OK:
5126         case TC_ACT_RECLASSIFY:
5127                 skb->tc_index = TC_H_MIN(cl_res.classid);
5128                 break;
5129         case TC_ACT_SHOT:
5130                 mini_qdisc_qstats_cpu_drop(miniq);
5131                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5132                 *ret = NET_RX_DROP;
5133                 return NULL;
5134         case TC_ACT_STOLEN:
5135         case TC_ACT_QUEUED:
5136         case TC_ACT_TRAP:
5137                 consume_skb(skb);
5138                 *ret = NET_RX_SUCCESS;
5139                 return NULL;
5140         case TC_ACT_REDIRECT:
5141                 /* skb_mac_header check was done by cls/act_bpf, so
5142                  * we can safely push the L2 header back before
5143                  * redirecting to another netdev
5144                  */
5145                 __skb_push(skb, skb->mac_len);
5146                 if (skb_do_redirect(skb) == -EAGAIN) {
5147                         __skb_pull(skb, skb->mac_len);
5148                         *another = true;
5149                         break;
5150                 }
5151                 *ret = NET_RX_SUCCESS;
5152                 return NULL;
5153         case TC_ACT_CONSUMED:
5154                 *ret = NET_RX_SUCCESS;
5155                 return NULL;
5156         default:
5157                 break;
5158         }
5159 #endif /* CONFIG_NET_CLS_ACT */
5160         return skb;
5161 }
5162
5163 /**
5164  *      netdev_is_rx_handler_busy - check if receive handler is registered
5165  *      @dev: device to check
5166  *
5167  *      Check if a receive handler is already registered for a given device.
5168  *      Return true if there one.
5169  *
5170  *      The caller must hold the rtnl_mutex.
5171  */
5172 bool netdev_is_rx_handler_busy(struct net_device *dev)
5173 {
5174         ASSERT_RTNL();
5175         return dev && rtnl_dereference(dev->rx_handler);
5176 }
5177 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5178
5179 /**
5180  *      netdev_rx_handler_register - register receive handler
5181  *      @dev: device to register a handler for
5182  *      @rx_handler: receive handler to register
5183  *      @rx_handler_data: data pointer that is used by rx handler
5184  *
5185  *      Register a receive handler for a device. This handler will then be
5186  *      called from __netif_receive_skb. A negative errno code is returned
5187  *      on a failure.
5188  *
5189  *      The caller must hold the rtnl_mutex.
5190  *
5191  *      For a general description of rx_handler, see enum rx_handler_result.
5192  */
5193 int netdev_rx_handler_register(struct net_device *dev,
5194                                rx_handler_func_t *rx_handler,
5195                                void *rx_handler_data)
5196 {
5197         if (netdev_is_rx_handler_busy(dev))
5198                 return -EBUSY;
5199
5200         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5201                 return -EINVAL;
5202
5203         /* Note: rx_handler_data must be set before rx_handler */
5204         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5205         rcu_assign_pointer(dev->rx_handler, rx_handler);
5206
5207         return 0;
5208 }
5209 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5210
5211 /**
5212  *      netdev_rx_handler_unregister - unregister receive handler
5213  *      @dev: device to unregister a handler from
5214  *
5215  *      Unregister a receive handler from a device.
5216  *
5217  *      The caller must hold the rtnl_mutex.
5218  */
5219 void netdev_rx_handler_unregister(struct net_device *dev)
5220 {
5221
5222         ASSERT_RTNL();
5223         RCU_INIT_POINTER(dev->rx_handler, NULL);
5224         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5225          * section has a guarantee to see a non NULL rx_handler_data
5226          * as well.
5227          */
5228         synchronize_net();
5229         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5230 }
5231 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5232
5233 /*
5234  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5235  * the special handling of PFMEMALLOC skbs.
5236  */
5237 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5238 {
5239         switch (skb->protocol) {
5240         case htons(ETH_P_ARP):
5241         case htons(ETH_P_IP):
5242         case htons(ETH_P_IPV6):
5243         case htons(ETH_P_8021Q):
5244         case htons(ETH_P_8021AD):
5245                 return true;
5246         default:
5247                 return false;
5248         }
5249 }
5250
5251 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5252                              int *ret, struct net_device *orig_dev)
5253 {
5254         if (nf_hook_ingress_active(skb)) {
5255                 int ingress_retval;
5256
5257                 if (*pt_prev) {
5258                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5259                         *pt_prev = NULL;
5260                 }
5261
5262                 rcu_read_lock();
5263                 ingress_retval = nf_hook_ingress(skb);
5264                 rcu_read_unlock();
5265                 return ingress_retval;
5266         }
5267         return 0;
5268 }
5269
5270 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5271                                     struct packet_type **ppt_prev)
5272 {
5273         struct packet_type *ptype, *pt_prev;
5274         rx_handler_func_t *rx_handler;
5275         struct sk_buff *skb = *pskb;
5276         struct net_device *orig_dev;
5277         bool deliver_exact = false;
5278         int ret = NET_RX_DROP;
5279         __be16 type;
5280
5281         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5282
5283         trace_netif_receive_skb(skb);
5284
5285         orig_dev = skb->dev;
5286
5287         skb_reset_network_header(skb);
5288         if (!skb_transport_header_was_set(skb))
5289                 skb_reset_transport_header(skb);
5290         skb_reset_mac_len(skb);
5291
5292         pt_prev = NULL;
5293
5294 another_round:
5295         skb->skb_iif = skb->dev->ifindex;
5296
5297         __this_cpu_inc(softnet_data.processed);
5298
5299         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5300                 int ret2;
5301
5302                 migrate_disable();
5303                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5304                 migrate_enable();
5305
5306                 if (ret2 != XDP_PASS) {
5307                         ret = NET_RX_DROP;
5308                         goto out;
5309                 }
5310         }
5311
5312         if (eth_type_vlan(skb->protocol)) {
5313                 skb = skb_vlan_untag(skb);
5314                 if (unlikely(!skb))
5315                         goto out;
5316         }
5317
5318         if (skb_skip_tc_classify(skb))
5319                 goto skip_classify;
5320
5321         if (pfmemalloc)
5322                 goto skip_taps;
5323
5324         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5325                 if (pt_prev)
5326                         ret = deliver_skb(skb, pt_prev, orig_dev);
5327                 pt_prev = ptype;
5328         }
5329
5330         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5331                 if (pt_prev)
5332                         ret = deliver_skb(skb, pt_prev, orig_dev);
5333                 pt_prev = ptype;
5334         }
5335
5336 skip_taps:
5337 #ifdef CONFIG_NET_INGRESS
5338         if (static_branch_unlikely(&ingress_needed_key)) {
5339                 bool another = false;
5340
5341                 nf_skip_egress(skb, true);
5342                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5343                                          &another);
5344                 if (another)
5345                         goto another_round;
5346                 if (!skb)
5347                         goto out;
5348
5349                 nf_skip_egress(skb, false);
5350                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5351                         goto out;
5352         }
5353 #endif
5354         skb_reset_redirect(skb);
5355 skip_classify:
5356         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5357                 goto drop;
5358
5359         if (skb_vlan_tag_present(skb)) {
5360                 if (pt_prev) {
5361                         ret = deliver_skb(skb, pt_prev, orig_dev);
5362                         pt_prev = NULL;
5363                 }
5364                 if (vlan_do_receive(&skb))
5365                         goto another_round;
5366                 else if (unlikely(!skb))
5367                         goto out;
5368         }
5369
5370         rx_handler = rcu_dereference(skb->dev->rx_handler);
5371         if (rx_handler) {
5372                 if (pt_prev) {
5373                         ret = deliver_skb(skb, pt_prev, orig_dev);
5374                         pt_prev = NULL;
5375                 }
5376                 switch (rx_handler(&skb)) {
5377                 case RX_HANDLER_CONSUMED:
5378                         ret = NET_RX_SUCCESS;
5379                         goto out;
5380                 case RX_HANDLER_ANOTHER:
5381                         goto another_round;
5382                 case RX_HANDLER_EXACT:
5383                         deliver_exact = true;
5384                         break;
5385                 case RX_HANDLER_PASS:
5386                         break;
5387                 default:
5388                         BUG();
5389                 }
5390         }
5391
5392         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5393 check_vlan_id:
5394                 if (skb_vlan_tag_get_id(skb)) {
5395                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5396                          * find vlan device.
5397                          */
5398                         skb->pkt_type = PACKET_OTHERHOST;
5399                 } else if (eth_type_vlan(skb->protocol)) {
5400                         /* Outer header is 802.1P with vlan 0, inner header is
5401                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5402                          * not find vlan dev for vlan id 0.
5403                          */
5404                         __vlan_hwaccel_clear_tag(skb);
5405                         skb = skb_vlan_untag(skb);
5406                         if (unlikely(!skb))
5407                                 goto out;
5408                         if (vlan_do_receive(&skb))
5409                                 /* After stripping off 802.1P header with vlan 0
5410                                  * vlan dev is found for inner header.
5411                                  */
5412                                 goto another_round;
5413                         else if (unlikely(!skb))
5414                                 goto out;
5415                         else
5416                                 /* We have stripped outer 802.1P vlan 0 header.
5417                                  * But could not find vlan dev.
5418                                  * check again for vlan id to set OTHERHOST.
5419                                  */
5420                                 goto check_vlan_id;
5421                 }
5422                 /* Note: we might in the future use prio bits
5423                  * and set skb->priority like in vlan_do_receive()
5424                  * For the time being, just ignore Priority Code Point
5425                  */
5426                 __vlan_hwaccel_clear_tag(skb);
5427         }
5428
5429         type = skb->protocol;
5430
5431         /* deliver only exact match when indicated */
5432         if (likely(!deliver_exact)) {
5433                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5434                                        &ptype_base[ntohs(type) &
5435                                                    PTYPE_HASH_MASK]);
5436         }
5437
5438         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5439                                &orig_dev->ptype_specific);
5440
5441         if (unlikely(skb->dev != orig_dev)) {
5442                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5443                                        &skb->dev->ptype_specific);
5444         }
5445
5446         if (pt_prev) {
5447                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5448                         goto drop;
5449                 *ppt_prev = pt_prev;
5450         } else {
5451 drop:
5452                 if (!deliver_exact)
5453                         dev_core_stats_rx_dropped_inc(skb->dev);
5454                 else
5455                         dev_core_stats_rx_nohandler_inc(skb->dev);
5456                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5457                 /* Jamal, now you will not able to escape explaining
5458                  * me how you were going to use this. :-)
5459                  */
5460                 ret = NET_RX_DROP;
5461         }
5462
5463 out:
5464         /* The invariant here is that if *ppt_prev is not NULL
5465          * then skb should also be non-NULL.
5466          *
5467          * Apparently *ppt_prev assignment above holds this invariant due to
5468          * skb dereferencing near it.
5469          */
5470         *pskb = skb;
5471         return ret;
5472 }
5473
5474 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5475 {
5476         struct net_device *orig_dev = skb->dev;
5477         struct packet_type *pt_prev = NULL;
5478         int ret;
5479
5480         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5481         if (pt_prev)
5482                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5483                                          skb->dev, pt_prev, orig_dev);
5484         return ret;
5485 }
5486
5487 /**
5488  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5489  *      @skb: buffer to process
5490  *
5491  *      More direct receive version of netif_receive_skb().  It should
5492  *      only be used by callers that have a need to skip RPS and Generic XDP.
5493  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5494  *
5495  *      This function may only be called from softirq context and interrupts
5496  *      should be enabled.
5497  *
5498  *      Return values (usually ignored):
5499  *      NET_RX_SUCCESS: no congestion
5500  *      NET_RX_DROP: packet was dropped
5501  */
5502 int netif_receive_skb_core(struct sk_buff *skb)
5503 {
5504         int ret;
5505
5506         rcu_read_lock();
5507         ret = __netif_receive_skb_one_core(skb, false);
5508         rcu_read_unlock();
5509
5510         return ret;
5511 }
5512 EXPORT_SYMBOL(netif_receive_skb_core);
5513
5514 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5515                                                   struct packet_type *pt_prev,
5516                                                   struct net_device *orig_dev)
5517 {
5518         struct sk_buff *skb, *next;
5519
5520         if (!pt_prev)
5521                 return;
5522         if (list_empty(head))
5523                 return;
5524         if (pt_prev->list_func != NULL)
5525                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5526                                    ip_list_rcv, head, pt_prev, orig_dev);
5527         else
5528                 list_for_each_entry_safe(skb, next, head, list) {
5529                         skb_list_del_init(skb);
5530                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5531                 }
5532 }
5533
5534 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5535 {
5536         /* Fast-path assumptions:
5537          * - There is no RX handler.
5538          * - Only one packet_type matches.
5539          * If either of these fails, we will end up doing some per-packet
5540          * processing in-line, then handling the 'last ptype' for the whole
5541          * sublist.  This can't cause out-of-order delivery to any single ptype,
5542          * because the 'last ptype' must be constant across the sublist, and all
5543          * other ptypes are handled per-packet.
5544          */
5545         /* Current (common) ptype of sublist */
5546         struct packet_type *pt_curr = NULL;
5547         /* Current (common) orig_dev of sublist */
5548         struct net_device *od_curr = NULL;
5549         struct list_head sublist;
5550         struct sk_buff *skb, *next;
5551
5552         INIT_LIST_HEAD(&sublist);
5553         list_for_each_entry_safe(skb, next, head, list) {
5554                 struct net_device *orig_dev = skb->dev;
5555                 struct packet_type *pt_prev = NULL;
5556
5557                 skb_list_del_init(skb);
5558                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5559                 if (!pt_prev)
5560                         continue;
5561                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5562                         /* dispatch old sublist */
5563                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5564                         /* start new sublist */
5565                         INIT_LIST_HEAD(&sublist);
5566                         pt_curr = pt_prev;
5567                         od_curr = orig_dev;
5568                 }
5569                 list_add_tail(&skb->list, &sublist);
5570         }
5571
5572         /* dispatch final sublist */
5573         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5574 }
5575
5576 static int __netif_receive_skb(struct sk_buff *skb)
5577 {
5578         int ret;
5579
5580         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5581                 unsigned int noreclaim_flag;
5582
5583                 /*
5584                  * PFMEMALLOC skbs are special, they should
5585                  * - be delivered to SOCK_MEMALLOC sockets only
5586                  * - stay away from userspace
5587                  * - have bounded memory usage
5588                  *
5589                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5590                  * context down to all allocation sites.
5591                  */
5592                 noreclaim_flag = memalloc_noreclaim_save();
5593                 ret = __netif_receive_skb_one_core(skb, true);
5594                 memalloc_noreclaim_restore(noreclaim_flag);
5595         } else
5596                 ret = __netif_receive_skb_one_core(skb, false);
5597
5598         return ret;
5599 }
5600
5601 static void __netif_receive_skb_list(struct list_head *head)
5602 {
5603         unsigned long noreclaim_flag = 0;
5604         struct sk_buff *skb, *next;
5605         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5606
5607         list_for_each_entry_safe(skb, next, head, list) {
5608                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5609                         struct list_head sublist;
5610
5611                         /* Handle the previous sublist */
5612                         list_cut_before(&sublist, head, &skb->list);
5613                         if (!list_empty(&sublist))
5614                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5615                         pfmemalloc = !pfmemalloc;
5616                         /* See comments in __netif_receive_skb */
5617                         if (pfmemalloc)
5618                                 noreclaim_flag = memalloc_noreclaim_save();
5619                         else
5620                                 memalloc_noreclaim_restore(noreclaim_flag);
5621                 }
5622         }
5623         /* Handle the remaining sublist */
5624         if (!list_empty(head))
5625                 __netif_receive_skb_list_core(head, pfmemalloc);
5626         /* Restore pflags */
5627         if (pfmemalloc)
5628                 memalloc_noreclaim_restore(noreclaim_flag);
5629 }
5630
5631 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5632 {
5633         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5634         struct bpf_prog *new = xdp->prog;
5635         int ret = 0;
5636
5637         switch (xdp->command) {
5638         case XDP_SETUP_PROG:
5639                 rcu_assign_pointer(dev->xdp_prog, new);
5640                 if (old)
5641                         bpf_prog_put(old);
5642
5643                 if (old && !new) {
5644                         static_branch_dec(&generic_xdp_needed_key);
5645                 } else if (new && !old) {
5646                         static_branch_inc(&generic_xdp_needed_key);
5647                         dev_disable_lro(dev);
5648                         dev_disable_gro_hw(dev);
5649                 }
5650                 break;
5651
5652         default:
5653                 ret = -EINVAL;
5654                 break;
5655         }
5656
5657         return ret;
5658 }
5659
5660 static int netif_receive_skb_internal(struct sk_buff *skb)
5661 {
5662         int ret;
5663
5664         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5665
5666         if (skb_defer_rx_timestamp(skb))
5667                 return NET_RX_SUCCESS;
5668
5669         rcu_read_lock();
5670 #ifdef CONFIG_RPS
5671         if (static_branch_unlikely(&rps_needed)) {
5672                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5673                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5674
5675                 if (cpu >= 0) {
5676                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5677                         rcu_read_unlock();
5678                         return ret;
5679                 }
5680         }
5681 #endif
5682         ret = __netif_receive_skb(skb);
5683         rcu_read_unlock();
5684         return ret;
5685 }
5686
5687 void netif_receive_skb_list_internal(struct list_head *head)
5688 {
5689         struct sk_buff *skb, *next;
5690         struct list_head sublist;
5691
5692         INIT_LIST_HEAD(&sublist);
5693         list_for_each_entry_safe(skb, next, head, list) {
5694                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5695                 skb_list_del_init(skb);
5696                 if (!skb_defer_rx_timestamp(skb))
5697                         list_add_tail(&skb->list, &sublist);
5698         }
5699         list_splice_init(&sublist, head);
5700
5701         rcu_read_lock();
5702 #ifdef CONFIG_RPS
5703         if (static_branch_unlikely(&rps_needed)) {
5704                 list_for_each_entry_safe(skb, next, head, list) {
5705                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5706                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5707
5708                         if (cpu >= 0) {
5709                                 /* Will be handled, remove from list */
5710                                 skb_list_del_init(skb);
5711                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5712                         }
5713                 }
5714         }
5715 #endif
5716         __netif_receive_skb_list(head);
5717         rcu_read_unlock();
5718 }
5719
5720 /**
5721  *      netif_receive_skb - process receive buffer from network
5722  *      @skb: buffer to process
5723  *
5724  *      netif_receive_skb() is the main receive data processing function.
5725  *      It always succeeds. The buffer may be dropped during processing
5726  *      for congestion control or by the protocol layers.
5727  *
5728  *      This function may only be called from softirq context and interrupts
5729  *      should be enabled.
5730  *
5731  *      Return values (usually ignored):
5732  *      NET_RX_SUCCESS: no congestion
5733  *      NET_RX_DROP: packet was dropped
5734  */
5735 int netif_receive_skb(struct sk_buff *skb)
5736 {
5737         int ret;
5738
5739         trace_netif_receive_skb_entry(skb);
5740
5741         ret = netif_receive_skb_internal(skb);
5742         trace_netif_receive_skb_exit(ret);
5743
5744         return ret;
5745 }
5746 EXPORT_SYMBOL(netif_receive_skb);
5747
5748 /**
5749  *      netif_receive_skb_list - process many receive buffers from network
5750  *      @head: list of skbs to process.
5751  *
5752  *      Since return value of netif_receive_skb() is normally ignored, and
5753  *      wouldn't be meaningful for a list, this function returns void.
5754  *
5755  *      This function may only be called from softirq context and interrupts
5756  *      should be enabled.
5757  */
5758 void netif_receive_skb_list(struct list_head *head)
5759 {
5760         struct sk_buff *skb;
5761
5762         if (list_empty(head))
5763                 return;
5764         if (trace_netif_receive_skb_list_entry_enabled()) {
5765                 list_for_each_entry(skb, head, list)
5766                         trace_netif_receive_skb_list_entry(skb);
5767         }
5768         netif_receive_skb_list_internal(head);
5769         trace_netif_receive_skb_list_exit(0);
5770 }
5771 EXPORT_SYMBOL(netif_receive_skb_list);
5772
5773 static DEFINE_PER_CPU(struct work_struct, flush_works);
5774
5775 /* Network device is going away, flush any packets still pending */
5776 static void flush_backlog(struct work_struct *work)
5777 {
5778         struct sk_buff *skb, *tmp;
5779         struct softnet_data *sd;
5780
5781         local_bh_disable();
5782         sd = this_cpu_ptr(&softnet_data);
5783
5784         rps_lock_irq_disable(sd);
5785         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5786                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5787                         __skb_unlink(skb, &sd->input_pkt_queue);
5788                         dev_kfree_skb_irq(skb);
5789                         input_queue_head_incr(sd);
5790                 }
5791         }
5792         rps_unlock_irq_enable(sd);
5793
5794         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5795                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5796                         __skb_unlink(skb, &sd->process_queue);
5797                         kfree_skb(skb);
5798                         input_queue_head_incr(sd);
5799                 }
5800         }
5801         local_bh_enable();
5802 }
5803
5804 static bool flush_required(int cpu)
5805 {
5806 #if IS_ENABLED(CONFIG_RPS)
5807         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5808         bool do_flush;
5809
5810         rps_lock_irq_disable(sd);
5811
5812         /* as insertion into process_queue happens with the rps lock held,
5813          * process_queue access may race only with dequeue
5814          */
5815         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5816                    !skb_queue_empty_lockless(&sd->process_queue);
5817         rps_unlock_irq_enable(sd);
5818
5819         return do_flush;
5820 #endif
5821         /* without RPS we can't safely check input_pkt_queue: during a
5822          * concurrent remote skb_queue_splice() we can detect as empty both
5823          * input_pkt_queue and process_queue even if the latter could end-up
5824          * containing a lot of packets.
5825          */
5826         return true;
5827 }
5828
5829 static void flush_all_backlogs(void)
5830 {
5831         static cpumask_t flush_cpus;
5832         unsigned int cpu;
5833
5834         /* since we are under rtnl lock protection we can use static data
5835          * for the cpumask and avoid allocating on stack the possibly
5836          * large mask
5837          */
5838         ASSERT_RTNL();
5839
5840         cpus_read_lock();
5841
5842         cpumask_clear(&flush_cpus);
5843         for_each_online_cpu(cpu) {
5844                 if (flush_required(cpu)) {
5845                         queue_work_on(cpu, system_highpri_wq,
5846                                       per_cpu_ptr(&flush_works, cpu));
5847                         cpumask_set_cpu(cpu, &flush_cpus);
5848                 }
5849         }
5850
5851         /* we can have in flight packet[s] on the cpus we are not flushing,
5852          * synchronize_net() in unregister_netdevice_many() will take care of
5853          * them
5854          */
5855         for_each_cpu(cpu, &flush_cpus)
5856                 flush_work(per_cpu_ptr(&flush_works, cpu));
5857
5858         cpus_read_unlock();
5859 }
5860
5861 static void net_rps_send_ipi(struct softnet_data *remsd)
5862 {
5863 #ifdef CONFIG_RPS
5864         while (remsd) {
5865                 struct softnet_data *next = remsd->rps_ipi_next;
5866
5867                 if (cpu_online(remsd->cpu))
5868                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5869                 remsd = next;
5870         }
5871 #endif
5872 }
5873
5874 /*
5875  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5876  * Note: called with local irq disabled, but exits with local irq enabled.
5877  */
5878 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5879 {
5880 #ifdef CONFIG_RPS
5881         struct softnet_data *remsd = sd->rps_ipi_list;
5882
5883         if (remsd) {
5884                 sd->rps_ipi_list = NULL;
5885
5886                 local_irq_enable();
5887
5888                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5889                 net_rps_send_ipi(remsd);
5890         } else
5891 #endif
5892                 local_irq_enable();
5893 }
5894
5895 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5896 {
5897 #ifdef CONFIG_RPS
5898         return sd->rps_ipi_list != NULL;
5899 #else
5900         return false;
5901 #endif
5902 }
5903
5904 static int process_backlog(struct napi_struct *napi, int quota)
5905 {
5906         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5907         bool again = true;
5908         int work = 0;
5909
5910         /* Check if we have pending ipi, its better to send them now,
5911          * not waiting net_rx_action() end.
5912          */
5913         if (sd_has_rps_ipi_waiting(sd)) {
5914                 local_irq_disable();
5915                 net_rps_action_and_irq_enable(sd);
5916         }
5917
5918         napi->weight = READ_ONCE(dev_rx_weight);
5919         while (again) {
5920                 struct sk_buff *skb;
5921
5922                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5923                         rcu_read_lock();
5924                         __netif_receive_skb(skb);
5925                         rcu_read_unlock();
5926                         input_queue_head_incr(sd);
5927                         if (++work >= quota)
5928                                 return work;
5929
5930                 }
5931
5932                 rps_lock_irq_disable(sd);
5933                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5934                         /*
5935                          * Inline a custom version of __napi_complete().
5936                          * only current cpu owns and manipulates this napi,
5937                          * and NAPI_STATE_SCHED is the only possible flag set
5938                          * on backlog.
5939                          * We can use a plain write instead of clear_bit(),
5940                          * and we dont need an smp_mb() memory barrier.
5941                          */
5942                         napi->state = 0;
5943                         again = false;
5944                 } else {
5945                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5946                                                    &sd->process_queue);
5947                 }
5948                 rps_unlock_irq_enable(sd);
5949         }
5950
5951         return work;
5952 }
5953
5954 /**
5955  * __napi_schedule - schedule for receive
5956  * @n: entry to schedule
5957  *
5958  * The entry's receive function will be scheduled to run.
5959  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5960  */
5961 void __napi_schedule(struct napi_struct *n)
5962 {
5963         unsigned long flags;
5964
5965         local_irq_save(flags);
5966         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5967         local_irq_restore(flags);
5968 }
5969 EXPORT_SYMBOL(__napi_schedule);
5970
5971 /**
5972  *      napi_schedule_prep - check if napi can be scheduled
5973  *      @n: napi context
5974  *
5975  * Test if NAPI routine is already running, and if not mark
5976  * it as running.  This is used as a condition variable to
5977  * insure only one NAPI poll instance runs.  We also make
5978  * sure there is no pending NAPI disable.
5979  */
5980 bool napi_schedule_prep(struct napi_struct *n)
5981 {
5982         unsigned long new, val = READ_ONCE(n->state);
5983
5984         do {
5985                 if (unlikely(val & NAPIF_STATE_DISABLE))
5986                         return false;
5987                 new = val | NAPIF_STATE_SCHED;
5988
5989                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5990                  * This was suggested by Alexander Duyck, as compiler
5991                  * emits better code than :
5992                  * if (val & NAPIF_STATE_SCHED)
5993                  *     new |= NAPIF_STATE_MISSED;
5994                  */
5995                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5996                                                    NAPIF_STATE_MISSED;
5997         } while (!try_cmpxchg(&n->state, &val, new));
5998
5999         return !(val & NAPIF_STATE_SCHED);
6000 }
6001 EXPORT_SYMBOL(napi_schedule_prep);
6002
6003 /**
6004  * __napi_schedule_irqoff - schedule for receive
6005  * @n: entry to schedule
6006  *
6007  * Variant of __napi_schedule() assuming hard irqs are masked.
6008  *
6009  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6010  * because the interrupt disabled assumption might not be true
6011  * due to force-threaded interrupts and spinlock substitution.
6012  */
6013 void __napi_schedule_irqoff(struct napi_struct *n)
6014 {
6015         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6016                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6017         else
6018                 __napi_schedule(n);
6019 }
6020 EXPORT_SYMBOL(__napi_schedule_irqoff);
6021
6022 bool napi_complete_done(struct napi_struct *n, int work_done)
6023 {
6024         unsigned long flags, val, new, timeout = 0;
6025         bool ret = true;
6026
6027         /*
6028          * 1) Don't let napi dequeue from the cpu poll list
6029          *    just in case its running on a different cpu.
6030          * 2) If we are busy polling, do nothing here, we have
6031          *    the guarantee we will be called later.
6032          */
6033         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6034                                  NAPIF_STATE_IN_BUSY_POLL)))
6035                 return false;
6036
6037         if (work_done) {
6038                 if (n->gro_bitmask)
6039                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6040                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6041         }
6042         if (n->defer_hard_irqs_count > 0) {
6043                 n->defer_hard_irqs_count--;
6044                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6045                 if (timeout)
6046                         ret = false;
6047         }
6048         if (n->gro_bitmask) {
6049                 /* When the NAPI instance uses a timeout and keeps postponing
6050                  * it, we need to bound somehow the time packets are kept in
6051                  * the GRO layer
6052                  */
6053                 napi_gro_flush(n, !!timeout);
6054         }
6055
6056         gro_normal_list(n);
6057
6058         if (unlikely(!list_empty(&n->poll_list))) {
6059                 /* If n->poll_list is not empty, we need to mask irqs */
6060                 local_irq_save(flags);
6061                 list_del_init(&n->poll_list);
6062                 local_irq_restore(flags);
6063         }
6064
6065         val = READ_ONCE(n->state);
6066         do {
6067                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6068
6069                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6070                               NAPIF_STATE_SCHED_THREADED |
6071                               NAPIF_STATE_PREFER_BUSY_POLL);
6072
6073                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6074                  * because we will call napi->poll() one more time.
6075                  * This C code was suggested by Alexander Duyck to help gcc.
6076                  */
6077                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6078                                                     NAPIF_STATE_SCHED;
6079         } while (!try_cmpxchg(&n->state, &val, new));
6080
6081         if (unlikely(val & NAPIF_STATE_MISSED)) {
6082                 __napi_schedule(n);
6083                 return false;
6084         }
6085
6086         if (timeout)
6087                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6088                               HRTIMER_MODE_REL_PINNED);
6089         return ret;
6090 }
6091 EXPORT_SYMBOL(napi_complete_done);
6092
6093 /* must be called under rcu_read_lock(), as we dont take a reference */
6094 static struct napi_struct *napi_by_id(unsigned int napi_id)
6095 {
6096         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6097         struct napi_struct *napi;
6098
6099         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6100                 if (napi->napi_id == napi_id)
6101                         return napi;
6102
6103         return NULL;
6104 }
6105
6106 #if defined(CONFIG_NET_RX_BUSY_POLL)
6107
6108 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6109 {
6110         if (!skip_schedule) {
6111                 gro_normal_list(napi);
6112                 __napi_schedule(napi);
6113                 return;
6114         }
6115
6116         if (napi->gro_bitmask) {
6117                 /* flush too old packets
6118                  * If HZ < 1000, flush all packets.
6119                  */
6120                 napi_gro_flush(napi, HZ >= 1000);
6121         }
6122
6123         gro_normal_list(napi);
6124         clear_bit(NAPI_STATE_SCHED, &napi->state);
6125 }
6126
6127 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6128                            u16 budget)
6129 {
6130         bool skip_schedule = false;
6131         unsigned long timeout;
6132         int rc;
6133
6134         /* Busy polling means there is a high chance device driver hard irq
6135          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6136          * set in napi_schedule_prep().
6137          * Since we are about to call napi->poll() once more, we can safely
6138          * clear NAPI_STATE_MISSED.
6139          *
6140          * Note: x86 could use a single "lock and ..." instruction
6141          * to perform these two clear_bit()
6142          */
6143         clear_bit(NAPI_STATE_MISSED, &napi->state);
6144         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6145
6146         local_bh_disable();
6147
6148         if (prefer_busy_poll) {
6149                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6150                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6151                 if (napi->defer_hard_irqs_count && timeout) {
6152                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6153                         skip_schedule = true;
6154                 }
6155         }
6156
6157         /* All we really want here is to re-enable device interrupts.
6158          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6159          */
6160         rc = napi->poll(napi, budget);
6161         /* We can't gro_normal_list() here, because napi->poll() might have
6162          * rearmed the napi (napi_complete_done()) in which case it could
6163          * already be running on another CPU.
6164          */
6165         trace_napi_poll(napi, rc, budget);
6166         netpoll_poll_unlock(have_poll_lock);
6167         if (rc == budget)
6168                 __busy_poll_stop(napi, skip_schedule);
6169         local_bh_enable();
6170 }
6171
6172 void napi_busy_loop(unsigned int napi_id,
6173                     bool (*loop_end)(void *, unsigned long),
6174                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6175 {
6176         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6177         int (*napi_poll)(struct napi_struct *napi, int budget);
6178         void *have_poll_lock = NULL;
6179         struct napi_struct *napi;
6180
6181 restart:
6182         napi_poll = NULL;
6183
6184         rcu_read_lock();
6185
6186         napi = napi_by_id(napi_id);
6187         if (!napi)
6188                 goto out;
6189
6190         preempt_disable();
6191         for (;;) {
6192                 int work = 0;
6193
6194                 local_bh_disable();
6195                 if (!napi_poll) {
6196                         unsigned long val = READ_ONCE(napi->state);
6197
6198                         /* If multiple threads are competing for this napi,
6199                          * we avoid dirtying napi->state as much as we can.
6200                          */
6201                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6202                                    NAPIF_STATE_IN_BUSY_POLL)) {
6203                                 if (prefer_busy_poll)
6204                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6205                                 goto count;
6206                         }
6207                         if (cmpxchg(&napi->state, val,
6208                                     val | NAPIF_STATE_IN_BUSY_POLL |
6209                                           NAPIF_STATE_SCHED) != val) {
6210                                 if (prefer_busy_poll)
6211                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6212                                 goto count;
6213                         }
6214                         have_poll_lock = netpoll_poll_lock(napi);
6215                         napi_poll = napi->poll;
6216                 }
6217                 work = napi_poll(napi, budget);
6218                 trace_napi_poll(napi, work, budget);
6219                 gro_normal_list(napi);
6220 count:
6221                 if (work > 0)
6222                         __NET_ADD_STATS(dev_net(napi->dev),
6223                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6224                 local_bh_enable();
6225
6226                 if (!loop_end || loop_end(loop_end_arg, start_time))
6227                         break;
6228
6229                 if (unlikely(need_resched())) {
6230                         if (napi_poll)
6231                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6232                         preempt_enable();
6233                         rcu_read_unlock();
6234                         cond_resched();
6235                         if (loop_end(loop_end_arg, start_time))
6236                                 return;
6237                         goto restart;
6238                 }
6239                 cpu_relax();
6240         }
6241         if (napi_poll)
6242                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6243         preempt_enable();
6244 out:
6245         rcu_read_unlock();
6246 }
6247 EXPORT_SYMBOL(napi_busy_loop);
6248
6249 #endif /* CONFIG_NET_RX_BUSY_POLL */
6250
6251 static void napi_hash_add(struct napi_struct *napi)
6252 {
6253         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6254                 return;
6255
6256         spin_lock(&napi_hash_lock);
6257
6258         /* 0..NR_CPUS range is reserved for sender_cpu use */
6259         do {
6260                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6261                         napi_gen_id = MIN_NAPI_ID;
6262         } while (napi_by_id(napi_gen_id));
6263         napi->napi_id = napi_gen_id;
6264
6265         hlist_add_head_rcu(&napi->napi_hash_node,
6266                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6267
6268         spin_unlock(&napi_hash_lock);
6269 }
6270
6271 /* Warning : caller is responsible to make sure rcu grace period
6272  * is respected before freeing memory containing @napi
6273  */
6274 static void napi_hash_del(struct napi_struct *napi)
6275 {
6276         spin_lock(&napi_hash_lock);
6277
6278         hlist_del_init_rcu(&napi->napi_hash_node);
6279
6280         spin_unlock(&napi_hash_lock);
6281 }
6282
6283 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6284 {
6285         struct napi_struct *napi;
6286
6287         napi = container_of(timer, struct napi_struct, timer);
6288
6289         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6290          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6291          */
6292         if (!napi_disable_pending(napi) &&
6293             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6294                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6295                 __napi_schedule_irqoff(napi);
6296         }
6297
6298         return HRTIMER_NORESTART;
6299 }
6300
6301 static void init_gro_hash(struct napi_struct *napi)
6302 {
6303         int i;
6304
6305         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6306                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6307                 napi->gro_hash[i].count = 0;
6308         }
6309         napi->gro_bitmask = 0;
6310 }
6311
6312 int dev_set_threaded(struct net_device *dev, bool threaded)
6313 {
6314         struct napi_struct *napi;
6315         int err = 0;
6316
6317         if (dev->threaded == threaded)
6318                 return 0;
6319
6320         if (threaded) {
6321                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6322                         if (!napi->thread) {
6323                                 err = napi_kthread_create(napi);
6324                                 if (err) {
6325                                         threaded = false;
6326                                         break;
6327                                 }
6328                         }
6329                 }
6330         }
6331
6332         dev->threaded = threaded;
6333
6334         /* Make sure kthread is created before THREADED bit
6335          * is set.
6336          */
6337         smp_mb__before_atomic();
6338
6339         /* Setting/unsetting threaded mode on a napi might not immediately
6340          * take effect, if the current napi instance is actively being
6341          * polled. In this case, the switch between threaded mode and
6342          * softirq mode will happen in the next round of napi_schedule().
6343          * This should not cause hiccups/stalls to the live traffic.
6344          */
6345         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6346                 if (threaded)
6347                         set_bit(NAPI_STATE_THREADED, &napi->state);
6348                 else
6349                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6350         }
6351
6352         return err;
6353 }
6354 EXPORT_SYMBOL(dev_set_threaded);
6355
6356 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6357                            int (*poll)(struct napi_struct *, int), int weight)
6358 {
6359         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6360                 return;
6361
6362         INIT_LIST_HEAD(&napi->poll_list);
6363         INIT_HLIST_NODE(&napi->napi_hash_node);
6364         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6365         napi->timer.function = napi_watchdog;
6366         init_gro_hash(napi);
6367         napi->skb = NULL;
6368         INIT_LIST_HEAD(&napi->rx_list);
6369         napi->rx_count = 0;
6370         napi->poll = poll;
6371         if (weight > NAPI_POLL_WEIGHT)
6372                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6373                                 weight);
6374         napi->weight = weight;
6375         napi->dev = dev;
6376 #ifdef CONFIG_NETPOLL
6377         napi->poll_owner = -1;
6378 #endif
6379         set_bit(NAPI_STATE_SCHED, &napi->state);
6380         set_bit(NAPI_STATE_NPSVC, &napi->state);
6381         list_add_rcu(&napi->dev_list, &dev->napi_list);
6382         napi_hash_add(napi);
6383         napi_get_frags_check(napi);
6384         /* Create kthread for this napi if dev->threaded is set.
6385          * Clear dev->threaded if kthread creation failed so that
6386          * threaded mode will not be enabled in napi_enable().
6387          */
6388         if (dev->threaded && napi_kthread_create(napi))
6389                 dev->threaded = 0;
6390 }
6391 EXPORT_SYMBOL(netif_napi_add_weight);
6392
6393 void napi_disable(struct napi_struct *n)
6394 {
6395         unsigned long val, new;
6396
6397         might_sleep();
6398         set_bit(NAPI_STATE_DISABLE, &n->state);
6399
6400         val = READ_ONCE(n->state);
6401         do {
6402                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6403                         usleep_range(20, 200);
6404                         val = READ_ONCE(n->state);
6405                 }
6406
6407                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6408                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6409         } while (!try_cmpxchg(&n->state, &val, new));
6410
6411         hrtimer_cancel(&n->timer);
6412
6413         clear_bit(NAPI_STATE_DISABLE, &n->state);
6414 }
6415 EXPORT_SYMBOL(napi_disable);
6416
6417 /**
6418  *      napi_enable - enable NAPI scheduling
6419  *      @n: NAPI context
6420  *
6421  * Resume NAPI from being scheduled on this context.
6422  * Must be paired with napi_disable.
6423  */
6424 void napi_enable(struct napi_struct *n)
6425 {
6426         unsigned long new, val = READ_ONCE(n->state);
6427
6428         do {
6429                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6430
6431                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6432                 if (n->dev->threaded && n->thread)
6433                         new |= NAPIF_STATE_THREADED;
6434         } while (!try_cmpxchg(&n->state, &val, new));
6435 }
6436 EXPORT_SYMBOL(napi_enable);
6437
6438 static void flush_gro_hash(struct napi_struct *napi)
6439 {
6440         int i;
6441
6442         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6443                 struct sk_buff *skb, *n;
6444
6445                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6446                         kfree_skb(skb);
6447                 napi->gro_hash[i].count = 0;
6448         }
6449 }
6450
6451 /* Must be called in process context */
6452 void __netif_napi_del(struct napi_struct *napi)
6453 {
6454         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6455                 return;
6456
6457         napi_hash_del(napi);
6458         list_del_rcu(&napi->dev_list);
6459         napi_free_frags(napi);
6460
6461         flush_gro_hash(napi);
6462         napi->gro_bitmask = 0;
6463
6464         if (napi->thread) {
6465                 kthread_stop(napi->thread);
6466                 napi->thread = NULL;
6467         }
6468 }
6469 EXPORT_SYMBOL(__netif_napi_del);
6470
6471 static int __napi_poll(struct napi_struct *n, bool *repoll)
6472 {
6473         int work, weight;
6474
6475         weight = n->weight;
6476
6477         /* This NAPI_STATE_SCHED test is for avoiding a race
6478          * with netpoll's poll_napi().  Only the entity which
6479          * obtains the lock and sees NAPI_STATE_SCHED set will
6480          * actually make the ->poll() call.  Therefore we avoid
6481          * accidentally calling ->poll() when NAPI is not scheduled.
6482          */
6483         work = 0;
6484         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6485                 work = n->poll(n, weight);
6486                 trace_napi_poll(n, work, weight);
6487         }
6488
6489         if (unlikely(work > weight))
6490                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6491                                 n->poll, work, weight);
6492
6493         if (likely(work < weight))
6494                 return work;
6495
6496         /* Drivers must not modify the NAPI state if they
6497          * consume the entire weight.  In such cases this code
6498          * still "owns" the NAPI instance and therefore can
6499          * move the instance around on the list at-will.
6500          */
6501         if (unlikely(napi_disable_pending(n))) {
6502                 napi_complete(n);
6503                 return work;
6504         }
6505
6506         /* The NAPI context has more processing work, but busy-polling
6507          * is preferred. Exit early.
6508          */
6509         if (napi_prefer_busy_poll(n)) {
6510                 if (napi_complete_done(n, work)) {
6511                         /* If timeout is not set, we need to make sure
6512                          * that the NAPI is re-scheduled.
6513                          */
6514                         napi_schedule(n);
6515                 }
6516                 return work;
6517         }
6518
6519         if (n->gro_bitmask) {
6520                 /* flush too old packets
6521                  * If HZ < 1000, flush all packets.
6522                  */
6523                 napi_gro_flush(n, HZ >= 1000);
6524         }
6525
6526         gro_normal_list(n);
6527
6528         /* Some drivers may have called napi_schedule
6529          * prior to exhausting their budget.
6530          */
6531         if (unlikely(!list_empty(&n->poll_list))) {
6532                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6533                              n->dev ? n->dev->name : "backlog");
6534                 return work;
6535         }
6536
6537         *repoll = true;
6538
6539         return work;
6540 }
6541
6542 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6543 {
6544         bool do_repoll = false;
6545         void *have;
6546         int work;
6547
6548         list_del_init(&n->poll_list);
6549
6550         have = netpoll_poll_lock(n);
6551
6552         work = __napi_poll(n, &do_repoll);
6553
6554         if (do_repoll)
6555                 list_add_tail(&n->poll_list, repoll);
6556
6557         netpoll_poll_unlock(have);
6558
6559         return work;
6560 }
6561
6562 static int napi_thread_wait(struct napi_struct *napi)
6563 {
6564         bool woken = false;
6565
6566         set_current_state(TASK_INTERRUPTIBLE);
6567
6568         while (!kthread_should_stop()) {
6569                 /* Testing SCHED_THREADED bit here to make sure the current
6570                  * kthread owns this napi and could poll on this napi.
6571                  * Testing SCHED bit is not enough because SCHED bit might be
6572                  * set by some other busy poll thread or by napi_disable().
6573                  */
6574                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6575                         WARN_ON(!list_empty(&napi->poll_list));
6576                         __set_current_state(TASK_RUNNING);
6577                         return 0;
6578                 }
6579
6580                 schedule();
6581                 /* woken being true indicates this thread owns this napi. */
6582                 woken = true;
6583                 set_current_state(TASK_INTERRUPTIBLE);
6584         }
6585         __set_current_state(TASK_RUNNING);
6586
6587         return -1;
6588 }
6589
6590 static int napi_threaded_poll(void *data)
6591 {
6592         struct napi_struct *napi = data;
6593         void *have;
6594
6595         while (!napi_thread_wait(napi)) {
6596                 for (;;) {
6597                         bool repoll = false;
6598
6599                         local_bh_disable();
6600
6601                         have = netpoll_poll_lock(napi);
6602                         __napi_poll(napi, &repoll);
6603                         netpoll_poll_unlock(have);
6604
6605                         local_bh_enable();
6606
6607                         if (!repoll)
6608                                 break;
6609
6610                         cond_resched();
6611                 }
6612         }
6613         return 0;
6614 }
6615
6616 static void skb_defer_free_flush(struct softnet_data *sd)
6617 {
6618         struct sk_buff *skb, *next;
6619
6620         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6621         if (!READ_ONCE(sd->defer_list))
6622                 return;
6623
6624         spin_lock_irq(&sd->defer_lock);
6625         skb = sd->defer_list;
6626         sd->defer_list = NULL;
6627         sd->defer_count = 0;
6628         spin_unlock_irq(&sd->defer_lock);
6629
6630         while (skb != NULL) {
6631                 next = skb->next;
6632                 napi_consume_skb(skb, 1);
6633                 skb = next;
6634         }
6635 }
6636
6637 static __latent_entropy void net_rx_action(struct softirq_action *h)
6638 {
6639         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6640         unsigned long time_limit = jiffies +
6641                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6642         int budget = READ_ONCE(netdev_budget);
6643         LIST_HEAD(list);
6644         LIST_HEAD(repoll);
6645
6646         local_irq_disable();
6647         list_splice_init(&sd->poll_list, &list);
6648         local_irq_enable();
6649
6650         for (;;) {
6651                 struct napi_struct *n;
6652
6653                 skb_defer_free_flush(sd);
6654
6655                 if (list_empty(&list)) {
6656                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6657                                 goto end;
6658                         break;
6659                 }
6660
6661                 n = list_first_entry(&list, struct napi_struct, poll_list);
6662                 budget -= napi_poll(n, &repoll);
6663
6664                 /* If softirq window is exhausted then punt.
6665                  * Allow this to run for 2 jiffies since which will allow
6666                  * an average latency of 1.5/HZ.
6667                  */
6668                 if (unlikely(budget <= 0 ||
6669                              time_after_eq(jiffies, time_limit))) {
6670                         sd->time_squeeze++;
6671                         break;
6672                 }
6673         }
6674
6675         local_irq_disable();
6676
6677         list_splice_tail_init(&sd->poll_list, &list);
6678         list_splice_tail(&repoll, &list);
6679         list_splice(&list, &sd->poll_list);
6680         if (!list_empty(&sd->poll_list))
6681                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6682
6683         net_rps_action_and_irq_enable(sd);
6684 end:;
6685 }
6686
6687 struct netdev_adjacent {
6688         struct net_device *dev;
6689         netdevice_tracker dev_tracker;
6690
6691         /* upper master flag, there can only be one master device per list */
6692         bool master;
6693
6694         /* lookup ignore flag */
6695         bool ignore;
6696
6697         /* counter for the number of times this device was added to us */
6698         u16 ref_nr;
6699
6700         /* private field for the users */
6701         void *private;
6702
6703         struct list_head list;
6704         struct rcu_head rcu;
6705 };
6706
6707 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6708                                                  struct list_head *adj_list)
6709 {
6710         struct netdev_adjacent *adj;
6711
6712         list_for_each_entry(adj, adj_list, list) {
6713                 if (adj->dev == adj_dev)
6714                         return adj;
6715         }
6716         return NULL;
6717 }
6718
6719 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6720                                     struct netdev_nested_priv *priv)
6721 {
6722         struct net_device *dev = (struct net_device *)priv->data;
6723
6724         return upper_dev == dev;
6725 }
6726
6727 /**
6728  * netdev_has_upper_dev - Check if device is linked to an upper device
6729  * @dev: device
6730  * @upper_dev: upper device to check
6731  *
6732  * Find out if a device is linked to specified upper device and return true
6733  * in case it is. Note that this checks only immediate upper device,
6734  * not through a complete stack of devices. The caller must hold the RTNL lock.
6735  */
6736 bool netdev_has_upper_dev(struct net_device *dev,
6737                           struct net_device *upper_dev)
6738 {
6739         struct netdev_nested_priv priv = {
6740                 .data = (void *)upper_dev,
6741         };
6742
6743         ASSERT_RTNL();
6744
6745         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6746                                              &priv);
6747 }
6748 EXPORT_SYMBOL(netdev_has_upper_dev);
6749
6750 /**
6751  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6752  * @dev: device
6753  * @upper_dev: upper device to check
6754  *
6755  * Find out if a device is linked to specified upper device and return true
6756  * in case it is. Note that this checks the entire upper device chain.
6757  * The caller must hold rcu lock.
6758  */
6759
6760 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6761                                   struct net_device *upper_dev)
6762 {
6763         struct netdev_nested_priv priv = {
6764                 .data = (void *)upper_dev,
6765         };
6766
6767         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6768                                                &priv);
6769 }
6770 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6771
6772 /**
6773  * netdev_has_any_upper_dev - Check if device is linked to some device
6774  * @dev: device
6775  *
6776  * Find out if a device is linked to an upper device and return true in case
6777  * it is. The caller must hold the RTNL lock.
6778  */
6779 bool netdev_has_any_upper_dev(struct net_device *dev)
6780 {
6781         ASSERT_RTNL();
6782
6783         return !list_empty(&dev->adj_list.upper);
6784 }
6785 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6786
6787 /**
6788  * netdev_master_upper_dev_get - Get master upper device
6789  * @dev: device
6790  *
6791  * Find a master upper device and return pointer to it or NULL in case
6792  * it's not there. The caller must hold the RTNL lock.
6793  */
6794 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6795 {
6796         struct netdev_adjacent *upper;
6797
6798         ASSERT_RTNL();
6799
6800         if (list_empty(&dev->adj_list.upper))
6801                 return NULL;
6802
6803         upper = list_first_entry(&dev->adj_list.upper,
6804                                  struct netdev_adjacent, list);
6805         if (likely(upper->master))
6806                 return upper->dev;
6807         return NULL;
6808 }
6809 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6810
6811 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6812 {
6813         struct netdev_adjacent *upper;
6814
6815         ASSERT_RTNL();
6816
6817         if (list_empty(&dev->adj_list.upper))
6818                 return NULL;
6819
6820         upper = list_first_entry(&dev->adj_list.upper,
6821                                  struct netdev_adjacent, list);
6822         if (likely(upper->master) && !upper->ignore)
6823                 return upper->dev;
6824         return NULL;
6825 }
6826
6827 /**
6828  * netdev_has_any_lower_dev - Check if device is linked to some device
6829  * @dev: device
6830  *
6831  * Find out if a device is linked to a lower device and return true in case
6832  * it is. The caller must hold the RTNL lock.
6833  */
6834 static bool netdev_has_any_lower_dev(struct net_device *dev)
6835 {
6836         ASSERT_RTNL();
6837
6838         return !list_empty(&dev->adj_list.lower);
6839 }
6840
6841 void *netdev_adjacent_get_private(struct list_head *adj_list)
6842 {
6843         struct netdev_adjacent *adj;
6844
6845         adj = list_entry(adj_list, struct netdev_adjacent, list);
6846
6847         return adj->private;
6848 }
6849 EXPORT_SYMBOL(netdev_adjacent_get_private);
6850
6851 /**
6852  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6853  * @dev: device
6854  * @iter: list_head ** of the current position
6855  *
6856  * Gets the next device from the dev's upper list, starting from iter
6857  * position. The caller must hold RCU read lock.
6858  */
6859 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6860                                                  struct list_head **iter)
6861 {
6862         struct netdev_adjacent *upper;
6863
6864         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6865
6866         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6867
6868         if (&upper->list == &dev->adj_list.upper)
6869                 return NULL;
6870
6871         *iter = &upper->list;
6872
6873         return upper->dev;
6874 }
6875 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6876
6877 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6878                                                   struct list_head **iter,
6879                                                   bool *ignore)
6880 {
6881         struct netdev_adjacent *upper;
6882
6883         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6884
6885         if (&upper->list == &dev->adj_list.upper)
6886                 return NULL;
6887
6888         *iter = &upper->list;
6889         *ignore = upper->ignore;
6890
6891         return upper->dev;
6892 }
6893
6894 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6895                                                     struct list_head **iter)
6896 {
6897         struct netdev_adjacent *upper;
6898
6899         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6900
6901         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6902
6903         if (&upper->list == &dev->adj_list.upper)
6904                 return NULL;
6905
6906         *iter = &upper->list;
6907
6908         return upper->dev;
6909 }
6910
6911 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6912                                        int (*fn)(struct net_device *dev,
6913                                          struct netdev_nested_priv *priv),
6914                                        struct netdev_nested_priv *priv)
6915 {
6916         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6917         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6918         int ret, cur = 0;
6919         bool ignore;
6920
6921         now = dev;
6922         iter = &dev->adj_list.upper;
6923
6924         while (1) {
6925                 if (now != dev) {
6926                         ret = fn(now, priv);
6927                         if (ret)
6928                                 return ret;
6929                 }
6930
6931                 next = NULL;
6932                 while (1) {
6933                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6934                         if (!udev)
6935                                 break;
6936                         if (ignore)
6937                                 continue;
6938
6939                         next = udev;
6940                         niter = &udev->adj_list.upper;
6941                         dev_stack[cur] = now;
6942                         iter_stack[cur++] = iter;
6943                         break;
6944                 }
6945
6946                 if (!next) {
6947                         if (!cur)
6948                                 return 0;
6949                         next = dev_stack[--cur];
6950                         niter = iter_stack[cur];
6951                 }
6952
6953                 now = next;
6954                 iter = niter;
6955         }
6956
6957         return 0;
6958 }
6959
6960 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6961                                   int (*fn)(struct net_device *dev,
6962                                             struct netdev_nested_priv *priv),
6963                                   struct netdev_nested_priv *priv)
6964 {
6965         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6966         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6967         int ret, cur = 0;
6968
6969         now = dev;
6970         iter = &dev->adj_list.upper;
6971
6972         while (1) {
6973                 if (now != dev) {
6974                         ret = fn(now, priv);
6975                         if (ret)
6976                                 return ret;
6977                 }
6978
6979                 next = NULL;
6980                 while (1) {
6981                         udev = netdev_next_upper_dev_rcu(now, &iter);
6982                         if (!udev)
6983                                 break;
6984
6985                         next = udev;
6986                         niter = &udev->adj_list.upper;
6987                         dev_stack[cur] = now;
6988                         iter_stack[cur++] = iter;
6989                         break;
6990                 }
6991
6992                 if (!next) {
6993                         if (!cur)
6994                                 return 0;
6995                         next = dev_stack[--cur];
6996                         niter = iter_stack[cur];
6997                 }
6998
6999                 now = next;
7000                 iter = niter;
7001         }
7002
7003         return 0;
7004 }
7005 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7006
7007 static bool __netdev_has_upper_dev(struct net_device *dev,
7008                                    struct net_device *upper_dev)
7009 {
7010         struct netdev_nested_priv priv = {
7011                 .flags = 0,
7012                 .data = (void *)upper_dev,
7013         };
7014
7015         ASSERT_RTNL();
7016
7017         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7018                                            &priv);
7019 }
7020
7021 /**
7022  * netdev_lower_get_next_private - Get the next ->private from the
7023  *                                 lower neighbour list
7024  * @dev: device
7025  * @iter: list_head ** of the current position
7026  *
7027  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7028  * list, starting from iter position. The caller must hold either hold the
7029  * RTNL lock or its own locking that guarantees that the neighbour lower
7030  * list will remain unchanged.
7031  */
7032 void *netdev_lower_get_next_private(struct net_device *dev,
7033                                     struct list_head **iter)
7034 {
7035         struct netdev_adjacent *lower;
7036
7037         lower = list_entry(*iter, struct netdev_adjacent, list);
7038
7039         if (&lower->list == &dev->adj_list.lower)
7040                 return NULL;
7041
7042         *iter = lower->list.next;
7043
7044         return lower->private;
7045 }
7046 EXPORT_SYMBOL(netdev_lower_get_next_private);
7047
7048 /**
7049  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7050  *                                     lower neighbour list, RCU
7051  *                                     variant
7052  * @dev: device
7053  * @iter: list_head ** of the current position
7054  *
7055  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7056  * list, starting from iter position. The caller must hold RCU read lock.
7057  */
7058 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7059                                         struct list_head **iter)
7060 {
7061         struct netdev_adjacent *lower;
7062
7063         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7064
7065         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7066
7067         if (&lower->list == &dev->adj_list.lower)
7068                 return NULL;
7069
7070         *iter = &lower->list;
7071
7072         return lower->private;
7073 }
7074 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7075
7076 /**
7077  * netdev_lower_get_next - Get the next device from the lower neighbour
7078  *                         list
7079  * @dev: device
7080  * @iter: list_head ** of the current position
7081  *
7082  * Gets the next netdev_adjacent from the dev's lower neighbour
7083  * list, starting from iter position. The caller must hold RTNL lock or
7084  * its own locking that guarantees that the neighbour lower
7085  * list will remain unchanged.
7086  */
7087 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7088 {
7089         struct netdev_adjacent *lower;
7090
7091         lower = list_entry(*iter, struct netdev_adjacent, list);
7092
7093         if (&lower->list == &dev->adj_list.lower)
7094                 return NULL;
7095
7096         *iter = lower->list.next;
7097
7098         return lower->dev;
7099 }
7100 EXPORT_SYMBOL(netdev_lower_get_next);
7101
7102 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7103                                                 struct list_head **iter)
7104 {
7105         struct netdev_adjacent *lower;
7106
7107         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7108
7109         if (&lower->list == &dev->adj_list.lower)
7110                 return NULL;
7111
7112         *iter = &lower->list;
7113
7114         return lower->dev;
7115 }
7116
7117 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7118                                                   struct list_head **iter,
7119                                                   bool *ignore)
7120 {
7121         struct netdev_adjacent *lower;
7122
7123         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7124
7125         if (&lower->list == &dev->adj_list.lower)
7126                 return NULL;
7127
7128         *iter = &lower->list;
7129         *ignore = lower->ignore;
7130
7131         return lower->dev;
7132 }
7133
7134 int netdev_walk_all_lower_dev(struct net_device *dev,
7135                               int (*fn)(struct net_device *dev,
7136                                         struct netdev_nested_priv *priv),
7137                               struct netdev_nested_priv *priv)
7138 {
7139         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7140         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7141         int ret, cur = 0;
7142
7143         now = dev;
7144         iter = &dev->adj_list.lower;
7145
7146         while (1) {
7147                 if (now != dev) {
7148                         ret = fn(now, priv);
7149                         if (ret)
7150                                 return ret;
7151                 }
7152
7153                 next = NULL;
7154                 while (1) {
7155                         ldev = netdev_next_lower_dev(now, &iter);
7156                         if (!ldev)
7157                                 break;
7158
7159                         next = ldev;
7160                         niter = &ldev->adj_list.lower;
7161                         dev_stack[cur] = now;
7162                         iter_stack[cur++] = iter;
7163                         break;
7164                 }
7165
7166                 if (!next) {
7167                         if (!cur)
7168                                 return 0;
7169                         next = dev_stack[--cur];
7170                         niter = iter_stack[cur];
7171                 }
7172
7173                 now = next;
7174                 iter = niter;
7175         }
7176
7177         return 0;
7178 }
7179 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7180
7181 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7182                                        int (*fn)(struct net_device *dev,
7183                                          struct netdev_nested_priv *priv),
7184                                        struct netdev_nested_priv *priv)
7185 {
7186         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7187         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7188         int ret, cur = 0;
7189         bool ignore;
7190
7191         now = dev;
7192         iter = &dev->adj_list.lower;
7193
7194         while (1) {
7195                 if (now != dev) {
7196                         ret = fn(now, priv);
7197                         if (ret)
7198                                 return ret;
7199                 }
7200
7201                 next = NULL;
7202                 while (1) {
7203                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7204                         if (!ldev)
7205                                 break;
7206                         if (ignore)
7207                                 continue;
7208
7209                         next = ldev;
7210                         niter = &ldev->adj_list.lower;
7211                         dev_stack[cur] = now;
7212                         iter_stack[cur++] = iter;
7213                         break;
7214                 }
7215
7216                 if (!next) {
7217                         if (!cur)
7218                                 return 0;
7219                         next = dev_stack[--cur];
7220                         niter = iter_stack[cur];
7221                 }
7222
7223                 now = next;
7224                 iter = niter;
7225         }
7226
7227         return 0;
7228 }
7229
7230 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7231                                              struct list_head **iter)
7232 {
7233         struct netdev_adjacent *lower;
7234
7235         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7236         if (&lower->list == &dev->adj_list.lower)
7237                 return NULL;
7238
7239         *iter = &lower->list;
7240
7241         return lower->dev;
7242 }
7243 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7244
7245 static u8 __netdev_upper_depth(struct net_device *dev)
7246 {
7247         struct net_device *udev;
7248         struct list_head *iter;
7249         u8 max_depth = 0;
7250         bool ignore;
7251
7252         for (iter = &dev->adj_list.upper,
7253              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7254              udev;
7255              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7256                 if (ignore)
7257                         continue;
7258                 if (max_depth < udev->upper_level)
7259                         max_depth = udev->upper_level;
7260         }
7261
7262         return max_depth;
7263 }
7264
7265 static u8 __netdev_lower_depth(struct net_device *dev)
7266 {
7267         struct net_device *ldev;
7268         struct list_head *iter;
7269         u8 max_depth = 0;
7270         bool ignore;
7271
7272         for (iter = &dev->adj_list.lower,
7273              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7274              ldev;
7275              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7276                 if (ignore)
7277                         continue;
7278                 if (max_depth < ldev->lower_level)
7279                         max_depth = ldev->lower_level;
7280         }
7281
7282         return max_depth;
7283 }
7284
7285 static int __netdev_update_upper_level(struct net_device *dev,
7286                                        struct netdev_nested_priv *__unused)
7287 {
7288         dev->upper_level = __netdev_upper_depth(dev) + 1;
7289         return 0;
7290 }
7291
7292 #ifdef CONFIG_LOCKDEP
7293 static LIST_HEAD(net_unlink_list);
7294
7295 static void net_unlink_todo(struct net_device *dev)
7296 {
7297         if (list_empty(&dev->unlink_list))
7298                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7299 }
7300 #endif
7301
7302 static int __netdev_update_lower_level(struct net_device *dev,
7303                                        struct netdev_nested_priv *priv)
7304 {
7305         dev->lower_level = __netdev_lower_depth(dev) + 1;
7306
7307 #ifdef CONFIG_LOCKDEP
7308         if (!priv)
7309                 return 0;
7310
7311         if (priv->flags & NESTED_SYNC_IMM)
7312                 dev->nested_level = dev->lower_level - 1;
7313         if (priv->flags & NESTED_SYNC_TODO)
7314                 net_unlink_todo(dev);
7315 #endif
7316         return 0;
7317 }
7318
7319 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7320                                   int (*fn)(struct net_device *dev,
7321                                             struct netdev_nested_priv *priv),
7322                                   struct netdev_nested_priv *priv)
7323 {
7324         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7325         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7326         int ret, cur = 0;
7327
7328         now = dev;
7329         iter = &dev->adj_list.lower;
7330
7331         while (1) {
7332                 if (now != dev) {
7333                         ret = fn(now, priv);
7334                         if (ret)
7335                                 return ret;
7336                 }
7337
7338                 next = NULL;
7339                 while (1) {
7340                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7341                         if (!ldev)
7342                                 break;
7343
7344                         next = ldev;
7345                         niter = &ldev->adj_list.lower;
7346                         dev_stack[cur] = now;
7347                         iter_stack[cur++] = iter;
7348                         break;
7349                 }
7350
7351                 if (!next) {
7352                         if (!cur)
7353                                 return 0;
7354                         next = dev_stack[--cur];
7355                         niter = iter_stack[cur];
7356                 }
7357
7358                 now = next;
7359                 iter = niter;
7360         }
7361
7362         return 0;
7363 }
7364 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7365
7366 /**
7367  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7368  *                                     lower neighbour list, RCU
7369  *                                     variant
7370  * @dev: device
7371  *
7372  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7373  * list. The caller must hold RCU read lock.
7374  */
7375 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7376 {
7377         struct netdev_adjacent *lower;
7378
7379         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7380                         struct netdev_adjacent, list);
7381         if (lower)
7382                 return lower->private;
7383         return NULL;
7384 }
7385 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7386
7387 /**
7388  * netdev_master_upper_dev_get_rcu - Get master upper device
7389  * @dev: device
7390  *
7391  * Find a master upper device and return pointer to it or NULL in case
7392  * it's not there. The caller must hold the RCU read lock.
7393  */
7394 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7395 {
7396         struct netdev_adjacent *upper;
7397
7398         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7399                                        struct netdev_adjacent, list);
7400         if (upper && likely(upper->master))
7401                 return upper->dev;
7402         return NULL;
7403 }
7404 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7405
7406 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7407                               struct net_device *adj_dev,
7408                               struct list_head *dev_list)
7409 {
7410         char linkname[IFNAMSIZ+7];
7411
7412         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7413                 "upper_%s" : "lower_%s", adj_dev->name);
7414         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7415                                  linkname);
7416 }
7417 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7418                                char *name,
7419                                struct list_head *dev_list)
7420 {
7421         char linkname[IFNAMSIZ+7];
7422
7423         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7424                 "upper_%s" : "lower_%s", name);
7425         sysfs_remove_link(&(dev->dev.kobj), linkname);
7426 }
7427
7428 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7429                                                  struct net_device *adj_dev,
7430                                                  struct list_head *dev_list)
7431 {
7432         return (dev_list == &dev->adj_list.upper ||
7433                 dev_list == &dev->adj_list.lower) &&
7434                 net_eq(dev_net(dev), dev_net(adj_dev));
7435 }
7436
7437 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7438                                         struct net_device *adj_dev,
7439                                         struct list_head *dev_list,
7440                                         void *private, bool master)
7441 {
7442         struct netdev_adjacent *adj;
7443         int ret;
7444
7445         adj = __netdev_find_adj(adj_dev, dev_list);
7446
7447         if (adj) {
7448                 adj->ref_nr += 1;
7449                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7450                          dev->name, adj_dev->name, adj->ref_nr);
7451
7452                 return 0;
7453         }
7454
7455         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7456         if (!adj)
7457                 return -ENOMEM;
7458
7459         adj->dev = adj_dev;
7460         adj->master = master;
7461         adj->ref_nr = 1;
7462         adj->private = private;
7463         adj->ignore = false;
7464         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7465
7466         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7467                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7468
7469         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7470                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7471                 if (ret)
7472                         goto free_adj;
7473         }
7474
7475         /* Ensure that master link is always the first item in list. */
7476         if (master) {
7477                 ret = sysfs_create_link(&(dev->dev.kobj),
7478                                         &(adj_dev->dev.kobj), "master");
7479                 if (ret)
7480                         goto remove_symlinks;
7481
7482                 list_add_rcu(&adj->list, dev_list);
7483         } else {
7484                 list_add_tail_rcu(&adj->list, dev_list);
7485         }
7486
7487         return 0;
7488
7489 remove_symlinks:
7490         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7491                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7492 free_adj:
7493         netdev_put(adj_dev, &adj->dev_tracker);
7494         kfree(adj);
7495
7496         return ret;
7497 }
7498
7499 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7500                                          struct net_device *adj_dev,
7501                                          u16 ref_nr,
7502                                          struct list_head *dev_list)
7503 {
7504         struct netdev_adjacent *adj;
7505
7506         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7507                  dev->name, adj_dev->name, ref_nr);
7508
7509         adj = __netdev_find_adj(adj_dev, dev_list);
7510
7511         if (!adj) {
7512                 pr_err("Adjacency does not exist for device %s from %s\n",
7513                        dev->name, adj_dev->name);
7514                 WARN_ON(1);
7515                 return;
7516         }
7517
7518         if (adj->ref_nr > ref_nr) {
7519                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7520                          dev->name, adj_dev->name, ref_nr,
7521                          adj->ref_nr - ref_nr);
7522                 adj->ref_nr -= ref_nr;
7523                 return;
7524         }
7525
7526         if (adj->master)
7527                 sysfs_remove_link(&(dev->dev.kobj), "master");
7528
7529         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7530                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7531
7532         list_del_rcu(&adj->list);
7533         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7534                  adj_dev->name, dev->name, adj_dev->name);
7535         netdev_put(adj_dev, &adj->dev_tracker);
7536         kfree_rcu(adj, rcu);
7537 }
7538
7539 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7540                                             struct net_device *upper_dev,
7541                                             struct list_head *up_list,
7542                                             struct list_head *down_list,
7543                                             void *private, bool master)
7544 {
7545         int ret;
7546
7547         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7548                                            private, master);
7549         if (ret)
7550                 return ret;
7551
7552         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7553                                            private, false);
7554         if (ret) {
7555                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7556                 return ret;
7557         }
7558
7559         return 0;
7560 }
7561
7562 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7563                                                struct net_device *upper_dev,
7564                                                u16 ref_nr,
7565                                                struct list_head *up_list,
7566                                                struct list_head *down_list)
7567 {
7568         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7569         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7570 }
7571
7572 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7573                                                 struct net_device *upper_dev,
7574                                                 void *private, bool master)
7575 {
7576         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7577                                                 &dev->adj_list.upper,
7578                                                 &upper_dev->adj_list.lower,
7579                                                 private, master);
7580 }
7581
7582 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7583                                                    struct net_device *upper_dev)
7584 {
7585         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7586                                            &dev->adj_list.upper,
7587                                            &upper_dev->adj_list.lower);
7588 }
7589
7590 static int __netdev_upper_dev_link(struct net_device *dev,
7591                                    struct net_device *upper_dev, bool master,
7592                                    void *upper_priv, void *upper_info,
7593                                    struct netdev_nested_priv *priv,
7594                                    struct netlink_ext_ack *extack)
7595 {
7596         struct netdev_notifier_changeupper_info changeupper_info = {
7597                 .info = {
7598                         .dev = dev,
7599                         .extack = extack,
7600                 },
7601                 .upper_dev = upper_dev,
7602                 .master = master,
7603                 .linking = true,
7604                 .upper_info = upper_info,
7605         };
7606         struct net_device *master_dev;
7607         int ret = 0;
7608
7609         ASSERT_RTNL();
7610
7611         if (dev == upper_dev)
7612                 return -EBUSY;
7613
7614         /* To prevent loops, check if dev is not upper device to upper_dev. */
7615         if (__netdev_has_upper_dev(upper_dev, dev))
7616                 return -EBUSY;
7617
7618         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7619                 return -EMLINK;
7620
7621         if (!master) {
7622                 if (__netdev_has_upper_dev(dev, upper_dev))
7623                         return -EEXIST;
7624         } else {
7625                 master_dev = __netdev_master_upper_dev_get(dev);
7626                 if (master_dev)
7627                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7628         }
7629
7630         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7631                                             &changeupper_info.info);
7632         ret = notifier_to_errno(ret);
7633         if (ret)
7634                 return ret;
7635
7636         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7637                                                    master);
7638         if (ret)
7639                 return ret;
7640
7641         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7642                                             &changeupper_info.info);
7643         ret = notifier_to_errno(ret);
7644         if (ret)
7645                 goto rollback;
7646
7647         __netdev_update_upper_level(dev, NULL);
7648         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7649
7650         __netdev_update_lower_level(upper_dev, priv);
7651         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7652                                     priv);
7653
7654         return 0;
7655
7656 rollback:
7657         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7658
7659         return ret;
7660 }
7661
7662 /**
7663  * netdev_upper_dev_link - Add a link to the upper device
7664  * @dev: device
7665  * @upper_dev: new upper device
7666  * @extack: netlink extended ack
7667  *
7668  * Adds a link to device which is upper to this one. The caller must hold
7669  * the RTNL lock. On a failure a negative errno code is returned.
7670  * On success the reference counts are adjusted and the function
7671  * returns zero.
7672  */
7673 int netdev_upper_dev_link(struct net_device *dev,
7674                           struct net_device *upper_dev,
7675                           struct netlink_ext_ack *extack)
7676 {
7677         struct netdev_nested_priv priv = {
7678                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7679                 .data = NULL,
7680         };
7681
7682         return __netdev_upper_dev_link(dev, upper_dev, false,
7683                                        NULL, NULL, &priv, extack);
7684 }
7685 EXPORT_SYMBOL(netdev_upper_dev_link);
7686
7687 /**
7688  * netdev_master_upper_dev_link - Add a master link to the upper device
7689  * @dev: device
7690  * @upper_dev: new upper device
7691  * @upper_priv: upper device private
7692  * @upper_info: upper info to be passed down via notifier
7693  * @extack: netlink extended ack
7694  *
7695  * Adds a link to device which is upper to this one. In this case, only
7696  * one master upper device can be linked, although other non-master devices
7697  * might be linked as well. The caller must hold the RTNL lock.
7698  * On a failure a negative errno code is returned. On success the reference
7699  * counts are adjusted and the function returns zero.
7700  */
7701 int netdev_master_upper_dev_link(struct net_device *dev,
7702                                  struct net_device *upper_dev,
7703                                  void *upper_priv, void *upper_info,
7704                                  struct netlink_ext_ack *extack)
7705 {
7706         struct netdev_nested_priv priv = {
7707                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7708                 .data = NULL,
7709         };
7710
7711         return __netdev_upper_dev_link(dev, upper_dev, true,
7712                                        upper_priv, upper_info, &priv, extack);
7713 }
7714 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7715
7716 static void __netdev_upper_dev_unlink(struct net_device *dev,
7717                                       struct net_device *upper_dev,
7718                                       struct netdev_nested_priv *priv)
7719 {
7720         struct netdev_notifier_changeupper_info changeupper_info = {
7721                 .info = {
7722                         .dev = dev,
7723                 },
7724                 .upper_dev = upper_dev,
7725                 .linking = false,
7726         };
7727
7728         ASSERT_RTNL();
7729
7730         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7731
7732         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7733                                       &changeupper_info.info);
7734
7735         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7736
7737         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7738                                       &changeupper_info.info);
7739
7740         __netdev_update_upper_level(dev, NULL);
7741         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7742
7743         __netdev_update_lower_level(upper_dev, priv);
7744         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7745                                     priv);
7746 }
7747
7748 /**
7749  * netdev_upper_dev_unlink - Removes a link to upper device
7750  * @dev: device
7751  * @upper_dev: new upper device
7752  *
7753  * Removes a link to device which is upper to this one. The caller must hold
7754  * the RTNL lock.
7755  */
7756 void netdev_upper_dev_unlink(struct net_device *dev,
7757                              struct net_device *upper_dev)
7758 {
7759         struct netdev_nested_priv priv = {
7760                 .flags = NESTED_SYNC_TODO,
7761                 .data = NULL,
7762         };
7763
7764         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7765 }
7766 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7767
7768 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7769                                       struct net_device *lower_dev,
7770                                       bool val)
7771 {
7772         struct netdev_adjacent *adj;
7773
7774         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7775         if (adj)
7776                 adj->ignore = val;
7777
7778         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7779         if (adj)
7780                 adj->ignore = val;
7781 }
7782
7783 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7784                                         struct net_device *lower_dev)
7785 {
7786         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7787 }
7788
7789 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7790                                        struct net_device *lower_dev)
7791 {
7792         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7793 }
7794
7795 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7796                                    struct net_device *new_dev,
7797                                    struct net_device *dev,
7798                                    struct netlink_ext_ack *extack)
7799 {
7800         struct netdev_nested_priv priv = {
7801                 .flags = 0,
7802                 .data = NULL,
7803         };
7804         int err;
7805
7806         if (!new_dev)
7807                 return 0;
7808
7809         if (old_dev && new_dev != old_dev)
7810                 netdev_adjacent_dev_disable(dev, old_dev);
7811         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7812                                       extack);
7813         if (err) {
7814                 if (old_dev && new_dev != old_dev)
7815                         netdev_adjacent_dev_enable(dev, old_dev);
7816                 return err;
7817         }
7818
7819         return 0;
7820 }
7821 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7822
7823 void netdev_adjacent_change_commit(struct net_device *old_dev,
7824                                    struct net_device *new_dev,
7825                                    struct net_device *dev)
7826 {
7827         struct netdev_nested_priv priv = {
7828                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7829                 .data = NULL,
7830         };
7831
7832         if (!new_dev || !old_dev)
7833                 return;
7834
7835         if (new_dev == old_dev)
7836                 return;
7837
7838         netdev_adjacent_dev_enable(dev, old_dev);
7839         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7840 }
7841 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7842
7843 void netdev_adjacent_change_abort(struct net_device *old_dev,
7844                                   struct net_device *new_dev,
7845                                   struct net_device *dev)
7846 {
7847         struct netdev_nested_priv priv = {
7848                 .flags = 0,
7849                 .data = NULL,
7850         };
7851
7852         if (!new_dev)
7853                 return;
7854
7855         if (old_dev && new_dev != old_dev)
7856                 netdev_adjacent_dev_enable(dev, old_dev);
7857
7858         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7859 }
7860 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7861
7862 /**
7863  * netdev_bonding_info_change - Dispatch event about slave change
7864  * @dev: device
7865  * @bonding_info: info to dispatch
7866  *
7867  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7868  * The caller must hold the RTNL lock.
7869  */
7870 void netdev_bonding_info_change(struct net_device *dev,
7871                                 struct netdev_bonding_info *bonding_info)
7872 {
7873         struct netdev_notifier_bonding_info info = {
7874                 .info.dev = dev,
7875         };
7876
7877         memcpy(&info.bonding_info, bonding_info,
7878                sizeof(struct netdev_bonding_info));
7879         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7880                                       &info.info);
7881 }
7882 EXPORT_SYMBOL(netdev_bonding_info_change);
7883
7884 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7885                                            struct netlink_ext_ack *extack)
7886 {
7887         struct netdev_notifier_offload_xstats_info info = {
7888                 .info.dev = dev,
7889                 .info.extack = extack,
7890                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7891         };
7892         int err;
7893         int rc;
7894
7895         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7896                                          GFP_KERNEL);
7897         if (!dev->offload_xstats_l3)
7898                 return -ENOMEM;
7899
7900         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7901                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7902                                                   &info.info);
7903         err = notifier_to_errno(rc);
7904         if (err)
7905                 goto free_stats;
7906
7907         return 0;
7908
7909 free_stats:
7910         kfree(dev->offload_xstats_l3);
7911         dev->offload_xstats_l3 = NULL;
7912         return err;
7913 }
7914
7915 int netdev_offload_xstats_enable(struct net_device *dev,
7916                                  enum netdev_offload_xstats_type type,
7917                                  struct netlink_ext_ack *extack)
7918 {
7919         ASSERT_RTNL();
7920
7921         if (netdev_offload_xstats_enabled(dev, type))
7922                 return -EALREADY;
7923
7924         switch (type) {
7925         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7926                 return netdev_offload_xstats_enable_l3(dev, extack);
7927         }
7928
7929         WARN_ON(1);
7930         return -EINVAL;
7931 }
7932 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7933
7934 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7935 {
7936         struct netdev_notifier_offload_xstats_info info = {
7937                 .info.dev = dev,
7938                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7939         };
7940
7941         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7942                                       &info.info);
7943         kfree(dev->offload_xstats_l3);
7944         dev->offload_xstats_l3 = NULL;
7945 }
7946
7947 int netdev_offload_xstats_disable(struct net_device *dev,
7948                                   enum netdev_offload_xstats_type type)
7949 {
7950         ASSERT_RTNL();
7951
7952         if (!netdev_offload_xstats_enabled(dev, type))
7953                 return -EALREADY;
7954
7955         switch (type) {
7956         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7957                 netdev_offload_xstats_disable_l3(dev);
7958                 return 0;
7959         }
7960
7961         WARN_ON(1);
7962         return -EINVAL;
7963 }
7964 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7965
7966 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7967 {
7968         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7969 }
7970
7971 static struct rtnl_hw_stats64 *
7972 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7973                               enum netdev_offload_xstats_type type)
7974 {
7975         switch (type) {
7976         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7977                 return dev->offload_xstats_l3;
7978         }
7979
7980         WARN_ON(1);
7981         return NULL;
7982 }
7983
7984 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7985                                    enum netdev_offload_xstats_type type)
7986 {
7987         ASSERT_RTNL();
7988
7989         return netdev_offload_xstats_get_ptr(dev, type);
7990 }
7991 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7992
7993 struct netdev_notifier_offload_xstats_ru {
7994         bool used;
7995 };
7996
7997 struct netdev_notifier_offload_xstats_rd {
7998         struct rtnl_hw_stats64 stats;
7999         bool used;
8000 };
8001
8002 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8003                                   const struct rtnl_hw_stats64 *src)
8004 {
8005         dest->rx_packets          += src->rx_packets;
8006         dest->tx_packets          += src->tx_packets;
8007         dest->rx_bytes            += src->rx_bytes;
8008         dest->tx_bytes            += src->tx_bytes;
8009         dest->rx_errors           += src->rx_errors;
8010         dest->tx_errors           += src->tx_errors;
8011         dest->rx_dropped          += src->rx_dropped;
8012         dest->tx_dropped          += src->tx_dropped;
8013         dest->multicast           += src->multicast;
8014 }
8015
8016 static int netdev_offload_xstats_get_used(struct net_device *dev,
8017                                           enum netdev_offload_xstats_type type,
8018                                           bool *p_used,
8019                                           struct netlink_ext_ack *extack)
8020 {
8021         struct netdev_notifier_offload_xstats_ru report_used = {};
8022         struct netdev_notifier_offload_xstats_info info = {
8023                 .info.dev = dev,
8024                 .info.extack = extack,
8025                 .type = type,
8026                 .report_used = &report_used,
8027         };
8028         int rc;
8029
8030         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8031         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8032                                            &info.info);
8033         *p_used = report_used.used;
8034         return notifier_to_errno(rc);
8035 }
8036
8037 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8038                                            enum netdev_offload_xstats_type type,
8039                                            struct rtnl_hw_stats64 *p_stats,
8040                                            bool *p_used,
8041                                            struct netlink_ext_ack *extack)
8042 {
8043         struct netdev_notifier_offload_xstats_rd report_delta = {};
8044         struct netdev_notifier_offload_xstats_info info = {
8045                 .info.dev = dev,
8046                 .info.extack = extack,
8047                 .type = type,
8048                 .report_delta = &report_delta,
8049         };
8050         struct rtnl_hw_stats64 *stats;
8051         int rc;
8052
8053         stats = netdev_offload_xstats_get_ptr(dev, type);
8054         if (WARN_ON(!stats))
8055                 return -EINVAL;
8056
8057         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8058                                            &info.info);
8059
8060         /* Cache whatever we got, even if there was an error, otherwise the
8061          * successful stats retrievals would get lost.
8062          */
8063         netdev_hw_stats64_add(stats, &report_delta.stats);
8064
8065         if (p_stats)
8066                 *p_stats = *stats;
8067         *p_used = report_delta.used;
8068
8069         return notifier_to_errno(rc);
8070 }
8071
8072 int netdev_offload_xstats_get(struct net_device *dev,
8073                               enum netdev_offload_xstats_type type,
8074                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8075                               struct netlink_ext_ack *extack)
8076 {
8077         ASSERT_RTNL();
8078
8079         if (p_stats)
8080                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8081                                                        p_used, extack);
8082         else
8083                 return netdev_offload_xstats_get_used(dev, type, p_used,
8084                                                       extack);
8085 }
8086 EXPORT_SYMBOL(netdev_offload_xstats_get);
8087
8088 void
8089 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8090                                    const struct rtnl_hw_stats64 *stats)
8091 {
8092         report_delta->used = true;
8093         netdev_hw_stats64_add(&report_delta->stats, stats);
8094 }
8095 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8096
8097 void
8098 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8099 {
8100         report_used->used = true;
8101 }
8102 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8103
8104 void netdev_offload_xstats_push_delta(struct net_device *dev,
8105                                       enum netdev_offload_xstats_type type,
8106                                       const struct rtnl_hw_stats64 *p_stats)
8107 {
8108         struct rtnl_hw_stats64 *stats;
8109
8110         ASSERT_RTNL();
8111
8112         stats = netdev_offload_xstats_get_ptr(dev, type);
8113         if (WARN_ON(!stats))
8114                 return;
8115
8116         netdev_hw_stats64_add(stats, p_stats);
8117 }
8118 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8119
8120 /**
8121  * netdev_get_xmit_slave - Get the xmit slave of master device
8122  * @dev: device
8123  * @skb: The packet
8124  * @all_slaves: assume all the slaves are active
8125  *
8126  * The reference counters are not incremented so the caller must be
8127  * careful with locks. The caller must hold RCU lock.
8128  * %NULL is returned if no slave is found.
8129  */
8130
8131 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8132                                          struct sk_buff *skb,
8133                                          bool all_slaves)
8134 {
8135         const struct net_device_ops *ops = dev->netdev_ops;
8136
8137         if (!ops->ndo_get_xmit_slave)
8138                 return NULL;
8139         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8140 }
8141 EXPORT_SYMBOL(netdev_get_xmit_slave);
8142
8143 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8144                                                   struct sock *sk)
8145 {
8146         const struct net_device_ops *ops = dev->netdev_ops;
8147
8148         if (!ops->ndo_sk_get_lower_dev)
8149                 return NULL;
8150         return ops->ndo_sk_get_lower_dev(dev, sk);
8151 }
8152
8153 /**
8154  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8155  * @dev: device
8156  * @sk: the socket
8157  *
8158  * %NULL is returned if no lower device is found.
8159  */
8160
8161 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8162                                             struct sock *sk)
8163 {
8164         struct net_device *lower;
8165
8166         lower = netdev_sk_get_lower_dev(dev, sk);
8167         while (lower) {
8168                 dev = lower;
8169                 lower = netdev_sk_get_lower_dev(dev, sk);
8170         }
8171
8172         return dev;
8173 }
8174 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8175
8176 static void netdev_adjacent_add_links(struct net_device *dev)
8177 {
8178         struct netdev_adjacent *iter;
8179
8180         struct net *net = dev_net(dev);
8181
8182         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8183                 if (!net_eq(net, dev_net(iter->dev)))
8184                         continue;
8185                 netdev_adjacent_sysfs_add(iter->dev, dev,
8186                                           &iter->dev->adj_list.lower);
8187                 netdev_adjacent_sysfs_add(dev, iter->dev,
8188                                           &dev->adj_list.upper);
8189         }
8190
8191         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8192                 if (!net_eq(net, dev_net(iter->dev)))
8193                         continue;
8194                 netdev_adjacent_sysfs_add(iter->dev, dev,
8195                                           &iter->dev->adj_list.upper);
8196                 netdev_adjacent_sysfs_add(dev, iter->dev,
8197                                           &dev->adj_list.lower);
8198         }
8199 }
8200
8201 static void netdev_adjacent_del_links(struct net_device *dev)
8202 {
8203         struct netdev_adjacent *iter;
8204
8205         struct net *net = dev_net(dev);
8206
8207         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8208                 if (!net_eq(net, dev_net(iter->dev)))
8209                         continue;
8210                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8211                                           &iter->dev->adj_list.lower);
8212                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8213                                           &dev->adj_list.upper);
8214         }
8215
8216         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8217                 if (!net_eq(net, dev_net(iter->dev)))
8218                         continue;
8219                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8220                                           &iter->dev->adj_list.upper);
8221                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8222                                           &dev->adj_list.lower);
8223         }
8224 }
8225
8226 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8227 {
8228         struct netdev_adjacent *iter;
8229
8230         struct net *net = dev_net(dev);
8231
8232         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8233                 if (!net_eq(net, dev_net(iter->dev)))
8234                         continue;
8235                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8236                                           &iter->dev->adj_list.lower);
8237                 netdev_adjacent_sysfs_add(iter->dev, dev,
8238                                           &iter->dev->adj_list.lower);
8239         }
8240
8241         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8242                 if (!net_eq(net, dev_net(iter->dev)))
8243                         continue;
8244                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8245                                           &iter->dev->adj_list.upper);
8246                 netdev_adjacent_sysfs_add(iter->dev, dev,
8247                                           &iter->dev->adj_list.upper);
8248         }
8249 }
8250
8251 void *netdev_lower_dev_get_private(struct net_device *dev,
8252                                    struct net_device *lower_dev)
8253 {
8254         struct netdev_adjacent *lower;
8255
8256         if (!lower_dev)
8257                 return NULL;
8258         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8259         if (!lower)
8260                 return NULL;
8261
8262         return lower->private;
8263 }
8264 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8265
8266
8267 /**
8268  * netdev_lower_state_changed - Dispatch event about lower device state change
8269  * @lower_dev: device
8270  * @lower_state_info: state to dispatch
8271  *
8272  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8273  * The caller must hold the RTNL lock.
8274  */
8275 void netdev_lower_state_changed(struct net_device *lower_dev,
8276                                 void *lower_state_info)
8277 {
8278         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8279                 .info.dev = lower_dev,
8280         };
8281
8282         ASSERT_RTNL();
8283         changelowerstate_info.lower_state_info = lower_state_info;
8284         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8285                                       &changelowerstate_info.info);
8286 }
8287 EXPORT_SYMBOL(netdev_lower_state_changed);
8288
8289 static void dev_change_rx_flags(struct net_device *dev, int flags)
8290 {
8291         const struct net_device_ops *ops = dev->netdev_ops;
8292
8293         if (ops->ndo_change_rx_flags)
8294                 ops->ndo_change_rx_flags(dev, flags);
8295 }
8296
8297 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8298 {
8299         unsigned int old_flags = dev->flags;
8300         kuid_t uid;
8301         kgid_t gid;
8302
8303         ASSERT_RTNL();
8304
8305         dev->flags |= IFF_PROMISC;
8306         dev->promiscuity += inc;
8307         if (dev->promiscuity == 0) {
8308                 /*
8309                  * Avoid overflow.
8310                  * If inc causes overflow, untouch promisc and return error.
8311                  */
8312                 if (inc < 0)
8313                         dev->flags &= ~IFF_PROMISC;
8314                 else {
8315                         dev->promiscuity -= inc;
8316                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8317                         return -EOVERFLOW;
8318                 }
8319         }
8320         if (dev->flags != old_flags) {
8321                 pr_info("device %s %s promiscuous mode\n",
8322                         dev->name,
8323                         dev->flags & IFF_PROMISC ? "entered" : "left");
8324                 if (audit_enabled) {
8325                         current_uid_gid(&uid, &gid);
8326                         audit_log(audit_context(), GFP_ATOMIC,
8327                                   AUDIT_ANOM_PROMISCUOUS,
8328                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8329                                   dev->name, (dev->flags & IFF_PROMISC),
8330                                   (old_flags & IFF_PROMISC),
8331                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8332                                   from_kuid(&init_user_ns, uid),
8333                                   from_kgid(&init_user_ns, gid),
8334                                   audit_get_sessionid(current));
8335                 }
8336
8337                 dev_change_rx_flags(dev, IFF_PROMISC);
8338         }
8339         if (notify)
8340                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8341         return 0;
8342 }
8343
8344 /**
8345  *      dev_set_promiscuity     - update promiscuity count on a device
8346  *      @dev: device
8347  *      @inc: modifier
8348  *
8349  *      Add or remove promiscuity from a device. While the count in the device
8350  *      remains above zero the interface remains promiscuous. Once it hits zero
8351  *      the device reverts back to normal filtering operation. A negative inc
8352  *      value is used to drop promiscuity on the device.
8353  *      Return 0 if successful or a negative errno code on error.
8354  */
8355 int dev_set_promiscuity(struct net_device *dev, int inc)
8356 {
8357         unsigned int old_flags = dev->flags;
8358         int err;
8359
8360         err = __dev_set_promiscuity(dev, inc, true);
8361         if (err < 0)
8362                 return err;
8363         if (dev->flags != old_flags)
8364                 dev_set_rx_mode(dev);
8365         return err;
8366 }
8367 EXPORT_SYMBOL(dev_set_promiscuity);
8368
8369 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8370 {
8371         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8372
8373         ASSERT_RTNL();
8374
8375         dev->flags |= IFF_ALLMULTI;
8376         dev->allmulti += inc;
8377         if (dev->allmulti == 0) {
8378                 /*
8379                  * Avoid overflow.
8380                  * If inc causes overflow, untouch allmulti and return error.
8381                  */
8382                 if (inc < 0)
8383                         dev->flags &= ~IFF_ALLMULTI;
8384                 else {
8385                         dev->allmulti -= inc;
8386                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8387                         return -EOVERFLOW;
8388                 }
8389         }
8390         if (dev->flags ^ old_flags) {
8391                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8392                 dev_set_rx_mode(dev);
8393                 if (notify)
8394                         __dev_notify_flags(dev, old_flags,
8395                                            dev->gflags ^ old_gflags, 0, NULL);
8396         }
8397         return 0;
8398 }
8399
8400 /**
8401  *      dev_set_allmulti        - update allmulti count on a device
8402  *      @dev: device
8403  *      @inc: modifier
8404  *
8405  *      Add or remove reception of all multicast frames to a device. While the
8406  *      count in the device remains above zero the interface remains listening
8407  *      to all interfaces. Once it hits zero the device reverts back to normal
8408  *      filtering operation. A negative @inc value is used to drop the counter
8409  *      when releasing a resource needing all multicasts.
8410  *      Return 0 if successful or a negative errno code on error.
8411  */
8412
8413 int dev_set_allmulti(struct net_device *dev, int inc)
8414 {
8415         return __dev_set_allmulti(dev, inc, true);
8416 }
8417 EXPORT_SYMBOL(dev_set_allmulti);
8418
8419 /*
8420  *      Upload unicast and multicast address lists to device and
8421  *      configure RX filtering. When the device doesn't support unicast
8422  *      filtering it is put in promiscuous mode while unicast addresses
8423  *      are present.
8424  */
8425 void __dev_set_rx_mode(struct net_device *dev)
8426 {
8427         const struct net_device_ops *ops = dev->netdev_ops;
8428
8429         /* dev_open will call this function so the list will stay sane. */
8430         if (!(dev->flags&IFF_UP))
8431                 return;
8432
8433         if (!netif_device_present(dev))
8434                 return;
8435
8436         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8437                 /* Unicast addresses changes may only happen under the rtnl,
8438                  * therefore calling __dev_set_promiscuity here is safe.
8439                  */
8440                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8441                         __dev_set_promiscuity(dev, 1, false);
8442                         dev->uc_promisc = true;
8443                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8444                         __dev_set_promiscuity(dev, -1, false);
8445                         dev->uc_promisc = false;
8446                 }
8447         }
8448
8449         if (ops->ndo_set_rx_mode)
8450                 ops->ndo_set_rx_mode(dev);
8451 }
8452
8453 void dev_set_rx_mode(struct net_device *dev)
8454 {
8455         netif_addr_lock_bh(dev);
8456         __dev_set_rx_mode(dev);
8457         netif_addr_unlock_bh(dev);
8458 }
8459
8460 /**
8461  *      dev_get_flags - get flags reported to userspace
8462  *      @dev: device
8463  *
8464  *      Get the combination of flag bits exported through APIs to userspace.
8465  */
8466 unsigned int dev_get_flags(const struct net_device *dev)
8467 {
8468         unsigned int flags;
8469
8470         flags = (dev->flags & ~(IFF_PROMISC |
8471                                 IFF_ALLMULTI |
8472                                 IFF_RUNNING |
8473                                 IFF_LOWER_UP |
8474                                 IFF_DORMANT)) |
8475                 (dev->gflags & (IFF_PROMISC |
8476                                 IFF_ALLMULTI));
8477
8478         if (netif_running(dev)) {
8479                 if (netif_oper_up(dev))
8480                         flags |= IFF_RUNNING;
8481                 if (netif_carrier_ok(dev))
8482                         flags |= IFF_LOWER_UP;
8483                 if (netif_dormant(dev))
8484                         flags |= IFF_DORMANT;
8485         }
8486
8487         return flags;
8488 }
8489 EXPORT_SYMBOL(dev_get_flags);
8490
8491 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8492                        struct netlink_ext_ack *extack)
8493 {
8494         unsigned int old_flags = dev->flags;
8495         int ret;
8496
8497         ASSERT_RTNL();
8498
8499         /*
8500          *      Set the flags on our device.
8501          */
8502
8503         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8504                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8505                                IFF_AUTOMEDIA)) |
8506                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8507                                     IFF_ALLMULTI));
8508
8509         /*
8510          *      Load in the correct multicast list now the flags have changed.
8511          */
8512
8513         if ((old_flags ^ flags) & IFF_MULTICAST)
8514                 dev_change_rx_flags(dev, IFF_MULTICAST);
8515
8516         dev_set_rx_mode(dev);
8517
8518         /*
8519          *      Have we downed the interface. We handle IFF_UP ourselves
8520          *      according to user attempts to set it, rather than blindly
8521          *      setting it.
8522          */
8523
8524         ret = 0;
8525         if ((old_flags ^ flags) & IFF_UP) {
8526                 if (old_flags & IFF_UP)
8527                         __dev_close(dev);
8528                 else
8529                         ret = __dev_open(dev, extack);
8530         }
8531
8532         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8533                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8534                 unsigned int old_flags = dev->flags;
8535
8536                 dev->gflags ^= IFF_PROMISC;
8537
8538                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8539                         if (dev->flags != old_flags)
8540                                 dev_set_rx_mode(dev);
8541         }
8542
8543         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8544          * is important. Some (broken) drivers set IFF_PROMISC, when
8545          * IFF_ALLMULTI is requested not asking us and not reporting.
8546          */
8547         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8548                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8549
8550                 dev->gflags ^= IFF_ALLMULTI;
8551                 __dev_set_allmulti(dev, inc, false);
8552         }
8553
8554         return ret;
8555 }
8556
8557 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8558                         unsigned int gchanges, u32 portid,
8559                         const struct nlmsghdr *nlh)
8560 {
8561         unsigned int changes = dev->flags ^ old_flags;
8562
8563         if (gchanges)
8564                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8565
8566         if (changes & IFF_UP) {
8567                 if (dev->flags & IFF_UP)
8568                         call_netdevice_notifiers(NETDEV_UP, dev);
8569                 else
8570                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8571         }
8572
8573         if (dev->flags & IFF_UP &&
8574             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8575                 struct netdev_notifier_change_info change_info = {
8576                         .info = {
8577                                 .dev = dev,
8578                         },
8579                         .flags_changed = changes,
8580                 };
8581
8582                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8583         }
8584 }
8585
8586 /**
8587  *      dev_change_flags - change device settings
8588  *      @dev: device
8589  *      @flags: device state flags
8590  *      @extack: netlink extended ack
8591  *
8592  *      Change settings on device based state flags. The flags are
8593  *      in the userspace exported format.
8594  */
8595 int dev_change_flags(struct net_device *dev, unsigned int flags,
8596                      struct netlink_ext_ack *extack)
8597 {
8598         int ret;
8599         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8600
8601         ret = __dev_change_flags(dev, flags, extack);
8602         if (ret < 0)
8603                 return ret;
8604
8605         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8606         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8607         return ret;
8608 }
8609 EXPORT_SYMBOL(dev_change_flags);
8610
8611 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8612 {
8613         const struct net_device_ops *ops = dev->netdev_ops;
8614
8615         if (ops->ndo_change_mtu)
8616                 return ops->ndo_change_mtu(dev, new_mtu);
8617
8618         /* Pairs with all the lockless reads of dev->mtu in the stack */
8619         WRITE_ONCE(dev->mtu, new_mtu);
8620         return 0;
8621 }
8622 EXPORT_SYMBOL(__dev_set_mtu);
8623
8624 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8625                      struct netlink_ext_ack *extack)
8626 {
8627         /* MTU must be positive, and in range */
8628         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8629                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8630                 return -EINVAL;
8631         }
8632
8633         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8634                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8635                 return -EINVAL;
8636         }
8637         return 0;
8638 }
8639
8640 /**
8641  *      dev_set_mtu_ext - Change maximum transfer unit
8642  *      @dev: device
8643  *      @new_mtu: new transfer unit
8644  *      @extack: netlink extended ack
8645  *
8646  *      Change the maximum transfer size of the network device.
8647  */
8648 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8649                     struct netlink_ext_ack *extack)
8650 {
8651         int err, orig_mtu;
8652
8653         if (new_mtu == dev->mtu)
8654                 return 0;
8655
8656         err = dev_validate_mtu(dev, new_mtu, extack);
8657         if (err)
8658                 return err;
8659
8660         if (!netif_device_present(dev))
8661                 return -ENODEV;
8662
8663         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8664         err = notifier_to_errno(err);
8665         if (err)
8666                 return err;
8667
8668         orig_mtu = dev->mtu;
8669         err = __dev_set_mtu(dev, new_mtu);
8670
8671         if (!err) {
8672                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8673                                                    orig_mtu);
8674                 err = notifier_to_errno(err);
8675                 if (err) {
8676                         /* setting mtu back and notifying everyone again,
8677                          * so that they have a chance to revert changes.
8678                          */
8679                         __dev_set_mtu(dev, orig_mtu);
8680                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8681                                                      new_mtu);
8682                 }
8683         }
8684         return err;
8685 }
8686
8687 int dev_set_mtu(struct net_device *dev, int new_mtu)
8688 {
8689         struct netlink_ext_ack extack;
8690         int err;
8691
8692         memset(&extack, 0, sizeof(extack));
8693         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8694         if (err && extack._msg)
8695                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8696         return err;
8697 }
8698 EXPORT_SYMBOL(dev_set_mtu);
8699
8700 /**
8701  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8702  *      @dev: device
8703  *      @new_len: new tx queue length
8704  */
8705 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8706 {
8707         unsigned int orig_len = dev->tx_queue_len;
8708         int res;
8709
8710         if (new_len != (unsigned int)new_len)
8711                 return -ERANGE;
8712
8713         if (new_len != orig_len) {
8714                 dev->tx_queue_len = new_len;
8715                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8716                 res = notifier_to_errno(res);
8717                 if (res)
8718                         goto err_rollback;
8719                 res = dev_qdisc_change_tx_queue_len(dev);
8720                 if (res)
8721                         goto err_rollback;
8722         }
8723
8724         return 0;
8725
8726 err_rollback:
8727         netdev_err(dev, "refused to change device tx_queue_len\n");
8728         dev->tx_queue_len = orig_len;
8729         return res;
8730 }
8731
8732 /**
8733  *      dev_set_group - Change group this device belongs to
8734  *      @dev: device
8735  *      @new_group: group this device should belong to
8736  */
8737 void dev_set_group(struct net_device *dev, int new_group)
8738 {
8739         dev->group = new_group;
8740 }
8741
8742 /**
8743  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8744  *      @dev: device
8745  *      @addr: new address
8746  *      @extack: netlink extended ack
8747  */
8748 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8749                               struct netlink_ext_ack *extack)
8750 {
8751         struct netdev_notifier_pre_changeaddr_info info = {
8752                 .info.dev = dev,
8753                 .info.extack = extack,
8754                 .dev_addr = addr,
8755         };
8756         int rc;
8757
8758         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8759         return notifier_to_errno(rc);
8760 }
8761 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8762
8763 /**
8764  *      dev_set_mac_address - Change Media Access Control Address
8765  *      @dev: device
8766  *      @sa: new address
8767  *      @extack: netlink extended ack
8768  *
8769  *      Change the hardware (MAC) address of the device
8770  */
8771 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8772                         struct netlink_ext_ack *extack)
8773 {
8774         const struct net_device_ops *ops = dev->netdev_ops;
8775         int err;
8776
8777         if (!ops->ndo_set_mac_address)
8778                 return -EOPNOTSUPP;
8779         if (sa->sa_family != dev->type)
8780                 return -EINVAL;
8781         if (!netif_device_present(dev))
8782                 return -ENODEV;
8783         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8784         if (err)
8785                 return err;
8786         err = ops->ndo_set_mac_address(dev, sa);
8787         if (err)
8788                 return err;
8789         dev->addr_assign_type = NET_ADDR_SET;
8790         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8791         add_device_randomness(dev->dev_addr, dev->addr_len);
8792         return 0;
8793 }
8794 EXPORT_SYMBOL(dev_set_mac_address);
8795
8796 static DECLARE_RWSEM(dev_addr_sem);
8797
8798 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8799                              struct netlink_ext_ack *extack)
8800 {
8801         int ret;
8802
8803         down_write(&dev_addr_sem);
8804         ret = dev_set_mac_address(dev, sa, extack);
8805         up_write(&dev_addr_sem);
8806         return ret;
8807 }
8808 EXPORT_SYMBOL(dev_set_mac_address_user);
8809
8810 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8811 {
8812         size_t size = sizeof(sa->sa_data_min);
8813         struct net_device *dev;
8814         int ret = 0;
8815
8816         down_read(&dev_addr_sem);
8817         rcu_read_lock();
8818
8819         dev = dev_get_by_name_rcu(net, dev_name);
8820         if (!dev) {
8821                 ret = -ENODEV;
8822                 goto unlock;
8823         }
8824         if (!dev->addr_len)
8825                 memset(sa->sa_data, 0, size);
8826         else
8827                 memcpy(sa->sa_data, dev->dev_addr,
8828                        min_t(size_t, size, dev->addr_len));
8829         sa->sa_family = dev->type;
8830
8831 unlock:
8832         rcu_read_unlock();
8833         up_read(&dev_addr_sem);
8834         return ret;
8835 }
8836 EXPORT_SYMBOL(dev_get_mac_address);
8837
8838 /**
8839  *      dev_change_carrier - Change device carrier
8840  *      @dev: device
8841  *      @new_carrier: new value
8842  *
8843  *      Change device carrier
8844  */
8845 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8846 {
8847         const struct net_device_ops *ops = dev->netdev_ops;
8848
8849         if (!ops->ndo_change_carrier)
8850                 return -EOPNOTSUPP;
8851         if (!netif_device_present(dev))
8852                 return -ENODEV;
8853         return ops->ndo_change_carrier(dev, new_carrier);
8854 }
8855
8856 /**
8857  *      dev_get_phys_port_id - Get device physical port ID
8858  *      @dev: device
8859  *      @ppid: port ID
8860  *
8861  *      Get device physical port ID
8862  */
8863 int dev_get_phys_port_id(struct net_device *dev,
8864                          struct netdev_phys_item_id *ppid)
8865 {
8866         const struct net_device_ops *ops = dev->netdev_ops;
8867
8868         if (!ops->ndo_get_phys_port_id)
8869                 return -EOPNOTSUPP;
8870         return ops->ndo_get_phys_port_id(dev, ppid);
8871 }
8872
8873 /**
8874  *      dev_get_phys_port_name - Get device physical port name
8875  *      @dev: device
8876  *      @name: port name
8877  *      @len: limit of bytes to copy to name
8878  *
8879  *      Get device physical port name
8880  */
8881 int dev_get_phys_port_name(struct net_device *dev,
8882                            char *name, size_t len)
8883 {
8884         const struct net_device_ops *ops = dev->netdev_ops;
8885         int err;
8886
8887         if (ops->ndo_get_phys_port_name) {
8888                 err = ops->ndo_get_phys_port_name(dev, name, len);
8889                 if (err != -EOPNOTSUPP)
8890                         return err;
8891         }
8892         return devlink_compat_phys_port_name_get(dev, name, len);
8893 }
8894
8895 /**
8896  *      dev_get_port_parent_id - Get the device's port parent identifier
8897  *      @dev: network device
8898  *      @ppid: pointer to a storage for the port's parent identifier
8899  *      @recurse: allow/disallow recursion to lower devices
8900  *
8901  *      Get the devices's port parent identifier
8902  */
8903 int dev_get_port_parent_id(struct net_device *dev,
8904                            struct netdev_phys_item_id *ppid,
8905                            bool recurse)
8906 {
8907         const struct net_device_ops *ops = dev->netdev_ops;
8908         struct netdev_phys_item_id first = { };
8909         struct net_device *lower_dev;
8910         struct list_head *iter;
8911         int err;
8912
8913         if (ops->ndo_get_port_parent_id) {
8914                 err = ops->ndo_get_port_parent_id(dev, ppid);
8915                 if (err != -EOPNOTSUPP)
8916                         return err;
8917         }
8918
8919         err = devlink_compat_switch_id_get(dev, ppid);
8920         if (!recurse || err != -EOPNOTSUPP)
8921                 return err;
8922
8923         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8924                 err = dev_get_port_parent_id(lower_dev, ppid, true);
8925                 if (err)
8926                         break;
8927                 if (!first.id_len)
8928                         first = *ppid;
8929                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8930                         return -EOPNOTSUPP;
8931         }
8932
8933         return err;
8934 }
8935 EXPORT_SYMBOL(dev_get_port_parent_id);
8936
8937 /**
8938  *      netdev_port_same_parent_id - Indicate if two network devices have
8939  *      the same port parent identifier
8940  *      @a: first network device
8941  *      @b: second network device
8942  */
8943 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8944 {
8945         struct netdev_phys_item_id a_id = { };
8946         struct netdev_phys_item_id b_id = { };
8947
8948         if (dev_get_port_parent_id(a, &a_id, true) ||
8949             dev_get_port_parent_id(b, &b_id, true))
8950                 return false;
8951
8952         return netdev_phys_item_id_same(&a_id, &b_id);
8953 }
8954 EXPORT_SYMBOL(netdev_port_same_parent_id);
8955
8956 /**
8957  *      dev_change_proto_down - set carrier according to proto_down.
8958  *
8959  *      @dev: device
8960  *      @proto_down: new value
8961  */
8962 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8963 {
8964         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8965                 return -EOPNOTSUPP;
8966         if (!netif_device_present(dev))
8967                 return -ENODEV;
8968         if (proto_down)
8969                 netif_carrier_off(dev);
8970         else
8971                 netif_carrier_on(dev);
8972         dev->proto_down = proto_down;
8973         return 0;
8974 }
8975
8976 /**
8977  *      dev_change_proto_down_reason - proto down reason
8978  *
8979  *      @dev: device
8980  *      @mask: proto down mask
8981  *      @value: proto down value
8982  */
8983 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8984                                   u32 value)
8985 {
8986         int b;
8987
8988         if (!mask) {
8989                 dev->proto_down_reason = value;
8990         } else {
8991                 for_each_set_bit(b, &mask, 32) {
8992                         if (value & (1 << b))
8993                                 dev->proto_down_reason |= BIT(b);
8994                         else
8995                                 dev->proto_down_reason &= ~BIT(b);
8996                 }
8997         }
8998 }
8999
9000 struct bpf_xdp_link {
9001         struct bpf_link link;
9002         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9003         int flags;
9004 };
9005
9006 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9007 {
9008         if (flags & XDP_FLAGS_HW_MODE)
9009                 return XDP_MODE_HW;
9010         if (flags & XDP_FLAGS_DRV_MODE)
9011                 return XDP_MODE_DRV;
9012         if (flags & XDP_FLAGS_SKB_MODE)
9013                 return XDP_MODE_SKB;
9014         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9015 }
9016
9017 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9018 {
9019         switch (mode) {
9020         case XDP_MODE_SKB:
9021                 return generic_xdp_install;
9022         case XDP_MODE_DRV:
9023         case XDP_MODE_HW:
9024                 return dev->netdev_ops->ndo_bpf;
9025         default:
9026                 return NULL;
9027         }
9028 }
9029
9030 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9031                                          enum bpf_xdp_mode mode)
9032 {
9033         return dev->xdp_state[mode].link;
9034 }
9035
9036 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9037                                      enum bpf_xdp_mode mode)
9038 {
9039         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9040
9041         if (link)
9042                 return link->link.prog;
9043         return dev->xdp_state[mode].prog;
9044 }
9045
9046 u8 dev_xdp_prog_count(struct net_device *dev)
9047 {
9048         u8 count = 0;
9049         int i;
9050
9051         for (i = 0; i < __MAX_XDP_MODE; i++)
9052                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9053                         count++;
9054         return count;
9055 }
9056 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9057
9058 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9059 {
9060         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9061
9062         return prog ? prog->aux->id : 0;
9063 }
9064
9065 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9066                              struct bpf_xdp_link *link)
9067 {
9068         dev->xdp_state[mode].link = link;
9069         dev->xdp_state[mode].prog = NULL;
9070 }
9071
9072 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9073                              struct bpf_prog *prog)
9074 {
9075         dev->xdp_state[mode].link = NULL;
9076         dev->xdp_state[mode].prog = prog;
9077 }
9078
9079 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9080                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9081                            u32 flags, struct bpf_prog *prog)
9082 {
9083         struct netdev_bpf xdp;
9084         int err;
9085
9086         memset(&xdp, 0, sizeof(xdp));
9087         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9088         xdp.extack = extack;
9089         xdp.flags = flags;
9090         xdp.prog = prog;
9091
9092         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9093          * "moved" into driver), so they don't increment it on their own, but
9094          * they do decrement refcnt when program is detached or replaced.
9095          * Given net_device also owns link/prog, we need to bump refcnt here
9096          * to prevent drivers from underflowing it.
9097          */
9098         if (prog)
9099                 bpf_prog_inc(prog);
9100         err = bpf_op(dev, &xdp);
9101         if (err) {
9102                 if (prog)
9103                         bpf_prog_put(prog);
9104                 return err;
9105         }
9106
9107         if (mode != XDP_MODE_HW)
9108                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9109
9110         return 0;
9111 }
9112
9113 static void dev_xdp_uninstall(struct net_device *dev)
9114 {
9115         struct bpf_xdp_link *link;
9116         struct bpf_prog *prog;
9117         enum bpf_xdp_mode mode;
9118         bpf_op_t bpf_op;
9119
9120         ASSERT_RTNL();
9121
9122         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9123                 prog = dev_xdp_prog(dev, mode);
9124                 if (!prog)
9125                         continue;
9126
9127                 bpf_op = dev_xdp_bpf_op(dev, mode);
9128                 if (!bpf_op)
9129                         continue;
9130
9131                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9132
9133                 /* auto-detach link from net device */
9134                 link = dev_xdp_link(dev, mode);
9135                 if (link)
9136                         link->dev = NULL;
9137                 else
9138                         bpf_prog_put(prog);
9139
9140                 dev_xdp_set_link(dev, mode, NULL);
9141         }
9142 }
9143
9144 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9145                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9146                           struct bpf_prog *old_prog, u32 flags)
9147 {
9148         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9149         struct bpf_prog *cur_prog;
9150         struct net_device *upper;
9151         struct list_head *iter;
9152         enum bpf_xdp_mode mode;
9153         bpf_op_t bpf_op;
9154         int err;
9155
9156         ASSERT_RTNL();
9157
9158         /* either link or prog attachment, never both */
9159         if (link && (new_prog || old_prog))
9160                 return -EINVAL;
9161         /* link supports only XDP mode flags */
9162         if (link && (flags & ~XDP_FLAGS_MODES)) {
9163                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9164                 return -EINVAL;
9165         }
9166         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9167         if (num_modes > 1) {
9168                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9169                 return -EINVAL;
9170         }
9171         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9172         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9173                 NL_SET_ERR_MSG(extack,
9174                                "More than one program loaded, unset mode is ambiguous");
9175                 return -EINVAL;
9176         }
9177         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9178         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9179                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9180                 return -EINVAL;
9181         }
9182
9183         mode = dev_xdp_mode(dev, flags);
9184         /* can't replace attached link */
9185         if (dev_xdp_link(dev, mode)) {
9186                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9187                 return -EBUSY;
9188         }
9189
9190         /* don't allow if an upper device already has a program */
9191         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9192                 if (dev_xdp_prog_count(upper) > 0) {
9193                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9194                         return -EEXIST;
9195                 }
9196         }
9197
9198         cur_prog = dev_xdp_prog(dev, mode);
9199         /* can't replace attached prog with link */
9200         if (link && cur_prog) {
9201                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9202                 return -EBUSY;
9203         }
9204         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9205                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9206                 return -EEXIST;
9207         }
9208
9209         /* put effective new program into new_prog */
9210         if (link)
9211                 new_prog = link->link.prog;
9212
9213         if (new_prog) {
9214                 bool offload = mode == XDP_MODE_HW;
9215                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9216                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9217
9218                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9219                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9220                         return -EBUSY;
9221                 }
9222                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9223                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9224                         return -EEXIST;
9225                 }
9226                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9227                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9228                         return -EINVAL;
9229                 }
9230                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9231                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9232                         return -EINVAL;
9233                 }
9234                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9235                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9236                         return -EINVAL;
9237                 }
9238                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9239                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9240                         return -EINVAL;
9241                 }
9242         }
9243
9244         /* don't call drivers if the effective program didn't change */
9245         if (new_prog != cur_prog) {
9246                 bpf_op = dev_xdp_bpf_op(dev, mode);
9247                 if (!bpf_op) {
9248                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9249                         return -EOPNOTSUPP;
9250                 }
9251
9252                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9253                 if (err)
9254                         return err;
9255         }
9256
9257         if (link)
9258                 dev_xdp_set_link(dev, mode, link);
9259         else
9260                 dev_xdp_set_prog(dev, mode, new_prog);
9261         if (cur_prog)
9262                 bpf_prog_put(cur_prog);
9263
9264         return 0;
9265 }
9266
9267 static int dev_xdp_attach_link(struct net_device *dev,
9268                                struct netlink_ext_ack *extack,
9269                                struct bpf_xdp_link *link)
9270 {
9271         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9272 }
9273
9274 static int dev_xdp_detach_link(struct net_device *dev,
9275                                struct netlink_ext_ack *extack,
9276                                struct bpf_xdp_link *link)
9277 {
9278         enum bpf_xdp_mode mode;
9279         bpf_op_t bpf_op;
9280
9281         ASSERT_RTNL();
9282
9283         mode = dev_xdp_mode(dev, link->flags);
9284         if (dev_xdp_link(dev, mode) != link)
9285                 return -EINVAL;
9286
9287         bpf_op = dev_xdp_bpf_op(dev, mode);
9288         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9289         dev_xdp_set_link(dev, mode, NULL);
9290         return 0;
9291 }
9292
9293 static void bpf_xdp_link_release(struct bpf_link *link)
9294 {
9295         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9296
9297         rtnl_lock();
9298
9299         /* if racing with net_device's tear down, xdp_link->dev might be
9300          * already NULL, in which case link was already auto-detached
9301          */
9302         if (xdp_link->dev) {
9303                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9304                 xdp_link->dev = NULL;
9305         }
9306
9307         rtnl_unlock();
9308 }
9309
9310 static int bpf_xdp_link_detach(struct bpf_link *link)
9311 {
9312         bpf_xdp_link_release(link);
9313         return 0;
9314 }
9315
9316 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9317 {
9318         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9319
9320         kfree(xdp_link);
9321 }
9322
9323 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9324                                      struct seq_file *seq)
9325 {
9326         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9327         u32 ifindex = 0;
9328
9329         rtnl_lock();
9330         if (xdp_link->dev)
9331                 ifindex = xdp_link->dev->ifindex;
9332         rtnl_unlock();
9333
9334         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9335 }
9336
9337 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9338                                        struct bpf_link_info *info)
9339 {
9340         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9341         u32 ifindex = 0;
9342
9343         rtnl_lock();
9344         if (xdp_link->dev)
9345                 ifindex = xdp_link->dev->ifindex;
9346         rtnl_unlock();
9347
9348         info->xdp.ifindex = ifindex;
9349         return 0;
9350 }
9351
9352 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9353                                struct bpf_prog *old_prog)
9354 {
9355         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9356         enum bpf_xdp_mode mode;
9357         bpf_op_t bpf_op;
9358         int err = 0;
9359
9360         rtnl_lock();
9361
9362         /* link might have been auto-released already, so fail */
9363         if (!xdp_link->dev) {
9364                 err = -ENOLINK;
9365                 goto out_unlock;
9366         }
9367
9368         if (old_prog && link->prog != old_prog) {
9369                 err = -EPERM;
9370                 goto out_unlock;
9371         }
9372         old_prog = link->prog;
9373         if (old_prog->type != new_prog->type ||
9374             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9375                 err = -EINVAL;
9376                 goto out_unlock;
9377         }
9378
9379         if (old_prog == new_prog) {
9380                 /* no-op, don't disturb drivers */
9381                 bpf_prog_put(new_prog);
9382                 goto out_unlock;
9383         }
9384
9385         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9386         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9387         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9388                               xdp_link->flags, new_prog);
9389         if (err)
9390                 goto out_unlock;
9391
9392         old_prog = xchg(&link->prog, new_prog);
9393         bpf_prog_put(old_prog);
9394
9395 out_unlock:
9396         rtnl_unlock();
9397         return err;
9398 }
9399
9400 static const struct bpf_link_ops bpf_xdp_link_lops = {
9401         .release = bpf_xdp_link_release,
9402         .dealloc = bpf_xdp_link_dealloc,
9403         .detach = bpf_xdp_link_detach,
9404         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9405         .fill_link_info = bpf_xdp_link_fill_link_info,
9406         .update_prog = bpf_xdp_link_update,
9407 };
9408
9409 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9410 {
9411         struct net *net = current->nsproxy->net_ns;
9412         struct bpf_link_primer link_primer;
9413         struct bpf_xdp_link *link;
9414         struct net_device *dev;
9415         int err, fd;
9416
9417         rtnl_lock();
9418         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9419         if (!dev) {
9420                 rtnl_unlock();
9421                 return -EINVAL;
9422         }
9423
9424         link = kzalloc(sizeof(*link), GFP_USER);
9425         if (!link) {
9426                 err = -ENOMEM;
9427                 goto unlock;
9428         }
9429
9430         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9431         link->dev = dev;
9432         link->flags = attr->link_create.flags;
9433
9434         err = bpf_link_prime(&link->link, &link_primer);
9435         if (err) {
9436                 kfree(link);
9437                 goto unlock;
9438         }
9439
9440         err = dev_xdp_attach_link(dev, NULL, link);
9441         rtnl_unlock();
9442
9443         if (err) {
9444                 link->dev = NULL;
9445                 bpf_link_cleanup(&link_primer);
9446                 goto out_put_dev;
9447         }
9448
9449         fd = bpf_link_settle(&link_primer);
9450         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9451         dev_put(dev);
9452         return fd;
9453
9454 unlock:
9455         rtnl_unlock();
9456
9457 out_put_dev:
9458         dev_put(dev);
9459         return err;
9460 }
9461
9462 /**
9463  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9464  *      @dev: device
9465  *      @extack: netlink extended ack
9466  *      @fd: new program fd or negative value to clear
9467  *      @expected_fd: old program fd that userspace expects to replace or clear
9468  *      @flags: xdp-related flags
9469  *
9470  *      Set or clear a bpf program for a device
9471  */
9472 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9473                       int fd, int expected_fd, u32 flags)
9474 {
9475         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9476         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9477         int err;
9478
9479         ASSERT_RTNL();
9480
9481         if (fd >= 0) {
9482                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9483                                                  mode != XDP_MODE_SKB);
9484                 if (IS_ERR(new_prog))
9485                         return PTR_ERR(new_prog);
9486         }
9487
9488         if (expected_fd >= 0) {
9489                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9490                                                  mode != XDP_MODE_SKB);
9491                 if (IS_ERR(old_prog)) {
9492                         err = PTR_ERR(old_prog);
9493                         old_prog = NULL;
9494                         goto err_out;
9495                 }
9496         }
9497
9498         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9499
9500 err_out:
9501         if (err && new_prog)
9502                 bpf_prog_put(new_prog);
9503         if (old_prog)
9504                 bpf_prog_put(old_prog);
9505         return err;
9506 }
9507
9508 /**
9509  *      dev_new_index   -       allocate an ifindex
9510  *      @net: the applicable net namespace
9511  *
9512  *      Returns a suitable unique value for a new device interface
9513  *      number.  The caller must hold the rtnl semaphore or the
9514  *      dev_base_lock to be sure it remains unique.
9515  */
9516 static int dev_new_index(struct net *net)
9517 {
9518         int ifindex = net->ifindex;
9519
9520         for (;;) {
9521                 if (++ifindex <= 0)
9522                         ifindex = 1;
9523                 if (!__dev_get_by_index(net, ifindex))
9524                         return net->ifindex = ifindex;
9525         }
9526 }
9527
9528 /* Delayed registration/unregisteration */
9529 LIST_HEAD(net_todo_list);
9530 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9531
9532 static void net_set_todo(struct net_device *dev)
9533 {
9534         list_add_tail(&dev->todo_list, &net_todo_list);
9535         atomic_inc(&dev_net(dev)->dev_unreg_count);
9536 }
9537
9538 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9539         struct net_device *upper, netdev_features_t features)
9540 {
9541         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9542         netdev_features_t feature;
9543         int feature_bit;
9544
9545         for_each_netdev_feature(upper_disables, feature_bit) {
9546                 feature = __NETIF_F_BIT(feature_bit);
9547                 if (!(upper->wanted_features & feature)
9548                     && (features & feature)) {
9549                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9550                                    &feature, upper->name);
9551                         features &= ~feature;
9552                 }
9553         }
9554
9555         return features;
9556 }
9557
9558 static void netdev_sync_lower_features(struct net_device *upper,
9559         struct net_device *lower, netdev_features_t features)
9560 {
9561         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9562         netdev_features_t feature;
9563         int feature_bit;
9564
9565         for_each_netdev_feature(upper_disables, feature_bit) {
9566                 feature = __NETIF_F_BIT(feature_bit);
9567                 if (!(features & feature) && (lower->features & feature)) {
9568                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9569                                    &feature, lower->name);
9570                         lower->wanted_features &= ~feature;
9571                         __netdev_update_features(lower);
9572
9573                         if (unlikely(lower->features & feature))
9574                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9575                                             &feature, lower->name);
9576                         else
9577                                 netdev_features_change(lower);
9578                 }
9579         }
9580 }
9581
9582 static netdev_features_t netdev_fix_features(struct net_device *dev,
9583         netdev_features_t features)
9584 {
9585         /* Fix illegal checksum combinations */
9586         if ((features & NETIF_F_HW_CSUM) &&
9587             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9588                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9589                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9590         }
9591
9592         /* TSO requires that SG is present as well. */
9593         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9594                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9595                 features &= ~NETIF_F_ALL_TSO;
9596         }
9597
9598         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9599                                         !(features & NETIF_F_IP_CSUM)) {
9600                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9601                 features &= ~NETIF_F_TSO;
9602                 features &= ~NETIF_F_TSO_ECN;
9603         }
9604
9605         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9606                                          !(features & NETIF_F_IPV6_CSUM)) {
9607                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9608                 features &= ~NETIF_F_TSO6;
9609         }
9610
9611         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9612         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9613                 features &= ~NETIF_F_TSO_MANGLEID;
9614
9615         /* TSO ECN requires that TSO is present as well. */
9616         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9617                 features &= ~NETIF_F_TSO_ECN;
9618
9619         /* Software GSO depends on SG. */
9620         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9621                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9622                 features &= ~NETIF_F_GSO;
9623         }
9624
9625         /* GSO partial features require GSO partial be set */
9626         if ((features & dev->gso_partial_features) &&
9627             !(features & NETIF_F_GSO_PARTIAL)) {
9628                 netdev_dbg(dev,
9629                            "Dropping partially supported GSO features since no GSO partial.\n");
9630                 features &= ~dev->gso_partial_features;
9631         }
9632
9633         if (!(features & NETIF_F_RXCSUM)) {
9634                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9635                  * successfully merged by hardware must also have the
9636                  * checksum verified by hardware.  If the user does not
9637                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9638                  */
9639                 if (features & NETIF_F_GRO_HW) {
9640                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9641                         features &= ~NETIF_F_GRO_HW;
9642                 }
9643         }
9644
9645         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9646         if (features & NETIF_F_RXFCS) {
9647                 if (features & NETIF_F_LRO) {
9648                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9649                         features &= ~NETIF_F_LRO;
9650                 }
9651
9652                 if (features & NETIF_F_GRO_HW) {
9653                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9654                         features &= ~NETIF_F_GRO_HW;
9655                 }
9656         }
9657
9658         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9659                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9660                 features &= ~NETIF_F_LRO;
9661         }
9662
9663         if (features & NETIF_F_HW_TLS_TX) {
9664                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9665                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9666                 bool hw_csum = features & NETIF_F_HW_CSUM;
9667
9668                 if (!ip_csum && !hw_csum) {
9669                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9670                         features &= ~NETIF_F_HW_TLS_TX;
9671                 }
9672         }
9673
9674         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9675                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9676                 features &= ~NETIF_F_HW_TLS_RX;
9677         }
9678
9679         return features;
9680 }
9681
9682 int __netdev_update_features(struct net_device *dev)
9683 {
9684         struct net_device *upper, *lower;
9685         netdev_features_t features;
9686         struct list_head *iter;
9687         int err = -1;
9688
9689         ASSERT_RTNL();
9690
9691         features = netdev_get_wanted_features(dev);
9692
9693         if (dev->netdev_ops->ndo_fix_features)
9694                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9695
9696         /* driver might be less strict about feature dependencies */
9697         features = netdev_fix_features(dev, features);
9698
9699         /* some features can't be enabled if they're off on an upper device */
9700         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9701                 features = netdev_sync_upper_features(dev, upper, features);
9702
9703         if (dev->features == features)
9704                 goto sync_lower;
9705
9706         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9707                 &dev->features, &features);
9708
9709         if (dev->netdev_ops->ndo_set_features)
9710                 err = dev->netdev_ops->ndo_set_features(dev, features);
9711         else
9712                 err = 0;
9713
9714         if (unlikely(err < 0)) {
9715                 netdev_err(dev,
9716                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9717                         err, &features, &dev->features);
9718                 /* return non-0 since some features might have changed and
9719                  * it's better to fire a spurious notification than miss it
9720                  */
9721                 return -1;
9722         }
9723
9724 sync_lower:
9725         /* some features must be disabled on lower devices when disabled
9726          * on an upper device (think: bonding master or bridge)
9727          */
9728         netdev_for_each_lower_dev(dev, lower, iter)
9729                 netdev_sync_lower_features(dev, lower, features);
9730
9731         if (!err) {
9732                 netdev_features_t diff = features ^ dev->features;
9733
9734                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9735                         /* udp_tunnel_{get,drop}_rx_info both need
9736                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9737                          * device, or they won't do anything.
9738                          * Thus we need to update dev->features
9739                          * *before* calling udp_tunnel_get_rx_info,
9740                          * but *after* calling udp_tunnel_drop_rx_info.
9741                          */
9742                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9743                                 dev->features = features;
9744                                 udp_tunnel_get_rx_info(dev);
9745                         } else {
9746                                 udp_tunnel_drop_rx_info(dev);
9747                         }
9748                 }
9749
9750                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9751                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9752                                 dev->features = features;
9753                                 err |= vlan_get_rx_ctag_filter_info(dev);
9754                         } else {
9755                                 vlan_drop_rx_ctag_filter_info(dev);
9756                         }
9757                 }
9758
9759                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9760                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9761                                 dev->features = features;
9762                                 err |= vlan_get_rx_stag_filter_info(dev);
9763                         } else {
9764                                 vlan_drop_rx_stag_filter_info(dev);
9765                         }
9766                 }
9767
9768                 dev->features = features;
9769         }
9770
9771         return err < 0 ? 0 : 1;
9772 }
9773
9774 /**
9775  *      netdev_update_features - recalculate device features
9776  *      @dev: the device to check
9777  *
9778  *      Recalculate dev->features set and send notifications if it
9779  *      has changed. Should be called after driver or hardware dependent
9780  *      conditions might have changed that influence the features.
9781  */
9782 void netdev_update_features(struct net_device *dev)
9783 {
9784         if (__netdev_update_features(dev))
9785                 netdev_features_change(dev);
9786 }
9787 EXPORT_SYMBOL(netdev_update_features);
9788
9789 /**
9790  *      netdev_change_features - recalculate device features
9791  *      @dev: the device to check
9792  *
9793  *      Recalculate dev->features set and send notifications even
9794  *      if they have not changed. Should be called instead of
9795  *      netdev_update_features() if also dev->vlan_features might
9796  *      have changed to allow the changes to be propagated to stacked
9797  *      VLAN devices.
9798  */
9799 void netdev_change_features(struct net_device *dev)
9800 {
9801         __netdev_update_features(dev);
9802         netdev_features_change(dev);
9803 }
9804 EXPORT_SYMBOL(netdev_change_features);
9805
9806 /**
9807  *      netif_stacked_transfer_operstate -      transfer operstate
9808  *      @rootdev: the root or lower level device to transfer state from
9809  *      @dev: the device to transfer operstate to
9810  *
9811  *      Transfer operational state from root to device. This is normally
9812  *      called when a stacking relationship exists between the root
9813  *      device and the device(a leaf device).
9814  */
9815 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9816                                         struct net_device *dev)
9817 {
9818         if (rootdev->operstate == IF_OPER_DORMANT)
9819                 netif_dormant_on(dev);
9820         else
9821                 netif_dormant_off(dev);
9822
9823         if (rootdev->operstate == IF_OPER_TESTING)
9824                 netif_testing_on(dev);
9825         else
9826                 netif_testing_off(dev);
9827
9828         if (netif_carrier_ok(rootdev))
9829                 netif_carrier_on(dev);
9830         else
9831                 netif_carrier_off(dev);
9832 }
9833 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9834
9835 static int netif_alloc_rx_queues(struct net_device *dev)
9836 {
9837         unsigned int i, count = dev->num_rx_queues;
9838         struct netdev_rx_queue *rx;
9839         size_t sz = count * sizeof(*rx);
9840         int err = 0;
9841
9842         BUG_ON(count < 1);
9843
9844         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9845         if (!rx)
9846                 return -ENOMEM;
9847
9848         dev->_rx = rx;
9849
9850         for (i = 0; i < count; i++) {
9851                 rx[i].dev = dev;
9852
9853                 /* XDP RX-queue setup */
9854                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9855                 if (err < 0)
9856                         goto err_rxq_info;
9857         }
9858         return 0;
9859
9860 err_rxq_info:
9861         /* Rollback successful reg's and free other resources */
9862         while (i--)
9863                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9864         kvfree(dev->_rx);
9865         dev->_rx = NULL;
9866         return err;
9867 }
9868
9869 static void netif_free_rx_queues(struct net_device *dev)
9870 {
9871         unsigned int i, count = dev->num_rx_queues;
9872
9873         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9874         if (!dev->_rx)
9875                 return;
9876
9877         for (i = 0; i < count; i++)
9878                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9879
9880         kvfree(dev->_rx);
9881 }
9882
9883 static void netdev_init_one_queue(struct net_device *dev,
9884                                   struct netdev_queue *queue, void *_unused)
9885 {
9886         /* Initialize queue lock */
9887         spin_lock_init(&queue->_xmit_lock);
9888         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9889         queue->xmit_lock_owner = -1;
9890         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9891         queue->dev = dev;
9892 #ifdef CONFIG_BQL
9893         dql_init(&queue->dql, HZ);
9894 #endif
9895 }
9896
9897 static void netif_free_tx_queues(struct net_device *dev)
9898 {
9899         kvfree(dev->_tx);
9900 }
9901
9902 static int netif_alloc_netdev_queues(struct net_device *dev)
9903 {
9904         unsigned int count = dev->num_tx_queues;
9905         struct netdev_queue *tx;
9906         size_t sz = count * sizeof(*tx);
9907
9908         if (count < 1 || count > 0xffff)
9909                 return -EINVAL;
9910
9911         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9912         if (!tx)
9913                 return -ENOMEM;
9914
9915         dev->_tx = tx;
9916
9917         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9918         spin_lock_init(&dev->tx_global_lock);
9919
9920         return 0;
9921 }
9922
9923 void netif_tx_stop_all_queues(struct net_device *dev)
9924 {
9925         unsigned int i;
9926
9927         for (i = 0; i < dev->num_tx_queues; i++) {
9928                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9929
9930                 netif_tx_stop_queue(txq);
9931         }
9932 }
9933 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9934
9935 /**
9936  * register_netdevice() - register a network device
9937  * @dev: device to register
9938  *
9939  * Take a prepared network device structure and make it externally accessible.
9940  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9941  * Callers must hold the rtnl lock - you may want register_netdev()
9942  * instead of this.
9943  */
9944 int register_netdevice(struct net_device *dev)
9945 {
9946         int ret;
9947         struct net *net = dev_net(dev);
9948
9949         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9950                      NETDEV_FEATURE_COUNT);
9951         BUG_ON(dev_boot_phase);
9952         ASSERT_RTNL();
9953
9954         might_sleep();
9955
9956         /* When net_device's are persistent, this will be fatal. */
9957         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9958         BUG_ON(!net);
9959
9960         ret = ethtool_check_ops(dev->ethtool_ops);
9961         if (ret)
9962                 return ret;
9963
9964         spin_lock_init(&dev->addr_list_lock);
9965         netdev_set_addr_lockdep_class(dev);
9966
9967         ret = dev_get_valid_name(net, dev, dev->name);
9968         if (ret < 0)
9969                 goto out;
9970
9971         ret = -ENOMEM;
9972         dev->name_node = netdev_name_node_head_alloc(dev);
9973         if (!dev->name_node)
9974                 goto out;
9975
9976         /* Init, if this function is available */
9977         if (dev->netdev_ops->ndo_init) {
9978                 ret = dev->netdev_ops->ndo_init(dev);
9979                 if (ret) {
9980                         if (ret > 0)
9981                                 ret = -EIO;
9982                         goto err_free_name;
9983                 }
9984         }
9985
9986         if (((dev->hw_features | dev->features) &
9987              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9988             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9989              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9990                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9991                 ret = -EINVAL;
9992                 goto err_uninit;
9993         }
9994
9995         ret = -EBUSY;
9996         if (!dev->ifindex)
9997                 dev->ifindex = dev_new_index(net);
9998         else if (__dev_get_by_index(net, dev->ifindex))
9999                 goto err_uninit;
10000
10001         /* Transfer changeable features to wanted_features and enable
10002          * software offloads (GSO and GRO).
10003          */
10004         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10005         dev->features |= NETIF_F_SOFT_FEATURES;
10006
10007         if (dev->udp_tunnel_nic_info) {
10008                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10009                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10010         }
10011
10012         dev->wanted_features = dev->features & dev->hw_features;
10013
10014         if (!(dev->flags & IFF_LOOPBACK))
10015                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10016
10017         /* If IPv4 TCP segmentation offload is supported we should also
10018          * allow the device to enable segmenting the frame with the option
10019          * of ignoring a static IP ID value.  This doesn't enable the
10020          * feature itself but allows the user to enable it later.
10021          */
10022         if (dev->hw_features & NETIF_F_TSO)
10023                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10024         if (dev->vlan_features & NETIF_F_TSO)
10025                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10026         if (dev->mpls_features & NETIF_F_TSO)
10027                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10028         if (dev->hw_enc_features & NETIF_F_TSO)
10029                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10030
10031         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10032          */
10033         dev->vlan_features |= NETIF_F_HIGHDMA;
10034
10035         /* Make NETIF_F_SG inheritable to tunnel devices.
10036          */
10037         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10038
10039         /* Make NETIF_F_SG inheritable to MPLS.
10040          */
10041         dev->mpls_features |= NETIF_F_SG;
10042
10043         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10044         ret = notifier_to_errno(ret);
10045         if (ret)
10046                 goto err_uninit;
10047
10048         ret = netdev_register_kobject(dev);
10049         write_lock(&dev_base_lock);
10050         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10051         write_unlock(&dev_base_lock);
10052         if (ret)
10053                 goto err_uninit_notify;
10054
10055         __netdev_update_features(dev);
10056
10057         /*
10058          *      Default initial state at registry is that the
10059          *      device is present.
10060          */
10061
10062         set_bit(__LINK_STATE_PRESENT, &dev->state);
10063
10064         linkwatch_init_dev(dev);
10065
10066         dev_init_scheduler(dev);
10067
10068         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10069         list_netdevice(dev);
10070
10071         add_device_randomness(dev->dev_addr, dev->addr_len);
10072
10073         /* If the device has permanent device address, driver should
10074          * set dev_addr and also addr_assign_type should be set to
10075          * NET_ADDR_PERM (default value).
10076          */
10077         if (dev->addr_assign_type == NET_ADDR_PERM)
10078                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10079
10080         /* Notify protocols, that a new device appeared. */
10081         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10082         ret = notifier_to_errno(ret);
10083         if (ret) {
10084                 /* Expect explicit free_netdev() on failure */
10085                 dev->needs_free_netdev = false;
10086                 unregister_netdevice_queue(dev, NULL);
10087                 goto out;
10088         }
10089         /*
10090          *      Prevent userspace races by waiting until the network
10091          *      device is fully setup before sending notifications.
10092          */
10093         if (!dev->rtnl_link_ops ||
10094             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10095                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10096
10097 out:
10098         return ret;
10099
10100 err_uninit_notify:
10101         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10102 err_uninit:
10103         if (dev->netdev_ops->ndo_uninit)
10104                 dev->netdev_ops->ndo_uninit(dev);
10105         if (dev->priv_destructor)
10106                 dev->priv_destructor(dev);
10107 err_free_name:
10108         netdev_name_node_free(dev->name_node);
10109         goto out;
10110 }
10111 EXPORT_SYMBOL(register_netdevice);
10112
10113 /**
10114  *      init_dummy_netdev       - init a dummy network device for NAPI
10115  *      @dev: device to init
10116  *
10117  *      This takes a network device structure and initialize the minimum
10118  *      amount of fields so it can be used to schedule NAPI polls without
10119  *      registering a full blown interface. This is to be used by drivers
10120  *      that need to tie several hardware interfaces to a single NAPI
10121  *      poll scheduler due to HW limitations.
10122  */
10123 int init_dummy_netdev(struct net_device *dev)
10124 {
10125         /* Clear everything. Note we don't initialize spinlocks
10126          * are they aren't supposed to be taken by any of the
10127          * NAPI code and this dummy netdev is supposed to be
10128          * only ever used for NAPI polls
10129          */
10130         memset(dev, 0, sizeof(struct net_device));
10131
10132         /* make sure we BUG if trying to hit standard
10133          * register/unregister code path
10134          */
10135         dev->reg_state = NETREG_DUMMY;
10136
10137         /* NAPI wants this */
10138         INIT_LIST_HEAD(&dev->napi_list);
10139
10140         /* a dummy interface is started by default */
10141         set_bit(__LINK_STATE_PRESENT, &dev->state);
10142         set_bit(__LINK_STATE_START, &dev->state);
10143
10144         /* napi_busy_loop stats accounting wants this */
10145         dev_net_set(dev, &init_net);
10146
10147         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10148          * because users of this 'device' dont need to change
10149          * its refcount.
10150          */
10151
10152         return 0;
10153 }
10154 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10155
10156
10157 /**
10158  *      register_netdev - register a network device
10159  *      @dev: device to register
10160  *
10161  *      Take a completed network device structure and add it to the kernel
10162  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10163  *      chain. 0 is returned on success. A negative errno code is returned
10164  *      on a failure to set up the device, or if the name is a duplicate.
10165  *
10166  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10167  *      and expands the device name if you passed a format string to
10168  *      alloc_netdev.
10169  */
10170 int register_netdev(struct net_device *dev)
10171 {
10172         int err;
10173
10174         if (rtnl_lock_killable())
10175                 return -EINTR;
10176         err = register_netdevice(dev);
10177         rtnl_unlock();
10178         return err;
10179 }
10180 EXPORT_SYMBOL(register_netdev);
10181
10182 int netdev_refcnt_read(const struct net_device *dev)
10183 {
10184 #ifdef CONFIG_PCPU_DEV_REFCNT
10185         int i, refcnt = 0;
10186
10187         for_each_possible_cpu(i)
10188                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10189         return refcnt;
10190 #else
10191         return refcount_read(&dev->dev_refcnt);
10192 #endif
10193 }
10194 EXPORT_SYMBOL(netdev_refcnt_read);
10195
10196 int netdev_unregister_timeout_secs __read_mostly = 10;
10197
10198 #define WAIT_REFS_MIN_MSECS 1
10199 #define WAIT_REFS_MAX_MSECS 250
10200 /**
10201  * netdev_wait_allrefs_any - wait until all references are gone.
10202  * @list: list of net_devices to wait on
10203  *
10204  * This is called when unregistering network devices.
10205  *
10206  * Any protocol or device that holds a reference should register
10207  * for netdevice notification, and cleanup and put back the
10208  * reference if they receive an UNREGISTER event.
10209  * We can get stuck here if buggy protocols don't correctly
10210  * call dev_put.
10211  */
10212 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10213 {
10214         unsigned long rebroadcast_time, warning_time;
10215         struct net_device *dev;
10216         int wait = 0;
10217
10218         rebroadcast_time = warning_time = jiffies;
10219
10220         list_for_each_entry(dev, list, todo_list)
10221                 if (netdev_refcnt_read(dev) == 1)
10222                         return dev;
10223
10224         while (true) {
10225                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10226                         rtnl_lock();
10227
10228                         /* Rebroadcast unregister notification */
10229                         list_for_each_entry(dev, list, todo_list)
10230                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10231
10232                         __rtnl_unlock();
10233                         rcu_barrier();
10234                         rtnl_lock();
10235
10236                         list_for_each_entry(dev, list, todo_list)
10237                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10238                                              &dev->state)) {
10239                                         /* We must not have linkwatch events
10240                                          * pending on unregister. If this
10241                                          * happens, we simply run the queue
10242                                          * unscheduled, resulting in a noop
10243                                          * for this device.
10244                                          */
10245                                         linkwatch_run_queue();
10246                                         break;
10247                                 }
10248
10249                         __rtnl_unlock();
10250
10251                         rebroadcast_time = jiffies;
10252                 }
10253
10254                 if (!wait) {
10255                         rcu_barrier();
10256                         wait = WAIT_REFS_MIN_MSECS;
10257                 } else {
10258                         msleep(wait);
10259                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10260                 }
10261
10262                 list_for_each_entry(dev, list, todo_list)
10263                         if (netdev_refcnt_read(dev) == 1)
10264                                 return dev;
10265
10266                 if (time_after(jiffies, warning_time +
10267                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10268                         list_for_each_entry(dev, list, todo_list) {
10269                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10270                                          dev->name, netdev_refcnt_read(dev));
10271                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10272                         }
10273
10274                         warning_time = jiffies;
10275                 }
10276         }
10277 }
10278
10279 /* The sequence is:
10280  *
10281  *      rtnl_lock();
10282  *      ...
10283  *      register_netdevice(x1);
10284  *      register_netdevice(x2);
10285  *      ...
10286  *      unregister_netdevice(y1);
10287  *      unregister_netdevice(y2);
10288  *      ...
10289  *      rtnl_unlock();
10290  *      free_netdev(y1);
10291  *      free_netdev(y2);
10292  *
10293  * We are invoked by rtnl_unlock().
10294  * This allows us to deal with problems:
10295  * 1) We can delete sysfs objects which invoke hotplug
10296  *    without deadlocking with linkwatch via keventd.
10297  * 2) Since we run with the RTNL semaphore not held, we can sleep
10298  *    safely in order to wait for the netdev refcnt to drop to zero.
10299  *
10300  * We must not return until all unregister events added during
10301  * the interval the lock was held have been completed.
10302  */
10303 void netdev_run_todo(void)
10304 {
10305         struct net_device *dev, *tmp;
10306         struct list_head list;
10307 #ifdef CONFIG_LOCKDEP
10308         struct list_head unlink_list;
10309
10310         list_replace_init(&net_unlink_list, &unlink_list);
10311
10312         while (!list_empty(&unlink_list)) {
10313                 struct net_device *dev = list_first_entry(&unlink_list,
10314                                                           struct net_device,
10315                                                           unlink_list);
10316                 list_del_init(&dev->unlink_list);
10317                 dev->nested_level = dev->lower_level - 1;
10318         }
10319 #endif
10320
10321         /* Snapshot list, allow later requests */
10322         list_replace_init(&net_todo_list, &list);
10323
10324         __rtnl_unlock();
10325
10326         /* Wait for rcu callbacks to finish before next phase */
10327         if (!list_empty(&list))
10328                 rcu_barrier();
10329
10330         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10331                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10332                         netdev_WARN(dev, "run_todo but not unregistering\n");
10333                         list_del(&dev->todo_list);
10334                         continue;
10335                 }
10336
10337                 write_lock(&dev_base_lock);
10338                 dev->reg_state = NETREG_UNREGISTERED;
10339                 write_unlock(&dev_base_lock);
10340                 linkwatch_forget_dev(dev);
10341         }
10342
10343         while (!list_empty(&list)) {
10344                 dev = netdev_wait_allrefs_any(&list);
10345                 list_del(&dev->todo_list);
10346
10347                 /* paranoia */
10348                 BUG_ON(netdev_refcnt_read(dev) != 1);
10349                 BUG_ON(!list_empty(&dev->ptype_all));
10350                 BUG_ON(!list_empty(&dev->ptype_specific));
10351                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10352                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10353
10354                 if (dev->priv_destructor)
10355                         dev->priv_destructor(dev);
10356                 if (dev->needs_free_netdev)
10357                         free_netdev(dev);
10358
10359                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10360                         wake_up(&netdev_unregistering_wq);
10361
10362                 /* Free network device */
10363                 kobject_put(&dev->dev.kobj);
10364         }
10365 }
10366
10367 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10368  * all the same fields in the same order as net_device_stats, with only
10369  * the type differing, but rtnl_link_stats64 may have additional fields
10370  * at the end for newer counters.
10371  */
10372 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10373                              const struct net_device_stats *netdev_stats)
10374 {
10375         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10376         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10377         u64 *dst = (u64 *)stats64;
10378
10379         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10380         for (i = 0; i < n; i++)
10381                 dst[i] = atomic_long_read(&src[i]);
10382         /* zero out counters that only exist in rtnl_link_stats64 */
10383         memset((char *)stats64 + n * sizeof(u64), 0,
10384                sizeof(*stats64) - n * sizeof(u64));
10385 }
10386 EXPORT_SYMBOL(netdev_stats_to_stats64);
10387
10388 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10389 {
10390         struct net_device_core_stats __percpu *p;
10391
10392         p = alloc_percpu_gfp(struct net_device_core_stats,
10393                              GFP_ATOMIC | __GFP_NOWARN);
10394
10395         if (p && cmpxchg(&dev->core_stats, NULL, p))
10396                 free_percpu(p);
10397
10398         /* This READ_ONCE() pairs with the cmpxchg() above */
10399         return READ_ONCE(dev->core_stats);
10400 }
10401 EXPORT_SYMBOL(netdev_core_stats_alloc);
10402
10403 /**
10404  *      dev_get_stats   - get network device statistics
10405  *      @dev: device to get statistics from
10406  *      @storage: place to store stats
10407  *
10408  *      Get network statistics from device. Return @storage.
10409  *      The device driver may provide its own method by setting
10410  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10411  *      otherwise the internal statistics structure is used.
10412  */
10413 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10414                                         struct rtnl_link_stats64 *storage)
10415 {
10416         const struct net_device_ops *ops = dev->netdev_ops;
10417         const struct net_device_core_stats __percpu *p;
10418
10419         if (ops->ndo_get_stats64) {
10420                 memset(storage, 0, sizeof(*storage));
10421                 ops->ndo_get_stats64(dev, storage);
10422         } else if (ops->ndo_get_stats) {
10423                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10424         } else {
10425                 netdev_stats_to_stats64(storage, &dev->stats);
10426         }
10427
10428         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10429         p = READ_ONCE(dev->core_stats);
10430         if (p) {
10431                 const struct net_device_core_stats *core_stats;
10432                 int i;
10433
10434                 for_each_possible_cpu(i) {
10435                         core_stats = per_cpu_ptr(p, i);
10436                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10437                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10438                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10439                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10440                 }
10441         }
10442         return storage;
10443 }
10444 EXPORT_SYMBOL(dev_get_stats);
10445
10446 /**
10447  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10448  *      @s: place to store stats
10449  *      @netstats: per-cpu network stats to read from
10450  *
10451  *      Read per-cpu network statistics and populate the related fields in @s.
10452  */
10453 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10454                            const struct pcpu_sw_netstats __percpu *netstats)
10455 {
10456         int cpu;
10457
10458         for_each_possible_cpu(cpu) {
10459                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10460                 const struct pcpu_sw_netstats *stats;
10461                 unsigned int start;
10462
10463                 stats = per_cpu_ptr(netstats, cpu);
10464                 do {
10465                         start = u64_stats_fetch_begin(&stats->syncp);
10466                         rx_packets = u64_stats_read(&stats->rx_packets);
10467                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10468                         tx_packets = u64_stats_read(&stats->tx_packets);
10469                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10470                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10471
10472                 s->rx_packets += rx_packets;
10473                 s->rx_bytes   += rx_bytes;
10474                 s->tx_packets += tx_packets;
10475                 s->tx_bytes   += tx_bytes;
10476         }
10477 }
10478 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10479
10480 /**
10481  *      dev_get_tstats64 - ndo_get_stats64 implementation
10482  *      @dev: device to get statistics from
10483  *      @s: place to store stats
10484  *
10485  *      Populate @s from dev->stats and dev->tstats. Can be used as
10486  *      ndo_get_stats64() callback.
10487  */
10488 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10489 {
10490         netdev_stats_to_stats64(s, &dev->stats);
10491         dev_fetch_sw_netstats(s, dev->tstats);
10492 }
10493 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10494
10495 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10496 {
10497         struct netdev_queue *queue = dev_ingress_queue(dev);
10498
10499 #ifdef CONFIG_NET_CLS_ACT
10500         if (queue)
10501                 return queue;
10502         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10503         if (!queue)
10504                 return NULL;
10505         netdev_init_one_queue(dev, queue, NULL);
10506         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10507         queue->qdisc_sleeping = &noop_qdisc;
10508         rcu_assign_pointer(dev->ingress_queue, queue);
10509 #endif
10510         return queue;
10511 }
10512
10513 static const struct ethtool_ops default_ethtool_ops;
10514
10515 void netdev_set_default_ethtool_ops(struct net_device *dev,
10516                                     const struct ethtool_ops *ops)
10517 {
10518         if (dev->ethtool_ops == &default_ethtool_ops)
10519                 dev->ethtool_ops = ops;
10520 }
10521 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10522
10523 /**
10524  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10525  * @dev: netdev to enable the IRQ coalescing on
10526  *
10527  * Sets a conservative default for SW IRQ coalescing. Users can use
10528  * sysfs attributes to override the default values.
10529  */
10530 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10531 {
10532         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10533
10534         dev->gro_flush_timeout = 20000;
10535         dev->napi_defer_hard_irqs = 1;
10536 }
10537 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10538
10539 void netdev_freemem(struct net_device *dev)
10540 {
10541         char *addr = (char *)dev - dev->padded;
10542
10543         kvfree(addr);
10544 }
10545
10546 /**
10547  * alloc_netdev_mqs - allocate network device
10548  * @sizeof_priv: size of private data to allocate space for
10549  * @name: device name format string
10550  * @name_assign_type: origin of device name
10551  * @setup: callback to initialize device
10552  * @txqs: the number of TX subqueues to allocate
10553  * @rxqs: the number of RX subqueues to allocate
10554  *
10555  * Allocates a struct net_device with private data area for driver use
10556  * and performs basic initialization.  Also allocates subqueue structs
10557  * for each queue on the device.
10558  */
10559 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10560                 unsigned char name_assign_type,
10561                 void (*setup)(struct net_device *),
10562                 unsigned int txqs, unsigned int rxqs)
10563 {
10564         struct net_device *dev;
10565         unsigned int alloc_size;
10566         struct net_device *p;
10567
10568         BUG_ON(strlen(name) >= sizeof(dev->name));
10569
10570         if (txqs < 1) {
10571                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10572                 return NULL;
10573         }
10574
10575         if (rxqs < 1) {
10576                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10577                 return NULL;
10578         }
10579
10580         alloc_size = sizeof(struct net_device);
10581         if (sizeof_priv) {
10582                 /* ensure 32-byte alignment of private area */
10583                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10584                 alloc_size += sizeof_priv;
10585         }
10586         /* ensure 32-byte alignment of whole construct */
10587         alloc_size += NETDEV_ALIGN - 1;
10588
10589         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10590         if (!p)
10591                 return NULL;
10592
10593         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10594         dev->padded = (char *)dev - (char *)p;
10595
10596         ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10597 #ifdef CONFIG_PCPU_DEV_REFCNT
10598         dev->pcpu_refcnt = alloc_percpu(int);
10599         if (!dev->pcpu_refcnt)
10600                 goto free_dev;
10601         __dev_hold(dev);
10602 #else
10603         refcount_set(&dev->dev_refcnt, 1);
10604 #endif
10605
10606         if (dev_addr_init(dev))
10607                 goto free_pcpu;
10608
10609         dev_mc_init(dev);
10610         dev_uc_init(dev);
10611
10612         dev_net_set(dev, &init_net);
10613
10614         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10615         dev->gso_max_segs = GSO_MAX_SEGS;
10616         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10617         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10618         dev->tso_max_segs = TSO_MAX_SEGS;
10619         dev->upper_level = 1;
10620         dev->lower_level = 1;
10621 #ifdef CONFIG_LOCKDEP
10622         dev->nested_level = 0;
10623         INIT_LIST_HEAD(&dev->unlink_list);
10624 #endif
10625
10626         INIT_LIST_HEAD(&dev->napi_list);
10627         INIT_LIST_HEAD(&dev->unreg_list);
10628         INIT_LIST_HEAD(&dev->close_list);
10629         INIT_LIST_HEAD(&dev->link_watch_list);
10630         INIT_LIST_HEAD(&dev->adj_list.upper);
10631         INIT_LIST_HEAD(&dev->adj_list.lower);
10632         INIT_LIST_HEAD(&dev->ptype_all);
10633         INIT_LIST_HEAD(&dev->ptype_specific);
10634         INIT_LIST_HEAD(&dev->net_notifier_list);
10635 #ifdef CONFIG_NET_SCHED
10636         hash_init(dev->qdisc_hash);
10637 #endif
10638         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10639         setup(dev);
10640
10641         if (!dev->tx_queue_len) {
10642                 dev->priv_flags |= IFF_NO_QUEUE;
10643                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10644         }
10645
10646         dev->num_tx_queues = txqs;
10647         dev->real_num_tx_queues = txqs;
10648         if (netif_alloc_netdev_queues(dev))
10649                 goto free_all;
10650
10651         dev->num_rx_queues = rxqs;
10652         dev->real_num_rx_queues = rxqs;
10653         if (netif_alloc_rx_queues(dev))
10654                 goto free_all;
10655
10656         strcpy(dev->name, name);
10657         dev->name_assign_type = name_assign_type;
10658         dev->group = INIT_NETDEV_GROUP;
10659         if (!dev->ethtool_ops)
10660                 dev->ethtool_ops = &default_ethtool_ops;
10661
10662         nf_hook_netdev_init(dev);
10663
10664         return dev;
10665
10666 free_all:
10667         free_netdev(dev);
10668         return NULL;
10669
10670 free_pcpu:
10671 #ifdef CONFIG_PCPU_DEV_REFCNT
10672         free_percpu(dev->pcpu_refcnt);
10673 free_dev:
10674 #endif
10675         netdev_freemem(dev);
10676         return NULL;
10677 }
10678 EXPORT_SYMBOL(alloc_netdev_mqs);
10679
10680 /**
10681  * free_netdev - free network device
10682  * @dev: device
10683  *
10684  * This function does the last stage of destroying an allocated device
10685  * interface. The reference to the device object is released. If this
10686  * is the last reference then it will be freed.Must be called in process
10687  * context.
10688  */
10689 void free_netdev(struct net_device *dev)
10690 {
10691         struct napi_struct *p, *n;
10692
10693         might_sleep();
10694
10695         /* When called immediately after register_netdevice() failed the unwind
10696          * handling may still be dismantling the device. Handle that case by
10697          * deferring the free.
10698          */
10699         if (dev->reg_state == NETREG_UNREGISTERING) {
10700                 ASSERT_RTNL();
10701                 dev->needs_free_netdev = true;
10702                 return;
10703         }
10704
10705         netif_free_tx_queues(dev);
10706         netif_free_rx_queues(dev);
10707
10708         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10709
10710         /* Flush device addresses */
10711         dev_addr_flush(dev);
10712
10713         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10714                 netif_napi_del(p);
10715
10716         ref_tracker_dir_exit(&dev->refcnt_tracker);
10717 #ifdef CONFIG_PCPU_DEV_REFCNT
10718         free_percpu(dev->pcpu_refcnt);
10719         dev->pcpu_refcnt = NULL;
10720 #endif
10721         free_percpu(dev->core_stats);
10722         dev->core_stats = NULL;
10723         free_percpu(dev->xdp_bulkq);
10724         dev->xdp_bulkq = NULL;
10725
10726         /*  Compatibility with error handling in drivers */
10727         if (dev->reg_state == NETREG_UNINITIALIZED) {
10728                 netdev_freemem(dev);
10729                 return;
10730         }
10731
10732         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10733         dev->reg_state = NETREG_RELEASED;
10734
10735         /* will free via device release */
10736         put_device(&dev->dev);
10737 }
10738 EXPORT_SYMBOL(free_netdev);
10739
10740 /**
10741  *      synchronize_net -  Synchronize with packet receive processing
10742  *
10743  *      Wait for packets currently being received to be done.
10744  *      Does not block later packets from starting.
10745  */
10746 void synchronize_net(void)
10747 {
10748         might_sleep();
10749         if (rtnl_is_locked())
10750                 synchronize_rcu_expedited();
10751         else
10752                 synchronize_rcu();
10753 }
10754 EXPORT_SYMBOL(synchronize_net);
10755
10756 /**
10757  *      unregister_netdevice_queue - remove device from the kernel
10758  *      @dev: device
10759  *      @head: list
10760  *
10761  *      This function shuts down a device interface and removes it
10762  *      from the kernel tables.
10763  *      If head not NULL, device is queued to be unregistered later.
10764  *
10765  *      Callers must hold the rtnl semaphore.  You may want
10766  *      unregister_netdev() instead of this.
10767  */
10768
10769 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10770 {
10771         ASSERT_RTNL();
10772
10773         if (head) {
10774                 list_move_tail(&dev->unreg_list, head);
10775         } else {
10776                 LIST_HEAD(single);
10777
10778                 list_add(&dev->unreg_list, &single);
10779                 unregister_netdevice_many(&single);
10780         }
10781 }
10782 EXPORT_SYMBOL(unregister_netdevice_queue);
10783
10784 void unregister_netdevice_many_notify(struct list_head *head,
10785                                       u32 portid, const struct nlmsghdr *nlh)
10786 {
10787         struct net_device *dev, *tmp;
10788         LIST_HEAD(close_head);
10789
10790         BUG_ON(dev_boot_phase);
10791         ASSERT_RTNL();
10792
10793         if (list_empty(head))
10794                 return;
10795
10796         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10797                 /* Some devices call without registering
10798                  * for initialization unwind. Remove those
10799                  * devices and proceed with the remaining.
10800                  */
10801                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10802                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10803                                  dev->name, dev);
10804
10805                         WARN_ON(1);
10806                         list_del(&dev->unreg_list);
10807                         continue;
10808                 }
10809                 dev->dismantle = true;
10810                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10811         }
10812
10813         /* If device is running, close it first. */
10814         list_for_each_entry(dev, head, unreg_list)
10815                 list_add_tail(&dev->close_list, &close_head);
10816         dev_close_many(&close_head, true);
10817
10818         list_for_each_entry(dev, head, unreg_list) {
10819                 /* And unlink it from device chain. */
10820                 write_lock(&dev_base_lock);
10821                 unlist_netdevice(dev, false);
10822                 dev->reg_state = NETREG_UNREGISTERING;
10823                 write_unlock(&dev_base_lock);
10824         }
10825         flush_all_backlogs();
10826
10827         synchronize_net();
10828
10829         list_for_each_entry(dev, head, unreg_list) {
10830                 struct sk_buff *skb = NULL;
10831
10832                 /* Shutdown queueing discipline. */
10833                 dev_shutdown(dev);
10834
10835                 dev_xdp_uninstall(dev);
10836                 bpf_dev_bound_netdev_unregister(dev);
10837
10838                 netdev_offload_xstats_disable_all(dev);
10839
10840                 /* Notify protocols, that we are about to destroy
10841                  * this device. They should clean all the things.
10842                  */
10843                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10844
10845                 if (!dev->rtnl_link_ops ||
10846                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10847                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10848                                                      GFP_KERNEL, NULL, 0,
10849                                                      portid, nlmsg_seq(nlh));
10850
10851                 /*
10852                  *      Flush the unicast and multicast chains
10853                  */
10854                 dev_uc_flush(dev);
10855                 dev_mc_flush(dev);
10856
10857                 netdev_name_node_alt_flush(dev);
10858                 netdev_name_node_free(dev->name_node);
10859
10860                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10861
10862                 if (dev->netdev_ops->ndo_uninit)
10863                         dev->netdev_ops->ndo_uninit(dev);
10864
10865                 if (skb)
10866                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10867
10868                 /* Notifier chain MUST detach us all upper devices. */
10869                 WARN_ON(netdev_has_any_upper_dev(dev));
10870                 WARN_ON(netdev_has_any_lower_dev(dev));
10871
10872                 /* Remove entries from kobject tree */
10873                 netdev_unregister_kobject(dev);
10874 #ifdef CONFIG_XPS
10875                 /* Remove XPS queueing entries */
10876                 netif_reset_xps_queues_gt(dev, 0);
10877 #endif
10878         }
10879
10880         synchronize_net();
10881
10882         list_for_each_entry(dev, head, unreg_list) {
10883                 netdev_put(dev, &dev->dev_registered_tracker);
10884                 net_set_todo(dev);
10885         }
10886
10887         list_del(head);
10888 }
10889
10890 /**
10891  *      unregister_netdevice_many - unregister many devices
10892  *      @head: list of devices
10893  *
10894  *  Note: As most callers use a stack allocated list_head,
10895  *  we force a list_del() to make sure stack wont be corrupted later.
10896  */
10897 void unregister_netdevice_many(struct list_head *head)
10898 {
10899         unregister_netdevice_many_notify(head, 0, NULL);
10900 }
10901 EXPORT_SYMBOL(unregister_netdevice_many);
10902
10903 /**
10904  *      unregister_netdev - remove device from the kernel
10905  *      @dev: device
10906  *
10907  *      This function shuts down a device interface and removes it
10908  *      from the kernel tables.
10909  *
10910  *      This is just a wrapper for unregister_netdevice that takes
10911  *      the rtnl semaphore.  In general you want to use this and not
10912  *      unregister_netdevice.
10913  */
10914 void unregister_netdev(struct net_device *dev)
10915 {
10916         rtnl_lock();
10917         unregister_netdevice(dev);
10918         rtnl_unlock();
10919 }
10920 EXPORT_SYMBOL(unregister_netdev);
10921
10922 /**
10923  *      __dev_change_net_namespace - move device to different nethost namespace
10924  *      @dev: device
10925  *      @net: network namespace
10926  *      @pat: If not NULL name pattern to try if the current device name
10927  *            is already taken in the destination network namespace.
10928  *      @new_ifindex: If not zero, specifies device index in the target
10929  *                    namespace.
10930  *
10931  *      This function shuts down a device interface and moves it
10932  *      to a new network namespace. On success 0 is returned, on
10933  *      a failure a netagive errno code is returned.
10934  *
10935  *      Callers must hold the rtnl semaphore.
10936  */
10937
10938 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10939                                const char *pat, int new_ifindex)
10940 {
10941         struct net *net_old = dev_net(dev);
10942         int err, new_nsid;
10943
10944         ASSERT_RTNL();
10945
10946         /* Don't allow namespace local devices to be moved. */
10947         err = -EINVAL;
10948         if (dev->features & NETIF_F_NETNS_LOCAL)
10949                 goto out;
10950
10951         /* Ensure the device has been registrered */
10952         if (dev->reg_state != NETREG_REGISTERED)
10953                 goto out;
10954
10955         /* Get out if there is nothing todo */
10956         err = 0;
10957         if (net_eq(net_old, net))
10958                 goto out;
10959
10960         /* Pick the destination device name, and ensure
10961          * we can use it in the destination network namespace.
10962          */
10963         err = -EEXIST;
10964         if (netdev_name_in_use(net, dev->name)) {
10965                 /* We get here if we can't use the current device name */
10966                 if (!pat)
10967                         goto out;
10968                 err = dev_get_valid_name(net, dev, pat);
10969                 if (err < 0)
10970                         goto out;
10971         }
10972
10973         /* Check that new_ifindex isn't used yet. */
10974         err = -EBUSY;
10975         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10976                 goto out;
10977
10978         /*
10979          * And now a mini version of register_netdevice unregister_netdevice.
10980          */
10981
10982         /* If device is running close it first. */
10983         dev_close(dev);
10984
10985         /* And unlink it from device chain */
10986         unlist_netdevice(dev, true);
10987
10988         synchronize_net();
10989
10990         /* Shutdown queueing discipline. */
10991         dev_shutdown(dev);
10992
10993         /* Notify protocols, that we are about to destroy
10994          * this device. They should clean all the things.
10995          *
10996          * Note that dev->reg_state stays at NETREG_REGISTERED.
10997          * This is wanted because this way 8021q and macvlan know
10998          * the device is just moving and can keep their slaves up.
10999          */
11000         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11001         rcu_barrier();
11002
11003         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11004         /* If there is an ifindex conflict assign a new one */
11005         if (!new_ifindex) {
11006                 if (__dev_get_by_index(net, dev->ifindex))
11007                         new_ifindex = dev_new_index(net);
11008                 else
11009                         new_ifindex = dev->ifindex;
11010         }
11011
11012         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11013                             new_ifindex);
11014
11015         /*
11016          *      Flush the unicast and multicast chains
11017          */
11018         dev_uc_flush(dev);
11019         dev_mc_flush(dev);
11020
11021         /* Send a netdev-removed uevent to the old namespace */
11022         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11023         netdev_adjacent_del_links(dev);
11024
11025         /* Move per-net netdevice notifiers that are following the netdevice */
11026         move_netdevice_notifiers_dev_net(dev, net);
11027
11028         /* Actually switch the network namespace */
11029         dev_net_set(dev, net);
11030         dev->ifindex = new_ifindex;
11031
11032         /* Send a netdev-add uevent to the new namespace */
11033         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11034         netdev_adjacent_add_links(dev);
11035
11036         /* Fixup kobjects */
11037         err = device_rename(&dev->dev, dev->name);
11038         WARN_ON(err);
11039
11040         /* Adapt owner in case owning user namespace of target network
11041          * namespace is different from the original one.
11042          */
11043         err = netdev_change_owner(dev, net_old, net);
11044         WARN_ON(err);
11045
11046         /* Add the device back in the hashes */
11047         list_netdevice(dev);
11048
11049         /* Notify protocols, that a new device appeared. */
11050         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11051
11052         /*
11053          *      Prevent userspace races by waiting until the network
11054          *      device is fully setup before sending notifications.
11055          */
11056         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11057
11058         synchronize_net();
11059         err = 0;
11060 out:
11061         return err;
11062 }
11063 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11064
11065 static int dev_cpu_dead(unsigned int oldcpu)
11066 {
11067         struct sk_buff **list_skb;
11068         struct sk_buff *skb;
11069         unsigned int cpu;
11070         struct softnet_data *sd, *oldsd, *remsd = NULL;
11071
11072         local_irq_disable();
11073         cpu = smp_processor_id();
11074         sd = &per_cpu(softnet_data, cpu);
11075         oldsd = &per_cpu(softnet_data, oldcpu);
11076
11077         /* Find end of our completion_queue. */
11078         list_skb = &sd->completion_queue;
11079         while (*list_skb)
11080                 list_skb = &(*list_skb)->next;
11081         /* Append completion queue from offline CPU. */
11082         *list_skb = oldsd->completion_queue;
11083         oldsd->completion_queue = NULL;
11084
11085         /* Append output queue from offline CPU. */
11086         if (oldsd->output_queue) {
11087                 *sd->output_queue_tailp = oldsd->output_queue;
11088                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11089                 oldsd->output_queue = NULL;
11090                 oldsd->output_queue_tailp = &oldsd->output_queue;
11091         }
11092         /* Append NAPI poll list from offline CPU, with one exception :
11093          * process_backlog() must be called by cpu owning percpu backlog.
11094          * We properly handle process_queue & input_pkt_queue later.
11095          */
11096         while (!list_empty(&oldsd->poll_list)) {
11097                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11098                                                             struct napi_struct,
11099                                                             poll_list);
11100
11101                 list_del_init(&napi->poll_list);
11102                 if (napi->poll == process_backlog)
11103                         napi->state = 0;
11104                 else
11105                         ____napi_schedule(sd, napi);
11106         }
11107
11108         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11109         local_irq_enable();
11110
11111 #ifdef CONFIG_RPS
11112         remsd = oldsd->rps_ipi_list;
11113         oldsd->rps_ipi_list = NULL;
11114 #endif
11115         /* send out pending IPI's on offline CPU */
11116         net_rps_send_ipi(remsd);
11117
11118         /* Process offline CPU's input_pkt_queue */
11119         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11120                 netif_rx(skb);
11121                 input_queue_head_incr(oldsd);
11122         }
11123         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11124                 netif_rx(skb);
11125                 input_queue_head_incr(oldsd);
11126         }
11127
11128         return 0;
11129 }
11130
11131 /**
11132  *      netdev_increment_features - increment feature set by one
11133  *      @all: current feature set
11134  *      @one: new feature set
11135  *      @mask: mask feature set
11136  *
11137  *      Computes a new feature set after adding a device with feature set
11138  *      @one to the master device with current feature set @all.  Will not
11139  *      enable anything that is off in @mask. Returns the new feature set.
11140  */
11141 netdev_features_t netdev_increment_features(netdev_features_t all,
11142         netdev_features_t one, netdev_features_t mask)
11143 {
11144         if (mask & NETIF_F_HW_CSUM)
11145                 mask |= NETIF_F_CSUM_MASK;
11146         mask |= NETIF_F_VLAN_CHALLENGED;
11147
11148         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11149         all &= one | ~NETIF_F_ALL_FOR_ALL;
11150
11151         /* If one device supports hw checksumming, set for all. */
11152         if (all & NETIF_F_HW_CSUM)
11153                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11154
11155         return all;
11156 }
11157 EXPORT_SYMBOL(netdev_increment_features);
11158
11159 static struct hlist_head * __net_init netdev_create_hash(void)
11160 {
11161         int i;
11162         struct hlist_head *hash;
11163
11164         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11165         if (hash != NULL)
11166                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11167                         INIT_HLIST_HEAD(&hash[i]);
11168
11169         return hash;
11170 }
11171
11172 /* Initialize per network namespace state */
11173 static int __net_init netdev_init(struct net *net)
11174 {
11175         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11176                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11177
11178         INIT_LIST_HEAD(&net->dev_base_head);
11179
11180         net->dev_name_head = netdev_create_hash();
11181         if (net->dev_name_head == NULL)
11182                 goto err_name;
11183
11184         net->dev_index_head = netdev_create_hash();
11185         if (net->dev_index_head == NULL)
11186                 goto err_idx;
11187
11188         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11189
11190         return 0;
11191
11192 err_idx:
11193         kfree(net->dev_name_head);
11194 err_name:
11195         return -ENOMEM;
11196 }
11197
11198 /**
11199  *      netdev_drivername - network driver for the device
11200  *      @dev: network device
11201  *
11202  *      Determine network driver for device.
11203  */
11204 const char *netdev_drivername(const struct net_device *dev)
11205 {
11206         const struct device_driver *driver;
11207         const struct device *parent;
11208         const char *empty = "";
11209
11210         parent = dev->dev.parent;
11211         if (!parent)
11212                 return empty;
11213
11214         driver = parent->driver;
11215         if (driver && driver->name)
11216                 return driver->name;
11217         return empty;
11218 }
11219
11220 static void __netdev_printk(const char *level, const struct net_device *dev,
11221                             struct va_format *vaf)
11222 {
11223         if (dev && dev->dev.parent) {
11224                 dev_printk_emit(level[1] - '0',
11225                                 dev->dev.parent,
11226                                 "%s %s %s%s: %pV",
11227                                 dev_driver_string(dev->dev.parent),
11228                                 dev_name(dev->dev.parent),
11229                                 netdev_name(dev), netdev_reg_state(dev),
11230                                 vaf);
11231         } else if (dev) {
11232                 printk("%s%s%s: %pV",
11233                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11234         } else {
11235                 printk("%s(NULL net_device): %pV", level, vaf);
11236         }
11237 }
11238
11239 void netdev_printk(const char *level, const struct net_device *dev,
11240                    const char *format, ...)
11241 {
11242         struct va_format vaf;
11243         va_list args;
11244
11245         va_start(args, format);
11246
11247         vaf.fmt = format;
11248         vaf.va = &args;
11249
11250         __netdev_printk(level, dev, &vaf);
11251
11252         va_end(args);
11253 }
11254 EXPORT_SYMBOL(netdev_printk);
11255
11256 #define define_netdev_printk_level(func, level)                 \
11257 void func(const struct net_device *dev, const char *fmt, ...)   \
11258 {                                                               \
11259         struct va_format vaf;                                   \
11260         va_list args;                                           \
11261                                                                 \
11262         va_start(args, fmt);                                    \
11263                                                                 \
11264         vaf.fmt = fmt;                                          \
11265         vaf.va = &args;                                         \
11266                                                                 \
11267         __netdev_printk(level, dev, &vaf);                      \
11268                                                                 \
11269         va_end(args);                                           \
11270 }                                                               \
11271 EXPORT_SYMBOL(func);
11272
11273 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11274 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11275 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11276 define_netdev_printk_level(netdev_err, KERN_ERR);
11277 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11278 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11279 define_netdev_printk_level(netdev_info, KERN_INFO);
11280
11281 static void __net_exit netdev_exit(struct net *net)
11282 {
11283         kfree(net->dev_name_head);
11284         kfree(net->dev_index_head);
11285         if (net != &init_net)
11286                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11287 }
11288
11289 static struct pernet_operations __net_initdata netdev_net_ops = {
11290         .init = netdev_init,
11291         .exit = netdev_exit,
11292 };
11293
11294 static void __net_exit default_device_exit_net(struct net *net)
11295 {
11296         struct net_device *dev, *aux;
11297         /*
11298          * Push all migratable network devices back to the
11299          * initial network namespace
11300          */
11301         ASSERT_RTNL();
11302         for_each_netdev_safe(net, dev, aux) {
11303                 int err;
11304                 char fb_name[IFNAMSIZ];
11305
11306                 /* Ignore unmoveable devices (i.e. loopback) */
11307                 if (dev->features & NETIF_F_NETNS_LOCAL)
11308                         continue;
11309
11310                 /* Leave virtual devices for the generic cleanup */
11311                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11312                         continue;
11313
11314                 /* Push remaining network devices to init_net */
11315                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11316                 if (netdev_name_in_use(&init_net, fb_name))
11317                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11318                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11319                 if (err) {
11320                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11321                                  __func__, dev->name, err);
11322                         BUG();
11323                 }
11324         }
11325 }
11326
11327 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11328 {
11329         /* At exit all network devices most be removed from a network
11330          * namespace.  Do this in the reverse order of registration.
11331          * Do this across as many network namespaces as possible to
11332          * improve batching efficiency.
11333          */
11334         struct net_device *dev;
11335         struct net *net;
11336         LIST_HEAD(dev_kill_list);
11337
11338         rtnl_lock();
11339         list_for_each_entry(net, net_list, exit_list) {
11340                 default_device_exit_net(net);
11341                 cond_resched();
11342         }
11343
11344         list_for_each_entry(net, net_list, exit_list) {
11345                 for_each_netdev_reverse(net, dev) {
11346                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11347                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11348                         else
11349                                 unregister_netdevice_queue(dev, &dev_kill_list);
11350                 }
11351         }
11352         unregister_netdevice_many(&dev_kill_list);
11353         rtnl_unlock();
11354 }
11355
11356 static struct pernet_operations __net_initdata default_device_ops = {
11357         .exit_batch = default_device_exit_batch,
11358 };
11359
11360 /*
11361  *      Initialize the DEV module. At boot time this walks the device list and
11362  *      unhooks any devices that fail to initialise (normally hardware not
11363  *      present) and leaves us with a valid list of present and active devices.
11364  *
11365  */
11366
11367 /*
11368  *       This is called single threaded during boot, so no need
11369  *       to take the rtnl semaphore.
11370  */
11371 static int __init net_dev_init(void)
11372 {
11373         int i, rc = -ENOMEM;
11374
11375         BUG_ON(!dev_boot_phase);
11376
11377         if (dev_proc_init())
11378                 goto out;
11379
11380         if (netdev_kobject_init())
11381                 goto out;
11382
11383         INIT_LIST_HEAD(&ptype_all);
11384         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11385                 INIT_LIST_HEAD(&ptype_base[i]);
11386
11387         if (register_pernet_subsys(&netdev_net_ops))
11388                 goto out;
11389
11390         /*
11391          *      Initialise the packet receive queues.
11392          */
11393
11394         for_each_possible_cpu(i) {
11395                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11396                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11397
11398                 INIT_WORK(flush, flush_backlog);
11399
11400                 skb_queue_head_init(&sd->input_pkt_queue);
11401                 skb_queue_head_init(&sd->process_queue);
11402 #ifdef CONFIG_XFRM_OFFLOAD
11403                 skb_queue_head_init(&sd->xfrm_backlog);
11404 #endif
11405                 INIT_LIST_HEAD(&sd->poll_list);
11406                 sd->output_queue_tailp = &sd->output_queue;
11407 #ifdef CONFIG_RPS
11408                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11409                 sd->cpu = i;
11410 #endif
11411                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11412                 spin_lock_init(&sd->defer_lock);
11413
11414                 init_gro_hash(&sd->backlog);
11415                 sd->backlog.poll = process_backlog;
11416                 sd->backlog.weight = weight_p;
11417         }
11418
11419         dev_boot_phase = 0;
11420
11421         /* The loopback device is special if any other network devices
11422          * is present in a network namespace the loopback device must
11423          * be present. Since we now dynamically allocate and free the
11424          * loopback device ensure this invariant is maintained by
11425          * keeping the loopback device as the first device on the
11426          * list of network devices.  Ensuring the loopback devices
11427          * is the first device that appears and the last network device
11428          * that disappears.
11429          */
11430         if (register_pernet_device(&loopback_net_ops))
11431                 goto out;
11432
11433         if (register_pernet_device(&default_device_ops))
11434                 goto out;
11435
11436         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11437         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11438
11439         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11440                                        NULL, dev_cpu_dead);
11441         WARN_ON(rc < 0);
11442         rc = 0;
11443 out:
11444         return rc;
11445 }
11446
11447 subsys_initcall(net_dev_init);