ee00d3cfcb5642327df1cfb23e9dfc23581688d7
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "dev.h"
155 #include "net-sysfs.h"
156
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         netdev_name_node_del(name_node);
349         kfree(name_node->name);
350         netdev_name_node_free(name_node);
351 }
352
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355         struct netdev_name_node *name_node;
356         struct net *net = dev_net(dev);
357
358         name_node = netdev_name_node_lookup(net, name);
359         if (!name_node)
360                 return -ENOENT;
361         /* lookup might have found our primary name or a name belonging
362          * to another device.
363          */
364         if (name_node == dev->name_node || name_node->dev != dev)
365                 return -EINVAL;
366
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct net *net = dev_net(dev);
384
385         ASSERT_RTNL();
386
387         write_lock(&dev_base_lock);
388         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389         netdev_name_node_add(net, dev->name_node);
390         hlist_add_head_rcu(&dev->index_hlist,
391                            dev_index_hash(net, dev->ifindex));
392         write_unlock(&dev_base_lock);
393
394         dev_base_seq_inc(net);
395 }
396
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402         ASSERT_RTNL();
403
404         /* Unlink dev from the device chain */
405         if (lock)
406                 write_lock(&dev_base_lock);
407         list_del_rcu(&dev->dev_list);
408         netdev_name_node_del(dev->name_node);
409         hlist_del_rcu(&dev->index_hlist);
410         if (lock)
411                 write_unlock(&dev_base_lock);
412
413         dev_base_seq_inc(dev_net(dev));
414 }
415
416 /*
417  *      Our notifier list
418  */
419
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421
422 /*
423  *      Device drivers call our routines to queue packets here. We empty the
424  *      queue in the local softnet handler.
425  */
426
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452 static const char *const netdev_lock_name[] = {
453         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474         int i;
475
476         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477                 if (netdev_lock_type[i] == dev_type)
478                         return i;
479         /* the last key is used by default */
480         return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484                                                  unsigned short dev_type)
485 {
486         int i;
487
488         i = netdev_lock_pos(dev_type);
489         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490                                    netdev_lock_name[i]);
491 }
492
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495         int i;
496
497         i = netdev_lock_pos(dev->type);
498         lockdep_set_class_and_name(&dev->addr_list_lock,
499                                    &netdev_addr_lock_key[i],
500                                    netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504                                                  unsigned short dev_type)
505 {
506 }
507
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512
513 /*******************************************************************************
514  *
515  *              Protocol management and registration routines
516  *
517  *******************************************************************************/
518
519
520 /*
521  *      Add a protocol ID to the list. Now that the input handler is
522  *      smarter we can dispense with all the messy stuff that used to be
523  *      here.
524  *
525  *      BEWARE!!! Protocol handlers, mangling input packets,
526  *      MUST BE last in hash buckets and checking protocol handlers
527  *      MUST start from promiscuous ptype_all chain in net_bh.
528  *      It is true now, do not change it.
529  *      Explanation follows: if protocol handler, mangling packet, will
530  *      be the first on list, it is not able to sense, that packet
531  *      is cloned and should be copied-on-write, so that it will
532  *      change it and subsequent readers will get broken packet.
533  *                                                      --ANK (980803)
534  */
535
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538         if (pt->type == htons(ETH_P_ALL))
539                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540         else
541                 return pt->dev ? &pt->dev->ptype_specific :
542                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544
545 /**
546  *      dev_add_pack - add packet handler
547  *      @pt: packet type declaration
548  *
549  *      Add a protocol handler to the networking stack. The passed &packet_type
550  *      is linked into kernel lists and may not be freed until it has been
551  *      removed from the kernel lists.
552  *
553  *      This call does not sleep therefore it can not
554  *      guarantee all CPU's that are in middle of receiving packets
555  *      will see the new packet type (until the next received packet).
556  */
557
558 void dev_add_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561
562         spin_lock(&ptype_lock);
563         list_add_rcu(&pt->list, head);
564         spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567
568 /**
569  *      __dev_remove_pack        - remove packet handler
570  *      @pt: packet type declaration
571  *
572  *      Remove a protocol handler that was previously added to the kernel
573  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *      from the kernel lists and can be freed or reused once this function
575  *      returns.
576  *
577  *      The packet type might still be in use by receivers
578  *      and must not be freed until after all the CPU's have gone
579  *      through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583         struct list_head *head = ptype_head(pt);
584         struct packet_type *pt1;
585
586         spin_lock(&ptype_lock);
587
588         list_for_each_entry(pt1, head, list) {
589                 if (pt == pt1) {
590                         list_del_rcu(&pt->list);
591                         goto out;
592                 }
593         }
594
595         pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597         spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600
601 /**
602  *      dev_remove_pack  - remove packet handler
603  *      @pt: packet type declaration
604  *
605  *      Remove a protocol handler that was previously added to the kernel
606  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *      from the kernel lists and can be freed or reused once this function
608  *      returns.
609  *
610  *      This call sleeps to guarantee that no CPU is looking at the packet
611  *      type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615         __dev_remove_pack(pt);
616
617         synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620
621
622 /*******************************************************************************
623  *
624  *                          Device Interface Subroutines
625  *
626  *******************************************************************************/
627
628 /**
629  *      dev_get_iflink  - get 'iflink' value of a interface
630  *      @dev: targeted interface
631  *
632  *      Indicates the ifindex the interface is linked to.
633  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635
636 int dev_get_iflink(const struct net_device *dev)
637 {
638         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639                 return dev->netdev_ops->ndo_get_iflink(dev);
640
641         return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644
645 /**
646  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *      @dev: targeted interface
648  *      @skb: The packet.
649  *
650  *      For better visibility of tunnel traffic OVS needs to retrieve
651  *      egress tunnel information for a packet. Following API allows
652  *      user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656         struct ip_tunnel_info *info;
657
658         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659                 return -EINVAL;
660
661         info = skb_tunnel_info_unclone(skb);
662         if (!info)
663                 return -ENOMEM;
664         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665                 return -EINVAL;
666
667         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673         int k = stack->num_paths++;
674
675         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676                 return NULL;
677
678         return &stack->path[k];
679 }
680
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682                           struct net_device_path_stack *stack)
683 {
684         const struct net_device *last_dev;
685         struct net_device_path_ctx ctx = {
686                 .dev    = dev,
687         };
688         struct net_device_path *path;
689         int ret = 0;
690
691         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692         stack->num_paths = 0;
693         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694                 last_dev = ctx.dev;
695                 path = dev_fwd_path(stack);
696                 if (!path)
697                         return -1;
698
699                 memset(path, 0, sizeof(struct net_device_path));
700                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701                 if (ret < 0)
702                         return -1;
703
704                 if (WARN_ON_ONCE(last_dev == ctx.dev))
705                         return -1;
706         }
707
708         if (!ctx.dev)
709                 return ret;
710
711         path = dev_fwd_path(stack);
712         if (!path)
713                 return -1;
714         path->type = DEV_PATH_ETHERNET;
715         path->dev = ctx.dev;
716
717         return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721 /**
722  *      __dev_get_by_name       - find a device by its name
723  *      @net: the applicable net namespace
724  *      @name: name to find
725  *
726  *      Find an interface by name. Must be called under RTNL semaphore
727  *      or @dev_base_lock. If the name is found a pointer to the device
728  *      is returned. If the name is not found then %NULL is returned. The
729  *      reference counters are not incremented so the caller must be
730  *      careful with locks.
731  */
732
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735         struct netdev_name_node *node_name;
736
737         node_name = netdev_name_node_lookup(net, name);
738         return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741
742 /**
743  * dev_get_by_name_rcu  - find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756         struct netdev_name_node *node_name;
757
758         node_name = netdev_name_node_lookup_rcu(net, name);
759         return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764  *      dev_get_by_name         - find a device by its name
765  *      @net: the applicable net namespace
766  *      @name: name to find
767  *
768  *      Find an interface by name. This can be called from any
769  *      context and does its own locking. The returned handle has
770  *      the usage count incremented and the caller must use dev_put() to
771  *      release it when it is no longer needed. %NULL is returned if no
772  *      matching device is found.
773  */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777         struct net_device *dev;
778
779         rcu_read_lock();
780         dev = dev_get_by_name_rcu(net, name);
781         dev_hold(dev);
782         rcu_read_unlock();
783         return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786
787 /**
788  *      __dev_get_by_index - find a device by its ifindex
789  *      @net: the applicable net namespace
790  *      @ifindex: index of device
791  *
792  *      Search for an interface by index. Returns %NULL if the device
793  *      is not found or a pointer to the device. The device has not
794  *      had its reference counter increased so the caller must be careful
795  *      about locking. The caller must hold either the RTNL semaphore
796  *      or @dev_base_lock.
797  */
798
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801         struct net_device *dev;
802         struct hlist_head *head = dev_index_hash(net, ifindex);
803
804         hlist_for_each_entry(dev, head, index_hlist)
805                 if (dev->ifindex == ifindex)
806                         return dev;
807
808         return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811
812 /**
813  *      dev_get_by_index_rcu - find a device by its ifindex
814  *      @net: the applicable net namespace
815  *      @ifindex: index of device
816  *
817  *      Search for an interface by index. Returns %NULL if the device
818  *      is not found or a pointer to the device. The device has not
819  *      had its reference counter increased so the caller must be careful
820  *      about locking. The caller must hold RCU lock.
821  */
822
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825         struct net_device *dev;
826         struct hlist_head *head = dev_index_hash(net, ifindex);
827
828         hlist_for_each_entry_rcu(dev, head, index_hlist)
829                 if (dev->ifindex == ifindex)
830                         return dev;
831
832         return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837 /**
838  *      dev_get_by_index - find a device by its ifindex
839  *      @net: the applicable net namespace
840  *      @ifindex: index of device
841  *
842  *      Search for an interface by index. Returns NULL if the device
843  *      is not found or a pointer to the device. The device returned has
844  *      had a reference added and the pointer is safe until the user calls
845  *      dev_put to indicate they have finished with it.
846  */
847
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850         struct net_device *dev;
851
852         rcu_read_lock();
853         dev = dev_get_by_index_rcu(net, ifindex);
854         dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      dev_get_by_napi_id - find a device by napi_id
862  *      @napi_id: ID of the NAPI struct
863  *
864  *      Search for an interface by NAPI ID. Returns %NULL if the device
865  *      is not found or a pointer to the device. The device has not had
866  *      its reference counter increased so the caller must be careful
867  *      about locking. The caller must hold RCU lock.
868  */
869
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872         struct napi_struct *napi;
873
874         WARN_ON_ONCE(!rcu_read_lock_held());
875
876         if (napi_id < MIN_NAPI_ID)
877                 return NULL;
878
879         napi = napi_by_id(napi_id);
880
881         return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884
885 /**
886  *      netdev_get_name - get a netdevice name, knowing its ifindex.
887  *      @net: network namespace
888  *      @name: a pointer to the buffer where the name will be stored.
889  *      @ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893         struct net_device *dev;
894         int ret;
895
896         down_read(&devnet_rename_sem);
897         rcu_read_lock();
898
899         dev = dev_get_by_index_rcu(net, ifindex);
900         if (!dev) {
901                 ret = -ENODEV;
902                 goto out;
903         }
904
905         strcpy(name, dev->name);
906
907         ret = 0;
908 out:
909         rcu_read_unlock();
910         up_read(&devnet_rename_sem);
911         return ret;
912 }
913
914 /**
915  *      dev_getbyhwaddr_rcu - find a device by its hardware address
916  *      @net: the applicable net namespace
917  *      @type: media type of device
918  *      @ha: hardware address
919  *
920  *      Search for an interface by MAC address. Returns NULL if the device
921  *      is not found or a pointer to the device.
922  *      The caller must hold RCU or RTNL.
923  *      The returned device has not had its ref count increased
924  *      and the caller must therefore be careful about locking
925  *
926  */
927
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929                                        const char *ha)
930 {
931         struct net_device *dev;
932
933         for_each_netdev_rcu(net, dev)
934                 if (dev->type == type &&
935                     !memcmp(dev->dev_addr, ha, dev->addr_len))
936                         return dev;
937
938         return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944         struct net_device *dev, *ret = NULL;
945
946         rcu_read_lock();
947         for_each_netdev_rcu(net, dev)
948                 if (dev->type == type) {
949                         dev_hold(dev);
950                         ret = dev;
951                         break;
952                 }
953         rcu_read_unlock();
954         return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958 /**
959  *      __dev_get_by_flags - find any device with given flags
960  *      @net: the applicable net namespace
961  *      @if_flags: IFF_* values
962  *      @mask: bitmask of bits in if_flags to check
963  *
964  *      Search for any interface with the given flags. Returns NULL if a device
965  *      is not found or a pointer to the device. Must be called inside
966  *      rtnl_lock(), and result refcount is unchanged.
967  */
968
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970                                       unsigned short mask)
971 {
972         struct net_device *dev, *ret;
973
974         ASSERT_RTNL();
975
976         ret = NULL;
977         for_each_netdev(net, dev) {
978                 if (((dev->flags ^ if_flags) & mask) == 0) {
979                         ret = dev;
980                         break;
981                 }
982         }
983         return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986
987 /**
988  *      dev_valid_name - check if name is okay for network device
989  *      @name: name string
990  *
991  *      Network device names need to be valid file names to
992  *      allow sysfs to work.  We also disallow any kind of
993  *      whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997         if (*name == '\0')
998                 return false;
999         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000                 return false;
1001         if (!strcmp(name, ".") || !strcmp(name, ".."))
1002                 return false;
1003
1004         while (*name) {
1005                 if (*name == '/' || *name == ':' || isspace(*name))
1006                         return false;
1007                 name++;
1008         }
1009         return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012
1013 /**
1014  *      __dev_alloc_name - allocate a name for a device
1015  *      @net: network namespace to allocate the device name in
1016  *      @name: name format string
1017  *      @buf:  scratch buffer and result name string
1018  *
1019  *      Passed a format string - eg "lt%d" it will try and find a suitable
1020  *      id. It scans list of devices to build up a free map, then chooses
1021  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *      while allocating the name and adding the device in order to avoid
1023  *      duplicates.
1024  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *      Returns the number of the unit assigned or a negative errno code.
1026  */
1027
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030         int i = 0;
1031         const char *p;
1032         const int max_netdevices = 8*PAGE_SIZE;
1033         unsigned long *inuse;
1034         struct net_device *d;
1035
1036         if (!dev_valid_name(name))
1037                 return -EINVAL;
1038
1039         p = strchr(name, '%');
1040         if (p) {
1041                 /*
1042                  * Verify the string as this thing may have come from
1043                  * the user.  There must be either one "%d" and no other "%"
1044                  * characters.
1045                  */
1046                 if (p[1] != 'd' || strchr(p + 2, '%'))
1047                         return -EINVAL;
1048
1049                 /* Use one page as a bit array of possible slots */
1050                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051                 if (!inuse)
1052                         return -ENOMEM;
1053
1054                 for_each_netdev(net, d) {
1055                         struct netdev_name_node *name_node;
1056                         list_for_each_entry(name_node, &d->name_node->list, list) {
1057                                 if (!sscanf(name_node->name, name, &i))
1058                                         continue;
1059                                 if (i < 0 || i >= max_netdevices)
1060                                         continue;
1061
1062                                 /*  avoid cases where sscanf is not exact inverse of printf */
1063                                 snprintf(buf, IFNAMSIZ, name, i);
1064                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065                                         __set_bit(i, inuse);
1066                         }
1067                         if (!sscanf(d->name, name, &i))
1068                                 continue;
1069                         if (i < 0 || i >= max_netdevices)
1070                                 continue;
1071
1072                         /*  avoid cases where sscanf is not exact inverse of printf */
1073                         snprintf(buf, IFNAMSIZ, name, i);
1074                         if (!strncmp(buf, d->name, IFNAMSIZ))
1075                                 __set_bit(i, inuse);
1076                 }
1077
1078                 i = find_first_zero_bit(inuse, max_netdevices);
1079                 free_page((unsigned long) inuse);
1080         }
1081
1082         snprintf(buf, IFNAMSIZ, name, i);
1083         if (!netdev_name_in_use(net, buf))
1084                 return i;
1085
1086         /* It is possible to run out of possible slots
1087          * when the name is long and there isn't enough space left
1088          * for the digits, or if all bits are used.
1089          */
1090         return -ENFILE;
1091 }
1092
1093 static int dev_alloc_name_ns(struct net *net,
1094                              struct net_device *dev,
1095                              const char *name)
1096 {
1097         char buf[IFNAMSIZ];
1098         int ret;
1099
1100         BUG_ON(!net);
1101         ret = __dev_alloc_name(net, name, buf);
1102         if (ret >= 0)
1103                 strscpy(dev->name, buf, IFNAMSIZ);
1104         return ret;
1105 }
1106
1107 /**
1108  *      dev_alloc_name - allocate a name for a device
1109  *      @dev: device
1110  *      @name: name format string
1111  *
1112  *      Passed a format string - eg "lt%d" it will try and find a suitable
1113  *      id. It scans list of devices to build up a free map, then chooses
1114  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *      while allocating the name and adding the device in order to avoid
1116  *      duplicates.
1117  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *      Returns the number of the unit assigned or a negative errno code.
1119  */
1120
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123         return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128                               const char *name)
1129 {
1130         BUG_ON(!net);
1131
1132         if (!dev_valid_name(name))
1133                 return -EINVAL;
1134
1135         if (strchr(name, '%'))
1136                 return dev_alloc_name_ns(net, dev, name);
1137         else if (netdev_name_in_use(net, name))
1138                 return -EEXIST;
1139         else if (dev->name != name)
1140                 strscpy(dev->name, name, IFNAMSIZ);
1141
1142         return 0;
1143 }
1144
1145 /**
1146  *      dev_change_name - change name of a device
1147  *      @dev: device
1148  *      @newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *      Change name of a device, can pass format strings "eth%d".
1151  *      for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155         unsigned char old_assign_type;
1156         char oldname[IFNAMSIZ];
1157         int err = 0;
1158         int ret;
1159         struct net *net;
1160
1161         ASSERT_RTNL();
1162         BUG_ON(!dev_net(dev));
1163
1164         net = dev_net(dev);
1165
1166         /* Some auto-enslaved devices e.g. failover slaves are
1167          * special, as userspace might rename the device after
1168          * the interface had been brought up and running since
1169          * the point kernel initiated auto-enslavement. Allow
1170          * live name change even when these slave devices are
1171          * up and running.
1172          *
1173          * Typically, users of these auto-enslaving devices
1174          * don't actually care about slave name change, as
1175          * they are supposed to operate on master interface
1176          * directly.
1177          */
1178         if (dev->flags & IFF_UP &&
1179             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1180                 return -EBUSY;
1181
1182         down_write(&devnet_rename_sem);
1183
1184         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1185                 up_write(&devnet_rename_sem);
1186                 return 0;
1187         }
1188
1189         memcpy(oldname, dev->name, IFNAMSIZ);
1190
1191         err = dev_get_valid_name(net, dev, newname);
1192         if (err < 0) {
1193                 up_write(&devnet_rename_sem);
1194                 return err;
1195         }
1196
1197         if (oldname[0] && !strchr(oldname, '%'))
1198                 netdev_info(dev, "renamed from %s\n", oldname);
1199
1200         old_assign_type = dev->name_assign_type;
1201         dev->name_assign_type = NET_NAME_RENAMED;
1202
1203 rollback:
1204         ret = device_rename(&dev->dev, dev->name);
1205         if (ret) {
1206                 memcpy(dev->name, oldname, IFNAMSIZ);
1207                 dev->name_assign_type = old_assign_type;
1208                 up_write(&devnet_rename_sem);
1209                 return ret;
1210         }
1211
1212         up_write(&devnet_rename_sem);
1213
1214         netdev_adjacent_rename_links(dev, oldname);
1215
1216         write_lock(&dev_base_lock);
1217         netdev_name_node_del(dev->name_node);
1218         write_unlock(&dev_base_lock);
1219
1220         synchronize_rcu();
1221
1222         write_lock(&dev_base_lock);
1223         netdev_name_node_add(net, dev->name_node);
1224         write_unlock(&dev_base_lock);
1225
1226         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1227         ret = notifier_to_errno(ret);
1228
1229         if (ret) {
1230                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1231                 if (err >= 0) {
1232                         err = ret;
1233                         down_write(&devnet_rename_sem);
1234                         memcpy(dev->name, oldname, IFNAMSIZ);
1235                         memcpy(oldname, newname, IFNAMSIZ);
1236                         dev->name_assign_type = old_assign_type;
1237                         old_assign_type = NET_NAME_RENAMED;
1238                         goto rollback;
1239                 } else {
1240                         netdev_err(dev, "name change rollback failed: %d\n",
1241                                    ret);
1242                 }
1243         }
1244
1245         return err;
1246 }
1247
1248 /**
1249  *      dev_set_alias - change ifalias of a device
1250  *      @dev: device
1251  *      @alias: name up to IFALIASZ
1252  *      @len: limit of bytes to copy from info
1253  *
1254  *      Set ifalias for a device,
1255  */
1256 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1257 {
1258         struct dev_ifalias *new_alias = NULL;
1259
1260         if (len >= IFALIASZ)
1261                 return -EINVAL;
1262
1263         if (len) {
1264                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1265                 if (!new_alias)
1266                         return -ENOMEM;
1267
1268                 memcpy(new_alias->ifalias, alias, len);
1269                 new_alias->ifalias[len] = 0;
1270         }
1271
1272         mutex_lock(&ifalias_mutex);
1273         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1274                                         mutex_is_locked(&ifalias_mutex));
1275         mutex_unlock(&ifalias_mutex);
1276
1277         if (new_alias)
1278                 kfree_rcu(new_alias, rcuhead);
1279
1280         return len;
1281 }
1282 EXPORT_SYMBOL(dev_set_alias);
1283
1284 /**
1285  *      dev_get_alias - get ifalias of a device
1286  *      @dev: device
1287  *      @name: buffer to store name of ifalias
1288  *      @len: size of buffer
1289  *
1290  *      get ifalias for a device.  Caller must make sure dev cannot go
1291  *      away,  e.g. rcu read lock or own a reference count to device.
1292  */
1293 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1294 {
1295         const struct dev_ifalias *alias;
1296         int ret = 0;
1297
1298         rcu_read_lock();
1299         alias = rcu_dereference(dev->ifalias);
1300         if (alias)
1301                 ret = snprintf(name, len, "%s", alias->ifalias);
1302         rcu_read_unlock();
1303
1304         return ret;
1305 }
1306
1307 /**
1308  *      netdev_features_change - device changes features
1309  *      @dev: device to cause notification
1310  *
1311  *      Called to indicate a device has changed features.
1312  */
1313 void netdev_features_change(struct net_device *dev)
1314 {
1315         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1316 }
1317 EXPORT_SYMBOL(netdev_features_change);
1318
1319 /**
1320  *      netdev_state_change - device changes state
1321  *      @dev: device to cause notification
1322  *
1323  *      Called to indicate a device has changed state. This function calls
1324  *      the notifier chains for netdev_chain and sends a NEWLINK message
1325  *      to the routing socket.
1326  */
1327 void netdev_state_change(struct net_device *dev)
1328 {
1329         if (dev->flags & IFF_UP) {
1330                 struct netdev_notifier_change_info change_info = {
1331                         .info.dev = dev,
1332                 };
1333
1334                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1335                                               &change_info.info);
1336                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1337         }
1338 }
1339 EXPORT_SYMBOL(netdev_state_change);
1340
1341 /**
1342  * __netdev_notify_peers - notify network peers about existence of @dev,
1343  * to be called when rtnl lock is already held.
1344  * @dev: network device
1345  *
1346  * Generate traffic such that interested network peers are aware of
1347  * @dev, such as by generating a gratuitous ARP. This may be used when
1348  * a device wants to inform the rest of the network about some sort of
1349  * reconfiguration such as a failover event or virtual machine
1350  * migration.
1351  */
1352 void __netdev_notify_peers(struct net_device *dev)
1353 {
1354         ASSERT_RTNL();
1355         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1356         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1357 }
1358 EXPORT_SYMBOL(__netdev_notify_peers);
1359
1360 /**
1361  * netdev_notify_peers - notify network peers about existence of @dev
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void netdev_notify_peers(struct net_device *dev)
1371 {
1372         rtnl_lock();
1373         __netdev_notify_peers(dev);
1374         rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377
1378 static int napi_threaded_poll(void *data);
1379
1380 static int napi_kthread_create(struct napi_struct *n)
1381 {
1382         int err = 0;
1383
1384         /* Create and wake up the kthread once to put it in
1385          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1386          * warning and work with loadavg.
1387          */
1388         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1389                                 n->dev->name, n->napi_id);
1390         if (IS_ERR(n->thread)) {
1391                 err = PTR_ERR(n->thread);
1392                 pr_err("kthread_run failed with err %d\n", err);
1393                 n->thread = NULL;
1394         }
1395
1396         return err;
1397 }
1398
1399 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1400 {
1401         const struct net_device_ops *ops = dev->netdev_ops;
1402         int ret;
1403
1404         ASSERT_RTNL();
1405         dev_addr_check(dev);
1406
1407         if (!netif_device_present(dev)) {
1408                 /* may be detached because parent is runtime-suspended */
1409                 if (dev->dev.parent)
1410                         pm_runtime_resume(dev->dev.parent);
1411                 if (!netif_device_present(dev))
1412                         return -ENODEV;
1413         }
1414
1415         /* Block netpoll from trying to do any rx path servicing.
1416          * If we don't do this there is a chance ndo_poll_controller
1417          * or ndo_poll may be running while we open the device
1418          */
1419         netpoll_poll_disable(dev);
1420
1421         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1422         ret = notifier_to_errno(ret);
1423         if (ret)
1424                 return ret;
1425
1426         set_bit(__LINK_STATE_START, &dev->state);
1427
1428         if (ops->ndo_validate_addr)
1429                 ret = ops->ndo_validate_addr(dev);
1430
1431         if (!ret && ops->ndo_open)
1432                 ret = ops->ndo_open(dev);
1433
1434         netpoll_poll_enable(dev);
1435
1436         if (ret)
1437                 clear_bit(__LINK_STATE_START, &dev->state);
1438         else {
1439                 dev->flags |= IFF_UP;
1440                 dev_set_rx_mode(dev);
1441                 dev_activate(dev);
1442                 add_device_randomness(dev->dev_addr, dev->addr_len);
1443         }
1444
1445         return ret;
1446 }
1447
1448 /**
1449  *      dev_open        - prepare an interface for use.
1450  *      @dev: device to open
1451  *      @extack: netlink extended ack
1452  *
1453  *      Takes a device from down to up state. The device's private open
1454  *      function is invoked and then the multicast lists are loaded. Finally
1455  *      the device is moved into the up state and a %NETDEV_UP message is
1456  *      sent to the netdev notifier chain.
1457  *
1458  *      Calling this function on an active interface is a nop. On a failure
1459  *      a negative errno code is returned.
1460  */
1461 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1462 {
1463         int ret;
1464
1465         if (dev->flags & IFF_UP)
1466                 return 0;
1467
1468         ret = __dev_open(dev, extack);
1469         if (ret < 0)
1470                 return ret;
1471
1472         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1473         call_netdevice_notifiers(NETDEV_UP, dev);
1474
1475         return ret;
1476 }
1477 EXPORT_SYMBOL(dev_open);
1478
1479 static void __dev_close_many(struct list_head *head)
1480 {
1481         struct net_device *dev;
1482
1483         ASSERT_RTNL();
1484         might_sleep();
1485
1486         list_for_each_entry(dev, head, close_list) {
1487                 /* Temporarily disable netpoll until the interface is down */
1488                 netpoll_poll_disable(dev);
1489
1490                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1491
1492                 clear_bit(__LINK_STATE_START, &dev->state);
1493
1494                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1495                  * can be even on different cpu. So just clear netif_running().
1496                  *
1497                  * dev->stop() will invoke napi_disable() on all of it's
1498                  * napi_struct instances on this device.
1499                  */
1500                 smp_mb__after_atomic(); /* Commit netif_running(). */
1501         }
1502
1503         dev_deactivate_many(head);
1504
1505         list_for_each_entry(dev, head, close_list) {
1506                 const struct net_device_ops *ops = dev->netdev_ops;
1507
1508                 /*
1509                  *      Call the device specific close. This cannot fail.
1510                  *      Only if device is UP
1511                  *
1512                  *      We allow it to be called even after a DETACH hot-plug
1513                  *      event.
1514                  */
1515                 if (ops->ndo_stop)
1516                         ops->ndo_stop(dev);
1517
1518                 dev->flags &= ~IFF_UP;
1519                 netpoll_poll_enable(dev);
1520         }
1521 }
1522
1523 static void __dev_close(struct net_device *dev)
1524 {
1525         LIST_HEAD(single);
1526
1527         list_add(&dev->close_list, &single);
1528         __dev_close_many(&single);
1529         list_del(&single);
1530 }
1531
1532 void dev_close_many(struct list_head *head, bool unlink)
1533 {
1534         struct net_device *dev, *tmp;
1535
1536         /* Remove the devices that don't need to be closed */
1537         list_for_each_entry_safe(dev, tmp, head, close_list)
1538                 if (!(dev->flags & IFF_UP))
1539                         list_del_init(&dev->close_list);
1540
1541         __dev_close_many(head);
1542
1543         list_for_each_entry_safe(dev, tmp, head, close_list) {
1544                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1546                 if (unlink)
1547                         list_del_init(&dev->close_list);
1548         }
1549 }
1550 EXPORT_SYMBOL(dev_close_many);
1551
1552 /**
1553  *      dev_close - shutdown an interface.
1554  *      @dev: device to shutdown
1555  *
1556  *      This function moves an active device into down state. A
1557  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1558  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1559  *      chain.
1560  */
1561 void dev_close(struct net_device *dev)
1562 {
1563         if (dev->flags & IFF_UP) {
1564                 LIST_HEAD(single);
1565
1566                 list_add(&dev->close_list, &single);
1567                 dev_close_many(&single, true);
1568                 list_del(&single);
1569         }
1570 }
1571 EXPORT_SYMBOL(dev_close);
1572
1573
1574 /**
1575  *      dev_disable_lro - disable Large Receive Offload on a device
1576  *      @dev: device
1577  *
1578  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1579  *      called under RTNL.  This is needed if received packets may be
1580  *      forwarded to another interface.
1581  */
1582 void dev_disable_lro(struct net_device *dev)
1583 {
1584         struct net_device *lower_dev;
1585         struct list_head *iter;
1586
1587         dev->wanted_features &= ~NETIF_F_LRO;
1588         netdev_update_features(dev);
1589
1590         if (unlikely(dev->features & NETIF_F_LRO))
1591                 netdev_WARN(dev, "failed to disable LRO!\n");
1592
1593         netdev_for_each_lower_dev(dev, lower_dev, iter)
1594                 dev_disable_lro(lower_dev);
1595 }
1596 EXPORT_SYMBOL(dev_disable_lro);
1597
1598 /**
1599  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1600  *      @dev: device
1601  *
1602  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1603  *      called under RTNL.  This is needed if Generic XDP is installed on
1604  *      the device.
1605  */
1606 static void dev_disable_gro_hw(struct net_device *dev)
1607 {
1608         dev->wanted_features &= ~NETIF_F_GRO_HW;
1609         netdev_update_features(dev);
1610
1611         if (unlikely(dev->features & NETIF_F_GRO_HW))
1612                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1613 }
1614
1615 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1616 {
1617 #define N(val)                                          \
1618         case NETDEV_##val:                              \
1619                 return "NETDEV_" __stringify(val);
1620         switch (cmd) {
1621         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1622         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1623         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1624         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1625         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1626         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1627         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1628         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1629         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1630         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1631         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1632         }
1633 #undef N
1634         return "UNKNOWN_NETDEV_EVENT";
1635 }
1636 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1637
1638 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1639                                    struct net_device *dev)
1640 {
1641         struct netdev_notifier_info info = {
1642                 .dev = dev,
1643         };
1644
1645         return nb->notifier_call(nb, val, &info);
1646 }
1647
1648 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1649                                              struct net_device *dev)
1650 {
1651         int err;
1652
1653         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654         err = notifier_to_errno(err);
1655         if (err)
1656                 return err;
1657
1658         if (!(dev->flags & IFF_UP))
1659                 return 0;
1660
1661         call_netdevice_notifier(nb, NETDEV_UP, dev);
1662         return 0;
1663 }
1664
1665 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1666                                                 struct net_device *dev)
1667 {
1668         if (dev->flags & IFF_UP) {
1669                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670                                         dev);
1671                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1672         }
1673         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674 }
1675
1676 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1677                                                  struct net *net)
1678 {
1679         struct net_device *dev;
1680         int err;
1681
1682         for_each_netdev(net, dev) {
1683                 err = call_netdevice_register_notifiers(nb, dev);
1684                 if (err)
1685                         goto rollback;
1686         }
1687         return 0;
1688
1689 rollback:
1690         for_each_netdev_continue_reverse(net, dev)
1691                 call_netdevice_unregister_notifiers(nb, dev);
1692         return err;
1693 }
1694
1695 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1696                                                     struct net *net)
1697 {
1698         struct net_device *dev;
1699
1700         for_each_netdev(net, dev)
1701                 call_netdevice_unregister_notifiers(nb, dev);
1702 }
1703
1704 static int dev_boot_phase = 1;
1705
1706 /**
1707  * register_netdevice_notifier - register a network notifier block
1708  * @nb: notifier
1709  *
1710  * Register a notifier to be called when network device events occur.
1711  * The notifier passed is linked into the kernel structures and must
1712  * not be reused until it has been unregistered. A negative errno code
1713  * is returned on a failure.
1714  *
1715  * When registered all registration and up events are replayed
1716  * to the new notifier to allow device to have a race free
1717  * view of the network device list.
1718  */
1719
1720 int register_netdevice_notifier(struct notifier_block *nb)
1721 {
1722         struct net *net;
1723         int err;
1724
1725         /* Close race with setup_net() and cleanup_net() */
1726         down_write(&pernet_ops_rwsem);
1727         rtnl_lock();
1728         err = raw_notifier_chain_register(&netdev_chain, nb);
1729         if (err)
1730                 goto unlock;
1731         if (dev_boot_phase)
1732                 goto unlock;
1733         for_each_net(net) {
1734                 err = call_netdevice_register_net_notifiers(nb, net);
1735                 if (err)
1736                         goto rollback;
1737         }
1738
1739 unlock:
1740         rtnl_unlock();
1741         up_write(&pernet_ops_rwsem);
1742         return err;
1743
1744 rollback:
1745         for_each_net_continue_reverse(net)
1746                 call_netdevice_unregister_net_notifiers(nb, net);
1747
1748         raw_notifier_chain_unregister(&netdev_chain, nb);
1749         goto unlock;
1750 }
1751 EXPORT_SYMBOL(register_netdevice_notifier);
1752
1753 /**
1754  * unregister_netdevice_notifier - unregister a network notifier block
1755  * @nb: notifier
1756  *
1757  * Unregister a notifier previously registered by
1758  * register_netdevice_notifier(). The notifier is unlinked into the
1759  * kernel structures and may then be reused. A negative errno code
1760  * is returned on a failure.
1761  *
1762  * After unregistering unregister and down device events are synthesized
1763  * for all devices on the device list to the removed notifier to remove
1764  * the need for special case cleanup code.
1765  */
1766
1767 int unregister_netdevice_notifier(struct notifier_block *nb)
1768 {
1769         struct net *net;
1770         int err;
1771
1772         /* Close race with setup_net() and cleanup_net() */
1773         down_write(&pernet_ops_rwsem);
1774         rtnl_lock();
1775         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1776         if (err)
1777                 goto unlock;
1778
1779         for_each_net(net)
1780                 call_netdevice_unregister_net_notifiers(nb, net);
1781
1782 unlock:
1783         rtnl_unlock();
1784         up_write(&pernet_ops_rwsem);
1785         return err;
1786 }
1787 EXPORT_SYMBOL(unregister_netdevice_notifier);
1788
1789 static int __register_netdevice_notifier_net(struct net *net,
1790                                              struct notifier_block *nb,
1791                                              bool ignore_call_fail)
1792 {
1793         int err;
1794
1795         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1796         if (err)
1797                 return err;
1798         if (dev_boot_phase)
1799                 return 0;
1800
1801         err = call_netdevice_register_net_notifiers(nb, net);
1802         if (err && !ignore_call_fail)
1803                 goto chain_unregister;
1804
1805         return 0;
1806
1807 chain_unregister:
1808         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1809         return err;
1810 }
1811
1812 static int __unregister_netdevice_notifier_net(struct net *net,
1813                                                struct notifier_block *nb)
1814 {
1815         int err;
1816
1817         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1818         if (err)
1819                 return err;
1820
1821         call_netdevice_unregister_net_notifiers(nb, net);
1822         return 0;
1823 }
1824
1825 /**
1826  * register_netdevice_notifier_net - register a per-netns network notifier block
1827  * @net: network namespace
1828  * @nb: notifier
1829  *
1830  * Register a notifier to be called when network device events occur.
1831  * The notifier passed is linked into the kernel structures and must
1832  * not be reused until it has been unregistered. A negative errno code
1833  * is returned on a failure.
1834  *
1835  * When registered all registration and up events are replayed
1836  * to the new notifier to allow device to have a race free
1837  * view of the network device list.
1838  */
1839
1840 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1841 {
1842         int err;
1843
1844         rtnl_lock();
1845         err = __register_netdevice_notifier_net(net, nb, false);
1846         rtnl_unlock();
1847         return err;
1848 }
1849 EXPORT_SYMBOL(register_netdevice_notifier_net);
1850
1851 /**
1852  * unregister_netdevice_notifier_net - unregister a per-netns
1853  *                                     network notifier block
1854  * @net: network namespace
1855  * @nb: notifier
1856  *
1857  * Unregister a notifier previously registered by
1858  * register_netdevice_notifier(). The notifier is unlinked into the
1859  * kernel structures and may then be reused. A negative errno code
1860  * is returned on a failure.
1861  *
1862  * After unregistering unregister and down device events are synthesized
1863  * for all devices on the device list to the removed notifier to remove
1864  * the need for special case cleanup code.
1865  */
1866
1867 int unregister_netdevice_notifier_net(struct net *net,
1868                                       struct notifier_block *nb)
1869 {
1870         int err;
1871
1872         rtnl_lock();
1873         err = __unregister_netdevice_notifier_net(net, nb);
1874         rtnl_unlock();
1875         return err;
1876 }
1877 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1878
1879 int register_netdevice_notifier_dev_net(struct net_device *dev,
1880                                         struct notifier_block *nb,
1881                                         struct netdev_net_notifier *nn)
1882 {
1883         int err;
1884
1885         rtnl_lock();
1886         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1887         if (!err) {
1888                 nn->nb = nb;
1889                 list_add(&nn->list, &dev->net_notifier_list);
1890         }
1891         rtnl_unlock();
1892         return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1895
1896 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1897                                           struct notifier_block *nb,
1898                                           struct netdev_net_notifier *nn)
1899 {
1900         int err;
1901
1902         rtnl_lock();
1903         list_del(&nn->list);
1904         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1905         rtnl_unlock();
1906         return err;
1907 }
1908 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1909
1910 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1911                                              struct net *net)
1912 {
1913         struct netdev_net_notifier *nn;
1914
1915         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1916                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1917                 __register_netdevice_notifier_net(net, nn->nb, true);
1918         }
1919 }
1920
1921 /**
1922  *      call_netdevice_notifiers_info - call all network notifier blocks
1923  *      @val: value passed unmodified to notifier function
1924  *      @info: notifier information data
1925  *
1926  *      Call all network notifier blocks.  Parameters and return value
1927  *      are as for raw_notifier_call_chain().
1928  */
1929
1930 static int call_netdevice_notifiers_info(unsigned long val,
1931                                          struct netdev_notifier_info *info)
1932 {
1933         struct net *net = dev_net(info->dev);
1934         int ret;
1935
1936         ASSERT_RTNL();
1937
1938         /* Run per-netns notifier block chain first, then run the global one.
1939          * Hopefully, one day, the global one is going to be removed after
1940          * all notifier block registrators get converted to be per-netns.
1941          */
1942         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1943         if (ret & NOTIFY_STOP_MASK)
1944                 return ret;
1945         return raw_notifier_call_chain(&netdev_chain, val, info);
1946 }
1947
1948 /**
1949  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1950  *                                             for and rollback on error
1951  *      @val_up: value passed unmodified to notifier function
1952  *      @val_down: value passed unmodified to the notifier function when
1953  *                 recovering from an error on @val_up
1954  *      @info: notifier information data
1955  *
1956  *      Call all per-netns network notifier blocks, but not notifier blocks on
1957  *      the global notifier chain. Parameters and return value are as for
1958  *      raw_notifier_call_chain_robust().
1959  */
1960
1961 static int
1962 call_netdevice_notifiers_info_robust(unsigned long val_up,
1963                                      unsigned long val_down,
1964                                      struct netdev_notifier_info *info)
1965 {
1966         struct net *net = dev_net(info->dev);
1967
1968         ASSERT_RTNL();
1969
1970         return raw_notifier_call_chain_robust(&net->netdev_chain,
1971                                               val_up, val_down, info);
1972 }
1973
1974 static int call_netdevice_notifiers_extack(unsigned long val,
1975                                            struct net_device *dev,
1976                                            struct netlink_ext_ack *extack)
1977 {
1978         struct netdev_notifier_info info = {
1979                 .dev = dev,
1980                 .extack = extack,
1981         };
1982
1983         return call_netdevice_notifiers_info(val, &info);
1984 }
1985
1986 /**
1987  *      call_netdevice_notifiers - call all network notifier blocks
1988  *      @val: value passed unmodified to notifier function
1989  *      @dev: net_device pointer passed unmodified to notifier function
1990  *
1991  *      Call all network notifier blocks.  Parameters and return value
1992  *      are as for raw_notifier_call_chain().
1993  */
1994
1995 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1996 {
1997         return call_netdevice_notifiers_extack(val, dev, NULL);
1998 }
1999 EXPORT_SYMBOL(call_netdevice_notifiers);
2000
2001 /**
2002  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2003  *      @val: value passed unmodified to notifier function
2004  *      @dev: net_device pointer passed unmodified to notifier function
2005  *      @arg: additional u32 argument passed to the notifier function
2006  *
2007  *      Call all network notifier blocks.  Parameters and return value
2008  *      are as for raw_notifier_call_chain().
2009  */
2010 static int call_netdevice_notifiers_mtu(unsigned long val,
2011                                         struct net_device *dev, u32 arg)
2012 {
2013         struct netdev_notifier_info_ext info = {
2014                 .info.dev = dev,
2015                 .ext.mtu = arg,
2016         };
2017
2018         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2019
2020         return call_netdevice_notifiers_info(val, &info.info);
2021 }
2022
2023 #ifdef CONFIG_NET_INGRESS
2024 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2025
2026 void net_inc_ingress_queue(void)
2027 {
2028         static_branch_inc(&ingress_needed_key);
2029 }
2030 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2031
2032 void net_dec_ingress_queue(void)
2033 {
2034         static_branch_dec(&ingress_needed_key);
2035 }
2036 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2037 #endif
2038
2039 #ifdef CONFIG_NET_EGRESS
2040 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2041
2042 void net_inc_egress_queue(void)
2043 {
2044         static_branch_inc(&egress_needed_key);
2045 }
2046 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2047
2048 void net_dec_egress_queue(void)
2049 {
2050         static_branch_dec(&egress_needed_key);
2051 }
2052 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2053 #endif
2054
2055 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2056 EXPORT_SYMBOL(netstamp_needed_key);
2057 #ifdef CONFIG_JUMP_LABEL
2058 static atomic_t netstamp_needed_deferred;
2059 static atomic_t netstamp_wanted;
2060 static void netstamp_clear(struct work_struct *work)
2061 {
2062         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2063         int wanted;
2064
2065         wanted = atomic_add_return(deferred, &netstamp_wanted);
2066         if (wanted > 0)
2067                 static_branch_enable(&netstamp_needed_key);
2068         else
2069                 static_branch_disable(&netstamp_needed_key);
2070 }
2071 static DECLARE_WORK(netstamp_work, netstamp_clear);
2072 #endif
2073
2074 void net_enable_timestamp(void)
2075 {
2076 #ifdef CONFIG_JUMP_LABEL
2077         int wanted;
2078
2079         while (1) {
2080                 wanted = atomic_read(&netstamp_wanted);
2081                 if (wanted <= 0)
2082                         break;
2083                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2084                         return;
2085         }
2086         atomic_inc(&netstamp_needed_deferred);
2087         schedule_work(&netstamp_work);
2088 #else
2089         static_branch_inc(&netstamp_needed_key);
2090 #endif
2091 }
2092 EXPORT_SYMBOL(net_enable_timestamp);
2093
2094 void net_disable_timestamp(void)
2095 {
2096 #ifdef CONFIG_JUMP_LABEL
2097         int wanted;
2098
2099         while (1) {
2100                 wanted = atomic_read(&netstamp_wanted);
2101                 if (wanted <= 1)
2102                         break;
2103                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2104                         return;
2105         }
2106         atomic_dec(&netstamp_needed_deferred);
2107         schedule_work(&netstamp_work);
2108 #else
2109         static_branch_dec(&netstamp_needed_key);
2110 #endif
2111 }
2112 EXPORT_SYMBOL(net_disable_timestamp);
2113
2114 static inline void net_timestamp_set(struct sk_buff *skb)
2115 {
2116         skb->tstamp = 0;
2117         skb->mono_delivery_time = 0;
2118         if (static_branch_unlikely(&netstamp_needed_key))
2119                 skb->tstamp = ktime_get_real();
2120 }
2121
2122 #define net_timestamp_check(COND, SKB)                          \
2123         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2124                 if ((COND) && !(SKB)->tstamp)                   \
2125                         (SKB)->tstamp = ktime_get_real();       \
2126         }                                                       \
2127
2128 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2129 {
2130         return __is_skb_forwardable(dev, skb, true);
2131 }
2132 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2133
2134 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2135                               bool check_mtu)
2136 {
2137         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2138
2139         if (likely(!ret)) {
2140                 skb->protocol = eth_type_trans(skb, dev);
2141                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2142         }
2143
2144         return ret;
2145 }
2146
2147 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2148 {
2149         return __dev_forward_skb2(dev, skb, true);
2150 }
2151 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2152
2153 /**
2154  * dev_forward_skb - loopback an skb to another netif
2155  *
2156  * @dev: destination network device
2157  * @skb: buffer to forward
2158  *
2159  * return values:
2160  *      NET_RX_SUCCESS  (no congestion)
2161  *      NET_RX_DROP     (packet was dropped, but freed)
2162  *
2163  * dev_forward_skb can be used for injecting an skb from the
2164  * start_xmit function of one device into the receive queue
2165  * of another device.
2166  *
2167  * The receiving device may be in another namespace, so
2168  * we have to clear all information in the skb that could
2169  * impact namespace isolation.
2170  */
2171 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2172 {
2173         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2174 }
2175 EXPORT_SYMBOL_GPL(dev_forward_skb);
2176
2177 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2178 {
2179         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2180 }
2181
2182 static inline int deliver_skb(struct sk_buff *skb,
2183                               struct packet_type *pt_prev,
2184                               struct net_device *orig_dev)
2185 {
2186         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2187                 return -ENOMEM;
2188         refcount_inc(&skb->users);
2189         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2190 }
2191
2192 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2193                                           struct packet_type **pt,
2194                                           struct net_device *orig_dev,
2195                                           __be16 type,
2196                                           struct list_head *ptype_list)
2197 {
2198         struct packet_type *ptype, *pt_prev = *pt;
2199
2200         list_for_each_entry_rcu(ptype, ptype_list, list) {
2201                 if (ptype->type != type)
2202                         continue;
2203                 if (pt_prev)
2204                         deliver_skb(skb, pt_prev, orig_dev);
2205                 pt_prev = ptype;
2206         }
2207         *pt = pt_prev;
2208 }
2209
2210 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2211 {
2212         if (!ptype->af_packet_priv || !skb->sk)
2213                 return false;
2214
2215         if (ptype->id_match)
2216                 return ptype->id_match(ptype, skb->sk);
2217         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2218                 return true;
2219
2220         return false;
2221 }
2222
2223 /**
2224  * dev_nit_active - return true if any network interface taps are in use
2225  *
2226  * @dev: network device to check for the presence of taps
2227  */
2228 bool dev_nit_active(struct net_device *dev)
2229 {
2230         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2231 }
2232 EXPORT_SYMBOL_GPL(dev_nit_active);
2233
2234 /*
2235  *      Support routine. Sends outgoing frames to any network
2236  *      taps currently in use.
2237  */
2238
2239 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240 {
2241         struct packet_type *ptype;
2242         struct sk_buff *skb2 = NULL;
2243         struct packet_type *pt_prev = NULL;
2244         struct list_head *ptype_list = &ptype_all;
2245
2246         rcu_read_lock();
2247 again:
2248         list_for_each_entry_rcu(ptype, ptype_list, list) {
2249                 if (ptype->ignore_outgoing)
2250                         continue;
2251
2252                 /* Never send packets back to the socket
2253                  * they originated from - MvS (miquels@drinkel.ow.org)
2254                  */
2255                 if (skb_loop_sk(ptype, skb))
2256                         continue;
2257
2258                 if (pt_prev) {
2259                         deliver_skb(skb2, pt_prev, skb->dev);
2260                         pt_prev = ptype;
2261                         continue;
2262                 }
2263
2264                 /* need to clone skb, done only once */
2265                 skb2 = skb_clone(skb, GFP_ATOMIC);
2266                 if (!skb2)
2267                         goto out_unlock;
2268
2269                 net_timestamp_set(skb2);
2270
2271                 /* skb->nh should be correctly
2272                  * set by sender, so that the second statement is
2273                  * just protection against buggy protocols.
2274                  */
2275                 skb_reset_mac_header(skb2);
2276
2277                 if (skb_network_header(skb2) < skb2->data ||
2278                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2279                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2280                                              ntohs(skb2->protocol),
2281                                              dev->name);
2282                         skb_reset_network_header(skb2);
2283                 }
2284
2285                 skb2->transport_header = skb2->network_header;
2286                 skb2->pkt_type = PACKET_OUTGOING;
2287                 pt_prev = ptype;
2288         }
2289
2290         if (ptype_list == &ptype_all) {
2291                 ptype_list = &dev->ptype_all;
2292                 goto again;
2293         }
2294 out_unlock:
2295         if (pt_prev) {
2296                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2297                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2298                 else
2299                         kfree_skb(skb2);
2300         }
2301         rcu_read_unlock();
2302 }
2303 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2304
2305 /**
2306  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2307  * @dev: Network device
2308  * @txq: number of queues available
2309  *
2310  * If real_num_tx_queues is changed the tc mappings may no longer be
2311  * valid. To resolve this verify the tc mapping remains valid and if
2312  * not NULL the mapping. With no priorities mapping to this
2313  * offset/count pair it will no longer be used. In the worst case TC0
2314  * is invalid nothing can be done so disable priority mappings. If is
2315  * expected that drivers will fix this mapping if they can before
2316  * calling netif_set_real_num_tx_queues.
2317  */
2318 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2319 {
2320         int i;
2321         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2322
2323         /* If TC0 is invalidated disable TC mapping */
2324         if (tc->offset + tc->count > txq) {
2325                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2326                 dev->num_tc = 0;
2327                 return;
2328         }
2329
2330         /* Invalidated prio to tc mappings set to TC0 */
2331         for (i = 1; i < TC_BITMASK + 1; i++) {
2332                 int q = netdev_get_prio_tc_map(dev, i);
2333
2334                 tc = &dev->tc_to_txq[q];
2335                 if (tc->offset + tc->count > txq) {
2336                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2337                                     i, q);
2338                         netdev_set_prio_tc_map(dev, i, 0);
2339                 }
2340         }
2341 }
2342
2343 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2344 {
2345         if (dev->num_tc) {
2346                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347                 int i;
2348
2349                 /* walk through the TCs and see if it falls into any of them */
2350                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2351                         if ((txq - tc->offset) < tc->count)
2352                                 return i;
2353                 }
2354
2355                 /* didn't find it, just return -1 to indicate no match */
2356                 return -1;
2357         }
2358
2359         return 0;
2360 }
2361 EXPORT_SYMBOL(netdev_txq_to_tc);
2362
2363 #ifdef CONFIG_XPS
2364 static struct static_key xps_needed __read_mostly;
2365 static struct static_key xps_rxqs_needed __read_mostly;
2366 static DEFINE_MUTEX(xps_map_mutex);
2367 #define xmap_dereference(P)             \
2368         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2369
2370 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2371                              struct xps_dev_maps *old_maps, int tci, u16 index)
2372 {
2373         struct xps_map *map = NULL;
2374         int pos;
2375
2376         if (dev_maps)
2377                 map = xmap_dereference(dev_maps->attr_map[tci]);
2378         if (!map)
2379                 return false;
2380
2381         for (pos = map->len; pos--;) {
2382                 if (map->queues[pos] != index)
2383                         continue;
2384
2385                 if (map->len > 1) {
2386                         map->queues[pos] = map->queues[--map->len];
2387                         break;
2388                 }
2389
2390                 if (old_maps)
2391                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2392                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2393                 kfree_rcu(map, rcu);
2394                 return false;
2395         }
2396
2397         return true;
2398 }
2399
2400 static bool remove_xps_queue_cpu(struct net_device *dev,
2401                                  struct xps_dev_maps *dev_maps,
2402                                  int cpu, u16 offset, u16 count)
2403 {
2404         int num_tc = dev_maps->num_tc;
2405         bool active = false;
2406         int tci;
2407
2408         for (tci = cpu * num_tc; num_tc--; tci++) {
2409                 int i, j;
2410
2411                 for (i = count, j = offset; i--; j++) {
2412                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2413                                 break;
2414                 }
2415
2416                 active |= i < 0;
2417         }
2418
2419         return active;
2420 }
2421
2422 static void reset_xps_maps(struct net_device *dev,
2423                            struct xps_dev_maps *dev_maps,
2424                            enum xps_map_type type)
2425 {
2426         static_key_slow_dec_cpuslocked(&xps_needed);
2427         if (type == XPS_RXQS)
2428                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2429
2430         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2431
2432         kfree_rcu(dev_maps, rcu);
2433 }
2434
2435 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2436                            u16 offset, u16 count)
2437 {
2438         struct xps_dev_maps *dev_maps;
2439         bool active = false;
2440         int i, j;
2441
2442         dev_maps = xmap_dereference(dev->xps_maps[type]);
2443         if (!dev_maps)
2444                 return;
2445
2446         for (j = 0; j < dev_maps->nr_ids; j++)
2447                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2448         if (!active)
2449                 reset_xps_maps(dev, dev_maps, type);
2450
2451         if (type == XPS_CPUS) {
2452                 for (i = offset + (count - 1); count--; i--)
2453                         netdev_queue_numa_node_write(
2454                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2455         }
2456 }
2457
2458 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2459                                    u16 count)
2460 {
2461         if (!static_key_false(&xps_needed))
2462                 return;
2463
2464         cpus_read_lock();
2465         mutex_lock(&xps_map_mutex);
2466
2467         if (static_key_false(&xps_rxqs_needed))
2468                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2469
2470         clean_xps_maps(dev, XPS_CPUS, offset, count);
2471
2472         mutex_unlock(&xps_map_mutex);
2473         cpus_read_unlock();
2474 }
2475
2476 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2477 {
2478         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2479 }
2480
2481 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2482                                       u16 index, bool is_rxqs_map)
2483 {
2484         struct xps_map *new_map;
2485         int alloc_len = XPS_MIN_MAP_ALLOC;
2486         int i, pos;
2487
2488         for (pos = 0; map && pos < map->len; pos++) {
2489                 if (map->queues[pos] != index)
2490                         continue;
2491                 return map;
2492         }
2493
2494         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2495         if (map) {
2496                 if (pos < map->alloc_len)
2497                         return map;
2498
2499                 alloc_len = map->alloc_len * 2;
2500         }
2501
2502         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2503          *  map
2504          */
2505         if (is_rxqs_map)
2506                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2507         else
2508                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2509                                        cpu_to_node(attr_index));
2510         if (!new_map)
2511                 return NULL;
2512
2513         for (i = 0; i < pos; i++)
2514                 new_map->queues[i] = map->queues[i];
2515         new_map->alloc_len = alloc_len;
2516         new_map->len = pos;
2517
2518         return new_map;
2519 }
2520
2521 /* Copy xps maps at a given index */
2522 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2523                               struct xps_dev_maps *new_dev_maps, int index,
2524                               int tc, bool skip_tc)
2525 {
2526         int i, tci = index * dev_maps->num_tc;
2527         struct xps_map *map;
2528
2529         /* copy maps belonging to foreign traffic classes */
2530         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2531                 if (i == tc && skip_tc)
2532                         continue;
2533
2534                 /* fill in the new device map from the old device map */
2535                 map = xmap_dereference(dev_maps->attr_map[tci]);
2536                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2537         }
2538 }
2539
2540 /* Must be called under cpus_read_lock */
2541 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2542                           u16 index, enum xps_map_type type)
2543 {
2544         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2545         const unsigned long *online_mask = NULL;
2546         bool active = false, copy = false;
2547         int i, j, tci, numa_node_id = -2;
2548         int maps_sz, num_tc = 1, tc = 0;
2549         struct xps_map *map, *new_map;
2550         unsigned int nr_ids;
2551
2552         WARN_ON_ONCE(index >= dev->num_tx_queues);
2553
2554         if (dev->num_tc) {
2555                 /* Do not allow XPS on subordinate device directly */
2556                 num_tc = dev->num_tc;
2557                 if (num_tc < 0)
2558                         return -EINVAL;
2559
2560                 /* If queue belongs to subordinate dev use its map */
2561                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2562
2563                 tc = netdev_txq_to_tc(dev, index);
2564                 if (tc < 0)
2565                         return -EINVAL;
2566         }
2567
2568         mutex_lock(&xps_map_mutex);
2569
2570         dev_maps = xmap_dereference(dev->xps_maps[type]);
2571         if (type == XPS_RXQS) {
2572                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2573                 nr_ids = dev->num_rx_queues;
2574         } else {
2575                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2576                 if (num_possible_cpus() > 1)
2577                         online_mask = cpumask_bits(cpu_online_mask);
2578                 nr_ids = nr_cpu_ids;
2579         }
2580
2581         if (maps_sz < L1_CACHE_BYTES)
2582                 maps_sz = L1_CACHE_BYTES;
2583
2584         /* The old dev_maps could be larger or smaller than the one we're
2585          * setting up now, as dev->num_tc or nr_ids could have been updated in
2586          * between. We could try to be smart, but let's be safe instead and only
2587          * copy foreign traffic classes if the two map sizes match.
2588          */
2589         if (dev_maps &&
2590             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2591                 copy = true;
2592
2593         /* allocate memory for queue storage */
2594         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2595              j < nr_ids;) {
2596                 if (!new_dev_maps) {
2597                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2598                         if (!new_dev_maps) {
2599                                 mutex_unlock(&xps_map_mutex);
2600                                 return -ENOMEM;
2601                         }
2602
2603                         new_dev_maps->nr_ids = nr_ids;
2604                         new_dev_maps->num_tc = num_tc;
2605                 }
2606
2607                 tci = j * num_tc + tc;
2608                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2609
2610                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2611                 if (!map)
2612                         goto error;
2613
2614                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2615         }
2616
2617         if (!new_dev_maps)
2618                 goto out_no_new_maps;
2619
2620         if (!dev_maps) {
2621                 /* Increment static keys at most once per type */
2622                 static_key_slow_inc_cpuslocked(&xps_needed);
2623                 if (type == XPS_RXQS)
2624                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2625         }
2626
2627         for (j = 0; j < nr_ids; j++) {
2628                 bool skip_tc = false;
2629
2630                 tci = j * num_tc + tc;
2631                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2632                     netif_attr_test_online(j, online_mask, nr_ids)) {
2633                         /* add tx-queue to CPU/rx-queue maps */
2634                         int pos = 0;
2635
2636                         skip_tc = true;
2637
2638                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2639                         while ((pos < map->len) && (map->queues[pos] != index))
2640                                 pos++;
2641
2642                         if (pos == map->len)
2643                                 map->queues[map->len++] = index;
2644 #ifdef CONFIG_NUMA
2645                         if (type == XPS_CPUS) {
2646                                 if (numa_node_id == -2)
2647                                         numa_node_id = cpu_to_node(j);
2648                                 else if (numa_node_id != cpu_to_node(j))
2649                                         numa_node_id = -1;
2650                         }
2651 #endif
2652                 }
2653
2654                 if (copy)
2655                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2656                                           skip_tc);
2657         }
2658
2659         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2660
2661         /* Cleanup old maps */
2662         if (!dev_maps)
2663                 goto out_no_old_maps;
2664
2665         for (j = 0; j < dev_maps->nr_ids; j++) {
2666                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2667                         map = xmap_dereference(dev_maps->attr_map[tci]);
2668                         if (!map)
2669                                 continue;
2670
2671                         if (copy) {
2672                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2673                                 if (map == new_map)
2674                                         continue;
2675                         }
2676
2677                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2678                         kfree_rcu(map, rcu);
2679                 }
2680         }
2681
2682         old_dev_maps = dev_maps;
2683
2684 out_no_old_maps:
2685         dev_maps = new_dev_maps;
2686         active = true;
2687
2688 out_no_new_maps:
2689         if (type == XPS_CPUS)
2690                 /* update Tx queue numa node */
2691                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2692                                              (numa_node_id >= 0) ?
2693                                              numa_node_id : NUMA_NO_NODE);
2694
2695         if (!dev_maps)
2696                 goto out_no_maps;
2697
2698         /* removes tx-queue from unused CPUs/rx-queues */
2699         for (j = 0; j < dev_maps->nr_ids; j++) {
2700                 tci = j * dev_maps->num_tc;
2701
2702                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2703                         if (i == tc &&
2704                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2705                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2706                                 continue;
2707
2708                         active |= remove_xps_queue(dev_maps,
2709                                                    copy ? old_dev_maps : NULL,
2710                                                    tci, index);
2711                 }
2712         }
2713
2714         if (old_dev_maps)
2715                 kfree_rcu(old_dev_maps, rcu);
2716
2717         /* free map if not active */
2718         if (!active)
2719                 reset_xps_maps(dev, dev_maps, type);
2720
2721 out_no_maps:
2722         mutex_unlock(&xps_map_mutex);
2723
2724         return 0;
2725 error:
2726         /* remove any maps that we added */
2727         for (j = 0; j < nr_ids; j++) {
2728                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2729                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2730                         map = copy ?
2731                               xmap_dereference(dev_maps->attr_map[tci]) :
2732                               NULL;
2733                         if (new_map && new_map != map)
2734                                 kfree(new_map);
2735                 }
2736         }
2737
2738         mutex_unlock(&xps_map_mutex);
2739
2740         kfree(new_dev_maps);
2741         return -ENOMEM;
2742 }
2743 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2744
2745 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2746                         u16 index)
2747 {
2748         int ret;
2749
2750         cpus_read_lock();
2751         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2752         cpus_read_unlock();
2753
2754         return ret;
2755 }
2756 EXPORT_SYMBOL(netif_set_xps_queue);
2757
2758 #endif
2759 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2760 {
2761         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2762
2763         /* Unbind any subordinate channels */
2764         while (txq-- != &dev->_tx[0]) {
2765                 if (txq->sb_dev)
2766                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2767         }
2768 }
2769
2770 void netdev_reset_tc(struct net_device *dev)
2771 {
2772 #ifdef CONFIG_XPS
2773         netif_reset_xps_queues_gt(dev, 0);
2774 #endif
2775         netdev_unbind_all_sb_channels(dev);
2776
2777         /* Reset TC configuration of device */
2778         dev->num_tc = 0;
2779         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2780         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2781 }
2782 EXPORT_SYMBOL(netdev_reset_tc);
2783
2784 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2785 {
2786         if (tc >= dev->num_tc)
2787                 return -EINVAL;
2788
2789 #ifdef CONFIG_XPS
2790         netif_reset_xps_queues(dev, offset, count);
2791 #endif
2792         dev->tc_to_txq[tc].count = count;
2793         dev->tc_to_txq[tc].offset = offset;
2794         return 0;
2795 }
2796 EXPORT_SYMBOL(netdev_set_tc_queue);
2797
2798 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2799 {
2800         if (num_tc > TC_MAX_QUEUE)
2801                 return -EINVAL;
2802
2803 #ifdef CONFIG_XPS
2804         netif_reset_xps_queues_gt(dev, 0);
2805 #endif
2806         netdev_unbind_all_sb_channels(dev);
2807
2808         dev->num_tc = num_tc;
2809         return 0;
2810 }
2811 EXPORT_SYMBOL(netdev_set_num_tc);
2812
2813 void netdev_unbind_sb_channel(struct net_device *dev,
2814                               struct net_device *sb_dev)
2815 {
2816         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2817
2818 #ifdef CONFIG_XPS
2819         netif_reset_xps_queues_gt(sb_dev, 0);
2820 #endif
2821         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2822         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2823
2824         while (txq-- != &dev->_tx[0]) {
2825                 if (txq->sb_dev == sb_dev)
2826                         txq->sb_dev = NULL;
2827         }
2828 }
2829 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2830
2831 int netdev_bind_sb_channel_queue(struct net_device *dev,
2832                                  struct net_device *sb_dev,
2833                                  u8 tc, u16 count, u16 offset)
2834 {
2835         /* Make certain the sb_dev and dev are already configured */
2836         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2837                 return -EINVAL;
2838
2839         /* We cannot hand out queues we don't have */
2840         if ((offset + count) > dev->real_num_tx_queues)
2841                 return -EINVAL;
2842
2843         /* Record the mapping */
2844         sb_dev->tc_to_txq[tc].count = count;
2845         sb_dev->tc_to_txq[tc].offset = offset;
2846
2847         /* Provide a way for Tx queue to find the tc_to_txq map or
2848          * XPS map for itself.
2849          */
2850         while (count--)
2851                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2852
2853         return 0;
2854 }
2855 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2856
2857 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2858 {
2859         /* Do not use a multiqueue device to represent a subordinate channel */
2860         if (netif_is_multiqueue(dev))
2861                 return -ENODEV;
2862
2863         /* We allow channels 1 - 32767 to be used for subordinate channels.
2864          * Channel 0 is meant to be "native" mode and used only to represent
2865          * the main root device. We allow writing 0 to reset the device back
2866          * to normal mode after being used as a subordinate channel.
2867          */
2868         if (channel > S16_MAX)
2869                 return -EINVAL;
2870
2871         dev->num_tc = -channel;
2872
2873         return 0;
2874 }
2875 EXPORT_SYMBOL(netdev_set_sb_channel);
2876
2877 /*
2878  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2879  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2880  */
2881 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2882 {
2883         bool disabling;
2884         int rc;
2885
2886         disabling = txq < dev->real_num_tx_queues;
2887
2888         if (txq < 1 || txq > dev->num_tx_queues)
2889                 return -EINVAL;
2890
2891         if (dev->reg_state == NETREG_REGISTERED ||
2892             dev->reg_state == NETREG_UNREGISTERING) {
2893                 ASSERT_RTNL();
2894
2895                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2896                                                   txq);
2897                 if (rc)
2898                         return rc;
2899
2900                 if (dev->num_tc)
2901                         netif_setup_tc(dev, txq);
2902
2903                 dev_qdisc_change_real_num_tx(dev, txq);
2904
2905                 dev->real_num_tx_queues = txq;
2906
2907                 if (disabling) {
2908                         synchronize_net();
2909                         qdisc_reset_all_tx_gt(dev, txq);
2910 #ifdef CONFIG_XPS
2911                         netif_reset_xps_queues_gt(dev, txq);
2912 #endif
2913                 }
2914         } else {
2915                 dev->real_num_tx_queues = txq;
2916         }
2917
2918         return 0;
2919 }
2920 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2921
2922 #ifdef CONFIG_SYSFS
2923 /**
2924  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2925  *      @dev: Network device
2926  *      @rxq: Actual number of RX queues
2927  *
2928  *      This must be called either with the rtnl_lock held or before
2929  *      registration of the net device.  Returns 0 on success, or a
2930  *      negative error code.  If called before registration, it always
2931  *      succeeds.
2932  */
2933 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2934 {
2935         int rc;
2936
2937         if (rxq < 1 || rxq > dev->num_rx_queues)
2938                 return -EINVAL;
2939
2940         if (dev->reg_state == NETREG_REGISTERED) {
2941                 ASSERT_RTNL();
2942
2943                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2944                                                   rxq);
2945                 if (rc)
2946                         return rc;
2947         }
2948
2949         dev->real_num_rx_queues = rxq;
2950         return 0;
2951 }
2952 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2953 #endif
2954
2955 /**
2956  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2957  *      @dev: Network device
2958  *      @txq: Actual number of TX queues
2959  *      @rxq: Actual number of RX queues
2960  *
2961  *      Set the real number of both TX and RX queues.
2962  *      Does nothing if the number of queues is already correct.
2963  */
2964 int netif_set_real_num_queues(struct net_device *dev,
2965                               unsigned int txq, unsigned int rxq)
2966 {
2967         unsigned int old_rxq = dev->real_num_rx_queues;
2968         int err;
2969
2970         if (txq < 1 || txq > dev->num_tx_queues ||
2971             rxq < 1 || rxq > dev->num_rx_queues)
2972                 return -EINVAL;
2973
2974         /* Start from increases, so the error path only does decreases -
2975          * decreases can't fail.
2976          */
2977         if (rxq > dev->real_num_rx_queues) {
2978                 err = netif_set_real_num_rx_queues(dev, rxq);
2979                 if (err)
2980                         return err;
2981         }
2982         if (txq > dev->real_num_tx_queues) {
2983                 err = netif_set_real_num_tx_queues(dev, txq);
2984                 if (err)
2985                         goto undo_rx;
2986         }
2987         if (rxq < dev->real_num_rx_queues)
2988                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2989         if (txq < dev->real_num_tx_queues)
2990                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2991
2992         return 0;
2993 undo_rx:
2994         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2995         return err;
2996 }
2997 EXPORT_SYMBOL(netif_set_real_num_queues);
2998
2999 /**
3000  * netif_set_tso_max_size() - set the max size of TSO frames supported
3001  * @dev:        netdev to update
3002  * @size:       max skb->len of a TSO frame
3003  *
3004  * Set the limit on the size of TSO super-frames the device can handle.
3005  * Unless explicitly set the stack will assume the value of
3006  * %GSO_LEGACY_MAX_SIZE.
3007  */
3008 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3009 {
3010         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3011         if (size < READ_ONCE(dev->gso_max_size))
3012                 netif_set_gso_max_size(dev, size);
3013 }
3014 EXPORT_SYMBOL(netif_set_tso_max_size);
3015
3016 /**
3017  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3018  * @dev:        netdev to update
3019  * @segs:       max number of TCP segments
3020  *
3021  * Set the limit on the number of TCP segments the device can generate from
3022  * a single TSO super-frame.
3023  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3024  */
3025 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3026 {
3027         dev->tso_max_segs = segs;
3028         if (segs < READ_ONCE(dev->gso_max_segs))
3029                 netif_set_gso_max_segs(dev, segs);
3030 }
3031 EXPORT_SYMBOL(netif_set_tso_max_segs);
3032
3033 /**
3034  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3035  * @to:         netdev to update
3036  * @from:       netdev from which to copy the limits
3037  */
3038 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3039 {
3040         netif_set_tso_max_size(to, from->tso_max_size);
3041         netif_set_tso_max_segs(to, from->tso_max_segs);
3042 }
3043 EXPORT_SYMBOL(netif_inherit_tso_max);
3044
3045 /**
3046  * netif_get_num_default_rss_queues - default number of RSS queues
3047  *
3048  * Default value is the number of physical cores if there are only 1 or 2, or
3049  * divided by 2 if there are more.
3050  */
3051 int netif_get_num_default_rss_queues(void)
3052 {
3053         cpumask_var_t cpus;
3054         int cpu, count = 0;
3055
3056         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3057                 return 1;
3058
3059         cpumask_copy(cpus, cpu_online_mask);
3060         for_each_cpu(cpu, cpus) {
3061                 ++count;
3062                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3063         }
3064         free_cpumask_var(cpus);
3065
3066         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3067 }
3068 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3069
3070 static void __netif_reschedule(struct Qdisc *q)
3071 {
3072         struct softnet_data *sd;
3073         unsigned long flags;
3074
3075         local_irq_save(flags);
3076         sd = this_cpu_ptr(&softnet_data);
3077         q->next_sched = NULL;
3078         *sd->output_queue_tailp = q;
3079         sd->output_queue_tailp = &q->next_sched;
3080         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3081         local_irq_restore(flags);
3082 }
3083
3084 void __netif_schedule(struct Qdisc *q)
3085 {
3086         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3087                 __netif_reschedule(q);
3088 }
3089 EXPORT_SYMBOL(__netif_schedule);
3090
3091 struct dev_kfree_skb_cb {
3092         enum skb_free_reason reason;
3093 };
3094
3095 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3096 {
3097         return (struct dev_kfree_skb_cb *)skb->cb;
3098 }
3099
3100 void netif_schedule_queue(struct netdev_queue *txq)
3101 {
3102         rcu_read_lock();
3103         if (!netif_xmit_stopped(txq)) {
3104                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3105
3106                 __netif_schedule(q);
3107         }
3108         rcu_read_unlock();
3109 }
3110 EXPORT_SYMBOL(netif_schedule_queue);
3111
3112 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3113 {
3114         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3115                 struct Qdisc *q;
3116
3117                 rcu_read_lock();
3118                 q = rcu_dereference(dev_queue->qdisc);
3119                 __netif_schedule(q);
3120                 rcu_read_unlock();
3121         }
3122 }
3123 EXPORT_SYMBOL(netif_tx_wake_queue);
3124
3125 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3126 {
3127         unsigned long flags;
3128
3129         if (unlikely(!skb))
3130                 return;
3131
3132         if (likely(refcount_read(&skb->users) == 1)) {
3133                 smp_rmb();
3134                 refcount_set(&skb->users, 0);
3135         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3136                 return;
3137         }
3138         get_kfree_skb_cb(skb)->reason = reason;
3139         local_irq_save(flags);
3140         skb->next = __this_cpu_read(softnet_data.completion_queue);
3141         __this_cpu_write(softnet_data.completion_queue, skb);
3142         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3143         local_irq_restore(flags);
3144 }
3145 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3146
3147 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3148 {
3149         if (in_hardirq() || irqs_disabled())
3150                 __dev_kfree_skb_irq(skb, reason);
3151         else if (unlikely(reason == SKB_REASON_DROPPED))
3152                 kfree_skb(skb);
3153         else
3154                 consume_skb(skb);
3155 }
3156 EXPORT_SYMBOL(__dev_kfree_skb_any);
3157
3158
3159 /**
3160  * netif_device_detach - mark device as removed
3161  * @dev: network device
3162  *
3163  * Mark device as removed from system and therefore no longer available.
3164  */
3165 void netif_device_detach(struct net_device *dev)
3166 {
3167         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3168             netif_running(dev)) {
3169                 netif_tx_stop_all_queues(dev);
3170         }
3171 }
3172 EXPORT_SYMBOL(netif_device_detach);
3173
3174 /**
3175  * netif_device_attach - mark device as attached
3176  * @dev: network device
3177  *
3178  * Mark device as attached from system and restart if needed.
3179  */
3180 void netif_device_attach(struct net_device *dev)
3181 {
3182         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3183             netif_running(dev)) {
3184                 netif_tx_wake_all_queues(dev);
3185                 __netdev_watchdog_up(dev);
3186         }
3187 }
3188 EXPORT_SYMBOL(netif_device_attach);
3189
3190 /*
3191  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3192  * to be used as a distribution range.
3193  */
3194 static u16 skb_tx_hash(const struct net_device *dev,
3195                        const struct net_device *sb_dev,
3196                        struct sk_buff *skb)
3197 {
3198         u32 hash;
3199         u16 qoffset = 0;
3200         u16 qcount = dev->real_num_tx_queues;
3201
3202         if (dev->num_tc) {
3203                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3204
3205                 qoffset = sb_dev->tc_to_txq[tc].offset;
3206                 qcount = sb_dev->tc_to_txq[tc].count;
3207                 if (unlikely(!qcount)) {
3208                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3209                                              sb_dev->name, qoffset, tc);
3210                         qoffset = 0;
3211                         qcount = dev->real_num_tx_queues;
3212                 }
3213         }
3214
3215         if (skb_rx_queue_recorded(skb)) {
3216                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3217                 hash = skb_get_rx_queue(skb);
3218                 if (hash >= qoffset)
3219                         hash -= qoffset;
3220                 while (unlikely(hash >= qcount))
3221                         hash -= qcount;
3222                 return hash + qoffset;
3223         }
3224
3225         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3226 }
3227
3228 static void skb_warn_bad_offload(const struct sk_buff *skb)
3229 {
3230         static const netdev_features_t null_features;
3231         struct net_device *dev = skb->dev;
3232         const char *name = "";
3233
3234         if (!net_ratelimit())
3235                 return;
3236
3237         if (dev) {
3238                 if (dev->dev.parent)
3239                         name = dev_driver_string(dev->dev.parent);
3240                 else
3241                         name = netdev_name(dev);
3242         }
3243         skb_dump(KERN_WARNING, skb, false);
3244         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3245              name, dev ? &dev->features : &null_features,
3246              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3247 }
3248
3249 /*
3250  * Invalidate hardware checksum when packet is to be mangled, and
3251  * complete checksum manually on outgoing path.
3252  */
3253 int skb_checksum_help(struct sk_buff *skb)
3254 {
3255         __wsum csum;
3256         int ret = 0, offset;
3257
3258         if (skb->ip_summed == CHECKSUM_COMPLETE)
3259                 goto out_set_summed;
3260
3261         if (unlikely(skb_is_gso(skb))) {
3262                 skb_warn_bad_offload(skb);
3263                 return -EINVAL;
3264         }
3265
3266         /* Before computing a checksum, we should make sure no frag could
3267          * be modified by an external entity : checksum could be wrong.
3268          */
3269         if (skb_has_shared_frag(skb)) {
3270                 ret = __skb_linearize(skb);
3271                 if (ret)
3272                         goto out;
3273         }
3274
3275         offset = skb_checksum_start_offset(skb);
3276         ret = -EINVAL;
3277         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3278                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3279                 goto out;
3280         }
3281         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3282
3283         offset += skb->csum_offset;
3284         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3285                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3286                 goto out;
3287         }
3288         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3289         if (ret)
3290                 goto out;
3291
3292         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3293 out_set_summed:
3294         skb->ip_summed = CHECKSUM_NONE;
3295 out:
3296         return ret;
3297 }
3298 EXPORT_SYMBOL(skb_checksum_help);
3299
3300 int skb_crc32c_csum_help(struct sk_buff *skb)
3301 {
3302         __le32 crc32c_csum;
3303         int ret = 0, offset, start;
3304
3305         if (skb->ip_summed != CHECKSUM_PARTIAL)
3306                 goto out;
3307
3308         if (unlikely(skb_is_gso(skb)))
3309                 goto out;
3310
3311         /* Before computing a checksum, we should make sure no frag could
3312          * be modified by an external entity : checksum could be wrong.
3313          */
3314         if (unlikely(skb_has_shared_frag(skb))) {
3315                 ret = __skb_linearize(skb);
3316                 if (ret)
3317                         goto out;
3318         }
3319         start = skb_checksum_start_offset(skb);
3320         offset = start + offsetof(struct sctphdr, checksum);
3321         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3322                 ret = -EINVAL;
3323                 goto out;
3324         }
3325
3326         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3327         if (ret)
3328                 goto out;
3329
3330         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3331                                                   skb->len - start, ~(__u32)0,
3332                                                   crc32c_csum_stub));
3333         *(__le32 *)(skb->data + offset) = crc32c_csum;
3334         skb->ip_summed = CHECKSUM_NONE;
3335         skb->csum_not_inet = 0;
3336 out:
3337         return ret;
3338 }
3339
3340 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3341 {
3342         __be16 type = skb->protocol;
3343
3344         /* Tunnel gso handlers can set protocol to ethernet. */
3345         if (type == htons(ETH_P_TEB)) {
3346                 struct ethhdr *eth;
3347
3348                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3349                         return 0;
3350
3351                 eth = (struct ethhdr *)skb->data;
3352                 type = eth->h_proto;
3353         }
3354
3355         return vlan_get_protocol_and_depth(skb, type, depth);
3356 }
3357
3358 /* openvswitch calls this on rx path, so we need a different check.
3359  */
3360 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3361 {
3362         if (tx_path)
3363                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3364                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3365
3366         return skb->ip_summed == CHECKSUM_NONE;
3367 }
3368
3369 /**
3370  *      __skb_gso_segment - Perform segmentation on skb.
3371  *      @skb: buffer to segment
3372  *      @features: features for the output path (see dev->features)
3373  *      @tx_path: whether it is called in TX path
3374  *
3375  *      This function segments the given skb and returns a list of segments.
3376  *
3377  *      It may return NULL if the skb requires no segmentation.  This is
3378  *      only possible when GSO is used for verifying header integrity.
3379  *
3380  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3381  */
3382 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3383                                   netdev_features_t features, bool tx_path)
3384 {
3385         struct sk_buff *segs;
3386
3387         if (unlikely(skb_needs_check(skb, tx_path))) {
3388                 int err;
3389
3390                 /* We're going to init ->check field in TCP or UDP header */
3391                 err = skb_cow_head(skb, 0);
3392                 if (err < 0)
3393                         return ERR_PTR(err);
3394         }
3395
3396         /* Only report GSO partial support if it will enable us to
3397          * support segmentation on this frame without needing additional
3398          * work.
3399          */
3400         if (features & NETIF_F_GSO_PARTIAL) {
3401                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3402                 struct net_device *dev = skb->dev;
3403
3404                 partial_features |= dev->features & dev->gso_partial_features;
3405                 if (!skb_gso_ok(skb, features | partial_features))
3406                         features &= ~NETIF_F_GSO_PARTIAL;
3407         }
3408
3409         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3410                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3411
3412         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3413         SKB_GSO_CB(skb)->encap_level = 0;
3414
3415         skb_reset_mac_header(skb);
3416         skb_reset_mac_len(skb);
3417
3418         segs = skb_mac_gso_segment(skb, features);
3419
3420         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3421                 skb_warn_bad_offload(skb);
3422
3423         return segs;
3424 }
3425 EXPORT_SYMBOL(__skb_gso_segment);
3426
3427 /* Take action when hardware reception checksum errors are detected. */
3428 #ifdef CONFIG_BUG
3429 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3430 {
3431         netdev_err(dev, "hw csum failure\n");
3432         skb_dump(KERN_ERR, skb, true);
3433         dump_stack();
3434 }
3435
3436 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3437 {
3438         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3439 }
3440 EXPORT_SYMBOL(netdev_rx_csum_fault);
3441 #endif
3442
3443 /* XXX: check that highmem exists at all on the given machine. */
3444 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3445 {
3446 #ifdef CONFIG_HIGHMEM
3447         int i;
3448
3449         if (!(dev->features & NETIF_F_HIGHDMA)) {
3450                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3451                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3452
3453                         if (PageHighMem(skb_frag_page(frag)))
3454                                 return 1;
3455                 }
3456         }
3457 #endif
3458         return 0;
3459 }
3460
3461 /* If MPLS offload request, verify we are testing hardware MPLS features
3462  * instead of standard features for the netdev.
3463  */
3464 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3465 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3466                                            netdev_features_t features,
3467                                            __be16 type)
3468 {
3469         if (eth_p_mpls(type))
3470                 features &= skb->dev->mpls_features;
3471
3472         return features;
3473 }
3474 #else
3475 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3476                                            netdev_features_t features,
3477                                            __be16 type)
3478 {
3479         return features;
3480 }
3481 #endif
3482
3483 static netdev_features_t harmonize_features(struct sk_buff *skb,
3484         netdev_features_t features)
3485 {
3486         __be16 type;
3487
3488         type = skb_network_protocol(skb, NULL);
3489         features = net_mpls_features(skb, features, type);
3490
3491         if (skb->ip_summed != CHECKSUM_NONE &&
3492             !can_checksum_protocol(features, type)) {
3493                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3494         }
3495         if (illegal_highdma(skb->dev, skb))
3496                 features &= ~NETIF_F_SG;
3497
3498         return features;
3499 }
3500
3501 netdev_features_t passthru_features_check(struct sk_buff *skb,
3502                                           struct net_device *dev,
3503                                           netdev_features_t features)
3504 {
3505         return features;
3506 }
3507 EXPORT_SYMBOL(passthru_features_check);
3508
3509 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3510                                              struct net_device *dev,
3511                                              netdev_features_t features)
3512 {
3513         return vlan_features_check(skb, features);
3514 }
3515
3516 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3517                                             struct net_device *dev,
3518                                             netdev_features_t features)
3519 {
3520         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3521
3522         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3523                 return features & ~NETIF_F_GSO_MASK;
3524
3525         if (!skb_shinfo(skb)->gso_type) {
3526                 skb_warn_bad_offload(skb);
3527                 return features & ~NETIF_F_GSO_MASK;
3528         }
3529
3530         /* Support for GSO partial features requires software
3531          * intervention before we can actually process the packets
3532          * so we need to strip support for any partial features now
3533          * and we can pull them back in after we have partially
3534          * segmented the frame.
3535          */
3536         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3537                 features &= ~dev->gso_partial_features;
3538
3539         /* Make sure to clear the IPv4 ID mangling feature if the
3540          * IPv4 header has the potential to be fragmented.
3541          */
3542         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3543                 struct iphdr *iph = skb->encapsulation ?
3544                                     inner_ip_hdr(skb) : ip_hdr(skb);
3545
3546                 if (!(iph->frag_off & htons(IP_DF)))
3547                         features &= ~NETIF_F_TSO_MANGLEID;
3548         }
3549
3550         return features;
3551 }
3552
3553 netdev_features_t netif_skb_features(struct sk_buff *skb)
3554 {
3555         struct net_device *dev = skb->dev;
3556         netdev_features_t features = dev->features;
3557
3558         if (skb_is_gso(skb))
3559                 features = gso_features_check(skb, dev, features);
3560
3561         /* If encapsulation offload request, verify we are testing
3562          * hardware encapsulation features instead of standard
3563          * features for the netdev
3564          */
3565         if (skb->encapsulation)
3566                 features &= dev->hw_enc_features;
3567
3568         if (skb_vlan_tagged(skb))
3569                 features = netdev_intersect_features(features,
3570                                                      dev->vlan_features |
3571                                                      NETIF_F_HW_VLAN_CTAG_TX |
3572                                                      NETIF_F_HW_VLAN_STAG_TX);
3573
3574         if (dev->netdev_ops->ndo_features_check)
3575                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3576                                                                 features);
3577         else
3578                 features &= dflt_features_check(skb, dev, features);
3579
3580         return harmonize_features(skb, features);
3581 }
3582 EXPORT_SYMBOL(netif_skb_features);
3583
3584 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3585                     struct netdev_queue *txq, bool more)
3586 {
3587         unsigned int len;
3588         int rc;
3589
3590         if (dev_nit_active(dev))
3591                 dev_queue_xmit_nit(skb, dev);
3592
3593         len = skb->len;
3594         trace_net_dev_start_xmit(skb, dev);
3595         rc = netdev_start_xmit(skb, dev, txq, more);
3596         trace_net_dev_xmit(skb, rc, dev, len);
3597
3598         return rc;
3599 }
3600
3601 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3602                                     struct netdev_queue *txq, int *ret)
3603 {
3604         struct sk_buff *skb = first;
3605         int rc = NETDEV_TX_OK;
3606
3607         while (skb) {
3608                 struct sk_buff *next = skb->next;
3609
3610                 skb_mark_not_on_list(skb);
3611                 rc = xmit_one(skb, dev, txq, next != NULL);
3612                 if (unlikely(!dev_xmit_complete(rc))) {
3613                         skb->next = next;
3614                         goto out;
3615                 }
3616
3617                 skb = next;
3618                 if (netif_tx_queue_stopped(txq) && skb) {
3619                         rc = NETDEV_TX_BUSY;
3620                         break;
3621                 }
3622         }
3623
3624 out:
3625         *ret = rc;
3626         return skb;
3627 }
3628
3629 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3630                                           netdev_features_t features)
3631 {
3632         if (skb_vlan_tag_present(skb) &&
3633             !vlan_hw_offload_capable(features, skb->vlan_proto))
3634                 skb = __vlan_hwaccel_push_inside(skb);
3635         return skb;
3636 }
3637
3638 int skb_csum_hwoffload_help(struct sk_buff *skb,
3639                             const netdev_features_t features)
3640 {
3641         if (unlikely(skb_csum_is_sctp(skb)))
3642                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3643                         skb_crc32c_csum_help(skb);
3644
3645         if (features & NETIF_F_HW_CSUM)
3646                 return 0;
3647
3648         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3649                 switch (skb->csum_offset) {
3650                 case offsetof(struct tcphdr, check):
3651                 case offsetof(struct udphdr, check):
3652                         return 0;
3653                 }
3654         }
3655
3656         return skb_checksum_help(skb);
3657 }
3658 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3659
3660 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3661 {
3662         netdev_features_t features;
3663
3664         features = netif_skb_features(skb);
3665         skb = validate_xmit_vlan(skb, features);
3666         if (unlikely(!skb))
3667                 goto out_null;
3668
3669         skb = sk_validate_xmit_skb(skb, dev);
3670         if (unlikely(!skb))
3671                 goto out_null;
3672
3673         if (netif_needs_gso(skb, features)) {
3674                 struct sk_buff *segs;
3675
3676                 segs = skb_gso_segment(skb, features);
3677                 if (IS_ERR(segs)) {
3678                         goto out_kfree_skb;
3679                 } else if (segs) {
3680                         consume_skb(skb);
3681                         skb = segs;
3682                 }
3683         } else {
3684                 if (skb_needs_linearize(skb, features) &&
3685                     __skb_linearize(skb))
3686                         goto out_kfree_skb;
3687
3688                 /* If packet is not checksummed and device does not
3689                  * support checksumming for this protocol, complete
3690                  * checksumming here.
3691                  */
3692                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3693                         if (skb->encapsulation)
3694                                 skb_set_inner_transport_header(skb,
3695                                                                skb_checksum_start_offset(skb));
3696                         else
3697                                 skb_set_transport_header(skb,
3698                                                          skb_checksum_start_offset(skb));
3699                         if (skb_csum_hwoffload_help(skb, features))
3700                                 goto out_kfree_skb;
3701                 }
3702         }
3703
3704         skb = validate_xmit_xfrm(skb, features, again);
3705
3706         return skb;
3707
3708 out_kfree_skb:
3709         kfree_skb(skb);
3710 out_null:
3711         dev_core_stats_tx_dropped_inc(dev);
3712         return NULL;
3713 }
3714
3715 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3716 {
3717         struct sk_buff *next, *head = NULL, *tail;
3718
3719         for (; skb != NULL; skb = next) {
3720                 next = skb->next;
3721                 skb_mark_not_on_list(skb);
3722
3723                 /* in case skb wont be segmented, point to itself */
3724                 skb->prev = skb;
3725
3726                 skb = validate_xmit_skb(skb, dev, again);
3727                 if (!skb)
3728                         continue;
3729
3730                 if (!head)
3731                         head = skb;
3732                 else
3733                         tail->next = skb;
3734                 /* If skb was segmented, skb->prev points to
3735                  * the last segment. If not, it still contains skb.
3736                  */
3737                 tail = skb->prev;
3738         }
3739         return head;
3740 }
3741 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3742
3743 static void qdisc_pkt_len_init(struct sk_buff *skb)
3744 {
3745         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3746
3747         qdisc_skb_cb(skb)->pkt_len = skb->len;
3748
3749         /* To get more precise estimation of bytes sent on wire,
3750          * we add to pkt_len the headers size of all segments
3751          */
3752         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3753                 unsigned int hdr_len;
3754                 u16 gso_segs = shinfo->gso_segs;
3755
3756                 /* mac layer + network layer */
3757                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3758
3759                 /* + transport layer */
3760                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3761                         const struct tcphdr *th;
3762                         struct tcphdr _tcphdr;
3763
3764                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3765                                                 sizeof(_tcphdr), &_tcphdr);
3766                         if (likely(th))
3767                                 hdr_len += __tcp_hdrlen(th);
3768                 } else {
3769                         struct udphdr _udphdr;
3770
3771                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3772                                                sizeof(_udphdr), &_udphdr))
3773                                 hdr_len += sizeof(struct udphdr);
3774                 }
3775
3776                 if (shinfo->gso_type & SKB_GSO_DODGY)
3777                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3778                                                 shinfo->gso_size);
3779
3780                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3781         }
3782 }
3783
3784 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3785                              struct sk_buff **to_free,
3786                              struct netdev_queue *txq)
3787 {
3788         int rc;
3789
3790         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3791         if (rc == NET_XMIT_SUCCESS)
3792                 trace_qdisc_enqueue(q, txq, skb);
3793         return rc;
3794 }
3795
3796 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3797                                  struct net_device *dev,
3798                                  struct netdev_queue *txq)
3799 {
3800         spinlock_t *root_lock = qdisc_lock(q);
3801         struct sk_buff *to_free = NULL;
3802         bool contended;
3803         int rc;
3804
3805         qdisc_calculate_pkt_len(skb, q);
3806
3807         if (q->flags & TCQ_F_NOLOCK) {
3808                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3809                     qdisc_run_begin(q)) {
3810                         /* Retest nolock_qdisc_is_empty() within the protection
3811                          * of q->seqlock to protect from racing with requeuing.
3812                          */
3813                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3814                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3815                                 __qdisc_run(q);
3816                                 qdisc_run_end(q);
3817
3818                                 goto no_lock_out;
3819                         }
3820
3821                         qdisc_bstats_cpu_update(q, skb);
3822                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3823                             !nolock_qdisc_is_empty(q))
3824                                 __qdisc_run(q);
3825
3826                         qdisc_run_end(q);
3827                         return NET_XMIT_SUCCESS;
3828                 }
3829
3830                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3831                 qdisc_run(q);
3832
3833 no_lock_out:
3834                 if (unlikely(to_free))
3835                         kfree_skb_list_reason(to_free,
3836                                               SKB_DROP_REASON_QDISC_DROP);
3837                 return rc;
3838         }
3839
3840         /*
3841          * Heuristic to force contended enqueues to serialize on a
3842          * separate lock before trying to get qdisc main lock.
3843          * This permits qdisc->running owner to get the lock more
3844          * often and dequeue packets faster.
3845          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3846          * and then other tasks will only enqueue packets. The packets will be
3847          * sent after the qdisc owner is scheduled again. To prevent this
3848          * scenario the task always serialize on the lock.
3849          */
3850         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3851         if (unlikely(contended))
3852                 spin_lock(&q->busylock);
3853
3854         spin_lock(root_lock);
3855         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3856                 __qdisc_drop(skb, &to_free);
3857                 rc = NET_XMIT_DROP;
3858         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3859                    qdisc_run_begin(q)) {
3860                 /*
3861                  * This is a work-conserving queue; there are no old skbs
3862                  * waiting to be sent out; and the qdisc is not running -
3863                  * xmit the skb directly.
3864                  */
3865
3866                 qdisc_bstats_update(q, skb);
3867
3868                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3869                         if (unlikely(contended)) {
3870                                 spin_unlock(&q->busylock);
3871                                 contended = false;
3872                         }
3873                         __qdisc_run(q);
3874                 }
3875
3876                 qdisc_run_end(q);
3877                 rc = NET_XMIT_SUCCESS;
3878         } else {
3879                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3880                 if (qdisc_run_begin(q)) {
3881                         if (unlikely(contended)) {
3882                                 spin_unlock(&q->busylock);
3883                                 contended = false;
3884                         }
3885                         __qdisc_run(q);
3886                         qdisc_run_end(q);
3887                 }
3888         }
3889         spin_unlock(root_lock);
3890         if (unlikely(to_free))
3891                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3892         if (unlikely(contended))
3893                 spin_unlock(&q->busylock);
3894         return rc;
3895 }
3896
3897 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3898 static void skb_update_prio(struct sk_buff *skb)
3899 {
3900         const struct netprio_map *map;
3901         const struct sock *sk;
3902         unsigned int prioidx;
3903
3904         if (skb->priority)
3905                 return;
3906         map = rcu_dereference_bh(skb->dev->priomap);
3907         if (!map)
3908                 return;
3909         sk = skb_to_full_sk(skb);
3910         if (!sk)
3911                 return;
3912
3913         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3914
3915         if (prioidx < map->priomap_len)
3916                 skb->priority = map->priomap[prioidx];
3917 }
3918 #else
3919 #define skb_update_prio(skb)
3920 #endif
3921
3922 /**
3923  *      dev_loopback_xmit - loop back @skb
3924  *      @net: network namespace this loopback is happening in
3925  *      @sk:  sk needed to be a netfilter okfn
3926  *      @skb: buffer to transmit
3927  */
3928 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3929 {
3930         skb_reset_mac_header(skb);
3931         __skb_pull(skb, skb_network_offset(skb));
3932         skb->pkt_type = PACKET_LOOPBACK;
3933         if (skb->ip_summed == CHECKSUM_NONE)
3934                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3935         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3936         skb_dst_force(skb);
3937         netif_rx(skb);
3938         return 0;
3939 }
3940 EXPORT_SYMBOL(dev_loopback_xmit);
3941
3942 #ifdef CONFIG_NET_EGRESS
3943 static struct sk_buff *
3944 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3945 {
3946 #ifdef CONFIG_NET_CLS_ACT
3947         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3948         struct tcf_result cl_res;
3949
3950         if (!miniq)
3951                 return skb;
3952
3953         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3954         tc_skb_cb(skb)->mru = 0;
3955         tc_skb_cb(skb)->post_ct = false;
3956         mini_qdisc_bstats_cpu_update(miniq, skb);
3957
3958         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3959         case TC_ACT_OK:
3960         case TC_ACT_RECLASSIFY:
3961                 skb->tc_index = TC_H_MIN(cl_res.classid);
3962                 break;
3963         case TC_ACT_SHOT:
3964                 mini_qdisc_qstats_cpu_drop(miniq);
3965                 *ret = NET_XMIT_DROP;
3966                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3967                 return NULL;
3968         case TC_ACT_STOLEN:
3969         case TC_ACT_QUEUED:
3970         case TC_ACT_TRAP:
3971                 *ret = NET_XMIT_SUCCESS;
3972                 consume_skb(skb);
3973                 return NULL;
3974         case TC_ACT_REDIRECT:
3975                 /* No need to push/pop skb's mac_header here on egress! */
3976                 skb_do_redirect(skb);
3977                 *ret = NET_XMIT_SUCCESS;
3978                 return NULL;
3979         default:
3980                 break;
3981         }
3982 #endif /* CONFIG_NET_CLS_ACT */
3983
3984         return skb;
3985 }
3986
3987 static struct netdev_queue *
3988 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3989 {
3990         int qm = skb_get_queue_mapping(skb);
3991
3992         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3993 }
3994
3995 static bool netdev_xmit_txqueue_skipped(void)
3996 {
3997         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3998 }
3999
4000 void netdev_xmit_skip_txqueue(bool skip)
4001 {
4002         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4003 }
4004 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4005 #endif /* CONFIG_NET_EGRESS */
4006
4007 #ifdef CONFIG_XPS
4008 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4009                                struct xps_dev_maps *dev_maps, unsigned int tci)
4010 {
4011         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4012         struct xps_map *map;
4013         int queue_index = -1;
4014
4015         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4016                 return queue_index;
4017
4018         tci *= dev_maps->num_tc;
4019         tci += tc;
4020
4021         map = rcu_dereference(dev_maps->attr_map[tci]);
4022         if (map) {
4023                 if (map->len == 1)
4024                         queue_index = map->queues[0];
4025                 else
4026                         queue_index = map->queues[reciprocal_scale(
4027                                                 skb_get_hash(skb), map->len)];
4028                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4029                         queue_index = -1;
4030         }
4031         return queue_index;
4032 }
4033 #endif
4034
4035 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4036                          struct sk_buff *skb)
4037 {
4038 #ifdef CONFIG_XPS
4039         struct xps_dev_maps *dev_maps;
4040         struct sock *sk = skb->sk;
4041         int queue_index = -1;
4042
4043         if (!static_key_false(&xps_needed))
4044                 return -1;
4045
4046         rcu_read_lock();
4047         if (!static_key_false(&xps_rxqs_needed))
4048                 goto get_cpus_map;
4049
4050         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4051         if (dev_maps) {
4052                 int tci = sk_rx_queue_get(sk);
4053
4054                 if (tci >= 0)
4055                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4056                                                           tci);
4057         }
4058
4059 get_cpus_map:
4060         if (queue_index < 0) {
4061                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4062                 if (dev_maps) {
4063                         unsigned int tci = skb->sender_cpu - 1;
4064
4065                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4066                                                           tci);
4067                 }
4068         }
4069         rcu_read_unlock();
4070
4071         return queue_index;
4072 #else
4073         return -1;
4074 #endif
4075 }
4076
4077 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4078                      struct net_device *sb_dev)
4079 {
4080         return 0;
4081 }
4082 EXPORT_SYMBOL(dev_pick_tx_zero);
4083
4084 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4085                        struct net_device *sb_dev)
4086 {
4087         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4088 }
4089 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4090
4091 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4092                      struct net_device *sb_dev)
4093 {
4094         struct sock *sk = skb->sk;
4095         int queue_index = sk_tx_queue_get(sk);
4096
4097         sb_dev = sb_dev ? : dev;
4098
4099         if (queue_index < 0 || skb->ooo_okay ||
4100             queue_index >= dev->real_num_tx_queues) {
4101                 int new_index = get_xps_queue(dev, sb_dev, skb);
4102
4103                 if (new_index < 0)
4104                         new_index = skb_tx_hash(dev, sb_dev, skb);
4105
4106                 if (queue_index != new_index && sk &&
4107                     sk_fullsock(sk) &&
4108                     rcu_access_pointer(sk->sk_dst_cache))
4109                         sk_tx_queue_set(sk, new_index);
4110
4111                 queue_index = new_index;
4112         }
4113
4114         return queue_index;
4115 }
4116 EXPORT_SYMBOL(netdev_pick_tx);
4117
4118 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4119                                          struct sk_buff *skb,
4120                                          struct net_device *sb_dev)
4121 {
4122         int queue_index = 0;
4123
4124 #ifdef CONFIG_XPS
4125         u32 sender_cpu = skb->sender_cpu - 1;
4126
4127         if (sender_cpu >= (u32)NR_CPUS)
4128                 skb->sender_cpu = raw_smp_processor_id() + 1;
4129 #endif
4130
4131         if (dev->real_num_tx_queues != 1) {
4132                 const struct net_device_ops *ops = dev->netdev_ops;
4133
4134                 if (ops->ndo_select_queue)
4135                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4136                 else
4137                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4138
4139                 queue_index = netdev_cap_txqueue(dev, queue_index);
4140         }
4141
4142         skb_set_queue_mapping(skb, queue_index);
4143         return netdev_get_tx_queue(dev, queue_index);
4144 }
4145
4146 /**
4147  * __dev_queue_xmit() - transmit a buffer
4148  * @skb:        buffer to transmit
4149  * @sb_dev:     suboordinate device used for L2 forwarding offload
4150  *
4151  * Queue a buffer for transmission to a network device. The caller must
4152  * have set the device and priority and built the buffer before calling
4153  * this function. The function can be called from an interrupt.
4154  *
4155  * When calling this method, interrupts MUST be enabled. This is because
4156  * the BH enable code must have IRQs enabled so that it will not deadlock.
4157  *
4158  * Regardless of the return value, the skb is consumed, so it is currently
4159  * difficult to retry a send to this method. (You can bump the ref count
4160  * before sending to hold a reference for retry if you are careful.)
4161  *
4162  * Return:
4163  * * 0                          - buffer successfully transmitted
4164  * * positive qdisc return code - NET_XMIT_DROP etc.
4165  * * negative errno             - other errors
4166  */
4167 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4168 {
4169         struct net_device *dev = skb->dev;
4170         struct netdev_queue *txq = NULL;
4171         struct Qdisc *q;
4172         int rc = -ENOMEM;
4173         bool again = false;
4174
4175         skb_reset_mac_header(skb);
4176         skb_assert_len(skb);
4177
4178         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4179                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4180
4181         /* Disable soft irqs for various locks below. Also
4182          * stops preemption for RCU.
4183          */
4184         rcu_read_lock_bh();
4185
4186         skb_update_prio(skb);
4187
4188         qdisc_pkt_len_init(skb);
4189 #ifdef CONFIG_NET_CLS_ACT
4190         skb->tc_at_ingress = 0;
4191 #endif
4192 #ifdef CONFIG_NET_EGRESS
4193         if (static_branch_unlikely(&egress_needed_key)) {
4194                 if (nf_hook_egress_active()) {
4195                         skb = nf_hook_egress(skb, &rc, dev);
4196                         if (!skb)
4197                                 goto out;
4198                 }
4199
4200                 netdev_xmit_skip_txqueue(false);
4201
4202                 nf_skip_egress(skb, true);
4203                 skb = sch_handle_egress(skb, &rc, dev);
4204                 if (!skb)
4205                         goto out;
4206                 nf_skip_egress(skb, false);
4207
4208                 if (netdev_xmit_txqueue_skipped())
4209                         txq = netdev_tx_queue_mapping(dev, skb);
4210         }
4211 #endif
4212         /* If device/qdisc don't need skb->dst, release it right now while
4213          * its hot in this cpu cache.
4214          */
4215         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4216                 skb_dst_drop(skb);
4217         else
4218                 skb_dst_force(skb);
4219
4220         if (!txq)
4221                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4222
4223         q = rcu_dereference_bh(txq->qdisc);
4224
4225         trace_net_dev_queue(skb);
4226         if (q->enqueue) {
4227                 rc = __dev_xmit_skb(skb, q, dev, txq);
4228                 goto out;
4229         }
4230
4231         /* The device has no queue. Common case for software devices:
4232          * loopback, all the sorts of tunnels...
4233
4234          * Really, it is unlikely that netif_tx_lock protection is necessary
4235          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4236          * counters.)
4237          * However, it is possible, that they rely on protection
4238          * made by us here.
4239
4240          * Check this and shot the lock. It is not prone from deadlocks.
4241          *Either shot noqueue qdisc, it is even simpler 8)
4242          */
4243         if (dev->flags & IFF_UP) {
4244                 int cpu = smp_processor_id(); /* ok because BHs are off */
4245
4246                 /* Other cpus might concurrently change txq->xmit_lock_owner
4247                  * to -1 or to their cpu id, but not to our id.
4248                  */
4249                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4250                         if (dev_xmit_recursion())
4251                                 goto recursion_alert;
4252
4253                         skb = validate_xmit_skb(skb, dev, &again);
4254                         if (!skb)
4255                                 goto out;
4256
4257                         HARD_TX_LOCK(dev, txq, cpu);
4258
4259                         if (!netif_xmit_stopped(txq)) {
4260                                 dev_xmit_recursion_inc();
4261                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4262                                 dev_xmit_recursion_dec();
4263                                 if (dev_xmit_complete(rc)) {
4264                                         HARD_TX_UNLOCK(dev, txq);
4265                                         goto out;
4266                                 }
4267                         }
4268                         HARD_TX_UNLOCK(dev, txq);
4269                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4270                                              dev->name);
4271                 } else {
4272                         /* Recursion is detected! It is possible,
4273                          * unfortunately
4274                          */
4275 recursion_alert:
4276                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4277                                              dev->name);
4278                 }
4279         }
4280
4281         rc = -ENETDOWN;
4282         rcu_read_unlock_bh();
4283
4284         dev_core_stats_tx_dropped_inc(dev);
4285         kfree_skb_list(skb);
4286         return rc;
4287 out:
4288         rcu_read_unlock_bh();
4289         return rc;
4290 }
4291 EXPORT_SYMBOL(__dev_queue_xmit);
4292
4293 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4294 {
4295         struct net_device *dev = skb->dev;
4296         struct sk_buff *orig_skb = skb;
4297         struct netdev_queue *txq;
4298         int ret = NETDEV_TX_BUSY;
4299         bool again = false;
4300
4301         if (unlikely(!netif_running(dev) ||
4302                      !netif_carrier_ok(dev)))
4303                 goto drop;
4304
4305         skb = validate_xmit_skb_list(skb, dev, &again);
4306         if (skb != orig_skb)
4307                 goto drop;
4308
4309         skb_set_queue_mapping(skb, queue_id);
4310         txq = skb_get_tx_queue(dev, skb);
4311
4312         local_bh_disable();
4313
4314         dev_xmit_recursion_inc();
4315         HARD_TX_LOCK(dev, txq, smp_processor_id());
4316         if (!netif_xmit_frozen_or_drv_stopped(txq))
4317                 ret = netdev_start_xmit(skb, dev, txq, false);
4318         HARD_TX_UNLOCK(dev, txq);
4319         dev_xmit_recursion_dec();
4320
4321         local_bh_enable();
4322         return ret;
4323 drop:
4324         dev_core_stats_tx_dropped_inc(dev);
4325         kfree_skb_list(skb);
4326         return NET_XMIT_DROP;
4327 }
4328 EXPORT_SYMBOL(__dev_direct_xmit);
4329
4330 /*************************************************************************
4331  *                      Receiver routines
4332  *************************************************************************/
4333
4334 int netdev_max_backlog __read_mostly = 1000;
4335 EXPORT_SYMBOL(netdev_max_backlog);
4336
4337 int netdev_tstamp_prequeue __read_mostly = 1;
4338 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4339 int netdev_budget __read_mostly = 300;
4340 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4341 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4342 int weight_p __read_mostly = 64;           /* old backlog weight */
4343 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4344 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4345 int dev_rx_weight __read_mostly = 64;
4346 int dev_tx_weight __read_mostly = 64;
4347
4348 /* Called with irq disabled */
4349 static inline void ____napi_schedule(struct softnet_data *sd,
4350                                      struct napi_struct *napi)
4351 {
4352         struct task_struct *thread;
4353
4354         lockdep_assert_irqs_disabled();
4355
4356         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4357                 /* Paired with smp_mb__before_atomic() in
4358                  * napi_enable()/dev_set_threaded().
4359                  * Use READ_ONCE() to guarantee a complete
4360                  * read on napi->thread. Only call
4361                  * wake_up_process() when it's not NULL.
4362                  */
4363                 thread = READ_ONCE(napi->thread);
4364                 if (thread) {
4365                         /* Avoid doing set_bit() if the thread is in
4366                          * INTERRUPTIBLE state, cause napi_thread_wait()
4367                          * makes sure to proceed with napi polling
4368                          * if the thread is explicitly woken from here.
4369                          */
4370                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4371                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4372                         wake_up_process(thread);
4373                         return;
4374                 }
4375         }
4376
4377         list_add_tail(&napi->poll_list, &sd->poll_list);
4378         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4379 }
4380
4381 #ifdef CONFIG_RPS
4382
4383 /* One global table that all flow-based protocols share. */
4384 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4385 EXPORT_SYMBOL(rps_sock_flow_table);
4386 u32 rps_cpu_mask __read_mostly;
4387 EXPORT_SYMBOL(rps_cpu_mask);
4388
4389 struct static_key_false rps_needed __read_mostly;
4390 EXPORT_SYMBOL(rps_needed);
4391 struct static_key_false rfs_needed __read_mostly;
4392 EXPORT_SYMBOL(rfs_needed);
4393
4394 static struct rps_dev_flow *
4395 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4396             struct rps_dev_flow *rflow, u16 next_cpu)
4397 {
4398         if (next_cpu < nr_cpu_ids) {
4399 #ifdef CONFIG_RFS_ACCEL
4400                 struct netdev_rx_queue *rxqueue;
4401                 struct rps_dev_flow_table *flow_table;
4402                 struct rps_dev_flow *old_rflow;
4403                 u32 flow_id;
4404                 u16 rxq_index;
4405                 int rc;
4406
4407                 /* Should we steer this flow to a different hardware queue? */
4408                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4409                     !(dev->features & NETIF_F_NTUPLE))
4410                         goto out;
4411                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4412                 if (rxq_index == skb_get_rx_queue(skb))
4413                         goto out;
4414
4415                 rxqueue = dev->_rx + rxq_index;
4416                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4417                 if (!flow_table)
4418                         goto out;
4419                 flow_id = skb_get_hash(skb) & flow_table->mask;
4420                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4421                                                         rxq_index, flow_id);
4422                 if (rc < 0)
4423                         goto out;
4424                 old_rflow = rflow;
4425                 rflow = &flow_table->flows[flow_id];
4426                 rflow->filter = rc;
4427                 if (old_rflow->filter == rflow->filter)
4428                         old_rflow->filter = RPS_NO_FILTER;
4429         out:
4430 #endif
4431                 rflow->last_qtail =
4432                         per_cpu(softnet_data, next_cpu).input_queue_head;
4433         }
4434
4435         rflow->cpu = next_cpu;
4436         return rflow;
4437 }
4438
4439 /*
4440  * get_rps_cpu is called from netif_receive_skb and returns the target
4441  * CPU from the RPS map of the receiving queue for a given skb.
4442  * rcu_read_lock must be held on entry.
4443  */
4444 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4445                        struct rps_dev_flow **rflowp)
4446 {
4447         const struct rps_sock_flow_table *sock_flow_table;
4448         struct netdev_rx_queue *rxqueue = dev->_rx;
4449         struct rps_dev_flow_table *flow_table;
4450         struct rps_map *map;
4451         int cpu = -1;
4452         u32 tcpu;
4453         u32 hash;
4454
4455         if (skb_rx_queue_recorded(skb)) {
4456                 u16 index = skb_get_rx_queue(skb);
4457
4458                 if (unlikely(index >= dev->real_num_rx_queues)) {
4459                         WARN_ONCE(dev->real_num_rx_queues > 1,
4460                                   "%s received packet on queue %u, but number "
4461                                   "of RX queues is %u\n",
4462                                   dev->name, index, dev->real_num_rx_queues);
4463                         goto done;
4464                 }
4465                 rxqueue += index;
4466         }
4467
4468         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4469
4470         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4471         map = rcu_dereference(rxqueue->rps_map);
4472         if (!flow_table && !map)
4473                 goto done;
4474
4475         skb_reset_network_header(skb);
4476         hash = skb_get_hash(skb);
4477         if (!hash)
4478                 goto done;
4479
4480         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4481         if (flow_table && sock_flow_table) {
4482                 struct rps_dev_flow *rflow;
4483                 u32 next_cpu;
4484                 u32 ident;
4485
4486                 /* First check into global flow table if there is a match.
4487                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4488                  */
4489                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4490                 if ((ident ^ hash) & ~rps_cpu_mask)
4491                         goto try_rps;
4492
4493                 next_cpu = ident & rps_cpu_mask;
4494
4495                 /* OK, now we know there is a match,
4496                  * we can look at the local (per receive queue) flow table
4497                  */
4498                 rflow = &flow_table->flows[hash & flow_table->mask];
4499                 tcpu = rflow->cpu;
4500
4501                 /*
4502                  * If the desired CPU (where last recvmsg was done) is
4503                  * different from current CPU (one in the rx-queue flow
4504                  * table entry), switch if one of the following holds:
4505                  *   - Current CPU is unset (>= nr_cpu_ids).
4506                  *   - Current CPU is offline.
4507                  *   - The current CPU's queue tail has advanced beyond the
4508                  *     last packet that was enqueued using this table entry.
4509                  *     This guarantees that all previous packets for the flow
4510                  *     have been dequeued, thus preserving in order delivery.
4511                  */
4512                 if (unlikely(tcpu != next_cpu) &&
4513                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4514                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4515                       rflow->last_qtail)) >= 0)) {
4516                         tcpu = next_cpu;
4517                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4518                 }
4519
4520                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4521                         *rflowp = rflow;
4522                         cpu = tcpu;
4523                         goto done;
4524                 }
4525         }
4526
4527 try_rps:
4528
4529         if (map) {
4530                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4531                 if (cpu_online(tcpu)) {
4532                         cpu = tcpu;
4533                         goto done;
4534                 }
4535         }
4536
4537 done:
4538         return cpu;
4539 }
4540
4541 #ifdef CONFIG_RFS_ACCEL
4542
4543 /**
4544  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4545  * @dev: Device on which the filter was set
4546  * @rxq_index: RX queue index
4547  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4548  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4549  *
4550  * Drivers that implement ndo_rx_flow_steer() should periodically call
4551  * this function for each installed filter and remove the filters for
4552  * which it returns %true.
4553  */
4554 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4555                          u32 flow_id, u16 filter_id)
4556 {
4557         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4558         struct rps_dev_flow_table *flow_table;
4559         struct rps_dev_flow *rflow;
4560         bool expire = true;
4561         unsigned int cpu;
4562
4563         rcu_read_lock();
4564         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4565         if (flow_table && flow_id <= flow_table->mask) {
4566                 rflow = &flow_table->flows[flow_id];
4567                 cpu = READ_ONCE(rflow->cpu);
4568                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4569                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4570                            rflow->last_qtail) <
4571                      (int)(10 * flow_table->mask)))
4572                         expire = false;
4573         }
4574         rcu_read_unlock();
4575         return expire;
4576 }
4577 EXPORT_SYMBOL(rps_may_expire_flow);
4578
4579 #endif /* CONFIG_RFS_ACCEL */
4580
4581 /* Called from hardirq (IPI) context */
4582 static void rps_trigger_softirq(void *data)
4583 {
4584         struct softnet_data *sd = data;
4585
4586         ____napi_schedule(sd, &sd->backlog);
4587         sd->received_rps++;
4588 }
4589
4590 #endif /* CONFIG_RPS */
4591
4592 /* Called from hardirq (IPI) context */
4593 static void trigger_rx_softirq(void *data)
4594 {
4595         struct softnet_data *sd = data;
4596
4597         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4598         smp_store_release(&sd->defer_ipi_scheduled, 0);
4599 }
4600
4601 /*
4602  * Check if this softnet_data structure is another cpu one
4603  * If yes, queue it to our IPI list and return 1
4604  * If no, return 0
4605  */
4606 static int napi_schedule_rps(struct softnet_data *sd)
4607 {
4608         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4609
4610 #ifdef CONFIG_RPS
4611         if (sd != mysd) {
4612                 sd->rps_ipi_next = mysd->rps_ipi_list;
4613                 mysd->rps_ipi_list = sd;
4614
4615                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4616                 return 1;
4617         }
4618 #endif /* CONFIG_RPS */
4619         __napi_schedule_irqoff(&mysd->backlog);
4620         return 0;
4621 }
4622
4623 #ifdef CONFIG_NET_FLOW_LIMIT
4624 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4625 #endif
4626
4627 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4628 {
4629 #ifdef CONFIG_NET_FLOW_LIMIT
4630         struct sd_flow_limit *fl;
4631         struct softnet_data *sd;
4632         unsigned int old_flow, new_flow;
4633
4634         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4635                 return false;
4636
4637         sd = this_cpu_ptr(&softnet_data);
4638
4639         rcu_read_lock();
4640         fl = rcu_dereference(sd->flow_limit);
4641         if (fl) {
4642                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4643                 old_flow = fl->history[fl->history_head];
4644                 fl->history[fl->history_head] = new_flow;
4645
4646                 fl->history_head++;
4647                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4648
4649                 if (likely(fl->buckets[old_flow]))
4650                         fl->buckets[old_flow]--;
4651
4652                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4653                         fl->count++;
4654                         rcu_read_unlock();
4655                         return true;
4656                 }
4657         }
4658         rcu_read_unlock();
4659 #endif
4660         return false;
4661 }
4662
4663 /*
4664  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4665  * queue (may be a remote CPU queue).
4666  */
4667 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4668                               unsigned int *qtail)
4669 {
4670         enum skb_drop_reason reason;
4671         struct softnet_data *sd;
4672         unsigned long flags;
4673         unsigned int qlen;
4674
4675         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4676         sd = &per_cpu(softnet_data, cpu);
4677
4678         rps_lock_irqsave(sd, &flags);
4679         if (!netif_running(skb->dev))
4680                 goto drop;
4681         qlen = skb_queue_len(&sd->input_pkt_queue);
4682         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4683                 if (qlen) {
4684 enqueue:
4685                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4686                         input_queue_tail_incr_save(sd, qtail);
4687                         rps_unlock_irq_restore(sd, &flags);
4688                         return NET_RX_SUCCESS;
4689                 }
4690
4691                 /* Schedule NAPI for backlog device
4692                  * We can use non atomic operation since we own the queue lock
4693                  */
4694                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4695                         napi_schedule_rps(sd);
4696                 goto enqueue;
4697         }
4698         reason = SKB_DROP_REASON_CPU_BACKLOG;
4699
4700 drop:
4701         sd->dropped++;
4702         rps_unlock_irq_restore(sd, &flags);
4703
4704         dev_core_stats_rx_dropped_inc(skb->dev);
4705         kfree_skb_reason(skb, reason);
4706         return NET_RX_DROP;
4707 }
4708
4709 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4710 {
4711         struct net_device *dev = skb->dev;
4712         struct netdev_rx_queue *rxqueue;
4713
4714         rxqueue = dev->_rx;
4715
4716         if (skb_rx_queue_recorded(skb)) {
4717                 u16 index = skb_get_rx_queue(skb);
4718
4719                 if (unlikely(index >= dev->real_num_rx_queues)) {
4720                         WARN_ONCE(dev->real_num_rx_queues > 1,
4721                                   "%s received packet on queue %u, but number "
4722                                   "of RX queues is %u\n",
4723                                   dev->name, index, dev->real_num_rx_queues);
4724
4725                         return rxqueue; /* Return first rxqueue */
4726                 }
4727                 rxqueue += index;
4728         }
4729         return rxqueue;
4730 }
4731
4732 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4733                              struct bpf_prog *xdp_prog)
4734 {
4735         void *orig_data, *orig_data_end, *hard_start;
4736         struct netdev_rx_queue *rxqueue;
4737         bool orig_bcast, orig_host;
4738         u32 mac_len, frame_sz;
4739         __be16 orig_eth_type;
4740         struct ethhdr *eth;
4741         u32 metalen, act;
4742         int off;
4743
4744         /* The XDP program wants to see the packet starting at the MAC
4745          * header.
4746          */
4747         mac_len = skb->data - skb_mac_header(skb);
4748         hard_start = skb->data - skb_headroom(skb);
4749
4750         /* SKB "head" area always have tailroom for skb_shared_info */
4751         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4752         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4753
4754         rxqueue = netif_get_rxqueue(skb);
4755         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4756         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4757                          skb_headlen(skb) + mac_len, true);
4758
4759         orig_data_end = xdp->data_end;
4760         orig_data = xdp->data;
4761         eth = (struct ethhdr *)xdp->data;
4762         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4763         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4764         orig_eth_type = eth->h_proto;
4765
4766         act = bpf_prog_run_xdp(xdp_prog, xdp);
4767
4768         /* check if bpf_xdp_adjust_head was used */
4769         off = xdp->data - orig_data;
4770         if (off) {
4771                 if (off > 0)
4772                         __skb_pull(skb, off);
4773                 else if (off < 0)
4774                         __skb_push(skb, -off);
4775
4776                 skb->mac_header += off;
4777                 skb_reset_network_header(skb);
4778         }
4779
4780         /* check if bpf_xdp_adjust_tail was used */
4781         off = xdp->data_end - orig_data_end;
4782         if (off != 0) {
4783                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4784                 skb->len += off; /* positive on grow, negative on shrink */
4785         }
4786
4787         /* check if XDP changed eth hdr such SKB needs update */
4788         eth = (struct ethhdr *)xdp->data;
4789         if ((orig_eth_type != eth->h_proto) ||
4790             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4791                                                   skb->dev->dev_addr)) ||
4792             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4793                 __skb_push(skb, ETH_HLEN);
4794                 skb->pkt_type = PACKET_HOST;
4795                 skb->protocol = eth_type_trans(skb, skb->dev);
4796         }
4797
4798         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4799          * before calling us again on redirect path. We do not call do_redirect
4800          * as we leave that up to the caller.
4801          *
4802          * Caller is responsible for managing lifetime of skb (i.e. calling
4803          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4804          */
4805         switch (act) {
4806         case XDP_REDIRECT:
4807         case XDP_TX:
4808                 __skb_push(skb, mac_len);
4809                 break;
4810         case XDP_PASS:
4811                 metalen = xdp->data - xdp->data_meta;
4812                 if (metalen)
4813                         skb_metadata_set(skb, metalen);
4814                 break;
4815         }
4816
4817         return act;
4818 }
4819
4820 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4821                                      struct xdp_buff *xdp,
4822                                      struct bpf_prog *xdp_prog)
4823 {
4824         u32 act = XDP_DROP;
4825
4826         /* Reinjected packets coming from act_mirred or similar should
4827          * not get XDP generic processing.
4828          */
4829         if (skb_is_redirected(skb))
4830                 return XDP_PASS;
4831
4832         /* XDP packets must be linear and must have sufficient headroom
4833          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4834          * native XDP provides, thus we need to do it here as well.
4835          */
4836         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4837             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4838                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4839                 int troom = skb->tail + skb->data_len - skb->end;
4840
4841                 /* In case we have to go down the path and also linearize,
4842                  * then lets do the pskb_expand_head() work just once here.
4843                  */
4844                 if (pskb_expand_head(skb,
4845                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4846                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4847                         goto do_drop;
4848                 if (skb_linearize(skb))
4849                         goto do_drop;
4850         }
4851
4852         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4853         switch (act) {
4854         case XDP_REDIRECT:
4855         case XDP_TX:
4856         case XDP_PASS:
4857                 break;
4858         default:
4859                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4860                 fallthrough;
4861         case XDP_ABORTED:
4862                 trace_xdp_exception(skb->dev, xdp_prog, act);
4863                 fallthrough;
4864         case XDP_DROP:
4865         do_drop:
4866                 kfree_skb(skb);
4867                 break;
4868         }
4869
4870         return act;
4871 }
4872
4873 /* When doing generic XDP we have to bypass the qdisc layer and the
4874  * network taps in order to match in-driver-XDP behavior. This also means
4875  * that XDP packets are able to starve other packets going through a qdisc,
4876  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4877  * queues, so they do not have this starvation issue.
4878  */
4879 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4880 {
4881         struct net_device *dev = skb->dev;
4882         struct netdev_queue *txq;
4883         bool free_skb = true;
4884         int cpu, rc;
4885
4886         txq = netdev_core_pick_tx(dev, skb, NULL);
4887         cpu = smp_processor_id();
4888         HARD_TX_LOCK(dev, txq, cpu);
4889         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4890                 rc = netdev_start_xmit(skb, dev, txq, 0);
4891                 if (dev_xmit_complete(rc))
4892                         free_skb = false;
4893         }
4894         HARD_TX_UNLOCK(dev, txq);
4895         if (free_skb) {
4896                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4897                 dev_core_stats_tx_dropped_inc(dev);
4898                 kfree_skb(skb);
4899         }
4900 }
4901
4902 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4903
4904 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4905 {
4906         if (xdp_prog) {
4907                 struct xdp_buff xdp;
4908                 u32 act;
4909                 int err;
4910
4911                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4912                 if (act != XDP_PASS) {
4913                         switch (act) {
4914                         case XDP_REDIRECT:
4915                                 err = xdp_do_generic_redirect(skb->dev, skb,
4916                                                               &xdp, xdp_prog);
4917                                 if (err)
4918                                         goto out_redir;
4919                                 break;
4920                         case XDP_TX:
4921                                 generic_xdp_tx(skb, xdp_prog);
4922                                 break;
4923                         }
4924                         return XDP_DROP;
4925                 }
4926         }
4927         return XDP_PASS;
4928 out_redir:
4929         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4930         return XDP_DROP;
4931 }
4932 EXPORT_SYMBOL_GPL(do_xdp_generic);
4933
4934 static int netif_rx_internal(struct sk_buff *skb)
4935 {
4936         int ret;
4937
4938         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4939
4940         trace_netif_rx(skb);
4941
4942 #ifdef CONFIG_RPS
4943         if (static_branch_unlikely(&rps_needed)) {
4944                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4945                 int cpu;
4946
4947                 rcu_read_lock();
4948
4949                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4950                 if (cpu < 0)
4951                         cpu = smp_processor_id();
4952
4953                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4954
4955                 rcu_read_unlock();
4956         } else
4957 #endif
4958         {
4959                 unsigned int qtail;
4960
4961                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4962         }
4963         return ret;
4964 }
4965
4966 /**
4967  *      __netif_rx      -       Slightly optimized version of netif_rx
4968  *      @skb: buffer to post
4969  *
4970  *      This behaves as netif_rx except that it does not disable bottom halves.
4971  *      As a result this function may only be invoked from the interrupt context
4972  *      (either hard or soft interrupt).
4973  */
4974 int __netif_rx(struct sk_buff *skb)
4975 {
4976         int ret;
4977
4978         lockdep_assert_once(hardirq_count() | softirq_count());
4979
4980         trace_netif_rx_entry(skb);
4981         ret = netif_rx_internal(skb);
4982         trace_netif_rx_exit(ret);
4983         return ret;
4984 }
4985 EXPORT_SYMBOL(__netif_rx);
4986
4987 /**
4988  *      netif_rx        -       post buffer to the network code
4989  *      @skb: buffer to post
4990  *
4991  *      This function receives a packet from a device driver and queues it for
4992  *      the upper (protocol) levels to process via the backlog NAPI device. It
4993  *      always succeeds. The buffer may be dropped during processing for
4994  *      congestion control or by the protocol layers.
4995  *      The network buffer is passed via the backlog NAPI device. Modern NIC
4996  *      driver should use NAPI and GRO.
4997  *      This function can used from interrupt and from process context. The
4998  *      caller from process context must not disable interrupts before invoking
4999  *      this function.
5000  *
5001  *      return values:
5002  *      NET_RX_SUCCESS  (no congestion)
5003  *      NET_RX_DROP     (packet was dropped)
5004  *
5005  */
5006 int netif_rx(struct sk_buff *skb)
5007 {
5008         bool need_bh_off = !(hardirq_count() | softirq_count());
5009         int ret;
5010
5011         if (need_bh_off)
5012                 local_bh_disable();
5013         trace_netif_rx_entry(skb);
5014         ret = netif_rx_internal(skb);
5015         trace_netif_rx_exit(ret);
5016         if (need_bh_off)
5017                 local_bh_enable();
5018         return ret;
5019 }
5020 EXPORT_SYMBOL(netif_rx);
5021
5022 static __latent_entropy void net_tx_action(struct softirq_action *h)
5023 {
5024         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5025
5026         if (sd->completion_queue) {
5027                 struct sk_buff *clist;
5028
5029                 local_irq_disable();
5030                 clist = sd->completion_queue;
5031                 sd->completion_queue = NULL;
5032                 local_irq_enable();
5033
5034                 while (clist) {
5035                         struct sk_buff *skb = clist;
5036
5037                         clist = clist->next;
5038
5039                         WARN_ON(refcount_read(&skb->users));
5040                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5041                                 trace_consume_skb(skb);
5042                         else
5043                                 trace_kfree_skb(skb, net_tx_action,
5044                                                 SKB_DROP_REASON_NOT_SPECIFIED);
5045
5046                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5047                                 __kfree_skb(skb);
5048                         else
5049                                 __kfree_skb_defer(skb);
5050                 }
5051         }
5052
5053         if (sd->output_queue) {
5054                 struct Qdisc *head;
5055
5056                 local_irq_disable();
5057                 head = sd->output_queue;
5058                 sd->output_queue = NULL;
5059                 sd->output_queue_tailp = &sd->output_queue;
5060                 local_irq_enable();
5061
5062                 rcu_read_lock();
5063
5064                 while (head) {
5065                         struct Qdisc *q = head;
5066                         spinlock_t *root_lock = NULL;
5067
5068                         head = head->next_sched;
5069
5070                         /* We need to make sure head->next_sched is read
5071                          * before clearing __QDISC_STATE_SCHED
5072                          */
5073                         smp_mb__before_atomic();
5074
5075                         if (!(q->flags & TCQ_F_NOLOCK)) {
5076                                 root_lock = qdisc_lock(q);
5077                                 spin_lock(root_lock);
5078                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5079                                                      &q->state))) {
5080                                 /* There is a synchronize_net() between
5081                                  * STATE_DEACTIVATED flag being set and
5082                                  * qdisc_reset()/some_qdisc_is_busy() in
5083                                  * dev_deactivate(), so we can safely bail out
5084                                  * early here to avoid data race between
5085                                  * qdisc_deactivate() and some_qdisc_is_busy()
5086                                  * for lockless qdisc.
5087                                  */
5088                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5089                                 continue;
5090                         }
5091
5092                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5093                         qdisc_run(q);
5094                         if (root_lock)
5095                                 spin_unlock(root_lock);
5096                 }
5097
5098                 rcu_read_unlock();
5099         }
5100
5101         xfrm_dev_backlog(sd);
5102 }
5103
5104 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5105 /* This hook is defined here for ATM LANE */
5106 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5107                              unsigned char *addr) __read_mostly;
5108 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5109 #endif
5110
5111 static inline struct sk_buff *
5112 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5113                    struct net_device *orig_dev, bool *another)
5114 {
5115 #ifdef CONFIG_NET_CLS_ACT
5116         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5117         struct tcf_result cl_res;
5118
5119         /* If there's at least one ingress present somewhere (so
5120          * we get here via enabled static key), remaining devices
5121          * that are not configured with an ingress qdisc will bail
5122          * out here.
5123          */
5124         if (!miniq)
5125                 return skb;
5126
5127         if (*pt_prev) {
5128                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5129                 *pt_prev = NULL;
5130         }
5131
5132         qdisc_skb_cb(skb)->pkt_len = skb->len;
5133         tc_skb_cb(skb)->mru = 0;
5134         tc_skb_cb(skb)->post_ct = false;
5135         skb->tc_at_ingress = 1;
5136         mini_qdisc_bstats_cpu_update(miniq, skb);
5137
5138         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5139         case TC_ACT_OK:
5140         case TC_ACT_RECLASSIFY:
5141                 skb->tc_index = TC_H_MIN(cl_res.classid);
5142                 break;
5143         case TC_ACT_SHOT:
5144                 mini_qdisc_qstats_cpu_drop(miniq);
5145                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5146                 *ret = NET_RX_DROP;
5147                 return NULL;
5148         case TC_ACT_STOLEN:
5149         case TC_ACT_QUEUED:
5150         case TC_ACT_TRAP:
5151                 consume_skb(skb);
5152                 *ret = NET_RX_SUCCESS;
5153                 return NULL;
5154         case TC_ACT_REDIRECT:
5155                 /* skb_mac_header check was done by cls/act_bpf, so
5156                  * we can safely push the L2 header back before
5157                  * redirecting to another netdev
5158                  */
5159                 __skb_push(skb, skb->mac_len);
5160                 if (skb_do_redirect(skb) == -EAGAIN) {
5161                         __skb_pull(skb, skb->mac_len);
5162                         *another = true;
5163                         break;
5164                 }
5165                 *ret = NET_RX_SUCCESS;
5166                 return NULL;
5167         case TC_ACT_CONSUMED:
5168                 *ret = NET_RX_SUCCESS;
5169                 return NULL;
5170         default:
5171                 break;
5172         }
5173 #endif /* CONFIG_NET_CLS_ACT */
5174         return skb;
5175 }
5176
5177 /**
5178  *      netdev_is_rx_handler_busy - check if receive handler is registered
5179  *      @dev: device to check
5180  *
5181  *      Check if a receive handler is already registered for a given device.
5182  *      Return true if there one.
5183  *
5184  *      The caller must hold the rtnl_mutex.
5185  */
5186 bool netdev_is_rx_handler_busy(struct net_device *dev)
5187 {
5188         ASSERT_RTNL();
5189         return dev && rtnl_dereference(dev->rx_handler);
5190 }
5191 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5192
5193 /**
5194  *      netdev_rx_handler_register - register receive handler
5195  *      @dev: device to register a handler for
5196  *      @rx_handler: receive handler to register
5197  *      @rx_handler_data: data pointer that is used by rx handler
5198  *
5199  *      Register a receive handler for a device. This handler will then be
5200  *      called from __netif_receive_skb. A negative errno code is returned
5201  *      on a failure.
5202  *
5203  *      The caller must hold the rtnl_mutex.
5204  *
5205  *      For a general description of rx_handler, see enum rx_handler_result.
5206  */
5207 int netdev_rx_handler_register(struct net_device *dev,
5208                                rx_handler_func_t *rx_handler,
5209                                void *rx_handler_data)
5210 {
5211         if (netdev_is_rx_handler_busy(dev))
5212                 return -EBUSY;
5213
5214         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5215                 return -EINVAL;
5216
5217         /* Note: rx_handler_data must be set before rx_handler */
5218         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5219         rcu_assign_pointer(dev->rx_handler, rx_handler);
5220
5221         return 0;
5222 }
5223 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5224
5225 /**
5226  *      netdev_rx_handler_unregister - unregister receive handler
5227  *      @dev: device to unregister a handler from
5228  *
5229  *      Unregister a receive handler from a device.
5230  *
5231  *      The caller must hold the rtnl_mutex.
5232  */
5233 void netdev_rx_handler_unregister(struct net_device *dev)
5234 {
5235
5236         ASSERT_RTNL();
5237         RCU_INIT_POINTER(dev->rx_handler, NULL);
5238         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5239          * section has a guarantee to see a non NULL rx_handler_data
5240          * as well.
5241          */
5242         synchronize_net();
5243         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5244 }
5245 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5246
5247 /*
5248  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5249  * the special handling of PFMEMALLOC skbs.
5250  */
5251 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5252 {
5253         switch (skb->protocol) {
5254         case htons(ETH_P_ARP):
5255         case htons(ETH_P_IP):
5256         case htons(ETH_P_IPV6):
5257         case htons(ETH_P_8021Q):
5258         case htons(ETH_P_8021AD):
5259                 return true;
5260         default:
5261                 return false;
5262         }
5263 }
5264
5265 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5266                              int *ret, struct net_device *orig_dev)
5267 {
5268         if (nf_hook_ingress_active(skb)) {
5269                 int ingress_retval;
5270
5271                 if (*pt_prev) {
5272                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5273                         *pt_prev = NULL;
5274                 }
5275
5276                 rcu_read_lock();
5277                 ingress_retval = nf_hook_ingress(skb);
5278                 rcu_read_unlock();
5279                 return ingress_retval;
5280         }
5281         return 0;
5282 }
5283
5284 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5285                                     struct packet_type **ppt_prev)
5286 {
5287         struct packet_type *ptype, *pt_prev;
5288         rx_handler_func_t *rx_handler;
5289         struct sk_buff *skb = *pskb;
5290         struct net_device *orig_dev;
5291         bool deliver_exact = false;
5292         int ret = NET_RX_DROP;
5293         __be16 type;
5294
5295         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5296
5297         trace_netif_receive_skb(skb);
5298
5299         orig_dev = skb->dev;
5300
5301         skb_reset_network_header(skb);
5302         if (!skb_transport_header_was_set(skb))
5303                 skb_reset_transport_header(skb);
5304         skb_reset_mac_len(skb);
5305
5306         pt_prev = NULL;
5307
5308 another_round:
5309         skb->skb_iif = skb->dev->ifindex;
5310
5311         __this_cpu_inc(softnet_data.processed);
5312
5313         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5314                 int ret2;
5315
5316                 migrate_disable();
5317                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5318                 migrate_enable();
5319
5320                 if (ret2 != XDP_PASS) {
5321                         ret = NET_RX_DROP;
5322                         goto out;
5323                 }
5324         }
5325
5326         if (eth_type_vlan(skb->protocol)) {
5327                 skb = skb_vlan_untag(skb);
5328                 if (unlikely(!skb))
5329                         goto out;
5330         }
5331
5332         if (skb_skip_tc_classify(skb))
5333                 goto skip_classify;
5334
5335         if (pfmemalloc)
5336                 goto skip_taps;
5337
5338         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5339                 if (pt_prev)
5340                         ret = deliver_skb(skb, pt_prev, orig_dev);
5341                 pt_prev = ptype;
5342         }
5343
5344         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5345                 if (pt_prev)
5346                         ret = deliver_skb(skb, pt_prev, orig_dev);
5347                 pt_prev = ptype;
5348         }
5349
5350 skip_taps:
5351 #ifdef CONFIG_NET_INGRESS
5352         if (static_branch_unlikely(&ingress_needed_key)) {
5353                 bool another = false;
5354
5355                 nf_skip_egress(skb, true);
5356                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5357                                          &another);
5358                 if (another)
5359                         goto another_round;
5360                 if (!skb)
5361                         goto out;
5362
5363                 nf_skip_egress(skb, false);
5364                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5365                         goto out;
5366         }
5367 #endif
5368         skb_reset_redirect(skb);
5369 skip_classify:
5370         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5371                 goto drop;
5372
5373         if (skb_vlan_tag_present(skb)) {
5374                 if (pt_prev) {
5375                         ret = deliver_skb(skb, pt_prev, orig_dev);
5376                         pt_prev = NULL;
5377                 }
5378                 if (vlan_do_receive(&skb))
5379                         goto another_round;
5380                 else if (unlikely(!skb))
5381                         goto out;
5382         }
5383
5384         rx_handler = rcu_dereference(skb->dev->rx_handler);
5385         if (rx_handler) {
5386                 if (pt_prev) {
5387                         ret = deliver_skb(skb, pt_prev, orig_dev);
5388                         pt_prev = NULL;
5389                 }
5390                 switch (rx_handler(&skb)) {
5391                 case RX_HANDLER_CONSUMED:
5392                         ret = NET_RX_SUCCESS;
5393                         goto out;
5394                 case RX_HANDLER_ANOTHER:
5395                         goto another_round;
5396                 case RX_HANDLER_EXACT:
5397                         deliver_exact = true;
5398                         break;
5399                 case RX_HANDLER_PASS:
5400                         break;
5401                 default:
5402                         BUG();
5403                 }
5404         }
5405
5406         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5407 check_vlan_id:
5408                 if (skb_vlan_tag_get_id(skb)) {
5409                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5410                          * find vlan device.
5411                          */
5412                         skb->pkt_type = PACKET_OTHERHOST;
5413                 } else if (eth_type_vlan(skb->protocol)) {
5414                         /* Outer header is 802.1P with vlan 0, inner header is
5415                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5416                          * not find vlan dev for vlan id 0.
5417                          */
5418                         __vlan_hwaccel_clear_tag(skb);
5419                         skb = skb_vlan_untag(skb);
5420                         if (unlikely(!skb))
5421                                 goto out;
5422                         if (vlan_do_receive(&skb))
5423                                 /* After stripping off 802.1P header with vlan 0
5424                                  * vlan dev is found for inner header.
5425                                  */
5426                                 goto another_round;
5427                         else if (unlikely(!skb))
5428                                 goto out;
5429                         else
5430                                 /* We have stripped outer 802.1P vlan 0 header.
5431                                  * But could not find vlan dev.
5432                                  * check again for vlan id to set OTHERHOST.
5433                                  */
5434                                 goto check_vlan_id;
5435                 }
5436                 /* Note: we might in the future use prio bits
5437                  * and set skb->priority like in vlan_do_receive()
5438                  * For the time being, just ignore Priority Code Point
5439                  */
5440                 __vlan_hwaccel_clear_tag(skb);
5441         }
5442
5443         type = skb->protocol;
5444
5445         /* deliver only exact match when indicated */
5446         if (likely(!deliver_exact)) {
5447                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5448                                        &ptype_base[ntohs(type) &
5449                                                    PTYPE_HASH_MASK]);
5450         }
5451
5452         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5453                                &orig_dev->ptype_specific);
5454
5455         if (unlikely(skb->dev != orig_dev)) {
5456                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5457                                        &skb->dev->ptype_specific);
5458         }
5459
5460         if (pt_prev) {
5461                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5462                         goto drop;
5463                 *ppt_prev = pt_prev;
5464         } else {
5465 drop:
5466                 if (!deliver_exact)
5467                         dev_core_stats_rx_dropped_inc(skb->dev);
5468                 else
5469                         dev_core_stats_rx_nohandler_inc(skb->dev);
5470                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5471                 /* Jamal, now you will not able to escape explaining
5472                  * me how you were going to use this. :-)
5473                  */
5474                 ret = NET_RX_DROP;
5475         }
5476
5477 out:
5478         /* The invariant here is that if *ppt_prev is not NULL
5479          * then skb should also be non-NULL.
5480          *
5481          * Apparently *ppt_prev assignment above holds this invariant due to
5482          * skb dereferencing near it.
5483          */
5484         *pskb = skb;
5485         return ret;
5486 }
5487
5488 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5489 {
5490         struct net_device *orig_dev = skb->dev;
5491         struct packet_type *pt_prev = NULL;
5492         int ret;
5493
5494         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5495         if (pt_prev)
5496                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5497                                          skb->dev, pt_prev, orig_dev);
5498         return ret;
5499 }
5500
5501 /**
5502  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5503  *      @skb: buffer to process
5504  *
5505  *      More direct receive version of netif_receive_skb().  It should
5506  *      only be used by callers that have a need to skip RPS and Generic XDP.
5507  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5508  *
5509  *      This function may only be called from softirq context and interrupts
5510  *      should be enabled.
5511  *
5512  *      Return values (usually ignored):
5513  *      NET_RX_SUCCESS: no congestion
5514  *      NET_RX_DROP: packet was dropped
5515  */
5516 int netif_receive_skb_core(struct sk_buff *skb)
5517 {
5518         int ret;
5519
5520         rcu_read_lock();
5521         ret = __netif_receive_skb_one_core(skb, false);
5522         rcu_read_unlock();
5523
5524         return ret;
5525 }
5526 EXPORT_SYMBOL(netif_receive_skb_core);
5527
5528 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5529                                                   struct packet_type *pt_prev,
5530                                                   struct net_device *orig_dev)
5531 {
5532         struct sk_buff *skb, *next;
5533
5534         if (!pt_prev)
5535                 return;
5536         if (list_empty(head))
5537                 return;
5538         if (pt_prev->list_func != NULL)
5539                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5540                                    ip_list_rcv, head, pt_prev, orig_dev);
5541         else
5542                 list_for_each_entry_safe(skb, next, head, list) {
5543                         skb_list_del_init(skb);
5544                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5545                 }
5546 }
5547
5548 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5549 {
5550         /* Fast-path assumptions:
5551          * - There is no RX handler.
5552          * - Only one packet_type matches.
5553          * If either of these fails, we will end up doing some per-packet
5554          * processing in-line, then handling the 'last ptype' for the whole
5555          * sublist.  This can't cause out-of-order delivery to any single ptype,
5556          * because the 'last ptype' must be constant across the sublist, and all
5557          * other ptypes are handled per-packet.
5558          */
5559         /* Current (common) ptype of sublist */
5560         struct packet_type *pt_curr = NULL;
5561         /* Current (common) orig_dev of sublist */
5562         struct net_device *od_curr = NULL;
5563         struct list_head sublist;
5564         struct sk_buff *skb, *next;
5565
5566         INIT_LIST_HEAD(&sublist);
5567         list_for_each_entry_safe(skb, next, head, list) {
5568                 struct net_device *orig_dev = skb->dev;
5569                 struct packet_type *pt_prev = NULL;
5570
5571                 skb_list_del_init(skb);
5572                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5573                 if (!pt_prev)
5574                         continue;
5575                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5576                         /* dispatch old sublist */
5577                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5578                         /* start new sublist */
5579                         INIT_LIST_HEAD(&sublist);
5580                         pt_curr = pt_prev;
5581                         od_curr = orig_dev;
5582                 }
5583                 list_add_tail(&skb->list, &sublist);
5584         }
5585
5586         /* dispatch final sublist */
5587         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5588 }
5589
5590 static int __netif_receive_skb(struct sk_buff *skb)
5591 {
5592         int ret;
5593
5594         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5595                 unsigned int noreclaim_flag;
5596
5597                 /*
5598                  * PFMEMALLOC skbs are special, they should
5599                  * - be delivered to SOCK_MEMALLOC sockets only
5600                  * - stay away from userspace
5601                  * - have bounded memory usage
5602                  *
5603                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5604                  * context down to all allocation sites.
5605                  */
5606                 noreclaim_flag = memalloc_noreclaim_save();
5607                 ret = __netif_receive_skb_one_core(skb, true);
5608                 memalloc_noreclaim_restore(noreclaim_flag);
5609         } else
5610                 ret = __netif_receive_skb_one_core(skb, false);
5611
5612         return ret;
5613 }
5614
5615 static void __netif_receive_skb_list(struct list_head *head)
5616 {
5617         unsigned long noreclaim_flag = 0;
5618         struct sk_buff *skb, *next;
5619         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5620
5621         list_for_each_entry_safe(skb, next, head, list) {
5622                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5623                         struct list_head sublist;
5624
5625                         /* Handle the previous sublist */
5626                         list_cut_before(&sublist, head, &skb->list);
5627                         if (!list_empty(&sublist))
5628                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5629                         pfmemalloc = !pfmemalloc;
5630                         /* See comments in __netif_receive_skb */
5631                         if (pfmemalloc)
5632                                 noreclaim_flag = memalloc_noreclaim_save();
5633                         else
5634                                 memalloc_noreclaim_restore(noreclaim_flag);
5635                 }
5636         }
5637         /* Handle the remaining sublist */
5638         if (!list_empty(head))
5639                 __netif_receive_skb_list_core(head, pfmemalloc);
5640         /* Restore pflags */
5641         if (pfmemalloc)
5642                 memalloc_noreclaim_restore(noreclaim_flag);
5643 }
5644
5645 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5646 {
5647         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5648         struct bpf_prog *new = xdp->prog;
5649         int ret = 0;
5650
5651         switch (xdp->command) {
5652         case XDP_SETUP_PROG:
5653                 rcu_assign_pointer(dev->xdp_prog, new);
5654                 if (old)
5655                         bpf_prog_put(old);
5656
5657                 if (old && !new) {
5658                         static_branch_dec(&generic_xdp_needed_key);
5659                 } else if (new && !old) {
5660                         static_branch_inc(&generic_xdp_needed_key);
5661                         dev_disable_lro(dev);
5662                         dev_disable_gro_hw(dev);
5663                 }
5664                 break;
5665
5666         default:
5667                 ret = -EINVAL;
5668                 break;
5669         }
5670
5671         return ret;
5672 }
5673
5674 static int netif_receive_skb_internal(struct sk_buff *skb)
5675 {
5676         int ret;
5677
5678         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5679
5680         if (skb_defer_rx_timestamp(skb))
5681                 return NET_RX_SUCCESS;
5682
5683         rcu_read_lock();
5684 #ifdef CONFIG_RPS
5685         if (static_branch_unlikely(&rps_needed)) {
5686                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5687                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5688
5689                 if (cpu >= 0) {
5690                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5691                         rcu_read_unlock();
5692                         return ret;
5693                 }
5694         }
5695 #endif
5696         ret = __netif_receive_skb(skb);
5697         rcu_read_unlock();
5698         return ret;
5699 }
5700
5701 void netif_receive_skb_list_internal(struct list_head *head)
5702 {
5703         struct sk_buff *skb, *next;
5704         struct list_head sublist;
5705
5706         INIT_LIST_HEAD(&sublist);
5707         list_for_each_entry_safe(skb, next, head, list) {
5708                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5709                 skb_list_del_init(skb);
5710                 if (!skb_defer_rx_timestamp(skb))
5711                         list_add_tail(&skb->list, &sublist);
5712         }
5713         list_splice_init(&sublist, head);
5714
5715         rcu_read_lock();
5716 #ifdef CONFIG_RPS
5717         if (static_branch_unlikely(&rps_needed)) {
5718                 list_for_each_entry_safe(skb, next, head, list) {
5719                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5720                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5721
5722                         if (cpu >= 0) {
5723                                 /* Will be handled, remove from list */
5724                                 skb_list_del_init(skb);
5725                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5726                         }
5727                 }
5728         }
5729 #endif
5730         __netif_receive_skb_list(head);
5731         rcu_read_unlock();
5732 }
5733
5734 /**
5735  *      netif_receive_skb - process receive buffer from network
5736  *      @skb: buffer to process
5737  *
5738  *      netif_receive_skb() is the main receive data processing function.
5739  *      It always succeeds. The buffer may be dropped during processing
5740  *      for congestion control or by the protocol layers.
5741  *
5742  *      This function may only be called from softirq context and interrupts
5743  *      should be enabled.
5744  *
5745  *      Return values (usually ignored):
5746  *      NET_RX_SUCCESS: no congestion
5747  *      NET_RX_DROP: packet was dropped
5748  */
5749 int netif_receive_skb(struct sk_buff *skb)
5750 {
5751         int ret;
5752
5753         trace_netif_receive_skb_entry(skb);
5754
5755         ret = netif_receive_skb_internal(skb);
5756         trace_netif_receive_skb_exit(ret);
5757
5758         return ret;
5759 }
5760 EXPORT_SYMBOL(netif_receive_skb);
5761
5762 /**
5763  *      netif_receive_skb_list - process many receive buffers from network
5764  *      @head: list of skbs to process.
5765  *
5766  *      Since return value of netif_receive_skb() is normally ignored, and
5767  *      wouldn't be meaningful for a list, this function returns void.
5768  *
5769  *      This function may only be called from softirq context and interrupts
5770  *      should be enabled.
5771  */
5772 void netif_receive_skb_list(struct list_head *head)
5773 {
5774         struct sk_buff *skb;
5775
5776         if (list_empty(head))
5777                 return;
5778         if (trace_netif_receive_skb_list_entry_enabled()) {
5779                 list_for_each_entry(skb, head, list)
5780                         trace_netif_receive_skb_list_entry(skb);
5781         }
5782         netif_receive_skb_list_internal(head);
5783         trace_netif_receive_skb_list_exit(0);
5784 }
5785 EXPORT_SYMBOL(netif_receive_skb_list);
5786
5787 static DEFINE_PER_CPU(struct work_struct, flush_works);
5788
5789 /* Network device is going away, flush any packets still pending */
5790 static void flush_backlog(struct work_struct *work)
5791 {
5792         struct sk_buff *skb, *tmp;
5793         struct softnet_data *sd;
5794
5795         local_bh_disable();
5796         sd = this_cpu_ptr(&softnet_data);
5797
5798         rps_lock_irq_disable(sd);
5799         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5800                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5801                         __skb_unlink(skb, &sd->input_pkt_queue);
5802                         dev_kfree_skb_irq(skb);
5803                         input_queue_head_incr(sd);
5804                 }
5805         }
5806         rps_unlock_irq_enable(sd);
5807
5808         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5809                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5810                         __skb_unlink(skb, &sd->process_queue);
5811                         kfree_skb(skb);
5812                         input_queue_head_incr(sd);
5813                 }
5814         }
5815         local_bh_enable();
5816 }
5817
5818 static bool flush_required(int cpu)
5819 {
5820 #if IS_ENABLED(CONFIG_RPS)
5821         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5822         bool do_flush;
5823
5824         rps_lock_irq_disable(sd);
5825
5826         /* as insertion into process_queue happens with the rps lock held,
5827          * process_queue access may race only with dequeue
5828          */
5829         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5830                    !skb_queue_empty_lockless(&sd->process_queue);
5831         rps_unlock_irq_enable(sd);
5832
5833         return do_flush;
5834 #endif
5835         /* without RPS we can't safely check input_pkt_queue: during a
5836          * concurrent remote skb_queue_splice() we can detect as empty both
5837          * input_pkt_queue and process_queue even if the latter could end-up
5838          * containing a lot of packets.
5839          */
5840         return true;
5841 }
5842
5843 static void flush_all_backlogs(void)
5844 {
5845         static cpumask_t flush_cpus;
5846         unsigned int cpu;
5847
5848         /* since we are under rtnl lock protection we can use static data
5849          * for the cpumask and avoid allocating on stack the possibly
5850          * large mask
5851          */
5852         ASSERT_RTNL();
5853
5854         cpus_read_lock();
5855
5856         cpumask_clear(&flush_cpus);
5857         for_each_online_cpu(cpu) {
5858                 if (flush_required(cpu)) {
5859                         queue_work_on(cpu, system_highpri_wq,
5860                                       per_cpu_ptr(&flush_works, cpu));
5861                         cpumask_set_cpu(cpu, &flush_cpus);
5862                 }
5863         }
5864
5865         /* we can have in flight packet[s] on the cpus we are not flushing,
5866          * synchronize_net() in unregister_netdevice_many() will take care of
5867          * them
5868          */
5869         for_each_cpu(cpu, &flush_cpus)
5870                 flush_work(per_cpu_ptr(&flush_works, cpu));
5871
5872         cpus_read_unlock();
5873 }
5874
5875 static void net_rps_send_ipi(struct softnet_data *remsd)
5876 {
5877 #ifdef CONFIG_RPS
5878         while (remsd) {
5879                 struct softnet_data *next = remsd->rps_ipi_next;
5880
5881                 if (cpu_online(remsd->cpu))
5882                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5883                 remsd = next;
5884         }
5885 #endif
5886 }
5887
5888 /*
5889  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5890  * Note: called with local irq disabled, but exits with local irq enabled.
5891  */
5892 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5893 {
5894 #ifdef CONFIG_RPS
5895         struct softnet_data *remsd = sd->rps_ipi_list;
5896
5897         if (remsd) {
5898                 sd->rps_ipi_list = NULL;
5899
5900                 local_irq_enable();
5901
5902                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5903                 net_rps_send_ipi(remsd);
5904         } else
5905 #endif
5906                 local_irq_enable();
5907 }
5908
5909 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5910 {
5911 #ifdef CONFIG_RPS
5912         return sd->rps_ipi_list != NULL;
5913 #else
5914         return false;
5915 #endif
5916 }
5917
5918 static int process_backlog(struct napi_struct *napi, int quota)
5919 {
5920         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5921         bool again = true;
5922         int work = 0;
5923
5924         /* Check if we have pending ipi, its better to send them now,
5925          * not waiting net_rx_action() end.
5926          */
5927         if (sd_has_rps_ipi_waiting(sd)) {
5928                 local_irq_disable();
5929                 net_rps_action_and_irq_enable(sd);
5930         }
5931
5932         napi->weight = READ_ONCE(dev_rx_weight);
5933         while (again) {
5934                 struct sk_buff *skb;
5935
5936                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5937                         rcu_read_lock();
5938                         __netif_receive_skb(skb);
5939                         rcu_read_unlock();
5940                         input_queue_head_incr(sd);
5941                         if (++work >= quota)
5942                                 return work;
5943
5944                 }
5945
5946                 rps_lock_irq_disable(sd);
5947                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5948                         /*
5949                          * Inline a custom version of __napi_complete().
5950                          * only current cpu owns and manipulates this napi,
5951                          * and NAPI_STATE_SCHED is the only possible flag set
5952                          * on backlog.
5953                          * We can use a plain write instead of clear_bit(),
5954                          * and we dont need an smp_mb() memory barrier.
5955                          */
5956                         napi->state = 0;
5957                         again = false;
5958                 } else {
5959                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5960                                                    &sd->process_queue);
5961                 }
5962                 rps_unlock_irq_enable(sd);
5963         }
5964
5965         return work;
5966 }
5967
5968 /**
5969  * __napi_schedule - schedule for receive
5970  * @n: entry to schedule
5971  *
5972  * The entry's receive function will be scheduled to run.
5973  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5974  */
5975 void __napi_schedule(struct napi_struct *n)
5976 {
5977         unsigned long flags;
5978
5979         local_irq_save(flags);
5980         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5981         local_irq_restore(flags);
5982 }
5983 EXPORT_SYMBOL(__napi_schedule);
5984
5985 /**
5986  *      napi_schedule_prep - check if napi can be scheduled
5987  *      @n: napi context
5988  *
5989  * Test if NAPI routine is already running, and if not mark
5990  * it as running.  This is used as a condition variable to
5991  * insure only one NAPI poll instance runs.  We also make
5992  * sure there is no pending NAPI disable.
5993  */
5994 bool napi_schedule_prep(struct napi_struct *n)
5995 {
5996         unsigned long val, new;
5997
5998         do {
5999                 val = READ_ONCE(n->state);
6000                 if (unlikely(val & NAPIF_STATE_DISABLE))
6001                         return false;
6002                 new = val | NAPIF_STATE_SCHED;
6003
6004                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6005                  * This was suggested by Alexander Duyck, as compiler
6006                  * emits better code than :
6007                  * if (val & NAPIF_STATE_SCHED)
6008                  *     new |= NAPIF_STATE_MISSED;
6009                  */
6010                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6011                                                    NAPIF_STATE_MISSED;
6012         } while (cmpxchg(&n->state, val, new) != val);
6013
6014         return !(val & NAPIF_STATE_SCHED);
6015 }
6016 EXPORT_SYMBOL(napi_schedule_prep);
6017
6018 /**
6019  * __napi_schedule_irqoff - schedule for receive
6020  * @n: entry to schedule
6021  *
6022  * Variant of __napi_schedule() assuming hard irqs are masked.
6023  *
6024  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6025  * because the interrupt disabled assumption might not be true
6026  * due to force-threaded interrupts and spinlock substitution.
6027  */
6028 void __napi_schedule_irqoff(struct napi_struct *n)
6029 {
6030         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6031                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6032         else
6033                 __napi_schedule(n);
6034 }
6035 EXPORT_SYMBOL(__napi_schedule_irqoff);
6036
6037 bool napi_complete_done(struct napi_struct *n, int work_done)
6038 {
6039         unsigned long flags, val, new, timeout = 0;
6040         bool ret = true;
6041
6042         /*
6043          * 1) Don't let napi dequeue from the cpu poll list
6044          *    just in case its running on a different cpu.
6045          * 2) If we are busy polling, do nothing here, we have
6046          *    the guarantee we will be called later.
6047          */
6048         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6049                                  NAPIF_STATE_IN_BUSY_POLL)))
6050                 return false;
6051
6052         if (work_done) {
6053                 if (n->gro_bitmask)
6054                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6055                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6056         }
6057         if (n->defer_hard_irqs_count > 0) {
6058                 n->defer_hard_irqs_count--;
6059                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6060                 if (timeout)
6061                         ret = false;
6062         }
6063         if (n->gro_bitmask) {
6064                 /* When the NAPI instance uses a timeout and keeps postponing
6065                  * it, we need to bound somehow the time packets are kept in
6066                  * the GRO layer
6067                  */
6068                 napi_gro_flush(n, !!timeout);
6069         }
6070
6071         gro_normal_list(n);
6072
6073         if (unlikely(!list_empty(&n->poll_list))) {
6074                 /* If n->poll_list is not empty, we need to mask irqs */
6075                 local_irq_save(flags);
6076                 list_del_init(&n->poll_list);
6077                 local_irq_restore(flags);
6078         }
6079
6080         do {
6081                 val = READ_ONCE(n->state);
6082
6083                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6084
6085                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6086                               NAPIF_STATE_SCHED_THREADED |
6087                               NAPIF_STATE_PREFER_BUSY_POLL);
6088
6089                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6090                  * because we will call napi->poll() one more time.
6091                  * This C code was suggested by Alexander Duyck to help gcc.
6092                  */
6093                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6094                                                     NAPIF_STATE_SCHED;
6095         } while (cmpxchg(&n->state, val, new) != val);
6096
6097         if (unlikely(val & NAPIF_STATE_MISSED)) {
6098                 __napi_schedule(n);
6099                 return false;
6100         }
6101
6102         if (timeout)
6103                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6104                               HRTIMER_MODE_REL_PINNED);
6105         return ret;
6106 }
6107 EXPORT_SYMBOL(napi_complete_done);
6108
6109 /* must be called under rcu_read_lock(), as we dont take a reference */
6110 static struct napi_struct *napi_by_id(unsigned int napi_id)
6111 {
6112         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6113         struct napi_struct *napi;
6114
6115         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6116                 if (napi->napi_id == napi_id)
6117                         return napi;
6118
6119         return NULL;
6120 }
6121
6122 #if defined(CONFIG_NET_RX_BUSY_POLL)
6123
6124 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6125 {
6126         if (!skip_schedule) {
6127                 gro_normal_list(napi);
6128                 __napi_schedule(napi);
6129                 return;
6130         }
6131
6132         if (napi->gro_bitmask) {
6133                 /* flush too old packets
6134                  * If HZ < 1000, flush all packets.
6135                  */
6136                 napi_gro_flush(napi, HZ >= 1000);
6137         }
6138
6139         gro_normal_list(napi);
6140         clear_bit(NAPI_STATE_SCHED, &napi->state);
6141 }
6142
6143 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6144                            u16 budget)
6145 {
6146         bool skip_schedule = false;
6147         unsigned long timeout;
6148         int rc;
6149
6150         /* Busy polling means there is a high chance device driver hard irq
6151          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6152          * set in napi_schedule_prep().
6153          * Since we are about to call napi->poll() once more, we can safely
6154          * clear NAPI_STATE_MISSED.
6155          *
6156          * Note: x86 could use a single "lock and ..." instruction
6157          * to perform these two clear_bit()
6158          */
6159         clear_bit(NAPI_STATE_MISSED, &napi->state);
6160         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6161
6162         local_bh_disable();
6163
6164         if (prefer_busy_poll) {
6165                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6166                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6167                 if (napi->defer_hard_irqs_count && timeout) {
6168                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6169                         skip_schedule = true;
6170                 }
6171         }
6172
6173         /* All we really want here is to re-enable device interrupts.
6174          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6175          */
6176         rc = napi->poll(napi, budget);
6177         /* We can't gro_normal_list() here, because napi->poll() might have
6178          * rearmed the napi (napi_complete_done()) in which case it could
6179          * already be running on another CPU.
6180          */
6181         trace_napi_poll(napi, rc, budget);
6182         netpoll_poll_unlock(have_poll_lock);
6183         if (rc == budget)
6184                 __busy_poll_stop(napi, skip_schedule);
6185         local_bh_enable();
6186 }
6187
6188 void napi_busy_loop(unsigned int napi_id,
6189                     bool (*loop_end)(void *, unsigned long),
6190                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6191 {
6192         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6193         int (*napi_poll)(struct napi_struct *napi, int budget);
6194         void *have_poll_lock = NULL;
6195         struct napi_struct *napi;
6196
6197 restart:
6198         napi_poll = NULL;
6199
6200         rcu_read_lock();
6201
6202         napi = napi_by_id(napi_id);
6203         if (!napi)
6204                 goto out;
6205
6206         preempt_disable();
6207         for (;;) {
6208                 int work = 0;
6209
6210                 local_bh_disable();
6211                 if (!napi_poll) {
6212                         unsigned long val = READ_ONCE(napi->state);
6213
6214                         /* If multiple threads are competing for this napi,
6215                          * we avoid dirtying napi->state as much as we can.
6216                          */
6217                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6218                                    NAPIF_STATE_IN_BUSY_POLL)) {
6219                                 if (prefer_busy_poll)
6220                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6221                                 goto count;
6222                         }
6223                         if (cmpxchg(&napi->state, val,
6224                                     val | NAPIF_STATE_IN_BUSY_POLL |
6225                                           NAPIF_STATE_SCHED) != val) {
6226                                 if (prefer_busy_poll)
6227                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6228                                 goto count;
6229                         }
6230                         have_poll_lock = netpoll_poll_lock(napi);
6231                         napi_poll = napi->poll;
6232                 }
6233                 work = napi_poll(napi, budget);
6234                 trace_napi_poll(napi, work, budget);
6235                 gro_normal_list(napi);
6236 count:
6237                 if (work > 0)
6238                         __NET_ADD_STATS(dev_net(napi->dev),
6239                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6240                 local_bh_enable();
6241
6242                 if (!loop_end || loop_end(loop_end_arg, start_time))
6243                         break;
6244
6245                 if (unlikely(need_resched())) {
6246                         if (napi_poll)
6247                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6248                         preempt_enable();
6249                         rcu_read_unlock();
6250                         cond_resched();
6251                         if (loop_end(loop_end_arg, start_time))
6252                                 return;
6253                         goto restart;
6254                 }
6255                 cpu_relax();
6256         }
6257         if (napi_poll)
6258                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6259         preempt_enable();
6260 out:
6261         rcu_read_unlock();
6262 }
6263 EXPORT_SYMBOL(napi_busy_loop);
6264
6265 #endif /* CONFIG_NET_RX_BUSY_POLL */
6266
6267 static void napi_hash_add(struct napi_struct *napi)
6268 {
6269         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6270                 return;
6271
6272         spin_lock(&napi_hash_lock);
6273
6274         /* 0..NR_CPUS range is reserved for sender_cpu use */
6275         do {
6276                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6277                         napi_gen_id = MIN_NAPI_ID;
6278         } while (napi_by_id(napi_gen_id));
6279         napi->napi_id = napi_gen_id;
6280
6281         hlist_add_head_rcu(&napi->napi_hash_node,
6282                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6283
6284         spin_unlock(&napi_hash_lock);
6285 }
6286
6287 /* Warning : caller is responsible to make sure rcu grace period
6288  * is respected before freeing memory containing @napi
6289  */
6290 static void napi_hash_del(struct napi_struct *napi)
6291 {
6292         spin_lock(&napi_hash_lock);
6293
6294         hlist_del_init_rcu(&napi->napi_hash_node);
6295
6296         spin_unlock(&napi_hash_lock);
6297 }
6298
6299 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6300 {
6301         struct napi_struct *napi;
6302
6303         napi = container_of(timer, struct napi_struct, timer);
6304
6305         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6306          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6307          */
6308         if (!napi_disable_pending(napi) &&
6309             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6310                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6311                 __napi_schedule_irqoff(napi);
6312         }
6313
6314         return HRTIMER_NORESTART;
6315 }
6316
6317 static void init_gro_hash(struct napi_struct *napi)
6318 {
6319         int i;
6320
6321         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6322                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6323                 napi->gro_hash[i].count = 0;
6324         }
6325         napi->gro_bitmask = 0;
6326 }
6327
6328 int dev_set_threaded(struct net_device *dev, bool threaded)
6329 {
6330         struct napi_struct *napi;
6331         int err = 0;
6332
6333         if (dev->threaded == threaded)
6334                 return 0;
6335
6336         if (threaded) {
6337                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6338                         if (!napi->thread) {
6339                                 err = napi_kthread_create(napi);
6340                                 if (err) {
6341                                         threaded = false;
6342                                         break;
6343                                 }
6344                         }
6345                 }
6346         }
6347
6348         dev->threaded = threaded;
6349
6350         /* Make sure kthread is created before THREADED bit
6351          * is set.
6352          */
6353         smp_mb__before_atomic();
6354
6355         /* Setting/unsetting threaded mode on a napi might not immediately
6356          * take effect, if the current napi instance is actively being
6357          * polled. In this case, the switch between threaded mode and
6358          * softirq mode will happen in the next round of napi_schedule().
6359          * This should not cause hiccups/stalls to the live traffic.
6360          */
6361         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6362                 if (threaded)
6363                         set_bit(NAPI_STATE_THREADED, &napi->state);
6364                 else
6365                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6366         }
6367
6368         return err;
6369 }
6370 EXPORT_SYMBOL(dev_set_threaded);
6371
6372 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6373                            int (*poll)(struct napi_struct *, int), int weight)
6374 {
6375         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6376                 return;
6377
6378         INIT_LIST_HEAD(&napi->poll_list);
6379         INIT_HLIST_NODE(&napi->napi_hash_node);
6380         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6381         napi->timer.function = napi_watchdog;
6382         init_gro_hash(napi);
6383         napi->skb = NULL;
6384         INIT_LIST_HEAD(&napi->rx_list);
6385         napi->rx_count = 0;
6386         napi->poll = poll;
6387         if (weight > NAPI_POLL_WEIGHT)
6388                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6389                                 weight);
6390         napi->weight = weight;
6391         napi->dev = dev;
6392 #ifdef CONFIG_NETPOLL
6393         napi->poll_owner = -1;
6394 #endif
6395         set_bit(NAPI_STATE_SCHED, &napi->state);
6396         set_bit(NAPI_STATE_NPSVC, &napi->state);
6397         list_add_rcu(&napi->dev_list, &dev->napi_list);
6398         napi_hash_add(napi);
6399         napi_get_frags_check(napi);
6400         /* Create kthread for this napi if dev->threaded is set.
6401          * Clear dev->threaded if kthread creation failed so that
6402          * threaded mode will not be enabled in napi_enable().
6403          */
6404         if (dev->threaded && napi_kthread_create(napi))
6405                 dev->threaded = 0;
6406 }
6407 EXPORT_SYMBOL(netif_napi_add_weight);
6408
6409 void napi_disable(struct napi_struct *n)
6410 {
6411         unsigned long val, new;
6412
6413         might_sleep();
6414         set_bit(NAPI_STATE_DISABLE, &n->state);
6415
6416         for ( ; ; ) {
6417                 val = READ_ONCE(n->state);
6418                 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6419                         usleep_range(20, 200);
6420                         continue;
6421                 }
6422
6423                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6424                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6425
6426                 if (cmpxchg(&n->state, val, new) == val)
6427                         break;
6428         }
6429
6430         hrtimer_cancel(&n->timer);
6431
6432         clear_bit(NAPI_STATE_DISABLE, &n->state);
6433 }
6434 EXPORT_SYMBOL(napi_disable);
6435
6436 /**
6437  *      napi_enable - enable NAPI scheduling
6438  *      @n: NAPI context
6439  *
6440  * Resume NAPI from being scheduled on this context.
6441  * Must be paired with napi_disable.
6442  */
6443 void napi_enable(struct napi_struct *n)
6444 {
6445         unsigned long val, new;
6446
6447         do {
6448                 val = READ_ONCE(n->state);
6449                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6450
6451                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6452                 if (n->dev->threaded && n->thread)
6453                         new |= NAPIF_STATE_THREADED;
6454         } while (cmpxchg(&n->state, val, new) != val);
6455 }
6456 EXPORT_SYMBOL(napi_enable);
6457
6458 static void flush_gro_hash(struct napi_struct *napi)
6459 {
6460         int i;
6461
6462         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6463                 struct sk_buff *skb, *n;
6464
6465                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6466                         kfree_skb(skb);
6467                 napi->gro_hash[i].count = 0;
6468         }
6469 }
6470
6471 /* Must be called in process context */
6472 void __netif_napi_del(struct napi_struct *napi)
6473 {
6474         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6475                 return;
6476
6477         napi_hash_del(napi);
6478         list_del_rcu(&napi->dev_list);
6479         napi_free_frags(napi);
6480
6481         flush_gro_hash(napi);
6482         napi->gro_bitmask = 0;
6483
6484         if (napi->thread) {
6485                 kthread_stop(napi->thread);
6486                 napi->thread = NULL;
6487         }
6488 }
6489 EXPORT_SYMBOL(__netif_napi_del);
6490
6491 static int __napi_poll(struct napi_struct *n, bool *repoll)
6492 {
6493         int work, weight;
6494
6495         weight = n->weight;
6496
6497         /* This NAPI_STATE_SCHED test is for avoiding a race
6498          * with netpoll's poll_napi().  Only the entity which
6499          * obtains the lock and sees NAPI_STATE_SCHED set will
6500          * actually make the ->poll() call.  Therefore we avoid
6501          * accidentally calling ->poll() when NAPI is not scheduled.
6502          */
6503         work = 0;
6504         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6505                 work = n->poll(n, weight);
6506                 trace_napi_poll(n, work, weight);
6507         }
6508
6509         if (unlikely(work > weight))
6510                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6511                                 n->poll, work, weight);
6512
6513         if (likely(work < weight))
6514                 return work;
6515
6516         /* Drivers must not modify the NAPI state if they
6517          * consume the entire weight.  In such cases this code
6518          * still "owns" the NAPI instance and therefore can
6519          * move the instance around on the list at-will.
6520          */
6521         if (unlikely(napi_disable_pending(n))) {
6522                 napi_complete(n);
6523                 return work;
6524         }
6525
6526         /* The NAPI context has more processing work, but busy-polling
6527          * is preferred. Exit early.
6528          */
6529         if (napi_prefer_busy_poll(n)) {
6530                 if (napi_complete_done(n, work)) {
6531                         /* If timeout is not set, we need to make sure
6532                          * that the NAPI is re-scheduled.
6533                          */
6534                         napi_schedule(n);
6535                 }
6536                 return work;
6537         }
6538
6539         if (n->gro_bitmask) {
6540                 /* flush too old packets
6541                  * If HZ < 1000, flush all packets.
6542                  */
6543                 napi_gro_flush(n, HZ >= 1000);
6544         }
6545
6546         gro_normal_list(n);
6547
6548         /* Some drivers may have called napi_schedule
6549          * prior to exhausting their budget.
6550          */
6551         if (unlikely(!list_empty(&n->poll_list))) {
6552                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6553                              n->dev ? n->dev->name : "backlog");
6554                 return work;
6555         }
6556
6557         *repoll = true;
6558
6559         return work;
6560 }
6561
6562 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6563 {
6564         bool do_repoll = false;
6565         void *have;
6566         int work;
6567
6568         list_del_init(&n->poll_list);
6569
6570         have = netpoll_poll_lock(n);
6571
6572         work = __napi_poll(n, &do_repoll);
6573
6574         if (do_repoll)
6575                 list_add_tail(&n->poll_list, repoll);
6576
6577         netpoll_poll_unlock(have);
6578
6579         return work;
6580 }
6581
6582 static int napi_thread_wait(struct napi_struct *napi)
6583 {
6584         bool woken = false;
6585
6586         set_current_state(TASK_INTERRUPTIBLE);
6587
6588         while (!kthread_should_stop()) {
6589                 /* Testing SCHED_THREADED bit here to make sure the current
6590                  * kthread owns this napi and could poll on this napi.
6591                  * Testing SCHED bit is not enough because SCHED bit might be
6592                  * set by some other busy poll thread or by napi_disable().
6593                  */
6594                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6595                         WARN_ON(!list_empty(&napi->poll_list));
6596                         __set_current_state(TASK_RUNNING);
6597                         return 0;
6598                 }
6599
6600                 schedule();
6601                 /* woken being true indicates this thread owns this napi. */
6602                 woken = true;
6603                 set_current_state(TASK_INTERRUPTIBLE);
6604         }
6605         __set_current_state(TASK_RUNNING);
6606
6607         return -1;
6608 }
6609
6610 static int napi_threaded_poll(void *data)
6611 {
6612         struct napi_struct *napi = data;
6613         void *have;
6614
6615         while (!napi_thread_wait(napi)) {
6616                 for (;;) {
6617                         bool repoll = false;
6618
6619                         local_bh_disable();
6620
6621                         have = netpoll_poll_lock(napi);
6622                         __napi_poll(napi, &repoll);
6623                         netpoll_poll_unlock(have);
6624
6625                         local_bh_enable();
6626
6627                         if (!repoll)
6628                                 break;
6629
6630                         cond_resched();
6631                 }
6632         }
6633         return 0;
6634 }
6635
6636 static void skb_defer_free_flush(struct softnet_data *sd)
6637 {
6638         struct sk_buff *skb, *next;
6639         unsigned long flags;
6640
6641         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6642         if (!READ_ONCE(sd->defer_list))
6643                 return;
6644
6645         spin_lock_irqsave(&sd->defer_lock, flags);
6646         skb = sd->defer_list;
6647         sd->defer_list = NULL;
6648         sd->defer_count = 0;
6649         spin_unlock_irqrestore(&sd->defer_lock, flags);
6650
6651         while (skb != NULL) {
6652                 next = skb->next;
6653                 napi_consume_skb(skb, 1);
6654                 skb = next;
6655         }
6656 }
6657
6658 static __latent_entropy void net_rx_action(struct softirq_action *h)
6659 {
6660         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6661         unsigned long time_limit = jiffies +
6662                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6663         int budget = READ_ONCE(netdev_budget);
6664         LIST_HEAD(list);
6665         LIST_HEAD(repoll);
6666
6667         local_irq_disable();
6668         list_splice_init(&sd->poll_list, &list);
6669         local_irq_enable();
6670
6671         for (;;) {
6672                 struct napi_struct *n;
6673
6674                 skb_defer_free_flush(sd);
6675
6676                 if (list_empty(&list)) {
6677                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6678                                 goto end;
6679                         break;
6680                 }
6681
6682                 n = list_first_entry(&list, struct napi_struct, poll_list);
6683                 budget -= napi_poll(n, &repoll);
6684
6685                 /* If softirq window is exhausted then punt.
6686                  * Allow this to run for 2 jiffies since which will allow
6687                  * an average latency of 1.5/HZ.
6688                  */
6689                 if (unlikely(budget <= 0 ||
6690                              time_after_eq(jiffies, time_limit))) {
6691                         sd->time_squeeze++;
6692                         break;
6693                 }
6694         }
6695
6696         local_irq_disable();
6697
6698         list_splice_tail_init(&sd->poll_list, &list);
6699         list_splice_tail(&repoll, &list);
6700         list_splice(&list, &sd->poll_list);
6701         if (!list_empty(&sd->poll_list))
6702                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6703
6704         net_rps_action_and_irq_enable(sd);
6705 end:;
6706 }
6707
6708 struct netdev_adjacent {
6709         struct net_device *dev;
6710         netdevice_tracker dev_tracker;
6711
6712         /* upper master flag, there can only be one master device per list */
6713         bool master;
6714
6715         /* lookup ignore flag */
6716         bool ignore;
6717
6718         /* counter for the number of times this device was added to us */
6719         u16 ref_nr;
6720
6721         /* private field for the users */
6722         void *private;
6723
6724         struct list_head list;
6725         struct rcu_head rcu;
6726 };
6727
6728 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6729                                                  struct list_head *adj_list)
6730 {
6731         struct netdev_adjacent *adj;
6732
6733         list_for_each_entry(adj, adj_list, list) {
6734                 if (adj->dev == adj_dev)
6735                         return adj;
6736         }
6737         return NULL;
6738 }
6739
6740 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6741                                     struct netdev_nested_priv *priv)
6742 {
6743         struct net_device *dev = (struct net_device *)priv->data;
6744
6745         return upper_dev == dev;
6746 }
6747
6748 /**
6749  * netdev_has_upper_dev - Check if device is linked to an upper device
6750  * @dev: device
6751  * @upper_dev: upper device to check
6752  *
6753  * Find out if a device is linked to specified upper device and return true
6754  * in case it is. Note that this checks only immediate upper device,
6755  * not through a complete stack of devices. The caller must hold the RTNL lock.
6756  */
6757 bool netdev_has_upper_dev(struct net_device *dev,
6758                           struct net_device *upper_dev)
6759 {
6760         struct netdev_nested_priv priv = {
6761                 .data = (void *)upper_dev,
6762         };
6763
6764         ASSERT_RTNL();
6765
6766         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6767                                              &priv);
6768 }
6769 EXPORT_SYMBOL(netdev_has_upper_dev);
6770
6771 /**
6772  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6773  * @dev: device
6774  * @upper_dev: upper device to check
6775  *
6776  * Find out if a device is linked to specified upper device and return true
6777  * in case it is. Note that this checks the entire upper device chain.
6778  * The caller must hold rcu lock.
6779  */
6780
6781 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6782                                   struct net_device *upper_dev)
6783 {
6784         struct netdev_nested_priv priv = {
6785                 .data = (void *)upper_dev,
6786         };
6787
6788         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6789                                                &priv);
6790 }
6791 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6792
6793 /**
6794  * netdev_has_any_upper_dev - Check if device is linked to some device
6795  * @dev: device
6796  *
6797  * Find out if a device is linked to an upper device and return true in case
6798  * it is. The caller must hold the RTNL lock.
6799  */
6800 bool netdev_has_any_upper_dev(struct net_device *dev)
6801 {
6802         ASSERT_RTNL();
6803
6804         return !list_empty(&dev->adj_list.upper);
6805 }
6806 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6807
6808 /**
6809  * netdev_master_upper_dev_get - Get master upper device
6810  * @dev: device
6811  *
6812  * Find a master upper device and return pointer to it or NULL in case
6813  * it's not there. The caller must hold the RTNL lock.
6814  */
6815 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6816 {
6817         struct netdev_adjacent *upper;
6818
6819         ASSERT_RTNL();
6820
6821         if (list_empty(&dev->adj_list.upper))
6822                 return NULL;
6823
6824         upper = list_first_entry(&dev->adj_list.upper,
6825                                  struct netdev_adjacent, list);
6826         if (likely(upper->master))
6827                 return upper->dev;
6828         return NULL;
6829 }
6830 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6831
6832 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6833 {
6834         struct netdev_adjacent *upper;
6835
6836         ASSERT_RTNL();
6837
6838         if (list_empty(&dev->adj_list.upper))
6839                 return NULL;
6840
6841         upper = list_first_entry(&dev->adj_list.upper,
6842                                  struct netdev_adjacent, list);
6843         if (likely(upper->master) && !upper->ignore)
6844                 return upper->dev;
6845         return NULL;
6846 }
6847
6848 /**
6849  * netdev_has_any_lower_dev - Check if device is linked to some device
6850  * @dev: device
6851  *
6852  * Find out if a device is linked to a lower device and return true in case
6853  * it is. The caller must hold the RTNL lock.
6854  */
6855 static bool netdev_has_any_lower_dev(struct net_device *dev)
6856 {
6857         ASSERT_RTNL();
6858
6859         return !list_empty(&dev->adj_list.lower);
6860 }
6861
6862 void *netdev_adjacent_get_private(struct list_head *adj_list)
6863 {
6864         struct netdev_adjacent *adj;
6865
6866         adj = list_entry(adj_list, struct netdev_adjacent, list);
6867
6868         return adj->private;
6869 }
6870 EXPORT_SYMBOL(netdev_adjacent_get_private);
6871
6872 /**
6873  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6874  * @dev: device
6875  * @iter: list_head ** of the current position
6876  *
6877  * Gets the next device from the dev's upper list, starting from iter
6878  * position. The caller must hold RCU read lock.
6879  */
6880 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6881                                                  struct list_head **iter)
6882 {
6883         struct netdev_adjacent *upper;
6884
6885         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6886
6887         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6888
6889         if (&upper->list == &dev->adj_list.upper)
6890                 return NULL;
6891
6892         *iter = &upper->list;
6893
6894         return upper->dev;
6895 }
6896 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6897
6898 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6899                                                   struct list_head **iter,
6900                                                   bool *ignore)
6901 {
6902         struct netdev_adjacent *upper;
6903
6904         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6905
6906         if (&upper->list == &dev->adj_list.upper)
6907                 return NULL;
6908
6909         *iter = &upper->list;
6910         *ignore = upper->ignore;
6911
6912         return upper->dev;
6913 }
6914
6915 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6916                                                     struct list_head **iter)
6917 {
6918         struct netdev_adjacent *upper;
6919
6920         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6921
6922         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6923
6924         if (&upper->list == &dev->adj_list.upper)
6925                 return NULL;
6926
6927         *iter = &upper->list;
6928
6929         return upper->dev;
6930 }
6931
6932 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6933                                        int (*fn)(struct net_device *dev,
6934                                          struct netdev_nested_priv *priv),
6935                                        struct netdev_nested_priv *priv)
6936 {
6937         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6938         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6939         int ret, cur = 0;
6940         bool ignore;
6941
6942         now = dev;
6943         iter = &dev->adj_list.upper;
6944
6945         while (1) {
6946                 if (now != dev) {
6947                         ret = fn(now, priv);
6948                         if (ret)
6949                                 return ret;
6950                 }
6951
6952                 next = NULL;
6953                 while (1) {
6954                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6955                         if (!udev)
6956                                 break;
6957                         if (ignore)
6958                                 continue;
6959
6960                         next = udev;
6961                         niter = &udev->adj_list.upper;
6962                         dev_stack[cur] = now;
6963                         iter_stack[cur++] = iter;
6964                         break;
6965                 }
6966
6967                 if (!next) {
6968                         if (!cur)
6969                                 return 0;
6970                         next = dev_stack[--cur];
6971                         niter = iter_stack[cur];
6972                 }
6973
6974                 now = next;
6975                 iter = niter;
6976         }
6977
6978         return 0;
6979 }
6980
6981 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6982                                   int (*fn)(struct net_device *dev,
6983                                             struct netdev_nested_priv *priv),
6984                                   struct netdev_nested_priv *priv)
6985 {
6986         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6987         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6988         int ret, cur = 0;
6989
6990         now = dev;
6991         iter = &dev->adj_list.upper;
6992
6993         while (1) {
6994                 if (now != dev) {
6995                         ret = fn(now, priv);
6996                         if (ret)
6997                                 return ret;
6998                 }
6999
7000                 next = NULL;
7001                 while (1) {
7002                         udev = netdev_next_upper_dev_rcu(now, &iter);
7003                         if (!udev)
7004                                 break;
7005
7006                         next = udev;
7007                         niter = &udev->adj_list.upper;
7008                         dev_stack[cur] = now;
7009                         iter_stack[cur++] = iter;
7010                         break;
7011                 }
7012
7013                 if (!next) {
7014                         if (!cur)
7015                                 return 0;
7016                         next = dev_stack[--cur];
7017                         niter = iter_stack[cur];
7018                 }
7019
7020                 now = next;
7021                 iter = niter;
7022         }
7023
7024         return 0;
7025 }
7026 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7027
7028 static bool __netdev_has_upper_dev(struct net_device *dev,
7029                                    struct net_device *upper_dev)
7030 {
7031         struct netdev_nested_priv priv = {
7032                 .flags = 0,
7033                 .data = (void *)upper_dev,
7034         };
7035
7036         ASSERT_RTNL();
7037
7038         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7039                                            &priv);
7040 }
7041
7042 /**
7043  * netdev_lower_get_next_private - Get the next ->private from the
7044  *                                 lower neighbour list
7045  * @dev: device
7046  * @iter: list_head ** of the current position
7047  *
7048  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7049  * list, starting from iter position. The caller must hold either hold the
7050  * RTNL lock or its own locking that guarantees that the neighbour lower
7051  * list will remain unchanged.
7052  */
7053 void *netdev_lower_get_next_private(struct net_device *dev,
7054                                     struct list_head **iter)
7055 {
7056         struct netdev_adjacent *lower;
7057
7058         lower = list_entry(*iter, struct netdev_adjacent, list);
7059
7060         if (&lower->list == &dev->adj_list.lower)
7061                 return NULL;
7062
7063         *iter = lower->list.next;
7064
7065         return lower->private;
7066 }
7067 EXPORT_SYMBOL(netdev_lower_get_next_private);
7068
7069 /**
7070  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7071  *                                     lower neighbour list, RCU
7072  *                                     variant
7073  * @dev: device
7074  * @iter: list_head ** of the current position
7075  *
7076  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7077  * list, starting from iter position. The caller must hold RCU read lock.
7078  */
7079 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7080                                         struct list_head **iter)
7081 {
7082         struct netdev_adjacent *lower;
7083
7084         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7085
7086         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7087
7088         if (&lower->list == &dev->adj_list.lower)
7089                 return NULL;
7090
7091         *iter = &lower->list;
7092
7093         return lower->private;
7094 }
7095 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7096
7097 /**
7098  * netdev_lower_get_next - Get the next device from the lower neighbour
7099  *                         list
7100  * @dev: device
7101  * @iter: list_head ** of the current position
7102  *
7103  * Gets the next netdev_adjacent from the dev's lower neighbour
7104  * list, starting from iter position. The caller must hold RTNL lock or
7105  * its own locking that guarantees that the neighbour lower
7106  * list will remain unchanged.
7107  */
7108 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7109 {
7110         struct netdev_adjacent *lower;
7111
7112         lower = list_entry(*iter, struct netdev_adjacent, list);
7113
7114         if (&lower->list == &dev->adj_list.lower)
7115                 return NULL;
7116
7117         *iter = lower->list.next;
7118
7119         return lower->dev;
7120 }
7121 EXPORT_SYMBOL(netdev_lower_get_next);
7122
7123 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7124                                                 struct list_head **iter)
7125 {
7126         struct netdev_adjacent *lower;
7127
7128         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7129
7130         if (&lower->list == &dev->adj_list.lower)
7131                 return NULL;
7132
7133         *iter = &lower->list;
7134
7135         return lower->dev;
7136 }
7137
7138 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7139                                                   struct list_head **iter,
7140                                                   bool *ignore)
7141 {
7142         struct netdev_adjacent *lower;
7143
7144         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7145
7146         if (&lower->list == &dev->adj_list.lower)
7147                 return NULL;
7148
7149         *iter = &lower->list;
7150         *ignore = lower->ignore;
7151
7152         return lower->dev;
7153 }
7154
7155 int netdev_walk_all_lower_dev(struct net_device *dev,
7156                               int (*fn)(struct net_device *dev,
7157                                         struct netdev_nested_priv *priv),
7158                               struct netdev_nested_priv *priv)
7159 {
7160         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7161         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7162         int ret, cur = 0;
7163
7164         now = dev;
7165         iter = &dev->adj_list.lower;
7166
7167         while (1) {
7168                 if (now != dev) {
7169                         ret = fn(now, priv);
7170                         if (ret)
7171                                 return ret;
7172                 }
7173
7174                 next = NULL;
7175                 while (1) {
7176                         ldev = netdev_next_lower_dev(now, &iter);
7177                         if (!ldev)
7178                                 break;
7179
7180                         next = ldev;
7181                         niter = &ldev->adj_list.lower;
7182                         dev_stack[cur] = now;
7183                         iter_stack[cur++] = iter;
7184                         break;
7185                 }
7186
7187                 if (!next) {
7188                         if (!cur)
7189                                 return 0;
7190                         next = dev_stack[--cur];
7191                         niter = iter_stack[cur];
7192                 }
7193
7194                 now = next;
7195                 iter = niter;
7196         }
7197
7198         return 0;
7199 }
7200 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7201
7202 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7203                                        int (*fn)(struct net_device *dev,
7204                                          struct netdev_nested_priv *priv),
7205                                        struct netdev_nested_priv *priv)
7206 {
7207         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7208         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7209         int ret, cur = 0;
7210         bool ignore;
7211
7212         now = dev;
7213         iter = &dev->adj_list.lower;
7214
7215         while (1) {
7216                 if (now != dev) {
7217                         ret = fn(now, priv);
7218                         if (ret)
7219                                 return ret;
7220                 }
7221
7222                 next = NULL;
7223                 while (1) {
7224                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7225                         if (!ldev)
7226                                 break;
7227                         if (ignore)
7228                                 continue;
7229
7230                         next = ldev;
7231                         niter = &ldev->adj_list.lower;
7232                         dev_stack[cur] = now;
7233                         iter_stack[cur++] = iter;
7234                         break;
7235                 }
7236
7237                 if (!next) {
7238                         if (!cur)
7239                                 return 0;
7240                         next = dev_stack[--cur];
7241                         niter = iter_stack[cur];
7242                 }
7243
7244                 now = next;
7245                 iter = niter;
7246         }
7247
7248         return 0;
7249 }
7250
7251 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7252                                              struct list_head **iter)
7253 {
7254         struct netdev_adjacent *lower;
7255
7256         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7257         if (&lower->list == &dev->adj_list.lower)
7258                 return NULL;
7259
7260         *iter = &lower->list;
7261
7262         return lower->dev;
7263 }
7264 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7265
7266 static u8 __netdev_upper_depth(struct net_device *dev)
7267 {
7268         struct net_device *udev;
7269         struct list_head *iter;
7270         u8 max_depth = 0;
7271         bool ignore;
7272
7273         for (iter = &dev->adj_list.upper,
7274              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7275              udev;
7276              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7277                 if (ignore)
7278                         continue;
7279                 if (max_depth < udev->upper_level)
7280                         max_depth = udev->upper_level;
7281         }
7282
7283         return max_depth;
7284 }
7285
7286 static u8 __netdev_lower_depth(struct net_device *dev)
7287 {
7288         struct net_device *ldev;
7289         struct list_head *iter;
7290         u8 max_depth = 0;
7291         bool ignore;
7292
7293         for (iter = &dev->adj_list.lower,
7294              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7295              ldev;
7296              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7297                 if (ignore)
7298                         continue;
7299                 if (max_depth < ldev->lower_level)
7300                         max_depth = ldev->lower_level;
7301         }
7302
7303         return max_depth;
7304 }
7305
7306 static int __netdev_update_upper_level(struct net_device *dev,
7307                                        struct netdev_nested_priv *__unused)
7308 {
7309         dev->upper_level = __netdev_upper_depth(dev) + 1;
7310         return 0;
7311 }
7312
7313 #ifdef CONFIG_LOCKDEP
7314 static LIST_HEAD(net_unlink_list);
7315
7316 static void net_unlink_todo(struct net_device *dev)
7317 {
7318         if (list_empty(&dev->unlink_list))
7319                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7320 }
7321 #endif
7322
7323 static int __netdev_update_lower_level(struct net_device *dev,
7324                                        struct netdev_nested_priv *priv)
7325 {
7326         dev->lower_level = __netdev_lower_depth(dev) + 1;
7327
7328 #ifdef CONFIG_LOCKDEP
7329         if (!priv)
7330                 return 0;
7331
7332         if (priv->flags & NESTED_SYNC_IMM)
7333                 dev->nested_level = dev->lower_level - 1;
7334         if (priv->flags & NESTED_SYNC_TODO)
7335                 net_unlink_todo(dev);
7336 #endif
7337         return 0;
7338 }
7339
7340 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7341                                   int (*fn)(struct net_device *dev,
7342                                             struct netdev_nested_priv *priv),
7343                                   struct netdev_nested_priv *priv)
7344 {
7345         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7346         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7347         int ret, cur = 0;
7348
7349         now = dev;
7350         iter = &dev->adj_list.lower;
7351
7352         while (1) {
7353                 if (now != dev) {
7354                         ret = fn(now, priv);
7355                         if (ret)
7356                                 return ret;
7357                 }
7358
7359                 next = NULL;
7360                 while (1) {
7361                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7362                         if (!ldev)
7363                                 break;
7364
7365                         next = ldev;
7366                         niter = &ldev->adj_list.lower;
7367                         dev_stack[cur] = now;
7368                         iter_stack[cur++] = iter;
7369                         break;
7370                 }
7371
7372                 if (!next) {
7373                         if (!cur)
7374                                 return 0;
7375                         next = dev_stack[--cur];
7376                         niter = iter_stack[cur];
7377                 }
7378
7379                 now = next;
7380                 iter = niter;
7381         }
7382
7383         return 0;
7384 }
7385 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7386
7387 /**
7388  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7389  *                                     lower neighbour list, RCU
7390  *                                     variant
7391  * @dev: device
7392  *
7393  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7394  * list. The caller must hold RCU read lock.
7395  */
7396 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7397 {
7398         struct netdev_adjacent *lower;
7399
7400         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7401                         struct netdev_adjacent, list);
7402         if (lower)
7403                 return lower->private;
7404         return NULL;
7405 }
7406 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7407
7408 /**
7409  * netdev_master_upper_dev_get_rcu - Get master upper device
7410  * @dev: device
7411  *
7412  * Find a master upper device and return pointer to it or NULL in case
7413  * it's not there. The caller must hold the RCU read lock.
7414  */
7415 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7416 {
7417         struct netdev_adjacent *upper;
7418
7419         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7420                                        struct netdev_adjacent, list);
7421         if (upper && likely(upper->master))
7422                 return upper->dev;
7423         return NULL;
7424 }
7425 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7426
7427 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7428                               struct net_device *adj_dev,
7429                               struct list_head *dev_list)
7430 {
7431         char linkname[IFNAMSIZ+7];
7432
7433         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7434                 "upper_%s" : "lower_%s", adj_dev->name);
7435         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7436                                  linkname);
7437 }
7438 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7439                                char *name,
7440                                struct list_head *dev_list)
7441 {
7442         char linkname[IFNAMSIZ+7];
7443
7444         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7445                 "upper_%s" : "lower_%s", name);
7446         sysfs_remove_link(&(dev->dev.kobj), linkname);
7447 }
7448
7449 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7450                                                  struct net_device *adj_dev,
7451                                                  struct list_head *dev_list)
7452 {
7453         return (dev_list == &dev->adj_list.upper ||
7454                 dev_list == &dev->adj_list.lower) &&
7455                 net_eq(dev_net(dev), dev_net(adj_dev));
7456 }
7457
7458 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7459                                         struct net_device *adj_dev,
7460                                         struct list_head *dev_list,
7461                                         void *private, bool master)
7462 {
7463         struct netdev_adjacent *adj;
7464         int ret;
7465
7466         adj = __netdev_find_adj(adj_dev, dev_list);
7467
7468         if (adj) {
7469                 adj->ref_nr += 1;
7470                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7471                          dev->name, adj_dev->name, adj->ref_nr);
7472
7473                 return 0;
7474         }
7475
7476         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7477         if (!adj)
7478                 return -ENOMEM;
7479
7480         adj->dev = adj_dev;
7481         adj->master = master;
7482         adj->ref_nr = 1;
7483         adj->private = private;
7484         adj->ignore = false;
7485         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7486
7487         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7488                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7489
7490         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7491                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7492                 if (ret)
7493                         goto free_adj;
7494         }
7495
7496         /* Ensure that master link is always the first item in list. */
7497         if (master) {
7498                 ret = sysfs_create_link(&(dev->dev.kobj),
7499                                         &(adj_dev->dev.kobj), "master");
7500                 if (ret)
7501                         goto remove_symlinks;
7502
7503                 list_add_rcu(&adj->list, dev_list);
7504         } else {
7505                 list_add_tail_rcu(&adj->list, dev_list);
7506         }
7507
7508         return 0;
7509
7510 remove_symlinks:
7511         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7512                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7513 free_adj:
7514         netdev_put(adj_dev, &adj->dev_tracker);
7515         kfree(adj);
7516
7517         return ret;
7518 }
7519
7520 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7521                                          struct net_device *adj_dev,
7522                                          u16 ref_nr,
7523                                          struct list_head *dev_list)
7524 {
7525         struct netdev_adjacent *adj;
7526
7527         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7528                  dev->name, adj_dev->name, ref_nr);
7529
7530         adj = __netdev_find_adj(adj_dev, dev_list);
7531
7532         if (!adj) {
7533                 pr_err("Adjacency does not exist for device %s from %s\n",
7534                        dev->name, adj_dev->name);
7535                 WARN_ON(1);
7536                 return;
7537         }
7538
7539         if (adj->ref_nr > ref_nr) {
7540                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7541                          dev->name, adj_dev->name, ref_nr,
7542                          adj->ref_nr - ref_nr);
7543                 adj->ref_nr -= ref_nr;
7544                 return;
7545         }
7546
7547         if (adj->master)
7548                 sysfs_remove_link(&(dev->dev.kobj), "master");
7549
7550         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7551                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7552
7553         list_del_rcu(&adj->list);
7554         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7555                  adj_dev->name, dev->name, adj_dev->name);
7556         netdev_put(adj_dev, &adj->dev_tracker);
7557         kfree_rcu(adj, rcu);
7558 }
7559
7560 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7561                                             struct net_device *upper_dev,
7562                                             struct list_head *up_list,
7563                                             struct list_head *down_list,
7564                                             void *private, bool master)
7565 {
7566         int ret;
7567
7568         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7569                                            private, master);
7570         if (ret)
7571                 return ret;
7572
7573         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7574                                            private, false);
7575         if (ret) {
7576                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7577                 return ret;
7578         }
7579
7580         return 0;
7581 }
7582
7583 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7584                                                struct net_device *upper_dev,
7585                                                u16 ref_nr,
7586                                                struct list_head *up_list,
7587                                                struct list_head *down_list)
7588 {
7589         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7590         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7591 }
7592
7593 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7594                                                 struct net_device *upper_dev,
7595                                                 void *private, bool master)
7596 {
7597         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7598                                                 &dev->adj_list.upper,
7599                                                 &upper_dev->adj_list.lower,
7600                                                 private, master);
7601 }
7602
7603 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7604                                                    struct net_device *upper_dev)
7605 {
7606         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7607                                            &dev->adj_list.upper,
7608                                            &upper_dev->adj_list.lower);
7609 }
7610
7611 static int __netdev_upper_dev_link(struct net_device *dev,
7612                                    struct net_device *upper_dev, bool master,
7613                                    void *upper_priv, void *upper_info,
7614                                    struct netdev_nested_priv *priv,
7615                                    struct netlink_ext_ack *extack)
7616 {
7617         struct netdev_notifier_changeupper_info changeupper_info = {
7618                 .info = {
7619                         .dev = dev,
7620                         .extack = extack,
7621                 },
7622                 .upper_dev = upper_dev,
7623                 .master = master,
7624                 .linking = true,
7625                 .upper_info = upper_info,
7626         };
7627         struct net_device *master_dev;
7628         int ret = 0;
7629
7630         ASSERT_RTNL();
7631
7632         if (dev == upper_dev)
7633                 return -EBUSY;
7634
7635         /* To prevent loops, check if dev is not upper device to upper_dev. */
7636         if (__netdev_has_upper_dev(upper_dev, dev))
7637                 return -EBUSY;
7638
7639         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7640                 return -EMLINK;
7641
7642         if (!master) {
7643                 if (__netdev_has_upper_dev(dev, upper_dev))
7644                         return -EEXIST;
7645         } else {
7646                 master_dev = __netdev_master_upper_dev_get(dev);
7647                 if (master_dev)
7648                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7649         }
7650
7651         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7652                                             &changeupper_info.info);
7653         ret = notifier_to_errno(ret);
7654         if (ret)
7655                 return ret;
7656
7657         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7658                                                    master);
7659         if (ret)
7660                 return ret;
7661
7662         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7663                                             &changeupper_info.info);
7664         ret = notifier_to_errno(ret);
7665         if (ret)
7666                 goto rollback;
7667
7668         __netdev_update_upper_level(dev, NULL);
7669         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7670
7671         __netdev_update_lower_level(upper_dev, priv);
7672         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7673                                     priv);
7674
7675         return 0;
7676
7677 rollback:
7678         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7679
7680         return ret;
7681 }
7682
7683 /**
7684  * netdev_upper_dev_link - Add a link to the upper device
7685  * @dev: device
7686  * @upper_dev: new upper device
7687  * @extack: netlink extended ack
7688  *
7689  * Adds a link to device which is upper to this one. The caller must hold
7690  * the RTNL lock. On a failure a negative errno code is returned.
7691  * On success the reference counts are adjusted and the function
7692  * returns zero.
7693  */
7694 int netdev_upper_dev_link(struct net_device *dev,
7695                           struct net_device *upper_dev,
7696                           struct netlink_ext_ack *extack)
7697 {
7698         struct netdev_nested_priv priv = {
7699                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7700                 .data = NULL,
7701         };
7702
7703         return __netdev_upper_dev_link(dev, upper_dev, false,
7704                                        NULL, NULL, &priv, extack);
7705 }
7706 EXPORT_SYMBOL(netdev_upper_dev_link);
7707
7708 /**
7709  * netdev_master_upper_dev_link - Add a master link to the upper device
7710  * @dev: device
7711  * @upper_dev: new upper device
7712  * @upper_priv: upper device private
7713  * @upper_info: upper info to be passed down via notifier
7714  * @extack: netlink extended ack
7715  *
7716  * Adds a link to device which is upper to this one. In this case, only
7717  * one master upper device can be linked, although other non-master devices
7718  * might be linked as well. The caller must hold the RTNL lock.
7719  * On a failure a negative errno code is returned. On success the reference
7720  * counts are adjusted and the function returns zero.
7721  */
7722 int netdev_master_upper_dev_link(struct net_device *dev,
7723                                  struct net_device *upper_dev,
7724                                  void *upper_priv, void *upper_info,
7725                                  struct netlink_ext_ack *extack)
7726 {
7727         struct netdev_nested_priv priv = {
7728                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7729                 .data = NULL,
7730         };
7731
7732         return __netdev_upper_dev_link(dev, upper_dev, true,
7733                                        upper_priv, upper_info, &priv, extack);
7734 }
7735 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7736
7737 static void __netdev_upper_dev_unlink(struct net_device *dev,
7738                                       struct net_device *upper_dev,
7739                                       struct netdev_nested_priv *priv)
7740 {
7741         struct netdev_notifier_changeupper_info changeupper_info = {
7742                 .info = {
7743                         .dev = dev,
7744                 },
7745                 .upper_dev = upper_dev,
7746                 .linking = false,
7747         };
7748
7749         ASSERT_RTNL();
7750
7751         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7752
7753         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7754                                       &changeupper_info.info);
7755
7756         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7757
7758         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7759                                       &changeupper_info.info);
7760
7761         __netdev_update_upper_level(dev, NULL);
7762         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7763
7764         __netdev_update_lower_level(upper_dev, priv);
7765         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7766                                     priv);
7767 }
7768
7769 /**
7770  * netdev_upper_dev_unlink - Removes a link to upper device
7771  * @dev: device
7772  * @upper_dev: new upper device
7773  *
7774  * Removes a link to device which is upper to this one. The caller must hold
7775  * the RTNL lock.
7776  */
7777 void netdev_upper_dev_unlink(struct net_device *dev,
7778                              struct net_device *upper_dev)
7779 {
7780         struct netdev_nested_priv priv = {
7781                 .flags = NESTED_SYNC_TODO,
7782                 .data = NULL,
7783         };
7784
7785         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7786 }
7787 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7788
7789 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7790                                       struct net_device *lower_dev,
7791                                       bool val)
7792 {
7793         struct netdev_adjacent *adj;
7794
7795         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7796         if (adj)
7797                 adj->ignore = val;
7798
7799         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7800         if (adj)
7801                 adj->ignore = val;
7802 }
7803
7804 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7805                                         struct net_device *lower_dev)
7806 {
7807         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7808 }
7809
7810 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7811                                        struct net_device *lower_dev)
7812 {
7813         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7814 }
7815
7816 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7817                                    struct net_device *new_dev,
7818                                    struct net_device *dev,
7819                                    struct netlink_ext_ack *extack)
7820 {
7821         struct netdev_nested_priv priv = {
7822                 .flags = 0,
7823                 .data = NULL,
7824         };
7825         int err;
7826
7827         if (!new_dev)
7828                 return 0;
7829
7830         if (old_dev && new_dev != old_dev)
7831                 netdev_adjacent_dev_disable(dev, old_dev);
7832         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7833                                       extack);
7834         if (err) {
7835                 if (old_dev && new_dev != old_dev)
7836                         netdev_adjacent_dev_enable(dev, old_dev);
7837                 return err;
7838         }
7839
7840         return 0;
7841 }
7842 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7843
7844 void netdev_adjacent_change_commit(struct net_device *old_dev,
7845                                    struct net_device *new_dev,
7846                                    struct net_device *dev)
7847 {
7848         struct netdev_nested_priv priv = {
7849                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7850                 .data = NULL,
7851         };
7852
7853         if (!new_dev || !old_dev)
7854                 return;
7855
7856         if (new_dev == old_dev)
7857                 return;
7858
7859         netdev_adjacent_dev_enable(dev, old_dev);
7860         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7861 }
7862 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7863
7864 void netdev_adjacent_change_abort(struct net_device *old_dev,
7865                                   struct net_device *new_dev,
7866                                   struct net_device *dev)
7867 {
7868         struct netdev_nested_priv priv = {
7869                 .flags = 0,
7870                 .data = NULL,
7871         };
7872
7873         if (!new_dev)
7874                 return;
7875
7876         if (old_dev && new_dev != old_dev)
7877                 netdev_adjacent_dev_enable(dev, old_dev);
7878
7879         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7880 }
7881 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7882
7883 /**
7884  * netdev_bonding_info_change - Dispatch event about slave change
7885  * @dev: device
7886  * @bonding_info: info to dispatch
7887  *
7888  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7889  * The caller must hold the RTNL lock.
7890  */
7891 void netdev_bonding_info_change(struct net_device *dev,
7892                                 struct netdev_bonding_info *bonding_info)
7893 {
7894         struct netdev_notifier_bonding_info info = {
7895                 .info.dev = dev,
7896         };
7897
7898         memcpy(&info.bonding_info, bonding_info,
7899                sizeof(struct netdev_bonding_info));
7900         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7901                                       &info.info);
7902 }
7903 EXPORT_SYMBOL(netdev_bonding_info_change);
7904
7905 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7906                                            struct netlink_ext_ack *extack)
7907 {
7908         struct netdev_notifier_offload_xstats_info info = {
7909                 .info.dev = dev,
7910                 .info.extack = extack,
7911                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7912         };
7913         int err;
7914         int rc;
7915
7916         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7917                                          GFP_KERNEL);
7918         if (!dev->offload_xstats_l3)
7919                 return -ENOMEM;
7920
7921         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7922                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7923                                                   &info.info);
7924         err = notifier_to_errno(rc);
7925         if (err)
7926                 goto free_stats;
7927
7928         return 0;
7929
7930 free_stats:
7931         kfree(dev->offload_xstats_l3);
7932         dev->offload_xstats_l3 = NULL;
7933         return err;
7934 }
7935
7936 int netdev_offload_xstats_enable(struct net_device *dev,
7937                                  enum netdev_offload_xstats_type type,
7938                                  struct netlink_ext_ack *extack)
7939 {
7940         ASSERT_RTNL();
7941
7942         if (netdev_offload_xstats_enabled(dev, type))
7943                 return -EALREADY;
7944
7945         switch (type) {
7946         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7947                 return netdev_offload_xstats_enable_l3(dev, extack);
7948         }
7949
7950         WARN_ON(1);
7951         return -EINVAL;
7952 }
7953 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7954
7955 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7956 {
7957         struct netdev_notifier_offload_xstats_info info = {
7958                 .info.dev = dev,
7959                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7960         };
7961
7962         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7963                                       &info.info);
7964         kfree(dev->offload_xstats_l3);
7965         dev->offload_xstats_l3 = NULL;
7966 }
7967
7968 int netdev_offload_xstats_disable(struct net_device *dev,
7969                                   enum netdev_offload_xstats_type type)
7970 {
7971         ASSERT_RTNL();
7972
7973         if (!netdev_offload_xstats_enabled(dev, type))
7974                 return -EALREADY;
7975
7976         switch (type) {
7977         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7978                 netdev_offload_xstats_disable_l3(dev);
7979                 return 0;
7980         }
7981
7982         WARN_ON(1);
7983         return -EINVAL;
7984 }
7985 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7986
7987 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7988 {
7989         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7990 }
7991
7992 static struct rtnl_hw_stats64 *
7993 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7994                               enum netdev_offload_xstats_type type)
7995 {
7996         switch (type) {
7997         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7998                 return dev->offload_xstats_l3;
7999         }
8000
8001         WARN_ON(1);
8002         return NULL;
8003 }
8004
8005 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8006                                    enum netdev_offload_xstats_type type)
8007 {
8008         ASSERT_RTNL();
8009
8010         return netdev_offload_xstats_get_ptr(dev, type);
8011 }
8012 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8013
8014 struct netdev_notifier_offload_xstats_ru {
8015         bool used;
8016 };
8017
8018 struct netdev_notifier_offload_xstats_rd {
8019         struct rtnl_hw_stats64 stats;
8020         bool used;
8021 };
8022
8023 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8024                                   const struct rtnl_hw_stats64 *src)
8025 {
8026         dest->rx_packets          += src->rx_packets;
8027         dest->tx_packets          += src->tx_packets;
8028         dest->rx_bytes            += src->rx_bytes;
8029         dest->tx_bytes            += src->tx_bytes;
8030         dest->rx_errors           += src->rx_errors;
8031         dest->tx_errors           += src->tx_errors;
8032         dest->rx_dropped          += src->rx_dropped;
8033         dest->tx_dropped          += src->tx_dropped;
8034         dest->multicast           += src->multicast;
8035 }
8036
8037 static int netdev_offload_xstats_get_used(struct net_device *dev,
8038                                           enum netdev_offload_xstats_type type,
8039                                           bool *p_used,
8040                                           struct netlink_ext_ack *extack)
8041 {
8042         struct netdev_notifier_offload_xstats_ru report_used = {};
8043         struct netdev_notifier_offload_xstats_info info = {
8044                 .info.dev = dev,
8045                 .info.extack = extack,
8046                 .type = type,
8047                 .report_used = &report_used,
8048         };
8049         int rc;
8050
8051         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8052         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8053                                            &info.info);
8054         *p_used = report_used.used;
8055         return notifier_to_errno(rc);
8056 }
8057
8058 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8059                                            enum netdev_offload_xstats_type type,
8060                                            struct rtnl_hw_stats64 *p_stats,
8061                                            bool *p_used,
8062                                            struct netlink_ext_ack *extack)
8063 {
8064         struct netdev_notifier_offload_xstats_rd report_delta = {};
8065         struct netdev_notifier_offload_xstats_info info = {
8066                 .info.dev = dev,
8067                 .info.extack = extack,
8068                 .type = type,
8069                 .report_delta = &report_delta,
8070         };
8071         struct rtnl_hw_stats64 *stats;
8072         int rc;
8073
8074         stats = netdev_offload_xstats_get_ptr(dev, type);
8075         if (WARN_ON(!stats))
8076                 return -EINVAL;
8077
8078         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8079                                            &info.info);
8080
8081         /* Cache whatever we got, even if there was an error, otherwise the
8082          * successful stats retrievals would get lost.
8083          */
8084         netdev_hw_stats64_add(stats, &report_delta.stats);
8085
8086         if (p_stats)
8087                 *p_stats = *stats;
8088         *p_used = report_delta.used;
8089
8090         return notifier_to_errno(rc);
8091 }
8092
8093 int netdev_offload_xstats_get(struct net_device *dev,
8094                               enum netdev_offload_xstats_type type,
8095                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8096                               struct netlink_ext_ack *extack)
8097 {
8098         ASSERT_RTNL();
8099
8100         if (p_stats)
8101                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8102                                                        p_used, extack);
8103         else
8104                 return netdev_offload_xstats_get_used(dev, type, p_used,
8105                                                       extack);
8106 }
8107 EXPORT_SYMBOL(netdev_offload_xstats_get);
8108
8109 void
8110 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8111                                    const struct rtnl_hw_stats64 *stats)
8112 {
8113         report_delta->used = true;
8114         netdev_hw_stats64_add(&report_delta->stats, stats);
8115 }
8116 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8117
8118 void
8119 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8120 {
8121         report_used->used = true;
8122 }
8123 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8124
8125 void netdev_offload_xstats_push_delta(struct net_device *dev,
8126                                       enum netdev_offload_xstats_type type,
8127                                       const struct rtnl_hw_stats64 *p_stats)
8128 {
8129         struct rtnl_hw_stats64 *stats;
8130
8131         ASSERT_RTNL();
8132
8133         stats = netdev_offload_xstats_get_ptr(dev, type);
8134         if (WARN_ON(!stats))
8135                 return;
8136
8137         netdev_hw_stats64_add(stats, p_stats);
8138 }
8139 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8140
8141 /**
8142  * netdev_get_xmit_slave - Get the xmit slave of master device
8143  * @dev: device
8144  * @skb: The packet
8145  * @all_slaves: assume all the slaves are active
8146  *
8147  * The reference counters are not incremented so the caller must be
8148  * careful with locks. The caller must hold RCU lock.
8149  * %NULL is returned if no slave is found.
8150  */
8151
8152 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8153                                          struct sk_buff *skb,
8154                                          bool all_slaves)
8155 {
8156         const struct net_device_ops *ops = dev->netdev_ops;
8157
8158         if (!ops->ndo_get_xmit_slave)
8159                 return NULL;
8160         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8161 }
8162 EXPORT_SYMBOL(netdev_get_xmit_slave);
8163
8164 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8165                                                   struct sock *sk)
8166 {
8167         const struct net_device_ops *ops = dev->netdev_ops;
8168
8169         if (!ops->ndo_sk_get_lower_dev)
8170                 return NULL;
8171         return ops->ndo_sk_get_lower_dev(dev, sk);
8172 }
8173
8174 /**
8175  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8176  * @dev: device
8177  * @sk: the socket
8178  *
8179  * %NULL is returned if no lower device is found.
8180  */
8181
8182 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8183                                             struct sock *sk)
8184 {
8185         struct net_device *lower;
8186
8187         lower = netdev_sk_get_lower_dev(dev, sk);
8188         while (lower) {
8189                 dev = lower;
8190                 lower = netdev_sk_get_lower_dev(dev, sk);
8191         }
8192
8193         return dev;
8194 }
8195 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8196
8197 static void netdev_adjacent_add_links(struct net_device *dev)
8198 {
8199         struct netdev_adjacent *iter;
8200
8201         struct net *net = dev_net(dev);
8202
8203         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8204                 if (!net_eq(net, dev_net(iter->dev)))
8205                         continue;
8206                 netdev_adjacent_sysfs_add(iter->dev, dev,
8207                                           &iter->dev->adj_list.lower);
8208                 netdev_adjacent_sysfs_add(dev, iter->dev,
8209                                           &dev->adj_list.upper);
8210         }
8211
8212         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8213                 if (!net_eq(net, dev_net(iter->dev)))
8214                         continue;
8215                 netdev_adjacent_sysfs_add(iter->dev, dev,
8216                                           &iter->dev->adj_list.upper);
8217                 netdev_adjacent_sysfs_add(dev, iter->dev,
8218                                           &dev->adj_list.lower);
8219         }
8220 }
8221
8222 static void netdev_adjacent_del_links(struct net_device *dev)
8223 {
8224         struct netdev_adjacent *iter;
8225
8226         struct net *net = dev_net(dev);
8227
8228         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8229                 if (!net_eq(net, dev_net(iter->dev)))
8230                         continue;
8231                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8232                                           &iter->dev->adj_list.lower);
8233                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8234                                           &dev->adj_list.upper);
8235         }
8236
8237         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8238                 if (!net_eq(net, dev_net(iter->dev)))
8239                         continue;
8240                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8241                                           &iter->dev->adj_list.upper);
8242                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8243                                           &dev->adj_list.lower);
8244         }
8245 }
8246
8247 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8248 {
8249         struct netdev_adjacent *iter;
8250
8251         struct net *net = dev_net(dev);
8252
8253         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8254                 if (!net_eq(net, dev_net(iter->dev)))
8255                         continue;
8256                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8257                                           &iter->dev->adj_list.lower);
8258                 netdev_adjacent_sysfs_add(iter->dev, dev,
8259                                           &iter->dev->adj_list.lower);
8260         }
8261
8262         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8263                 if (!net_eq(net, dev_net(iter->dev)))
8264                         continue;
8265                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8266                                           &iter->dev->adj_list.upper);
8267                 netdev_adjacent_sysfs_add(iter->dev, dev,
8268                                           &iter->dev->adj_list.upper);
8269         }
8270 }
8271
8272 void *netdev_lower_dev_get_private(struct net_device *dev,
8273                                    struct net_device *lower_dev)
8274 {
8275         struct netdev_adjacent *lower;
8276
8277         if (!lower_dev)
8278                 return NULL;
8279         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8280         if (!lower)
8281                 return NULL;
8282
8283         return lower->private;
8284 }
8285 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8286
8287
8288 /**
8289  * netdev_lower_state_changed - Dispatch event about lower device state change
8290  * @lower_dev: device
8291  * @lower_state_info: state to dispatch
8292  *
8293  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8294  * The caller must hold the RTNL lock.
8295  */
8296 void netdev_lower_state_changed(struct net_device *lower_dev,
8297                                 void *lower_state_info)
8298 {
8299         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8300                 .info.dev = lower_dev,
8301         };
8302
8303         ASSERT_RTNL();
8304         changelowerstate_info.lower_state_info = lower_state_info;
8305         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8306                                       &changelowerstate_info.info);
8307 }
8308 EXPORT_SYMBOL(netdev_lower_state_changed);
8309
8310 static void dev_change_rx_flags(struct net_device *dev, int flags)
8311 {
8312         const struct net_device_ops *ops = dev->netdev_ops;
8313
8314         if (ops->ndo_change_rx_flags)
8315                 ops->ndo_change_rx_flags(dev, flags);
8316 }
8317
8318 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8319 {
8320         unsigned int old_flags = dev->flags;
8321         kuid_t uid;
8322         kgid_t gid;
8323
8324         ASSERT_RTNL();
8325
8326         dev->flags |= IFF_PROMISC;
8327         dev->promiscuity += inc;
8328         if (dev->promiscuity == 0) {
8329                 /*
8330                  * Avoid overflow.
8331                  * If inc causes overflow, untouch promisc and return error.
8332                  */
8333                 if (inc < 0)
8334                         dev->flags &= ~IFF_PROMISC;
8335                 else {
8336                         dev->promiscuity -= inc;
8337                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8338                         return -EOVERFLOW;
8339                 }
8340         }
8341         if (dev->flags != old_flags) {
8342                 pr_info("device %s %s promiscuous mode\n",
8343                         dev->name,
8344                         dev->flags & IFF_PROMISC ? "entered" : "left");
8345                 if (audit_enabled) {
8346                         current_uid_gid(&uid, &gid);
8347                         audit_log(audit_context(), GFP_ATOMIC,
8348                                   AUDIT_ANOM_PROMISCUOUS,
8349                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8350                                   dev->name, (dev->flags & IFF_PROMISC),
8351                                   (old_flags & IFF_PROMISC),
8352                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8353                                   from_kuid(&init_user_ns, uid),
8354                                   from_kgid(&init_user_ns, gid),
8355                                   audit_get_sessionid(current));
8356                 }
8357
8358                 dev_change_rx_flags(dev, IFF_PROMISC);
8359         }
8360         if (notify)
8361                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8362         return 0;
8363 }
8364
8365 /**
8366  *      dev_set_promiscuity     - update promiscuity count on a device
8367  *      @dev: device
8368  *      @inc: modifier
8369  *
8370  *      Add or remove promiscuity from a device. While the count in the device
8371  *      remains above zero the interface remains promiscuous. Once it hits zero
8372  *      the device reverts back to normal filtering operation. A negative inc
8373  *      value is used to drop promiscuity on the device.
8374  *      Return 0 if successful or a negative errno code on error.
8375  */
8376 int dev_set_promiscuity(struct net_device *dev, int inc)
8377 {
8378         unsigned int old_flags = dev->flags;
8379         int err;
8380
8381         err = __dev_set_promiscuity(dev, inc, true);
8382         if (err < 0)
8383                 return err;
8384         if (dev->flags != old_flags)
8385                 dev_set_rx_mode(dev);
8386         return err;
8387 }
8388 EXPORT_SYMBOL(dev_set_promiscuity);
8389
8390 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8391 {
8392         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8393
8394         ASSERT_RTNL();
8395
8396         dev->flags |= IFF_ALLMULTI;
8397         dev->allmulti += inc;
8398         if (dev->allmulti == 0) {
8399                 /*
8400                  * Avoid overflow.
8401                  * If inc causes overflow, untouch allmulti and return error.
8402                  */
8403                 if (inc < 0)
8404                         dev->flags &= ~IFF_ALLMULTI;
8405                 else {
8406                         dev->allmulti -= inc;
8407                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8408                         return -EOVERFLOW;
8409                 }
8410         }
8411         if (dev->flags ^ old_flags) {
8412                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8413                 dev_set_rx_mode(dev);
8414                 if (notify)
8415                         __dev_notify_flags(dev, old_flags,
8416                                            dev->gflags ^ old_gflags);
8417         }
8418         return 0;
8419 }
8420
8421 /**
8422  *      dev_set_allmulti        - update allmulti count on a device
8423  *      @dev: device
8424  *      @inc: modifier
8425  *
8426  *      Add or remove reception of all multicast frames to a device. While the
8427  *      count in the device remains above zero the interface remains listening
8428  *      to all interfaces. Once it hits zero the device reverts back to normal
8429  *      filtering operation. A negative @inc value is used to drop the counter
8430  *      when releasing a resource needing all multicasts.
8431  *      Return 0 if successful or a negative errno code on error.
8432  */
8433
8434 int dev_set_allmulti(struct net_device *dev, int inc)
8435 {
8436         return __dev_set_allmulti(dev, inc, true);
8437 }
8438 EXPORT_SYMBOL(dev_set_allmulti);
8439
8440 /*
8441  *      Upload unicast and multicast address lists to device and
8442  *      configure RX filtering. When the device doesn't support unicast
8443  *      filtering it is put in promiscuous mode while unicast addresses
8444  *      are present.
8445  */
8446 void __dev_set_rx_mode(struct net_device *dev)
8447 {
8448         const struct net_device_ops *ops = dev->netdev_ops;
8449
8450         /* dev_open will call this function so the list will stay sane. */
8451         if (!(dev->flags&IFF_UP))
8452                 return;
8453
8454         if (!netif_device_present(dev))
8455                 return;
8456
8457         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8458                 /* Unicast addresses changes may only happen under the rtnl,
8459                  * therefore calling __dev_set_promiscuity here is safe.
8460                  */
8461                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8462                         __dev_set_promiscuity(dev, 1, false);
8463                         dev->uc_promisc = true;
8464                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8465                         __dev_set_promiscuity(dev, -1, false);
8466                         dev->uc_promisc = false;
8467                 }
8468         }
8469
8470         if (ops->ndo_set_rx_mode)
8471                 ops->ndo_set_rx_mode(dev);
8472 }
8473
8474 void dev_set_rx_mode(struct net_device *dev)
8475 {
8476         netif_addr_lock_bh(dev);
8477         __dev_set_rx_mode(dev);
8478         netif_addr_unlock_bh(dev);
8479 }
8480
8481 /**
8482  *      dev_get_flags - get flags reported to userspace
8483  *      @dev: device
8484  *
8485  *      Get the combination of flag bits exported through APIs to userspace.
8486  */
8487 unsigned int dev_get_flags(const struct net_device *dev)
8488 {
8489         unsigned int flags;
8490
8491         flags = (dev->flags & ~(IFF_PROMISC |
8492                                 IFF_ALLMULTI |
8493                                 IFF_RUNNING |
8494                                 IFF_LOWER_UP |
8495                                 IFF_DORMANT)) |
8496                 (dev->gflags & (IFF_PROMISC |
8497                                 IFF_ALLMULTI));
8498
8499         if (netif_running(dev)) {
8500                 if (netif_oper_up(dev))
8501                         flags |= IFF_RUNNING;
8502                 if (netif_carrier_ok(dev))
8503                         flags |= IFF_LOWER_UP;
8504                 if (netif_dormant(dev))
8505                         flags |= IFF_DORMANT;
8506         }
8507
8508         return flags;
8509 }
8510 EXPORT_SYMBOL(dev_get_flags);
8511
8512 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8513                        struct netlink_ext_ack *extack)
8514 {
8515         unsigned int old_flags = dev->flags;
8516         int ret;
8517
8518         ASSERT_RTNL();
8519
8520         /*
8521          *      Set the flags on our device.
8522          */
8523
8524         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8525                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8526                                IFF_AUTOMEDIA)) |
8527                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8528                                     IFF_ALLMULTI));
8529
8530         /*
8531          *      Load in the correct multicast list now the flags have changed.
8532          */
8533
8534         if ((old_flags ^ flags) & IFF_MULTICAST)
8535                 dev_change_rx_flags(dev, IFF_MULTICAST);
8536
8537         dev_set_rx_mode(dev);
8538
8539         /*
8540          *      Have we downed the interface. We handle IFF_UP ourselves
8541          *      according to user attempts to set it, rather than blindly
8542          *      setting it.
8543          */
8544
8545         ret = 0;
8546         if ((old_flags ^ flags) & IFF_UP) {
8547                 if (old_flags & IFF_UP)
8548                         __dev_close(dev);
8549                 else
8550                         ret = __dev_open(dev, extack);
8551         }
8552
8553         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8554                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8555                 unsigned int old_flags = dev->flags;
8556
8557                 dev->gflags ^= IFF_PROMISC;
8558
8559                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8560                         if (dev->flags != old_flags)
8561                                 dev_set_rx_mode(dev);
8562         }
8563
8564         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8565          * is important. Some (broken) drivers set IFF_PROMISC, when
8566          * IFF_ALLMULTI is requested not asking us and not reporting.
8567          */
8568         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8569                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8570
8571                 dev->gflags ^= IFF_ALLMULTI;
8572                 __dev_set_allmulti(dev, inc, false);
8573         }
8574
8575         return ret;
8576 }
8577
8578 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8579                         unsigned int gchanges)
8580 {
8581         unsigned int changes = dev->flags ^ old_flags;
8582
8583         if (gchanges)
8584                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8585
8586         if (changes & IFF_UP) {
8587                 if (dev->flags & IFF_UP)
8588                         call_netdevice_notifiers(NETDEV_UP, dev);
8589                 else
8590                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8591         }
8592
8593         if (dev->flags & IFF_UP &&
8594             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8595                 struct netdev_notifier_change_info change_info = {
8596                         .info = {
8597                                 .dev = dev,
8598                         },
8599                         .flags_changed = changes,
8600                 };
8601
8602                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8603         }
8604 }
8605
8606 /**
8607  *      dev_change_flags - change device settings
8608  *      @dev: device
8609  *      @flags: device state flags
8610  *      @extack: netlink extended ack
8611  *
8612  *      Change settings on device based state flags. The flags are
8613  *      in the userspace exported format.
8614  */
8615 int dev_change_flags(struct net_device *dev, unsigned int flags,
8616                      struct netlink_ext_ack *extack)
8617 {
8618         int ret;
8619         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8620
8621         ret = __dev_change_flags(dev, flags, extack);
8622         if (ret < 0)
8623                 return ret;
8624
8625         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8626         __dev_notify_flags(dev, old_flags, changes);
8627         return ret;
8628 }
8629 EXPORT_SYMBOL(dev_change_flags);
8630
8631 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8632 {
8633         const struct net_device_ops *ops = dev->netdev_ops;
8634
8635         if (ops->ndo_change_mtu)
8636                 return ops->ndo_change_mtu(dev, new_mtu);
8637
8638         /* Pairs with all the lockless reads of dev->mtu in the stack */
8639         WRITE_ONCE(dev->mtu, new_mtu);
8640         return 0;
8641 }
8642 EXPORT_SYMBOL(__dev_set_mtu);
8643
8644 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8645                      struct netlink_ext_ack *extack)
8646 {
8647         /* MTU must be positive, and in range */
8648         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8649                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8650                 return -EINVAL;
8651         }
8652
8653         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8654                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8655                 return -EINVAL;
8656         }
8657         return 0;
8658 }
8659
8660 /**
8661  *      dev_set_mtu_ext - Change maximum transfer unit
8662  *      @dev: device
8663  *      @new_mtu: new transfer unit
8664  *      @extack: netlink extended ack
8665  *
8666  *      Change the maximum transfer size of the network device.
8667  */
8668 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8669                     struct netlink_ext_ack *extack)
8670 {
8671         int err, orig_mtu;
8672
8673         if (new_mtu == dev->mtu)
8674                 return 0;
8675
8676         err = dev_validate_mtu(dev, new_mtu, extack);
8677         if (err)
8678                 return err;
8679
8680         if (!netif_device_present(dev))
8681                 return -ENODEV;
8682
8683         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8684         err = notifier_to_errno(err);
8685         if (err)
8686                 return err;
8687
8688         orig_mtu = dev->mtu;
8689         err = __dev_set_mtu(dev, new_mtu);
8690
8691         if (!err) {
8692                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8693                                                    orig_mtu);
8694                 err = notifier_to_errno(err);
8695                 if (err) {
8696                         /* setting mtu back and notifying everyone again,
8697                          * so that they have a chance to revert changes.
8698                          */
8699                         __dev_set_mtu(dev, orig_mtu);
8700                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8701                                                      new_mtu);
8702                 }
8703         }
8704         return err;
8705 }
8706
8707 int dev_set_mtu(struct net_device *dev, int new_mtu)
8708 {
8709         struct netlink_ext_ack extack;
8710         int err;
8711
8712         memset(&extack, 0, sizeof(extack));
8713         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8714         if (err && extack._msg)
8715                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8716         return err;
8717 }
8718 EXPORT_SYMBOL(dev_set_mtu);
8719
8720 /**
8721  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8722  *      @dev: device
8723  *      @new_len: new tx queue length
8724  */
8725 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8726 {
8727         unsigned int orig_len = dev->tx_queue_len;
8728         int res;
8729
8730         if (new_len != (unsigned int)new_len)
8731                 return -ERANGE;
8732
8733         if (new_len != orig_len) {
8734                 dev->tx_queue_len = new_len;
8735                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8736                 res = notifier_to_errno(res);
8737                 if (res)
8738                         goto err_rollback;
8739                 res = dev_qdisc_change_tx_queue_len(dev);
8740                 if (res)
8741                         goto err_rollback;
8742         }
8743
8744         return 0;
8745
8746 err_rollback:
8747         netdev_err(dev, "refused to change device tx_queue_len\n");
8748         dev->tx_queue_len = orig_len;
8749         return res;
8750 }
8751
8752 /**
8753  *      dev_set_group - Change group this device belongs to
8754  *      @dev: device
8755  *      @new_group: group this device should belong to
8756  */
8757 void dev_set_group(struct net_device *dev, int new_group)
8758 {
8759         dev->group = new_group;
8760 }
8761
8762 /**
8763  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8764  *      @dev: device
8765  *      @addr: new address
8766  *      @extack: netlink extended ack
8767  */
8768 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8769                               struct netlink_ext_ack *extack)
8770 {
8771         struct netdev_notifier_pre_changeaddr_info info = {
8772                 .info.dev = dev,
8773                 .info.extack = extack,
8774                 .dev_addr = addr,
8775         };
8776         int rc;
8777
8778         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8779         return notifier_to_errno(rc);
8780 }
8781 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8782
8783 /**
8784  *      dev_set_mac_address - Change Media Access Control Address
8785  *      @dev: device
8786  *      @sa: new address
8787  *      @extack: netlink extended ack
8788  *
8789  *      Change the hardware (MAC) address of the device
8790  */
8791 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8792                         struct netlink_ext_ack *extack)
8793 {
8794         const struct net_device_ops *ops = dev->netdev_ops;
8795         int err;
8796
8797         if (!ops->ndo_set_mac_address)
8798                 return -EOPNOTSUPP;
8799         if (sa->sa_family != dev->type)
8800                 return -EINVAL;
8801         if (!netif_device_present(dev))
8802                 return -ENODEV;
8803         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8804         if (err)
8805                 return err;
8806         err = ops->ndo_set_mac_address(dev, sa);
8807         if (err)
8808                 return err;
8809         dev->addr_assign_type = NET_ADDR_SET;
8810         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8811         add_device_randomness(dev->dev_addr, dev->addr_len);
8812         return 0;
8813 }
8814 EXPORT_SYMBOL(dev_set_mac_address);
8815
8816 static DECLARE_RWSEM(dev_addr_sem);
8817
8818 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8819                              struct netlink_ext_ack *extack)
8820 {
8821         int ret;
8822
8823         down_write(&dev_addr_sem);
8824         ret = dev_set_mac_address(dev, sa, extack);
8825         up_write(&dev_addr_sem);
8826         return ret;
8827 }
8828 EXPORT_SYMBOL(dev_set_mac_address_user);
8829
8830 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8831 {
8832         size_t size = sizeof(sa->sa_data);
8833         struct net_device *dev;
8834         int ret = 0;
8835
8836         down_read(&dev_addr_sem);
8837         rcu_read_lock();
8838
8839         dev = dev_get_by_name_rcu(net, dev_name);
8840         if (!dev) {
8841                 ret = -ENODEV;
8842                 goto unlock;
8843         }
8844         if (!dev->addr_len)
8845                 memset(sa->sa_data, 0, size);
8846         else
8847                 memcpy(sa->sa_data, dev->dev_addr,
8848                        min_t(size_t, size, dev->addr_len));
8849         sa->sa_family = dev->type;
8850
8851 unlock:
8852         rcu_read_unlock();
8853         up_read(&dev_addr_sem);
8854         return ret;
8855 }
8856 EXPORT_SYMBOL(dev_get_mac_address);
8857
8858 /**
8859  *      dev_change_carrier - Change device carrier
8860  *      @dev: device
8861  *      @new_carrier: new value
8862  *
8863  *      Change device carrier
8864  */
8865 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8866 {
8867         const struct net_device_ops *ops = dev->netdev_ops;
8868
8869         if (!ops->ndo_change_carrier)
8870                 return -EOPNOTSUPP;
8871         if (!netif_device_present(dev))
8872                 return -ENODEV;
8873         return ops->ndo_change_carrier(dev, new_carrier);
8874 }
8875
8876 /**
8877  *      dev_get_phys_port_id - Get device physical port ID
8878  *      @dev: device
8879  *      @ppid: port ID
8880  *
8881  *      Get device physical port ID
8882  */
8883 int dev_get_phys_port_id(struct net_device *dev,
8884                          struct netdev_phys_item_id *ppid)
8885 {
8886         const struct net_device_ops *ops = dev->netdev_ops;
8887
8888         if (!ops->ndo_get_phys_port_id)
8889                 return -EOPNOTSUPP;
8890         return ops->ndo_get_phys_port_id(dev, ppid);
8891 }
8892
8893 /**
8894  *      dev_get_phys_port_name - Get device physical port name
8895  *      @dev: device
8896  *      @name: port name
8897  *      @len: limit of bytes to copy to name
8898  *
8899  *      Get device physical port name
8900  */
8901 int dev_get_phys_port_name(struct net_device *dev,
8902                            char *name, size_t len)
8903 {
8904         const struct net_device_ops *ops = dev->netdev_ops;
8905         int err;
8906
8907         if (ops->ndo_get_phys_port_name) {
8908                 err = ops->ndo_get_phys_port_name(dev, name, len);
8909                 if (err != -EOPNOTSUPP)
8910                         return err;
8911         }
8912         return devlink_compat_phys_port_name_get(dev, name, len);
8913 }
8914
8915 /**
8916  *      dev_get_port_parent_id - Get the device's port parent identifier
8917  *      @dev: network device
8918  *      @ppid: pointer to a storage for the port's parent identifier
8919  *      @recurse: allow/disallow recursion to lower devices
8920  *
8921  *      Get the devices's port parent identifier
8922  */
8923 int dev_get_port_parent_id(struct net_device *dev,
8924                            struct netdev_phys_item_id *ppid,
8925                            bool recurse)
8926 {
8927         const struct net_device_ops *ops = dev->netdev_ops;
8928         struct netdev_phys_item_id first = { };
8929         struct net_device *lower_dev;
8930         struct list_head *iter;
8931         int err;
8932
8933         if (ops->ndo_get_port_parent_id) {
8934                 err = ops->ndo_get_port_parent_id(dev, ppid);
8935                 if (err != -EOPNOTSUPP)
8936                         return err;
8937         }
8938
8939         err = devlink_compat_switch_id_get(dev, ppid);
8940         if (!recurse || err != -EOPNOTSUPP)
8941                 return err;
8942
8943         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8944                 err = dev_get_port_parent_id(lower_dev, ppid, true);
8945                 if (err)
8946                         break;
8947                 if (!first.id_len)
8948                         first = *ppid;
8949                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8950                         return -EOPNOTSUPP;
8951         }
8952
8953         return err;
8954 }
8955 EXPORT_SYMBOL(dev_get_port_parent_id);
8956
8957 /**
8958  *      netdev_port_same_parent_id - Indicate if two network devices have
8959  *      the same port parent identifier
8960  *      @a: first network device
8961  *      @b: second network device
8962  */
8963 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8964 {
8965         struct netdev_phys_item_id a_id = { };
8966         struct netdev_phys_item_id b_id = { };
8967
8968         if (dev_get_port_parent_id(a, &a_id, true) ||
8969             dev_get_port_parent_id(b, &b_id, true))
8970                 return false;
8971
8972         return netdev_phys_item_id_same(&a_id, &b_id);
8973 }
8974 EXPORT_SYMBOL(netdev_port_same_parent_id);
8975
8976 /**
8977  *      dev_change_proto_down - set carrier according to proto_down.
8978  *
8979  *      @dev: device
8980  *      @proto_down: new value
8981  */
8982 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8983 {
8984         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8985                 return -EOPNOTSUPP;
8986         if (!netif_device_present(dev))
8987                 return -ENODEV;
8988         if (proto_down)
8989                 netif_carrier_off(dev);
8990         else
8991                 netif_carrier_on(dev);
8992         dev->proto_down = proto_down;
8993         return 0;
8994 }
8995
8996 /**
8997  *      dev_change_proto_down_reason - proto down reason
8998  *
8999  *      @dev: device
9000  *      @mask: proto down mask
9001  *      @value: proto down value
9002  */
9003 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9004                                   u32 value)
9005 {
9006         int b;
9007
9008         if (!mask) {
9009                 dev->proto_down_reason = value;
9010         } else {
9011                 for_each_set_bit(b, &mask, 32) {
9012                         if (value & (1 << b))
9013                                 dev->proto_down_reason |= BIT(b);
9014                         else
9015                                 dev->proto_down_reason &= ~BIT(b);
9016                 }
9017         }
9018 }
9019
9020 struct bpf_xdp_link {
9021         struct bpf_link link;
9022         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9023         int flags;
9024 };
9025
9026 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9027 {
9028         if (flags & XDP_FLAGS_HW_MODE)
9029                 return XDP_MODE_HW;
9030         if (flags & XDP_FLAGS_DRV_MODE)
9031                 return XDP_MODE_DRV;
9032         if (flags & XDP_FLAGS_SKB_MODE)
9033                 return XDP_MODE_SKB;
9034         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9035 }
9036
9037 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9038 {
9039         switch (mode) {
9040         case XDP_MODE_SKB:
9041                 return generic_xdp_install;
9042         case XDP_MODE_DRV:
9043         case XDP_MODE_HW:
9044                 return dev->netdev_ops->ndo_bpf;
9045         default:
9046                 return NULL;
9047         }
9048 }
9049
9050 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9051                                          enum bpf_xdp_mode mode)
9052 {
9053         return dev->xdp_state[mode].link;
9054 }
9055
9056 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9057                                      enum bpf_xdp_mode mode)
9058 {
9059         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9060
9061         if (link)
9062                 return link->link.prog;
9063         return dev->xdp_state[mode].prog;
9064 }
9065
9066 u8 dev_xdp_prog_count(struct net_device *dev)
9067 {
9068         u8 count = 0;
9069         int i;
9070
9071         for (i = 0; i < __MAX_XDP_MODE; i++)
9072                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9073                         count++;
9074         return count;
9075 }
9076 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9077
9078 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9079 {
9080         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9081
9082         return prog ? prog->aux->id : 0;
9083 }
9084
9085 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9086                              struct bpf_xdp_link *link)
9087 {
9088         dev->xdp_state[mode].link = link;
9089         dev->xdp_state[mode].prog = NULL;
9090 }
9091
9092 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9093                              struct bpf_prog *prog)
9094 {
9095         dev->xdp_state[mode].link = NULL;
9096         dev->xdp_state[mode].prog = prog;
9097 }
9098
9099 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9100                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9101                            u32 flags, struct bpf_prog *prog)
9102 {
9103         struct netdev_bpf xdp;
9104         int err;
9105
9106         memset(&xdp, 0, sizeof(xdp));
9107         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9108         xdp.extack = extack;
9109         xdp.flags = flags;
9110         xdp.prog = prog;
9111
9112         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9113          * "moved" into driver), so they don't increment it on their own, but
9114          * they do decrement refcnt when program is detached or replaced.
9115          * Given net_device also owns link/prog, we need to bump refcnt here
9116          * to prevent drivers from underflowing it.
9117          */
9118         if (prog)
9119                 bpf_prog_inc(prog);
9120         err = bpf_op(dev, &xdp);
9121         if (err) {
9122                 if (prog)
9123                         bpf_prog_put(prog);
9124                 return err;
9125         }
9126
9127         if (mode != XDP_MODE_HW)
9128                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9129
9130         return 0;
9131 }
9132
9133 static void dev_xdp_uninstall(struct net_device *dev)
9134 {
9135         struct bpf_xdp_link *link;
9136         struct bpf_prog *prog;
9137         enum bpf_xdp_mode mode;
9138         bpf_op_t bpf_op;
9139
9140         ASSERT_RTNL();
9141
9142         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9143                 prog = dev_xdp_prog(dev, mode);
9144                 if (!prog)
9145                         continue;
9146
9147                 bpf_op = dev_xdp_bpf_op(dev, mode);
9148                 if (!bpf_op)
9149                         continue;
9150
9151                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9152
9153                 /* auto-detach link from net device */
9154                 link = dev_xdp_link(dev, mode);
9155                 if (link)
9156                         link->dev = NULL;
9157                 else
9158                         bpf_prog_put(prog);
9159
9160                 dev_xdp_set_link(dev, mode, NULL);
9161         }
9162 }
9163
9164 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9165                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9166                           struct bpf_prog *old_prog, u32 flags)
9167 {
9168         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9169         struct bpf_prog *cur_prog;
9170         struct net_device *upper;
9171         struct list_head *iter;
9172         enum bpf_xdp_mode mode;
9173         bpf_op_t bpf_op;
9174         int err;
9175
9176         ASSERT_RTNL();
9177
9178         /* either link or prog attachment, never both */
9179         if (link && (new_prog || old_prog))
9180                 return -EINVAL;
9181         /* link supports only XDP mode flags */
9182         if (link && (flags & ~XDP_FLAGS_MODES)) {
9183                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9184                 return -EINVAL;
9185         }
9186         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9187         if (num_modes > 1) {
9188                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9189                 return -EINVAL;
9190         }
9191         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9192         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9193                 NL_SET_ERR_MSG(extack,
9194                                "More than one program loaded, unset mode is ambiguous");
9195                 return -EINVAL;
9196         }
9197         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9198         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9199                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9200                 return -EINVAL;
9201         }
9202
9203         mode = dev_xdp_mode(dev, flags);
9204         /* can't replace attached link */
9205         if (dev_xdp_link(dev, mode)) {
9206                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9207                 return -EBUSY;
9208         }
9209
9210         /* don't allow if an upper device already has a program */
9211         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9212                 if (dev_xdp_prog_count(upper) > 0) {
9213                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9214                         return -EEXIST;
9215                 }
9216         }
9217
9218         cur_prog = dev_xdp_prog(dev, mode);
9219         /* can't replace attached prog with link */
9220         if (link && cur_prog) {
9221                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9222                 return -EBUSY;
9223         }
9224         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9225                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9226                 return -EEXIST;
9227         }
9228
9229         /* put effective new program into new_prog */
9230         if (link)
9231                 new_prog = link->link.prog;
9232
9233         if (new_prog) {
9234                 bool offload = mode == XDP_MODE_HW;
9235                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9236                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9237
9238                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9239                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9240                         return -EBUSY;
9241                 }
9242                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9243                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9244                         return -EEXIST;
9245                 }
9246                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9247                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9248                         return -EINVAL;
9249                 }
9250                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9251                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9252                         return -EINVAL;
9253                 }
9254                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9255                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9256                         return -EINVAL;
9257                 }
9258         }
9259
9260         /* don't call drivers if the effective program didn't change */
9261         if (new_prog != cur_prog) {
9262                 bpf_op = dev_xdp_bpf_op(dev, mode);
9263                 if (!bpf_op) {
9264                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9265                         return -EOPNOTSUPP;
9266                 }
9267
9268                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9269                 if (err)
9270                         return err;
9271         }
9272
9273         if (link)
9274                 dev_xdp_set_link(dev, mode, link);
9275         else
9276                 dev_xdp_set_prog(dev, mode, new_prog);
9277         if (cur_prog)
9278                 bpf_prog_put(cur_prog);
9279
9280         return 0;
9281 }
9282
9283 static int dev_xdp_attach_link(struct net_device *dev,
9284                                struct netlink_ext_ack *extack,
9285                                struct bpf_xdp_link *link)
9286 {
9287         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9288 }
9289
9290 static int dev_xdp_detach_link(struct net_device *dev,
9291                                struct netlink_ext_ack *extack,
9292                                struct bpf_xdp_link *link)
9293 {
9294         enum bpf_xdp_mode mode;
9295         bpf_op_t bpf_op;
9296
9297         ASSERT_RTNL();
9298
9299         mode = dev_xdp_mode(dev, link->flags);
9300         if (dev_xdp_link(dev, mode) != link)
9301                 return -EINVAL;
9302
9303         bpf_op = dev_xdp_bpf_op(dev, mode);
9304         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9305         dev_xdp_set_link(dev, mode, NULL);
9306         return 0;
9307 }
9308
9309 static void bpf_xdp_link_release(struct bpf_link *link)
9310 {
9311         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9312
9313         rtnl_lock();
9314
9315         /* if racing with net_device's tear down, xdp_link->dev might be
9316          * already NULL, in which case link was already auto-detached
9317          */
9318         if (xdp_link->dev) {
9319                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9320                 xdp_link->dev = NULL;
9321         }
9322
9323         rtnl_unlock();
9324 }
9325
9326 static int bpf_xdp_link_detach(struct bpf_link *link)
9327 {
9328         bpf_xdp_link_release(link);
9329         return 0;
9330 }
9331
9332 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9333 {
9334         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9335
9336         kfree(xdp_link);
9337 }
9338
9339 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9340                                      struct seq_file *seq)
9341 {
9342         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9343         u32 ifindex = 0;
9344
9345         rtnl_lock();
9346         if (xdp_link->dev)
9347                 ifindex = xdp_link->dev->ifindex;
9348         rtnl_unlock();
9349
9350         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9351 }
9352
9353 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9354                                        struct bpf_link_info *info)
9355 {
9356         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9357         u32 ifindex = 0;
9358
9359         rtnl_lock();
9360         if (xdp_link->dev)
9361                 ifindex = xdp_link->dev->ifindex;
9362         rtnl_unlock();
9363
9364         info->xdp.ifindex = ifindex;
9365         return 0;
9366 }
9367
9368 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9369                                struct bpf_prog *old_prog)
9370 {
9371         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9372         enum bpf_xdp_mode mode;
9373         bpf_op_t bpf_op;
9374         int err = 0;
9375
9376         rtnl_lock();
9377
9378         /* link might have been auto-released already, so fail */
9379         if (!xdp_link->dev) {
9380                 err = -ENOLINK;
9381                 goto out_unlock;
9382         }
9383
9384         if (old_prog && link->prog != old_prog) {
9385                 err = -EPERM;
9386                 goto out_unlock;
9387         }
9388         old_prog = link->prog;
9389         if (old_prog->type != new_prog->type ||
9390             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9391                 err = -EINVAL;
9392                 goto out_unlock;
9393         }
9394
9395         if (old_prog == new_prog) {
9396                 /* no-op, don't disturb drivers */
9397                 bpf_prog_put(new_prog);
9398                 goto out_unlock;
9399         }
9400
9401         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9402         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9403         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9404                               xdp_link->flags, new_prog);
9405         if (err)
9406                 goto out_unlock;
9407
9408         old_prog = xchg(&link->prog, new_prog);
9409         bpf_prog_put(old_prog);
9410
9411 out_unlock:
9412         rtnl_unlock();
9413         return err;
9414 }
9415
9416 static const struct bpf_link_ops bpf_xdp_link_lops = {
9417         .release = bpf_xdp_link_release,
9418         .dealloc = bpf_xdp_link_dealloc,
9419         .detach = bpf_xdp_link_detach,
9420         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9421         .fill_link_info = bpf_xdp_link_fill_link_info,
9422         .update_prog = bpf_xdp_link_update,
9423 };
9424
9425 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9426 {
9427         struct net *net = current->nsproxy->net_ns;
9428         struct bpf_link_primer link_primer;
9429         struct bpf_xdp_link *link;
9430         struct net_device *dev;
9431         int err, fd;
9432
9433         rtnl_lock();
9434         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9435         if (!dev) {
9436                 rtnl_unlock();
9437                 return -EINVAL;
9438         }
9439
9440         link = kzalloc(sizeof(*link), GFP_USER);
9441         if (!link) {
9442                 err = -ENOMEM;
9443                 goto unlock;
9444         }
9445
9446         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9447         link->dev = dev;
9448         link->flags = attr->link_create.flags;
9449
9450         err = bpf_link_prime(&link->link, &link_primer);
9451         if (err) {
9452                 kfree(link);
9453                 goto unlock;
9454         }
9455
9456         err = dev_xdp_attach_link(dev, NULL, link);
9457         rtnl_unlock();
9458
9459         if (err) {
9460                 link->dev = NULL;
9461                 bpf_link_cleanup(&link_primer);
9462                 goto out_put_dev;
9463         }
9464
9465         fd = bpf_link_settle(&link_primer);
9466         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9467         dev_put(dev);
9468         return fd;
9469
9470 unlock:
9471         rtnl_unlock();
9472
9473 out_put_dev:
9474         dev_put(dev);
9475         return err;
9476 }
9477
9478 /**
9479  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9480  *      @dev: device
9481  *      @extack: netlink extended ack
9482  *      @fd: new program fd or negative value to clear
9483  *      @expected_fd: old program fd that userspace expects to replace or clear
9484  *      @flags: xdp-related flags
9485  *
9486  *      Set or clear a bpf program for a device
9487  */
9488 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9489                       int fd, int expected_fd, u32 flags)
9490 {
9491         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9492         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9493         int err;
9494
9495         ASSERT_RTNL();
9496
9497         if (fd >= 0) {
9498                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9499                                                  mode != XDP_MODE_SKB);
9500                 if (IS_ERR(new_prog))
9501                         return PTR_ERR(new_prog);
9502         }
9503
9504         if (expected_fd >= 0) {
9505                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9506                                                  mode != XDP_MODE_SKB);
9507                 if (IS_ERR(old_prog)) {
9508                         err = PTR_ERR(old_prog);
9509                         old_prog = NULL;
9510                         goto err_out;
9511                 }
9512         }
9513
9514         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9515
9516 err_out:
9517         if (err && new_prog)
9518                 bpf_prog_put(new_prog);
9519         if (old_prog)
9520                 bpf_prog_put(old_prog);
9521         return err;
9522 }
9523
9524 /**
9525  *      dev_new_index   -       allocate an ifindex
9526  *      @net: the applicable net namespace
9527  *
9528  *      Returns a suitable unique value for a new device interface
9529  *      number.  The caller must hold the rtnl semaphore or the
9530  *      dev_base_lock to be sure it remains unique.
9531  */
9532 static int dev_new_index(struct net *net)
9533 {
9534         int ifindex = net->ifindex;
9535
9536         for (;;) {
9537                 if (++ifindex <= 0)
9538                         ifindex = 1;
9539                 if (!__dev_get_by_index(net, ifindex))
9540                         return net->ifindex = ifindex;
9541         }
9542 }
9543
9544 /* Delayed registration/unregisteration */
9545 LIST_HEAD(net_todo_list);
9546 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9547
9548 static void net_set_todo(struct net_device *dev)
9549 {
9550         list_add_tail(&dev->todo_list, &net_todo_list);
9551         atomic_inc(&dev_net(dev)->dev_unreg_count);
9552 }
9553
9554 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9555         struct net_device *upper, netdev_features_t features)
9556 {
9557         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9558         netdev_features_t feature;
9559         int feature_bit;
9560
9561         for_each_netdev_feature(upper_disables, feature_bit) {
9562                 feature = __NETIF_F_BIT(feature_bit);
9563                 if (!(upper->wanted_features & feature)
9564                     && (features & feature)) {
9565                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9566                                    &feature, upper->name);
9567                         features &= ~feature;
9568                 }
9569         }
9570
9571         return features;
9572 }
9573
9574 static void netdev_sync_lower_features(struct net_device *upper,
9575         struct net_device *lower, netdev_features_t features)
9576 {
9577         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9578         netdev_features_t feature;
9579         int feature_bit;
9580
9581         for_each_netdev_feature(upper_disables, feature_bit) {
9582                 feature = __NETIF_F_BIT(feature_bit);
9583                 if (!(features & feature) && (lower->features & feature)) {
9584                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9585                                    &feature, lower->name);
9586                         lower->wanted_features &= ~feature;
9587                         __netdev_update_features(lower);
9588
9589                         if (unlikely(lower->features & feature))
9590                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9591                                             &feature, lower->name);
9592                         else
9593                                 netdev_features_change(lower);
9594                 }
9595         }
9596 }
9597
9598 static netdev_features_t netdev_fix_features(struct net_device *dev,
9599         netdev_features_t features)
9600 {
9601         /* Fix illegal checksum combinations */
9602         if ((features & NETIF_F_HW_CSUM) &&
9603             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9604                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9605                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9606         }
9607
9608         /* TSO requires that SG is present as well. */
9609         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9610                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9611                 features &= ~NETIF_F_ALL_TSO;
9612         }
9613
9614         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9615                                         !(features & NETIF_F_IP_CSUM)) {
9616                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9617                 features &= ~NETIF_F_TSO;
9618                 features &= ~NETIF_F_TSO_ECN;
9619         }
9620
9621         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9622                                          !(features & NETIF_F_IPV6_CSUM)) {
9623                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9624                 features &= ~NETIF_F_TSO6;
9625         }
9626
9627         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9628         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9629                 features &= ~NETIF_F_TSO_MANGLEID;
9630
9631         /* TSO ECN requires that TSO is present as well. */
9632         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9633                 features &= ~NETIF_F_TSO_ECN;
9634
9635         /* Software GSO depends on SG. */
9636         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9637                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9638                 features &= ~NETIF_F_GSO;
9639         }
9640
9641         /* GSO partial features require GSO partial be set */
9642         if ((features & dev->gso_partial_features) &&
9643             !(features & NETIF_F_GSO_PARTIAL)) {
9644                 netdev_dbg(dev,
9645                            "Dropping partially supported GSO features since no GSO partial.\n");
9646                 features &= ~dev->gso_partial_features;
9647         }
9648
9649         if (!(features & NETIF_F_RXCSUM)) {
9650                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9651                  * successfully merged by hardware must also have the
9652                  * checksum verified by hardware.  If the user does not
9653                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9654                  */
9655                 if (features & NETIF_F_GRO_HW) {
9656                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9657                         features &= ~NETIF_F_GRO_HW;
9658                 }
9659         }
9660
9661         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9662         if (features & NETIF_F_RXFCS) {
9663                 if (features & NETIF_F_LRO) {
9664                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9665                         features &= ~NETIF_F_LRO;
9666                 }
9667
9668                 if (features & NETIF_F_GRO_HW) {
9669                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9670                         features &= ~NETIF_F_GRO_HW;
9671                 }
9672         }
9673
9674         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9675                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9676                 features &= ~NETIF_F_LRO;
9677         }
9678
9679         if (features & NETIF_F_HW_TLS_TX) {
9680                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9681                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9682                 bool hw_csum = features & NETIF_F_HW_CSUM;
9683
9684                 if (!ip_csum && !hw_csum) {
9685                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9686                         features &= ~NETIF_F_HW_TLS_TX;
9687                 }
9688         }
9689
9690         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9691                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9692                 features &= ~NETIF_F_HW_TLS_RX;
9693         }
9694
9695         return features;
9696 }
9697
9698 int __netdev_update_features(struct net_device *dev)
9699 {
9700         struct net_device *upper, *lower;
9701         netdev_features_t features;
9702         struct list_head *iter;
9703         int err = -1;
9704
9705         ASSERT_RTNL();
9706
9707         features = netdev_get_wanted_features(dev);
9708
9709         if (dev->netdev_ops->ndo_fix_features)
9710                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9711
9712         /* driver might be less strict about feature dependencies */
9713         features = netdev_fix_features(dev, features);
9714
9715         /* some features can't be enabled if they're off on an upper device */
9716         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9717                 features = netdev_sync_upper_features(dev, upper, features);
9718
9719         if (dev->features == features)
9720                 goto sync_lower;
9721
9722         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9723                 &dev->features, &features);
9724
9725         if (dev->netdev_ops->ndo_set_features)
9726                 err = dev->netdev_ops->ndo_set_features(dev, features);
9727         else
9728                 err = 0;
9729
9730         if (unlikely(err < 0)) {
9731                 netdev_err(dev,
9732                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9733                         err, &features, &dev->features);
9734                 /* return non-0 since some features might have changed and
9735                  * it's better to fire a spurious notification than miss it
9736                  */
9737                 return -1;
9738         }
9739
9740 sync_lower:
9741         /* some features must be disabled on lower devices when disabled
9742          * on an upper device (think: bonding master or bridge)
9743          */
9744         netdev_for_each_lower_dev(dev, lower, iter)
9745                 netdev_sync_lower_features(dev, lower, features);
9746
9747         if (!err) {
9748                 netdev_features_t diff = features ^ dev->features;
9749
9750                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9751                         /* udp_tunnel_{get,drop}_rx_info both need
9752                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9753                          * device, or they won't do anything.
9754                          * Thus we need to update dev->features
9755                          * *before* calling udp_tunnel_get_rx_info,
9756                          * but *after* calling udp_tunnel_drop_rx_info.
9757                          */
9758                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9759                                 dev->features = features;
9760                                 udp_tunnel_get_rx_info(dev);
9761                         } else {
9762                                 udp_tunnel_drop_rx_info(dev);
9763                         }
9764                 }
9765
9766                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9767                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9768                                 dev->features = features;
9769                                 err |= vlan_get_rx_ctag_filter_info(dev);
9770                         } else {
9771                                 vlan_drop_rx_ctag_filter_info(dev);
9772                         }
9773                 }
9774
9775                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9776                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9777                                 dev->features = features;
9778                                 err |= vlan_get_rx_stag_filter_info(dev);
9779                         } else {
9780                                 vlan_drop_rx_stag_filter_info(dev);
9781                         }
9782                 }
9783
9784                 dev->features = features;
9785         }
9786
9787         return err < 0 ? 0 : 1;
9788 }
9789
9790 /**
9791  *      netdev_update_features - recalculate device features
9792  *      @dev: the device to check
9793  *
9794  *      Recalculate dev->features set and send notifications if it
9795  *      has changed. Should be called after driver or hardware dependent
9796  *      conditions might have changed that influence the features.
9797  */
9798 void netdev_update_features(struct net_device *dev)
9799 {
9800         if (__netdev_update_features(dev))
9801                 netdev_features_change(dev);
9802 }
9803 EXPORT_SYMBOL(netdev_update_features);
9804
9805 /**
9806  *      netdev_change_features - recalculate device features
9807  *      @dev: the device to check
9808  *
9809  *      Recalculate dev->features set and send notifications even
9810  *      if they have not changed. Should be called instead of
9811  *      netdev_update_features() if also dev->vlan_features might
9812  *      have changed to allow the changes to be propagated to stacked
9813  *      VLAN devices.
9814  */
9815 void netdev_change_features(struct net_device *dev)
9816 {
9817         __netdev_update_features(dev);
9818         netdev_features_change(dev);
9819 }
9820 EXPORT_SYMBOL(netdev_change_features);
9821
9822 /**
9823  *      netif_stacked_transfer_operstate -      transfer operstate
9824  *      @rootdev: the root or lower level device to transfer state from
9825  *      @dev: the device to transfer operstate to
9826  *
9827  *      Transfer operational state from root to device. This is normally
9828  *      called when a stacking relationship exists between the root
9829  *      device and the device(a leaf device).
9830  */
9831 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9832                                         struct net_device *dev)
9833 {
9834         if (rootdev->operstate == IF_OPER_DORMANT)
9835                 netif_dormant_on(dev);
9836         else
9837                 netif_dormant_off(dev);
9838
9839         if (rootdev->operstate == IF_OPER_TESTING)
9840                 netif_testing_on(dev);
9841         else
9842                 netif_testing_off(dev);
9843
9844         if (netif_carrier_ok(rootdev))
9845                 netif_carrier_on(dev);
9846         else
9847                 netif_carrier_off(dev);
9848 }
9849 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9850
9851 static int netif_alloc_rx_queues(struct net_device *dev)
9852 {
9853         unsigned int i, count = dev->num_rx_queues;
9854         struct netdev_rx_queue *rx;
9855         size_t sz = count * sizeof(*rx);
9856         int err = 0;
9857
9858         BUG_ON(count < 1);
9859
9860         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9861         if (!rx)
9862                 return -ENOMEM;
9863
9864         dev->_rx = rx;
9865
9866         for (i = 0; i < count; i++) {
9867                 rx[i].dev = dev;
9868
9869                 /* XDP RX-queue setup */
9870                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9871                 if (err < 0)
9872                         goto err_rxq_info;
9873         }
9874         return 0;
9875
9876 err_rxq_info:
9877         /* Rollback successful reg's and free other resources */
9878         while (i--)
9879                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9880         kvfree(dev->_rx);
9881         dev->_rx = NULL;
9882         return err;
9883 }
9884
9885 static void netif_free_rx_queues(struct net_device *dev)
9886 {
9887         unsigned int i, count = dev->num_rx_queues;
9888
9889         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9890         if (!dev->_rx)
9891                 return;
9892
9893         for (i = 0; i < count; i++)
9894                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9895
9896         kvfree(dev->_rx);
9897 }
9898
9899 static void netdev_init_one_queue(struct net_device *dev,
9900                                   struct netdev_queue *queue, void *_unused)
9901 {
9902         /* Initialize queue lock */
9903         spin_lock_init(&queue->_xmit_lock);
9904         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9905         queue->xmit_lock_owner = -1;
9906         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9907         queue->dev = dev;
9908 #ifdef CONFIG_BQL
9909         dql_init(&queue->dql, HZ);
9910 #endif
9911 }
9912
9913 static void netif_free_tx_queues(struct net_device *dev)
9914 {
9915         kvfree(dev->_tx);
9916 }
9917
9918 static int netif_alloc_netdev_queues(struct net_device *dev)
9919 {
9920         unsigned int count = dev->num_tx_queues;
9921         struct netdev_queue *tx;
9922         size_t sz = count * sizeof(*tx);
9923
9924         if (count < 1 || count > 0xffff)
9925                 return -EINVAL;
9926
9927         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9928         if (!tx)
9929                 return -ENOMEM;
9930
9931         dev->_tx = tx;
9932
9933         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9934         spin_lock_init(&dev->tx_global_lock);
9935
9936         return 0;
9937 }
9938
9939 void netif_tx_stop_all_queues(struct net_device *dev)
9940 {
9941         unsigned int i;
9942
9943         for (i = 0; i < dev->num_tx_queues; i++) {
9944                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9945
9946                 netif_tx_stop_queue(txq);
9947         }
9948 }
9949 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9950
9951 /**
9952  * register_netdevice() - register a network device
9953  * @dev: device to register
9954  *
9955  * Take a prepared network device structure and make it externally accessible.
9956  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9957  * Callers must hold the rtnl lock - you may want register_netdev()
9958  * instead of this.
9959  */
9960 int register_netdevice(struct net_device *dev)
9961 {
9962         int ret;
9963         struct net *net = dev_net(dev);
9964
9965         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9966                      NETDEV_FEATURE_COUNT);
9967         BUG_ON(dev_boot_phase);
9968         ASSERT_RTNL();
9969
9970         might_sleep();
9971
9972         /* When net_device's are persistent, this will be fatal. */
9973         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9974         BUG_ON(!net);
9975
9976         ret = ethtool_check_ops(dev->ethtool_ops);
9977         if (ret)
9978                 return ret;
9979
9980         spin_lock_init(&dev->addr_list_lock);
9981         netdev_set_addr_lockdep_class(dev);
9982
9983         ret = dev_get_valid_name(net, dev, dev->name);
9984         if (ret < 0)
9985                 goto out;
9986
9987         ret = -ENOMEM;
9988         dev->name_node = netdev_name_node_head_alloc(dev);
9989         if (!dev->name_node)
9990                 goto out;
9991
9992         /* Init, if this function is available */
9993         if (dev->netdev_ops->ndo_init) {
9994                 ret = dev->netdev_ops->ndo_init(dev);
9995                 if (ret) {
9996                         if (ret > 0)
9997                                 ret = -EIO;
9998                         goto err_free_name;
9999                 }
10000         }
10001
10002         if (((dev->hw_features | dev->features) &
10003              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10004             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10005              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10006                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10007                 ret = -EINVAL;
10008                 goto err_uninit;
10009         }
10010
10011         ret = -EBUSY;
10012         if (!dev->ifindex)
10013                 dev->ifindex = dev_new_index(net);
10014         else if (__dev_get_by_index(net, dev->ifindex))
10015                 goto err_uninit;
10016
10017         /* Transfer changeable features to wanted_features and enable
10018          * software offloads (GSO and GRO).
10019          */
10020         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10021         dev->features |= NETIF_F_SOFT_FEATURES;
10022
10023         if (dev->udp_tunnel_nic_info) {
10024                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10025                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10026         }
10027
10028         dev->wanted_features = dev->features & dev->hw_features;
10029
10030         if (!(dev->flags & IFF_LOOPBACK))
10031                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10032
10033         /* If IPv4 TCP segmentation offload is supported we should also
10034          * allow the device to enable segmenting the frame with the option
10035          * of ignoring a static IP ID value.  This doesn't enable the
10036          * feature itself but allows the user to enable it later.
10037          */
10038         if (dev->hw_features & NETIF_F_TSO)
10039                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10040         if (dev->vlan_features & NETIF_F_TSO)
10041                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10042         if (dev->mpls_features & NETIF_F_TSO)
10043                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10044         if (dev->hw_enc_features & NETIF_F_TSO)
10045                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10046
10047         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10048          */
10049         dev->vlan_features |= NETIF_F_HIGHDMA;
10050
10051         /* Make NETIF_F_SG inheritable to tunnel devices.
10052          */
10053         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10054
10055         /* Make NETIF_F_SG inheritable to MPLS.
10056          */
10057         dev->mpls_features |= NETIF_F_SG;
10058
10059         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10060         ret = notifier_to_errno(ret);
10061         if (ret)
10062                 goto err_uninit;
10063
10064         ret = netdev_register_kobject(dev);
10065         write_lock(&dev_base_lock);
10066         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10067         write_unlock(&dev_base_lock);
10068         if (ret)
10069                 goto err_uninit;
10070
10071         __netdev_update_features(dev);
10072
10073         /*
10074          *      Default initial state at registry is that the
10075          *      device is present.
10076          */
10077
10078         set_bit(__LINK_STATE_PRESENT, &dev->state);
10079
10080         linkwatch_init_dev(dev);
10081
10082         dev_init_scheduler(dev);
10083
10084         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10085         list_netdevice(dev);
10086
10087         add_device_randomness(dev->dev_addr, dev->addr_len);
10088
10089         /* If the device has permanent device address, driver should
10090          * set dev_addr and also addr_assign_type should be set to
10091          * NET_ADDR_PERM (default value).
10092          */
10093         if (dev->addr_assign_type == NET_ADDR_PERM)
10094                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10095
10096         /* Notify protocols, that a new device appeared. */
10097         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10098         ret = notifier_to_errno(ret);
10099         if (ret) {
10100                 /* Expect explicit free_netdev() on failure */
10101                 dev->needs_free_netdev = false;
10102                 unregister_netdevice_queue(dev, NULL);
10103                 goto out;
10104         }
10105         /*
10106          *      Prevent userspace races by waiting until the network
10107          *      device is fully setup before sending notifications.
10108          */
10109         if (!dev->rtnl_link_ops ||
10110             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10111                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10112
10113 out:
10114         return ret;
10115
10116 err_uninit:
10117         if (dev->netdev_ops->ndo_uninit)
10118                 dev->netdev_ops->ndo_uninit(dev);
10119         if (dev->priv_destructor)
10120                 dev->priv_destructor(dev);
10121 err_free_name:
10122         netdev_name_node_free(dev->name_node);
10123         goto out;
10124 }
10125 EXPORT_SYMBOL(register_netdevice);
10126
10127 /**
10128  *      init_dummy_netdev       - init a dummy network device for NAPI
10129  *      @dev: device to init
10130  *
10131  *      This takes a network device structure and initialize the minimum
10132  *      amount of fields so it can be used to schedule NAPI polls without
10133  *      registering a full blown interface. This is to be used by drivers
10134  *      that need to tie several hardware interfaces to a single NAPI
10135  *      poll scheduler due to HW limitations.
10136  */
10137 int init_dummy_netdev(struct net_device *dev)
10138 {
10139         /* Clear everything. Note we don't initialize spinlocks
10140          * are they aren't supposed to be taken by any of the
10141          * NAPI code and this dummy netdev is supposed to be
10142          * only ever used for NAPI polls
10143          */
10144         memset(dev, 0, sizeof(struct net_device));
10145
10146         /* make sure we BUG if trying to hit standard
10147          * register/unregister code path
10148          */
10149         dev->reg_state = NETREG_DUMMY;
10150
10151         /* NAPI wants this */
10152         INIT_LIST_HEAD(&dev->napi_list);
10153
10154         /* a dummy interface is started by default */
10155         set_bit(__LINK_STATE_PRESENT, &dev->state);
10156         set_bit(__LINK_STATE_START, &dev->state);
10157
10158         /* napi_busy_loop stats accounting wants this */
10159         dev_net_set(dev, &init_net);
10160
10161         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10162          * because users of this 'device' dont need to change
10163          * its refcount.
10164          */
10165
10166         return 0;
10167 }
10168 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10169
10170
10171 /**
10172  *      register_netdev - register a network device
10173  *      @dev: device to register
10174  *
10175  *      Take a completed network device structure and add it to the kernel
10176  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10177  *      chain. 0 is returned on success. A negative errno code is returned
10178  *      on a failure to set up the device, or if the name is a duplicate.
10179  *
10180  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10181  *      and expands the device name if you passed a format string to
10182  *      alloc_netdev.
10183  */
10184 int register_netdev(struct net_device *dev)
10185 {
10186         int err;
10187
10188         if (rtnl_lock_killable())
10189                 return -EINTR;
10190         err = register_netdevice(dev);
10191         rtnl_unlock();
10192         return err;
10193 }
10194 EXPORT_SYMBOL(register_netdev);
10195
10196 int netdev_refcnt_read(const struct net_device *dev)
10197 {
10198 #ifdef CONFIG_PCPU_DEV_REFCNT
10199         int i, refcnt = 0;
10200
10201         for_each_possible_cpu(i)
10202                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10203         return refcnt;
10204 #else
10205         return refcount_read(&dev->dev_refcnt);
10206 #endif
10207 }
10208 EXPORT_SYMBOL(netdev_refcnt_read);
10209
10210 int netdev_unregister_timeout_secs __read_mostly = 10;
10211
10212 #define WAIT_REFS_MIN_MSECS 1
10213 #define WAIT_REFS_MAX_MSECS 250
10214 /**
10215  * netdev_wait_allrefs_any - wait until all references are gone.
10216  * @list: list of net_devices to wait on
10217  *
10218  * This is called when unregistering network devices.
10219  *
10220  * Any protocol or device that holds a reference should register
10221  * for netdevice notification, and cleanup and put back the
10222  * reference if they receive an UNREGISTER event.
10223  * We can get stuck here if buggy protocols don't correctly
10224  * call dev_put.
10225  */
10226 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10227 {
10228         unsigned long rebroadcast_time, warning_time;
10229         struct net_device *dev;
10230         int wait = 0;
10231
10232         rebroadcast_time = warning_time = jiffies;
10233
10234         list_for_each_entry(dev, list, todo_list)
10235                 if (netdev_refcnt_read(dev) == 1)
10236                         return dev;
10237
10238         while (true) {
10239                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10240                         rtnl_lock();
10241
10242                         /* Rebroadcast unregister notification */
10243                         list_for_each_entry(dev, list, todo_list)
10244                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10245
10246                         __rtnl_unlock();
10247                         rcu_barrier();
10248                         rtnl_lock();
10249
10250                         list_for_each_entry(dev, list, todo_list)
10251                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10252                                              &dev->state)) {
10253                                         /* We must not have linkwatch events
10254                                          * pending on unregister. If this
10255                                          * happens, we simply run the queue
10256                                          * unscheduled, resulting in a noop
10257                                          * for this device.
10258                                          */
10259                                         linkwatch_run_queue();
10260                                         break;
10261                                 }
10262
10263                         __rtnl_unlock();
10264
10265                         rebroadcast_time = jiffies;
10266                 }
10267
10268                 if (!wait) {
10269                         rcu_barrier();
10270                         wait = WAIT_REFS_MIN_MSECS;
10271                 } else {
10272                         msleep(wait);
10273                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10274                 }
10275
10276                 list_for_each_entry(dev, list, todo_list)
10277                         if (netdev_refcnt_read(dev) == 1)
10278                                 return dev;
10279
10280                 if (time_after(jiffies, warning_time +
10281                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10282                         list_for_each_entry(dev, list, todo_list) {
10283                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10284                                          dev->name, netdev_refcnt_read(dev));
10285                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10286                         }
10287
10288                         warning_time = jiffies;
10289                 }
10290         }
10291 }
10292
10293 /* The sequence is:
10294  *
10295  *      rtnl_lock();
10296  *      ...
10297  *      register_netdevice(x1);
10298  *      register_netdevice(x2);
10299  *      ...
10300  *      unregister_netdevice(y1);
10301  *      unregister_netdevice(y2);
10302  *      ...
10303  *      rtnl_unlock();
10304  *      free_netdev(y1);
10305  *      free_netdev(y2);
10306  *
10307  * We are invoked by rtnl_unlock().
10308  * This allows us to deal with problems:
10309  * 1) We can delete sysfs objects which invoke hotplug
10310  *    without deadlocking with linkwatch via keventd.
10311  * 2) Since we run with the RTNL semaphore not held, we can sleep
10312  *    safely in order to wait for the netdev refcnt to drop to zero.
10313  *
10314  * We must not return until all unregister events added during
10315  * the interval the lock was held have been completed.
10316  */
10317 void netdev_run_todo(void)
10318 {
10319         struct net_device *dev, *tmp;
10320         struct list_head list;
10321 #ifdef CONFIG_LOCKDEP
10322         struct list_head unlink_list;
10323
10324         list_replace_init(&net_unlink_list, &unlink_list);
10325
10326         while (!list_empty(&unlink_list)) {
10327                 struct net_device *dev = list_first_entry(&unlink_list,
10328                                                           struct net_device,
10329                                                           unlink_list);
10330                 list_del_init(&dev->unlink_list);
10331                 dev->nested_level = dev->lower_level - 1;
10332         }
10333 #endif
10334
10335         /* Snapshot list, allow later requests */
10336         list_replace_init(&net_todo_list, &list);
10337
10338         __rtnl_unlock();
10339
10340         /* Wait for rcu callbacks to finish before next phase */
10341         if (!list_empty(&list))
10342                 rcu_barrier();
10343
10344         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10345                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10346                         netdev_WARN(dev, "run_todo but not unregistering\n");
10347                         list_del(&dev->todo_list);
10348                         continue;
10349                 }
10350
10351                 write_lock(&dev_base_lock);
10352                 dev->reg_state = NETREG_UNREGISTERED;
10353                 write_unlock(&dev_base_lock);
10354                 linkwatch_forget_dev(dev);
10355         }
10356
10357         while (!list_empty(&list)) {
10358                 dev = netdev_wait_allrefs_any(&list);
10359                 list_del(&dev->todo_list);
10360
10361                 /* paranoia */
10362                 BUG_ON(netdev_refcnt_read(dev) != 1);
10363                 BUG_ON(!list_empty(&dev->ptype_all));
10364                 BUG_ON(!list_empty(&dev->ptype_specific));
10365                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10366                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10367
10368                 if (dev->priv_destructor)
10369                         dev->priv_destructor(dev);
10370                 if (dev->needs_free_netdev)
10371                         free_netdev(dev);
10372
10373                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10374                         wake_up(&netdev_unregistering_wq);
10375
10376                 /* Free network device */
10377                 kobject_put(&dev->dev.kobj);
10378         }
10379 }
10380
10381 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10382  * all the same fields in the same order as net_device_stats, with only
10383  * the type differing, but rtnl_link_stats64 may have additional fields
10384  * at the end for newer counters.
10385  */
10386 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10387                              const struct net_device_stats *netdev_stats)
10388 {
10389         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10390         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10391         u64 *dst = (u64 *)stats64;
10392
10393         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10394         for (i = 0; i < n; i++)
10395                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10396         /* zero out counters that only exist in rtnl_link_stats64 */
10397         memset((char *)stats64 + n * sizeof(u64), 0,
10398                sizeof(*stats64) - n * sizeof(u64));
10399 }
10400 EXPORT_SYMBOL(netdev_stats_to_stats64);
10401
10402 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10403 {
10404         struct net_device_core_stats __percpu *p;
10405
10406         p = alloc_percpu_gfp(struct net_device_core_stats,
10407                              GFP_ATOMIC | __GFP_NOWARN);
10408
10409         if (p && cmpxchg(&dev->core_stats, NULL, p))
10410                 free_percpu(p);
10411
10412         /* This READ_ONCE() pairs with the cmpxchg() above */
10413         return READ_ONCE(dev->core_stats);
10414 }
10415 EXPORT_SYMBOL(netdev_core_stats_alloc);
10416
10417 /**
10418  *      dev_get_stats   - get network device statistics
10419  *      @dev: device to get statistics from
10420  *      @storage: place to store stats
10421  *
10422  *      Get network statistics from device. Return @storage.
10423  *      The device driver may provide its own method by setting
10424  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10425  *      otherwise the internal statistics structure is used.
10426  */
10427 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10428                                         struct rtnl_link_stats64 *storage)
10429 {
10430         const struct net_device_ops *ops = dev->netdev_ops;
10431         const struct net_device_core_stats __percpu *p;
10432
10433         if (ops->ndo_get_stats64) {
10434                 memset(storage, 0, sizeof(*storage));
10435                 ops->ndo_get_stats64(dev, storage);
10436         } else if (ops->ndo_get_stats) {
10437                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10438         } else {
10439                 netdev_stats_to_stats64(storage, &dev->stats);
10440         }
10441
10442         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10443         p = READ_ONCE(dev->core_stats);
10444         if (p) {
10445                 const struct net_device_core_stats *core_stats;
10446                 int i;
10447
10448                 for_each_possible_cpu(i) {
10449                         core_stats = per_cpu_ptr(p, i);
10450                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10451                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10452                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10453                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10454                 }
10455         }
10456         return storage;
10457 }
10458 EXPORT_SYMBOL(dev_get_stats);
10459
10460 /**
10461  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10462  *      @s: place to store stats
10463  *      @netstats: per-cpu network stats to read from
10464  *
10465  *      Read per-cpu network statistics and populate the related fields in @s.
10466  */
10467 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10468                            const struct pcpu_sw_netstats __percpu *netstats)
10469 {
10470         int cpu;
10471
10472         for_each_possible_cpu(cpu) {
10473                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10474                 const struct pcpu_sw_netstats *stats;
10475                 unsigned int start;
10476
10477                 stats = per_cpu_ptr(netstats, cpu);
10478                 do {
10479                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10480                         rx_packets = u64_stats_read(&stats->rx_packets);
10481                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10482                         tx_packets = u64_stats_read(&stats->tx_packets);
10483                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10484                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10485
10486                 s->rx_packets += rx_packets;
10487                 s->rx_bytes   += rx_bytes;
10488                 s->tx_packets += tx_packets;
10489                 s->tx_bytes   += tx_bytes;
10490         }
10491 }
10492 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10493
10494 /**
10495  *      dev_get_tstats64 - ndo_get_stats64 implementation
10496  *      @dev: device to get statistics from
10497  *      @s: place to store stats
10498  *
10499  *      Populate @s from dev->stats and dev->tstats. Can be used as
10500  *      ndo_get_stats64() callback.
10501  */
10502 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10503 {
10504         netdev_stats_to_stats64(s, &dev->stats);
10505         dev_fetch_sw_netstats(s, dev->tstats);
10506 }
10507 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10508
10509 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10510 {
10511         struct netdev_queue *queue = dev_ingress_queue(dev);
10512
10513 #ifdef CONFIG_NET_CLS_ACT
10514         if (queue)
10515                 return queue;
10516         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10517         if (!queue)
10518                 return NULL;
10519         netdev_init_one_queue(dev, queue, NULL);
10520         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10521         queue->qdisc_sleeping = &noop_qdisc;
10522         rcu_assign_pointer(dev->ingress_queue, queue);
10523 #endif
10524         return queue;
10525 }
10526
10527 static const struct ethtool_ops default_ethtool_ops;
10528
10529 void netdev_set_default_ethtool_ops(struct net_device *dev,
10530                                     const struct ethtool_ops *ops)
10531 {
10532         if (dev->ethtool_ops == &default_ethtool_ops)
10533                 dev->ethtool_ops = ops;
10534 }
10535 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10536
10537 void netdev_freemem(struct net_device *dev)
10538 {
10539         char *addr = (char *)dev - dev->padded;
10540
10541         kvfree(addr);
10542 }
10543
10544 /**
10545  * alloc_netdev_mqs - allocate network device
10546  * @sizeof_priv: size of private data to allocate space for
10547  * @name: device name format string
10548  * @name_assign_type: origin of device name
10549  * @setup: callback to initialize device
10550  * @txqs: the number of TX subqueues to allocate
10551  * @rxqs: the number of RX subqueues to allocate
10552  *
10553  * Allocates a struct net_device with private data area for driver use
10554  * and performs basic initialization.  Also allocates subqueue structs
10555  * for each queue on the device.
10556  */
10557 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10558                 unsigned char name_assign_type,
10559                 void (*setup)(struct net_device *),
10560                 unsigned int txqs, unsigned int rxqs)
10561 {
10562         struct net_device *dev;
10563         unsigned int alloc_size;
10564         struct net_device *p;
10565
10566         BUG_ON(strlen(name) >= sizeof(dev->name));
10567
10568         if (txqs < 1) {
10569                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10570                 return NULL;
10571         }
10572
10573         if (rxqs < 1) {
10574                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10575                 return NULL;
10576         }
10577
10578         alloc_size = sizeof(struct net_device);
10579         if (sizeof_priv) {
10580                 /* ensure 32-byte alignment of private area */
10581                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10582                 alloc_size += sizeof_priv;
10583         }
10584         /* ensure 32-byte alignment of whole construct */
10585         alloc_size += NETDEV_ALIGN - 1;
10586
10587         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10588         if (!p)
10589                 return NULL;
10590
10591         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10592         dev->padded = (char *)dev - (char *)p;
10593
10594         ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10595 #ifdef CONFIG_PCPU_DEV_REFCNT
10596         dev->pcpu_refcnt = alloc_percpu(int);
10597         if (!dev->pcpu_refcnt)
10598                 goto free_dev;
10599         __dev_hold(dev);
10600 #else
10601         refcount_set(&dev->dev_refcnt, 1);
10602 #endif
10603
10604         if (dev_addr_init(dev))
10605                 goto free_pcpu;
10606
10607         dev_mc_init(dev);
10608         dev_uc_init(dev);
10609
10610         dev_net_set(dev, &init_net);
10611
10612         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10613         dev->gso_max_segs = GSO_MAX_SEGS;
10614         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10615         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10616         dev->tso_max_segs = TSO_MAX_SEGS;
10617         dev->upper_level = 1;
10618         dev->lower_level = 1;
10619 #ifdef CONFIG_LOCKDEP
10620         dev->nested_level = 0;
10621         INIT_LIST_HEAD(&dev->unlink_list);
10622 #endif
10623
10624         INIT_LIST_HEAD(&dev->napi_list);
10625         INIT_LIST_HEAD(&dev->unreg_list);
10626         INIT_LIST_HEAD(&dev->close_list);
10627         INIT_LIST_HEAD(&dev->link_watch_list);
10628         INIT_LIST_HEAD(&dev->adj_list.upper);
10629         INIT_LIST_HEAD(&dev->adj_list.lower);
10630         INIT_LIST_HEAD(&dev->ptype_all);
10631         INIT_LIST_HEAD(&dev->ptype_specific);
10632         INIT_LIST_HEAD(&dev->net_notifier_list);
10633 #ifdef CONFIG_NET_SCHED
10634         hash_init(dev->qdisc_hash);
10635 #endif
10636         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10637         setup(dev);
10638
10639         if (!dev->tx_queue_len) {
10640                 dev->priv_flags |= IFF_NO_QUEUE;
10641                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10642         }
10643
10644         dev->num_tx_queues = txqs;
10645         dev->real_num_tx_queues = txqs;
10646         if (netif_alloc_netdev_queues(dev))
10647                 goto free_all;
10648
10649         dev->num_rx_queues = rxqs;
10650         dev->real_num_rx_queues = rxqs;
10651         if (netif_alloc_rx_queues(dev))
10652                 goto free_all;
10653
10654         strcpy(dev->name, name);
10655         dev->name_assign_type = name_assign_type;
10656         dev->group = INIT_NETDEV_GROUP;
10657         if (!dev->ethtool_ops)
10658                 dev->ethtool_ops = &default_ethtool_ops;
10659
10660         nf_hook_netdev_init(dev);
10661
10662         return dev;
10663
10664 free_all:
10665         free_netdev(dev);
10666         return NULL;
10667
10668 free_pcpu:
10669 #ifdef CONFIG_PCPU_DEV_REFCNT
10670         free_percpu(dev->pcpu_refcnt);
10671 free_dev:
10672 #endif
10673         netdev_freemem(dev);
10674         return NULL;
10675 }
10676 EXPORT_SYMBOL(alloc_netdev_mqs);
10677
10678 /**
10679  * free_netdev - free network device
10680  * @dev: device
10681  *
10682  * This function does the last stage of destroying an allocated device
10683  * interface. The reference to the device object is released. If this
10684  * is the last reference then it will be freed.Must be called in process
10685  * context.
10686  */
10687 void free_netdev(struct net_device *dev)
10688 {
10689         struct napi_struct *p, *n;
10690
10691         might_sleep();
10692
10693         /* When called immediately after register_netdevice() failed the unwind
10694          * handling may still be dismantling the device. Handle that case by
10695          * deferring the free.
10696          */
10697         if (dev->reg_state == NETREG_UNREGISTERING) {
10698                 ASSERT_RTNL();
10699                 dev->needs_free_netdev = true;
10700                 return;
10701         }
10702
10703         netif_free_tx_queues(dev);
10704         netif_free_rx_queues(dev);
10705
10706         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10707
10708         /* Flush device addresses */
10709         dev_addr_flush(dev);
10710
10711         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10712                 netif_napi_del(p);
10713
10714         ref_tracker_dir_exit(&dev->refcnt_tracker);
10715 #ifdef CONFIG_PCPU_DEV_REFCNT
10716         free_percpu(dev->pcpu_refcnt);
10717         dev->pcpu_refcnt = NULL;
10718 #endif
10719         free_percpu(dev->core_stats);
10720         dev->core_stats = NULL;
10721         free_percpu(dev->xdp_bulkq);
10722         dev->xdp_bulkq = NULL;
10723
10724         /*  Compatibility with error handling in drivers */
10725         if (dev->reg_state == NETREG_UNINITIALIZED) {
10726                 netdev_freemem(dev);
10727                 return;
10728         }
10729
10730         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10731         dev->reg_state = NETREG_RELEASED;
10732
10733         /* will free via device release */
10734         put_device(&dev->dev);
10735 }
10736 EXPORT_SYMBOL(free_netdev);
10737
10738 /**
10739  *      synchronize_net -  Synchronize with packet receive processing
10740  *
10741  *      Wait for packets currently being received to be done.
10742  *      Does not block later packets from starting.
10743  */
10744 void synchronize_net(void)
10745 {
10746         might_sleep();
10747         if (rtnl_is_locked())
10748                 synchronize_rcu_expedited();
10749         else
10750                 synchronize_rcu();
10751 }
10752 EXPORT_SYMBOL(synchronize_net);
10753
10754 /**
10755  *      unregister_netdevice_queue - remove device from the kernel
10756  *      @dev: device
10757  *      @head: list
10758  *
10759  *      This function shuts down a device interface and removes it
10760  *      from the kernel tables.
10761  *      If head not NULL, device is queued to be unregistered later.
10762  *
10763  *      Callers must hold the rtnl semaphore.  You may want
10764  *      unregister_netdev() instead of this.
10765  */
10766
10767 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10768 {
10769         ASSERT_RTNL();
10770
10771         if (head) {
10772                 list_move_tail(&dev->unreg_list, head);
10773         } else {
10774                 LIST_HEAD(single);
10775
10776                 list_add(&dev->unreg_list, &single);
10777                 unregister_netdevice_many(&single);
10778         }
10779 }
10780 EXPORT_SYMBOL(unregister_netdevice_queue);
10781
10782 /**
10783  *      unregister_netdevice_many - unregister many devices
10784  *      @head: list of devices
10785  *
10786  *  Note: As most callers use a stack allocated list_head,
10787  *  we force a list_del() to make sure stack wont be corrupted later.
10788  */
10789 void unregister_netdevice_many(struct list_head *head)
10790 {
10791         struct net_device *dev, *tmp;
10792         LIST_HEAD(close_head);
10793
10794         BUG_ON(dev_boot_phase);
10795         ASSERT_RTNL();
10796
10797         if (list_empty(head))
10798                 return;
10799
10800         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10801                 /* Some devices call without registering
10802                  * for initialization unwind. Remove those
10803                  * devices and proceed with the remaining.
10804                  */
10805                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10806                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10807                                  dev->name, dev);
10808
10809                         WARN_ON(1);
10810                         list_del(&dev->unreg_list);
10811                         continue;
10812                 }
10813                 dev->dismantle = true;
10814                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10815         }
10816
10817         /* If device is running, close it first. */
10818         list_for_each_entry(dev, head, unreg_list)
10819                 list_add_tail(&dev->close_list, &close_head);
10820         dev_close_many(&close_head, true);
10821
10822         list_for_each_entry(dev, head, unreg_list) {
10823                 /* And unlink it from device chain. */
10824                 write_lock(&dev_base_lock);
10825                 unlist_netdevice(dev, false);
10826                 dev->reg_state = NETREG_UNREGISTERING;
10827                 write_unlock(&dev_base_lock);
10828         }
10829         flush_all_backlogs();
10830
10831         synchronize_net();
10832
10833         list_for_each_entry(dev, head, unreg_list) {
10834                 struct sk_buff *skb = NULL;
10835
10836                 /* Shutdown queueing discipline. */
10837                 dev_shutdown(dev);
10838
10839                 dev_xdp_uninstall(dev);
10840
10841                 netdev_offload_xstats_disable_all(dev);
10842
10843                 /* Notify protocols, that we are about to destroy
10844                  * this device. They should clean all the things.
10845                  */
10846                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10847
10848                 if (!dev->rtnl_link_ops ||
10849                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10850                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10851                                                      GFP_KERNEL, NULL, 0);
10852
10853                 /*
10854                  *      Flush the unicast and multicast chains
10855                  */
10856                 dev_uc_flush(dev);
10857                 dev_mc_flush(dev);
10858
10859                 netdev_name_node_alt_flush(dev);
10860                 netdev_name_node_free(dev->name_node);
10861
10862                 if (dev->netdev_ops->ndo_uninit)
10863                         dev->netdev_ops->ndo_uninit(dev);
10864
10865                 if (skb)
10866                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10867
10868                 /* Notifier chain MUST detach us all upper devices. */
10869                 WARN_ON(netdev_has_any_upper_dev(dev));
10870                 WARN_ON(netdev_has_any_lower_dev(dev));
10871
10872                 /* Remove entries from kobject tree */
10873                 netdev_unregister_kobject(dev);
10874 #ifdef CONFIG_XPS
10875                 /* Remove XPS queueing entries */
10876                 netif_reset_xps_queues_gt(dev, 0);
10877 #endif
10878         }
10879
10880         synchronize_net();
10881
10882         list_for_each_entry(dev, head, unreg_list) {
10883                 netdev_put(dev, &dev->dev_registered_tracker);
10884                 net_set_todo(dev);
10885         }
10886
10887         list_del(head);
10888 }
10889 EXPORT_SYMBOL(unregister_netdevice_many);
10890
10891 /**
10892  *      unregister_netdev - remove device from the kernel
10893  *      @dev: device
10894  *
10895  *      This function shuts down a device interface and removes it
10896  *      from the kernel tables.
10897  *
10898  *      This is just a wrapper for unregister_netdevice that takes
10899  *      the rtnl semaphore.  In general you want to use this and not
10900  *      unregister_netdevice.
10901  */
10902 void unregister_netdev(struct net_device *dev)
10903 {
10904         rtnl_lock();
10905         unregister_netdevice(dev);
10906         rtnl_unlock();
10907 }
10908 EXPORT_SYMBOL(unregister_netdev);
10909
10910 /**
10911  *      __dev_change_net_namespace - move device to different nethost namespace
10912  *      @dev: device
10913  *      @net: network namespace
10914  *      @pat: If not NULL name pattern to try if the current device name
10915  *            is already taken in the destination network namespace.
10916  *      @new_ifindex: If not zero, specifies device index in the target
10917  *                    namespace.
10918  *
10919  *      This function shuts down a device interface and moves it
10920  *      to a new network namespace. On success 0 is returned, on
10921  *      a failure a netagive errno code is returned.
10922  *
10923  *      Callers must hold the rtnl semaphore.
10924  */
10925
10926 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10927                                const char *pat, int new_ifindex)
10928 {
10929         struct net *net_old = dev_net(dev);
10930         int err, new_nsid;
10931
10932         ASSERT_RTNL();
10933
10934         /* Don't allow namespace local devices to be moved. */
10935         err = -EINVAL;
10936         if (dev->features & NETIF_F_NETNS_LOCAL)
10937                 goto out;
10938
10939         /* Ensure the device has been registrered */
10940         if (dev->reg_state != NETREG_REGISTERED)
10941                 goto out;
10942
10943         /* Get out if there is nothing todo */
10944         err = 0;
10945         if (net_eq(net_old, net))
10946                 goto out;
10947
10948         /* Pick the destination device name, and ensure
10949          * we can use it in the destination network namespace.
10950          */
10951         err = -EEXIST;
10952         if (netdev_name_in_use(net, dev->name)) {
10953                 /* We get here if we can't use the current device name */
10954                 if (!pat)
10955                         goto out;
10956                 err = dev_get_valid_name(net, dev, pat);
10957                 if (err < 0)
10958                         goto out;
10959         }
10960
10961         /* Check that new_ifindex isn't used yet. */
10962         err = -EBUSY;
10963         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10964                 goto out;
10965
10966         /*
10967          * And now a mini version of register_netdevice unregister_netdevice.
10968          */
10969
10970         /* If device is running close it first. */
10971         dev_close(dev);
10972
10973         /* And unlink it from device chain */
10974         unlist_netdevice(dev, true);
10975
10976         synchronize_net();
10977
10978         /* Shutdown queueing discipline. */
10979         dev_shutdown(dev);
10980
10981         /* Notify protocols, that we are about to destroy
10982          * this device. They should clean all the things.
10983          *
10984          * Note that dev->reg_state stays at NETREG_REGISTERED.
10985          * This is wanted because this way 8021q and macvlan know
10986          * the device is just moving and can keep their slaves up.
10987          */
10988         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10989         rcu_barrier();
10990
10991         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10992         /* If there is an ifindex conflict assign a new one */
10993         if (!new_ifindex) {
10994                 if (__dev_get_by_index(net, dev->ifindex))
10995                         new_ifindex = dev_new_index(net);
10996                 else
10997                         new_ifindex = dev->ifindex;
10998         }
10999
11000         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11001                             new_ifindex);
11002
11003         /*
11004          *      Flush the unicast and multicast chains
11005          */
11006         dev_uc_flush(dev);
11007         dev_mc_flush(dev);
11008
11009         /* Send a netdev-removed uevent to the old namespace */
11010         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11011         netdev_adjacent_del_links(dev);
11012
11013         /* Move per-net netdevice notifiers that are following the netdevice */
11014         move_netdevice_notifiers_dev_net(dev, net);
11015
11016         /* Actually switch the network namespace */
11017         dev_net_set(dev, net);
11018         dev->ifindex = new_ifindex;
11019
11020         /* Send a netdev-add uevent to the new namespace */
11021         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11022         netdev_adjacent_add_links(dev);
11023
11024         /* Fixup kobjects */
11025         err = device_rename(&dev->dev, dev->name);
11026         WARN_ON(err);
11027
11028         /* Adapt owner in case owning user namespace of target network
11029          * namespace is different from the original one.
11030          */
11031         err = netdev_change_owner(dev, net_old, net);
11032         WARN_ON(err);
11033
11034         /* Add the device back in the hashes */
11035         list_netdevice(dev);
11036
11037         /* Notify protocols, that a new device appeared. */
11038         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11039
11040         /*
11041          *      Prevent userspace races by waiting until the network
11042          *      device is fully setup before sending notifications.
11043          */
11044         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11045
11046         synchronize_net();
11047         err = 0;
11048 out:
11049         return err;
11050 }
11051 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11052
11053 static int dev_cpu_dead(unsigned int oldcpu)
11054 {
11055         struct sk_buff **list_skb;
11056         struct sk_buff *skb;
11057         unsigned int cpu;
11058         struct softnet_data *sd, *oldsd, *remsd = NULL;
11059
11060         local_irq_disable();
11061         cpu = smp_processor_id();
11062         sd = &per_cpu(softnet_data, cpu);
11063         oldsd = &per_cpu(softnet_data, oldcpu);
11064
11065         /* Find end of our completion_queue. */
11066         list_skb = &sd->completion_queue;
11067         while (*list_skb)
11068                 list_skb = &(*list_skb)->next;
11069         /* Append completion queue from offline CPU. */
11070         *list_skb = oldsd->completion_queue;
11071         oldsd->completion_queue = NULL;
11072
11073         /* Append output queue from offline CPU. */
11074         if (oldsd->output_queue) {
11075                 *sd->output_queue_tailp = oldsd->output_queue;
11076                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11077                 oldsd->output_queue = NULL;
11078                 oldsd->output_queue_tailp = &oldsd->output_queue;
11079         }
11080         /* Append NAPI poll list from offline CPU, with one exception :
11081          * process_backlog() must be called by cpu owning percpu backlog.
11082          * We properly handle process_queue & input_pkt_queue later.
11083          */
11084         while (!list_empty(&oldsd->poll_list)) {
11085                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11086                                                             struct napi_struct,
11087                                                             poll_list);
11088
11089                 list_del_init(&napi->poll_list);
11090                 if (napi->poll == process_backlog)
11091                         napi->state = 0;
11092                 else
11093                         ____napi_schedule(sd, napi);
11094         }
11095
11096         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11097         local_irq_enable();
11098
11099 #ifdef CONFIG_RPS
11100         remsd = oldsd->rps_ipi_list;
11101         oldsd->rps_ipi_list = NULL;
11102 #endif
11103         /* send out pending IPI's on offline CPU */
11104         net_rps_send_ipi(remsd);
11105
11106         /* Process offline CPU's input_pkt_queue */
11107         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11108                 netif_rx(skb);
11109                 input_queue_head_incr(oldsd);
11110         }
11111         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11112                 netif_rx(skb);
11113                 input_queue_head_incr(oldsd);
11114         }
11115
11116         return 0;
11117 }
11118
11119 /**
11120  *      netdev_increment_features - increment feature set by one
11121  *      @all: current feature set
11122  *      @one: new feature set
11123  *      @mask: mask feature set
11124  *
11125  *      Computes a new feature set after adding a device with feature set
11126  *      @one to the master device with current feature set @all.  Will not
11127  *      enable anything that is off in @mask. Returns the new feature set.
11128  */
11129 netdev_features_t netdev_increment_features(netdev_features_t all,
11130         netdev_features_t one, netdev_features_t mask)
11131 {
11132         if (mask & NETIF_F_HW_CSUM)
11133                 mask |= NETIF_F_CSUM_MASK;
11134         mask |= NETIF_F_VLAN_CHALLENGED;
11135
11136         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11137         all &= one | ~NETIF_F_ALL_FOR_ALL;
11138
11139         /* If one device supports hw checksumming, set for all. */
11140         if (all & NETIF_F_HW_CSUM)
11141                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11142
11143         return all;
11144 }
11145 EXPORT_SYMBOL(netdev_increment_features);
11146
11147 static struct hlist_head * __net_init netdev_create_hash(void)
11148 {
11149         int i;
11150         struct hlist_head *hash;
11151
11152         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11153         if (hash != NULL)
11154                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11155                         INIT_HLIST_HEAD(&hash[i]);
11156
11157         return hash;
11158 }
11159
11160 /* Initialize per network namespace state */
11161 static int __net_init netdev_init(struct net *net)
11162 {
11163         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11164                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11165
11166         INIT_LIST_HEAD(&net->dev_base_head);
11167
11168         net->dev_name_head = netdev_create_hash();
11169         if (net->dev_name_head == NULL)
11170                 goto err_name;
11171
11172         net->dev_index_head = netdev_create_hash();
11173         if (net->dev_index_head == NULL)
11174                 goto err_idx;
11175
11176         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11177
11178         return 0;
11179
11180 err_idx:
11181         kfree(net->dev_name_head);
11182 err_name:
11183         return -ENOMEM;
11184 }
11185
11186 /**
11187  *      netdev_drivername - network driver for the device
11188  *      @dev: network device
11189  *
11190  *      Determine network driver for device.
11191  */
11192 const char *netdev_drivername(const struct net_device *dev)
11193 {
11194         const struct device_driver *driver;
11195         const struct device *parent;
11196         const char *empty = "";
11197
11198         parent = dev->dev.parent;
11199         if (!parent)
11200                 return empty;
11201
11202         driver = parent->driver;
11203         if (driver && driver->name)
11204                 return driver->name;
11205         return empty;
11206 }
11207
11208 static void __netdev_printk(const char *level, const struct net_device *dev,
11209                             struct va_format *vaf)
11210 {
11211         if (dev && dev->dev.parent) {
11212                 dev_printk_emit(level[1] - '0',
11213                                 dev->dev.parent,
11214                                 "%s %s %s%s: %pV",
11215                                 dev_driver_string(dev->dev.parent),
11216                                 dev_name(dev->dev.parent),
11217                                 netdev_name(dev), netdev_reg_state(dev),
11218                                 vaf);
11219         } else if (dev) {
11220                 printk("%s%s%s: %pV",
11221                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11222         } else {
11223                 printk("%s(NULL net_device): %pV", level, vaf);
11224         }
11225 }
11226
11227 void netdev_printk(const char *level, const struct net_device *dev,
11228                    const char *format, ...)
11229 {
11230         struct va_format vaf;
11231         va_list args;
11232
11233         va_start(args, format);
11234
11235         vaf.fmt = format;
11236         vaf.va = &args;
11237
11238         __netdev_printk(level, dev, &vaf);
11239
11240         va_end(args);
11241 }
11242 EXPORT_SYMBOL(netdev_printk);
11243
11244 #define define_netdev_printk_level(func, level)                 \
11245 void func(const struct net_device *dev, const char *fmt, ...)   \
11246 {                                                               \
11247         struct va_format vaf;                                   \
11248         va_list args;                                           \
11249                                                                 \
11250         va_start(args, fmt);                                    \
11251                                                                 \
11252         vaf.fmt = fmt;                                          \
11253         vaf.va = &args;                                         \
11254                                                                 \
11255         __netdev_printk(level, dev, &vaf);                      \
11256                                                                 \
11257         va_end(args);                                           \
11258 }                                                               \
11259 EXPORT_SYMBOL(func);
11260
11261 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11262 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11263 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11264 define_netdev_printk_level(netdev_err, KERN_ERR);
11265 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11266 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11267 define_netdev_printk_level(netdev_info, KERN_INFO);
11268
11269 static void __net_exit netdev_exit(struct net *net)
11270 {
11271         kfree(net->dev_name_head);
11272         kfree(net->dev_index_head);
11273         if (net != &init_net)
11274                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11275 }
11276
11277 static struct pernet_operations __net_initdata netdev_net_ops = {
11278         .init = netdev_init,
11279         .exit = netdev_exit,
11280 };
11281
11282 static void __net_exit default_device_exit_net(struct net *net)
11283 {
11284         struct net_device *dev, *aux;
11285         /*
11286          * Push all migratable network devices back to the
11287          * initial network namespace
11288          */
11289         ASSERT_RTNL();
11290         for_each_netdev_safe(net, dev, aux) {
11291                 int err;
11292                 char fb_name[IFNAMSIZ];
11293
11294                 /* Ignore unmoveable devices (i.e. loopback) */
11295                 if (dev->features & NETIF_F_NETNS_LOCAL)
11296                         continue;
11297
11298                 /* Leave virtual devices for the generic cleanup */
11299                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11300                         continue;
11301
11302                 /* Push remaining network devices to init_net */
11303                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11304                 if (netdev_name_in_use(&init_net, fb_name))
11305                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11306                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11307                 if (err) {
11308                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11309                                  __func__, dev->name, err);
11310                         BUG();
11311                 }
11312         }
11313 }
11314
11315 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11316 {
11317         /* At exit all network devices most be removed from a network
11318          * namespace.  Do this in the reverse order of registration.
11319          * Do this across as many network namespaces as possible to
11320          * improve batching efficiency.
11321          */
11322         struct net_device *dev;
11323         struct net *net;
11324         LIST_HEAD(dev_kill_list);
11325
11326         rtnl_lock();
11327         list_for_each_entry(net, net_list, exit_list) {
11328                 default_device_exit_net(net);
11329                 cond_resched();
11330         }
11331
11332         list_for_each_entry(net, net_list, exit_list) {
11333                 for_each_netdev_reverse(net, dev) {
11334                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11335                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11336                         else
11337                                 unregister_netdevice_queue(dev, &dev_kill_list);
11338                 }
11339         }
11340         unregister_netdevice_many(&dev_kill_list);
11341         rtnl_unlock();
11342 }
11343
11344 static struct pernet_operations __net_initdata default_device_ops = {
11345         .exit_batch = default_device_exit_batch,
11346 };
11347
11348 /*
11349  *      Initialize the DEV module. At boot time this walks the device list and
11350  *      unhooks any devices that fail to initialise (normally hardware not
11351  *      present) and leaves us with a valid list of present and active devices.
11352  *
11353  */
11354
11355 /*
11356  *       This is called single threaded during boot, so no need
11357  *       to take the rtnl semaphore.
11358  */
11359 static int __init net_dev_init(void)
11360 {
11361         int i, rc = -ENOMEM;
11362
11363         BUG_ON(!dev_boot_phase);
11364
11365         if (dev_proc_init())
11366                 goto out;
11367
11368         if (netdev_kobject_init())
11369                 goto out;
11370
11371         INIT_LIST_HEAD(&ptype_all);
11372         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11373                 INIT_LIST_HEAD(&ptype_base[i]);
11374
11375         if (register_pernet_subsys(&netdev_net_ops))
11376                 goto out;
11377
11378         /*
11379          *      Initialise the packet receive queues.
11380          */
11381
11382         for_each_possible_cpu(i) {
11383                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11384                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11385
11386                 INIT_WORK(flush, flush_backlog);
11387
11388                 skb_queue_head_init(&sd->input_pkt_queue);
11389                 skb_queue_head_init(&sd->process_queue);
11390 #ifdef CONFIG_XFRM_OFFLOAD
11391                 skb_queue_head_init(&sd->xfrm_backlog);
11392 #endif
11393                 INIT_LIST_HEAD(&sd->poll_list);
11394                 sd->output_queue_tailp = &sd->output_queue;
11395 #ifdef CONFIG_RPS
11396                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11397                 sd->cpu = i;
11398 #endif
11399                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11400                 spin_lock_init(&sd->defer_lock);
11401
11402                 init_gro_hash(&sd->backlog);
11403                 sd->backlog.poll = process_backlog;
11404                 sd->backlog.weight = weight_p;
11405         }
11406
11407         dev_boot_phase = 0;
11408
11409         /* The loopback device is special if any other network devices
11410          * is present in a network namespace the loopback device must
11411          * be present. Since we now dynamically allocate and free the
11412          * loopback device ensure this invariant is maintained by
11413          * keeping the loopback device as the first device on the
11414          * list of network devices.  Ensuring the loopback devices
11415          * is the first device that appears and the last network device
11416          * that disappears.
11417          */
11418         if (register_pernet_device(&loopback_net_ops))
11419                 goto out;
11420
11421         if (register_pernet_device(&default_device_ops))
11422                 goto out;
11423
11424         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11425         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11426
11427         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11428                                        NULL, dev_cpu_dead);
11429         WARN_ON(rc < 0);
11430         rc = 0;
11431 out:
11432         return rc;
11433 }
11434
11435 subsys_initcall(net_dev_init);