Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156 #define MAX_GRO_SKBS 8
157
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;       /* Taps */
165 static struct list_head offload_base __read_mostly;
166
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169                                          struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171                                            struct net_device *dev,
172                                            struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 static DEFINE_MUTEX(ifalias_mutex);
198
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205 static DECLARE_RWSEM(devnet_rename_sem);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209         while (++net->dev_base_seq == 0)
210                 ;
211 }
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235         spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240                                                        const char *name)
241 {
242         struct netdev_name_node *name_node;
243
244         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245         if (!name_node)
246                 return NULL;
247         INIT_HLIST_NODE(&name_node->hlist);
248         name_node->dev = dev;
249         name_node->name = name;
250         return name_node;
251 }
252
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = netdev_name_node_alloc(dev, dev->name);
259         if (!name_node)
260                 return NULL;
261         INIT_LIST_HEAD(&name_node->list);
262         return name_node;
263 }
264
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267         kfree(name_node);
268 }
269
270 static void netdev_name_node_add(struct net *net,
271                                  struct netdev_name_node *name_node)
272 {
273         hlist_add_head_rcu(&name_node->hlist,
274                            dev_name_hash(net, name_node->name));
275 }
276
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279         hlist_del_rcu(&name_node->hlist);
280 }
281
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283                                                         const char *name)
284 {
285         struct hlist_head *head = dev_name_hash(net, name);
286         struct netdev_name_node *name_node;
287
288         hlist_for_each_entry(name_node, head, hlist)
289                 if (!strcmp(name_node->name, name))
290                         return name_node;
291         return NULL;
292 }
293
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295                                                             const char *name)
296 {
297         struct hlist_head *head = dev_name_hash(net, name);
298         struct netdev_name_node *name_node;
299
300         hlist_for_each_entry_rcu(name_node, head, hlist)
301                 if (!strcmp(name_node->name, name))
302                         return name_node;
303         return NULL;
304 }
305
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308         struct netdev_name_node *name_node;
309         struct net *net = dev_net(dev);
310
311         name_node = netdev_name_node_lookup(net, name);
312         if (name_node)
313                 return -EEXIST;
314         name_node = netdev_name_node_alloc(dev, name);
315         if (!name_node)
316                 return -ENOMEM;
317         netdev_name_node_add(net, name_node);
318         /* The node that holds dev->name acts as a head of per-device list. */
319         list_add_tail(&name_node->list, &dev->name_node->list);
320
321         return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327         list_del(&name_node->list);
328         netdev_name_node_del(name_node);
329         kfree(name_node->name);
330         netdev_name_node_free(name_node);
331 }
332
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335         struct netdev_name_node *name_node;
336         struct net *net = dev_net(dev);
337
338         name_node = netdev_name_node_lookup(net, name);
339         if (!name_node)
340                 return -ENOENT;
341         /* lookup might have found our primary name or a name belonging
342          * to another device.
343          */
344         if (name_node == dev->name_node || name_node->dev != dev)
345                 return -EINVAL;
346
347         __netdev_name_node_alt_destroy(name_node);
348
349         return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352
353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355         struct netdev_name_node *name_node, *tmp;
356
357         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358                 __netdev_name_node_alt_destroy(name_node);
359 }
360
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
363 {
364         struct net *net = dev_net(dev);
365
366         ASSERT_RTNL();
367
368         write_lock_bh(&dev_base_lock);
369         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370         netdev_name_node_add(net, dev->name_node);
371         hlist_add_head_rcu(&dev->index_hlist,
372                            dev_index_hash(net, dev->ifindex));
373         write_unlock_bh(&dev_base_lock);
374
375         dev_base_seq_inc(net);
376 }
377
378 /* Device list removal
379  * caller must respect a RCU grace period before freeing/reusing dev
380  */
381 static void unlist_netdevice(struct net_device *dev)
382 {
383         ASSERT_RTNL();
384
385         /* Unlink dev from the device chain */
386         write_lock_bh(&dev_base_lock);
387         list_del_rcu(&dev->dev_list);
388         netdev_name_node_del(dev->name_node);
389         hlist_del_rcu(&dev->index_hlist);
390         write_unlock_bh(&dev_base_lock);
391
392         dev_base_seq_inc(dev_net(dev));
393 }
394
395 /*
396  *      Our notifier list
397  */
398
399 static RAW_NOTIFIER_HEAD(netdev_chain);
400
401 /*
402  *      Device drivers call our routines to queue packets here. We empty the
403  *      queue in the local softnet handler.
404  */
405
406 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
407 EXPORT_PER_CPU_SYMBOL(softnet_data);
408
409 #ifdef CONFIG_LOCKDEP
410 /*
411  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412  * according to dev->type
413  */
414 static const unsigned short netdev_lock_type[] = {
415          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
430
431 static const char *const netdev_lock_name[] = {
432         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
447
448 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
450
451 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
452 {
453         int i;
454
455         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456                 if (netdev_lock_type[i] == dev_type)
457                         return i;
458         /* the last key is used by default */
459         return ARRAY_SIZE(netdev_lock_type) - 1;
460 }
461
462 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463                                                  unsigned short dev_type)
464 {
465         int i;
466
467         i = netdev_lock_pos(dev_type);
468         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469                                    netdev_lock_name[i]);
470 }
471
472 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473 {
474         int i;
475
476         i = netdev_lock_pos(dev->type);
477         lockdep_set_class_and_name(&dev->addr_list_lock,
478                                    &netdev_addr_lock_key[i],
479                                    netdev_lock_name[i]);
480 }
481 #else
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483                                                  unsigned short dev_type)
484 {
485 }
486
487 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
488 {
489 }
490 #endif
491
492 /*******************************************************************************
493  *
494  *              Protocol management and registration routines
495  *
496  *******************************************************************************/
497
498
499 /*
500  *      Add a protocol ID to the list. Now that the input handler is
501  *      smarter we can dispense with all the messy stuff that used to be
502  *      here.
503  *
504  *      BEWARE!!! Protocol handlers, mangling input packets,
505  *      MUST BE last in hash buckets and checking protocol handlers
506  *      MUST start from promiscuous ptype_all chain in net_bh.
507  *      It is true now, do not change it.
508  *      Explanation follows: if protocol handler, mangling packet, will
509  *      be the first on list, it is not able to sense, that packet
510  *      is cloned and should be copied-on-write, so that it will
511  *      change it and subsequent readers will get broken packet.
512  *                                                      --ANK (980803)
513  */
514
515 static inline struct list_head *ptype_head(const struct packet_type *pt)
516 {
517         if (pt->type == htons(ETH_P_ALL))
518                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
519         else
520                 return pt->dev ? &pt->dev->ptype_specific :
521                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
522 }
523
524 /**
525  *      dev_add_pack - add packet handler
526  *      @pt: packet type declaration
527  *
528  *      Add a protocol handler to the networking stack. The passed &packet_type
529  *      is linked into kernel lists and may not be freed until it has been
530  *      removed from the kernel lists.
531  *
532  *      This call does not sleep therefore it can not
533  *      guarantee all CPU's that are in middle of receiving packets
534  *      will see the new packet type (until the next received packet).
535  */
536
537 void dev_add_pack(struct packet_type *pt)
538 {
539         struct list_head *head = ptype_head(pt);
540
541         spin_lock(&ptype_lock);
542         list_add_rcu(&pt->list, head);
543         spin_unlock(&ptype_lock);
544 }
545 EXPORT_SYMBOL(dev_add_pack);
546
547 /**
548  *      __dev_remove_pack        - remove packet handler
549  *      @pt: packet type declaration
550  *
551  *      Remove a protocol handler that was previously added to the kernel
552  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
553  *      from the kernel lists and can be freed or reused once this function
554  *      returns.
555  *
556  *      The packet type might still be in use by receivers
557  *      and must not be freed until after all the CPU's have gone
558  *      through a quiescent state.
559  */
560 void __dev_remove_pack(struct packet_type *pt)
561 {
562         struct list_head *head = ptype_head(pt);
563         struct packet_type *pt1;
564
565         spin_lock(&ptype_lock);
566
567         list_for_each_entry(pt1, head, list) {
568                 if (pt == pt1) {
569                         list_del_rcu(&pt->list);
570                         goto out;
571                 }
572         }
573
574         pr_warn("dev_remove_pack: %p not found\n", pt);
575 out:
576         spin_unlock(&ptype_lock);
577 }
578 EXPORT_SYMBOL(__dev_remove_pack);
579
580 /**
581  *      dev_remove_pack  - remove packet handler
582  *      @pt: packet type declaration
583  *
584  *      Remove a protocol handler that was previously added to the kernel
585  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
586  *      from the kernel lists and can be freed or reused once this function
587  *      returns.
588  *
589  *      This call sleeps to guarantee that no CPU is looking at the packet
590  *      type after return.
591  */
592 void dev_remove_pack(struct packet_type *pt)
593 {
594         __dev_remove_pack(pt);
595
596         synchronize_net();
597 }
598 EXPORT_SYMBOL(dev_remove_pack);
599
600
601 /**
602  *      dev_add_offload - register offload handlers
603  *      @po: protocol offload declaration
604  *
605  *      Add protocol offload handlers to the networking stack. The passed
606  *      &proto_offload is linked into kernel lists and may not be freed until
607  *      it has been removed from the kernel lists.
608  *
609  *      This call does not sleep therefore it can not
610  *      guarantee all CPU's that are in middle of receiving packets
611  *      will see the new offload handlers (until the next received packet).
612  */
613 void dev_add_offload(struct packet_offload *po)
614 {
615         struct packet_offload *elem;
616
617         spin_lock(&offload_lock);
618         list_for_each_entry(elem, &offload_base, list) {
619                 if (po->priority < elem->priority)
620                         break;
621         }
622         list_add_rcu(&po->list, elem->list.prev);
623         spin_unlock(&offload_lock);
624 }
625 EXPORT_SYMBOL(dev_add_offload);
626
627 /**
628  *      __dev_remove_offload     - remove offload handler
629  *      @po: packet offload declaration
630  *
631  *      Remove a protocol offload handler that was previously added to the
632  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
633  *      is removed from the kernel lists and can be freed or reused once this
634  *      function returns.
635  *
636  *      The packet type might still be in use by receivers
637  *      and must not be freed until after all the CPU's have gone
638  *      through a quiescent state.
639  */
640 static void __dev_remove_offload(struct packet_offload *po)
641 {
642         struct list_head *head = &offload_base;
643         struct packet_offload *po1;
644
645         spin_lock(&offload_lock);
646
647         list_for_each_entry(po1, head, list) {
648                 if (po == po1) {
649                         list_del_rcu(&po->list);
650                         goto out;
651                 }
652         }
653
654         pr_warn("dev_remove_offload: %p not found\n", po);
655 out:
656         spin_unlock(&offload_lock);
657 }
658
659 /**
660  *      dev_remove_offload       - remove packet offload handler
661  *      @po: packet offload declaration
662  *
663  *      Remove a packet offload handler that was previously added to the kernel
664  *      offload handlers by dev_add_offload(). The passed &offload_type is
665  *      removed from the kernel lists and can be freed or reused once this
666  *      function returns.
667  *
668  *      This call sleeps to guarantee that no CPU is looking at the packet
669  *      type after return.
670  */
671 void dev_remove_offload(struct packet_offload *po)
672 {
673         __dev_remove_offload(po);
674
675         synchronize_net();
676 }
677 EXPORT_SYMBOL(dev_remove_offload);
678
679 /*******************************************************************************
680  *
681  *                          Device Interface Subroutines
682  *
683  *******************************************************************************/
684
685 /**
686  *      dev_get_iflink  - get 'iflink' value of a interface
687  *      @dev: targeted interface
688  *
689  *      Indicates the ifindex the interface is linked to.
690  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
691  */
692
693 int dev_get_iflink(const struct net_device *dev)
694 {
695         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
696                 return dev->netdev_ops->ndo_get_iflink(dev);
697
698         return dev->ifindex;
699 }
700 EXPORT_SYMBOL(dev_get_iflink);
701
702 /**
703  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
704  *      @dev: targeted interface
705  *      @skb: The packet.
706  *
707  *      For better visibility of tunnel traffic OVS needs to retrieve
708  *      egress tunnel information for a packet. Following API allows
709  *      user to get this info.
710  */
711 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
712 {
713         struct ip_tunnel_info *info;
714
715         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
716                 return -EINVAL;
717
718         info = skb_tunnel_info_unclone(skb);
719         if (!info)
720                 return -ENOMEM;
721         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
722                 return -EINVAL;
723
724         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
725 }
726 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
727
728 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
729 {
730         int k = stack->num_paths++;
731
732         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
733                 return NULL;
734
735         return &stack->path[k];
736 }
737
738 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
739                           struct net_device_path_stack *stack)
740 {
741         const struct net_device *last_dev;
742         struct net_device_path_ctx ctx = {
743                 .dev    = dev,
744                 .daddr  = daddr,
745         };
746         struct net_device_path *path;
747         int ret = 0;
748
749         stack->num_paths = 0;
750         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
751                 last_dev = ctx.dev;
752                 path = dev_fwd_path(stack);
753                 if (!path)
754                         return -1;
755
756                 memset(path, 0, sizeof(struct net_device_path));
757                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
758                 if (ret < 0)
759                         return -1;
760
761                 if (WARN_ON_ONCE(last_dev == ctx.dev))
762                         return -1;
763         }
764         path = dev_fwd_path(stack);
765         if (!path)
766                 return -1;
767         path->type = DEV_PATH_ETHERNET;
768         path->dev = ctx.dev;
769
770         return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773
774 /**
775  *      __dev_get_by_name       - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. Must be called under RTNL semaphore
780  *      or @dev_base_lock. If the name is found a pointer to the device
781  *      is returned. If the name is not found then %NULL is returned. The
782  *      reference counters are not incremented so the caller must be
783  *      careful with locks.
784  */
785
786 struct net_device *__dev_get_by_name(struct net *net, const char *name)
787 {
788         struct netdev_name_node *node_name;
789
790         node_name = netdev_name_node_lookup(net, name);
791         return node_name ? node_name->dev : NULL;
792 }
793 EXPORT_SYMBOL(__dev_get_by_name);
794
795 /**
796  * dev_get_by_name_rcu  - find a device by its name
797  * @net: the applicable net namespace
798  * @name: name to find
799  *
800  * Find an interface by name.
801  * If the name is found a pointer to the device is returned.
802  * If the name is not found then %NULL is returned.
803  * The reference counters are not incremented so the caller must be
804  * careful with locks. The caller must hold RCU lock.
805  */
806
807 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
808 {
809         struct netdev_name_node *node_name;
810
811         node_name = netdev_name_node_lookup_rcu(net, name);
812         return node_name ? node_name->dev : NULL;
813 }
814 EXPORT_SYMBOL(dev_get_by_name_rcu);
815
816 /**
817  *      dev_get_by_name         - find a device by its name
818  *      @net: the applicable net namespace
819  *      @name: name to find
820  *
821  *      Find an interface by name. This can be called from any
822  *      context and does its own locking. The returned handle has
823  *      the usage count incremented and the caller must use dev_put() to
824  *      release it when it is no longer needed. %NULL is returned if no
825  *      matching device is found.
826  */
827
828 struct net_device *dev_get_by_name(struct net *net, const char *name)
829 {
830         struct net_device *dev;
831
832         rcu_read_lock();
833         dev = dev_get_by_name_rcu(net, name);
834         dev_hold(dev);
835         rcu_read_unlock();
836         return dev;
837 }
838 EXPORT_SYMBOL(dev_get_by_name);
839
840 /**
841  *      __dev_get_by_index - find a device by its ifindex
842  *      @net: the applicable net namespace
843  *      @ifindex: index of device
844  *
845  *      Search for an interface by index. Returns %NULL if the device
846  *      is not found or a pointer to the device. The device has not
847  *      had its reference counter increased so the caller must be careful
848  *      about locking. The caller must hold either the RTNL semaphore
849  *      or @dev_base_lock.
850  */
851
852 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
853 {
854         struct net_device *dev;
855         struct hlist_head *head = dev_index_hash(net, ifindex);
856
857         hlist_for_each_entry(dev, head, index_hlist)
858                 if (dev->ifindex == ifindex)
859                         return dev;
860
861         return NULL;
862 }
863 EXPORT_SYMBOL(__dev_get_by_index);
864
865 /**
866  *      dev_get_by_index_rcu - find a device by its ifindex
867  *      @net: the applicable net namespace
868  *      @ifindex: index of device
869  *
870  *      Search for an interface by index. Returns %NULL if the device
871  *      is not found or a pointer to the device. The device has not
872  *      had its reference counter increased so the caller must be careful
873  *      about locking. The caller must hold RCU lock.
874  */
875
876 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
877 {
878         struct net_device *dev;
879         struct hlist_head *head = dev_index_hash(net, ifindex);
880
881         hlist_for_each_entry_rcu(dev, head, index_hlist)
882                 if (dev->ifindex == ifindex)
883                         return dev;
884
885         return NULL;
886 }
887 EXPORT_SYMBOL(dev_get_by_index_rcu);
888
889
890 /**
891  *      dev_get_by_index - find a device by its ifindex
892  *      @net: the applicable net namespace
893  *      @ifindex: index of device
894  *
895  *      Search for an interface by index. Returns NULL if the device
896  *      is not found or a pointer to the device. The device returned has
897  *      had a reference added and the pointer is safe until the user calls
898  *      dev_put to indicate they have finished with it.
899  */
900
901 struct net_device *dev_get_by_index(struct net *net, int ifindex)
902 {
903         struct net_device *dev;
904
905         rcu_read_lock();
906         dev = dev_get_by_index_rcu(net, ifindex);
907         dev_hold(dev);
908         rcu_read_unlock();
909         return dev;
910 }
911 EXPORT_SYMBOL(dev_get_by_index);
912
913 /**
914  *      dev_get_by_napi_id - find a device by napi_id
915  *      @napi_id: ID of the NAPI struct
916  *
917  *      Search for an interface by NAPI ID. Returns %NULL if the device
918  *      is not found or a pointer to the device. The device has not had
919  *      its reference counter increased so the caller must be careful
920  *      about locking. The caller must hold RCU lock.
921  */
922
923 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
924 {
925         struct napi_struct *napi;
926
927         WARN_ON_ONCE(!rcu_read_lock_held());
928
929         if (napi_id < MIN_NAPI_ID)
930                 return NULL;
931
932         napi = napi_by_id(napi_id);
933
934         return napi ? napi->dev : NULL;
935 }
936 EXPORT_SYMBOL(dev_get_by_napi_id);
937
938 /**
939  *      netdev_get_name - get a netdevice name, knowing its ifindex.
940  *      @net: network namespace
941  *      @name: a pointer to the buffer where the name will be stored.
942  *      @ifindex: the ifindex of the interface to get the name from.
943  */
944 int netdev_get_name(struct net *net, char *name, int ifindex)
945 {
946         struct net_device *dev;
947         int ret;
948
949         down_read(&devnet_rename_sem);
950         rcu_read_lock();
951
952         dev = dev_get_by_index_rcu(net, ifindex);
953         if (!dev) {
954                 ret = -ENODEV;
955                 goto out;
956         }
957
958         strcpy(name, dev->name);
959
960         ret = 0;
961 out:
962         rcu_read_unlock();
963         up_read(&devnet_rename_sem);
964         return ret;
965 }
966
967 /**
968  *      dev_getbyhwaddr_rcu - find a device by its hardware address
969  *      @net: the applicable net namespace
970  *      @type: media type of device
971  *      @ha: hardware address
972  *
973  *      Search for an interface by MAC address. Returns NULL if the device
974  *      is not found or a pointer to the device.
975  *      The caller must hold RCU or RTNL.
976  *      The returned device has not had its ref count increased
977  *      and the caller must therefore be careful about locking
978  *
979  */
980
981 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
982                                        const char *ha)
983 {
984         struct net_device *dev;
985
986         for_each_netdev_rcu(net, dev)
987                 if (dev->type == type &&
988                     !memcmp(dev->dev_addr, ha, dev->addr_len))
989                         return dev;
990
991         return NULL;
992 }
993 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
994
995 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
996 {
997         struct net_device *dev, *ret = NULL;
998
999         rcu_read_lock();
1000         for_each_netdev_rcu(net, dev)
1001                 if (dev->type == type) {
1002                         dev_hold(dev);
1003                         ret = dev;
1004                         break;
1005                 }
1006         rcu_read_unlock();
1007         return ret;
1008 }
1009 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1010
1011 /**
1012  *      __dev_get_by_flags - find any device with given flags
1013  *      @net: the applicable net namespace
1014  *      @if_flags: IFF_* values
1015  *      @mask: bitmask of bits in if_flags to check
1016  *
1017  *      Search for any interface with the given flags. Returns NULL if a device
1018  *      is not found or a pointer to the device. Must be called inside
1019  *      rtnl_lock(), and result refcount is unchanged.
1020  */
1021
1022 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1023                                       unsigned short mask)
1024 {
1025         struct net_device *dev, *ret;
1026
1027         ASSERT_RTNL();
1028
1029         ret = NULL;
1030         for_each_netdev(net, dev) {
1031                 if (((dev->flags ^ if_flags) & mask) == 0) {
1032                         ret = dev;
1033                         break;
1034                 }
1035         }
1036         return ret;
1037 }
1038 EXPORT_SYMBOL(__dev_get_by_flags);
1039
1040 /**
1041  *      dev_valid_name - check if name is okay for network device
1042  *      @name: name string
1043  *
1044  *      Network device names need to be valid file names to
1045  *      allow sysfs to work.  We also disallow any kind of
1046  *      whitespace.
1047  */
1048 bool dev_valid_name(const char *name)
1049 {
1050         if (*name == '\0')
1051                 return false;
1052         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1053                 return false;
1054         if (!strcmp(name, ".") || !strcmp(name, ".."))
1055                 return false;
1056
1057         while (*name) {
1058                 if (*name == '/' || *name == ':' || isspace(*name))
1059                         return false;
1060                 name++;
1061         }
1062         return true;
1063 }
1064 EXPORT_SYMBOL(dev_valid_name);
1065
1066 /**
1067  *      __dev_alloc_name - allocate a name for a device
1068  *      @net: network namespace to allocate the device name in
1069  *      @name: name format string
1070  *      @buf:  scratch buffer and result name string
1071  *
1072  *      Passed a format string - eg "lt%d" it will try and find a suitable
1073  *      id. It scans list of devices to build up a free map, then chooses
1074  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1075  *      while allocating the name and adding the device in order to avoid
1076  *      duplicates.
1077  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1078  *      Returns the number of the unit assigned or a negative errno code.
1079  */
1080
1081 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1082 {
1083         int i = 0;
1084         const char *p;
1085         const int max_netdevices = 8*PAGE_SIZE;
1086         unsigned long *inuse;
1087         struct net_device *d;
1088
1089         if (!dev_valid_name(name))
1090                 return -EINVAL;
1091
1092         p = strchr(name, '%');
1093         if (p) {
1094                 /*
1095                  * Verify the string as this thing may have come from
1096                  * the user.  There must be either one "%d" and no other "%"
1097                  * characters.
1098                  */
1099                 if (p[1] != 'd' || strchr(p + 2, '%'))
1100                         return -EINVAL;
1101
1102                 /* Use one page as a bit array of possible slots */
1103                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1104                 if (!inuse)
1105                         return -ENOMEM;
1106
1107                 for_each_netdev(net, d) {
1108                         struct netdev_name_node *name_node;
1109                         list_for_each_entry(name_node, &d->name_node->list, list) {
1110                                 if (!sscanf(name_node->name, name, &i))
1111                                         continue;
1112                                 if (i < 0 || i >= max_netdevices)
1113                                         continue;
1114
1115                                 /*  avoid cases where sscanf is not exact inverse of printf */
1116                                 snprintf(buf, IFNAMSIZ, name, i);
1117                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1118                                         set_bit(i, inuse);
1119                         }
1120                         if (!sscanf(d->name, name, &i))
1121                                 continue;
1122                         if (i < 0 || i >= max_netdevices)
1123                                 continue;
1124
1125                         /*  avoid cases where sscanf is not exact inverse of printf */
1126                         snprintf(buf, IFNAMSIZ, name, i);
1127                         if (!strncmp(buf, d->name, IFNAMSIZ))
1128                                 set_bit(i, inuse);
1129                 }
1130
1131                 i = find_first_zero_bit(inuse, max_netdevices);
1132                 free_page((unsigned long) inuse);
1133         }
1134
1135         snprintf(buf, IFNAMSIZ, name, i);
1136         if (!__dev_get_by_name(net, buf))
1137                 return i;
1138
1139         /* It is possible to run out of possible slots
1140          * when the name is long and there isn't enough space left
1141          * for the digits, or if all bits are used.
1142          */
1143         return -ENFILE;
1144 }
1145
1146 static int dev_alloc_name_ns(struct net *net,
1147                              struct net_device *dev,
1148                              const char *name)
1149 {
1150         char buf[IFNAMSIZ];
1151         int ret;
1152
1153         BUG_ON(!net);
1154         ret = __dev_alloc_name(net, name, buf);
1155         if (ret >= 0)
1156                 strlcpy(dev->name, buf, IFNAMSIZ);
1157         return ret;
1158 }
1159
1160 /**
1161  *      dev_alloc_name - allocate a name for a device
1162  *      @dev: device
1163  *      @name: name format string
1164  *
1165  *      Passed a format string - eg "lt%d" it will try and find a suitable
1166  *      id. It scans list of devices to build up a free map, then chooses
1167  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1168  *      while allocating the name and adding the device in order to avoid
1169  *      duplicates.
1170  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1171  *      Returns the number of the unit assigned or a negative errno code.
1172  */
1173
1174 int dev_alloc_name(struct net_device *dev, const char *name)
1175 {
1176         return dev_alloc_name_ns(dev_net(dev), dev, name);
1177 }
1178 EXPORT_SYMBOL(dev_alloc_name);
1179
1180 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1181                               const char *name)
1182 {
1183         BUG_ON(!net);
1184
1185         if (!dev_valid_name(name))
1186                 return -EINVAL;
1187
1188         if (strchr(name, '%'))
1189                 return dev_alloc_name_ns(net, dev, name);
1190         else if (__dev_get_by_name(net, name))
1191                 return -EEXIST;
1192         else if (dev->name != name)
1193                 strlcpy(dev->name, name, IFNAMSIZ);
1194
1195         return 0;
1196 }
1197
1198 /**
1199  *      dev_change_name - change name of a device
1200  *      @dev: device
1201  *      @newname: name (or format string) must be at least IFNAMSIZ
1202  *
1203  *      Change name of a device, can pass format strings "eth%d".
1204  *      for wildcarding.
1205  */
1206 int dev_change_name(struct net_device *dev, const char *newname)
1207 {
1208         unsigned char old_assign_type;
1209         char oldname[IFNAMSIZ];
1210         int err = 0;
1211         int ret;
1212         struct net *net;
1213
1214         ASSERT_RTNL();
1215         BUG_ON(!dev_net(dev));
1216
1217         net = dev_net(dev);
1218
1219         /* Some auto-enslaved devices e.g. failover slaves are
1220          * special, as userspace might rename the device after
1221          * the interface had been brought up and running since
1222          * the point kernel initiated auto-enslavement. Allow
1223          * live name change even when these slave devices are
1224          * up and running.
1225          *
1226          * Typically, users of these auto-enslaving devices
1227          * don't actually care about slave name change, as
1228          * they are supposed to operate on master interface
1229          * directly.
1230          */
1231         if (dev->flags & IFF_UP &&
1232             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1233                 return -EBUSY;
1234
1235         down_write(&devnet_rename_sem);
1236
1237         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1238                 up_write(&devnet_rename_sem);
1239                 return 0;
1240         }
1241
1242         memcpy(oldname, dev->name, IFNAMSIZ);
1243
1244         err = dev_get_valid_name(net, dev, newname);
1245         if (err < 0) {
1246                 up_write(&devnet_rename_sem);
1247                 return err;
1248         }
1249
1250         if (oldname[0] && !strchr(oldname, '%'))
1251                 netdev_info(dev, "renamed from %s\n", oldname);
1252
1253         old_assign_type = dev->name_assign_type;
1254         dev->name_assign_type = NET_NAME_RENAMED;
1255
1256 rollback:
1257         ret = device_rename(&dev->dev, dev->name);
1258         if (ret) {
1259                 memcpy(dev->name, oldname, IFNAMSIZ);
1260                 dev->name_assign_type = old_assign_type;
1261                 up_write(&devnet_rename_sem);
1262                 return ret;
1263         }
1264
1265         up_write(&devnet_rename_sem);
1266
1267         netdev_adjacent_rename_links(dev, oldname);
1268
1269         write_lock_bh(&dev_base_lock);
1270         netdev_name_node_del(dev->name_node);
1271         write_unlock_bh(&dev_base_lock);
1272
1273         synchronize_rcu();
1274
1275         write_lock_bh(&dev_base_lock);
1276         netdev_name_node_add(net, dev->name_node);
1277         write_unlock_bh(&dev_base_lock);
1278
1279         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1280         ret = notifier_to_errno(ret);
1281
1282         if (ret) {
1283                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1284                 if (err >= 0) {
1285                         err = ret;
1286                         down_write(&devnet_rename_sem);
1287                         memcpy(dev->name, oldname, IFNAMSIZ);
1288                         memcpy(oldname, newname, IFNAMSIZ);
1289                         dev->name_assign_type = old_assign_type;
1290                         old_assign_type = NET_NAME_RENAMED;
1291                         goto rollback;
1292                 } else {
1293                         pr_err("%s: name change rollback failed: %d\n",
1294                                dev->name, ret);
1295                 }
1296         }
1297
1298         return err;
1299 }
1300
1301 /**
1302  *      dev_set_alias - change ifalias of a device
1303  *      @dev: device
1304  *      @alias: name up to IFALIASZ
1305  *      @len: limit of bytes to copy from info
1306  *
1307  *      Set ifalias for a device,
1308  */
1309 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1310 {
1311         struct dev_ifalias *new_alias = NULL;
1312
1313         if (len >= IFALIASZ)
1314                 return -EINVAL;
1315
1316         if (len) {
1317                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1318                 if (!new_alias)
1319                         return -ENOMEM;
1320
1321                 memcpy(new_alias->ifalias, alias, len);
1322                 new_alias->ifalias[len] = 0;
1323         }
1324
1325         mutex_lock(&ifalias_mutex);
1326         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1327                                         mutex_is_locked(&ifalias_mutex));
1328         mutex_unlock(&ifalias_mutex);
1329
1330         if (new_alias)
1331                 kfree_rcu(new_alias, rcuhead);
1332
1333         return len;
1334 }
1335 EXPORT_SYMBOL(dev_set_alias);
1336
1337 /**
1338  *      dev_get_alias - get ifalias of a device
1339  *      @dev: device
1340  *      @name: buffer to store name of ifalias
1341  *      @len: size of buffer
1342  *
1343  *      get ifalias for a device.  Caller must make sure dev cannot go
1344  *      away,  e.g. rcu read lock or own a reference count to device.
1345  */
1346 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1347 {
1348         const struct dev_ifalias *alias;
1349         int ret = 0;
1350
1351         rcu_read_lock();
1352         alias = rcu_dereference(dev->ifalias);
1353         if (alias)
1354                 ret = snprintf(name, len, "%s", alias->ifalias);
1355         rcu_read_unlock();
1356
1357         return ret;
1358 }
1359
1360 /**
1361  *      netdev_features_change - device changes features
1362  *      @dev: device to cause notification
1363  *
1364  *      Called to indicate a device has changed features.
1365  */
1366 void netdev_features_change(struct net_device *dev)
1367 {
1368         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1369 }
1370 EXPORT_SYMBOL(netdev_features_change);
1371
1372 /**
1373  *      netdev_state_change - device changes state
1374  *      @dev: device to cause notification
1375  *
1376  *      Called to indicate a device has changed state. This function calls
1377  *      the notifier chains for netdev_chain and sends a NEWLINK message
1378  *      to the routing socket.
1379  */
1380 void netdev_state_change(struct net_device *dev)
1381 {
1382         if (dev->flags & IFF_UP) {
1383                 struct netdev_notifier_change_info change_info = {
1384                         .info.dev = dev,
1385                 };
1386
1387                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1388                                               &change_info.info);
1389                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1390         }
1391 }
1392 EXPORT_SYMBOL(netdev_state_change);
1393
1394 /**
1395  * __netdev_notify_peers - notify network peers about existence of @dev,
1396  * to be called when rtnl lock is already held.
1397  * @dev: network device
1398  *
1399  * Generate traffic such that interested network peers are aware of
1400  * @dev, such as by generating a gratuitous ARP. This may be used when
1401  * a device wants to inform the rest of the network about some sort of
1402  * reconfiguration such as a failover event or virtual machine
1403  * migration.
1404  */
1405 void __netdev_notify_peers(struct net_device *dev)
1406 {
1407         ASSERT_RTNL();
1408         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1409         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1410 }
1411 EXPORT_SYMBOL(__netdev_notify_peers);
1412
1413 /**
1414  * netdev_notify_peers - notify network peers about existence of @dev
1415  * @dev: network device
1416  *
1417  * Generate traffic such that interested network peers are aware of
1418  * @dev, such as by generating a gratuitous ARP. This may be used when
1419  * a device wants to inform the rest of the network about some sort of
1420  * reconfiguration such as a failover event or virtual machine
1421  * migration.
1422  */
1423 void netdev_notify_peers(struct net_device *dev)
1424 {
1425         rtnl_lock();
1426         __netdev_notify_peers(dev);
1427         rtnl_unlock();
1428 }
1429 EXPORT_SYMBOL(netdev_notify_peers);
1430
1431 static int napi_threaded_poll(void *data);
1432
1433 static int napi_kthread_create(struct napi_struct *n)
1434 {
1435         int err = 0;
1436
1437         /* Create and wake up the kthread once to put it in
1438          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1439          * warning and work with loadavg.
1440          */
1441         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1442                                 n->dev->name, n->napi_id);
1443         if (IS_ERR(n->thread)) {
1444                 err = PTR_ERR(n->thread);
1445                 pr_err("kthread_run failed with err %d\n", err);
1446                 n->thread = NULL;
1447         }
1448
1449         return err;
1450 }
1451
1452 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1453 {
1454         const struct net_device_ops *ops = dev->netdev_ops;
1455         int ret;
1456
1457         ASSERT_RTNL();
1458
1459         if (!netif_device_present(dev)) {
1460                 /* may be detached because parent is runtime-suspended */
1461                 if (dev->dev.parent)
1462                         pm_runtime_resume(dev->dev.parent);
1463                 if (!netif_device_present(dev))
1464                         return -ENODEV;
1465         }
1466
1467         /* Block netpoll from trying to do any rx path servicing.
1468          * If we don't do this there is a chance ndo_poll_controller
1469          * or ndo_poll may be running while we open the device
1470          */
1471         netpoll_poll_disable(dev);
1472
1473         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1474         ret = notifier_to_errno(ret);
1475         if (ret)
1476                 return ret;
1477
1478         set_bit(__LINK_STATE_START, &dev->state);
1479
1480         if (ops->ndo_validate_addr)
1481                 ret = ops->ndo_validate_addr(dev);
1482
1483         if (!ret && ops->ndo_open)
1484                 ret = ops->ndo_open(dev);
1485
1486         netpoll_poll_enable(dev);
1487
1488         if (ret)
1489                 clear_bit(__LINK_STATE_START, &dev->state);
1490         else {
1491                 dev->flags |= IFF_UP;
1492                 dev_set_rx_mode(dev);
1493                 dev_activate(dev);
1494                 add_device_randomness(dev->dev_addr, dev->addr_len);
1495         }
1496
1497         return ret;
1498 }
1499
1500 /**
1501  *      dev_open        - prepare an interface for use.
1502  *      @dev: device to open
1503  *      @extack: netlink extended ack
1504  *
1505  *      Takes a device from down to up state. The device's private open
1506  *      function is invoked and then the multicast lists are loaded. Finally
1507  *      the device is moved into the up state and a %NETDEV_UP message is
1508  *      sent to the netdev notifier chain.
1509  *
1510  *      Calling this function on an active interface is a nop. On a failure
1511  *      a negative errno code is returned.
1512  */
1513 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1514 {
1515         int ret;
1516
1517         if (dev->flags & IFF_UP)
1518                 return 0;
1519
1520         ret = __dev_open(dev, extack);
1521         if (ret < 0)
1522                 return ret;
1523
1524         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1525         call_netdevice_notifiers(NETDEV_UP, dev);
1526
1527         return ret;
1528 }
1529 EXPORT_SYMBOL(dev_open);
1530
1531 static void __dev_close_many(struct list_head *head)
1532 {
1533         struct net_device *dev;
1534
1535         ASSERT_RTNL();
1536         might_sleep();
1537
1538         list_for_each_entry(dev, head, close_list) {
1539                 /* Temporarily disable netpoll until the interface is down */
1540                 netpoll_poll_disable(dev);
1541
1542                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1543
1544                 clear_bit(__LINK_STATE_START, &dev->state);
1545
1546                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1547                  * can be even on different cpu. So just clear netif_running().
1548                  *
1549                  * dev->stop() will invoke napi_disable() on all of it's
1550                  * napi_struct instances on this device.
1551                  */
1552                 smp_mb__after_atomic(); /* Commit netif_running(). */
1553         }
1554
1555         dev_deactivate_many(head);
1556
1557         list_for_each_entry(dev, head, close_list) {
1558                 const struct net_device_ops *ops = dev->netdev_ops;
1559
1560                 /*
1561                  *      Call the device specific close. This cannot fail.
1562                  *      Only if device is UP
1563                  *
1564                  *      We allow it to be called even after a DETACH hot-plug
1565                  *      event.
1566                  */
1567                 if (ops->ndo_stop)
1568                         ops->ndo_stop(dev);
1569
1570                 dev->flags &= ~IFF_UP;
1571                 netpoll_poll_enable(dev);
1572         }
1573 }
1574
1575 static void __dev_close(struct net_device *dev)
1576 {
1577         LIST_HEAD(single);
1578
1579         list_add(&dev->close_list, &single);
1580         __dev_close_many(&single);
1581         list_del(&single);
1582 }
1583
1584 void dev_close_many(struct list_head *head, bool unlink)
1585 {
1586         struct net_device *dev, *tmp;
1587
1588         /* Remove the devices that don't need to be closed */
1589         list_for_each_entry_safe(dev, tmp, head, close_list)
1590                 if (!(dev->flags & IFF_UP))
1591                         list_del_init(&dev->close_list);
1592
1593         __dev_close_many(head);
1594
1595         list_for_each_entry_safe(dev, tmp, head, close_list) {
1596                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1597                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1598                 if (unlink)
1599                         list_del_init(&dev->close_list);
1600         }
1601 }
1602 EXPORT_SYMBOL(dev_close_many);
1603
1604 /**
1605  *      dev_close - shutdown an interface.
1606  *      @dev: device to shutdown
1607  *
1608  *      This function moves an active device into down state. A
1609  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1610  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1611  *      chain.
1612  */
1613 void dev_close(struct net_device *dev)
1614 {
1615         if (dev->flags & IFF_UP) {
1616                 LIST_HEAD(single);
1617
1618                 list_add(&dev->close_list, &single);
1619                 dev_close_many(&single, true);
1620                 list_del(&single);
1621         }
1622 }
1623 EXPORT_SYMBOL(dev_close);
1624
1625
1626 /**
1627  *      dev_disable_lro - disable Large Receive Offload on a device
1628  *      @dev: device
1629  *
1630  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1631  *      called under RTNL.  This is needed if received packets may be
1632  *      forwarded to another interface.
1633  */
1634 void dev_disable_lro(struct net_device *dev)
1635 {
1636         struct net_device *lower_dev;
1637         struct list_head *iter;
1638
1639         dev->wanted_features &= ~NETIF_F_LRO;
1640         netdev_update_features(dev);
1641
1642         if (unlikely(dev->features & NETIF_F_LRO))
1643                 netdev_WARN(dev, "failed to disable LRO!\n");
1644
1645         netdev_for_each_lower_dev(dev, lower_dev, iter)
1646                 dev_disable_lro(lower_dev);
1647 }
1648 EXPORT_SYMBOL(dev_disable_lro);
1649
1650 /**
1651  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1652  *      @dev: device
1653  *
1654  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1655  *      called under RTNL.  This is needed if Generic XDP is installed on
1656  *      the device.
1657  */
1658 static void dev_disable_gro_hw(struct net_device *dev)
1659 {
1660         dev->wanted_features &= ~NETIF_F_GRO_HW;
1661         netdev_update_features(dev);
1662
1663         if (unlikely(dev->features & NETIF_F_GRO_HW))
1664                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1665 }
1666
1667 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1668 {
1669 #define N(val)                                          \
1670         case NETDEV_##val:                              \
1671                 return "NETDEV_" __stringify(val);
1672         switch (cmd) {
1673         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1674         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1675         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1676         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1677         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1678         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1679         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1680         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1681         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1682         N(PRE_CHANGEADDR)
1683         }
1684 #undef N
1685         return "UNKNOWN_NETDEV_EVENT";
1686 }
1687 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1688
1689 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1690                                    struct net_device *dev)
1691 {
1692         struct netdev_notifier_info info = {
1693                 .dev = dev,
1694         };
1695
1696         return nb->notifier_call(nb, val, &info);
1697 }
1698
1699 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1700                                              struct net_device *dev)
1701 {
1702         int err;
1703
1704         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1705         err = notifier_to_errno(err);
1706         if (err)
1707                 return err;
1708
1709         if (!(dev->flags & IFF_UP))
1710                 return 0;
1711
1712         call_netdevice_notifier(nb, NETDEV_UP, dev);
1713         return 0;
1714 }
1715
1716 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1717                                                 struct net_device *dev)
1718 {
1719         if (dev->flags & IFF_UP) {
1720                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1721                                         dev);
1722                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1723         }
1724         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1725 }
1726
1727 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1728                                                  struct net *net)
1729 {
1730         struct net_device *dev;
1731         int err;
1732
1733         for_each_netdev(net, dev) {
1734                 err = call_netdevice_register_notifiers(nb, dev);
1735                 if (err)
1736                         goto rollback;
1737         }
1738         return 0;
1739
1740 rollback:
1741         for_each_netdev_continue_reverse(net, dev)
1742                 call_netdevice_unregister_notifiers(nb, dev);
1743         return err;
1744 }
1745
1746 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1747                                                     struct net *net)
1748 {
1749         struct net_device *dev;
1750
1751         for_each_netdev(net, dev)
1752                 call_netdevice_unregister_notifiers(nb, dev);
1753 }
1754
1755 static int dev_boot_phase = 1;
1756
1757 /**
1758  * register_netdevice_notifier - register a network notifier block
1759  * @nb: notifier
1760  *
1761  * Register a notifier to be called when network device events occur.
1762  * The notifier passed is linked into the kernel structures and must
1763  * not be reused until it has been unregistered. A negative errno code
1764  * is returned on a failure.
1765  *
1766  * When registered all registration and up events are replayed
1767  * to the new notifier to allow device to have a race free
1768  * view of the network device list.
1769  */
1770
1771 int register_netdevice_notifier(struct notifier_block *nb)
1772 {
1773         struct net *net;
1774         int err;
1775
1776         /* Close race with setup_net() and cleanup_net() */
1777         down_write(&pernet_ops_rwsem);
1778         rtnl_lock();
1779         err = raw_notifier_chain_register(&netdev_chain, nb);
1780         if (err)
1781                 goto unlock;
1782         if (dev_boot_phase)
1783                 goto unlock;
1784         for_each_net(net) {
1785                 err = call_netdevice_register_net_notifiers(nb, net);
1786                 if (err)
1787                         goto rollback;
1788         }
1789
1790 unlock:
1791         rtnl_unlock();
1792         up_write(&pernet_ops_rwsem);
1793         return err;
1794
1795 rollback:
1796         for_each_net_continue_reverse(net)
1797                 call_netdevice_unregister_net_notifiers(nb, net);
1798
1799         raw_notifier_chain_unregister(&netdev_chain, nb);
1800         goto unlock;
1801 }
1802 EXPORT_SYMBOL(register_netdevice_notifier);
1803
1804 /**
1805  * unregister_netdevice_notifier - unregister a network notifier block
1806  * @nb: notifier
1807  *
1808  * Unregister a notifier previously registered by
1809  * register_netdevice_notifier(). The notifier is unlinked into the
1810  * kernel structures and may then be reused. A negative errno code
1811  * is returned on a failure.
1812  *
1813  * After unregistering unregister and down device events are synthesized
1814  * for all devices on the device list to the removed notifier to remove
1815  * the need for special case cleanup code.
1816  */
1817
1818 int unregister_netdevice_notifier(struct notifier_block *nb)
1819 {
1820         struct net *net;
1821         int err;
1822
1823         /* Close race with setup_net() and cleanup_net() */
1824         down_write(&pernet_ops_rwsem);
1825         rtnl_lock();
1826         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1827         if (err)
1828                 goto unlock;
1829
1830         for_each_net(net)
1831                 call_netdevice_unregister_net_notifiers(nb, net);
1832
1833 unlock:
1834         rtnl_unlock();
1835         up_write(&pernet_ops_rwsem);
1836         return err;
1837 }
1838 EXPORT_SYMBOL(unregister_netdevice_notifier);
1839
1840 static int __register_netdevice_notifier_net(struct net *net,
1841                                              struct notifier_block *nb,
1842                                              bool ignore_call_fail)
1843 {
1844         int err;
1845
1846         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1847         if (err)
1848                 return err;
1849         if (dev_boot_phase)
1850                 return 0;
1851
1852         err = call_netdevice_register_net_notifiers(nb, net);
1853         if (err && !ignore_call_fail)
1854                 goto chain_unregister;
1855
1856         return 0;
1857
1858 chain_unregister:
1859         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1860         return err;
1861 }
1862
1863 static int __unregister_netdevice_notifier_net(struct net *net,
1864                                                struct notifier_block *nb)
1865 {
1866         int err;
1867
1868         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1869         if (err)
1870                 return err;
1871
1872         call_netdevice_unregister_net_notifiers(nb, net);
1873         return 0;
1874 }
1875
1876 /**
1877  * register_netdevice_notifier_net - register a per-netns network notifier block
1878  * @net: network namespace
1879  * @nb: notifier
1880  *
1881  * Register a notifier to be called when network device events occur.
1882  * The notifier passed is linked into the kernel structures and must
1883  * not be reused until it has been unregistered. A negative errno code
1884  * is returned on a failure.
1885  *
1886  * When registered all registration and up events are replayed
1887  * to the new notifier to allow device to have a race free
1888  * view of the network device list.
1889  */
1890
1891 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1892 {
1893         int err;
1894
1895         rtnl_lock();
1896         err = __register_netdevice_notifier_net(net, nb, false);
1897         rtnl_unlock();
1898         return err;
1899 }
1900 EXPORT_SYMBOL(register_netdevice_notifier_net);
1901
1902 /**
1903  * unregister_netdevice_notifier_net - unregister a per-netns
1904  *                                     network notifier block
1905  * @net: network namespace
1906  * @nb: notifier
1907  *
1908  * Unregister a notifier previously registered by
1909  * register_netdevice_notifier(). The notifier is unlinked into the
1910  * kernel structures and may then be reused. A negative errno code
1911  * is returned on a failure.
1912  *
1913  * After unregistering unregister and down device events are synthesized
1914  * for all devices on the device list to the removed notifier to remove
1915  * the need for special case cleanup code.
1916  */
1917
1918 int unregister_netdevice_notifier_net(struct net *net,
1919                                       struct notifier_block *nb)
1920 {
1921         int err;
1922
1923         rtnl_lock();
1924         err = __unregister_netdevice_notifier_net(net, nb);
1925         rtnl_unlock();
1926         return err;
1927 }
1928 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1929
1930 int register_netdevice_notifier_dev_net(struct net_device *dev,
1931                                         struct notifier_block *nb,
1932                                         struct netdev_net_notifier *nn)
1933 {
1934         int err;
1935
1936         rtnl_lock();
1937         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1938         if (!err) {
1939                 nn->nb = nb;
1940                 list_add(&nn->list, &dev->net_notifier_list);
1941         }
1942         rtnl_unlock();
1943         return err;
1944 }
1945 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1946
1947 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1948                                           struct notifier_block *nb,
1949                                           struct netdev_net_notifier *nn)
1950 {
1951         int err;
1952
1953         rtnl_lock();
1954         list_del(&nn->list);
1955         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1956         rtnl_unlock();
1957         return err;
1958 }
1959 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1960
1961 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1962                                              struct net *net)
1963 {
1964         struct netdev_net_notifier *nn;
1965
1966         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1967                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1968                 __register_netdevice_notifier_net(net, nn->nb, true);
1969         }
1970 }
1971
1972 /**
1973  *      call_netdevice_notifiers_info - call all network notifier blocks
1974  *      @val: value passed unmodified to notifier function
1975  *      @info: notifier information data
1976  *
1977  *      Call all network notifier blocks.  Parameters and return value
1978  *      are as for raw_notifier_call_chain().
1979  */
1980
1981 static int call_netdevice_notifiers_info(unsigned long val,
1982                                          struct netdev_notifier_info *info)
1983 {
1984         struct net *net = dev_net(info->dev);
1985         int ret;
1986
1987         ASSERT_RTNL();
1988
1989         /* Run per-netns notifier block chain first, then run the global one.
1990          * Hopefully, one day, the global one is going to be removed after
1991          * all notifier block registrators get converted to be per-netns.
1992          */
1993         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994         if (ret & NOTIFY_STOP_MASK)
1995                 return ret;
1996         return raw_notifier_call_chain(&netdev_chain, val, info);
1997 }
1998
1999 static int call_netdevice_notifiers_extack(unsigned long val,
2000                                            struct net_device *dev,
2001                                            struct netlink_ext_ack *extack)
2002 {
2003         struct netdev_notifier_info info = {
2004                 .dev = dev,
2005                 .extack = extack,
2006         };
2007
2008         return call_netdevice_notifiers_info(val, &info);
2009 }
2010
2011 /**
2012  *      call_netdevice_notifiers - call all network notifier blocks
2013  *      @val: value passed unmodified to notifier function
2014  *      @dev: net_device pointer passed unmodified to notifier function
2015  *
2016  *      Call all network notifier blocks.  Parameters and return value
2017  *      are as for raw_notifier_call_chain().
2018  */
2019
2020 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2021 {
2022         return call_netdevice_notifiers_extack(val, dev, NULL);
2023 }
2024 EXPORT_SYMBOL(call_netdevice_notifiers);
2025
2026 /**
2027  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2028  *      @val: value passed unmodified to notifier function
2029  *      @dev: net_device pointer passed unmodified to notifier function
2030  *      @arg: additional u32 argument passed to the notifier function
2031  *
2032  *      Call all network notifier blocks.  Parameters and return value
2033  *      are as for raw_notifier_call_chain().
2034  */
2035 static int call_netdevice_notifiers_mtu(unsigned long val,
2036                                         struct net_device *dev, u32 arg)
2037 {
2038         struct netdev_notifier_info_ext info = {
2039                 .info.dev = dev,
2040                 .ext.mtu = arg,
2041         };
2042
2043         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2044
2045         return call_netdevice_notifiers_info(val, &info.info);
2046 }
2047
2048 #ifdef CONFIG_NET_INGRESS
2049 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2050
2051 void net_inc_ingress_queue(void)
2052 {
2053         static_branch_inc(&ingress_needed_key);
2054 }
2055 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2056
2057 void net_dec_ingress_queue(void)
2058 {
2059         static_branch_dec(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2062 #endif
2063
2064 #ifdef CONFIG_NET_EGRESS
2065 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2066
2067 void net_inc_egress_queue(void)
2068 {
2069         static_branch_inc(&egress_needed_key);
2070 }
2071 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2072
2073 void net_dec_egress_queue(void)
2074 {
2075         static_branch_dec(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2078 #endif
2079
2080 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2081 #ifdef CONFIG_JUMP_LABEL
2082 static atomic_t netstamp_needed_deferred;
2083 static atomic_t netstamp_wanted;
2084 static void netstamp_clear(struct work_struct *work)
2085 {
2086         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2087         int wanted;
2088
2089         wanted = atomic_add_return(deferred, &netstamp_wanted);
2090         if (wanted > 0)
2091                 static_branch_enable(&netstamp_needed_key);
2092         else
2093                 static_branch_disable(&netstamp_needed_key);
2094 }
2095 static DECLARE_WORK(netstamp_work, netstamp_clear);
2096 #endif
2097
2098 void net_enable_timestamp(void)
2099 {
2100 #ifdef CONFIG_JUMP_LABEL
2101         int wanted;
2102
2103         while (1) {
2104                 wanted = atomic_read(&netstamp_wanted);
2105                 if (wanted <= 0)
2106                         break;
2107                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2108                         return;
2109         }
2110         atomic_inc(&netstamp_needed_deferred);
2111         schedule_work(&netstamp_work);
2112 #else
2113         static_branch_inc(&netstamp_needed_key);
2114 #endif
2115 }
2116 EXPORT_SYMBOL(net_enable_timestamp);
2117
2118 void net_disable_timestamp(void)
2119 {
2120 #ifdef CONFIG_JUMP_LABEL
2121         int wanted;
2122
2123         while (1) {
2124                 wanted = atomic_read(&netstamp_wanted);
2125                 if (wanted <= 1)
2126                         break;
2127                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2128                         return;
2129         }
2130         atomic_dec(&netstamp_needed_deferred);
2131         schedule_work(&netstamp_work);
2132 #else
2133         static_branch_dec(&netstamp_needed_key);
2134 #endif
2135 }
2136 EXPORT_SYMBOL(net_disable_timestamp);
2137
2138 static inline void net_timestamp_set(struct sk_buff *skb)
2139 {
2140         skb->tstamp = 0;
2141         if (static_branch_unlikely(&netstamp_needed_key))
2142                 __net_timestamp(skb);
2143 }
2144
2145 #define net_timestamp_check(COND, SKB)                          \
2146         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2147                 if ((COND) && !(SKB)->tstamp)                   \
2148                         __net_timestamp(SKB);                   \
2149         }                                                       \
2150
2151 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2152 {
2153         return __is_skb_forwardable(dev, skb, true);
2154 }
2155 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2156
2157 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2158                               bool check_mtu)
2159 {
2160         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2161
2162         if (likely(!ret)) {
2163                 skb->protocol = eth_type_trans(skb, dev);
2164                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2165         }
2166
2167         return ret;
2168 }
2169
2170 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171 {
2172         return __dev_forward_skb2(dev, skb, true);
2173 }
2174 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2175
2176 /**
2177  * dev_forward_skb - loopback an skb to another netif
2178  *
2179  * @dev: destination network device
2180  * @skb: buffer to forward
2181  *
2182  * return values:
2183  *      NET_RX_SUCCESS  (no congestion)
2184  *      NET_RX_DROP     (packet was dropped, but freed)
2185  *
2186  * dev_forward_skb can be used for injecting an skb from the
2187  * start_xmit function of one device into the receive queue
2188  * of another device.
2189  *
2190  * The receiving device may be in another namespace, so
2191  * we have to clear all information in the skb that could
2192  * impact namespace isolation.
2193  */
2194 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2195 {
2196         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2197 }
2198 EXPORT_SYMBOL_GPL(dev_forward_skb);
2199
2200 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2201 {
2202         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2203 }
2204
2205 static inline int deliver_skb(struct sk_buff *skb,
2206                               struct packet_type *pt_prev,
2207                               struct net_device *orig_dev)
2208 {
2209         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2210                 return -ENOMEM;
2211         refcount_inc(&skb->users);
2212         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2213 }
2214
2215 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2216                                           struct packet_type **pt,
2217                                           struct net_device *orig_dev,
2218                                           __be16 type,
2219                                           struct list_head *ptype_list)
2220 {
2221         struct packet_type *ptype, *pt_prev = *pt;
2222
2223         list_for_each_entry_rcu(ptype, ptype_list, list) {
2224                 if (ptype->type != type)
2225                         continue;
2226                 if (pt_prev)
2227                         deliver_skb(skb, pt_prev, orig_dev);
2228                 pt_prev = ptype;
2229         }
2230         *pt = pt_prev;
2231 }
2232
2233 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2234 {
2235         if (!ptype->af_packet_priv || !skb->sk)
2236                 return false;
2237
2238         if (ptype->id_match)
2239                 return ptype->id_match(ptype, skb->sk);
2240         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2241                 return true;
2242
2243         return false;
2244 }
2245
2246 /**
2247  * dev_nit_active - return true if any network interface taps are in use
2248  *
2249  * @dev: network device to check for the presence of taps
2250  */
2251 bool dev_nit_active(struct net_device *dev)
2252 {
2253         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2254 }
2255 EXPORT_SYMBOL_GPL(dev_nit_active);
2256
2257 /*
2258  *      Support routine. Sends outgoing frames to any network
2259  *      taps currently in use.
2260  */
2261
2262 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2263 {
2264         struct packet_type *ptype;
2265         struct sk_buff *skb2 = NULL;
2266         struct packet_type *pt_prev = NULL;
2267         struct list_head *ptype_list = &ptype_all;
2268
2269         rcu_read_lock();
2270 again:
2271         list_for_each_entry_rcu(ptype, ptype_list, list) {
2272                 if (ptype->ignore_outgoing)
2273                         continue;
2274
2275                 /* Never send packets back to the socket
2276                  * they originated from - MvS (miquels@drinkel.ow.org)
2277                  */
2278                 if (skb_loop_sk(ptype, skb))
2279                         continue;
2280
2281                 if (pt_prev) {
2282                         deliver_skb(skb2, pt_prev, skb->dev);
2283                         pt_prev = ptype;
2284                         continue;
2285                 }
2286
2287                 /* need to clone skb, done only once */
2288                 skb2 = skb_clone(skb, GFP_ATOMIC);
2289                 if (!skb2)
2290                         goto out_unlock;
2291
2292                 net_timestamp_set(skb2);
2293
2294                 /* skb->nh should be correctly
2295                  * set by sender, so that the second statement is
2296                  * just protection against buggy protocols.
2297                  */
2298                 skb_reset_mac_header(skb2);
2299
2300                 if (skb_network_header(skb2) < skb2->data ||
2301                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2302                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2303                                              ntohs(skb2->protocol),
2304                                              dev->name);
2305                         skb_reset_network_header(skb2);
2306                 }
2307
2308                 skb2->transport_header = skb2->network_header;
2309                 skb2->pkt_type = PACKET_OUTGOING;
2310                 pt_prev = ptype;
2311         }
2312
2313         if (ptype_list == &ptype_all) {
2314                 ptype_list = &dev->ptype_all;
2315                 goto again;
2316         }
2317 out_unlock:
2318         if (pt_prev) {
2319                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2320                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2321                 else
2322                         kfree_skb(skb2);
2323         }
2324         rcu_read_unlock();
2325 }
2326 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2327
2328 /**
2329  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2330  * @dev: Network device
2331  * @txq: number of queues available
2332  *
2333  * If real_num_tx_queues is changed the tc mappings may no longer be
2334  * valid. To resolve this verify the tc mapping remains valid and if
2335  * not NULL the mapping. With no priorities mapping to this
2336  * offset/count pair it will no longer be used. In the worst case TC0
2337  * is invalid nothing can be done so disable priority mappings. If is
2338  * expected that drivers will fix this mapping if they can before
2339  * calling netif_set_real_num_tx_queues.
2340  */
2341 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2342 {
2343         int i;
2344         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2345
2346         /* If TC0 is invalidated disable TC mapping */
2347         if (tc->offset + tc->count > txq) {
2348                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2349                 dev->num_tc = 0;
2350                 return;
2351         }
2352
2353         /* Invalidated prio to tc mappings set to TC0 */
2354         for (i = 1; i < TC_BITMASK + 1; i++) {
2355                 int q = netdev_get_prio_tc_map(dev, i);
2356
2357                 tc = &dev->tc_to_txq[q];
2358                 if (tc->offset + tc->count > txq) {
2359                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2360                                 i, q);
2361                         netdev_set_prio_tc_map(dev, i, 0);
2362                 }
2363         }
2364 }
2365
2366 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2367 {
2368         if (dev->num_tc) {
2369                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2370                 int i;
2371
2372                 /* walk through the TCs and see if it falls into any of them */
2373                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2374                         if ((txq - tc->offset) < tc->count)
2375                                 return i;
2376                 }
2377
2378                 /* didn't find it, just return -1 to indicate no match */
2379                 return -1;
2380         }
2381
2382         return 0;
2383 }
2384 EXPORT_SYMBOL(netdev_txq_to_tc);
2385
2386 #ifdef CONFIG_XPS
2387 static struct static_key xps_needed __read_mostly;
2388 static struct static_key xps_rxqs_needed __read_mostly;
2389 static DEFINE_MUTEX(xps_map_mutex);
2390 #define xmap_dereference(P)             \
2391         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2392
2393 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2394                              struct xps_dev_maps *old_maps, int tci, u16 index)
2395 {
2396         struct xps_map *map = NULL;
2397         int pos;
2398
2399         if (dev_maps)
2400                 map = xmap_dereference(dev_maps->attr_map[tci]);
2401         if (!map)
2402                 return false;
2403
2404         for (pos = map->len; pos--;) {
2405                 if (map->queues[pos] != index)
2406                         continue;
2407
2408                 if (map->len > 1) {
2409                         map->queues[pos] = map->queues[--map->len];
2410                         break;
2411                 }
2412
2413                 if (old_maps)
2414                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2415                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2416                 kfree_rcu(map, rcu);
2417                 return false;
2418         }
2419
2420         return true;
2421 }
2422
2423 static bool remove_xps_queue_cpu(struct net_device *dev,
2424                                  struct xps_dev_maps *dev_maps,
2425                                  int cpu, u16 offset, u16 count)
2426 {
2427         int num_tc = dev_maps->num_tc;
2428         bool active = false;
2429         int tci;
2430
2431         for (tci = cpu * num_tc; num_tc--; tci++) {
2432                 int i, j;
2433
2434                 for (i = count, j = offset; i--; j++) {
2435                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2436                                 break;
2437                 }
2438
2439                 active |= i < 0;
2440         }
2441
2442         return active;
2443 }
2444
2445 static void reset_xps_maps(struct net_device *dev,
2446                            struct xps_dev_maps *dev_maps,
2447                            enum xps_map_type type)
2448 {
2449         static_key_slow_dec_cpuslocked(&xps_needed);
2450         if (type == XPS_RXQS)
2451                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2452
2453         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2454
2455         kfree_rcu(dev_maps, rcu);
2456 }
2457
2458 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2459                            u16 offset, u16 count)
2460 {
2461         struct xps_dev_maps *dev_maps;
2462         bool active = false;
2463         int i, j;
2464
2465         dev_maps = xmap_dereference(dev->xps_maps[type]);
2466         if (!dev_maps)
2467                 return;
2468
2469         for (j = 0; j < dev_maps->nr_ids; j++)
2470                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2471         if (!active)
2472                 reset_xps_maps(dev, dev_maps, type);
2473
2474         if (type == XPS_CPUS) {
2475                 for (i = offset + (count - 1); count--; i--)
2476                         netdev_queue_numa_node_write(
2477                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2478         }
2479 }
2480
2481 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2482                                    u16 count)
2483 {
2484         if (!static_key_false(&xps_needed))
2485                 return;
2486
2487         cpus_read_lock();
2488         mutex_lock(&xps_map_mutex);
2489
2490         if (static_key_false(&xps_rxqs_needed))
2491                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2492
2493         clean_xps_maps(dev, XPS_CPUS, offset, count);
2494
2495         mutex_unlock(&xps_map_mutex);
2496         cpus_read_unlock();
2497 }
2498
2499 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2500 {
2501         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2502 }
2503
2504 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2505                                       u16 index, bool is_rxqs_map)
2506 {
2507         struct xps_map *new_map;
2508         int alloc_len = XPS_MIN_MAP_ALLOC;
2509         int i, pos;
2510
2511         for (pos = 0; map && pos < map->len; pos++) {
2512                 if (map->queues[pos] != index)
2513                         continue;
2514                 return map;
2515         }
2516
2517         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2518         if (map) {
2519                 if (pos < map->alloc_len)
2520                         return map;
2521
2522                 alloc_len = map->alloc_len * 2;
2523         }
2524
2525         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2526          *  map
2527          */
2528         if (is_rxqs_map)
2529                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2530         else
2531                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2532                                        cpu_to_node(attr_index));
2533         if (!new_map)
2534                 return NULL;
2535
2536         for (i = 0; i < pos; i++)
2537                 new_map->queues[i] = map->queues[i];
2538         new_map->alloc_len = alloc_len;
2539         new_map->len = pos;
2540
2541         return new_map;
2542 }
2543
2544 /* Copy xps maps at a given index */
2545 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2546                               struct xps_dev_maps *new_dev_maps, int index,
2547                               int tc, bool skip_tc)
2548 {
2549         int i, tci = index * dev_maps->num_tc;
2550         struct xps_map *map;
2551
2552         /* copy maps belonging to foreign traffic classes */
2553         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2554                 if (i == tc && skip_tc)
2555                         continue;
2556
2557                 /* fill in the new device map from the old device map */
2558                 map = xmap_dereference(dev_maps->attr_map[tci]);
2559                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2560         }
2561 }
2562
2563 /* Must be called under cpus_read_lock */
2564 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2565                           u16 index, enum xps_map_type type)
2566 {
2567         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2568         const unsigned long *online_mask = NULL;
2569         bool active = false, copy = false;
2570         int i, j, tci, numa_node_id = -2;
2571         int maps_sz, num_tc = 1, tc = 0;
2572         struct xps_map *map, *new_map;
2573         unsigned int nr_ids;
2574
2575         if (dev->num_tc) {
2576                 /* Do not allow XPS on subordinate device directly */
2577                 num_tc = dev->num_tc;
2578                 if (num_tc < 0)
2579                         return -EINVAL;
2580
2581                 /* If queue belongs to subordinate dev use its map */
2582                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2583
2584                 tc = netdev_txq_to_tc(dev, index);
2585                 if (tc < 0)
2586                         return -EINVAL;
2587         }
2588
2589         mutex_lock(&xps_map_mutex);
2590
2591         dev_maps = xmap_dereference(dev->xps_maps[type]);
2592         if (type == XPS_RXQS) {
2593                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2594                 nr_ids = dev->num_rx_queues;
2595         } else {
2596                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2597                 if (num_possible_cpus() > 1)
2598                         online_mask = cpumask_bits(cpu_online_mask);
2599                 nr_ids = nr_cpu_ids;
2600         }
2601
2602         if (maps_sz < L1_CACHE_BYTES)
2603                 maps_sz = L1_CACHE_BYTES;
2604
2605         /* The old dev_maps could be larger or smaller than the one we're
2606          * setting up now, as dev->num_tc or nr_ids could have been updated in
2607          * between. We could try to be smart, but let's be safe instead and only
2608          * copy foreign traffic classes if the two map sizes match.
2609          */
2610         if (dev_maps &&
2611             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2612                 copy = true;
2613
2614         /* allocate memory for queue storage */
2615         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2616              j < nr_ids;) {
2617                 if (!new_dev_maps) {
2618                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2619                         if (!new_dev_maps) {
2620                                 mutex_unlock(&xps_map_mutex);
2621                                 return -ENOMEM;
2622                         }
2623
2624                         new_dev_maps->nr_ids = nr_ids;
2625                         new_dev_maps->num_tc = num_tc;
2626                 }
2627
2628                 tci = j * num_tc + tc;
2629                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2630
2631                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2632                 if (!map)
2633                         goto error;
2634
2635                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2636         }
2637
2638         if (!new_dev_maps)
2639                 goto out_no_new_maps;
2640
2641         if (!dev_maps) {
2642                 /* Increment static keys at most once per type */
2643                 static_key_slow_inc_cpuslocked(&xps_needed);
2644                 if (type == XPS_RXQS)
2645                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2646         }
2647
2648         for (j = 0; j < nr_ids; j++) {
2649                 bool skip_tc = false;
2650
2651                 tci = j * num_tc + tc;
2652                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2653                     netif_attr_test_online(j, online_mask, nr_ids)) {
2654                         /* add tx-queue to CPU/rx-queue maps */
2655                         int pos = 0;
2656
2657                         skip_tc = true;
2658
2659                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2660                         while ((pos < map->len) && (map->queues[pos] != index))
2661                                 pos++;
2662
2663                         if (pos == map->len)
2664                                 map->queues[map->len++] = index;
2665 #ifdef CONFIG_NUMA
2666                         if (type == XPS_CPUS) {
2667                                 if (numa_node_id == -2)
2668                                         numa_node_id = cpu_to_node(j);
2669                                 else if (numa_node_id != cpu_to_node(j))
2670                                         numa_node_id = -1;
2671                         }
2672 #endif
2673                 }
2674
2675                 if (copy)
2676                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2677                                           skip_tc);
2678         }
2679
2680         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2681
2682         /* Cleanup old maps */
2683         if (!dev_maps)
2684                 goto out_no_old_maps;
2685
2686         for (j = 0; j < dev_maps->nr_ids; j++) {
2687                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2688                         map = xmap_dereference(dev_maps->attr_map[tci]);
2689                         if (!map)
2690                                 continue;
2691
2692                         if (copy) {
2693                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2694                                 if (map == new_map)
2695                                         continue;
2696                         }
2697
2698                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2699                         kfree_rcu(map, rcu);
2700                 }
2701         }
2702
2703         old_dev_maps = dev_maps;
2704
2705 out_no_old_maps:
2706         dev_maps = new_dev_maps;
2707         active = true;
2708
2709 out_no_new_maps:
2710         if (type == XPS_CPUS)
2711                 /* update Tx queue numa node */
2712                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2713                                              (numa_node_id >= 0) ?
2714                                              numa_node_id : NUMA_NO_NODE);
2715
2716         if (!dev_maps)
2717                 goto out_no_maps;
2718
2719         /* removes tx-queue from unused CPUs/rx-queues */
2720         for (j = 0; j < dev_maps->nr_ids; j++) {
2721                 tci = j * dev_maps->num_tc;
2722
2723                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2724                         if (i == tc &&
2725                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2726                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2727                                 continue;
2728
2729                         active |= remove_xps_queue(dev_maps,
2730                                                    copy ? old_dev_maps : NULL,
2731                                                    tci, index);
2732                 }
2733         }
2734
2735         if (old_dev_maps)
2736                 kfree_rcu(old_dev_maps, rcu);
2737
2738         /* free map if not active */
2739         if (!active)
2740                 reset_xps_maps(dev, dev_maps, type);
2741
2742 out_no_maps:
2743         mutex_unlock(&xps_map_mutex);
2744
2745         return 0;
2746 error:
2747         /* remove any maps that we added */
2748         for (j = 0; j < nr_ids; j++) {
2749                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2750                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2751                         map = copy ?
2752                               xmap_dereference(dev_maps->attr_map[tci]) :
2753                               NULL;
2754                         if (new_map && new_map != map)
2755                                 kfree(new_map);
2756                 }
2757         }
2758
2759         mutex_unlock(&xps_map_mutex);
2760
2761         kfree(new_dev_maps);
2762         return -ENOMEM;
2763 }
2764 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2765
2766 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2767                         u16 index)
2768 {
2769         int ret;
2770
2771         cpus_read_lock();
2772         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2773         cpus_read_unlock();
2774
2775         return ret;
2776 }
2777 EXPORT_SYMBOL(netif_set_xps_queue);
2778
2779 #endif
2780 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2781 {
2782         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2783
2784         /* Unbind any subordinate channels */
2785         while (txq-- != &dev->_tx[0]) {
2786                 if (txq->sb_dev)
2787                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2788         }
2789 }
2790
2791 void netdev_reset_tc(struct net_device *dev)
2792 {
2793 #ifdef CONFIG_XPS
2794         netif_reset_xps_queues_gt(dev, 0);
2795 #endif
2796         netdev_unbind_all_sb_channels(dev);
2797
2798         /* Reset TC configuration of device */
2799         dev->num_tc = 0;
2800         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2801         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2802 }
2803 EXPORT_SYMBOL(netdev_reset_tc);
2804
2805 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2806 {
2807         if (tc >= dev->num_tc)
2808                 return -EINVAL;
2809
2810 #ifdef CONFIG_XPS
2811         netif_reset_xps_queues(dev, offset, count);
2812 #endif
2813         dev->tc_to_txq[tc].count = count;
2814         dev->tc_to_txq[tc].offset = offset;
2815         return 0;
2816 }
2817 EXPORT_SYMBOL(netdev_set_tc_queue);
2818
2819 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2820 {
2821         if (num_tc > TC_MAX_QUEUE)
2822                 return -EINVAL;
2823
2824 #ifdef CONFIG_XPS
2825         netif_reset_xps_queues_gt(dev, 0);
2826 #endif
2827         netdev_unbind_all_sb_channels(dev);
2828
2829         dev->num_tc = num_tc;
2830         return 0;
2831 }
2832 EXPORT_SYMBOL(netdev_set_num_tc);
2833
2834 void netdev_unbind_sb_channel(struct net_device *dev,
2835                               struct net_device *sb_dev)
2836 {
2837         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2838
2839 #ifdef CONFIG_XPS
2840         netif_reset_xps_queues_gt(sb_dev, 0);
2841 #endif
2842         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2843         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2844
2845         while (txq-- != &dev->_tx[0]) {
2846                 if (txq->sb_dev == sb_dev)
2847                         txq->sb_dev = NULL;
2848         }
2849 }
2850 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2851
2852 int netdev_bind_sb_channel_queue(struct net_device *dev,
2853                                  struct net_device *sb_dev,
2854                                  u8 tc, u16 count, u16 offset)
2855 {
2856         /* Make certain the sb_dev and dev are already configured */
2857         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2858                 return -EINVAL;
2859
2860         /* We cannot hand out queues we don't have */
2861         if ((offset + count) > dev->real_num_tx_queues)
2862                 return -EINVAL;
2863
2864         /* Record the mapping */
2865         sb_dev->tc_to_txq[tc].count = count;
2866         sb_dev->tc_to_txq[tc].offset = offset;
2867
2868         /* Provide a way for Tx queue to find the tc_to_txq map or
2869          * XPS map for itself.
2870          */
2871         while (count--)
2872                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2873
2874         return 0;
2875 }
2876 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2877
2878 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2879 {
2880         /* Do not use a multiqueue device to represent a subordinate channel */
2881         if (netif_is_multiqueue(dev))
2882                 return -ENODEV;
2883
2884         /* We allow channels 1 - 32767 to be used for subordinate channels.
2885          * Channel 0 is meant to be "native" mode and used only to represent
2886          * the main root device. We allow writing 0 to reset the device back
2887          * to normal mode after being used as a subordinate channel.
2888          */
2889         if (channel > S16_MAX)
2890                 return -EINVAL;
2891
2892         dev->num_tc = -channel;
2893
2894         return 0;
2895 }
2896 EXPORT_SYMBOL(netdev_set_sb_channel);
2897
2898 /*
2899  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2900  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2901  */
2902 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2903 {
2904         bool disabling;
2905         int rc;
2906
2907         disabling = txq < dev->real_num_tx_queues;
2908
2909         if (txq < 1 || txq > dev->num_tx_queues)
2910                 return -EINVAL;
2911
2912         if (dev->reg_state == NETREG_REGISTERED ||
2913             dev->reg_state == NETREG_UNREGISTERING) {
2914                 ASSERT_RTNL();
2915
2916                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2917                                                   txq);
2918                 if (rc)
2919                         return rc;
2920
2921                 if (dev->num_tc)
2922                         netif_setup_tc(dev, txq);
2923
2924                 dev->real_num_tx_queues = txq;
2925
2926                 if (disabling) {
2927                         synchronize_net();
2928                         qdisc_reset_all_tx_gt(dev, txq);
2929 #ifdef CONFIG_XPS
2930                         netif_reset_xps_queues_gt(dev, txq);
2931 #endif
2932                 }
2933         } else {
2934                 dev->real_num_tx_queues = txq;
2935         }
2936
2937         return 0;
2938 }
2939 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2940
2941 #ifdef CONFIG_SYSFS
2942 /**
2943  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2944  *      @dev: Network device
2945  *      @rxq: Actual number of RX queues
2946  *
2947  *      This must be called either with the rtnl_lock held or before
2948  *      registration of the net device.  Returns 0 on success, or a
2949  *      negative error code.  If called before registration, it always
2950  *      succeeds.
2951  */
2952 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2953 {
2954         int rc;
2955
2956         if (rxq < 1 || rxq > dev->num_rx_queues)
2957                 return -EINVAL;
2958
2959         if (dev->reg_state == NETREG_REGISTERED) {
2960                 ASSERT_RTNL();
2961
2962                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2963                                                   rxq);
2964                 if (rc)
2965                         return rc;
2966         }
2967
2968         dev->real_num_rx_queues = rxq;
2969         return 0;
2970 }
2971 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2972 #endif
2973
2974 /**
2975  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2976  *      @dev: Network device
2977  *      @txq: Actual number of TX queues
2978  *      @rxq: Actual number of RX queues
2979  *
2980  *      Set the real number of both TX and RX queues.
2981  *      Does nothing if the number of queues is already correct.
2982  */
2983 int netif_set_real_num_queues(struct net_device *dev,
2984                               unsigned int txq, unsigned int rxq)
2985 {
2986         unsigned int old_rxq = dev->real_num_rx_queues;
2987         int err;
2988
2989         if (txq < 1 || txq > dev->num_tx_queues ||
2990             rxq < 1 || rxq > dev->num_rx_queues)
2991                 return -EINVAL;
2992
2993         /* Start from increases, so the error path only does decreases -
2994          * decreases can't fail.
2995          */
2996         if (rxq > dev->real_num_rx_queues) {
2997                 err = netif_set_real_num_rx_queues(dev, rxq);
2998                 if (err)
2999                         return err;
3000         }
3001         if (txq > dev->real_num_tx_queues) {
3002                 err = netif_set_real_num_tx_queues(dev, txq);
3003                 if (err)
3004                         goto undo_rx;
3005         }
3006         if (rxq < dev->real_num_rx_queues)
3007                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3008         if (txq < dev->real_num_tx_queues)
3009                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3010
3011         return 0;
3012 undo_rx:
3013         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3014         return err;
3015 }
3016 EXPORT_SYMBOL(netif_set_real_num_queues);
3017
3018 /**
3019  * netif_get_num_default_rss_queues - default number of RSS queues
3020  *
3021  * This routine should set an upper limit on the number of RSS queues
3022  * used by default by multiqueue devices.
3023  */
3024 int netif_get_num_default_rss_queues(void)
3025 {
3026         return is_kdump_kernel() ?
3027                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3028 }
3029 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3030
3031 static void __netif_reschedule(struct Qdisc *q)
3032 {
3033         struct softnet_data *sd;
3034         unsigned long flags;
3035
3036         local_irq_save(flags);
3037         sd = this_cpu_ptr(&softnet_data);
3038         q->next_sched = NULL;
3039         *sd->output_queue_tailp = q;
3040         sd->output_queue_tailp = &q->next_sched;
3041         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3042         local_irq_restore(flags);
3043 }
3044
3045 void __netif_schedule(struct Qdisc *q)
3046 {
3047         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3048                 __netif_reschedule(q);
3049 }
3050 EXPORT_SYMBOL(__netif_schedule);
3051
3052 struct dev_kfree_skb_cb {
3053         enum skb_free_reason reason;
3054 };
3055
3056 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3057 {
3058         return (struct dev_kfree_skb_cb *)skb->cb;
3059 }
3060
3061 void netif_schedule_queue(struct netdev_queue *txq)
3062 {
3063         rcu_read_lock();
3064         if (!netif_xmit_stopped(txq)) {
3065                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3066
3067                 __netif_schedule(q);
3068         }
3069         rcu_read_unlock();
3070 }
3071 EXPORT_SYMBOL(netif_schedule_queue);
3072
3073 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3074 {
3075         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3076                 struct Qdisc *q;
3077
3078                 rcu_read_lock();
3079                 q = rcu_dereference(dev_queue->qdisc);
3080                 __netif_schedule(q);
3081                 rcu_read_unlock();
3082         }
3083 }
3084 EXPORT_SYMBOL(netif_tx_wake_queue);
3085
3086 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3087 {
3088         unsigned long flags;
3089
3090         if (unlikely(!skb))
3091                 return;
3092
3093         if (likely(refcount_read(&skb->users) == 1)) {
3094                 smp_rmb();
3095                 refcount_set(&skb->users, 0);
3096         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3097                 return;
3098         }
3099         get_kfree_skb_cb(skb)->reason = reason;
3100         local_irq_save(flags);
3101         skb->next = __this_cpu_read(softnet_data.completion_queue);
3102         __this_cpu_write(softnet_data.completion_queue, skb);
3103         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3104         local_irq_restore(flags);
3105 }
3106 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3107
3108 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3109 {
3110         if (in_hardirq() || irqs_disabled())
3111                 __dev_kfree_skb_irq(skb, reason);
3112         else
3113                 dev_kfree_skb(skb);
3114 }
3115 EXPORT_SYMBOL(__dev_kfree_skb_any);
3116
3117
3118 /**
3119  * netif_device_detach - mark device as removed
3120  * @dev: network device
3121  *
3122  * Mark device as removed from system and therefore no longer available.
3123  */
3124 void netif_device_detach(struct net_device *dev)
3125 {
3126         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3127             netif_running(dev)) {
3128                 netif_tx_stop_all_queues(dev);
3129         }
3130 }
3131 EXPORT_SYMBOL(netif_device_detach);
3132
3133 /**
3134  * netif_device_attach - mark device as attached
3135  * @dev: network device
3136  *
3137  * Mark device as attached from system and restart if needed.
3138  */
3139 void netif_device_attach(struct net_device *dev)
3140 {
3141         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3142             netif_running(dev)) {
3143                 netif_tx_wake_all_queues(dev);
3144                 __netdev_watchdog_up(dev);
3145         }
3146 }
3147 EXPORT_SYMBOL(netif_device_attach);
3148
3149 /*
3150  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3151  * to be used as a distribution range.
3152  */
3153 static u16 skb_tx_hash(const struct net_device *dev,
3154                        const struct net_device *sb_dev,
3155                        struct sk_buff *skb)
3156 {
3157         u32 hash;
3158         u16 qoffset = 0;
3159         u16 qcount = dev->real_num_tx_queues;
3160
3161         if (dev->num_tc) {
3162                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3163
3164                 qoffset = sb_dev->tc_to_txq[tc].offset;
3165                 qcount = sb_dev->tc_to_txq[tc].count;
3166                 if (unlikely(!qcount)) {
3167                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3168                                              sb_dev->name, qoffset, tc);
3169                         qoffset = 0;
3170                         qcount = dev->real_num_tx_queues;
3171                 }
3172         }
3173
3174         if (skb_rx_queue_recorded(skb)) {
3175                 hash = skb_get_rx_queue(skb);
3176                 if (hash >= qoffset)
3177                         hash -= qoffset;
3178                 while (unlikely(hash >= qcount))
3179                         hash -= qcount;
3180                 return hash + qoffset;
3181         }
3182
3183         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3184 }
3185
3186 static void skb_warn_bad_offload(const struct sk_buff *skb)
3187 {
3188         static const netdev_features_t null_features;
3189         struct net_device *dev = skb->dev;
3190         const char *name = "";
3191
3192         if (!net_ratelimit())
3193                 return;
3194
3195         if (dev) {
3196                 if (dev->dev.parent)
3197                         name = dev_driver_string(dev->dev.parent);
3198                 else
3199                         name = netdev_name(dev);
3200         }
3201         skb_dump(KERN_WARNING, skb, false);
3202         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3203              name, dev ? &dev->features : &null_features,
3204              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3205 }
3206
3207 /*
3208  * Invalidate hardware checksum when packet is to be mangled, and
3209  * complete checksum manually on outgoing path.
3210  */
3211 int skb_checksum_help(struct sk_buff *skb)
3212 {
3213         __wsum csum;
3214         int ret = 0, offset;
3215
3216         if (skb->ip_summed == CHECKSUM_COMPLETE)
3217                 goto out_set_summed;
3218
3219         if (unlikely(skb_is_gso(skb))) {
3220                 skb_warn_bad_offload(skb);
3221                 return -EINVAL;
3222         }
3223
3224         /* Before computing a checksum, we should make sure no frag could
3225          * be modified by an external entity : checksum could be wrong.
3226          */
3227         if (skb_has_shared_frag(skb)) {
3228                 ret = __skb_linearize(skb);
3229                 if (ret)
3230                         goto out;
3231         }
3232
3233         offset = skb_checksum_start_offset(skb);
3234         BUG_ON(offset >= skb_headlen(skb));
3235         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3236
3237         offset += skb->csum_offset;
3238         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3239
3240         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3241         if (ret)
3242                 goto out;
3243
3244         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3245 out_set_summed:
3246         skb->ip_summed = CHECKSUM_NONE;
3247 out:
3248         return ret;
3249 }
3250 EXPORT_SYMBOL(skb_checksum_help);
3251
3252 int skb_crc32c_csum_help(struct sk_buff *skb)
3253 {
3254         __le32 crc32c_csum;
3255         int ret = 0, offset, start;
3256
3257         if (skb->ip_summed != CHECKSUM_PARTIAL)
3258                 goto out;
3259
3260         if (unlikely(skb_is_gso(skb)))
3261                 goto out;
3262
3263         /* Before computing a checksum, we should make sure no frag could
3264          * be modified by an external entity : checksum could be wrong.
3265          */
3266         if (unlikely(skb_has_shared_frag(skb))) {
3267                 ret = __skb_linearize(skb);
3268                 if (ret)
3269                         goto out;
3270         }
3271         start = skb_checksum_start_offset(skb);
3272         offset = start + offsetof(struct sctphdr, checksum);
3273         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3274                 ret = -EINVAL;
3275                 goto out;
3276         }
3277
3278         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3279         if (ret)
3280                 goto out;
3281
3282         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3283                                                   skb->len - start, ~(__u32)0,
3284                                                   crc32c_csum_stub));
3285         *(__le32 *)(skb->data + offset) = crc32c_csum;
3286         skb->ip_summed = CHECKSUM_NONE;
3287         skb->csum_not_inet = 0;
3288 out:
3289         return ret;
3290 }
3291
3292 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3293 {
3294         __be16 type = skb->protocol;
3295
3296         /* Tunnel gso handlers can set protocol to ethernet. */
3297         if (type == htons(ETH_P_TEB)) {
3298                 struct ethhdr *eth;
3299
3300                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3301                         return 0;
3302
3303                 eth = (struct ethhdr *)skb->data;
3304                 type = eth->h_proto;
3305         }
3306
3307         return __vlan_get_protocol(skb, type, depth);
3308 }
3309
3310 /**
3311  *      skb_mac_gso_segment - mac layer segmentation handler.
3312  *      @skb: buffer to segment
3313  *      @features: features for the output path (see dev->features)
3314  */
3315 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3316                                     netdev_features_t features)
3317 {
3318         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3319         struct packet_offload *ptype;
3320         int vlan_depth = skb->mac_len;
3321         __be16 type = skb_network_protocol(skb, &vlan_depth);
3322
3323         if (unlikely(!type))
3324                 return ERR_PTR(-EINVAL);
3325
3326         __skb_pull(skb, vlan_depth);
3327
3328         rcu_read_lock();
3329         list_for_each_entry_rcu(ptype, &offload_base, list) {
3330                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3331                         segs = ptype->callbacks.gso_segment(skb, features);
3332                         break;
3333                 }
3334         }
3335         rcu_read_unlock();
3336
3337         __skb_push(skb, skb->data - skb_mac_header(skb));
3338
3339         return segs;
3340 }
3341 EXPORT_SYMBOL(skb_mac_gso_segment);
3342
3343
3344 /* openvswitch calls this on rx path, so we need a different check.
3345  */
3346 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3347 {
3348         if (tx_path)
3349                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3350                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3351
3352         return skb->ip_summed == CHECKSUM_NONE;
3353 }
3354
3355 /**
3356  *      __skb_gso_segment - Perform segmentation on skb.
3357  *      @skb: buffer to segment
3358  *      @features: features for the output path (see dev->features)
3359  *      @tx_path: whether it is called in TX path
3360  *
3361  *      This function segments the given skb and returns a list of segments.
3362  *
3363  *      It may return NULL if the skb requires no segmentation.  This is
3364  *      only possible when GSO is used for verifying header integrity.
3365  *
3366  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3367  */
3368 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3369                                   netdev_features_t features, bool tx_path)
3370 {
3371         struct sk_buff *segs;
3372
3373         if (unlikely(skb_needs_check(skb, tx_path))) {
3374                 int err;
3375
3376                 /* We're going to init ->check field in TCP or UDP header */
3377                 err = skb_cow_head(skb, 0);
3378                 if (err < 0)
3379                         return ERR_PTR(err);
3380         }
3381
3382         /* Only report GSO partial support if it will enable us to
3383          * support segmentation on this frame without needing additional
3384          * work.
3385          */
3386         if (features & NETIF_F_GSO_PARTIAL) {
3387                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3388                 struct net_device *dev = skb->dev;
3389
3390                 partial_features |= dev->features & dev->gso_partial_features;
3391                 if (!skb_gso_ok(skb, features | partial_features))
3392                         features &= ~NETIF_F_GSO_PARTIAL;
3393         }
3394
3395         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3396                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3397
3398         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3399         SKB_GSO_CB(skb)->encap_level = 0;
3400
3401         skb_reset_mac_header(skb);
3402         skb_reset_mac_len(skb);
3403
3404         segs = skb_mac_gso_segment(skb, features);
3405
3406         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3407                 skb_warn_bad_offload(skb);
3408
3409         return segs;
3410 }
3411 EXPORT_SYMBOL(__skb_gso_segment);
3412
3413 /* Take action when hardware reception checksum errors are detected. */
3414 #ifdef CONFIG_BUG
3415 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3416 {
3417         pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3418         skb_dump(KERN_ERR, skb, true);
3419         dump_stack();
3420 }
3421
3422 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3423 {
3424         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3425 }
3426 EXPORT_SYMBOL(netdev_rx_csum_fault);
3427 #endif
3428
3429 /* XXX: check that highmem exists at all on the given machine. */
3430 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3431 {
3432 #ifdef CONFIG_HIGHMEM
3433         int i;
3434
3435         if (!(dev->features & NETIF_F_HIGHDMA)) {
3436                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3437                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3438
3439                         if (PageHighMem(skb_frag_page(frag)))
3440                                 return 1;
3441                 }
3442         }
3443 #endif
3444         return 0;
3445 }
3446
3447 /* If MPLS offload request, verify we are testing hardware MPLS features
3448  * instead of standard features for the netdev.
3449  */
3450 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3451 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3452                                            netdev_features_t features,
3453                                            __be16 type)
3454 {
3455         if (eth_p_mpls(type))
3456                 features &= skb->dev->mpls_features;
3457
3458         return features;
3459 }
3460 #else
3461 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3462                                            netdev_features_t features,
3463                                            __be16 type)
3464 {
3465         return features;
3466 }
3467 #endif
3468
3469 static netdev_features_t harmonize_features(struct sk_buff *skb,
3470         netdev_features_t features)
3471 {
3472         __be16 type;
3473
3474         type = skb_network_protocol(skb, NULL);
3475         features = net_mpls_features(skb, features, type);
3476
3477         if (skb->ip_summed != CHECKSUM_NONE &&
3478             !can_checksum_protocol(features, type)) {
3479                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3480         }
3481         if (illegal_highdma(skb->dev, skb))
3482                 features &= ~NETIF_F_SG;
3483
3484         return features;
3485 }
3486
3487 netdev_features_t passthru_features_check(struct sk_buff *skb,
3488                                           struct net_device *dev,
3489                                           netdev_features_t features)
3490 {
3491         return features;
3492 }
3493 EXPORT_SYMBOL(passthru_features_check);
3494
3495 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3496                                              struct net_device *dev,
3497                                              netdev_features_t features)
3498 {
3499         return vlan_features_check(skb, features);
3500 }
3501
3502 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3503                                             struct net_device *dev,
3504                                             netdev_features_t features)
3505 {
3506         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3507
3508         if (gso_segs > dev->gso_max_segs)
3509                 return features & ~NETIF_F_GSO_MASK;
3510
3511         if (!skb_shinfo(skb)->gso_type) {
3512                 skb_warn_bad_offload(skb);
3513                 return features & ~NETIF_F_GSO_MASK;
3514         }
3515
3516         /* Support for GSO partial features requires software
3517          * intervention before we can actually process the packets
3518          * so we need to strip support for any partial features now
3519          * and we can pull them back in after we have partially
3520          * segmented the frame.
3521          */
3522         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3523                 features &= ~dev->gso_partial_features;
3524
3525         /* Make sure to clear the IPv4 ID mangling feature if the
3526          * IPv4 header has the potential to be fragmented.
3527          */
3528         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3529                 struct iphdr *iph = skb->encapsulation ?
3530                                     inner_ip_hdr(skb) : ip_hdr(skb);
3531
3532                 if (!(iph->frag_off & htons(IP_DF)))
3533                         features &= ~NETIF_F_TSO_MANGLEID;
3534         }
3535
3536         return features;
3537 }
3538
3539 netdev_features_t netif_skb_features(struct sk_buff *skb)
3540 {
3541         struct net_device *dev = skb->dev;
3542         netdev_features_t features = dev->features;
3543
3544         if (skb_is_gso(skb))
3545                 features = gso_features_check(skb, dev, features);
3546
3547         /* If encapsulation offload request, verify we are testing
3548          * hardware encapsulation features instead of standard
3549          * features for the netdev
3550          */
3551         if (skb->encapsulation)
3552                 features &= dev->hw_enc_features;
3553
3554         if (skb_vlan_tagged(skb))
3555                 features = netdev_intersect_features(features,
3556                                                      dev->vlan_features |
3557                                                      NETIF_F_HW_VLAN_CTAG_TX |
3558                                                      NETIF_F_HW_VLAN_STAG_TX);
3559
3560         if (dev->netdev_ops->ndo_features_check)
3561                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3562                                                                 features);
3563         else
3564                 features &= dflt_features_check(skb, dev, features);
3565
3566         return harmonize_features(skb, features);
3567 }
3568 EXPORT_SYMBOL(netif_skb_features);
3569
3570 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3571                     struct netdev_queue *txq, bool more)
3572 {
3573         unsigned int len;
3574         int rc;
3575
3576         if (dev_nit_active(dev))
3577                 dev_queue_xmit_nit(skb, dev);
3578
3579         len = skb->len;
3580         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3581         trace_net_dev_start_xmit(skb, dev);
3582         rc = netdev_start_xmit(skb, dev, txq, more);
3583         trace_net_dev_xmit(skb, rc, dev, len);
3584
3585         return rc;
3586 }
3587
3588 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3589                                     struct netdev_queue *txq, int *ret)
3590 {
3591         struct sk_buff *skb = first;
3592         int rc = NETDEV_TX_OK;
3593
3594         while (skb) {
3595                 struct sk_buff *next = skb->next;
3596
3597                 skb_mark_not_on_list(skb);
3598                 rc = xmit_one(skb, dev, txq, next != NULL);
3599                 if (unlikely(!dev_xmit_complete(rc))) {
3600                         skb->next = next;
3601                         goto out;
3602                 }
3603
3604                 skb = next;
3605                 if (netif_tx_queue_stopped(txq) && skb) {
3606                         rc = NETDEV_TX_BUSY;
3607                         break;
3608                 }
3609         }
3610
3611 out:
3612         *ret = rc;
3613         return skb;
3614 }
3615
3616 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3617                                           netdev_features_t features)
3618 {
3619         if (skb_vlan_tag_present(skb) &&
3620             !vlan_hw_offload_capable(features, skb->vlan_proto))
3621                 skb = __vlan_hwaccel_push_inside(skb);
3622         return skb;
3623 }
3624
3625 int skb_csum_hwoffload_help(struct sk_buff *skb,
3626                             const netdev_features_t features)
3627 {
3628         if (unlikely(skb_csum_is_sctp(skb)))
3629                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3630                         skb_crc32c_csum_help(skb);
3631
3632         if (features & NETIF_F_HW_CSUM)
3633                 return 0;
3634
3635         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3636                 switch (skb->csum_offset) {
3637                 case offsetof(struct tcphdr, check):
3638                 case offsetof(struct udphdr, check):
3639                         return 0;
3640                 }
3641         }
3642
3643         return skb_checksum_help(skb);
3644 }
3645 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3646
3647 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3648 {
3649         netdev_features_t features;
3650
3651         features = netif_skb_features(skb);
3652         skb = validate_xmit_vlan(skb, features);
3653         if (unlikely(!skb))
3654                 goto out_null;
3655
3656         skb = sk_validate_xmit_skb(skb, dev);
3657         if (unlikely(!skb))
3658                 goto out_null;
3659
3660         if (netif_needs_gso(skb, features)) {
3661                 struct sk_buff *segs;
3662
3663                 segs = skb_gso_segment(skb, features);
3664                 if (IS_ERR(segs)) {
3665                         goto out_kfree_skb;
3666                 } else if (segs) {
3667                         consume_skb(skb);
3668                         skb = segs;
3669                 }
3670         } else {
3671                 if (skb_needs_linearize(skb, features) &&
3672                     __skb_linearize(skb))
3673                         goto out_kfree_skb;
3674
3675                 /* If packet is not checksummed and device does not
3676                  * support checksumming for this protocol, complete
3677                  * checksumming here.
3678                  */
3679                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3680                         if (skb->encapsulation)
3681                                 skb_set_inner_transport_header(skb,
3682                                                                skb_checksum_start_offset(skb));
3683                         else
3684                                 skb_set_transport_header(skb,
3685                                                          skb_checksum_start_offset(skb));
3686                         if (skb_csum_hwoffload_help(skb, features))
3687                                 goto out_kfree_skb;
3688                 }
3689         }
3690
3691         skb = validate_xmit_xfrm(skb, features, again);
3692
3693         return skb;
3694
3695 out_kfree_skb:
3696         kfree_skb(skb);
3697 out_null:
3698         atomic_long_inc(&dev->tx_dropped);
3699         return NULL;
3700 }
3701
3702 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3703 {
3704         struct sk_buff *next, *head = NULL, *tail;
3705
3706         for (; skb != NULL; skb = next) {
3707                 next = skb->next;
3708                 skb_mark_not_on_list(skb);
3709
3710                 /* in case skb wont be segmented, point to itself */
3711                 skb->prev = skb;
3712
3713                 skb = validate_xmit_skb(skb, dev, again);
3714                 if (!skb)
3715                         continue;
3716
3717                 if (!head)
3718                         head = skb;
3719                 else
3720                         tail->next = skb;
3721                 /* If skb was segmented, skb->prev points to
3722                  * the last segment. If not, it still contains skb.
3723                  */
3724                 tail = skb->prev;
3725         }
3726         return head;
3727 }
3728 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3729
3730 static void qdisc_pkt_len_init(struct sk_buff *skb)
3731 {
3732         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3733
3734         qdisc_skb_cb(skb)->pkt_len = skb->len;
3735
3736         /* To get more precise estimation of bytes sent on wire,
3737          * we add to pkt_len the headers size of all segments
3738          */
3739         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3740                 unsigned int hdr_len;
3741                 u16 gso_segs = shinfo->gso_segs;
3742
3743                 /* mac layer + network layer */
3744                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3745
3746                 /* + transport layer */
3747                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3748                         const struct tcphdr *th;
3749                         struct tcphdr _tcphdr;
3750
3751                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3752                                                 sizeof(_tcphdr), &_tcphdr);
3753                         if (likely(th))
3754                                 hdr_len += __tcp_hdrlen(th);
3755                 } else {
3756                         struct udphdr _udphdr;
3757
3758                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3759                                                sizeof(_udphdr), &_udphdr))
3760                                 hdr_len += sizeof(struct udphdr);
3761                 }
3762
3763                 if (shinfo->gso_type & SKB_GSO_DODGY)
3764                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3765                                                 shinfo->gso_size);
3766
3767                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3768         }
3769 }
3770
3771 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3772                              struct sk_buff **to_free,
3773                              struct netdev_queue *txq)
3774 {
3775         int rc;
3776
3777         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3778         if (rc == NET_XMIT_SUCCESS)
3779                 trace_qdisc_enqueue(q, txq, skb);
3780         return rc;
3781 }
3782
3783 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3784                                  struct net_device *dev,
3785                                  struct netdev_queue *txq)
3786 {
3787         spinlock_t *root_lock = qdisc_lock(q);
3788         struct sk_buff *to_free = NULL;
3789         bool contended;
3790         int rc;
3791
3792         qdisc_calculate_pkt_len(skb, q);
3793
3794         if (q->flags & TCQ_F_NOLOCK) {
3795                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3796                     qdisc_run_begin(q)) {
3797                         /* Retest nolock_qdisc_is_empty() within the protection
3798                          * of q->seqlock to protect from racing with requeuing.
3799                          */
3800                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3801                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3802                                 __qdisc_run(q);
3803                                 qdisc_run_end(q);
3804
3805                                 goto no_lock_out;
3806                         }
3807
3808                         qdisc_bstats_cpu_update(q, skb);
3809                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3810                             !nolock_qdisc_is_empty(q))
3811                                 __qdisc_run(q);
3812
3813                         qdisc_run_end(q);
3814                         return NET_XMIT_SUCCESS;
3815                 }
3816
3817                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3818                 qdisc_run(q);
3819
3820 no_lock_out:
3821                 if (unlikely(to_free))
3822                         kfree_skb_list(to_free);
3823                 return rc;
3824         }
3825
3826         /*
3827          * Heuristic to force contended enqueues to serialize on a
3828          * separate lock before trying to get qdisc main lock.
3829          * This permits qdisc->running owner to get the lock more
3830          * often and dequeue packets faster.
3831          */
3832         contended = qdisc_is_running(q);
3833         if (unlikely(contended))
3834                 spin_lock(&q->busylock);
3835
3836         spin_lock(root_lock);
3837         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3838                 __qdisc_drop(skb, &to_free);
3839                 rc = NET_XMIT_DROP;
3840         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3841                    qdisc_run_begin(q)) {
3842                 /*
3843                  * This is a work-conserving queue; there are no old skbs
3844                  * waiting to be sent out; and the qdisc is not running -
3845                  * xmit the skb directly.
3846                  */
3847
3848                 qdisc_bstats_update(q, skb);
3849
3850                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3851                         if (unlikely(contended)) {
3852                                 spin_unlock(&q->busylock);
3853                                 contended = false;
3854                         }
3855                         __qdisc_run(q);
3856                 }
3857
3858                 qdisc_run_end(q);
3859                 rc = NET_XMIT_SUCCESS;
3860         } else {
3861                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3862                 if (qdisc_run_begin(q)) {
3863                         if (unlikely(contended)) {
3864                                 spin_unlock(&q->busylock);
3865                                 contended = false;
3866                         }
3867                         __qdisc_run(q);
3868                         qdisc_run_end(q);
3869                 }
3870         }
3871         spin_unlock(root_lock);
3872         if (unlikely(to_free))
3873                 kfree_skb_list(to_free);
3874         if (unlikely(contended))
3875                 spin_unlock(&q->busylock);
3876         return rc;
3877 }
3878
3879 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3880 static void skb_update_prio(struct sk_buff *skb)
3881 {
3882         const struct netprio_map *map;
3883         const struct sock *sk;
3884         unsigned int prioidx;
3885
3886         if (skb->priority)
3887                 return;
3888         map = rcu_dereference_bh(skb->dev->priomap);
3889         if (!map)
3890                 return;
3891         sk = skb_to_full_sk(skb);
3892         if (!sk)
3893                 return;
3894
3895         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3896
3897         if (prioidx < map->priomap_len)
3898                 skb->priority = map->priomap[prioidx];
3899 }
3900 #else
3901 #define skb_update_prio(skb)
3902 #endif
3903
3904 /**
3905  *      dev_loopback_xmit - loop back @skb
3906  *      @net: network namespace this loopback is happening in
3907  *      @sk:  sk needed to be a netfilter okfn
3908  *      @skb: buffer to transmit
3909  */
3910 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3911 {
3912         skb_reset_mac_header(skb);
3913         __skb_pull(skb, skb_network_offset(skb));
3914         skb->pkt_type = PACKET_LOOPBACK;
3915         if (skb->ip_summed == CHECKSUM_NONE)
3916                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3917         WARN_ON(!skb_dst(skb));
3918         skb_dst_force(skb);
3919         netif_rx_ni(skb);
3920         return 0;
3921 }
3922 EXPORT_SYMBOL(dev_loopback_xmit);
3923
3924 #ifdef CONFIG_NET_EGRESS
3925 static struct sk_buff *
3926 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3927 {
3928         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3929         struct tcf_result cl_res;
3930
3931         if (!miniq)
3932                 return skb;
3933
3934         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3935         qdisc_skb_cb(skb)->mru = 0;
3936         qdisc_skb_cb(skb)->post_ct = false;
3937         mini_qdisc_bstats_cpu_update(miniq, skb);
3938
3939         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3940         case TC_ACT_OK:
3941         case TC_ACT_RECLASSIFY:
3942                 skb->tc_index = TC_H_MIN(cl_res.classid);
3943                 break;
3944         case TC_ACT_SHOT:
3945                 mini_qdisc_qstats_cpu_drop(miniq);
3946                 *ret = NET_XMIT_DROP;
3947                 kfree_skb(skb);
3948                 return NULL;
3949         case TC_ACT_STOLEN:
3950         case TC_ACT_QUEUED:
3951         case TC_ACT_TRAP:
3952                 *ret = NET_XMIT_SUCCESS;
3953                 consume_skb(skb);
3954                 return NULL;
3955         case TC_ACT_REDIRECT:
3956                 /* No need to push/pop skb's mac_header here on egress! */
3957                 skb_do_redirect(skb);
3958                 *ret = NET_XMIT_SUCCESS;
3959                 return NULL;
3960         default:
3961                 break;
3962         }
3963
3964         return skb;
3965 }
3966 #endif /* CONFIG_NET_EGRESS */
3967
3968 #ifdef CONFIG_XPS
3969 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3970                                struct xps_dev_maps *dev_maps, unsigned int tci)
3971 {
3972         int tc = netdev_get_prio_tc_map(dev, skb->priority);
3973         struct xps_map *map;
3974         int queue_index = -1;
3975
3976         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3977                 return queue_index;
3978
3979         tci *= dev_maps->num_tc;
3980         tci += tc;
3981
3982         map = rcu_dereference(dev_maps->attr_map[tci]);
3983         if (map) {
3984                 if (map->len == 1)
3985                         queue_index = map->queues[0];
3986                 else
3987                         queue_index = map->queues[reciprocal_scale(
3988                                                 skb_get_hash(skb), map->len)];
3989                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3990                         queue_index = -1;
3991         }
3992         return queue_index;
3993 }
3994 #endif
3995
3996 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3997                          struct sk_buff *skb)
3998 {
3999 #ifdef CONFIG_XPS
4000         struct xps_dev_maps *dev_maps;
4001         struct sock *sk = skb->sk;
4002         int queue_index = -1;
4003
4004         if (!static_key_false(&xps_needed))
4005                 return -1;
4006
4007         rcu_read_lock();
4008         if (!static_key_false(&xps_rxqs_needed))
4009                 goto get_cpus_map;
4010
4011         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4012         if (dev_maps) {
4013                 int tci = sk_rx_queue_get(sk);
4014
4015                 if (tci >= 0)
4016                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4017                                                           tci);
4018         }
4019
4020 get_cpus_map:
4021         if (queue_index < 0) {
4022                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4023                 if (dev_maps) {
4024                         unsigned int tci = skb->sender_cpu - 1;
4025
4026                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4027                                                           tci);
4028                 }
4029         }
4030         rcu_read_unlock();
4031
4032         return queue_index;
4033 #else
4034         return -1;
4035 #endif
4036 }
4037
4038 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4039                      struct net_device *sb_dev)
4040 {
4041         return 0;
4042 }
4043 EXPORT_SYMBOL(dev_pick_tx_zero);
4044
4045 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4046                        struct net_device *sb_dev)
4047 {
4048         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4049 }
4050 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4051
4052 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4053                      struct net_device *sb_dev)
4054 {
4055         struct sock *sk = skb->sk;
4056         int queue_index = sk_tx_queue_get(sk);
4057
4058         sb_dev = sb_dev ? : dev;
4059
4060         if (queue_index < 0 || skb->ooo_okay ||
4061             queue_index >= dev->real_num_tx_queues) {
4062                 int new_index = get_xps_queue(dev, sb_dev, skb);
4063
4064                 if (new_index < 0)
4065                         new_index = skb_tx_hash(dev, sb_dev, skb);
4066
4067                 if (queue_index != new_index && sk &&
4068                     sk_fullsock(sk) &&
4069                     rcu_access_pointer(sk->sk_dst_cache))
4070                         sk_tx_queue_set(sk, new_index);
4071
4072                 queue_index = new_index;
4073         }
4074
4075         return queue_index;
4076 }
4077 EXPORT_SYMBOL(netdev_pick_tx);
4078
4079 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4080                                          struct sk_buff *skb,
4081                                          struct net_device *sb_dev)
4082 {
4083         int queue_index = 0;
4084
4085 #ifdef CONFIG_XPS
4086         u32 sender_cpu = skb->sender_cpu - 1;
4087
4088         if (sender_cpu >= (u32)NR_CPUS)
4089                 skb->sender_cpu = raw_smp_processor_id() + 1;
4090 #endif
4091
4092         if (dev->real_num_tx_queues != 1) {
4093                 const struct net_device_ops *ops = dev->netdev_ops;
4094
4095                 if (ops->ndo_select_queue)
4096                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4097                 else
4098                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4099
4100                 queue_index = netdev_cap_txqueue(dev, queue_index);
4101         }
4102
4103         skb_set_queue_mapping(skb, queue_index);
4104         return netdev_get_tx_queue(dev, queue_index);
4105 }
4106
4107 /**
4108  *      __dev_queue_xmit - transmit a buffer
4109  *      @skb: buffer to transmit
4110  *      @sb_dev: suboordinate device used for L2 forwarding offload
4111  *
4112  *      Queue a buffer for transmission to a network device. The caller must
4113  *      have set the device and priority and built the buffer before calling
4114  *      this function. The function can be called from an interrupt.
4115  *
4116  *      A negative errno code is returned on a failure. A success does not
4117  *      guarantee the frame will be transmitted as it may be dropped due
4118  *      to congestion or traffic shaping.
4119  *
4120  * -----------------------------------------------------------------------------------
4121  *      I notice this method can also return errors from the queue disciplines,
4122  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4123  *      be positive.
4124  *
4125  *      Regardless of the return value, the skb is consumed, so it is currently
4126  *      difficult to retry a send to this method.  (You can bump the ref count
4127  *      before sending to hold a reference for retry if you are careful.)
4128  *
4129  *      When calling this method, interrupts MUST be enabled.  This is because
4130  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4131  *          --BLG
4132  */
4133 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4134 {
4135         struct net_device *dev = skb->dev;
4136         struct netdev_queue *txq;
4137         struct Qdisc *q;
4138         int rc = -ENOMEM;
4139         bool again = false;
4140
4141         skb_reset_mac_header(skb);
4142
4143         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4144                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4145
4146         /* Disable soft irqs for various locks below. Also
4147          * stops preemption for RCU.
4148          */
4149         rcu_read_lock_bh();
4150
4151         skb_update_prio(skb);
4152
4153         qdisc_pkt_len_init(skb);
4154 #ifdef CONFIG_NET_CLS_ACT
4155         skb->tc_at_ingress = 0;
4156 # ifdef CONFIG_NET_EGRESS
4157         if (static_branch_unlikely(&egress_needed_key)) {
4158                 skb = sch_handle_egress(skb, &rc, dev);
4159                 if (!skb)
4160                         goto out;
4161         }
4162 # endif
4163 #endif
4164         /* If device/qdisc don't need skb->dst, release it right now while
4165          * its hot in this cpu cache.
4166          */
4167         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4168                 skb_dst_drop(skb);
4169         else
4170                 skb_dst_force(skb);
4171
4172         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4173         q = rcu_dereference_bh(txq->qdisc);
4174
4175         trace_net_dev_queue(skb);
4176         if (q->enqueue) {
4177                 rc = __dev_xmit_skb(skb, q, dev, txq);
4178                 goto out;
4179         }
4180
4181         /* The device has no queue. Common case for software devices:
4182          * loopback, all the sorts of tunnels...
4183
4184          * Really, it is unlikely that netif_tx_lock protection is necessary
4185          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4186          * counters.)
4187          * However, it is possible, that they rely on protection
4188          * made by us here.
4189
4190          * Check this and shot the lock. It is not prone from deadlocks.
4191          *Either shot noqueue qdisc, it is even simpler 8)
4192          */
4193         if (dev->flags & IFF_UP) {
4194                 int cpu = smp_processor_id(); /* ok because BHs are off */
4195
4196                 if (txq->xmit_lock_owner != cpu) {
4197                         if (dev_xmit_recursion())
4198                                 goto recursion_alert;
4199
4200                         skb = validate_xmit_skb(skb, dev, &again);
4201                         if (!skb)
4202                                 goto out;
4203
4204                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4205                         HARD_TX_LOCK(dev, txq, cpu);
4206
4207                         if (!netif_xmit_stopped(txq)) {
4208                                 dev_xmit_recursion_inc();
4209                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4210                                 dev_xmit_recursion_dec();
4211                                 if (dev_xmit_complete(rc)) {
4212                                         HARD_TX_UNLOCK(dev, txq);
4213                                         goto out;
4214                                 }
4215                         }
4216                         HARD_TX_UNLOCK(dev, txq);
4217                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4218                                              dev->name);
4219                 } else {
4220                         /* Recursion is detected! It is possible,
4221                          * unfortunately
4222                          */
4223 recursion_alert:
4224                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4225                                              dev->name);
4226                 }
4227         }
4228
4229         rc = -ENETDOWN;
4230         rcu_read_unlock_bh();
4231
4232         atomic_long_inc(&dev->tx_dropped);
4233         kfree_skb_list(skb);
4234         return rc;
4235 out:
4236         rcu_read_unlock_bh();
4237         return rc;
4238 }
4239
4240 int dev_queue_xmit(struct sk_buff *skb)
4241 {
4242         return __dev_queue_xmit(skb, NULL);
4243 }
4244 EXPORT_SYMBOL(dev_queue_xmit);
4245
4246 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4247 {
4248         return __dev_queue_xmit(skb, sb_dev);
4249 }
4250 EXPORT_SYMBOL(dev_queue_xmit_accel);
4251
4252 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4253 {
4254         struct net_device *dev = skb->dev;
4255         struct sk_buff *orig_skb = skb;
4256         struct netdev_queue *txq;
4257         int ret = NETDEV_TX_BUSY;
4258         bool again = false;
4259
4260         if (unlikely(!netif_running(dev) ||
4261                      !netif_carrier_ok(dev)))
4262                 goto drop;
4263
4264         skb = validate_xmit_skb_list(skb, dev, &again);
4265         if (skb != orig_skb)
4266                 goto drop;
4267
4268         skb_set_queue_mapping(skb, queue_id);
4269         txq = skb_get_tx_queue(dev, skb);
4270         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4271
4272         local_bh_disable();
4273
4274         dev_xmit_recursion_inc();
4275         HARD_TX_LOCK(dev, txq, smp_processor_id());
4276         if (!netif_xmit_frozen_or_drv_stopped(txq))
4277                 ret = netdev_start_xmit(skb, dev, txq, false);
4278         HARD_TX_UNLOCK(dev, txq);
4279         dev_xmit_recursion_dec();
4280
4281         local_bh_enable();
4282         return ret;
4283 drop:
4284         atomic_long_inc(&dev->tx_dropped);
4285         kfree_skb_list(skb);
4286         return NET_XMIT_DROP;
4287 }
4288 EXPORT_SYMBOL(__dev_direct_xmit);
4289
4290 /*************************************************************************
4291  *                      Receiver routines
4292  *************************************************************************/
4293
4294 int netdev_max_backlog __read_mostly = 1000;
4295 EXPORT_SYMBOL(netdev_max_backlog);
4296
4297 int netdev_tstamp_prequeue __read_mostly = 1;
4298 int netdev_budget __read_mostly = 300;
4299 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4300 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4301 int weight_p __read_mostly = 64;           /* old backlog weight */
4302 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4303 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4304 int dev_rx_weight __read_mostly = 64;
4305 int dev_tx_weight __read_mostly = 64;
4306 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4307 int gro_normal_batch __read_mostly = 8;
4308
4309 /* Called with irq disabled */
4310 static inline void ____napi_schedule(struct softnet_data *sd,
4311                                      struct napi_struct *napi)
4312 {
4313         struct task_struct *thread;
4314
4315         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4316                 /* Paired with smp_mb__before_atomic() in
4317                  * napi_enable()/dev_set_threaded().
4318                  * Use READ_ONCE() to guarantee a complete
4319                  * read on napi->thread. Only call
4320                  * wake_up_process() when it's not NULL.
4321                  */
4322                 thread = READ_ONCE(napi->thread);
4323                 if (thread) {
4324                         /* Avoid doing set_bit() if the thread is in
4325                          * INTERRUPTIBLE state, cause napi_thread_wait()
4326                          * makes sure to proceed with napi polling
4327                          * if the thread is explicitly woken from here.
4328                          */
4329                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4330                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4331                         wake_up_process(thread);
4332                         return;
4333                 }
4334         }
4335
4336         list_add_tail(&napi->poll_list, &sd->poll_list);
4337         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4338 }
4339
4340 #ifdef CONFIG_RPS
4341
4342 /* One global table that all flow-based protocols share. */
4343 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4344 EXPORT_SYMBOL(rps_sock_flow_table);
4345 u32 rps_cpu_mask __read_mostly;
4346 EXPORT_SYMBOL(rps_cpu_mask);
4347
4348 struct static_key_false rps_needed __read_mostly;
4349 EXPORT_SYMBOL(rps_needed);
4350 struct static_key_false rfs_needed __read_mostly;
4351 EXPORT_SYMBOL(rfs_needed);
4352
4353 static struct rps_dev_flow *
4354 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4355             struct rps_dev_flow *rflow, u16 next_cpu)
4356 {
4357         if (next_cpu < nr_cpu_ids) {
4358 #ifdef CONFIG_RFS_ACCEL
4359                 struct netdev_rx_queue *rxqueue;
4360                 struct rps_dev_flow_table *flow_table;
4361                 struct rps_dev_flow *old_rflow;
4362                 u32 flow_id;
4363                 u16 rxq_index;
4364                 int rc;
4365
4366                 /* Should we steer this flow to a different hardware queue? */
4367                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4368                     !(dev->features & NETIF_F_NTUPLE))
4369                         goto out;
4370                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4371                 if (rxq_index == skb_get_rx_queue(skb))
4372                         goto out;
4373
4374                 rxqueue = dev->_rx + rxq_index;
4375                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4376                 if (!flow_table)
4377                         goto out;
4378                 flow_id = skb_get_hash(skb) & flow_table->mask;
4379                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4380                                                         rxq_index, flow_id);
4381                 if (rc < 0)
4382                         goto out;
4383                 old_rflow = rflow;
4384                 rflow = &flow_table->flows[flow_id];
4385                 rflow->filter = rc;
4386                 if (old_rflow->filter == rflow->filter)
4387                         old_rflow->filter = RPS_NO_FILTER;
4388         out:
4389 #endif
4390                 rflow->last_qtail =
4391                         per_cpu(softnet_data, next_cpu).input_queue_head;
4392         }
4393
4394         rflow->cpu = next_cpu;
4395         return rflow;
4396 }
4397
4398 /*
4399  * get_rps_cpu is called from netif_receive_skb and returns the target
4400  * CPU from the RPS map of the receiving queue for a given skb.
4401  * rcu_read_lock must be held on entry.
4402  */
4403 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4404                        struct rps_dev_flow **rflowp)
4405 {
4406         const struct rps_sock_flow_table *sock_flow_table;
4407         struct netdev_rx_queue *rxqueue = dev->_rx;
4408         struct rps_dev_flow_table *flow_table;
4409         struct rps_map *map;
4410         int cpu = -1;
4411         u32 tcpu;
4412         u32 hash;
4413
4414         if (skb_rx_queue_recorded(skb)) {
4415                 u16 index = skb_get_rx_queue(skb);
4416
4417                 if (unlikely(index >= dev->real_num_rx_queues)) {
4418                         WARN_ONCE(dev->real_num_rx_queues > 1,
4419                                   "%s received packet on queue %u, but number "
4420                                   "of RX queues is %u\n",
4421                                   dev->name, index, dev->real_num_rx_queues);
4422                         goto done;
4423                 }
4424                 rxqueue += index;
4425         }
4426
4427         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4428
4429         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4430         map = rcu_dereference(rxqueue->rps_map);
4431         if (!flow_table && !map)
4432                 goto done;
4433
4434         skb_reset_network_header(skb);
4435         hash = skb_get_hash(skb);
4436         if (!hash)
4437                 goto done;
4438
4439         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4440         if (flow_table && sock_flow_table) {
4441                 struct rps_dev_flow *rflow;
4442                 u32 next_cpu;
4443                 u32 ident;
4444
4445                 /* First check into global flow table if there is a match */
4446                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4447                 if ((ident ^ hash) & ~rps_cpu_mask)
4448                         goto try_rps;
4449
4450                 next_cpu = ident & rps_cpu_mask;
4451
4452                 /* OK, now we know there is a match,
4453                  * we can look at the local (per receive queue) flow table
4454                  */
4455                 rflow = &flow_table->flows[hash & flow_table->mask];
4456                 tcpu = rflow->cpu;
4457
4458                 /*
4459                  * If the desired CPU (where last recvmsg was done) is
4460                  * different from current CPU (one in the rx-queue flow
4461                  * table entry), switch if one of the following holds:
4462                  *   - Current CPU is unset (>= nr_cpu_ids).
4463                  *   - Current CPU is offline.
4464                  *   - The current CPU's queue tail has advanced beyond the
4465                  *     last packet that was enqueued using this table entry.
4466                  *     This guarantees that all previous packets for the flow
4467                  *     have been dequeued, thus preserving in order delivery.
4468                  */
4469                 if (unlikely(tcpu != next_cpu) &&
4470                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4471                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4472                       rflow->last_qtail)) >= 0)) {
4473                         tcpu = next_cpu;
4474                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4475                 }
4476
4477                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4478                         *rflowp = rflow;
4479                         cpu = tcpu;
4480                         goto done;
4481                 }
4482         }
4483
4484 try_rps:
4485
4486         if (map) {
4487                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4488                 if (cpu_online(tcpu)) {
4489                         cpu = tcpu;
4490                         goto done;
4491                 }
4492         }
4493
4494 done:
4495         return cpu;
4496 }
4497
4498 #ifdef CONFIG_RFS_ACCEL
4499
4500 /**
4501  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4502  * @dev: Device on which the filter was set
4503  * @rxq_index: RX queue index
4504  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4505  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4506  *
4507  * Drivers that implement ndo_rx_flow_steer() should periodically call
4508  * this function for each installed filter and remove the filters for
4509  * which it returns %true.
4510  */
4511 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4512                          u32 flow_id, u16 filter_id)
4513 {
4514         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4515         struct rps_dev_flow_table *flow_table;
4516         struct rps_dev_flow *rflow;
4517         bool expire = true;
4518         unsigned int cpu;
4519
4520         rcu_read_lock();
4521         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4522         if (flow_table && flow_id <= flow_table->mask) {
4523                 rflow = &flow_table->flows[flow_id];
4524                 cpu = READ_ONCE(rflow->cpu);
4525                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4526                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4527                            rflow->last_qtail) <
4528                      (int)(10 * flow_table->mask)))
4529                         expire = false;
4530         }
4531         rcu_read_unlock();
4532         return expire;
4533 }
4534 EXPORT_SYMBOL(rps_may_expire_flow);
4535
4536 #endif /* CONFIG_RFS_ACCEL */
4537
4538 /* Called from hardirq (IPI) context */
4539 static void rps_trigger_softirq(void *data)
4540 {
4541         struct softnet_data *sd = data;
4542
4543         ____napi_schedule(sd, &sd->backlog);
4544         sd->received_rps++;
4545 }
4546
4547 #endif /* CONFIG_RPS */
4548
4549 /*
4550  * Check if this softnet_data structure is another cpu one
4551  * If yes, queue it to our IPI list and return 1
4552  * If no, return 0
4553  */
4554 static int rps_ipi_queued(struct softnet_data *sd)
4555 {
4556 #ifdef CONFIG_RPS
4557         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4558
4559         if (sd != mysd) {
4560                 sd->rps_ipi_next = mysd->rps_ipi_list;
4561                 mysd->rps_ipi_list = sd;
4562
4563                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4564                 return 1;
4565         }
4566 #endif /* CONFIG_RPS */
4567         return 0;
4568 }
4569
4570 #ifdef CONFIG_NET_FLOW_LIMIT
4571 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4572 #endif
4573
4574 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4575 {
4576 #ifdef CONFIG_NET_FLOW_LIMIT
4577         struct sd_flow_limit *fl;
4578         struct softnet_data *sd;
4579         unsigned int old_flow, new_flow;
4580
4581         if (qlen < (netdev_max_backlog >> 1))
4582                 return false;
4583
4584         sd = this_cpu_ptr(&softnet_data);
4585
4586         rcu_read_lock();
4587         fl = rcu_dereference(sd->flow_limit);
4588         if (fl) {
4589                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4590                 old_flow = fl->history[fl->history_head];
4591                 fl->history[fl->history_head] = new_flow;
4592
4593                 fl->history_head++;
4594                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4595
4596                 if (likely(fl->buckets[old_flow]))
4597                         fl->buckets[old_flow]--;
4598
4599                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4600                         fl->count++;
4601                         rcu_read_unlock();
4602                         return true;
4603                 }
4604         }
4605         rcu_read_unlock();
4606 #endif
4607         return false;
4608 }
4609
4610 /*
4611  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4612  * queue (may be a remote CPU queue).
4613  */
4614 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4615                               unsigned int *qtail)
4616 {
4617         struct softnet_data *sd;
4618         unsigned long flags;
4619         unsigned int qlen;
4620
4621         sd = &per_cpu(softnet_data, cpu);
4622
4623         local_irq_save(flags);
4624
4625         rps_lock(sd);
4626         if (!netif_running(skb->dev))
4627                 goto drop;
4628         qlen = skb_queue_len(&sd->input_pkt_queue);
4629         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4630                 if (qlen) {
4631 enqueue:
4632                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4633                         input_queue_tail_incr_save(sd, qtail);
4634                         rps_unlock(sd);
4635                         local_irq_restore(flags);
4636                         return NET_RX_SUCCESS;
4637                 }
4638
4639                 /* Schedule NAPI for backlog device
4640                  * We can use non atomic operation since we own the queue lock
4641                  */
4642                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4643                         if (!rps_ipi_queued(sd))
4644                                 ____napi_schedule(sd, &sd->backlog);
4645                 }
4646                 goto enqueue;
4647         }
4648
4649 drop:
4650         sd->dropped++;
4651         rps_unlock(sd);
4652
4653         local_irq_restore(flags);
4654
4655         atomic_long_inc(&skb->dev->rx_dropped);
4656         kfree_skb(skb);
4657         return NET_RX_DROP;
4658 }
4659
4660 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4661 {
4662         struct net_device *dev = skb->dev;
4663         struct netdev_rx_queue *rxqueue;
4664
4665         rxqueue = dev->_rx;
4666
4667         if (skb_rx_queue_recorded(skb)) {
4668                 u16 index = skb_get_rx_queue(skb);
4669
4670                 if (unlikely(index >= dev->real_num_rx_queues)) {
4671                         WARN_ONCE(dev->real_num_rx_queues > 1,
4672                                   "%s received packet on queue %u, but number "
4673                                   "of RX queues is %u\n",
4674                                   dev->name, index, dev->real_num_rx_queues);
4675
4676                         return rxqueue; /* Return first rxqueue */
4677                 }
4678                 rxqueue += index;
4679         }
4680         return rxqueue;
4681 }
4682
4683 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4684                              struct bpf_prog *xdp_prog)
4685 {
4686         void *orig_data, *orig_data_end, *hard_start;
4687         struct netdev_rx_queue *rxqueue;
4688         bool orig_bcast, orig_host;
4689         u32 mac_len, frame_sz;
4690         __be16 orig_eth_type;
4691         struct ethhdr *eth;
4692         u32 metalen, act;
4693         int off;
4694
4695         /* The XDP program wants to see the packet starting at the MAC
4696          * header.
4697          */
4698         mac_len = skb->data - skb_mac_header(skb);
4699         hard_start = skb->data - skb_headroom(skb);
4700
4701         /* SKB "head" area always have tailroom for skb_shared_info */
4702         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4703         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4704
4705         rxqueue = netif_get_rxqueue(skb);
4706         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4707         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4708                          skb_headlen(skb) + mac_len, true);
4709
4710         orig_data_end = xdp->data_end;
4711         orig_data = xdp->data;
4712         eth = (struct ethhdr *)xdp->data;
4713         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4714         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4715         orig_eth_type = eth->h_proto;
4716
4717         act = bpf_prog_run_xdp(xdp_prog, xdp);
4718
4719         /* check if bpf_xdp_adjust_head was used */
4720         off = xdp->data - orig_data;
4721         if (off) {
4722                 if (off > 0)
4723                         __skb_pull(skb, off);
4724                 else if (off < 0)
4725                         __skb_push(skb, -off);
4726
4727                 skb->mac_header += off;
4728                 skb_reset_network_header(skb);
4729         }
4730
4731         /* check if bpf_xdp_adjust_tail was used */
4732         off = xdp->data_end - orig_data_end;
4733         if (off != 0) {
4734                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4735                 skb->len += off; /* positive on grow, negative on shrink */
4736         }
4737
4738         /* check if XDP changed eth hdr such SKB needs update */
4739         eth = (struct ethhdr *)xdp->data;
4740         if ((orig_eth_type != eth->h_proto) ||
4741             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4742                                                   skb->dev->dev_addr)) ||
4743             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4744                 __skb_push(skb, ETH_HLEN);
4745                 skb->pkt_type = PACKET_HOST;
4746                 skb->protocol = eth_type_trans(skb, skb->dev);
4747         }
4748
4749         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4750          * before calling us again on redirect path. We do not call do_redirect
4751          * as we leave that up to the caller.
4752          *
4753          * Caller is responsible for managing lifetime of skb (i.e. calling
4754          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4755          */
4756         switch (act) {
4757         case XDP_REDIRECT:
4758         case XDP_TX:
4759                 __skb_push(skb, mac_len);
4760                 break;
4761         case XDP_PASS:
4762                 metalen = xdp->data - xdp->data_meta;
4763                 if (metalen)
4764                         skb_metadata_set(skb, metalen);
4765                 break;
4766         }
4767
4768         return act;
4769 }
4770
4771 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4772                                      struct xdp_buff *xdp,
4773                                      struct bpf_prog *xdp_prog)
4774 {
4775         u32 act = XDP_DROP;
4776
4777         /* Reinjected packets coming from act_mirred or similar should
4778          * not get XDP generic processing.
4779          */
4780         if (skb_is_redirected(skb))
4781                 return XDP_PASS;
4782
4783         /* XDP packets must be linear and must have sufficient headroom
4784          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4785          * native XDP provides, thus we need to do it here as well.
4786          */
4787         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4788             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4789                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4790                 int troom = skb->tail + skb->data_len - skb->end;
4791
4792                 /* In case we have to go down the path and also linearize,
4793                  * then lets do the pskb_expand_head() work just once here.
4794                  */
4795                 if (pskb_expand_head(skb,
4796                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4797                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4798                         goto do_drop;
4799                 if (skb_linearize(skb))
4800                         goto do_drop;
4801         }
4802
4803         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4804         switch (act) {
4805         case XDP_REDIRECT:
4806         case XDP_TX:
4807         case XDP_PASS:
4808                 break;
4809         default:
4810                 bpf_warn_invalid_xdp_action(act);
4811                 fallthrough;
4812         case XDP_ABORTED:
4813                 trace_xdp_exception(skb->dev, xdp_prog, act);
4814                 fallthrough;
4815         case XDP_DROP:
4816         do_drop:
4817                 kfree_skb(skb);
4818                 break;
4819         }
4820
4821         return act;
4822 }
4823
4824 /* When doing generic XDP we have to bypass the qdisc layer and the
4825  * network taps in order to match in-driver-XDP behavior.
4826  */
4827 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4828 {
4829         struct net_device *dev = skb->dev;
4830         struct netdev_queue *txq;
4831         bool free_skb = true;
4832         int cpu, rc;
4833
4834         txq = netdev_core_pick_tx(dev, skb, NULL);
4835         cpu = smp_processor_id();
4836         HARD_TX_LOCK(dev, txq, cpu);
4837         if (!netif_xmit_stopped(txq)) {
4838                 rc = netdev_start_xmit(skb, dev, txq, 0);
4839                 if (dev_xmit_complete(rc))
4840                         free_skb = false;
4841         }
4842         HARD_TX_UNLOCK(dev, txq);
4843         if (free_skb) {
4844                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4845                 kfree_skb(skb);
4846         }
4847 }
4848
4849 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4850
4851 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4852 {
4853         if (xdp_prog) {
4854                 struct xdp_buff xdp;
4855                 u32 act;
4856                 int err;
4857
4858                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4859                 if (act != XDP_PASS) {
4860                         switch (act) {
4861                         case XDP_REDIRECT:
4862                                 err = xdp_do_generic_redirect(skb->dev, skb,
4863                                                               &xdp, xdp_prog);
4864                                 if (err)
4865                                         goto out_redir;
4866                                 break;
4867                         case XDP_TX:
4868                                 generic_xdp_tx(skb, xdp_prog);
4869                                 break;
4870                         }
4871                         return XDP_DROP;
4872                 }
4873         }
4874         return XDP_PASS;
4875 out_redir:
4876         kfree_skb(skb);
4877         return XDP_DROP;
4878 }
4879 EXPORT_SYMBOL_GPL(do_xdp_generic);
4880
4881 static int netif_rx_internal(struct sk_buff *skb)
4882 {
4883         int ret;
4884
4885         net_timestamp_check(netdev_tstamp_prequeue, skb);
4886
4887         trace_netif_rx(skb);
4888
4889 #ifdef CONFIG_RPS
4890         if (static_branch_unlikely(&rps_needed)) {
4891                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4892                 int cpu;
4893
4894                 preempt_disable();
4895                 rcu_read_lock();
4896
4897                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4898                 if (cpu < 0)
4899                         cpu = smp_processor_id();
4900
4901                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4902
4903                 rcu_read_unlock();
4904                 preempt_enable();
4905         } else
4906 #endif
4907         {
4908                 unsigned int qtail;
4909
4910                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4911                 put_cpu();
4912         }
4913         return ret;
4914 }
4915
4916 /**
4917  *      netif_rx        -       post buffer to the network code
4918  *      @skb: buffer to post
4919  *
4920  *      This function receives a packet from a device driver and queues it for
4921  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4922  *      may be dropped during processing for congestion control or by the
4923  *      protocol layers.
4924  *
4925  *      return values:
4926  *      NET_RX_SUCCESS  (no congestion)
4927  *      NET_RX_DROP     (packet was dropped)
4928  *
4929  */
4930
4931 int netif_rx(struct sk_buff *skb)
4932 {
4933         int ret;
4934
4935         trace_netif_rx_entry(skb);
4936
4937         ret = netif_rx_internal(skb);
4938         trace_netif_rx_exit(ret);
4939
4940         return ret;
4941 }
4942 EXPORT_SYMBOL(netif_rx);
4943
4944 int netif_rx_ni(struct sk_buff *skb)
4945 {
4946         int err;
4947
4948         trace_netif_rx_ni_entry(skb);
4949
4950         preempt_disable();
4951         err = netif_rx_internal(skb);
4952         if (local_softirq_pending())
4953                 do_softirq();
4954         preempt_enable();
4955         trace_netif_rx_ni_exit(err);
4956
4957         return err;
4958 }
4959 EXPORT_SYMBOL(netif_rx_ni);
4960
4961 int netif_rx_any_context(struct sk_buff *skb)
4962 {
4963         /*
4964          * If invoked from contexts which do not invoke bottom half
4965          * processing either at return from interrupt or when softrqs are
4966          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4967          * directly.
4968          */
4969         if (in_interrupt())
4970                 return netif_rx(skb);
4971         else
4972                 return netif_rx_ni(skb);
4973 }
4974 EXPORT_SYMBOL(netif_rx_any_context);
4975
4976 static __latent_entropy void net_tx_action(struct softirq_action *h)
4977 {
4978         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4979
4980         if (sd->completion_queue) {
4981                 struct sk_buff *clist;
4982
4983                 local_irq_disable();
4984                 clist = sd->completion_queue;
4985                 sd->completion_queue = NULL;
4986                 local_irq_enable();
4987
4988                 while (clist) {
4989                         struct sk_buff *skb = clist;
4990
4991                         clist = clist->next;
4992
4993                         WARN_ON(refcount_read(&skb->users));
4994                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4995                                 trace_consume_skb(skb);
4996                         else
4997                                 trace_kfree_skb(skb, net_tx_action);
4998
4999                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5000                                 __kfree_skb(skb);
5001                         else
5002                                 __kfree_skb_defer(skb);
5003                 }
5004         }
5005
5006         if (sd->output_queue) {
5007                 struct Qdisc *head;
5008
5009                 local_irq_disable();
5010                 head = sd->output_queue;
5011                 sd->output_queue = NULL;
5012                 sd->output_queue_tailp = &sd->output_queue;
5013                 local_irq_enable();
5014
5015                 rcu_read_lock();
5016
5017                 while (head) {
5018                         struct Qdisc *q = head;
5019                         spinlock_t *root_lock = NULL;
5020
5021                         head = head->next_sched;
5022
5023                         /* We need to make sure head->next_sched is read
5024                          * before clearing __QDISC_STATE_SCHED
5025                          */
5026                         smp_mb__before_atomic();
5027
5028                         if (!(q->flags & TCQ_F_NOLOCK)) {
5029                                 root_lock = qdisc_lock(q);
5030                                 spin_lock(root_lock);
5031                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5032                                                      &q->state))) {
5033                                 /* There is a synchronize_net() between
5034                                  * STATE_DEACTIVATED flag being set and
5035                                  * qdisc_reset()/some_qdisc_is_busy() in
5036                                  * dev_deactivate(), so we can safely bail out
5037                                  * early here to avoid data race between
5038                                  * qdisc_deactivate() and some_qdisc_is_busy()
5039                                  * for lockless qdisc.
5040                                  */
5041                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5042                                 continue;
5043                         }
5044
5045                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5046                         qdisc_run(q);
5047                         if (root_lock)
5048                                 spin_unlock(root_lock);
5049                 }
5050
5051                 rcu_read_unlock();
5052         }
5053
5054         xfrm_dev_backlog(sd);
5055 }
5056
5057 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5058 /* This hook is defined here for ATM LANE */
5059 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5060                              unsigned char *addr) __read_mostly;
5061 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5062 #endif
5063
5064 static inline struct sk_buff *
5065 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5066                    struct net_device *orig_dev, bool *another)
5067 {
5068 #ifdef CONFIG_NET_CLS_ACT
5069         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5070         struct tcf_result cl_res;
5071
5072         /* If there's at least one ingress present somewhere (so
5073          * we get here via enabled static key), remaining devices
5074          * that are not configured with an ingress qdisc will bail
5075          * out here.
5076          */
5077         if (!miniq)
5078                 return skb;
5079
5080         if (*pt_prev) {
5081                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5082                 *pt_prev = NULL;
5083         }
5084
5085         qdisc_skb_cb(skb)->pkt_len = skb->len;
5086         qdisc_skb_cb(skb)->mru = 0;
5087         qdisc_skb_cb(skb)->post_ct = false;
5088         skb->tc_at_ingress = 1;
5089         mini_qdisc_bstats_cpu_update(miniq, skb);
5090
5091         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5092         case TC_ACT_OK:
5093         case TC_ACT_RECLASSIFY:
5094                 skb->tc_index = TC_H_MIN(cl_res.classid);
5095                 break;
5096         case TC_ACT_SHOT:
5097                 mini_qdisc_qstats_cpu_drop(miniq);
5098                 kfree_skb(skb);
5099                 return NULL;
5100         case TC_ACT_STOLEN:
5101         case TC_ACT_QUEUED:
5102         case TC_ACT_TRAP:
5103                 consume_skb(skb);
5104                 return NULL;
5105         case TC_ACT_REDIRECT:
5106                 /* skb_mac_header check was done by cls/act_bpf, so
5107                  * we can safely push the L2 header back before
5108                  * redirecting to another netdev
5109                  */
5110                 __skb_push(skb, skb->mac_len);
5111                 if (skb_do_redirect(skb) == -EAGAIN) {
5112                         __skb_pull(skb, skb->mac_len);
5113                         *another = true;
5114                         break;
5115                 }
5116                 return NULL;
5117         case TC_ACT_CONSUMED:
5118                 return NULL;
5119         default:
5120                 break;
5121         }
5122 #endif /* CONFIG_NET_CLS_ACT */
5123         return skb;
5124 }
5125
5126 /**
5127  *      netdev_is_rx_handler_busy - check if receive handler is registered
5128  *      @dev: device to check
5129  *
5130  *      Check if a receive handler is already registered for a given device.
5131  *      Return true if there one.
5132  *
5133  *      The caller must hold the rtnl_mutex.
5134  */
5135 bool netdev_is_rx_handler_busy(struct net_device *dev)
5136 {
5137         ASSERT_RTNL();
5138         return dev && rtnl_dereference(dev->rx_handler);
5139 }
5140 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5141
5142 /**
5143  *      netdev_rx_handler_register - register receive handler
5144  *      @dev: device to register a handler for
5145  *      @rx_handler: receive handler to register
5146  *      @rx_handler_data: data pointer that is used by rx handler
5147  *
5148  *      Register a receive handler for a device. This handler will then be
5149  *      called from __netif_receive_skb. A negative errno code is returned
5150  *      on a failure.
5151  *
5152  *      The caller must hold the rtnl_mutex.
5153  *
5154  *      For a general description of rx_handler, see enum rx_handler_result.
5155  */
5156 int netdev_rx_handler_register(struct net_device *dev,
5157                                rx_handler_func_t *rx_handler,
5158                                void *rx_handler_data)
5159 {
5160         if (netdev_is_rx_handler_busy(dev))
5161                 return -EBUSY;
5162
5163         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5164                 return -EINVAL;
5165
5166         /* Note: rx_handler_data must be set before rx_handler */
5167         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5168         rcu_assign_pointer(dev->rx_handler, rx_handler);
5169
5170         return 0;
5171 }
5172 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5173
5174 /**
5175  *      netdev_rx_handler_unregister - unregister receive handler
5176  *      @dev: device to unregister a handler from
5177  *
5178  *      Unregister a receive handler from a device.
5179  *
5180  *      The caller must hold the rtnl_mutex.
5181  */
5182 void netdev_rx_handler_unregister(struct net_device *dev)
5183 {
5184
5185         ASSERT_RTNL();
5186         RCU_INIT_POINTER(dev->rx_handler, NULL);
5187         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5188          * section has a guarantee to see a non NULL rx_handler_data
5189          * as well.
5190          */
5191         synchronize_net();
5192         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5193 }
5194 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5195
5196 /*
5197  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5198  * the special handling of PFMEMALLOC skbs.
5199  */
5200 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5201 {
5202         switch (skb->protocol) {
5203         case htons(ETH_P_ARP):
5204         case htons(ETH_P_IP):
5205         case htons(ETH_P_IPV6):
5206         case htons(ETH_P_8021Q):
5207         case htons(ETH_P_8021AD):
5208                 return true;
5209         default:
5210                 return false;
5211         }
5212 }
5213
5214 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5215                              int *ret, struct net_device *orig_dev)
5216 {
5217         if (nf_hook_ingress_active(skb)) {
5218                 int ingress_retval;
5219
5220                 if (*pt_prev) {
5221                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5222                         *pt_prev = NULL;
5223                 }
5224
5225                 rcu_read_lock();
5226                 ingress_retval = nf_hook_ingress(skb);
5227                 rcu_read_unlock();
5228                 return ingress_retval;
5229         }
5230         return 0;
5231 }
5232
5233 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5234                                     struct packet_type **ppt_prev)
5235 {
5236         struct packet_type *ptype, *pt_prev;
5237         rx_handler_func_t *rx_handler;
5238         struct sk_buff *skb = *pskb;
5239         struct net_device *orig_dev;
5240         bool deliver_exact = false;
5241         int ret = NET_RX_DROP;
5242         __be16 type;
5243
5244         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5245
5246         trace_netif_receive_skb(skb);
5247
5248         orig_dev = skb->dev;
5249
5250         skb_reset_network_header(skb);
5251         if (!skb_transport_header_was_set(skb))
5252                 skb_reset_transport_header(skb);
5253         skb_reset_mac_len(skb);
5254
5255         pt_prev = NULL;
5256
5257 another_round:
5258         skb->skb_iif = skb->dev->ifindex;
5259
5260         __this_cpu_inc(softnet_data.processed);
5261
5262         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5263                 int ret2;
5264
5265                 migrate_disable();
5266                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5267                 migrate_enable();
5268
5269                 if (ret2 != XDP_PASS) {
5270                         ret = NET_RX_DROP;
5271                         goto out;
5272                 }
5273         }
5274
5275         if (eth_type_vlan(skb->protocol)) {
5276                 skb = skb_vlan_untag(skb);
5277                 if (unlikely(!skb))
5278                         goto out;
5279         }
5280
5281         if (skb_skip_tc_classify(skb))
5282                 goto skip_classify;
5283
5284         if (pfmemalloc)
5285                 goto skip_taps;
5286
5287         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5288                 if (pt_prev)
5289                         ret = deliver_skb(skb, pt_prev, orig_dev);
5290                 pt_prev = ptype;
5291         }
5292
5293         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5294                 if (pt_prev)
5295                         ret = deliver_skb(skb, pt_prev, orig_dev);
5296                 pt_prev = ptype;
5297         }
5298
5299 skip_taps:
5300 #ifdef CONFIG_NET_INGRESS
5301         if (static_branch_unlikely(&ingress_needed_key)) {
5302                 bool another = false;
5303
5304                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5305                                          &another);
5306                 if (another)
5307                         goto another_round;
5308                 if (!skb)
5309                         goto out;
5310
5311                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5312                         goto out;
5313         }
5314 #endif
5315         skb_reset_redirect(skb);
5316 skip_classify:
5317         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5318                 goto drop;
5319
5320         if (skb_vlan_tag_present(skb)) {
5321                 if (pt_prev) {
5322                         ret = deliver_skb(skb, pt_prev, orig_dev);
5323                         pt_prev = NULL;
5324                 }
5325                 if (vlan_do_receive(&skb))
5326                         goto another_round;
5327                 else if (unlikely(!skb))
5328                         goto out;
5329         }
5330
5331         rx_handler = rcu_dereference(skb->dev->rx_handler);
5332         if (rx_handler) {
5333                 if (pt_prev) {
5334                         ret = deliver_skb(skb, pt_prev, orig_dev);
5335                         pt_prev = NULL;
5336                 }
5337                 switch (rx_handler(&skb)) {
5338                 case RX_HANDLER_CONSUMED:
5339                         ret = NET_RX_SUCCESS;
5340                         goto out;
5341                 case RX_HANDLER_ANOTHER:
5342                         goto another_round;
5343                 case RX_HANDLER_EXACT:
5344                         deliver_exact = true;
5345                         break;
5346                 case RX_HANDLER_PASS:
5347                         break;
5348                 default:
5349                         BUG();
5350                 }
5351         }
5352
5353         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5354 check_vlan_id:
5355                 if (skb_vlan_tag_get_id(skb)) {
5356                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5357                          * find vlan device.
5358                          */
5359                         skb->pkt_type = PACKET_OTHERHOST;
5360                 } else if (eth_type_vlan(skb->protocol)) {
5361                         /* Outer header is 802.1P with vlan 0, inner header is
5362                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5363                          * not find vlan dev for vlan id 0.
5364                          */
5365                         __vlan_hwaccel_clear_tag(skb);
5366                         skb = skb_vlan_untag(skb);
5367                         if (unlikely(!skb))
5368                                 goto out;
5369                         if (vlan_do_receive(&skb))
5370                                 /* After stripping off 802.1P header with vlan 0
5371                                  * vlan dev is found for inner header.
5372                                  */
5373                                 goto another_round;
5374                         else if (unlikely(!skb))
5375                                 goto out;
5376                         else
5377                                 /* We have stripped outer 802.1P vlan 0 header.
5378                                  * But could not find vlan dev.
5379                                  * check again for vlan id to set OTHERHOST.
5380                                  */
5381                                 goto check_vlan_id;
5382                 }
5383                 /* Note: we might in the future use prio bits
5384                  * and set skb->priority like in vlan_do_receive()
5385                  * For the time being, just ignore Priority Code Point
5386                  */
5387                 __vlan_hwaccel_clear_tag(skb);
5388         }
5389
5390         type = skb->protocol;
5391
5392         /* deliver only exact match when indicated */
5393         if (likely(!deliver_exact)) {
5394                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5395                                        &ptype_base[ntohs(type) &
5396                                                    PTYPE_HASH_MASK]);
5397         }
5398
5399         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5400                                &orig_dev->ptype_specific);
5401
5402         if (unlikely(skb->dev != orig_dev)) {
5403                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5404                                        &skb->dev->ptype_specific);
5405         }
5406
5407         if (pt_prev) {
5408                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5409                         goto drop;
5410                 *ppt_prev = pt_prev;
5411         } else {
5412 drop:
5413                 if (!deliver_exact)
5414                         atomic_long_inc(&skb->dev->rx_dropped);
5415                 else
5416                         atomic_long_inc(&skb->dev->rx_nohandler);
5417                 kfree_skb(skb);
5418                 /* Jamal, now you will not able to escape explaining
5419                  * me how you were going to use this. :-)
5420                  */
5421                 ret = NET_RX_DROP;
5422         }
5423
5424 out:
5425         /* The invariant here is that if *ppt_prev is not NULL
5426          * then skb should also be non-NULL.
5427          *
5428          * Apparently *ppt_prev assignment above holds this invariant due to
5429          * skb dereferencing near it.
5430          */
5431         *pskb = skb;
5432         return ret;
5433 }
5434
5435 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5436 {
5437         struct net_device *orig_dev = skb->dev;
5438         struct packet_type *pt_prev = NULL;
5439         int ret;
5440
5441         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5442         if (pt_prev)
5443                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5444                                          skb->dev, pt_prev, orig_dev);
5445         return ret;
5446 }
5447
5448 /**
5449  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5450  *      @skb: buffer to process
5451  *
5452  *      More direct receive version of netif_receive_skb().  It should
5453  *      only be used by callers that have a need to skip RPS and Generic XDP.
5454  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5455  *
5456  *      This function may only be called from softirq context and interrupts
5457  *      should be enabled.
5458  *
5459  *      Return values (usually ignored):
5460  *      NET_RX_SUCCESS: no congestion
5461  *      NET_RX_DROP: packet was dropped
5462  */
5463 int netif_receive_skb_core(struct sk_buff *skb)
5464 {
5465         int ret;
5466
5467         rcu_read_lock();
5468         ret = __netif_receive_skb_one_core(skb, false);
5469         rcu_read_unlock();
5470
5471         return ret;
5472 }
5473 EXPORT_SYMBOL(netif_receive_skb_core);
5474
5475 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5476                                                   struct packet_type *pt_prev,
5477                                                   struct net_device *orig_dev)
5478 {
5479         struct sk_buff *skb, *next;
5480
5481         if (!pt_prev)
5482                 return;
5483         if (list_empty(head))
5484                 return;
5485         if (pt_prev->list_func != NULL)
5486                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5487                                    ip_list_rcv, head, pt_prev, orig_dev);
5488         else
5489                 list_for_each_entry_safe(skb, next, head, list) {
5490                         skb_list_del_init(skb);
5491                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5492                 }
5493 }
5494
5495 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5496 {
5497         /* Fast-path assumptions:
5498          * - There is no RX handler.
5499          * - Only one packet_type matches.
5500          * If either of these fails, we will end up doing some per-packet
5501          * processing in-line, then handling the 'last ptype' for the whole
5502          * sublist.  This can't cause out-of-order delivery to any single ptype,
5503          * because the 'last ptype' must be constant across the sublist, and all
5504          * other ptypes are handled per-packet.
5505          */
5506         /* Current (common) ptype of sublist */
5507         struct packet_type *pt_curr = NULL;
5508         /* Current (common) orig_dev of sublist */
5509         struct net_device *od_curr = NULL;
5510         struct list_head sublist;
5511         struct sk_buff *skb, *next;
5512
5513         INIT_LIST_HEAD(&sublist);
5514         list_for_each_entry_safe(skb, next, head, list) {
5515                 struct net_device *orig_dev = skb->dev;
5516                 struct packet_type *pt_prev = NULL;
5517
5518                 skb_list_del_init(skb);
5519                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5520                 if (!pt_prev)
5521                         continue;
5522                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5523                         /* dispatch old sublist */
5524                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5525                         /* start new sublist */
5526                         INIT_LIST_HEAD(&sublist);
5527                         pt_curr = pt_prev;
5528                         od_curr = orig_dev;
5529                 }
5530                 list_add_tail(&skb->list, &sublist);
5531         }
5532
5533         /* dispatch final sublist */
5534         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5535 }
5536
5537 static int __netif_receive_skb(struct sk_buff *skb)
5538 {
5539         int ret;
5540
5541         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5542                 unsigned int noreclaim_flag;
5543
5544                 /*
5545                  * PFMEMALLOC skbs are special, they should
5546                  * - be delivered to SOCK_MEMALLOC sockets only
5547                  * - stay away from userspace
5548                  * - have bounded memory usage
5549                  *
5550                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5551                  * context down to all allocation sites.
5552                  */
5553                 noreclaim_flag = memalloc_noreclaim_save();
5554                 ret = __netif_receive_skb_one_core(skb, true);
5555                 memalloc_noreclaim_restore(noreclaim_flag);
5556         } else
5557                 ret = __netif_receive_skb_one_core(skb, false);
5558
5559         return ret;
5560 }
5561
5562 static void __netif_receive_skb_list(struct list_head *head)
5563 {
5564         unsigned long noreclaim_flag = 0;
5565         struct sk_buff *skb, *next;
5566         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5567
5568         list_for_each_entry_safe(skb, next, head, list) {
5569                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5570                         struct list_head sublist;
5571
5572                         /* Handle the previous sublist */
5573                         list_cut_before(&sublist, head, &skb->list);
5574                         if (!list_empty(&sublist))
5575                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5576                         pfmemalloc = !pfmemalloc;
5577                         /* See comments in __netif_receive_skb */
5578                         if (pfmemalloc)
5579                                 noreclaim_flag = memalloc_noreclaim_save();
5580                         else
5581                                 memalloc_noreclaim_restore(noreclaim_flag);
5582                 }
5583         }
5584         /* Handle the remaining sublist */
5585         if (!list_empty(head))
5586                 __netif_receive_skb_list_core(head, pfmemalloc);
5587         /* Restore pflags */
5588         if (pfmemalloc)
5589                 memalloc_noreclaim_restore(noreclaim_flag);
5590 }
5591
5592 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5593 {
5594         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5595         struct bpf_prog *new = xdp->prog;
5596         int ret = 0;
5597
5598         switch (xdp->command) {
5599         case XDP_SETUP_PROG:
5600                 rcu_assign_pointer(dev->xdp_prog, new);
5601                 if (old)
5602                         bpf_prog_put(old);
5603
5604                 if (old && !new) {
5605                         static_branch_dec(&generic_xdp_needed_key);
5606                 } else if (new && !old) {
5607                         static_branch_inc(&generic_xdp_needed_key);
5608                         dev_disable_lro(dev);
5609                         dev_disable_gro_hw(dev);
5610                 }
5611                 break;
5612
5613         default:
5614                 ret = -EINVAL;
5615                 break;
5616         }
5617
5618         return ret;
5619 }
5620
5621 static int netif_receive_skb_internal(struct sk_buff *skb)
5622 {
5623         int ret;
5624
5625         net_timestamp_check(netdev_tstamp_prequeue, skb);
5626
5627         if (skb_defer_rx_timestamp(skb))
5628                 return NET_RX_SUCCESS;
5629
5630         rcu_read_lock();
5631 #ifdef CONFIG_RPS
5632         if (static_branch_unlikely(&rps_needed)) {
5633                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5634                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5635
5636                 if (cpu >= 0) {
5637                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5638                         rcu_read_unlock();
5639                         return ret;
5640                 }
5641         }
5642 #endif
5643         ret = __netif_receive_skb(skb);
5644         rcu_read_unlock();
5645         return ret;
5646 }
5647
5648 static void netif_receive_skb_list_internal(struct list_head *head)
5649 {
5650         struct sk_buff *skb, *next;
5651         struct list_head sublist;
5652
5653         INIT_LIST_HEAD(&sublist);
5654         list_for_each_entry_safe(skb, next, head, list) {
5655                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5656                 skb_list_del_init(skb);
5657                 if (!skb_defer_rx_timestamp(skb))
5658                         list_add_tail(&skb->list, &sublist);
5659         }
5660         list_splice_init(&sublist, head);
5661
5662         rcu_read_lock();
5663 #ifdef CONFIG_RPS
5664         if (static_branch_unlikely(&rps_needed)) {
5665                 list_for_each_entry_safe(skb, next, head, list) {
5666                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5667                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5668
5669                         if (cpu >= 0) {
5670                                 /* Will be handled, remove from list */
5671                                 skb_list_del_init(skb);
5672                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5673                         }
5674                 }
5675         }
5676 #endif
5677         __netif_receive_skb_list(head);
5678         rcu_read_unlock();
5679 }
5680
5681 /**
5682  *      netif_receive_skb - process receive buffer from network
5683  *      @skb: buffer to process
5684  *
5685  *      netif_receive_skb() is the main receive data processing function.
5686  *      It always succeeds. The buffer may be dropped during processing
5687  *      for congestion control or by the protocol layers.
5688  *
5689  *      This function may only be called from softirq context and interrupts
5690  *      should be enabled.
5691  *
5692  *      Return values (usually ignored):
5693  *      NET_RX_SUCCESS: no congestion
5694  *      NET_RX_DROP: packet was dropped
5695  */
5696 int netif_receive_skb(struct sk_buff *skb)
5697 {
5698         int ret;
5699
5700         trace_netif_receive_skb_entry(skb);
5701
5702         ret = netif_receive_skb_internal(skb);
5703         trace_netif_receive_skb_exit(ret);
5704
5705         return ret;
5706 }
5707 EXPORT_SYMBOL(netif_receive_skb);
5708
5709 /**
5710  *      netif_receive_skb_list - process many receive buffers from network
5711  *      @head: list of skbs to process.
5712  *
5713  *      Since return value of netif_receive_skb() is normally ignored, and
5714  *      wouldn't be meaningful for a list, this function returns void.
5715  *
5716  *      This function may only be called from softirq context and interrupts
5717  *      should be enabled.
5718  */
5719 void netif_receive_skb_list(struct list_head *head)
5720 {
5721         struct sk_buff *skb;
5722
5723         if (list_empty(head))
5724                 return;
5725         if (trace_netif_receive_skb_list_entry_enabled()) {
5726                 list_for_each_entry(skb, head, list)
5727                         trace_netif_receive_skb_list_entry(skb);
5728         }
5729         netif_receive_skb_list_internal(head);
5730         trace_netif_receive_skb_list_exit(0);
5731 }
5732 EXPORT_SYMBOL(netif_receive_skb_list);
5733
5734 static DEFINE_PER_CPU(struct work_struct, flush_works);
5735
5736 /* Network device is going away, flush any packets still pending */
5737 static void flush_backlog(struct work_struct *work)
5738 {
5739         struct sk_buff *skb, *tmp;
5740         struct softnet_data *sd;
5741
5742         local_bh_disable();
5743         sd = this_cpu_ptr(&softnet_data);
5744
5745         local_irq_disable();
5746         rps_lock(sd);
5747         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5748                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5749                         __skb_unlink(skb, &sd->input_pkt_queue);
5750                         dev_kfree_skb_irq(skb);
5751                         input_queue_head_incr(sd);
5752                 }
5753         }
5754         rps_unlock(sd);
5755         local_irq_enable();
5756
5757         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5758                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5759                         __skb_unlink(skb, &sd->process_queue);
5760                         kfree_skb(skb);
5761                         input_queue_head_incr(sd);
5762                 }
5763         }
5764         local_bh_enable();
5765 }
5766
5767 static bool flush_required(int cpu)
5768 {
5769 #if IS_ENABLED(CONFIG_RPS)
5770         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5771         bool do_flush;
5772
5773         local_irq_disable();
5774         rps_lock(sd);
5775
5776         /* as insertion into process_queue happens with the rps lock held,
5777          * process_queue access may race only with dequeue
5778          */
5779         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5780                    !skb_queue_empty_lockless(&sd->process_queue);
5781         rps_unlock(sd);
5782         local_irq_enable();
5783
5784         return do_flush;
5785 #endif
5786         /* without RPS we can't safely check input_pkt_queue: during a
5787          * concurrent remote skb_queue_splice() we can detect as empty both
5788          * input_pkt_queue and process_queue even if the latter could end-up
5789          * containing a lot of packets.
5790          */
5791         return true;
5792 }
5793
5794 static void flush_all_backlogs(void)
5795 {
5796         static cpumask_t flush_cpus;
5797         unsigned int cpu;
5798
5799         /* since we are under rtnl lock protection we can use static data
5800          * for the cpumask and avoid allocating on stack the possibly
5801          * large mask
5802          */
5803         ASSERT_RTNL();
5804
5805         cpus_read_lock();
5806
5807         cpumask_clear(&flush_cpus);
5808         for_each_online_cpu(cpu) {
5809                 if (flush_required(cpu)) {
5810                         queue_work_on(cpu, system_highpri_wq,
5811                                       per_cpu_ptr(&flush_works, cpu));
5812                         cpumask_set_cpu(cpu, &flush_cpus);
5813                 }
5814         }
5815
5816         /* we can have in flight packet[s] on the cpus we are not flushing,
5817          * synchronize_net() in unregister_netdevice_many() will take care of
5818          * them
5819          */
5820         for_each_cpu(cpu, &flush_cpus)
5821                 flush_work(per_cpu_ptr(&flush_works, cpu));
5822
5823         cpus_read_unlock();
5824 }
5825
5826 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5827 static void gro_normal_list(struct napi_struct *napi)
5828 {
5829         if (!napi->rx_count)
5830                 return;
5831         netif_receive_skb_list_internal(&napi->rx_list);
5832         INIT_LIST_HEAD(&napi->rx_list);
5833         napi->rx_count = 0;
5834 }
5835
5836 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5837  * pass the whole batch up to the stack.
5838  */
5839 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5840 {
5841         list_add_tail(&skb->list, &napi->rx_list);
5842         napi->rx_count += segs;
5843         if (napi->rx_count >= gro_normal_batch)
5844                 gro_normal_list(napi);
5845 }
5846
5847 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5848 {
5849         struct packet_offload *ptype;
5850         __be16 type = skb->protocol;
5851         struct list_head *head = &offload_base;
5852         int err = -ENOENT;
5853
5854         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5855
5856         if (NAPI_GRO_CB(skb)->count == 1) {
5857                 skb_shinfo(skb)->gso_size = 0;
5858                 goto out;
5859         }
5860
5861         rcu_read_lock();
5862         list_for_each_entry_rcu(ptype, head, list) {
5863                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5864                         continue;
5865
5866                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5867                                          ipv6_gro_complete, inet_gro_complete,
5868                                          skb, 0);
5869                 break;
5870         }
5871         rcu_read_unlock();
5872
5873         if (err) {
5874                 WARN_ON(&ptype->list == head);
5875                 kfree_skb(skb);
5876                 return NET_RX_SUCCESS;
5877         }
5878
5879 out:
5880         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5881         return NET_RX_SUCCESS;
5882 }
5883
5884 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5885                                    bool flush_old)
5886 {
5887         struct list_head *head = &napi->gro_hash[index].list;
5888         struct sk_buff *skb, *p;
5889
5890         list_for_each_entry_safe_reverse(skb, p, head, list) {
5891                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5892                         return;
5893                 skb_list_del_init(skb);
5894                 napi_gro_complete(napi, skb);
5895                 napi->gro_hash[index].count--;
5896         }
5897
5898         if (!napi->gro_hash[index].count)
5899                 __clear_bit(index, &napi->gro_bitmask);
5900 }
5901
5902 /* napi->gro_hash[].list contains packets ordered by age.
5903  * youngest packets at the head of it.
5904  * Complete skbs in reverse order to reduce latencies.
5905  */
5906 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5907 {
5908         unsigned long bitmask = napi->gro_bitmask;
5909         unsigned int i, base = ~0U;
5910
5911         while ((i = ffs(bitmask)) != 0) {
5912                 bitmask >>= i;
5913                 base += i;
5914                 __napi_gro_flush_chain(napi, base, flush_old);
5915         }
5916 }
5917 EXPORT_SYMBOL(napi_gro_flush);
5918
5919 static void gro_list_prepare(const struct list_head *head,
5920                              const struct sk_buff *skb)
5921 {
5922         unsigned int maclen = skb->dev->hard_header_len;
5923         u32 hash = skb_get_hash_raw(skb);
5924         struct sk_buff *p;
5925
5926         list_for_each_entry(p, head, list) {
5927                 unsigned long diffs;
5928
5929                 NAPI_GRO_CB(p)->flush = 0;
5930
5931                 if (hash != skb_get_hash_raw(p)) {
5932                         NAPI_GRO_CB(p)->same_flow = 0;
5933                         continue;
5934                 }
5935
5936                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5937                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5938                 if (skb_vlan_tag_present(p))
5939                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5940                 diffs |= skb_metadata_differs(p, skb);
5941                 if (maclen == ETH_HLEN)
5942                         diffs |= compare_ether_header(skb_mac_header(p),
5943                                                       skb_mac_header(skb));
5944                 else if (!diffs)
5945                         diffs = memcmp(skb_mac_header(p),
5946                                        skb_mac_header(skb),
5947                                        maclen);
5948
5949                 /* in most common scenarions 'slow_gro' is 0
5950                  * otherwise we are already on some slower paths
5951                  * either skip all the infrequent tests altogether or
5952                  * avoid trying too hard to skip each of them individually
5953                  */
5954                 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5955 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5956                         struct tc_skb_ext *skb_ext;
5957                         struct tc_skb_ext *p_ext;
5958 #endif
5959
5960                         diffs |= p->sk != skb->sk;
5961                         diffs |= skb_metadata_dst_cmp(p, skb);
5962                         diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5963
5964 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5965                         skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5966                         p_ext = skb_ext_find(p, TC_SKB_EXT);
5967
5968                         diffs |= (!!p_ext) ^ (!!skb_ext);
5969                         if (!diffs && unlikely(skb_ext))
5970                                 diffs |= p_ext->chain ^ skb_ext->chain;
5971 #endif
5972                 }
5973
5974                 NAPI_GRO_CB(p)->same_flow = !diffs;
5975         }
5976 }
5977
5978 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5979 {
5980         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5981         const skb_frag_t *frag0 = &pinfo->frags[0];
5982
5983         NAPI_GRO_CB(skb)->data_offset = 0;
5984         NAPI_GRO_CB(skb)->frag0 = NULL;
5985         NAPI_GRO_CB(skb)->frag0_len = 0;
5986
5987         if (!skb_headlen(skb) && pinfo->nr_frags &&
5988             !PageHighMem(skb_frag_page(frag0)) &&
5989             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5990                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5991                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5992                                                     skb_frag_size(frag0),
5993                                                     skb->end - skb->tail);
5994         }
5995 }
5996
5997 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5998 {
5999         struct skb_shared_info *pinfo = skb_shinfo(skb);
6000
6001         BUG_ON(skb->end - skb->tail < grow);
6002
6003         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6004
6005         skb->data_len -= grow;
6006         skb->tail += grow;
6007
6008         skb_frag_off_add(&pinfo->frags[0], grow);
6009         skb_frag_size_sub(&pinfo->frags[0], grow);
6010
6011         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6012                 skb_frag_unref(skb, 0);
6013                 memmove(pinfo->frags, pinfo->frags + 1,
6014                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6015         }
6016 }
6017
6018 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6019 {
6020         struct sk_buff *oldest;
6021
6022         oldest = list_last_entry(head, struct sk_buff, list);
6023
6024         /* We are called with head length >= MAX_GRO_SKBS, so this is
6025          * impossible.
6026          */
6027         if (WARN_ON_ONCE(!oldest))
6028                 return;
6029
6030         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6031          * SKB to the chain.
6032          */
6033         skb_list_del_init(oldest);
6034         napi_gro_complete(napi, oldest);
6035 }
6036
6037 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6038 {
6039         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6040         struct gro_list *gro_list = &napi->gro_hash[bucket];
6041         struct list_head *head = &offload_base;
6042         struct packet_offload *ptype;
6043         __be16 type = skb->protocol;
6044         struct sk_buff *pp = NULL;
6045         enum gro_result ret;
6046         int same_flow;
6047         int grow;
6048
6049         if (netif_elide_gro(skb->dev))
6050                 goto normal;
6051
6052         gro_list_prepare(&gro_list->list, skb);
6053
6054         rcu_read_lock();
6055         list_for_each_entry_rcu(ptype, head, list) {
6056                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6057                         continue;
6058
6059                 skb_set_network_header(skb, skb_gro_offset(skb));
6060                 skb_reset_mac_len(skb);
6061                 NAPI_GRO_CB(skb)->same_flow = 0;
6062                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6063                 NAPI_GRO_CB(skb)->free = 0;
6064                 NAPI_GRO_CB(skb)->encap_mark = 0;
6065                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6066                 NAPI_GRO_CB(skb)->is_fou = 0;
6067                 NAPI_GRO_CB(skb)->is_atomic = 1;
6068                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6069
6070                 /* Setup for GRO checksum validation */
6071                 switch (skb->ip_summed) {
6072                 case CHECKSUM_COMPLETE:
6073                         NAPI_GRO_CB(skb)->csum = skb->csum;
6074                         NAPI_GRO_CB(skb)->csum_valid = 1;
6075                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6076                         break;
6077                 case CHECKSUM_UNNECESSARY:
6078                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6079                         NAPI_GRO_CB(skb)->csum_valid = 0;
6080                         break;
6081                 default:
6082                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6083                         NAPI_GRO_CB(skb)->csum_valid = 0;
6084                 }
6085
6086                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6087                                         ipv6_gro_receive, inet_gro_receive,
6088                                         &gro_list->list, skb);
6089                 break;
6090         }
6091         rcu_read_unlock();
6092
6093         if (&ptype->list == head)
6094                 goto normal;
6095
6096         if (PTR_ERR(pp) == -EINPROGRESS) {
6097                 ret = GRO_CONSUMED;
6098                 goto ok;
6099         }
6100
6101         same_flow = NAPI_GRO_CB(skb)->same_flow;
6102         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6103
6104         if (pp) {
6105                 skb_list_del_init(pp);
6106                 napi_gro_complete(napi, pp);
6107                 gro_list->count--;
6108         }
6109
6110         if (same_flow)
6111                 goto ok;
6112
6113         if (NAPI_GRO_CB(skb)->flush)
6114                 goto normal;
6115
6116         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6117                 gro_flush_oldest(napi, &gro_list->list);
6118         else
6119                 gro_list->count++;
6120
6121         NAPI_GRO_CB(skb)->count = 1;
6122         NAPI_GRO_CB(skb)->age = jiffies;
6123         NAPI_GRO_CB(skb)->last = skb;
6124         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6125         list_add(&skb->list, &gro_list->list);
6126         ret = GRO_HELD;
6127
6128 pull:
6129         grow = skb_gro_offset(skb) - skb_headlen(skb);
6130         if (grow > 0)
6131                 gro_pull_from_frag0(skb, grow);
6132 ok:
6133         if (gro_list->count) {
6134                 if (!test_bit(bucket, &napi->gro_bitmask))
6135                         __set_bit(bucket, &napi->gro_bitmask);
6136         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6137                 __clear_bit(bucket, &napi->gro_bitmask);
6138         }
6139
6140         return ret;
6141
6142 normal:
6143         ret = GRO_NORMAL;
6144         goto pull;
6145 }
6146
6147 struct packet_offload *gro_find_receive_by_type(__be16 type)
6148 {
6149         struct list_head *offload_head = &offload_base;
6150         struct packet_offload *ptype;
6151
6152         list_for_each_entry_rcu(ptype, offload_head, list) {
6153                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6154                         continue;
6155                 return ptype;
6156         }
6157         return NULL;
6158 }
6159 EXPORT_SYMBOL(gro_find_receive_by_type);
6160
6161 struct packet_offload *gro_find_complete_by_type(__be16 type)
6162 {
6163         struct list_head *offload_head = &offload_base;
6164         struct packet_offload *ptype;
6165
6166         list_for_each_entry_rcu(ptype, offload_head, list) {
6167                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6168                         continue;
6169                 return ptype;
6170         }
6171         return NULL;
6172 }
6173 EXPORT_SYMBOL(gro_find_complete_by_type);
6174
6175 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6176                                     struct sk_buff *skb,
6177                                     gro_result_t ret)
6178 {
6179         switch (ret) {
6180         case GRO_NORMAL:
6181                 gro_normal_one(napi, skb, 1);
6182                 break;
6183
6184         case GRO_MERGED_FREE:
6185                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6186                         napi_skb_free_stolen_head(skb);
6187                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6188                         __kfree_skb(skb);
6189                 else
6190                         __kfree_skb_defer(skb);
6191                 break;
6192
6193         case GRO_HELD:
6194         case GRO_MERGED:
6195         case GRO_CONSUMED:
6196                 break;
6197         }
6198
6199         return ret;
6200 }
6201
6202 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6203 {
6204         gro_result_t ret;
6205
6206         skb_mark_napi_id(skb, napi);
6207         trace_napi_gro_receive_entry(skb);
6208
6209         skb_gro_reset_offset(skb, 0);
6210
6211         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6212         trace_napi_gro_receive_exit(ret);
6213
6214         return ret;
6215 }
6216 EXPORT_SYMBOL(napi_gro_receive);
6217
6218 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6219 {
6220         if (unlikely(skb->pfmemalloc)) {
6221                 consume_skb(skb);
6222                 return;
6223         }
6224         __skb_pull(skb, skb_headlen(skb));
6225         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6226         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6227         __vlan_hwaccel_clear_tag(skb);
6228         skb->dev = napi->dev;
6229         skb->skb_iif = 0;
6230
6231         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6232         skb->pkt_type = PACKET_HOST;
6233
6234         skb->encapsulation = 0;
6235         skb_shinfo(skb)->gso_type = 0;
6236         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6237         if (unlikely(skb->slow_gro)) {
6238                 skb_orphan(skb);
6239                 skb_ext_reset(skb);
6240                 nf_reset_ct(skb);
6241                 skb->slow_gro = 0;
6242         }
6243
6244         napi->skb = skb;
6245 }
6246
6247 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6248 {
6249         struct sk_buff *skb = napi->skb;
6250
6251         if (!skb) {
6252                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6253                 if (skb) {
6254                         napi->skb = skb;
6255                         skb_mark_napi_id(skb, napi);
6256                 }
6257         }
6258         return skb;
6259 }
6260 EXPORT_SYMBOL(napi_get_frags);
6261
6262 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6263                                       struct sk_buff *skb,
6264                                       gro_result_t ret)
6265 {
6266         switch (ret) {
6267         case GRO_NORMAL:
6268         case GRO_HELD:
6269                 __skb_push(skb, ETH_HLEN);
6270                 skb->protocol = eth_type_trans(skb, skb->dev);
6271                 if (ret == GRO_NORMAL)
6272                         gro_normal_one(napi, skb, 1);
6273                 break;
6274
6275         case GRO_MERGED_FREE:
6276                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6277                         napi_skb_free_stolen_head(skb);
6278                 else
6279                         napi_reuse_skb(napi, skb);
6280                 break;
6281
6282         case GRO_MERGED:
6283         case GRO_CONSUMED:
6284                 break;
6285         }
6286
6287         return ret;
6288 }
6289
6290 /* Upper GRO stack assumes network header starts at gro_offset=0
6291  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6292  * We copy ethernet header into skb->data to have a common layout.
6293  */
6294 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6295 {
6296         struct sk_buff *skb = napi->skb;
6297         const struct ethhdr *eth;
6298         unsigned int hlen = sizeof(*eth);
6299
6300         napi->skb = NULL;
6301
6302         skb_reset_mac_header(skb);
6303         skb_gro_reset_offset(skb, hlen);
6304
6305         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6306                 eth = skb_gro_header_slow(skb, hlen, 0);
6307                 if (unlikely(!eth)) {
6308                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6309                                              __func__, napi->dev->name);
6310                         napi_reuse_skb(napi, skb);
6311                         return NULL;
6312                 }
6313         } else {
6314                 eth = (const struct ethhdr *)skb->data;
6315                 gro_pull_from_frag0(skb, hlen);
6316                 NAPI_GRO_CB(skb)->frag0 += hlen;
6317                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6318         }
6319         __skb_pull(skb, hlen);
6320
6321         /*
6322          * This works because the only protocols we care about don't require
6323          * special handling.
6324          * We'll fix it up properly in napi_frags_finish()
6325          */
6326         skb->protocol = eth->h_proto;
6327
6328         return skb;
6329 }
6330
6331 gro_result_t napi_gro_frags(struct napi_struct *napi)
6332 {
6333         gro_result_t ret;
6334         struct sk_buff *skb = napi_frags_skb(napi);
6335
6336         trace_napi_gro_frags_entry(skb);
6337
6338         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6339         trace_napi_gro_frags_exit(ret);
6340
6341         return ret;
6342 }
6343 EXPORT_SYMBOL(napi_gro_frags);
6344
6345 /* Compute the checksum from gro_offset and return the folded value
6346  * after adding in any pseudo checksum.
6347  */
6348 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6349 {
6350         __wsum wsum;
6351         __sum16 sum;
6352
6353         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6354
6355         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6356         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6357         /* See comments in __skb_checksum_complete(). */
6358         if (likely(!sum)) {
6359                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6360                     !skb->csum_complete_sw)
6361                         netdev_rx_csum_fault(skb->dev, skb);
6362         }
6363
6364         NAPI_GRO_CB(skb)->csum = wsum;
6365         NAPI_GRO_CB(skb)->csum_valid = 1;
6366
6367         return sum;
6368 }
6369 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6370
6371 static void net_rps_send_ipi(struct softnet_data *remsd)
6372 {
6373 #ifdef CONFIG_RPS
6374         while (remsd) {
6375                 struct softnet_data *next = remsd->rps_ipi_next;
6376
6377                 if (cpu_online(remsd->cpu))
6378                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6379                 remsd = next;
6380         }
6381 #endif
6382 }
6383
6384 /*
6385  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6386  * Note: called with local irq disabled, but exits with local irq enabled.
6387  */
6388 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6389 {
6390 #ifdef CONFIG_RPS
6391         struct softnet_data *remsd = sd->rps_ipi_list;
6392
6393         if (remsd) {
6394                 sd->rps_ipi_list = NULL;
6395
6396                 local_irq_enable();
6397
6398                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6399                 net_rps_send_ipi(remsd);
6400         } else
6401 #endif
6402                 local_irq_enable();
6403 }
6404
6405 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6406 {
6407 #ifdef CONFIG_RPS
6408         return sd->rps_ipi_list != NULL;
6409 #else
6410         return false;
6411 #endif
6412 }
6413
6414 static int process_backlog(struct napi_struct *napi, int quota)
6415 {
6416         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6417         bool again = true;
6418         int work = 0;
6419
6420         /* Check if we have pending ipi, its better to send them now,
6421          * not waiting net_rx_action() end.
6422          */
6423         if (sd_has_rps_ipi_waiting(sd)) {
6424                 local_irq_disable();
6425                 net_rps_action_and_irq_enable(sd);
6426         }
6427
6428         napi->weight = dev_rx_weight;
6429         while (again) {
6430                 struct sk_buff *skb;
6431
6432                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6433                         rcu_read_lock();
6434                         __netif_receive_skb(skb);
6435                         rcu_read_unlock();
6436                         input_queue_head_incr(sd);
6437                         if (++work >= quota)
6438                                 return work;
6439
6440                 }
6441
6442                 local_irq_disable();
6443                 rps_lock(sd);
6444                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6445                         /*
6446                          * Inline a custom version of __napi_complete().
6447                          * only current cpu owns and manipulates this napi,
6448                          * and NAPI_STATE_SCHED is the only possible flag set
6449                          * on backlog.
6450                          * We can use a plain write instead of clear_bit(),
6451                          * and we dont need an smp_mb() memory barrier.
6452                          */
6453                         napi->state = 0;
6454                         again = false;
6455                 } else {
6456                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6457                                                    &sd->process_queue);
6458                 }
6459                 rps_unlock(sd);
6460                 local_irq_enable();
6461         }
6462
6463         return work;
6464 }
6465
6466 /**
6467  * __napi_schedule - schedule for receive
6468  * @n: entry to schedule
6469  *
6470  * The entry's receive function will be scheduled to run.
6471  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6472  */
6473 void __napi_schedule(struct napi_struct *n)
6474 {
6475         unsigned long flags;
6476
6477         local_irq_save(flags);
6478         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6479         local_irq_restore(flags);
6480 }
6481 EXPORT_SYMBOL(__napi_schedule);
6482
6483 /**
6484  *      napi_schedule_prep - check if napi can be scheduled
6485  *      @n: napi context
6486  *
6487  * Test if NAPI routine is already running, and if not mark
6488  * it as running.  This is used as a condition variable to
6489  * insure only one NAPI poll instance runs.  We also make
6490  * sure there is no pending NAPI disable.
6491  */
6492 bool napi_schedule_prep(struct napi_struct *n)
6493 {
6494         unsigned long val, new;
6495
6496         do {
6497                 val = READ_ONCE(n->state);
6498                 if (unlikely(val & NAPIF_STATE_DISABLE))
6499                         return false;
6500                 new = val | NAPIF_STATE_SCHED;
6501
6502                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6503                  * This was suggested by Alexander Duyck, as compiler
6504                  * emits better code than :
6505                  * if (val & NAPIF_STATE_SCHED)
6506                  *     new |= NAPIF_STATE_MISSED;
6507                  */
6508                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6509                                                    NAPIF_STATE_MISSED;
6510         } while (cmpxchg(&n->state, val, new) != val);
6511
6512         return !(val & NAPIF_STATE_SCHED);
6513 }
6514 EXPORT_SYMBOL(napi_schedule_prep);
6515
6516 /**
6517  * __napi_schedule_irqoff - schedule for receive
6518  * @n: entry to schedule
6519  *
6520  * Variant of __napi_schedule() assuming hard irqs are masked.
6521  *
6522  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6523  * because the interrupt disabled assumption might not be true
6524  * due to force-threaded interrupts and spinlock substitution.
6525  */
6526 void __napi_schedule_irqoff(struct napi_struct *n)
6527 {
6528         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6529                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6530         else
6531                 __napi_schedule(n);
6532 }
6533 EXPORT_SYMBOL(__napi_schedule_irqoff);
6534
6535 bool napi_complete_done(struct napi_struct *n, int work_done)
6536 {
6537         unsigned long flags, val, new, timeout = 0;
6538         bool ret = true;
6539
6540         /*
6541          * 1) Don't let napi dequeue from the cpu poll list
6542          *    just in case its running on a different cpu.
6543          * 2) If we are busy polling, do nothing here, we have
6544          *    the guarantee we will be called later.
6545          */
6546         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6547                                  NAPIF_STATE_IN_BUSY_POLL)))
6548                 return false;
6549
6550         if (work_done) {
6551                 if (n->gro_bitmask)
6552                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6553                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6554         }
6555         if (n->defer_hard_irqs_count > 0) {
6556                 n->defer_hard_irqs_count--;
6557                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6558                 if (timeout)
6559                         ret = false;
6560         }
6561         if (n->gro_bitmask) {
6562                 /* When the NAPI instance uses a timeout and keeps postponing
6563                  * it, we need to bound somehow the time packets are kept in
6564                  * the GRO layer
6565                  */
6566                 napi_gro_flush(n, !!timeout);
6567         }
6568
6569         gro_normal_list(n);
6570
6571         if (unlikely(!list_empty(&n->poll_list))) {
6572                 /* If n->poll_list is not empty, we need to mask irqs */
6573                 local_irq_save(flags);
6574                 list_del_init(&n->poll_list);
6575                 local_irq_restore(flags);
6576         }
6577
6578         do {
6579                 val = READ_ONCE(n->state);
6580
6581                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6582
6583                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6584                               NAPIF_STATE_SCHED_THREADED |
6585                               NAPIF_STATE_PREFER_BUSY_POLL);
6586
6587                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6588                  * because we will call napi->poll() one more time.
6589                  * This C code was suggested by Alexander Duyck to help gcc.
6590                  */
6591                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6592                                                     NAPIF_STATE_SCHED;
6593         } while (cmpxchg(&n->state, val, new) != val);
6594
6595         if (unlikely(val & NAPIF_STATE_MISSED)) {
6596                 __napi_schedule(n);
6597                 return false;
6598         }
6599
6600         if (timeout)
6601                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6602                               HRTIMER_MODE_REL_PINNED);
6603         return ret;
6604 }
6605 EXPORT_SYMBOL(napi_complete_done);
6606
6607 /* must be called under rcu_read_lock(), as we dont take a reference */
6608 static struct napi_struct *napi_by_id(unsigned int napi_id)
6609 {
6610         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6611         struct napi_struct *napi;
6612
6613         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6614                 if (napi->napi_id == napi_id)
6615                         return napi;
6616
6617         return NULL;
6618 }
6619
6620 #if defined(CONFIG_NET_RX_BUSY_POLL)
6621
6622 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6623 {
6624         if (!skip_schedule) {
6625                 gro_normal_list(napi);
6626                 __napi_schedule(napi);
6627                 return;
6628         }
6629
6630         if (napi->gro_bitmask) {
6631                 /* flush too old packets
6632                  * If HZ < 1000, flush all packets.
6633                  */
6634                 napi_gro_flush(napi, HZ >= 1000);
6635         }
6636
6637         gro_normal_list(napi);
6638         clear_bit(NAPI_STATE_SCHED, &napi->state);
6639 }
6640
6641 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6642                            u16 budget)
6643 {
6644         bool skip_schedule = false;
6645         unsigned long timeout;
6646         int rc;
6647
6648         /* Busy polling means there is a high chance device driver hard irq
6649          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6650          * set in napi_schedule_prep().
6651          * Since we are about to call napi->poll() once more, we can safely
6652          * clear NAPI_STATE_MISSED.
6653          *
6654          * Note: x86 could use a single "lock and ..." instruction
6655          * to perform these two clear_bit()
6656          */
6657         clear_bit(NAPI_STATE_MISSED, &napi->state);
6658         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6659
6660         local_bh_disable();
6661
6662         if (prefer_busy_poll) {
6663                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6664                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6665                 if (napi->defer_hard_irqs_count && timeout) {
6666                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6667                         skip_schedule = true;
6668                 }
6669         }
6670
6671         /* All we really want here is to re-enable device interrupts.
6672          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6673          */
6674         rc = napi->poll(napi, budget);
6675         /* We can't gro_normal_list() here, because napi->poll() might have
6676          * rearmed the napi (napi_complete_done()) in which case it could
6677          * already be running on another CPU.
6678          */
6679         trace_napi_poll(napi, rc, budget);
6680         netpoll_poll_unlock(have_poll_lock);
6681         if (rc == budget)
6682                 __busy_poll_stop(napi, skip_schedule);
6683         local_bh_enable();
6684 }
6685
6686 void napi_busy_loop(unsigned int napi_id,
6687                     bool (*loop_end)(void *, unsigned long),
6688                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6689 {
6690         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6691         int (*napi_poll)(struct napi_struct *napi, int budget);
6692         void *have_poll_lock = NULL;
6693         struct napi_struct *napi;
6694
6695 restart:
6696         napi_poll = NULL;
6697
6698         rcu_read_lock();
6699
6700         napi = napi_by_id(napi_id);
6701         if (!napi)
6702                 goto out;
6703
6704         preempt_disable();
6705         for (;;) {
6706                 int work = 0;
6707
6708                 local_bh_disable();
6709                 if (!napi_poll) {
6710                         unsigned long val = READ_ONCE(napi->state);
6711
6712                         /* If multiple threads are competing for this napi,
6713                          * we avoid dirtying napi->state as much as we can.
6714                          */
6715                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6716                                    NAPIF_STATE_IN_BUSY_POLL)) {
6717                                 if (prefer_busy_poll)
6718                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6719                                 goto count;
6720                         }
6721                         if (cmpxchg(&napi->state, val,
6722                                     val | NAPIF_STATE_IN_BUSY_POLL |
6723                                           NAPIF_STATE_SCHED) != val) {
6724                                 if (prefer_busy_poll)
6725                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6726                                 goto count;
6727                         }
6728                         have_poll_lock = netpoll_poll_lock(napi);
6729                         napi_poll = napi->poll;
6730                 }
6731                 work = napi_poll(napi, budget);
6732                 trace_napi_poll(napi, work, budget);
6733                 gro_normal_list(napi);
6734 count:
6735                 if (work > 0)
6736                         __NET_ADD_STATS(dev_net(napi->dev),
6737                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6738                 local_bh_enable();
6739
6740                 if (!loop_end || loop_end(loop_end_arg, start_time))
6741                         break;
6742
6743                 if (unlikely(need_resched())) {
6744                         if (napi_poll)
6745                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6746                         preempt_enable();
6747                         rcu_read_unlock();
6748                         cond_resched();
6749                         if (loop_end(loop_end_arg, start_time))
6750                                 return;
6751                         goto restart;
6752                 }
6753                 cpu_relax();
6754         }
6755         if (napi_poll)
6756                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6757         preempt_enable();
6758 out:
6759         rcu_read_unlock();
6760 }
6761 EXPORT_SYMBOL(napi_busy_loop);
6762
6763 #endif /* CONFIG_NET_RX_BUSY_POLL */
6764
6765 static void napi_hash_add(struct napi_struct *napi)
6766 {
6767         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6768                 return;
6769
6770         spin_lock(&napi_hash_lock);
6771
6772         /* 0..NR_CPUS range is reserved for sender_cpu use */
6773         do {
6774                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6775                         napi_gen_id = MIN_NAPI_ID;
6776         } while (napi_by_id(napi_gen_id));
6777         napi->napi_id = napi_gen_id;
6778
6779         hlist_add_head_rcu(&napi->napi_hash_node,
6780                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6781
6782         spin_unlock(&napi_hash_lock);
6783 }
6784
6785 /* Warning : caller is responsible to make sure rcu grace period
6786  * is respected before freeing memory containing @napi
6787  */
6788 static void napi_hash_del(struct napi_struct *napi)
6789 {
6790         spin_lock(&napi_hash_lock);
6791
6792         hlist_del_init_rcu(&napi->napi_hash_node);
6793
6794         spin_unlock(&napi_hash_lock);
6795 }
6796
6797 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6798 {
6799         struct napi_struct *napi;
6800
6801         napi = container_of(timer, struct napi_struct, timer);
6802
6803         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6804          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6805          */
6806         if (!napi_disable_pending(napi) &&
6807             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6808                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6809                 __napi_schedule_irqoff(napi);
6810         }
6811
6812         return HRTIMER_NORESTART;
6813 }
6814
6815 static void init_gro_hash(struct napi_struct *napi)
6816 {
6817         int i;
6818
6819         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6820                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6821                 napi->gro_hash[i].count = 0;
6822         }
6823         napi->gro_bitmask = 0;
6824 }
6825
6826 int dev_set_threaded(struct net_device *dev, bool threaded)
6827 {
6828         struct napi_struct *napi;
6829         int err = 0;
6830
6831         if (dev->threaded == threaded)
6832                 return 0;
6833
6834         if (threaded) {
6835                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6836                         if (!napi->thread) {
6837                                 err = napi_kthread_create(napi);
6838                                 if (err) {
6839                                         threaded = false;
6840                                         break;
6841                                 }
6842                         }
6843                 }
6844         }
6845
6846         dev->threaded = threaded;
6847
6848         /* Make sure kthread is created before THREADED bit
6849          * is set.
6850          */
6851         smp_mb__before_atomic();
6852
6853         /* Setting/unsetting threaded mode on a napi might not immediately
6854          * take effect, if the current napi instance is actively being
6855          * polled. In this case, the switch between threaded mode and
6856          * softirq mode will happen in the next round of napi_schedule().
6857          * This should not cause hiccups/stalls to the live traffic.
6858          */
6859         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6860                 if (threaded)
6861                         set_bit(NAPI_STATE_THREADED, &napi->state);
6862                 else
6863                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6864         }
6865
6866         return err;
6867 }
6868 EXPORT_SYMBOL(dev_set_threaded);
6869
6870 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6871                     int (*poll)(struct napi_struct *, int), int weight)
6872 {
6873         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6874                 return;
6875
6876         INIT_LIST_HEAD(&napi->poll_list);
6877         INIT_HLIST_NODE(&napi->napi_hash_node);
6878         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6879         napi->timer.function = napi_watchdog;
6880         init_gro_hash(napi);
6881         napi->skb = NULL;
6882         INIT_LIST_HEAD(&napi->rx_list);
6883         napi->rx_count = 0;
6884         napi->poll = poll;
6885         if (weight > NAPI_POLL_WEIGHT)
6886                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6887                                 weight);
6888         napi->weight = weight;
6889         napi->dev = dev;
6890 #ifdef CONFIG_NETPOLL
6891         napi->poll_owner = -1;
6892 #endif
6893         set_bit(NAPI_STATE_SCHED, &napi->state);
6894         set_bit(NAPI_STATE_NPSVC, &napi->state);
6895         list_add_rcu(&napi->dev_list, &dev->napi_list);
6896         napi_hash_add(napi);
6897         /* Create kthread for this napi if dev->threaded is set.
6898          * Clear dev->threaded if kthread creation failed so that
6899          * threaded mode will not be enabled in napi_enable().
6900          */
6901         if (dev->threaded && napi_kthread_create(napi))
6902                 dev->threaded = 0;
6903 }
6904 EXPORT_SYMBOL(netif_napi_add);
6905
6906 void napi_disable(struct napi_struct *n)
6907 {
6908         might_sleep();
6909         set_bit(NAPI_STATE_DISABLE, &n->state);
6910
6911         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6912                 msleep(1);
6913         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6914                 msleep(1);
6915
6916         hrtimer_cancel(&n->timer);
6917
6918         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6919         clear_bit(NAPI_STATE_DISABLE, &n->state);
6920         clear_bit(NAPI_STATE_THREADED, &n->state);
6921 }
6922 EXPORT_SYMBOL(napi_disable);
6923
6924 /**
6925  *      napi_enable - enable NAPI scheduling
6926  *      @n: NAPI context
6927  *
6928  * Resume NAPI from being scheduled on this context.
6929  * Must be paired with napi_disable.
6930  */
6931 void napi_enable(struct napi_struct *n)
6932 {
6933         unsigned long val, new;
6934
6935         do {
6936                 val = READ_ONCE(n->state);
6937                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6938
6939                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6940                 if (n->dev->threaded && n->thread)
6941                         new |= NAPIF_STATE_THREADED;
6942         } while (cmpxchg(&n->state, val, new) != val);
6943 }
6944 EXPORT_SYMBOL(napi_enable);
6945
6946 static void flush_gro_hash(struct napi_struct *napi)
6947 {
6948         int i;
6949
6950         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6951                 struct sk_buff *skb, *n;
6952
6953                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6954                         kfree_skb(skb);
6955                 napi->gro_hash[i].count = 0;
6956         }
6957 }
6958
6959 /* Must be called in process context */
6960 void __netif_napi_del(struct napi_struct *napi)
6961 {
6962         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6963                 return;
6964
6965         napi_hash_del(napi);
6966         list_del_rcu(&napi->dev_list);
6967         napi_free_frags(napi);
6968
6969         flush_gro_hash(napi);
6970         napi->gro_bitmask = 0;
6971
6972         if (napi->thread) {
6973                 kthread_stop(napi->thread);
6974                 napi->thread = NULL;
6975         }
6976 }
6977 EXPORT_SYMBOL(__netif_napi_del);
6978
6979 static int __napi_poll(struct napi_struct *n, bool *repoll)
6980 {
6981         int work, weight;
6982
6983         weight = n->weight;
6984
6985         /* This NAPI_STATE_SCHED test is for avoiding a race
6986          * with netpoll's poll_napi().  Only the entity which
6987          * obtains the lock and sees NAPI_STATE_SCHED set will
6988          * actually make the ->poll() call.  Therefore we avoid
6989          * accidentally calling ->poll() when NAPI is not scheduled.
6990          */
6991         work = 0;
6992         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6993                 work = n->poll(n, weight);
6994                 trace_napi_poll(n, work, weight);
6995         }
6996
6997         if (unlikely(work > weight))
6998                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6999                             n->poll, work, weight);
7000
7001         if (likely(work < weight))
7002                 return work;
7003
7004         /* Drivers must not modify the NAPI state if they
7005          * consume the entire weight.  In such cases this code
7006          * still "owns" the NAPI instance and therefore can
7007          * move the instance around on the list at-will.
7008          */
7009         if (unlikely(napi_disable_pending(n))) {
7010                 napi_complete(n);
7011                 return work;
7012         }
7013
7014         /* The NAPI context has more processing work, but busy-polling
7015          * is preferred. Exit early.
7016          */
7017         if (napi_prefer_busy_poll(n)) {
7018                 if (napi_complete_done(n, work)) {
7019                         /* If timeout is not set, we need to make sure
7020                          * that the NAPI is re-scheduled.
7021                          */
7022                         napi_schedule(n);
7023                 }
7024                 return work;
7025         }
7026
7027         if (n->gro_bitmask) {
7028                 /* flush too old packets
7029                  * If HZ < 1000, flush all packets.
7030                  */
7031                 napi_gro_flush(n, HZ >= 1000);
7032         }
7033
7034         gro_normal_list(n);
7035
7036         /* Some drivers may have called napi_schedule
7037          * prior to exhausting their budget.
7038          */
7039         if (unlikely(!list_empty(&n->poll_list))) {
7040                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7041                              n->dev ? n->dev->name : "backlog");
7042                 return work;
7043         }
7044
7045         *repoll = true;
7046
7047         return work;
7048 }
7049
7050 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7051 {
7052         bool do_repoll = false;
7053         void *have;
7054         int work;
7055
7056         list_del_init(&n->poll_list);
7057
7058         have = netpoll_poll_lock(n);
7059
7060         work = __napi_poll(n, &do_repoll);
7061
7062         if (do_repoll)
7063                 list_add_tail(&n->poll_list, repoll);
7064
7065         netpoll_poll_unlock(have);
7066
7067         return work;
7068 }
7069
7070 static int napi_thread_wait(struct napi_struct *napi)
7071 {
7072         bool woken = false;
7073
7074         set_current_state(TASK_INTERRUPTIBLE);
7075
7076         while (!kthread_should_stop()) {
7077                 /* Testing SCHED_THREADED bit here to make sure the current
7078                  * kthread owns this napi and could poll on this napi.
7079                  * Testing SCHED bit is not enough because SCHED bit might be
7080                  * set by some other busy poll thread or by napi_disable().
7081                  */
7082                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7083                         WARN_ON(!list_empty(&napi->poll_list));
7084                         __set_current_state(TASK_RUNNING);
7085                         return 0;
7086                 }
7087
7088                 schedule();
7089                 /* woken being true indicates this thread owns this napi. */
7090                 woken = true;
7091                 set_current_state(TASK_INTERRUPTIBLE);
7092         }
7093         __set_current_state(TASK_RUNNING);
7094
7095         return -1;
7096 }
7097
7098 static int napi_threaded_poll(void *data)
7099 {
7100         struct napi_struct *napi = data;
7101         void *have;
7102
7103         while (!napi_thread_wait(napi)) {
7104                 for (;;) {
7105                         bool repoll = false;
7106
7107                         local_bh_disable();
7108
7109                         have = netpoll_poll_lock(napi);
7110                         __napi_poll(napi, &repoll);
7111                         netpoll_poll_unlock(have);
7112
7113                         local_bh_enable();
7114
7115                         if (!repoll)
7116                                 break;
7117
7118                         cond_resched();
7119                 }
7120         }
7121         return 0;
7122 }
7123
7124 static __latent_entropy void net_rx_action(struct softirq_action *h)
7125 {
7126         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7127         unsigned long time_limit = jiffies +
7128                 usecs_to_jiffies(netdev_budget_usecs);
7129         int budget = netdev_budget;
7130         LIST_HEAD(list);
7131         LIST_HEAD(repoll);
7132
7133         local_irq_disable();
7134         list_splice_init(&sd->poll_list, &list);
7135         local_irq_enable();
7136
7137         for (;;) {
7138                 struct napi_struct *n;
7139
7140                 if (list_empty(&list)) {
7141                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7142                                 return;
7143                         break;
7144                 }
7145
7146                 n = list_first_entry(&list, struct napi_struct, poll_list);
7147                 budget -= napi_poll(n, &repoll);
7148
7149                 /* If softirq window is exhausted then punt.
7150                  * Allow this to run for 2 jiffies since which will allow
7151                  * an average latency of 1.5/HZ.
7152                  */
7153                 if (unlikely(budget <= 0 ||
7154                              time_after_eq(jiffies, time_limit))) {
7155                         sd->time_squeeze++;
7156                         break;
7157                 }
7158         }
7159
7160         local_irq_disable();
7161
7162         list_splice_tail_init(&sd->poll_list, &list);
7163         list_splice_tail(&repoll, &list);
7164         list_splice(&list, &sd->poll_list);
7165         if (!list_empty(&sd->poll_list))
7166                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7167
7168         net_rps_action_and_irq_enable(sd);
7169 }
7170
7171 struct netdev_adjacent {
7172         struct net_device *dev;
7173
7174         /* upper master flag, there can only be one master device per list */
7175         bool master;
7176
7177         /* lookup ignore flag */
7178         bool ignore;
7179
7180         /* counter for the number of times this device was added to us */
7181         u16 ref_nr;
7182
7183         /* private field for the users */
7184         void *private;
7185
7186         struct list_head list;
7187         struct rcu_head rcu;
7188 };
7189
7190 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7191                                                  struct list_head *adj_list)
7192 {
7193         struct netdev_adjacent *adj;
7194
7195         list_for_each_entry(adj, adj_list, list) {
7196                 if (adj->dev == adj_dev)
7197                         return adj;
7198         }
7199         return NULL;
7200 }
7201
7202 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7203                                     struct netdev_nested_priv *priv)
7204 {
7205         struct net_device *dev = (struct net_device *)priv->data;
7206
7207         return upper_dev == dev;
7208 }
7209
7210 /**
7211  * netdev_has_upper_dev - Check if device is linked to an upper device
7212  * @dev: device
7213  * @upper_dev: upper device to check
7214  *
7215  * Find out if a device is linked to specified upper device and return true
7216  * in case it is. Note that this checks only immediate upper device,
7217  * not through a complete stack of devices. The caller must hold the RTNL lock.
7218  */
7219 bool netdev_has_upper_dev(struct net_device *dev,
7220                           struct net_device *upper_dev)
7221 {
7222         struct netdev_nested_priv priv = {
7223                 .data = (void *)upper_dev,
7224         };
7225
7226         ASSERT_RTNL();
7227
7228         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7229                                              &priv);
7230 }
7231 EXPORT_SYMBOL(netdev_has_upper_dev);
7232
7233 /**
7234  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7235  * @dev: device
7236  * @upper_dev: upper device to check
7237  *
7238  * Find out if a device is linked to specified upper device and return true
7239  * in case it is. Note that this checks the entire upper device chain.
7240  * The caller must hold rcu lock.
7241  */
7242
7243 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7244                                   struct net_device *upper_dev)
7245 {
7246         struct netdev_nested_priv priv = {
7247                 .data = (void *)upper_dev,
7248         };
7249
7250         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7251                                                &priv);
7252 }
7253 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7254
7255 /**
7256  * netdev_has_any_upper_dev - Check if device is linked to some device
7257  * @dev: device
7258  *
7259  * Find out if a device is linked to an upper device and return true in case
7260  * it is. The caller must hold the RTNL lock.
7261  */
7262 bool netdev_has_any_upper_dev(struct net_device *dev)
7263 {
7264         ASSERT_RTNL();
7265
7266         return !list_empty(&dev->adj_list.upper);
7267 }
7268 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7269
7270 /**
7271  * netdev_master_upper_dev_get - Get master upper device
7272  * @dev: device
7273  *
7274  * Find a master upper device and return pointer to it or NULL in case
7275  * it's not there. The caller must hold the RTNL lock.
7276  */
7277 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7278 {
7279         struct netdev_adjacent *upper;
7280
7281         ASSERT_RTNL();
7282
7283         if (list_empty(&dev->adj_list.upper))
7284                 return NULL;
7285
7286         upper = list_first_entry(&dev->adj_list.upper,
7287                                  struct netdev_adjacent, list);
7288         if (likely(upper->master))
7289                 return upper->dev;
7290         return NULL;
7291 }
7292 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7293
7294 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7295 {
7296         struct netdev_adjacent *upper;
7297
7298         ASSERT_RTNL();
7299
7300         if (list_empty(&dev->adj_list.upper))
7301                 return NULL;
7302
7303         upper = list_first_entry(&dev->adj_list.upper,
7304                                  struct netdev_adjacent, list);
7305         if (likely(upper->master) && !upper->ignore)
7306                 return upper->dev;
7307         return NULL;
7308 }
7309
7310 /**
7311  * netdev_has_any_lower_dev - Check if device is linked to some device
7312  * @dev: device
7313  *
7314  * Find out if a device is linked to a lower device and return true in case
7315  * it is. The caller must hold the RTNL lock.
7316  */
7317 static bool netdev_has_any_lower_dev(struct net_device *dev)
7318 {
7319         ASSERT_RTNL();
7320
7321         return !list_empty(&dev->adj_list.lower);
7322 }
7323
7324 void *netdev_adjacent_get_private(struct list_head *adj_list)
7325 {
7326         struct netdev_adjacent *adj;
7327
7328         adj = list_entry(adj_list, struct netdev_adjacent, list);
7329
7330         return adj->private;
7331 }
7332 EXPORT_SYMBOL(netdev_adjacent_get_private);
7333
7334 /**
7335  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7336  * @dev: device
7337  * @iter: list_head ** of the current position
7338  *
7339  * Gets the next device from the dev's upper list, starting from iter
7340  * position. The caller must hold RCU read lock.
7341  */
7342 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7343                                                  struct list_head **iter)
7344 {
7345         struct netdev_adjacent *upper;
7346
7347         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7348
7349         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7350
7351         if (&upper->list == &dev->adj_list.upper)
7352                 return NULL;
7353
7354         *iter = &upper->list;
7355
7356         return upper->dev;
7357 }
7358 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7359
7360 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7361                                                   struct list_head **iter,
7362                                                   bool *ignore)
7363 {
7364         struct netdev_adjacent *upper;
7365
7366         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7367
7368         if (&upper->list == &dev->adj_list.upper)
7369                 return NULL;
7370
7371         *iter = &upper->list;
7372         *ignore = upper->ignore;
7373
7374         return upper->dev;
7375 }
7376
7377 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7378                                                     struct list_head **iter)
7379 {
7380         struct netdev_adjacent *upper;
7381
7382         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7383
7384         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7385
7386         if (&upper->list == &dev->adj_list.upper)
7387                 return NULL;
7388
7389         *iter = &upper->list;
7390
7391         return upper->dev;
7392 }
7393
7394 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7395                                        int (*fn)(struct net_device *dev,
7396                                          struct netdev_nested_priv *priv),
7397                                        struct netdev_nested_priv *priv)
7398 {
7399         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7400         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7401         int ret, cur = 0;
7402         bool ignore;
7403
7404         now = dev;
7405         iter = &dev->adj_list.upper;
7406
7407         while (1) {
7408                 if (now != dev) {
7409                         ret = fn(now, priv);
7410                         if (ret)
7411                                 return ret;
7412                 }
7413
7414                 next = NULL;
7415                 while (1) {
7416                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7417                         if (!udev)
7418                                 break;
7419                         if (ignore)
7420                                 continue;
7421
7422                         next = udev;
7423                         niter = &udev->adj_list.upper;
7424                         dev_stack[cur] = now;
7425                         iter_stack[cur++] = iter;
7426                         break;
7427                 }
7428
7429                 if (!next) {
7430                         if (!cur)
7431                                 return 0;
7432                         next = dev_stack[--cur];
7433                         niter = iter_stack[cur];
7434                 }
7435
7436                 now = next;
7437                 iter = niter;
7438         }
7439
7440         return 0;
7441 }
7442
7443 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7444                                   int (*fn)(struct net_device *dev,
7445                                             struct netdev_nested_priv *priv),
7446                                   struct netdev_nested_priv *priv)
7447 {
7448         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7449         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7450         int ret, cur = 0;
7451
7452         now = dev;
7453         iter = &dev->adj_list.upper;
7454
7455         while (1) {
7456                 if (now != dev) {
7457                         ret = fn(now, priv);
7458                         if (ret)
7459                                 return ret;
7460                 }
7461
7462                 next = NULL;
7463                 while (1) {
7464                         udev = netdev_next_upper_dev_rcu(now, &iter);
7465                         if (!udev)
7466                                 break;
7467
7468                         next = udev;
7469                         niter = &udev->adj_list.upper;
7470                         dev_stack[cur] = now;
7471                         iter_stack[cur++] = iter;
7472                         break;
7473                 }
7474
7475                 if (!next) {
7476                         if (!cur)
7477                                 return 0;
7478                         next = dev_stack[--cur];
7479                         niter = iter_stack[cur];
7480                 }
7481
7482                 now = next;
7483                 iter = niter;
7484         }
7485
7486         return 0;
7487 }
7488 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7489
7490 static bool __netdev_has_upper_dev(struct net_device *dev,
7491                                    struct net_device *upper_dev)
7492 {
7493         struct netdev_nested_priv priv = {
7494                 .flags = 0,
7495                 .data = (void *)upper_dev,
7496         };
7497
7498         ASSERT_RTNL();
7499
7500         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7501                                            &priv);
7502 }
7503
7504 /**
7505  * netdev_lower_get_next_private - Get the next ->private from the
7506  *                                 lower neighbour list
7507  * @dev: device
7508  * @iter: list_head ** of the current position
7509  *
7510  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7511  * list, starting from iter position. The caller must hold either hold the
7512  * RTNL lock or its own locking that guarantees that the neighbour lower
7513  * list will remain unchanged.
7514  */
7515 void *netdev_lower_get_next_private(struct net_device *dev,
7516                                     struct list_head **iter)
7517 {
7518         struct netdev_adjacent *lower;
7519
7520         lower = list_entry(*iter, struct netdev_adjacent, list);
7521
7522         if (&lower->list == &dev->adj_list.lower)
7523                 return NULL;
7524
7525         *iter = lower->list.next;
7526
7527         return lower->private;
7528 }
7529 EXPORT_SYMBOL(netdev_lower_get_next_private);
7530
7531 /**
7532  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7533  *                                     lower neighbour list, RCU
7534  *                                     variant
7535  * @dev: device
7536  * @iter: list_head ** of the current position
7537  *
7538  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7539  * list, starting from iter position. The caller must hold RCU read lock.
7540  */
7541 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7542                                         struct list_head **iter)
7543 {
7544         struct netdev_adjacent *lower;
7545
7546         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7547
7548         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7549
7550         if (&lower->list == &dev->adj_list.lower)
7551                 return NULL;
7552
7553         *iter = &lower->list;
7554
7555         return lower->private;
7556 }
7557 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7558
7559 /**
7560  * netdev_lower_get_next - Get the next device from the lower neighbour
7561  *                         list
7562  * @dev: device
7563  * @iter: list_head ** of the current position
7564  *
7565  * Gets the next netdev_adjacent from the dev's lower neighbour
7566  * list, starting from iter position. The caller must hold RTNL lock or
7567  * its own locking that guarantees that the neighbour lower
7568  * list will remain unchanged.
7569  */
7570 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7571 {
7572         struct netdev_adjacent *lower;
7573
7574         lower = list_entry(*iter, struct netdev_adjacent, list);
7575
7576         if (&lower->list == &dev->adj_list.lower)
7577                 return NULL;
7578
7579         *iter = lower->list.next;
7580
7581         return lower->dev;
7582 }
7583 EXPORT_SYMBOL(netdev_lower_get_next);
7584
7585 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7586                                                 struct list_head **iter)
7587 {
7588         struct netdev_adjacent *lower;
7589
7590         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7591
7592         if (&lower->list == &dev->adj_list.lower)
7593                 return NULL;
7594
7595         *iter = &lower->list;
7596
7597         return lower->dev;
7598 }
7599
7600 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7601                                                   struct list_head **iter,
7602                                                   bool *ignore)
7603 {
7604         struct netdev_adjacent *lower;
7605
7606         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7607
7608         if (&lower->list == &dev->adj_list.lower)
7609                 return NULL;
7610
7611         *iter = &lower->list;
7612         *ignore = lower->ignore;
7613
7614         return lower->dev;
7615 }
7616
7617 int netdev_walk_all_lower_dev(struct net_device *dev,
7618                               int (*fn)(struct net_device *dev,
7619                                         struct netdev_nested_priv *priv),
7620                               struct netdev_nested_priv *priv)
7621 {
7622         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7623         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7624         int ret, cur = 0;
7625
7626         now = dev;
7627         iter = &dev->adj_list.lower;
7628
7629         while (1) {
7630                 if (now != dev) {
7631                         ret = fn(now, priv);
7632                         if (ret)
7633                                 return ret;
7634                 }
7635
7636                 next = NULL;
7637                 while (1) {
7638                         ldev = netdev_next_lower_dev(now, &iter);
7639                         if (!ldev)
7640                                 break;
7641
7642                         next = ldev;
7643                         niter = &ldev->adj_list.lower;
7644                         dev_stack[cur] = now;
7645                         iter_stack[cur++] = iter;
7646                         break;
7647                 }
7648
7649                 if (!next) {
7650                         if (!cur)
7651                                 return 0;
7652                         next = dev_stack[--cur];
7653                         niter = iter_stack[cur];
7654                 }
7655
7656                 now = next;
7657                 iter = niter;
7658         }
7659
7660         return 0;
7661 }
7662 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7663
7664 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7665                                        int (*fn)(struct net_device *dev,
7666                                          struct netdev_nested_priv *priv),
7667                                        struct netdev_nested_priv *priv)
7668 {
7669         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7670         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7671         int ret, cur = 0;
7672         bool ignore;
7673
7674         now = dev;
7675         iter = &dev->adj_list.lower;
7676
7677         while (1) {
7678                 if (now != dev) {
7679                         ret = fn(now, priv);
7680                         if (ret)
7681                                 return ret;
7682                 }
7683
7684                 next = NULL;
7685                 while (1) {
7686                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7687                         if (!ldev)
7688                                 break;
7689                         if (ignore)
7690                                 continue;
7691
7692                         next = ldev;
7693                         niter = &ldev->adj_list.lower;
7694                         dev_stack[cur] = now;
7695                         iter_stack[cur++] = iter;
7696                         break;
7697                 }
7698
7699                 if (!next) {
7700                         if (!cur)
7701                                 return 0;
7702                         next = dev_stack[--cur];
7703                         niter = iter_stack[cur];
7704                 }
7705
7706                 now = next;
7707                 iter = niter;
7708         }
7709
7710         return 0;
7711 }
7712
7713 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7714                                              struct list_head **iter)
7715 {
7716         struct netdev_adjacent *lower;
7717
7718         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7719         if (&lower->list == &dev->adj_list.lower)
7720                 return NULL;
7721
7722         *iter = &lower->list;
7723
7724         return lower->dev;
7725 }
7726 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7727
7728 static u8 __netdev_upper_depth(struct net_device *dev)
7729 {
7730         struct net_device *udev;
7731         struct list_head *iter;
7732         u8 max_depth = 0;
7733         bool ignore;
7734
7735         for (iter = &dev->adj_list.upper,
7736              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7737              udev;
7738              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7739                 if (ignore)
7740                         continue;
7741                 if (max_depth < udev->upper_level)
7742                         max_depth = udev->upper_level;
7743         }
7744
7745         return max_depth;
7746 }
7747
7748 static u8 __netdev_lower_depth(struct net_device *dev)
7749 {
7750         struct net_device *ldev;
7751         struct list_head *iter;
7752         u8 max_depth = 0;
7753         bool ignore;
7754
7755         for (iter = &dev->adj_list.lower,
7756              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7757              ldev;
7758              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7759                 if (ignore)
7760                         continue;
7761                 if (max_depth < ldev->lower_level)
7762                         max_depth = ldev->lower_level;
7763         }
7764
7765         return max_depth;
7766 }
7767
7768 static int __netdev_update_upper_level(struct net_device *dev,
7769                                        struct netdev_nested_priv *__unused)
7770 {
7771         dev->upper_level = __netdev_upper_depth(dev) + 1;
7772         return 0;
7773 }
7774
7775 static int __netdev_update_lower_level(struct net_device *dev,
7776                                        struct netdev_nested_priv *priv)
7777 {
7778         dev->lower_level = __netdev_lower_depth(dev) + 1;
7779
7780 #ifdef CONFIG_LOCKDEP
7781         if (!priv)
7782                 return 0;
7783
7784         if (priv->flags & NESTED_SYNC_IMM)
7785                 dev->nested_level = dev->lower_level - 1;
7786         if (priv->flags & NESTED_SYNC_TODO)
7787                 net_unlink_todo(dev);
7788 #endif
7789         return 0;
7790 }
7791
7792 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7793                                   int (*fn)(struct net_device *dev,
7794                                             struct netdev_nested_priv *priv),
7795                                   struct netdev_nested_priv *priv)
7796 {
7797         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7798         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7799         int ret, cur = 0;
7800
7801         now = dev;
7802         iter = &dev->adj_list.lower;
7803
7804         while (1) {
7805                 if (now != dev) {
7806                         ret = fn(now, priv);
7807                         if (ret)
7808                                 return ret;
7809                 }
7810
7811                 next = NULL;
7812                 while (1) {
7813                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7814                         if (!ldev)
7815                                 break;
7816
7817                         next = ldev;
7818                         niter = &ldev->adj_list.lower;
7819                         dev_stack[cur] = now;
7820                         iter_stack[cur++] = iter;
7821                         break;
7822                 }
7823
7824                 if (!next) {
7825                         if (!cur)
7826                                 return 0;
7827                         next = dev_stack[--cur];
7828                         niter = iter_stack[cur];
7829                 }
7830
7831                 now = next;
7832                 iter = niter;
7833         }
7834
7835         return 0;
7836 }
7837 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7838
7839 /**
7840  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7841  *                                     lower neighbour list, RCU
7842  *                                     variant
7843  * @dev: device
7844  *
7845  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7846  * list. The caller must hold RCU read lock.
7847  */
7848 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7849 {
7850         struct netdev_adjacent *lower;
7851
7852         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7853                         struct netdev_adjacent, list);
7854         if (lower)
7855                 return lower->private;
7856         return NULL;
7857 }
7858 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7859
7860 /**
7861  * netdev_master_upper_dev_get_rcu - Get master upper device
7862  * @dev: device
7863  *
7864  * Find a master upper device and return pointer to it or NULL in case
7865  * it's not there. The caller must hold the RCU read lock.
7866  */
7867 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7868 {
7869         struct netdev_adjacent *upper;
7870
7871         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7872                                        struct netdev_adjacent, list);
7873         if (upper && likely(upper->master))
7874                 return upper->dev;
7875         return NULL;
7876 }
7877 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7878
7879 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7880                               struct net_device *adj_dev,
7881                               struct list_head *dev_list)
7882 {
7883         char linkname[IFNAMSIZ+7];
7884
7885         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7886                 "upper_%s" : "lower_%s", adj_dev->name);
7887         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7888                                  linkname);
7889 }
7890 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7891                                char *name,
7892                                struct list_head *dev_list)
7893 {
7894         char linkname[IFNAMSIZ+7];
7895
7896         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7897                 "upper_%s" : "lower_%s", name);
7898         sysfs_remove_link(&(dev->dev.kobj), linkname);
7899 }
7900
7901 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7902                                                  struct net_device *adj_dev,
7903                                                  struct list_head *dev_list)
7904 {
7905         return (dev_list == &dev->adj_list.upper ||
7906                 dev_list == &dev->adj_list.lower) &&
7907                 net_eq(dev_net(dev), dev_net(adj_dev));
7908 }
7909
7910 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7911                                         struct net_device *adj_dev,
7912                                         struct list_head *dev_list,
7913                                         void *private, bool master)
7914 {
7915         struct netdev_adjacent *adj;
7916         int ret;
7917
7918         adj = __netdev_find_adj(adj_dev, dev_list);
7919
7920         if (adj) {
7921                 adj->ref_nr += 1;
7922                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7923                          dev->name, adj_dev->name, adj->ref_nr);
7924
7925                 return 0;
7926         }
7927
7928         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7929         if (!adj)
7930                 return -ENOMEM;
7931
7932         adj->dev = adj_dev;
7933         adj->master = master;
7934         adj->ref_nr = 1;
7935         adj->private = private;
7936         adj->ignore = false;
7937         dev_hold(adj_dev);
7938
7939         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7940                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7941
7942         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7943                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7944                 if (ret)
7945                         goto free_adj;
7946         }
7947
7948         /* Ensure that master link is always the first item in list. */
7949         if (master) {
7950                 ret = sysfs_create_link(&(dev->dev.kobj),
7951                                         &(adj_dev->dev.kobj), "master");
7952                 if (ret)
7953                         goto remove_symlinks;
7954
7955                 list_add_rcu(&adj->list, dev_list);
7956         } else {
7957                 list_add_tail_rcu(&adj->list, dev_list);
7958         }
7959
7960         return 0;
7961
7962 remove_symlinks:
7963         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7964                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7965 free_adj:
7966         kfree(adj);
7967         dev_put(adj_dev);
7968
7969         return ret;
7970 }
7971
7972 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7973                                          struct net_device *adj_dev,
7974                                          u16 ref_nr,
7975                                          struct list_head *dev_list)
7976 {
7977         struct netdev_adjacent *adj;
7978
7979         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7980                  dev->name, adj_dev->name, ref_nr);
7981
7982         adj = __netdev_find_adj(adj_dev, dev_list);
7983
7984         if (!adj) {
7985                 pr_err("Adjacency does not exist for device %s from %s\n",
7986                        dev->name, adj_dev->name);
7987                 WARN_ON(1);
7988                 return;
7989         }
7990
7991         if (adj->ref_nr > ref_nr) {
7992                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7993                          dev->name, adj_dev->name, ref_nr,
7994                          adj->ref_nr - ref_nr);
7995                 adj->ref_nr -= ref_nr;
7996                 return;
7997         }
7998
7999         if (adj->master)
8000                 sysfs_remove_link(&(dev->dev.kobj), "master");
8001
8002         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8003                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8004
8005         list_del_rcu(&adj->list);
8006         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8007                  adj_dev->name, dev->name, adj_dev->name);
8008         dev_put(adj_dev);
8009         kfree_rcu(adj, rcu);
8010 }
8011
8012 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8013                                             struct net_device *upper_dev,
8014                                             struct list_head *up_list,
8015                                             struct list_head *down_list,
8016                                             void *private, bool master)
8017 {
8018         int ret;
8019
8020         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8021                                            private, master);
8022         if (ret)
8023                 return ret;
8024
8025         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8026                                            private, false);
8027         if (ret) {
8028                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8029                 return ret;
8030         }
8031
8032         return 0;
8033 }
8034
8035 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8036                                                struct net_device *upper_dev,
8037                                                u16 ref_nr,
8038                                                struct list_head *up_list,
8039                                                struct list_head *down_list)
8040 {
8041         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8042         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8043 }
8044
8045 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8046                                                 struct net_device *upper_dev,
8047                                                 void *private, bool master)
8048 {
8049         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8050                                                 &dev->adj_list.upper,
8051                                                 &upper_dev->adj_list.lower,
8052                                                 private, master);
8053 }
8054
8055 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8056                                                    struct net_device *upper_dev)
8057 {
8058         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8059                                            &dev->adj_list.upper,
8060                                            &upper_dev->adj_list.lower);
8061 }
8062
8063 static int __netdev_upper_dev_link(struct net_device *dev,
8064                                    struct net_device *upper_dev, bool master,
8065                                    void *upper_priv, void *upper_info,
8066                                    struct netdev_nested_priv *priv,
8067                                    struct netlink_ext_ack *extack)
8068 {
8069         struct netdev_notifier_changeupper_info changeupper_info = {
8070                 .info = {
8071                         .dev = dev,
8072                         .extack = extack,
8073                 },
8074                 .upper_dev = upper_dev,
8075                 .master = master,
8076                 .linking = true,
8077                 .upper_info = upper_info,
8078         };
8079         struct net_device *master_dev;
8080         int ret = 0;
8081
8082         ASSERT_RTNL();
8083
8084         if (dev == upper_dev)
8085                 return -EBUSY;
8086
8087         /* To prevent loops, check if dev is not upper device to upper_dev. */
8088         if (__netdev_has_upper_dev(upper_dev, dev))
8089                 return -EBUSY;
8090
8091         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8092                 return -EMLINK;
8093
8094         if (!master) {
8095                 if (__netdev_has_upper_dev(dev, upper_dev))
8096                         return -EEXIST;
8097         } else {
8098                 master_dev = __netdev_master_upper_dev_get(dev);
8099                 if (master_dev)
8100                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8101         }
8102
8103         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8104                                             &changeupper_info.info);
8105         ret = notifier_to_errno(ret);
8106         if (ret)
8107                 return ret;
8108
8109         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8110                                                    master);
8111         if (ret)
8112                 return ret;
8113
8114         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8115                                             &changeupper_info.info);
8116         ret = notifier_to_errno(ret);
8117         if (ret)
8118                 goto rollback;
8119
8120         __netdev_update_upper_level(dev, NULL);
8121         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8122
8123         __netdev_update_lower_level(upper_dev, priv);
8124         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8125                                     priv);
8126
8127         return 0;
8128
8129 rollback:
8130         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8131
8132         return ret;
8133 }
8134
8135 /**
8136  * netdev_upper_dev_link - Add a link to the upper device
8137  * @dev: device
8138  * @upper_dev: new upper device
8139  * @extack: netlink extended ack
8140  *
8141  * Adds a link to device which is upper to this one. The caller must hold
8142  * the RTNL lock. On a failure a negative errno code is returned.
8143  * On success the reference counts are adjusted and the function
8144  * returns zero.
8145  */
8146 int netdev_upper_dev_link(struct net_device *dev,
8147                           struct net_device *upper_dev,
8148                           struct netlink_ext_ack *extack)
8149 {
8150         struct netdev_nested_priv priv = {
8151                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8152                 .data = NULL,
8153         };
8154
8155         return __netdev_upper_dev_link(dev, upper_dev, false,
8156                                        NULL, NULL, &priv, extack);
8157 }
8158 EXPORT_SYMBOL(netdev_upper_dev_link);
8159
8160 /**
8161  * netdev_master_upper_dev_link - Add a master link to the upper device
8162  * @dev: device
8163  * @upper_dev: new upper device
8164  * @upper_priv: upper device private
8165  * @upper_info: upper info to be passed down via notifier
8166  * @extack: netlink extended ack
8167  *
8168  * Adds a link to device which is upper to this one. In this case, only
8169  * one master upper device can be linked, although other non-master devices
8170  * might be linked as well. The caller must hold the RTNL lock.
8171  * On a failure a negative errno code is returned. On success the reference
8172  * counts are adjusted and the function returns zero.
8173  */
8174 int netdev_master_upper_dev_link(struct net_device *dev,
8175                                  struct net_device *upper_dev,
8176                                  void *upper_priv, void *upper_info,
8177                                  struct netlink_ext_ack *extack)
8178 {
8179         struct netdev_nested_priv priv = {
8180                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8181                 .data = NULL,
8182         };
8183
8184         return __netdev_upper_dev_link(dev, upper_dev, true,
8185                                        upper_priv, upper_info, &priv, extack);
8186 }
8187 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8188
8189 static void __netdev_upper_dev_unlink(struct net_device *dev,
8190                                       struct net_device *upper_dev,
8191                                       struct netdev_nested_priv *priv)
8192 {
8193         struct netdev_notifier_changeupper_info changeupper_info = {
8194                 .info = {
8195                         .dev = dev,
8196                 },
8197                 .upper_dev = upper_dev,
8198                 .linking = false,
8199         };
8200
8201         ASSERT_RTNL();
8202
8203         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8204
8205         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8206                                       &changeupper_info.info);
8207
8208         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8209
8210         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8211                                       &changeupper_info.info);
8212
8213         __netdev_update_upper_level(dev, NULL);
8214         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8215
8216         __netdev_update_lower_level(upper_dev, priv);
8217         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8218                                     priv);
8219 }
8220
8221 /**
8222  * netdev_upper_dev_unlink - Removes a link to upper device
8223  * @dev: device
8224  * @upper_dev: new upper device
8225  *
8226  * Removes a link to device which is upper to this one. The caller must hold
8227  * the RTNL lock.
8228  */
8229 void netdev_upper_dev_unlink(struct net_device *dev,
8230                              struct net_device *upper_dev)
8231 {
8232         struct netdev_nested_priv priv = {
8233                 .flags = NESTED_SYNC_TODO,
8234                 .data = NULL,
8235         };
8236
8237         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8238 }
8239 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8240
8241 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8242                                       struct net_device *lower_dev,
8243                                       bool val)
8244 {
8245         struct netdev_adjacent *adj;
8246
8247         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8248         if (adj)
8249                 adj->ignore = val;
8250
8251         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8252         if (adj)
8253                 adj->ignore = val;
8254 }
8255
8256 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8257                                         struct net_device *lower_dev)
8258 {
8259         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8260 }
8261
8262 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8263                                        struct net_device *lower_dev)
8264 {
8265         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8266 }
8267
8268 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8269                                    struct net_device *new_dev,
8270                                    struct net_device *dev,
8271                                    struct netlink_ext_ack *extack)
8272 {
8273         struct netdev_nested_priv priv = {
8274                 .flags = 0,
8275                 .data = NULL,
8276         };
8277         int err;
8278
8279         if (!new_dev)
8280                 return 0;
8281
8282         if (old_dev && new_dev != old_dev)
8283                 netdev_adjacent_dev_disable(dev, old_dev);
8284         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8285                                       extack);
8286         if (err) {
8287                 if (old_dev && new_dev != old_dev)
8288                         netdev_adjacent_dev_enable(dev, old_dev);
8289                 return err;
8290         }
8291
8292         return 0;
8293 }
8294 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8295
8296 void netdev_adjacent_change_commit(struct net_device *old_dev,
8297                                    struct net_device *new_dev,
8298                                    struct net_device *dev)
8299 {
8300         struct netdev_nested_priv priv = {
8301                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8302                 .data = NULL,
8303         };
8304
8305         if (!new_dev || !old_dev)
8306                 return;
8307
8308         if (new_dev == old_dev)
8309                 return;
8310
8311         netdev_adjacent_dev_enable(dev, old_dev);
8312         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8313 }
8314 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8315
8316 void netdev_adjacent_change_abort(struct net_device *old_dev,
8317                                   struct net_device *new_dev,
8318                                   struct net_device *dev)
8319 {
8320         struct netdev_nested_priv priv = {
8321                 .flags = 0,
8322                 .data = NULL,
8323         };
8324
8325         if (!new_dev)
8326                 return;
8327
8328         if (old_dev && new_dev != old_dev)
8329                 netdev_adjacent_dev_enable(dev, old_dev);
8330
8331         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8332 }
8333 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8334
8335 /**
8336  * netdev_bonding_info_change - Dispatch event about slave change
8337  * @dev: device
8338  * @bonding_info: info to dispatch
8339  *
8340  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8341  * The caller must hold the RTNL lock.
8342  */
8343 void netdev_bonding_info_change(struct net_device *dev,
8344                                 struct netdev_bonding_info *bonding_info)
8345 {
8346         struct netdev_notifier_bonding_info info = {
8347                 .info.dev = dev,
8348         };
8349
8350         memcpy(&info.bonding_info, bonding_info,
8351                sizeof(struct netdev_bonding_info));
8352         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8353                                       &info.info);
8354 }
8355 EXPORT_SYMBOL(netdev_bonding_info_change);
8356
8357 /**
8358  * netdev_get_xmit_slave - Get the xmit slave of master device
8359  * @dev: device
8360  * @skb: The packet
8361  * @all_slaves: assume all the slaves are active
8362  *
8363  * The reference counters are not incremented so the caller must be
8364  * careful with locks. The caller must hold RCU lock.
8365  * %NULL is returned if no slave is found.
8366  */
8367
8368 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8369                                          struct sk_buff *skb,
8370                                          bool all_slaves)
8371 {
8372         const struct net_device_ops *ops = dev->netdev_ops;
8373
8374         if (!ops->ndo_get_xmit_slave)
8375                 return NULL;
8376         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8377 }
8378 EXPORT_SYMBOL(netdev_get_xmit_slave);
8379
8380 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8381                                                   struct sock *sk)
8382 {
8383         const struct net_device_ops *ops = dev->netdev_ops;
8384
8385         if (!ops->ndo_sk_get_lower_dev)
8386                 return NULL;
8387         return ops->ndo_sk_get_lower_dev(dev, sk);
8388 }
8389
8390 /**
8391  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8392  * @dev: device
8393  * @sk: the socket
8394  *
8395  * %NULL is returned if no lower device is found.
8396  */
8397
8398 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8399                                             struct sock *sk)
8400 {
8401         struct net_device *lower;
8402
8403         lower = netdev_sk_get_lower_dev(dev, sk);
8404         while (lower) {
8405                 dev = lower;
8406                 lower = netdev_sk_get_lower_dev(dev, sk);
8407         }
8408
8409         return dev;
8410 }
8411 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8412
8413 static void netdev_adjacent_add_links(struct net_device *dev)
8414 {
8415         struct netdev_adjacent *iter;
8416
8417         struct net *net = dev_net(dev);
8418
8419         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8420                 if (!net_eq(net, dev_net(iter->dev)))
8421                         continue;
8422                 netdev_adjacent_sysfs_add(iter->dev, dev,
8423                                           &iter->dev->adj_list.lower);
8424                 netdev_adjacent_sysfs_add(dev, iter->dev,
8425                                           &dev->adj_list.upper);
8426         }
8427
8428         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8429                 if (!net_eq(net, dev_net(iter->dev)))
8430                         continue;
8431                 netdev_adjacent_sysfs_add(iter->dev, dev,
8432                                           &iter->dev->adj_list.upper);
8433                 netdev_adjacent_sysfs_add(dev, iter->dev,
8434                                           &dev->adj_list.lower);
8435         }
8436 }
8437
8438 static void netdev_adjacent_del_links(struct net_device *dev)
8439 {
8440         struct netdev_adjacent *iter;
8441
8442         struct net *net = dev_net(dev);
8443
8444         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8445                 if (!net_eq(net, dev_net(iter->dev)))
8446                         continue;
8447                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8448                                           &iter->dev->adj_list.lower);
8449                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8450                                           &dev->adj_list.upper);
8451         }
8452
8453         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8454                 if (!net_eq(net, dev_net(iter->dev)))
8455                         continue;
8456                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8457                                           &iter->dev->adj_list.upper);
8458                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8459                                           &dev->adj_list.lower);
8460         }
8461 }
8462
8463 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8464 {
8465         struct netdev_adjacent *iter;
8466
8467         struct net *net = dev_net(dev);
8468
8469         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8470                 if (!net_eq(net, dev_net(iter->dev)))
8471                         continue;
8472                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8473                                           &iter->dev->adj_list.lower);
8474                 netdev_adjacent_sysfs_add(iter->dev, dev,
8475                                           &iter->dev->adj_list.lower);
8476         }
8477
8478         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8479                 if (!net_eq(net, dev_net(iter->dev)))
8480                         continue;
8481                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8482                                           &iter->dev->adj_list.upper);
8483                 netdev_adjacent_sysfs_add(iter->dev, dev,
8484                                           &iter->dev->adj_list.upper);
8485         }
8486 }
8487
8488 void *netdev_lower_dev_get_private(struct net_device *dev,
8489                                    struct net_device *lower_dev)
8490 {
8491         struct netdev_adjacent *lower;
8492
8493         if (!lower_dev)
8494                 return NULL;
8495         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8496         if (!lower)
8497                 return NULL;
8498
8499         return lower->private;
8500 }
8501 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8502
8503
8504 /**
8505  * netdev_lower_state_changed - Dispatch event about lower device state change
8506  * @lower_dev: device
8507  * @lower_state_info: state to dispatch
8508  *
8509  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8510  * The caller must hold the RTNL lock.
8511  */
8512 void netdev_lower_state_changed(struct net_device *lower_dev,
8513                                 void *lower_state_info)
8514 {
8515         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8516                 .info.dev = lower_dev,
8517         };
8518
8519         ASSERT_RTNL();
8520         changelowerstate_info.lower_state_info = lower_state_info;
8521         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8522                                       &changelowerstate_info.info);
8523 }
8524 EXPORT_SYMBOL(netdev_lower_state_changed);
8525
8526 static void dev_change_rx_flags(struct net_device *dev, int flags)
8527 {
8528         const struct net_device_ops *ops = dev->netdev_ops;
8529
8530         if (ops->ndo_change_rx_flags)
8531                 ops->ndo_change_rx_flags(dev, flags);
8532 }
8533
8534 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8535 {
8536         unsigned int old_flags = dev->flags;
8537         kuid_t uid;
8538         kgid_t gid;
8539
8540         ASSERT_RTNL();
8541
8542         dev->flags |= IFF_PROMISC;
8543         dev->promiscuity += inc;
8544         if (dev->promiscuity == 0) {
8545                 /*
8546                  * Avoid overflow.
8547                  * If inc causes overflow, untouch promisc and return error.
8548                  */
8549                 if (inc < 0)
8550                         dev->flags &= ~IFF_PROMISC;
8551                 else {
8552                         dev->promiscuity -= inc;
8553                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8554                                 dev->name);
8555                         return -EOVERFLOW;
8556                 }
8557         }
8558         if (dev->flags != old_flags) {
8559                 pr_info("device %s %s promiscuous mode\n",
8560                         dev->name,
8561                         dev->flags & IFF_PROMISC ? "entered" : "left");
8562                 if (audit_enabled) {
8563                         current_uid_gid(&uid, &gid);
8564                         audit_log(audit_context(), GFP_ATOMIC,
8565                                   AUDIT_ANOM_PROMISCUOUS,
8566                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8567                                   dev->name, (dev->flags & IFF_PROMISC),
8568                                   (old_flags & IFF_PROMISC),
8569                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8570                                   from_kuid(&init_user_ns, uid),
8571                                   from_kgid(&init_user_ns, gid),
8572                                   audit_get_sessionid(current));
8573                 }
8574
8575                 dev_change_rx_flags(dev, IFF_PROMISC);
8576         }
8577         if (notify)
8578                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8579         return 0;
8580 }
8581
8582 /**
8583  *      dev_set_promiscuity     - update promiscuity count on a device
8584  *      @dev: device
8585  *      @inc: modifier
8586  *
8587  *      Add or remove promiscuity from a device. While the count in the device
8588  *      remains above zero the interface remains promiscuous. Once it hits zero
8589  *      the device reverts back to normal filtering operation. A negative inc
8590  *      value is used to drop promiscuity on the device.
8591  *      Return 0 if successful or a negative errno code on error.
8592  */
8593 int dev_set_promiscuity(struct net_device *dev, int inc)
8594 {
8595         unsigned int old_flags = dev->flags;
8596         int err;
8597
8598         err = __dev_set_promiscuity(dev, inc, true);
8599         if (err < 0)
8600                 return err;
8601         if (dev->flags != old_flags)
8602                 dev_set_rx_mode(dev);
8603         return err;
8604 }
8605 EXPORT_SYMBOL(dev_set_promiscuity);
8606
8607 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8608 {
8609         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8610
8611         ASSERT_RTNL();
8612
8613         dev->flags |= IFF_ALLMULTI;
8614         dev->allmulti += inc;
8615         if (dev->allmulti == 0) {
8616                 /*
8617                  * Avoid overflow.
8618                  * If inc causes overflow, untouch allmulti and return error.
8619                  */
8620                 if (inc < 0)
8621                         dev->flags &= ~IFF_ALLMULTI;
8622                 else {
8623                         dev->allmulti -= inc;
8624                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8625                                 dev->name);
8626                         return -EOVERFLOW;
8627                 }
8628         }
8629         if (dev->flags ^ old_flags) {
8630                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8631                 dev_set_rx_mode(dev);
8632                 if (notify)
8633                         __dev_notify_flags(dev, old_flags,
8634                                            dev->gflags ^ old_gflags);
8635         }
8636         return 0;
8637 }
8638
8639 /**
8640  *      dev_set_allmulti        - update allmulti count on a device
8641  *      @dev: device
8642  *      @inc: modifier
8643  *
8644  *      Add or remove reception of all multicast frames to a device. While the
8645  *      count in the device remains above zero the interface remains listening
8646  *      to all interfaces. Once it hits zero the device reverts back to normal
8647  *      filtering operation. A negative @inc value is used to drop the counter
8648  *      when releasing a resource needing all multicasts.
8649  *      Return 0 if successful or a negative errno code on error.
8650  */
8651
8652 int dev_set_allmulti(struct net_device *dev, int inc)
8653 {
8654         return __dev_set_allmulti(dev, inc, true);
8655 }
8656 EXPORT_SYMBOL(dev_set_allmulti);
8657
8658 /*
8659  *      Upload unicast and multicast address lists to device and
8660  *      configure RX filtering. When the device doesn't support unicast
8661  *      filtering it is put in promiscuous mode while unicast addresses
8662  *      are present.
8663  */
8664 void __dev_set_rx_mode(struct net_device *dev)
8665 {
8666         const struct net_device_ops *ops = dev->netdev_ops;
8667
8668         /* dev_open will call this function so the list will stay sane. */
8669         if (!(dev->flags&IFF_UP))
8670                 return;
8671
8672         if (!netif_device_present(dev))
8673                 return;
8674
8675         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8676                 /* Unicast addresses changes may only happen under the rtnl,
8677                  * therefore calling __dev_set_promiscuity here is safe.
8678                  */
8679                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8680                         __dev_set_promiscuity(dev, 1, false);
8681                         dev->uc_promisc = true;
8682                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8683                         __dev_set_promiscuity(dev, -1, false);
8684                         dev->uc_promisc = false;
8685                 }
8686         }
8687
8688         if (ops->ndo_set_rx_mode)
8689                 ops->ndo_set_rx_mode(dev);
8690 }
8691
8692 void dev_set_rx_mode(struct net_device *dev)
8693 {
8694         netif_addr_lock_bh(dev);
8695         __dev_set_rx_mode(dev);
8696         netif_addr_unlock_bh(dev);
8697 }
8698
8699 /**
8700  *      dev_get_flags - get flags reported to userspace
8701  *      @dev: device
8702  *
8703  *      Get the combination of flag bits exported through APIs to userspace.
8704  */
8705 unsigned int dev_get_flags(const struct net_device *dev)
8706 {
8707         unsigned int flags;
8708
8709         flags = (dev->flags & ~(IFF_PROMISC |
8710                                 IFF_ALLMULTI |
8711                                 IFF_RUNNING |
8712                                 IFF_LOWER_UP |
8713                                 IFF_DORMANT)) |
8714                 (dev->gflags & (IFF_PROMISC |
8715                                 IFF_ALLMULTI));
8716
8717         if (netif_running(dev)) {
8718                 if (netif_oper_up(dev))
8719                         flags |= IFF_RUNNING;
8720                 if (netif_carrier_ok(dev))
8721                         flags |= IFF_LOWER_UP;
8722                 if (netif_dormant(dev))
8723                         flags |= IFF_DORMANT;
8724         }
8725
8726         return flags;
8727 }
8728 EXPORT_SYMBOL(dev_get_flags);
8729
8730 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8731                        struct netlink_ext_ack *extack)
8732 {
8733         unsigned int old_flags = dev->flags;
8734         int ret;
8735
8736         ASSERT_RTNL();
8737
8738         /*
8739          *      Set the flags on our device.
8740          */
8741
8742         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8743                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8744                                IFF_AUTOMEDIA)) |
8745                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8746                                     IFF_ALLMULTI));
8747
8748         /*
8749          *      Load in the correct multicast list now the flags have changed.
8750          */
8751
8752         if ((old_flags ^ flags) & IFF_MULTICAST)
8753                 dev_change_rx_flags(dev, IFF_MULTICAST);
8754
8755         dev_set_rx_mode(dev);
8756
8757         /*
8758          *      Have we downed the interface. We handle IFF_UP ourselves
8759          *      according to user attempts to set it, rather than blindly
8760          *      setting it.
8761          */
8762
8763         ret = 0;
8764         if ((old_flags ^ flags) & IFF_UP) {
8765                 if (old_flags & IFF_UP)
8766                         __dev_close(dev);
8767                 else
8768                         ret = __dev_open(dev, extack);
8769         }
8770
8771         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8772                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8773                 unsigned int old_flags = dev->flags;
8774
8775                 dev->gflags ^= IFF_PROMISC;
8776
8777                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8778                         if (dev->flags != old_flags)
8779                                 dev_set_rx_mode(dev);
8780         }
8781
8782         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8783          * is important. Some (broken) drivers set IFF_PROMISC, when
8784          * IFF_ALLMULTI is requested not asking us and not reporting.
8785          */
8786         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8787                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8788
8789                 dev->gflags ^= IFF_ALLMULTI;
8790                 __dev_set_allmulti(dev, inc, false);
8791         }
8792
8793         return ret;
8794 }
8795
8796 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8797                         unsigned int gchanges)
8798 {
8799         unsigned int changes = dev->flags ^ old_flags;
8800
8801         if (gchanges)
8802                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8803
8804         if (changes & IFF_UP) {
8805                 if (dev->flags & IFF_UP)
8806                         call_netdevice_notifiers(NETDEV_UP, dev);
8807                 else
8808                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8809         }
8810
8811         if (dev->flags & IFF_UP &&
8812             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8813                 struct netdev_notifier_change_info change_info = {
8814                         .info = {
8815                                 .dev = dev,
8816                         },
8817                         .flags_changed = changes,
8818                 };
8819
8820                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8821         }
8822 }
8823
8824 /**
8825  *      dev_change_flags - change device settings
8826  *      @dev: device
8827  *      @flags: device state flags
8828  *      @extack: netlink extended ack
8829  *
8830  *      Change settings on device based state flags. The flags are
8831  *      in the userspace exported format.
8832  */
8833 int dev_change_flags(struct net_device *dev, unsigned int flags,
8834                      struct netlink_ext_ack *extack)
8835 {
8836         int ret;
8837         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8838
8839         ret = __dev_change_flags(dev, flags, extack);
8840         if (ret < 0)
8841                 return ret;
8842
8843         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8844         __dev_notify_flags(dev, old_flags, changes);
8845         return ret;
8846 }
8847 EXPORT_SYMBOL(dev_change_flags);
8848
8849 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8850 {
8851         const struct net_device_ops *ops = dev->netdev_ops;
8852
8853         if (ops->ndo_change_mtu)
8854                 return ops->ndo_change_mtu(dev, new_mtu);
8855
8856         /* Pairs with all the lockless reads of dev->mtu in the stack */
8857         WRITE_ONCE(dev->mtu, new_mtu);
8858         return 0;
8859 }
8860 EXPORT_SYMBOL(__dev_set_mtu);
8861
8862 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8863                      struct netlink_ext_ack *extack)
8864 {
8865         /* MTU must be positive, and in range */
8866         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8867                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8868                 return -EINVAL;
8869         }
8870
8871         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8872                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8873                 return -EINVAL;
8874         }
8875         return 0;
8876 }
8877
8878 /**
8879  *      dev_set_mtu_ext - Change maximum transfer unit
8880  *      @dev: device
8881  *      @new_mtu: new transfer unit
8882  *      @extack: netlink extended ack
8883  *
8884  *      Change the maximum transfer size of the network device.
8885  */
8886 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8887                     struct netlink_ext_ack *extack)
8888 {
8889         int err, orig_mtu;
8890
8891         if (new_mtu == dev->mtu)
8892                 return 0;
8893
8894         err = dev_validate_mtu(dev, new_mtu, extack);
8895         if (err)
8896                 return err;
8897
8898         if (!netif_device_present(dev))
8899                 return -ENODEV;
8900
8901         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8902         err = notifier_to_errno(err);
8903         if (err)
8904                 return err;
8905
8906         orig_mtu = dev->mtu;
8907         err = __dev_set_mtu(dev, new_mtu);
8908
8909         if (!err) {
8910                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8911                                                    orig_mtu);
8912                 err = notifier_to_errno(err);
8913                 if (err) {
8914                         /* setting mtu back and notifying everyone again,
8915                          * so that they have a chance to revert changes.
8916                          */
8917                         __dev_set_mtu(dev, orig_mtu);
8918                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8919                                                      new_mtu);
8920                 }
8921         }
8922         return err;
8923 }
8924
8925 int dev_set_mtu(struct net_device *dev, int new_mtu)
8926 {
8927         struct netlink_ext_ack extack;
8928         int err;
8929
8930         memset(&extack, 0, sizeof(extack));
8931         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8932         if (err && extack._msg)
8933                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8934         return err;
8935 }
8936 EXPORT_SYMBOL(dev_set_mtu);
8937
8938 /**
8939  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8940  *      @dev: device
8941  *      @new_len: new tx queue length
8942  */
8943 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8944 {
8945         unsigned int orig_len = dev->tx_queue_len;
8946         int res;
8947
8948         if (new_len != (unsigned int)new_len)
8949                 return -ERANGE;
8950
8951         if (new_len != orig_len) {
8952                 dev->tx_queue_len = new_len;
8953                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8954                 res = notifier_to_errno(res);
8955                 if (res)
8956                         goto err_rollback;
8957                 res = dev_qdisc_change_tx_queue_len(dev);
8958                 if (res)
8959                         goto err_rollback;
8960         }
8961
8962         return 0;
8963
8964 err_rollback:
8965         netdev_err(dev, "refused to change device tx_queue_len\n");
8966         dev->tx_queue_len = orig_len;
8967         return res;
8968 }
8969
8970 /**
8971  *      dev_set_group - Change group this device belongs to
8972  *      @dev: device
8973  *      @new_group: group this device should belong to
8974  */
8975 void dev_set_group(struct net_device *dev, int new_group)
8976 {
8977         dev->group = new_group;
8978 }
8979 EXPORT_SYMBOL(dev_set_group);
8980
8981 /**
8982  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8983  *      @dev: device
8984  *      @addr: new address
8985  *      @extack: netlink extended ack
8986  */
8987 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8988                               struct netlink_ext_ack *extack)
8989 {
8990         struct netdev_notifier_pre_changeaddr_info info = {
8991                 .info.dev = dev,
8992                 .info.extack = extack,
8993                 .dev_addr = addr,
8994         };
8995         int rc;
8996
8997         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8998         return notifier_to_errno(rc);
8999 }
9000 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9001
9002 /**
9003  *      dev_set_mac_address - Change Media Access Control Address
9004  *      @dev: device
9005  *      @sa: new address
9006  *      @extack: netlink extended ack
9007  *
9008  *      Change the hardware (MAC) address of the device
9009  */
9010 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9011                         struct netlink_ext_ack *extack)
9012 {
9013         const struct net_device_ops *ops = dev->netdev_ops;
9014         int err;
9015
9016         if (!ops->ndo_set_mac_address)
9017                 return -EOPNOTSUPP;
9018         if (sa->sa_family != dev->type)
9019                 return -EINVAL;
9020         if (!netif_device_present(dev))
9021                 return -ENODEV;
9022         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9023         if (err)
9024                 return err;
9025         err = ops->ndo_set_mac_address(dev, sa);
9026         if (err)
9027                 return err;
9028         dev->addr_assign_type = NET_ADDR_SET;
9029         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9030         add_device_randomness(dev->dev_addr, dev->addr_len);
9031         return 0;
9032 }
9033 EXPORT_SYMBOL(dev_set_mac_address);
9034
9035 static DECLARE_RWSEM(dev_addr_sem);
9036
9037 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9038                              struct netlink_ext_ack *extack)
9039 {
9040         int ret;
9041
9042         down_write(&dev_addr_sem);
9043         ret = dev_set_mac_address(dev, sa, extack);
9044         up_write(&dev_addr_sem);
9045         return ret;
9046 }
9047 EXPORT_SYMBOL(dev_set_mac_address_user);
9048
9049 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9050 {
9051         size_t size = sizeof(sa->sa_data);
9052         struct net_device *dev;
9053         int ret = 0;
9054
9055         down_read(&dev_addr_sem);
9056         rcu_read_lock();
9057
9058         dev = dev_get_by_name_rcu(net, dev_name);
9059         if (!dev) {
9060                 ret = -ENODEV;
9061                 goto unlock;
9062         }
9063         if (!dev->addr_len)
9064                 memset(sa->sa_data, 0, size);
9065         else
9066                 memcpy(sa->sa_data, dev->dev_addr,
9067                        min_t(size_t, size, dev->addr_len));
9068         sa->sa_family = dev->type;
9069
9070 unlock:
9071         rcu_read_unlock();
9072         up_read(&dev_addr_sem);
9073         return ret;
9074 }
9075 EXPORT_SYMBOL(dev_get_mac_address);
9076
9077 /**
9078  *      dev_change_carrier - Change device carrier
9079  *      @dev: device
9080  *      @new_carrier: new value
9081  *
9082  *      Change device carrier
9083  */
9084 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9085 {
9086         const struct net_device_ops *ops = dev->netdev_ops;
9087
9088         if (!ops->ndo_change_carrier)
9089                 return -EOPNOTSUPP;
9090         if (!netif_device_present(dev))
9091                 return -ENODEV;
9092         return ops->ndo_change_carrier(dev, new_carrier);
9093 }
9094 EXPORT_SYMBOL(dev_change_carrier);
9095
9096 /**
9097  *      dev_get_phys_port_id - Get device physical port ID
9098  *      @dev: device
9099  *      @ppid: port ID
9100  *
9101  *      Get device physical port ID
9102  */
9103 int dev_get_phys_port_id(struct net_device *dev,
9104                          struct netdev_phys_item_id *ppid)
9105 {
9106         const struct net_device_ops *ops = dev->netdev_ops;
9107
9108         if (!ops->ndo_get_phys_port_id)
9109                 return -EOPNOTSUPP;
9110         return ops->ndo_get_phys_port_id(dev, ppid);
9111 }
9112 EXPORT_SYMBOL(dev_get_phys_port_id);
9113
9114 /**
9115  *      dev_get_phys_port_name - Get device physical port name
9116  *      @dev: device
9117  *      @name: port name
9118  *      @len: limit of bytes to copy to name
9119  *
9120  *      Get device physical port name
9121  */
9122 int dev_get_phys_port_name(struct net_device *dev,
9123                            char *name, size_t len)
9124 {
9125         const struct net_device_ops *ops = dev->netdev_ops;
9126         int err;
9127
9128         if (ops->ndo_get_phys_port_name) {
9129                 err = ops->ndo_get_phys_port_name(dev, name, len);
9130                 if (err != -EOPNOTSUPP)
9131                         return err;
9132         }
9133         return devlink_compat_phys_port_name_get(dev, name, len);
9134 }
9135 EXPORT_SYMBOL(dev_get_phys_port_name);
9136
9137 /**
9138  *      dev_get_port_parent_id - Get the device's port parent identifier
9139  *      @dev: network device
9140  *      @ppid: pointer to a storage for the port's parent identifier
9141  *      @recurse: allow/disallow recursion to lower devices
9142  *
9143  *      Get the devices's port parent identifier
9144  */
9145 int dev_get_port_parent_id(struct net_device *dev,
9146                            struct netdev_phys_item_id *ppid,
9147                            bool recurse)
9148 {
9149         const struct net_device_ops *ops = dev->netdev_ops;
9150         struct netdev_phys_item_id first = { };
9151         struct net_device *lower_dev;
9152         struct list_head *iter;
9153         int err;
9154
9155         if (ops->ndo_get_port_parent_id) {
9156                 err = ops->ndo_get_port_parent_id(dev, ppid);
9157                 if (err != -EOPNOTSUPP)
9158                         return err;
9159         }
9160
9161         err = devlink_compat_switch_id_get(dev, ppid);
9162         if (!err || err != -EOPNOTSUPP)
9163                 return err;
9164
9165         if (!recurse)
9166                 return -EOPNOTSUPP;
9167
9168         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9169                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9170                 if (err)
9171                         break;
9172                 if (!first.id_len)
9173                         first = *ppid;
9174                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9175                         return -EOPNOTSUPP;
9176         }
9177
9178         return err;
9179 }
9180 EXPORT_SYMBOL(dev_get_port_parent_id);
9181
9182 /**
9183  *      netdev_port_same_parent_id - Indicate if two network devices have
9184  *      the same port parent identifier
9185  *      @a: first network device
9186  *      @b: second network device
9187  */
9188 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9189 {
9190         struct netdev_phys_item_id a_id = { };
9191         struct netdev_phys_item_id b_id = { };
9192
9193         if (dev_get_port_parent_id(a, &a_id, true) ||
9194             dev_get_port_parent_id(b, &b_id, true))
9195                 return false;
9196
9197         return netdev_phys_item_id_same(&a_id, &b_id);
9198 }
9199 EXPORT_SYMBOL(netdev_port_same_parent_id);
9200
9201 /**
9202  *      dev_change_proto_down - update protocol port state information
9203  *      @dev: device
9204  *      @proto_down: new value
9205  *
9206  *      This info can be used by switch drivers to set the phys state of the
9207  *      port.
9208  */
9209 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9210 {
9211         const struct net_device_ops *ops = dev->netdev_ops;
9212
9213         if (!ops->ndo_change_proto_down)
9214                 return -EOPNOTSUPP;
9215         if (!netif_device_present(dev))
9216                 return -ENODEV;
9217         return ops->ndo_change_proto_down(dev, proto_down);
9218 }
9219 EXPORT_SYMBOL(dev_change_proto_down);
9220
9221 /**
9222  *      dev_change_proto_down_generic - generic implementation for
9223  *      ndo_change_proto_down that sets carrier according to
9224  *      proto_down.
9225  *
9226  *      @dev: device
9227  *      @proto_down: new value
9228  */
9229 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9230 {
9231         if (proto_down)
9232                 netif_carrier_off(dev);
9233         else
9234                 netif_carrier_on(dev);
9235         dev->proto_down = proto_down;
9236         return 0;
9237 }
9238 EXPORT_SYMBOL(dev_change_proto_down_generic);
9239
9240 /**
9241  *      dev_change_proto_down_reason - proto down reason
9242  *
9243  *      @dev: device
9244  *      @mask: proto down mask
9245  *      @value: proto down value
9246  */
9247 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9248                                   u32 value)
9249 {
9250         int b;
9251
9252         if (!mask) {
9253                 dev->proto_down_reason = value;
9254         } else {
9255                 for_each_set_bit(b, &mask, 32) {
9256                         if (value & (1 << b))
9257                                 dev->proto_down_reason |= BIT(b);
9258                         else
9259                                 dev->proto_down_reason &= ~BIT(b);
9260                 }
9261         }
9262 }
9263 EXPORT_SYMBOL(dev_change_proto_down_reason);
9264
9265 struct bpf_xdp_link {
9266         struct bpf_link link;
9267         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9268         int flags;
9269 };
9270
9271 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9272 {
9273         if (flags & XDP_FLAGS_HW_MODE)
9274                 return XDP_MODE_HW;
9275         if (flags & XDP_FLAGS_DRV_MODE)
9276                 return XDP_MODE_DRV;
9277         if (flags & XDP_FLAGS_SKB_MODE)
9278                 return XDP_MODE_SKB;
9279         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9280 }
9281
9282 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9283 {
9284         switch (mode) {
9285         case XDP_MODE_SKB:
9286                 return generic_xdp_install;
9287         case XDP_MODE_DRV:
9288         case XDP_MODE_HW:
9289                 return dev->netdev_ops->ndo_bpf;
9290         default:
9291                 return NULL;
9292         }
9293 }
9294
9295 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9296                                          enum bpf_xdp_mode mode)
9297 {
9298         return dev->xdp_state[mode].link;
9299 }
9300
9301 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9302                                      enum bpf_xdp_mode mode)
9303 {
9304         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9305
9306         if (link)
9307                 return link->link.prog;
9308         return dev->xdp_state[mode].prog;
9309 }
9310
9311 u8 dev_xdp_prog_count(struct net_device *dev)
9312 {
9313         u8 count = 0;
9314         int i;
9315
9316         for (i = 0; i < __MAX_XDP_MODE; i++)
9317                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9318                         count++;
9319         return count;
9320 }
9321 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9322
9323 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9324 {
9325         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9326
9327         return prog ? prog->aux->id : 0;
9328 }
9329
9330 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9331                              struct bpf_xdp_link *link)
9332 {
9333         dev->xdp_state[mode].link = link;
9334         dev->xdp_state[mode].prog = NULL;
9335 }
9336
9337 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9338                              struct bpf_prog *prog)
9339 {
9340         dev->xdp_state[mode].link = NULL;
9341         dev->xdp_state[mode].prog = prog;
9342 }
9343
9344 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9345                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9346                            u32 flags, struct bpf_prog *prog)
9347 {
9348         struct netdev_bpf xdp;
9349         int err;
9350
9351         memset(&xdp, 0, sizeof(xdp));
9352         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9353         xdp.extack = extack;
9354         xdp.flags = flags;
9355         xdp.prog = prog;
9356
9357         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9358          * "moved" into driver), so they don't increment it on their own, but
9359          * they do decrement refcnt when program is detached or replaced.
9360          * Given net_device also owns link/prog, we need to bump refcnt here
9361          * to prevent drivers from underflowing it.
9362          */
9363         if (prog)
9364                 bpf_prog_inc(prog);
9365         err = bpf_op(dev, &xdp);
9366         if (err) {
9367                 if (prog)
9368                         bpf_prog_put(prog);
9369                 return err;
9370         }
9371
9372         if (mode != XDP_MODE_HW)
9373                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9374
9375         return 0;
9376 }
9377
9378 static void dev_xdp_uninstall(struct net_device *dev)
9379 {
9380         struct bpf_xdp_link *link;
9381         struct bpf_prog *prog;
9382         enum bpf_xdp_mode mode;
9383         bpf_op_t bpf_op;
9384
9385         ASSERT_RTNL();
9386
9387         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9388                 prog = dev_xdp_prog(dev, mode);
9389                 if (!prog)
9390                         continue;
9391
9392                 bpf_op = dev_xdp_bpf_op(dev, mode);
9393                 if (!bpf_op)
9394                         continue;
9395
9396                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9397
9398                 /* auto-detach link from net device */
9399                 link = dev_xdp_link(dev, mode);
9400                 if (link)
9401                         link->dev = NULL;
9402                 else
9403                         bpf_prog_put(prog);
9404
9405                 dev_xdp_set_link(dev, mode, NULL);
9406         }
9407 }
9408
9409 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9410                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9411                           struct bpf_prog *old_prog, u32 flags)
9412 {
9413         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9414         struct bpf_prog *cur_prog;
9415         struct net_device *upper;
9416         struct list_head *iter;
9417         enum bpf_xdp_mode mode;
9418         bpf_op_t bpf_op;
9419         int err;
9420
9421         ASSERT_RTNL();
9422
9423         /* either link or prog attachment, never both */
9424         if (link && (new_prog || old_prog))
9425                 return -EINVAL;
9426         /* link supports only XDP mode flags */
9427         if (link && (flags & ~XDP_FLAGS_MODES)) {
9428                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9429                 return -EINVAL;
9430         }
9431         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9432         if (num_modes > 1) {
9433                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9434                 return -EINVAL;
9435         }
9436         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9437         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9438                 NL_SET_ERR_MSG(extack,
9439                                "More than one program loaded, unset mode is ambiguous");
9440                 return -EINVAL;
9441         }
9442         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9443         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9444                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9445                 return -EINVAL;
9446         }
9447
9448         mode = dev_xdp_mode(dev, flags);
9449         /* can't replace attached link */
9450         if (dev_xdp_link(dev, mode)) {
9451                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9452                 return -EBUSY;
9453         }
9454
9455         /* don't allow if an upper device already has a program */
9456         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9457                 if (dev_xdp_prog_count(upper) > 0) {
9458                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9459                         return -EEXIST;
9460                 }
9461         }
9462
9463         cur_prog = dev_xdp_prog(dev, mode);
9464         /* can't replace attached prog with link */
9465         if (link && cur_prog) {
9466                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9467                 return -EBUSY;
9468         }
9469         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9470                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9471                 return -EEXIST;
9472         }
9473
9474         /* put effective new program into new_prog */
9475         if (link)
9476                 new_prog = link->link.prog;
9477
9478         if (new_prog) {
9479                 bool offload = mode == XDP_MODE_HW;
9480                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9481                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9482
9483                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9484                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9485                         return -EBUSY;
9486                 }
9487                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9488                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9489                         return -EEXIST;
9490                 }
9491                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9492                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9493                         return -EINVAL;
9494                 }
9495                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9496                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9497                         return -EINVAL;
9498                 }
9499                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9500                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9501                         return -EINVAL;
9502                 }
9503         }
9504
9505         /* don't call drivers if the effective program didn't change */
9506         if (new_prog != cur_prog) {
9507                 bpf_op = dev_xdp_bpf_op(dev, mode);
9508                 if (!bpf_op) {
9509                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9510                         return -EOPNOTSUPP;
9511                 }
9512
9513                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9514                 if (err)
9515                         return err;
9516         }
9517
9518         if (link)
9519                 dev_xdp_set_link(dev, mode, link);
9520         else
9521                 dev_xdp_set_prog(dev, mode, new_prog);
9522         if (cur_prog)
9523                 bpf_prog_put(cur_prog);
9524
9525         return 0;
9526 }
9527
9528 static int dev_xdp_attach_link(struct net_device *dev,
9529                                struct netlink_ext_ack *extack,
9530                                struct bpf_xdp_link *link)
9531 {
9532         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9533 }
9534
9535 static int dev_xdp_detach_link(struct net_device *dev,
9536                                struct netlink_ext_ack *extack,
9537                                struct bpf_xdp_link *link)
9538 {
9539         enum bpf_xdp_mode mode;
9540         bpf_op_t bpf_op;
9541
9542         ASSERT_RTNL();
9543
9544         mode = dev_xdp_mode(dev, link->flags);
9545         if (dev_xdp_link(dev, mode) != link)
9546                 return -EINVAL;
9547
9548         bpf_op = dev_xdp_bpf_op(dev, mode);
9549         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9550         dev_xdp_set_link(dev, mode, NULL);
9551         return 0;
9552 }
9553
9554 static void bpf_xdp_link_release(struct bpf_link *link)
9555 {
9556         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9557
9558         rtnl_lock();
9559
9560         /* if racing with net_device's tear down, xdp_link->dev might be
9561          * already NULL, in which case link was already auto-detached
9562          */
9563         if (xdp_link->dev) {
9564                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9565                 xdp_link->dev = NULL;
9566         }
9567
9568         rtnl_unlock();
9569 }
9570
9571 static int bpf_xdp_link_detach(struct bpf_link *link)
9572 {
9573         bpf_xdp_link_release(link);
9574         return 0;
9575 }
9576
9577 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9578 {
9579         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9580
9581         kfree(xdp_link);
9582 }
9583
9584 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9585                                      struct seq_file *seq)
9586 {
9587         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9588         u32 ifindex = 0;
9589
9590         rtnl_lock();
9591         if (xdp_link->dev)
9592                 ifindex = xdp_link->dev->ifindex;
9593         rtnl_unlock();
9594
9595         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9596 }
9597
9598 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9599                                        struct bpf_link_info *info)
9600 {
9601         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9602         u32 ifindex = 0;
9603
9604         rtnl_lock();
9605         if (xdp_link->dev)
9606                 ifindex = xdp_link->dev->ifindex;
9607         rtnl_unlock();
9608
9609         info->xdp.ifindex = ifindex;
9610         return 0;
9611 }
9612
9613 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9614                                struct bpf_prog *old_prog)
9615 {
9616         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9617         enum bpf_xdp_mode mode;
9618         bpf_op_t bpf_op;
9619         int err = 0;
9620
9621         rtnl_lock();
9622
9623         /* link might have been auto-released already, so fail */
9624         if (!xdp_link->dev) {
9625                 err = -ENOLINK;
9626                 goto out_unlock;
9627         }
9628
9629         if (old_prog && link->prog != old_prog) {
9630                 err = -EPERM;
9631                 goto out_unlock;
9632         }
9633         old_prog = link->prog;
9634         if (old_prog == new_prog) {
9635                 /* no-op, don't disturb drivers */
9636                 bpf_prog_put(new_prog);
9637                 goto out_unlock;
9638         }
9639
9640         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9641         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9642         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9643                               xdp_link->flags, new_prog);
9644         if (err)
9645                 goto out_unlock;
9646
9647         old_prog = xchg(&link->prog, new_prog);
9648         bpf_prog_put(old_prog);
9649
9650 out_unlock:
9651         rtnl_unlock();
9652         return err;
9653 }
9654
9655 static const struct bpf_link_ops bpf_xdp_link_lops = {
9656         .release = bpf_xdp_link_release,
9657         .dealloc = bpf_xdp_link_dealloc,
9658         .detach = bpf_xdp_link_detach,
9659         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9660         .fill_link_info = bpf_xdp_link_fill_link_info,
9661         .update_prog = bpf_xdp_link_update,
9662 };
9663
9664 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9665 {
9666         struct net *net = current->nsproxy->net_ns;
9667         struct bpf_link_primer link_primer;
9668         struct bpf_xdp_link *link;
9669         struct net_device *dev;
9670         int err, fd;
9671
9672         rtnl_lock();
9673         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9674         if (!dev) {
9675                 rtnl_unlock();
9676                 return -EINVAL;
9677         }
9678
9679         link = kzalloc(sizeof(*link), GFP_USER);
9680         if (!link) {
9681                 err = -ENOMEM;
9682                 goto unlock;
9683         }
9684
9685         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9686         link->dev = dev;
9687         link->flags = attr->link_create.flags;
9688
9689         err = bpf_link_prime(&link->link, &link_primer);
9690         if (err) {
9691                 kfree(link);
9692                 goto unlock;
9693         }
9694
9695         err = dev_xdp_attach_link(dev, NULL, link);
9696         rtnl_unlock();
9697
9698         if (err) {
9699                 link->dev = NULL;
9700                 bpf_link_cleanup(&link_primer);
9701                 goto out_put_dev;
9702         }
9703
9704         fd = bpf_link_settle(&link_primer);
9705         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9706         dev_put(dev);
9707         return fd;
9708
9709 unlock:
9710         rtnl_unlock();
9711
9712 out_put_dev:
9713         dev_put(dev);
9714         return err;
9715 }
9716
9717 /**
9718  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9719  *      @dev: device
9720  *      @extack: netlink extended ack
9721  *      @fd: new program fd or negative value to clear
9722  *      @expected_fd: old program fd that userspace expects to replace or clear
9723  *      @flags: xdp-related flags
9724  *
9725  *      Set or clear a bpf program for a device
9726  */
9727 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9728                       int fd, int expected_fd, u32 flags)
9729 {
9730         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9731         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9732         int err;
9733
9734         ASSERT_RTNL();
9735
9736         if (fd >= 0) {
9737                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9738                                                  mode != XDP_MODE_SKB);
9739                 if (IS_ERR(new_prog))
9740                         return PTR_ERR(new_prog);
9741         }
9742
9743         if (expected_fd >= 0) {
9744                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9745                                                  mode != XDP_MODE_SKB);
9746                 if (IS_ERR(old_prog)) {
9747                         err = PTR_ERR(old_prog);
9748                         old_prog = NULL;
9749                         goto err_out;
9750                 }
9751         }
9752
9753         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9754
9755 err_out:
9756         if (err && new_prog)
9757                 bpf_prog_put(new_prog);
9758         if (old_prog)
9759                 bpf_prog_put(old_prog);
9760         return err;
9761 }
9762
9763 /**
9764  *      dev_new_index   -       allocate an ifindex
9765  *      @net: the applicable net namespace
9766  *
9767  *      Returns a suitable unique value for a new device interface
9768  *      number.  The caller must hold the rtnl semaphore or the
9769  *      dev_base_lock to be sure it remains unique.
9770  */
9771 static int dev_new_index(struct net *net)
9772 {
9773         int ifindex = net->ifindex;
9774
9775         for (;;) {
9776                 if (++ifindex <= 0)
9777                         ifindex = 1;
9778                 if (!__dev_get_by_index(net, ifindex))
9779                         return net->ifindex = ifindex;
9780         }
9781 }
9782
9783 /* Delayed registration/unregisteration */
9784 static LIST_HEAD(net_todo_list);
9785 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9786
9787 static void net_set_todo(struct net_device *dev)
9788 {
9789         list_add_tail(&dev->todo_list, &net_todo_list);
9790         dev_net(dev)->dev_unreg_count++;
9791 }
9792
9793 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9794         struct net_device *upper, netdev_features_t features)
9795 {
9796         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9797         netdev_features_t feature;
9798         int feature_bit;
9799
9800         for_each_netdev_feature(upper_disables, feature_bit) {
9801                 feature = __NETIF_F_BIT(feature_bit);
9802                 if (!(upper->wanted_features & feature)
9803                     && (features & feature)) {
9804                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9805                                    &feature, upper->name);
9806                         features &= ~feature;
9807                 }
9808         }
9809
9810         return features;
9811 }
9812
9813 static void netdev_sync_lower_features(struct net_device *upper,
9814         struct net_device *lower, netdev_features_t features)
9815 {
9816         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9817         netdev_features_t feature;
9818         int feature_bit;
9819
9820         for_each_netdev_feature(upper_disables, feature_bit) {
9821                 feature = __NETIF_F_BIT(feature_bit);
9822                 if (!(features & feature) && (lower->features & feature)) {
9823                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9824                                    &feature, lower->name);
9825                         lower->wanted_features &= ~feature;
9826                         __netdev_update_features(lower);
9827
9828                         if (unlikely(lower->features & feature))
9829                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9830                                             &feature, lower->name);
9831                         else
9832                                 netdev_features_change(lower);
9833                 }
9834         }
9835 }
9836
9837 static netdev_features_t netdev_fix_features(struct net_device *dev,
9838         netdev_features_t features)
9839 {
9840         /* Fix illegal checksum combinations */
9841         if ((features & NETIF_F_HW_CSUM) &&
9842             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9843                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9844                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9845         }
9846
9847         /* TSO requires that SG is present as well. */
9848         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9849                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9850                 features &= ~NETIF_F_ALL_TSO;
9851         }
9852
9853         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9854                                         !(features & NETIF_F_IP_CSUM)) {
9855                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9856                 features &= ~NETIF_F_TSO;
9857                 features &= ~NETIF_F_TSO_ECN;
9858         }
9859
9860         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9861                                          !(features & NETIF_F_IPV6_CSUM)) {
9862                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9863                 features &= ~NETIF_F_TSO6;
9864         }
9865
9866         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9867         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9868                 features &= ~NETIF_F_TSO_MANGLEID;
9869
9870         /* TSO ECN requires that TSO is present as well. */
9871         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9872                 features &= ~NETIF_F_TSO_ECN;
9873
9874         /* Software GSO depends on SG. */
9875         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9876                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9877                 features &= ~NETIF_F_GSO;
9878         }
9879
9880         /* GSO partial features require GSO partial be set */
9881         if ((features & dev->gso_partial_features) &&
9882             !(features & NETIF_F_GSO_PARTIAL)) {
9883                 netdev_dbg(dev,
9884                            "Dropping partially supported GSO features since no GSO partial.\n");
9885                 features &= ~dev->gso_partial_features;
9886         }
9887
9888         if (!(features & NETIF_F_RXCSUM)) {
9889                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9890                  * successfully merged by hardware must also have the
9891                  * checksum verified by hardware.  If the user does not
9892                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9893                  */
9894                 if (features & NETIF_F_GRO_HW) {
9895                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9896                         features &= ~NETIF_F_GRO_HW;
9897                 }
9898         }
9899
9900         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9901         if (features & NETIF_F_RXFCS) {
9902                 if (features & NETIF_F_LRO) {
9903                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9904                         features &= ~NETIF_F_LRO;
9905                 }
9906
9907                 if (features & NETIF_F_GRO_HW) {
9908                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9909                         features &= ~NETIF_F_GRO_HW;
9910                 }
9911         }
9912
9913         if (features & NETIF_F_HW_TLS_TX) {
9914                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9915                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9916                 bool hw_csum = features & NETIF_F_HW_CSUM;
9917
9918                 if (!ip_csum && !hw_csum) {
9919                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9920                         features &= ~NETIF_F_HW_TLS_TX;
9921                 }
9922         }
9923
9924         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9925                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9926                 features &= ~NETIF_F_HW_TLS_RX;
9927         }
9928
9929         return features;
9930 }
9931
9932 int __netdev_update_features(struct net_device *dev)
9933 {
9934         struct net_device *upper, *lower;
9935         netdev_features_t features;
9936         struct list_head *iter;
9937         int err = -1;
9938
9939         ASSERT_RTNL();
9940
9941         features = netdev_get_wanted_features(dev);
9942
9943         if (dev->netdev_ops->ndo_fix_features)
9944                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9945
9946         /* driver might be less strict about feature dependencies */
9947         features = netdev_fix_features(dev, features);
9948
9949         /* some features can't be enabled if they're off on an upper device */
9950         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9951                 features = netdev_sync_upper_features(dev, upper, features);
9952
9953         if (dev->features == features)
9954                 goto sync_lower;
9955
9956         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9957                 &dev->features, &features);
9958
9959         if (dev->netdev_ops->ndo_set_features)
9960                 err = dev->netdev_ops->ndo_set_features(dev, features);
9961         else
9962                 err = 0;
9963
9964         if (unlikely(err < 0)) {
9965                 netdev_err(dev,
9966                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9967                         err, &features, &dev->features);
9968                 /* return non-0 since some features might have changed and
9969                  * it's better to fire a spurious notification than miss it
9970                  */
9971                 return -1;
9972         }
9973
9974 sync_lower:
9975         /* some features must be disabled on lower devices when disabled
9976          * on an upper device (think: bonding master or bridge)
9977          */
9978         netdev_for_each_lower_dev(dev, lower, iter)
9979                 netdev_sync_lower_features(dev, lower, features);
9980
9981         if (!err) {
9982                 netdev_features_t diff = features ^ dev->features;
9983
9984                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9985                         /* udp_tunnel_{get,drop}_rx_info both need
9986                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9987                          * device, or they won't do anything.
9988                          * Thus we need to update dev->features
9989                          * *before* calling udp_tunnel_get_rx_info,
9990                          * but *after* calling udp_tunnel_drop_rx_info.
9991                          */
9992                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9993                                 dev->features = features;
9994                                 udp_tunnel_get_rx_info(dev);
9995                         } else {
9996                                 udp_tunnel_drop_rx_info(dev);
9997                         }
9998                 }
9999
10000                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10001                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10002                                 dev->features = features;
10003                                 err |= vlan_get_rx_ctag_filter_info(dev);
10004                         } else {
10005                                 vlan_drop_rx_ctag_filter_info(dev);
10006                         }
10007                 }
10008
10009                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10010                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10011                                 dev->features = features;
10012                                 err |= vlan_get_rx_stag_filter_info(dev);
10013                         } else {
10014                                 vlan_drop_rx_stag_filter_info(dev);
10015                         }
10016                 }
10017
10018                 dev->features = features;
10019         }
10020
10021         return err < 0 ? 0 : 1;
10022 }
10023
10024 /**
10025  *      netdev_update_features - recalculate device features
10026  *      @dev: the device to check
10027  *
10028  *      Recalculate dev->features set and send notifications if it
10029  *      has changed. Should be called after driver or hardware dependent
10030  *      conditions might have changed that influence the features.
10031  */
10032 void netdev_update_features(struct net_device *dev)
10033 {
10034         if (__netdev_update_features(dev))
10035                 netdev_features_change(dev);
10036 }
10037 EXPORT_SYMBOL(netdev_update_features);
10038
10039 /**
10040  *      netdev_change_features - recalculate device features
10041  *      @dev: the device to check
10042  *
10043  *      Recalculate dev->features set and send notifications even
10044  *      if they have not changed. Should be called instead of
10045  *      netdev_update_features() if also dev->vlan_features might
10046  *      have changed to allow the changes to be propagated to stacked
10047  *      VLAN devices.
10048  */
10049 void netdev_change_features(struct net_device *dev)
10050 {
10051         __netdev_update_features(dev);
10052         netdev_features_change(dev);
10053 }
10054 EXPORT_SYMBOL(netdev_change_features);
10055
10056 /**
10057  *      netif_stacked_transfer_operstate -      transfer operstate
10058  *      @rootdev: the root or lower level device to transfer state from
10059  *      @dev: the device to transfer operstate to
10060  *
10061  *      Transfer operational state from root to device. This is normally
10062  *      called when a stacking relationship exists between the root
10063  *      device and the device(a leaf device).
10064  */
10065 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10066                                         struct net_device *dev)
10067 {
10068         if (rootdev->operstate == IF_OPER_DORMANT)
10069                 netif_dormant_on(dev);
10070         else
10071                 netif_dormant_off(dev);
10072
10073         if (rootdev->operstate == IF_OPER_TESTING)
10074                 netif_testing_on(dev);
10075         else
10076                 netif_testing_off(dev);
10077
10078         if (netif_carrier_ok(rootdev))
10079                 netif_carrier_on(dev);
10080         else
10081                 netif_carrier_off(dev);
10082 }
10083 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10084
10085 static int netif_alloc_rx_queues(struct net_device *dev)
10086 {
10087         unsigned int i, count = dev->num_rx_queues;
10088         struct netdev_rx_queue *rx;
10089         size_t sz = count * sizeof(*rx);
10090         int err = 0;
10091
10092         BUG_ON(count < 1);
10093
10094         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10095         if (!rx)
10096                 return -ENOMEM;
10097
10098         dev->_rx = rx;
10099
10100         for (i = 0; i < count; i++) {
10101                 rx[i].dev = dev;
10102
10103                 /* XDP RX-queue setup */
10104                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10105                 if (err < 0)
10106                         goto err_rxq_info;
10107         }
10108         return 0;
10109
10110 err_rxq_info:
10111         /* Rollback successful reg's and free other resources */
10112         while (i--)
10113                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10114         kvfree(dev->_rx);
10115         dev->_rx = NULL;
10116         return err;
10117 }
10118
10119 static void netif_free_rx_queues(struct net_device *dev)
10120 {
10121         unsigned int i, count = dev->num_rx_queues;
10122
10123         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10124         if (!dev->_rx)
10125                 return;
10126
10127         for (i = 0; i < count; i++)
10128                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10129
10130         kvfree(dev->_rx);
10131 }
10132
10133 static void netdev_init_one_queue(struct net_device *dev,
10134                                   struct netdev_queue *queue, void *_unused)
10135 {
10136         /* Initialize queue lock */
10137         spin_lock_init(&queue->_xmit_lock);
10138         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10139         queue->xmit_lock_owner = -1;
10140         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10141         queue->dev = dev;
10142 #ifdef CONFIG_BQL
10143         dql_init(&queue->dql, HZ);
10144 #endif
10145 }
10146
10147 static void netif_free_tx_queues(struct net_device *dev)
10148 {
10149         kvfree(dev->_tx);
10150 }
10151
10152 static int netif_alloc_netdev_queues(struct net_device *dev)
10153 {
10154         unsigned int count = dev->num_tx_queues;
10155         struct netdev_queue *tx;
10156         size_t sz = count * sizeof(*tx);
10157
10158         if (count < 1 || count > 0xffff)
10159                 return -EINVAL;
10160
10161         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10162         if (!tx)
10163                 return -ENOMEM;
10164
10165         dev->_tx = tx;
10166
10167         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10168         spin_lock_init(&dev->tx_global_lock);
10169
10170         return 0;
10171 }
10172
10173 void netif_tx_stop_all_queues(struct net_device *dev)
10174 {
10175         unsigned int i;
10176
10177         for (i = 0; i < dev->num_tx_queues; i++) {
10178                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10179
10180                 netif_tx_stop_queue(txq);
10181         }
10182 }
10183 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10184
10185 /**
10186  *      register_netdevice      - register a network device
10187  *      @dev: device to register
10188  *
10189  *      Take a completed network device structure and add it to the kernel
10190  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10191  *      chain. 0 is returned on success. A negative errno code is returned
10192  *      on a failure to set up the device, or if the name is a duplicate.
10193  *
10194  *      Callers must hold the rtnl semaphore. You may want
10195  *      register_netdev() instead of this.
10196  *
10197  *      BUGS:
10198  *      The locking appears insufficient to guarantee two parallel registers
10199  *      will not get the same name.
10200  */
10201
10202 int register_netdevice(struct net_device *dev)
10203 {
10204         int ret;
10205         struct net *net = dev_net(dev);
10206
10207         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10208                      NETDEV_FEATURE_COUNT);
10209         BUG_ON(dev_boot_phase);
10210         ASSERT_RTNL();
10211
10212         might_sleep();
10213
10214         /* When net_device's are persistent, this will be fatal. */
10215         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10216         BUG_ON(!net);
10217
10218         ret = ethtool_check_ops(dev->ethtool_ops);
10219         if (ret)
10220                 return ret;
10221
10222         spin_lock_init(&dev->addr_list_lock);
10223         netdev_set_addr_lockdep_class(dev);
10224
10225         ret = dev_get_valid_name(net, dev, dev->name);
10226         if (ret < 0)
10227                 goto out;
10228
10229         ret = -ENOMEM;
10230         dev->name_node = netdev_name_node_head_alloc(dev);
10231         if (!dev->name_node)
10232                 goto out;
10233
10234         /* Init, if this function is available */
10235         if (dev->netdev_ops->ndo_init) {
10236                 ret = dev->netdev_ops->ndo_init(dev);
10237                 if (ret) {
10238                         if (ret > 0)
10239                                 ret = -EIO;
10240                         goto err_free_name;
10241                 }
10242         }
10243
10244         if (((dev->hw_features | dev->features) &
10245              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10246             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10247              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10248                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10249                 ret = -EINVAL;
10250                 goto err_uninit;
10251         }
10252
10253         ret = -EBUSY;
10254         if (!dev->ifindex)
10255                 dev->ifindex = dev_new_index(net);
10256         else if (__dev_get_by_index(net, dev->ifindex))
10257                 goto err_uninit;
10258
10259         /* Transfer changeable features to wanted_features and enable
10260          * software offloads (GSO and GRO).
10261          */
10262         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10263         dev->features |= NETIF_F_SOFT_FEATURES;
10264
10265         if (dev->udp_tunnel_nic_info) {
10266                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10267                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10268         }
10269
10270         dev->wanted_features = dev->features & dev->hw_features;
10271
10272         if (!(dev->flags & IFF_LOOPBACK))
10273                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10274
10275         /* If IPv4 TCP segmentation offload is supported we should also
10276          * allow the device to enable segmenting the frame with the option
10277          * of ignoring a static IP ID value.  This doesn't enable the
10278          * feature itself but allows the user to enable it later.
10279          */
10280         if (dev->hw_features & NETIF_F_TSO)
10281                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10282         if (dev->vlan_features & NETIF_F_TSO)
10283                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10284         if (dev->mpls_features & NETIF_F_TSO)
10285                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10286         if (dev->hw_enc_features & NETIF_F_TSO)
10287                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10288
10289         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10290          */
10291         dev->vlan_features |= NETIF_F_HIGHDMA;
10292
10293         /* Make NETIF_F_SG inheritable to tunnel devices.
10294          */
10295         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10296
10297         /* Make NETIF_F_SG inheritable to MPLS.
10298          */
10299         dev->mpls_features |= NETIF_F_SG;
10300
10301         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10302         ret = notifier_to_errno(ret);
10303         if (ret)
10304                 goto err_uninit;
10305
10306         ret = netdev_register_kobject(dev);
10307         if (ret) {
10308                 dev->reg_state = NETREG_UNREGISTERED;
10309                 goto err_uninit;
10310         }
10311         dev->reg_state = NETREG_REGISTERED;
10312
10313         __netdev_update_features(dev);
10314
10315         /*
10316          *      Default initial state at registry is that the
10317          *      device is present.
10318          */
10319
10320         set_bit(__LINK_STATE_PRESENT, &dev->state);
10321
10322         linkwatch_init_dev(dev);
10323
10324         dev_init_scheduler(dev);
10325         dev_hold(dev);
10326         list_netdevice(dev);
10327         add_device_randomness(dev->dev_addr, dev->addr_len);
10328
10329         /* If the device has permanent device address, driver should
10330          * set dev_addr and also addr_assign_type should be set to
10331          * NET_ADDR_PERM (default value).
10332          */
10333         if (dev->addr_assign_type == NET_ADDR_PERM)
10334                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10335
10336         /* Notify protocols, that a new device appeared. */
10337         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10338         ret = notifier_to_errno(ret);
10339         if (ret) {
10340                 /* Expect explicit free_netdev() on failure */
10341                 dev->needs_free_netdev = false;
10342                 unregister_netdevice_queue(dev, NULL);
10343                 goto out;
10344         }
10345         /*
10346          *      Prevent userspace races by waiting until the network
10347          *      device is fully setup before sending notifications.
10348          */
10349         if (!dev->rtnl_link_ops ||
10350             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10351                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10352
10353 out:
10354         return ret;
10355
10356 err_uninit:
10357         if (dev->netdev_ops->ndo_uninit)
10358                 dev->netdev_ops->ndo_uninit(dev);
10359         if (dev->priv_destructor)
10360                 dev->priv_destructor(dev);
10361 err_free_name:
10362         netdev_name_node_free(dev->name_node);
10363         goto out;
10364 }
10365 EXPORT_SYMBOL(register_netdevice);
10366
10367 /**
10368  *      init_dummy_netdev       - init a dummy network device for NAPI
10369  *      @dev: device to init
10370  *
10371  *      This takes a network device structure and initialize the minimum
10372  *      amount of fields so it can be used to schedule NAPI polls without
10373  *      registering a full blown interface. This is to be used by drivers
10374  *      that need to tie several hardware interfaces to a single NAPI
10375  *      poll scheduler due to HW limitations.
10376  */
10377 int init_dummy_netdev(struct net_device *dev)
10378 {
10379         /* Clear everything. Note we don't initialize spinlocks
10380          * are they aren't supposed to be taken by any of the
10381          * NAPI code and this dummy netdev is supposed to be
10382          * only ever used for NAPI polls
10383          */
10384         memset(dev, 0, sizeof(struct net_device));
10385
10386         /* make sure we BUG if trying to hit standard
10387          * register/unregister code path
10388          */
10389         dev->reg_state = NETREG_DUMMY;
10390
10391         /* NAPI wants this */
10392         INIT_LIST_HEAD(&dev->napi_list);
10393
10394         /* a dummy interface is started by default */
10395         set_bit(__LINK_STATE_PRESENT, &dev->state);
10396         set_bit(__LINK_STATE_START, &dev->state);
10397
10398         /* napi_busy_loop stats accounting wants this */
10399         dev_net_set(dev, &init_net);
10400
10401         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10402          * because users of this 'device' dont need to change
10403          * its refcount.
10404          */
10405
10406         return 0;
10407 }
10408 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10409
10410
10411 /**
10412  *      register_netdev - register a network device
10413  *      @dev: device to register
10414  *
10415  *      Take a completed network device structure and add it to the kernel
10416  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10417  *      chain. 0 is returned on success. A negative errno code is returned
10418  *      on a failure to set up the device, or if the name is a duplicate.
10419  *
10420  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10421  *      and expands the device name if you passed a format string to
10422  *      alloc_netdev.
10423  */
10424 int register_netdev(struct net_device *dev)
10425 {
10426         int err;
10427
10428         if (rtnl_lock_killable())
10429                 return -EINTR;
10430         err = register_netdevice(dev);
10431         rtnl_unlock();
10432         return err;
10433 }
10434 EXPORT_SYMBOL(register_netdev);
10435
10436 int netdev_refcnt_read(const struct net_device *dev)
10437 {
10438 #ifdef CONFIG_PCPU_DEV_REFCNT
10439         int i, refcnt = 0;
10440
10441         for_each_possible_cpu(i)
10442                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10443         return refcnt;
10444 #else
10445         return refcount_read(&dev->dev_refcnt);
10446 #endif
10447 }
10448 EXPORT_SYMBOL(netdev_refcnt_read);
10449
10450 int netdev_unregister_timeout_secs __read_mostly = 10;
10451
10452 #define WAIT_REFS_MIN_MSECS 1
10453 #define WAIT_REFS_MAX_MSECS 250
10454 /**
10455  * netdev_wait_allrefs - wait until all references are gone.
10456  * @dev: target net_device
10457  *
10458  * This is called when unregistering network devices.
10459  *
10460  * Any protocol or device that holds a reference should register
10461  * for netdevice notification, and cleanup and put back the
10462  * reference if they receive an UNREGISTER event.
10463  * We can get stuck here if buggy protocols don't correctly
10464  * call dev_put.
10465  */
10466 static void netdev_wait_allrefs(struct net_device *dev)
10467 {
10468         unsigned long rebroadcast_time, warning_time;
10469         int wait = 0, refcnt;
10470
10471         linkwatch_forget_dev(dev);
10472
10473         rebroadcast_time = warning_time = jiffies;
10474         refcnt = netdev_refcnt_read(dev);
10475
10476         while (refcnt != 1) {
10477                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10478                         rtnl_lock();
10479
10480                         /* Rebroadcast unregister notification */
10481                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10482
10483                         __rtnl_unlock();
10484                         rcu_barrier();
10485                         rtnl_lock();
10486
10487                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10488                                      &dev->state)) {
10489                                 /* We must not have linkwatch events
10490                                  * pending on unregister. If this
10491                                  * happens, we simply run the queue
10492                                  * unscheduled, resulting in a noop
10493                                  * for this device.
10494                                  */
10495                                 linkwatch_run_queue();
10496                         }
10497
10498                         __rtnl_unlock();
10499
10500                         rebroadcast_time = jiffies;
10501                 }
10502
10503                 if (!wait) {
10504                         rcu_barrier();
10505                         wait = WAIT_REFS_MIN_MSECS;
10506                 } else {
10507                         msleep(wait);
10508                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10509                 }
10510
10511                 refcnt = netdev_refcnt_read(dev);
10512
10513                 if (refcnt != 1 &&
10514                     time_after(jiffies, warning_time +
10515                                netdev_unregister_timeout_secs * HZ)) {
10516                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10517                                  dev->name, refcnt);
10518                         warning_time = jiffies;
10519                 }
10520         }
10521 }
10522
10523 /* The sequence is:
10524  *
10525  *      rtnl_lock();
10526  *      ...
10527  *      register_netdevice(x1);
10528  *      register_netdevice(x2);
10529  *      ...
10530  *      unregister_netdevice(y1);
10531  *      unregister_netdevice(y2);
10532  *      ...
10533  *      rtnl_unlock();
10534  *      free_netdev(y1);
10535  *      free_netdev(y2);
10536  *
10537  * We are invoked by rtnl_unlock().
10538  * This allows us to deal with problems:
10539  * 1) We can delete sysfs objects which invoke hotplug
10540  *    without deadlocking with linkwatch via keventd.
10541  * 2) Since we run with the RTNL semaphore not held, we can sleep
10542  *    safely in order to wait for the netdev refcnt to drop to zero.
10543  *
10544  * We must not return until all unregister events added during
10545  * the interval the lock was held have been completed.
10546  */
10547 void netdev_run_todo(void)
10548 {
10549         struct list_head list;
10550 #ifdef CONFIG_LOCKDEP
10551         struct list_head unlink_list;
10552
10553         list_replace_init(&net_unlink_list, &unlink_list);
10554
10555         while (!list_empty(&unlink_list)) {
10556                 struct net_device *dev = list_first_entry(&unlink_list,
10557                                                           struct net_device,
10558                                                           unlink_list);
10559                 list_del_init(&dev->unlink_list);
10560                 dev->nested_level = dev->lower_level - 1;
10561         }
10562 #endif
10563
10564         /* Snapshot list, allow later requests */
10565         list_replace_init(&net_todo_list, &list);
10566
10567         __rtnl_unlock();
10568
10569
10570         /* Wait for rcu callbacks to finish before next phase */
10571         if (!list_empty(&list))
10572                 rcu_barrier();
10573
10574         while (!list_empty(&list)) {
10575                 struct net_device *dev
10576                         = list_first_entry(&list, struct net_device, todo_list);
10577                 list_del(&dev->todo_list);
10578
10579                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10580                         pr_err("network todo '%s' but state %d\n",
10581                                dev->name, dev->reg_state);
10582                         dump_stack();
10583                         continue;
10584                 }
10585
10586                 dev->reg_state = NETREG_UNREGISTERED;
10587
10588                 netdev_wait_allrefs(dev);
10589
10590                 /* paranoia */
10591                 BUG_ON(netdev_refcnt_read(dev) != 1);
10592                 BUG_ON(!list_empty(&dev->ptype_all));
10593                 BUG_ON(!list_empty(&dev->ptype_specific));
10594                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10595                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10596 #if IS_ENABLED(CONFIG_DECNET)
10597                 WARN_ON(dev->dn_ptr);
10598 #endif
10599                 if (dev->priv_destructor)
10600                         dev->priv_destructor(dev);
10601                 if (dev->needs_free_netdev)
10602                         free_netdev(dev);
10603
10604                 /* Report a network device has been unregistered */
10605                 rtnl_lock();
10606                 dev_net(dev)->dev_unreg_count--;
10607                 __rtnl_unlock();
10608                 wake_up(&netdev_unregistering_wq);
10609
10610                 /* Free network device */
10611                 kobject_put(&dev->dev.kobj);
10612         }
10613 }
10614
10615 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10616  * all the same fields in the same order as net_device_stats, with only
10617  * the type differing, but rtnl_link_stats64 may have additional fields
10618  * at the end for newer counters.
10619  */
10620 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10621                              const struct net_device_stats *netdev_stats)
10622 {
10623 #if BITS_PER_LONG == 64
10624         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10625         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10626         /* zero out counters that only exist in rtnl_link_stats64 */
10627         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10628                sizeof(*stats64) - sizeof(*netdev_stats));
10629 #else
10630         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10631         const unsigned long *src = (const unsigned long *)netdev_stats;
10632         u64 *dst = (u64 *)stats64;
10633
10634         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10635         for (i = 0; i < n; i++)
10636                 dst[i] = src[i];
10637         /* zero out counters that only exist in rtnl_link_stats64 */
10638         memset((char *)stats64 + n * sizeof(u64), 0,
10639                sizeof(*stats64) - n * sizeof(u64));
10640 #endif
10641 }
10642 EXPORT_SYMBOL(netdev_stats_to_stats64);
10643
10644 /**
10645  *      dev_get_stats   - get network device statistics
10646  *      @dev: device to get statistics from
10647  *      @storage: place to store stats
10648  *
10649  *      Get network statistics from device. Return @storage.
10650  *      The device driver may provide its own method by setting
10651  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10652  *      otherwise the internal statistics structure is used.
10653  */
10654 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10655                                         struct rtnl_link_stats64 *storage)
10656 {
10657         const struct net_device_ops *ops = dev->netdev_ops;
10658
10659         if (ops->ndo_get_stats64) {
10660                 memset(storage, 0, sizeof(*storage));
10661                 ops->ndo_get_stats64(dev, storage);
10662         } else if (ops->ndo_get_stats) {
10663                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10664         } else {
10665                 netdev_stats_to_stats64(storage, &dev->stats);
10666         }
10667         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10668         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10669         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10670         return storage;
10671 }
10672 EXPORT_SYMBOL(dev_get_stats);
10673
10674 /**
10675  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10676  *      @s: place to store stats
10677  *      @netstats: per-cpu network stats to read from
10678  *
10679  *      Read per-cpu network statistics and populate the related fields in @s.
10680  */
10681 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10682                            const struct pcpu_sw_netstats __percpu *netstats)
10683 {
10684         int cpu;
10685
10686         for_each_possible_cpu(cpu) {
10687                 const struct pcpu_sw_netstats *stats;
10688                 struct pcpu_sw_netstats tmp;
10689                 unsigned int start;
10690
10691                 stats = per_cpu_ptr(netstats, cpu);
10692                 do {
10693                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10694                         tmp.rx_packets = stats->rx_packets;
10695                         tmp.rx_bytes   = stats->rx_bytes;
10696                         tmp.tx_packets = stats->tx_packets;
10697                         tmp.tx_bytes   = stats->tx_bytes;
10698                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10699
10700                 s->rx_packets += tmp.rx_packets;
10701                 s->rx_bytes   += tmp.rx_bytes;
10702                 s->tx_packets += tmp.tx_packets;
10703                 s->tx_bytes   += tmp.tx_bytes;
10704         }
10705 }
10706 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10707
10708 /**
10709  *      dev_get_tstats64 - ndo_get_stats64 implementation
10710  *      @dev: device to get statistics from
10711  *      @s: place to store stats
10712  *
10713  *      Populate @s from dev->stats and dev->tstats. Can be used as
10714  *      ndo_get_stats64() callback.
10715  */
10716 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10717 {
10718         netdev_stats_to_stats64(s, &dev->stats);
10719         dev_fetch_sw_netstats(s, dev->tstats);
10720 }
10721 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10722
10723 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10724 {
10725         struct netdev_queue *queue = dev_ingress_queue(dev);
10726
10727 #ifdef CONFIG_NET_CLS_ACT
10728         if (queue)
10729                 return queue;
10730         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10731         if (!queue)
10732                 return NULL;
10733         netdev_init_one_queue(dev, queue, NULL);
10734         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10735         queue->qdisc_sleeping = &noop_qdisc;
10736         rcu_assign_pointer(dev->ingress_queue, queue);
10737 #endif
10738         return queue;
10739 }
10740
10741 static const struct ethtool_ops default_ethtool_ops;
10742
10743 void netdev_set_default_ethtool_ops(struct net_device *dev,
10744                                     const struct ethtool_ops *ops)
10745 {
10746         if (dev->ethtool_ops == &default_ethtool_ops)
10747                 dev->ethtool_ops = ops;
10748 }
10749 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10750
10751 void netdev_freemem(struct net_device *dev)
10752 {
10753         char *addr = (char *)dev - dev->padded;
10754
10755         kvfree(addr);
10756 }
10757
10758 /**
10759  * alloc_netdev_mqs - allocate network device
10760  * @sizeof_priv: size of private data to allocate space for
10761  * @name: device name format string
10762  * @name_assign_type: origin of device name
10763  * @setup: callback to initialize device
10764  * @txqs: the number of TX subqueues to allocate
10765  * @rxqs: the number of RX subqueues to allocate
10766  *
10767  * Allocates a struct net_device with private data area for driver use
10768  * and performs basic initialization.  Also allocates subqueue structs
10769  * for each queue on the device.
10770  */
10771 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10772                 unsigned char name_assign_type,
10773                 void (*setup)(struct net_device *),
10774                 unsigned int txqs, unsigned int rxqs)
10775 {
10776         struct net_device *dev;
10777         unsigned int alloc_size;
10778         struct net_device *p;
10779
10780         BUG_ON(strlen(name) >= sizeof(dev->name));
10781
10782         if (txqs < 1) {
10783                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10784                 return NULL;
10785         }
10786
10787         if (rxqs < 1) {
10788                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10789                 return NULL;
10790         }
10791
10792         alloc_size = sizeof(struct net_device);
10793         if (sizeof_priv) {
10794                 /* ensure 32-byte alignment of private area */
10795                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10796                 alloc_size += sizeof_priv;
10797         }
10798         /* ensure 32-byte alignment of whole construct */
10799         alloc_size += NETDEV_ALIGN - 1;
10800
10801         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10802         if (!p)
10803                 return NULL;
10804
10805         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10806         dev->padded = (char *)dev - (char *)p;
10807
10808 #ifdef CONFIG_PCPU_DEV_REFCNT
10809         dev->pcpu_refcnt = alloc_percpu(int);
10810         if (!dev->pcpu_refcnt)
10811                 goto free_dev;
10812         dev_hold(dev);
10813 #else
10814         refcount_set(&dev->dev_refcnt, 1);
10815 #endif
10816
10817         if (dev_addr_init(dev))
10818                 goto free_pcpu;
10819
10820         dev_mc_init(dev);
10821         dev_uc_init(dev);
10822
10823         dev_net_set(dev, &init_net);
10824
10825         dev->gso_max_size = GSO_MAX_SIZE;
10826         dev->gso_max_segs = GSO_MAX_SEGS;
10827         dev->upper_level = 1;
10828         dev->lower_level = 1;
10829 #ifdef CONFIG_LOCKDEP
10830         dev->nested_level = 0;
10831         INIT_LIST_HEAD(&dev->unlink_list);
10832 #endif
10833
10834         INIT_LIST_HEAD(&dev->napi_list);
10835         INIT_LIST_HEAD(&dev->unreg_list);
10836         INIT_LIST_HEAD(&dev->close_list);
10837         INIT_LIST_HEAD(&dev->link_watch_list);
10838         INIT_LIST_HEAD(&dev->adj_list.upper);
10839         INIT_LIST_HEAD(&dev->adj_list.lower);
10840         INIT_LIST_HEAD(&dev->ptype_all);
10841         INIT_LIST_HEAD(&dev->ptype_specific);
10842         INIT_LIST_HEAD(&dev->net_notifier_list);
10843 #ifdef CONFIG_NET_SCHED
10844         hash_init(dev->qdisc_hash);
10845 #endif
10846         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10847         setup(dev);
10848
10849         if (!dev->tx_queue_len) {
10850                 dev->priv_flags |= IFF_NO_QUEUE;
10851                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10852         }
10853
10854         dev->num_tx_queues = txqs;
10855         dev->real_num_tx_queues = txqs;
10856         if (netif_alloc_netdev_queues(dev))
10857                 goto free_all;
10858
10859         dev->num_rx_queues = rxqs;
10860         dev->real_num_rx_queues = rxqs;
10861         if (netif_alloc_rx_queues(dev))
10862                 goto free_all;
10863
10864         strcpy(dev->name, name);
10865         dev->name_assign_type = name_assign_type;
10866         dev->group = INIT_NETDEV_GROUP;
10867         if (!dev->ethtool_ops)
10868                 dev->ethtool_ops = &default_ethtool_ops;
10869
10870         nf_hook_ingress_init(dev);
10871
10872         return dev;
10873
10874 free_all:
10875         free_netdev(dev);
10876         return NULL;
10877
10878 free_pcpu:
10879 #ifdef CONFIG_PCPU_DEV_REFCNT
10880         free_percpu(dev->pcpu_refcnt);
10881 free_dev:
10882 #endif
10883         netdev_freemem(dev);
10884         return NULL;
10885 }
10886 EXPORT_SYMBOL(alloc_netdev_mqs);
10887
10888 /**
10889  * free_netdev - free network device
10890  * @dev: device
10891  *
10892  * This function does the last stage of destroying an allocated device
10893  * interface. The reference to the device object is released. If this
10894  * is the last reference then it will be freed.Must be called in process
10895  * context.
10896  */
10897 void free_netdev(struct net_device *dev)
10898 {
10899         struct napi_struct *p, *n;
10900
10901         might_sleep();
10902
10903         /* When called immediately after register_netdevice() failed the unwind
10904          * handling may still be dismantling the device. Handle that case by
10905          * deferring the free.
10906          */
10907         if (dev->reg_state == NETREG_UNREGISTERING) {
10908                 ASSERT_RTNL();
10909                 dev->needs_free_netdev = true;
10910                 return;
10911         }
10912
10913         netif_free_tx_queues(dev);
10914         netif_free_rx_queues(dev);
10915
10916         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10917
10918         /* Flush device addresses */
10919         dev_addr_flush(dev);
10920
10921         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10922                 netif_napi_del(p);
10923
10924 #ifdef CONFIG_PCPU_DEV_REFCNT
10925         free_percpu(dev->pcpu_refcnt);
10926         dev->pcpu_refcnt = NULL;
10927 #endif
10928         free_percpu(dev->xdp_bulkq);
10929         dev->xdp_bulkq = NULL;
10930
10931         /*  Compatibility with error handling in drivers */
10932         if (dev->reg_state == NETREG_UNINITIALIZED) {
10933                 netdev_freemem(dev);
10934                 return;
10935         }
10936
10937         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10938         dev->reg_state = NETREG_RELEASED;
10939
10940         /* will free via device release */
10941         put_device(&dev->dev);
10942 }
10943 EXPORT_SYMBOL(free_netdev);
10944
10945 /**
10946  *      synchronize_net -  Synchronize with packet receive processing
10947  *
10948  *      Wait for packets currently being received to be done.
10949  *      Does not block later packets from starting.
10950  */
10951 void synchronize_net(void)
10952 {
10953         might_sleep();
10954         if (rtnl_is_locked())
10955                 synchronize_rcu_expedited();
10956         else
10957                 synchronize_rcu();
10958 }
10959 EXPORT_SYMBOL(synchronize_net);
10960
10961 /**
10962  *      unregister_netdevice_queue - remove device from the kernel
10963  *      @dev: device
10964  *      @head: list
10965  *
10966  *      This function shuts down a device interface and removes it
10967  *      from the kernel tables.
10968  *      If head not NULL, device is queued to be unregistered later.
10969  *
10970  *      Callers must hold the rtnl semaphore.  You may want
10971  *      unregister_netdev() instead of this.
10972  */
10973
10974 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10975 {
10976         ASSERT_RTNL();
10977
10978         if (head) {
10979                 list_move_tail(&dev->unreg_list, head);
10980         } else {
10981                 LIST_HEAD(single);
10982
10983                 list_add(&dev->unreg_list, &single);
10984                 unregister_netdevice_many(&single);
10985         }
10986 }
10987 EXPORT_SYMBOL(unregister_netdevice_queue);
10988
10989 /**
10990  *      unregister_netdevice_many - unregister many devices
10991  *      @head: list of devices
10992  *
10993  *  Note: As most callers use a stack allocated list_head,
10994  *  we force a list_del() to make sure stack wont be corrupted later.
10995  */
10996 void unregister_netdevice_many(struct list_head *head)
10997 {
10998         struct net_device *dev, *tmp;
10999         LIST_HEAD(close_head);
11000
11001         BUG_ON(dev_boot_phase);
11002         ASSERT_RTNL();
11003
11004         if (list_empty(head))
11005                 return;
11006
11007         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11008                 /* Some devices call without registering
11009                  * for initialization unwind. Remove those
11010                  * devices and proceed with the remaining.
11011                  */
11012                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11013                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11014                                  dev->name, dev);
11015
11016                         WARN_ON(1);
11017                         list_del(&dev->unreg_list);
11018                         continue;
11019                 }
11020                 dev->dismantle = true;
11021                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11022         }
11023
11024         /* If device is running, close it first. */
11025         list_for_each_entry(dev, head, unreg_list)
11026                 list_add_tail(&dev->close_list, &close_head);
11027         dev_close_many(&close_head, true);
11028
11029         list_for_each_entry(dev, head, unreg_list) {
11030                 /* And unlink it from device chain. */
11031                 unlist_netdevice(dev);
11032
11033                 dev->reg_state = NETREG_UNREGISTERING;
11034         }
11035         flush_all_backlogs();
11036
11037         synchronize_net();
11038
11039         list_for_each_entry(dev, head, unreg_list) {
11040                 struct sk_buff *skb = NULL;
11041
11042                 /* Shutdown queueing discipline. */
11043                 dev_shutdown(dev);
11044
11045                 dev_xdp_uninstall(dev);
11046
11047                 /* Notify protocols, that we are about to destroy
11048                  * this device. They should clean all the things.
11049                  */
11050                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11051
11052                 if (!dev->rtnl_link_ops ||
11053                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11054                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11055                                                      GFP_KERNEL, NULL, 0);
11056
11057                 /*
11058                  *      Flush the unicast and multicast chains
11059                  */
11060                 dev_uc_flush(dev);
11061                 dev_mc_flush(dev);
11062
11063                 netdev_name_node_alt_flush(dev);
11064                 netdev_name_node_free(dev->name_node);
11065
11066                 if (dev->netdev_ops->ndo_uninit)
11067                         dev->netdev_ops->ndo_uninit(dev);
11068
11069                 if (skb)
11070                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11071
11072                 /* Notifier chain MUST detach us all upper devices. */
11073                 WARN_ON(netdev_has_any_upper_dev(dev));
11074                 WARN_ON(netdev_has_any_lower_dev(dev));
11075
11076                 /* Remove entries from kobject tree */
11077                 netdev_unregister_kobject(dev);
11078 #ifdef CONFIG_XPS
11079                 /* Remove XPS queueing entries */
11080                 netif_reset_xps_queues_gt(dev, 0);
11081 #endif
11082         }
11083
11084         synchronize_net();
11085
11086         list_for_each_entry(dev, head, unreg_list) {
11087                 dev_put(dev);
11088                 net_set_todo(dev);
11089         }
11090
11091         list_del(head);
11092 }
11093 EXPORT_SYMBOL(unregister_netdevice_many);
11094
11095 /**
11096  *      unregister_netdev - remove device from the kernel
11097  *      @dev: device
11098  *
11099  *      This function shuts down a device interface and removes it
11100  *      from the kernel tables.
11101  *
11102  *      This is just a wrapper for unregister_netdevice that takes
11103  *      the rtnl semaphore.  In general you want to use this and not
11104  *      unregister_netdevice.
11105  */
11106 void unregister_netdev(struct net_device *dev)
11107 {
11108         rtnl_lock();
11109         unregister_netdevice(dev);
11110         rtnl_unlock();
11111 }
11112 EXPORT_SYMBOL(unregister_netdev);
11113
11114 /**
11115  *      __dev_change_net_namespace - move device to different nethost namespace
11116  *      @dev: device
11117  *      @net: network namespace
11118  *      @pat: If not NULL name pattern to try if the current device name
11119  *            is already taken in the destination network namespace.
11120  *      @new_ifindex: If not zero, specifies device index in the target
11121  *                    namespace.
11122  *
11123  *      This function shuts down a device interface and moves it
11124  *      to a new network namespace. On success 0 is returned, on
11125  *      a failure a netagive errno code is returned.
11126  *
11127  *      Callers must hold the rtnl semaphore.
11128  */
11129
11130 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11131                                const char *pat, int new_ifindex)
11132 {
11133         struct net *net_old = dev_net(dev);
11134         int err, new_nsid;
11135
11136         ASSERT_RTNL();
11137
11138         /* Don't allow namespace local devices to be moved. */
11139         err = -EINVAL;
11140         if (dev->features & NETIF_F_NETNS_LOCAL)
11141                 goto out;
11142
11143         /* Ensure the device has been registrered */
11144         if (dev->reg_state != NETREG_REGISTERED)
11145                 goto out;
11146
11147         /* Get out if there is nothing todo */
11148         err = 0;
11149         if (net_eq(net_old, net))
11150                 goto out;
11151
11152         /* Pick the destination device name, and ensure
11153          * we can use it in the destination network namespace.
11154          */
11155         err = -EEXIST;
11156         if (__dev_get_by_name(net, dev->name)) {
11157                 /* We get here if we can't use the current device name */
11158                 if (!pat)
11159                         goto out;
11160                 err = dev_get_valid_name(net, dev, pat);
11161                 if (err < 0)
11162                         goto out;
11163         }
11164
11165         /* Check that new_ifindex isn't used yet. */
11166         err = -EBUSY;
11167         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11168                 goto out;
11169
11170         /*
11171          * And now a mini version of register_netdevice unregister_netdevice.
11172          */
11173
11174         /* If device is running close it first. */
11175         dev_close(dev);
11176
11177         /* And unlink it from device chain */
11178         unlist_netdevice(dev);
11179
11180         synchronize_net();
11181
11182         /* Shutdown queueing discipline. */
11183         dev_shutdown(dev);
11184
11185         /* Notify protocols, that we are about to destroy
11186          * this device. They should clean all the things.
11187          *
11188          * Note that dev->reg_state stays at NETREG_REGISTERED.
11189          * This is wanted because this way 8021q and macvlan know
11190          * the device is just moving and can keep their slaves up.
11191          */
11192         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11193         rcu_barrier();
11194
11195         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11196         /* If there is an ifindex conflict assign a new one */
11197         if (!new_ifindex) {
11198                 if (__dev_get_by_index(net, dev->ifindex))
11199                         new_ifindex = dev_new_index(net);
11200                 else
11201                         new_ifindex = dev->ifindex;
11202         }
11203
11204         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11205                             new_ifindex);
11206
11207         /*
11208          *      Flush the unicast and multicast chains
11209          */
11210         dev_uc_flush(dev);
11211         dev_mc_flush(dev);
11212
11213         /* Send a netdev-removed uevent to the old namespace */
11214         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11215         netdev_adjacent_del_links(dev);
11216
11217         /* Move per-net netdevice notifiers that are following the netdevice */
11218         move_netdevice_notifiers_dev_net(dev, net);
11219
11220         /* Actually switch the network namespace */
11221         dev_net_set(dev, net);
11222         dev->ifindex = new_ifindex;
11223
11224         /* Send a netdev-add uevent to the new namespace */
11225         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11226         netdev_adjacent_add_links(dev);
11227
11228         /* Fixup kobjects */
11229         err = device_rename(&dev->dev, dev->name);
11230         WARN_ON(err);
11231
11232         /* Adapt owner in case owning user namespace of target network
11233          * namespace is different from the original one.
11234          */
11235         err = netdev_change_owner(dev, net_old, net);
11236         WARN_ON(err);
11237
11238         /* Add the device back in the hashes */
11239         list_netdevice(dev);
11240
11241         /* Notify protocols, that a new device appeared. */
11242         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11243
11244         /*
11245          *      Prevent userspace races by waiting until the network
11246          *      device is fully setup before sending notifications.
11247          */
11248         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11249
11250         synchronize_net();
11251         err = 0;
11252 out:
11253         return err;
11254 }
11255 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11256
11257 static int dev_cpu_dead(unsigned int oldcpu)
11258 {
11259         struct sk_buff **list_skb;
11260         struct sk_buff *skb;
11261         unsigned int cpu;
11262         struct softnet_data *sd, *oldsd, *remsd = NULL;
11263
11264         local_irq_disable();
11265         cpu = smp_processor_id();
11266         sd = &per_cpu(softnet_data, cpu);
11267         oldsd = &per_cpu(softnet_data, oldcpu);
11268
11269         /* Find end of our completion_queue. */
11270         list_skb = &sd->completion_queue;
11271         while (*list_skb)
11272                 list_skb = &(*list_skb)->next;
11273         /* Append completion queue from offline CPU. */
11274         *list_skb = oldsd->completion_queue;
11275         oldsd->completion_queue = NULL;
11276
11277         /* Append output queue from offline CPU. */
11278         if (oldsd->output_queue) {
11279                 *sd->output_queue_tailp = oldsd->output_queue;
11280                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11281                 oldsd->output_queue = NULL;
11282                 oldsd->output_queue_tailp = &oldsd->output_queue;
11283         }
11284         /* Append NAPI poll list from offline CPU, with one exception :
11285          * process_backlog() must be called by cpu owning percpu backlog.
11286          * We properly handle process_queue & input_pkt_queue later.
11287          */
11288         while (!list_empty(&oldsd->poll_list)) {
11289                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11290                                                             struct napi_struct,
11291                                                             poll_list);
11292
11293                 list_del_init(&napi->poll_list);
11294                 if (napi->poll == process_backlog)
11295                         napi->state = 0;
11296                 else
11297                         ____napi_schedule(sd, napi);
11298         }
11299
11300         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11301         local_irq_enable();
11302
11303 #ifdef CONFIG_RPS
11304         remsd = oldsd->rps_ipi_list;
11305         oldsd->rps_ipi_list = NULL;
11306 #endif
11307         /* send out pending IPI's on offline CPU */
11308         net_rps_send_ipi(remsd);
11309
11310         /* Process offline CPU's input_pkt_queue */
11311         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11312                 netif_rx_ni(skb);
11313                 input_queue_head_incr(oldsd);
11314         }
11315         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11316                 netif_rx_ni(skb);
11317                 input_queue_head_incr(oldsd);
11318         }
11319
11320         return 0;
11321 }
11322
11323 /**
11324  *      netdev_increment_features - increment feature set by one
11325  *      @all: current feature set
11326  *      @one: new feature set
11327  *      @mask: mask feature set
11328  *
11329  *      Computes a new feature set after adding a device with feature set
11330  *      @one to the master device with current feature set @all.  Will not
11331  *      enable anything that is off in @mask. Returns the new feature set.
11332  */
11333 netdev_features_t netdev_increment_features(netdev_features_t all,
11334         netdev_features_t one, netdev_features_t mask)
11335 {
11336         if (mask & NETIF_F_HW_CSUM)
11337                 mask |= NETIF_F_CSUM_MASK;
11338         mask |= NETIF_F_VLAN_CHALLENGED;
11339
11340         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11341         all &= one | ~NETIF_F_ALL_FOR_ALL;
11342
11343         /* If one device supports hw checksumming, set for all. */
11344         if (all & NETIF_F_HW_CSUM)
11345                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11346
11347         return all;
11348 }
11349 EXPORT_SYMBOL(netdev_increment_features);
11350
11351 static struct hlist_head * __net_init netdev_create_hash(void)
11352 {
11353         int i;
11354         struct hlist_head *hash;
11355
11356         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11357         if (hash != NULL)
11358                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11359                         INIT_HLIST_HEAD(&hash[i]);
11360
11361         return hash;
11362 }
11363
11364 /* Initialize per network namespace state */
11365 static int __net_init netdev_init(struct net *net)
11366 {
11367         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11368                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11369
11370         if (net != &init_net)
11371                 INIT_LIST_HEAD(&net->dev_base_head);
11372
11373         net->dev_name_head = netdev_create_hash();
11374         if (net->dev_name_head == NULL)
11375                 goto err_name;
11376
11377         net->dev_index_head = netdev_create_hash();
11378         if (net->dev_index_head == NULL)
11379                 goto err_idx;
11380
11381         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11382
11383         return 0;
11384
11385 err_idx:
11386         kfree(net->dev_name_head);
11387 err_name:
11388         return -ENOMEM;
11389 }
11390
11391 /**
11392  *      netdev_drivername - network driver for the device
11393  *      @dev: network device
11394  *
11395  *      Determine network driver for device.
11396  */
11397 const char *netdev_drivername(const struct net_device *dev)
11398 {
11399         const struct device_driver *driver;
11400         const struct device *parent;
11401         const char *empty = "";
11402
11403         parent = dev->dev.parent;
11404         if (!parent)
11405                 return empty;
11406
11407         driver = parent->driver;
11408         if (driver && driver->name)
11409                 return driver->name;
11410         return empty;
11411 }
11412
11413 static void __netdev_printk(const char *level, const struct net_device *dev,
11414                             struct va_format *vaf)
11415 {
11416         if (dev && dev->dev.parent) {
11417                 dev_printk_emit(level[1] - '0',
11418                                 dev->dev.parent,
11419                                 "%s %s %s%s: %pV",
11420                                 dev_driver_string(dev->dev.parent),
11421                                 dev_name(dev->dev.parent),
11422                                 netdev_name(dev), netdev_reg_state(dev),
11423                                 vaf);
11424         } else if (dev) {
11425                 printk("%s%s%s: %pV",
11426                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11427         } else {
11428                 printk("%s(NULL net_device): %pV", level, vaf);
11429         }
11430 }
11431
11432 void netdev_printk(const char *level, const struct net_device *dev,
11433                    const char *format, ...)
11434 {
11435         struct va_format vaf;
11436         va_list args;
11437
11438         va_start(args, format);
11439
11440         vaf.fmt = format;
11441         vaf.va = &args;
11442
11443         __netdev_printk(level, dev, &vaf);
11444
11445         va_end(args);
11446 }
11447 EXPORT_SYMBOL(netdev_printk);
11448
11449 #define define_netdev_printk_level(func, level)                 \
11450 void func(const struct net_device *dev, const char *fmt, ...)   \
11451 {                                                               \
11452         struct va_format vaf;                                   \
11453         va_list args;                                           \
11454                                                                 \
11455         va_start(args, fmt);                                    \
11456                                                                 \
11457         vaf.fmt = fmt;                                          \
11458         vaf.va = &args;                                         \
11459                                                                 \
11460         __netdev_printk(level, dev, &vaf);                      \
11461                                                                 \
11462         va_end(args);                                           \
11463 }                                                               \
11464 EXPORT_SYMBOL(func);
11465
11466 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11467 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11468 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11469 define_netdev_printk_level(netdev_err, KERN_ERR);
11470 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11471 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11472 define_netdev_printk_level(netdev_info, KERN_INFO);
11473
11474 static void __net_exit netdev_exit(struct net *net)
11475 {
11476         kfree(net->dev_name_head);
11477         kfree(net->dev_index_head);
11478         if (net != &init_net)
11479                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11480 }
11481
11482 static struct pernet_operations __net_initdata netdev_net_ops = {
11483         .init = netdev_init,
11484         .exit = netdev_exit,
11485 };
11486
11487 static void __net_exit default_device_exit(struct net *net)
11488 {
11489         struct net_device *dev, *aux;
11490         /*
11491          * Push all migratable network devices back to the
11492          * initial network namespace
11493          */
11494         rtnl_lock();
11495         for_each_netdev_safe(net, dev, aux) {
11496                 int err;
11497                 char fb_name[IFNAMSIZ];
11498
11499                 /* Ignore unmoveable devices (i.e. loopback) */
11500                 if (dev->features & NETIF_F_NETNS_LOCAL)
11501                         continue;
11502
11503                 /* Leave virtual devices for the generic cleanup */
11504                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11505                         continue;
11506
11507                 /* Push remaining network devices to init_net */
11508                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11509                 if (__dev_get_by_name(&init_net, fb_name))
11510                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11511                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11512                 if (err) {
11513                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11514                                  __func__, dev->name, err);
11515                         BUG();
11516                 }
11517         }
11518         rtnl_unlock();
11519 }
11520
11521 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11522 {
11523         /* Return with the rtnl_lock held when there are no network
11524          * devices unregistering in any network namespace in net_list.
11525          */
11526         struct net *net;
11527         bool unregistering;
11528         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11529
11530         add_wait_queue(&netdev_unregistering_wq, &wait);
11531         for (;;) {
11532                 unregistering = false;
11533                 rtnl_lock();
11534                 list_for_each_entry(net, net_list, exit_list) {
11535                         if (net->dev_unreg_count > 0) {
11536                                 unregistering = true;
11537                                 break;
11538                         }
11539                 }
11540                 if (!unregistering)
11541                         break;
11542                 __rtnl_unlock();
11543
11544                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11545         }
11546         remove_wait_queue(&netdev_unregistering_wq, &wait);
11547 }
11548
11549 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11550 {
11551         /* At exit all network devices most be removed from a network
11552          * namespace.  Do this in the reverse order of registration.
11553          * Do this across as many network namespaces as possible to
11554          * improve batching efficiency.
11555          */
11556         struct net_device *dev;
11557         struct net *net;
11558         LIST_HEAD(dev_kill_list);
11559
11560         /* To prevent network device cleanup code from dereferencing
11561          * loopback devices or network devices that have been freed
11562          * wait here for all pending unregistrations to complete,
11563          * before unregistring the loopback device and allowing the
11564          * network namespace be freed.
11565          *
11566          * The netdev todo list containing all network devices
11567          * unregistrations that happen in default_device_exit_batch
11568          * will run in the rtnl_unlock() at the end of
11569          * default_device_exit_batch.
11570          */
11571         rtnl_lock_unregistering(net_list);
11572         list_for_each_entry(net, net_list, exit_list) {
11573                 for_each_netdev_reverse(net, dev) {
11574                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11575                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11576                         else
11577                                 unregister_netdevice_queue(dev, &dev_kill_list);
11578                 }
11579         }
11580         unregister_netdevice_many(&dev_kill_list);
11581         rtnl_unlock();
11582 }
11583
11584 static struct pernet_operations __net_initdata default_device_ops = {
11585         .exit = default_device_exit,
11586         .exit_batch = default_device_exit_batch,
11587 };
11588
11589 /*
11590  *      Initialize the DEV module. At boot time this walks the device list and
11591  *      unhooks any devices that fail to initialise (normally hardware not
11592  *      present) and leaves us with a valid list of present and active devices.
11593  *
11594  */
11595
11596 /*
11597  *       This is called single threaded during boot, so no need
11598  *       to take the rtnl semaphore.
11599  */
11600 static int __init net_dev_init(void)
11601 {
11602         int i, rc = -ENOMEM;
11603
11604         BUG_ON(!dev_boot_phase);
11605
11606         if (dev_proc_init())
11607                 goto out;
11608
11609         if (netdev_kobject_init())
11610                 goto out;
11611
11612         INIT_LIST_HEAD(&ptype_all);
11613         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11614                 INIT_LIST_HEAD(&ptype_base[i]);
11615
11616         INIT_LIST_HEAD(&offload_base);
11617
11618         if (register_pernet_subsys(&netdev_net_ops))
11619                 goto out;
11620
11621         /*
11622          *      Initialise the packet receive queues.
11623          */
11624
11625         for_each_possible_cpu(i) {
11626                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11627                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11628
11629                 INIT_WORK(flush, flush_backlog);
11630
11631                 skb_queue_head_init(&sd->input_pkt_queue);
11632                 skb_queue_head_init(&sd->process_queue);
11633 #ifdef CONFIG_XFRM_OFFLOAD
11634                 skb_queue_head_init(&sd->xfrm_backlog);
11635 #endif
11636                 INIT_LIST_HEAD(&sd->poll_list);
11637                 sd->output_queue_tailp = &sd->output_queue;
11638 #ifdef CONFIG_RPS
11639                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11640                 sd->cpu = i;
11641 #endif
11642
11643                 init_gro_hash(&sd->backlog);
11644                 sd->backlog.poll = process_backlog;
11645                 sd->backlog.weight = weight_p;
11646         }
11647
11648         dev_boot_phase = 0;
11649
11650         /* The loopback device is special if any other network devices
11651          * is present in a network namespace the loopback device must
11652          * be present. Since we now dynamically allocate and free the
11653          * loopback device ensure this invariant is maintained by
11654          * keeping the loopback device as the first device on the
11655          * list of network devices.  Ensuring the loopback devices
11656          * is the first device that appears and the last network device
11657          * that disappears.
11658          */
11659         if (register_pernet_device(&loopback_net_ops))
11660                 goto out;
11661
11662         if (register_pernet_device(&default_device_ops))
11663                 goto out;
11664
11665         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11666         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11667
11668         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11669                                        NULL, dev_cpu_dead);
11670         WARN_ON(rc < 0);
11671         rc = 0;
11672 out:
11673         return rc;
11674 }
11675
11676 subsys_initcall(net_dev_init);