Merge tag 'm68k-for-v4.9-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git/geert...
[platform/kernel/linux-exynos.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144
145 #include "net-sysfs.h"
146
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct net_device *dev,
162                                          struct netdev_notifier_info *info);
163
164 /*
165  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166  * semaphore.
167  *
168  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169  *
170  * Writers must hold the rtnl semaphore while they loop through the
171  * dev_base_head list, and hold dev_base_lock for writing when they do the
172  * actual updates.  This allows pure readers to access the list even
173  * while a writer is preparing to update it.
174  *
175  * To put it another way, dev_base_lock is held for writing only to
176  * protect against pure readers; the rtnl semaphore provides the
177  * protection against other writers.
178  *
179  * See, for example usages, register_netdevice() and
180  * unregister_netdevice(), which must be called with the rtnl
181  * semaphore held.
182  */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191
192 static seqcount_t devnet_rename_seq;
193
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196         while (++net->dev_base_seq == 0);
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214         spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228         struct net *net = dev_net(dev);
229
230         ASSERT_RTNL();
231
232         write_lock_bh(&dev_base_lock);
233         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235         hlist_add_head_rcu(&dev->index_hlist,
236                            dev_index_hash(net, dev->ifindex));
237         write_unlock_bh(&dev_base_lock);
238
239         dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247         ASSERT_RTNL();
248
249         /* Unlink dev from the device chain */
250         write_lock_bh(&dev_base_lock);
251         list_del_rcu(&dev->dev_list);
252         hlist_del_rcu(&dev->name_hlist);
253         hlist_del_rcu(&dev->index_hlist);
254         write_unlock_bh(&dev_base_lock);
255
256         dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260  *      Our notifier list
261  */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266  *      Device drivers call our routines to queue packets here. We empty the
267  *      queue in the local softnet handler.
268  */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] =
279         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317         int i;
318
319         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320                 if (netdev_lock_type[i] == dev_type)
321                         return i;
322         /* the last key is used by default */
323         return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327                                                  unsigned short dev_type)
328 {
329         int i;
330
331         i = netdev_lock_pos(dev_type);
332         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333                                    netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338         int i;
339
340         i = netdev_lock_pos(dev->type);
341         lockdep_set_class_and_name(&dev->addr_list_lock,
342                                    &netdev_addr_lock_key[i],
343                                    netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347                                                  unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357                 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362  *      Add a protocol ID to the list. Now that the input handler is
363  *      smarter we can dispense with all the messy stuff that used to be
364  *      here.
365  *
366  *      BEWARE!!! Protocol handlers, mangling input packets,
367  *      MUST BE last in hash buckets and checking protocol handlers
368  *      MUST start from promiscuous ptype_all chain in net_bh.
369  *      It is true now, do not change it.
370  *      Explanation follows: if protocol handler, mangling packet, will
371  *      be the first on list, it is not able to sense, that packet
372  *      is cloned and should be copied-on-write, so that it will
373  *      change it and subsequent readers will get broken packet.
374  *                                                      --ANK (980803)
375  */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379         if (pt->type == htons(ETH_P_ALL))
380                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381         else
382                 return pt->dev ? &pt->dev->ptype_specific :
383                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387  *      dev_add_pack - add packet handler
388  *      @pt: packet type declaration
389  *
390  *      Add a protocol handler to the networking stack. The passed &packet_type
391  *      is linked into kernel lists and may not be freed until it has been
392  *      removed from the kernel lists.
393  *
394  *      This call does not sleep therefore it can not
395  *      guarantee all CPU's that are in middle of receiving packets
396  *      will see the new packet type (until the next received packet).
397  */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401         struct list_head *head = ptype_head(pt);
402
403         spin_lock(&ptype_lock);
404         list_add_rcu(&pt->list, head);
405         spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410  *      __dev_remove_pack        - remove packet handler
411  *      @pt: packet type declaration
412  *
413  *      Remove a protocol handler that was previously added to the kernel
414  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
415  *      from the kernel lists and can be freed or reused once this function
416  *      returns.
417  *
418  *      The packet type might still be in use by receivers
419  *      and must not be freed until after all the CPU's have gone
420  *      through a quiescent state.
421  */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424         struct list_head *head = ptype_head(pt);
425         struct packet_type *pt1;
426
427         spin_lock(&ptype_lock);
428
429         list_for_each_entry(pt1, head, list) {
430                 if (pt == pt1) {
431                         list_del_rcu(&pt->list);
432                         goto out;
433                 }
434         }
435
436         pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438         spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443  *      dev_remove_pack  - remove packet handler
444  *      @pt: packet type declaration
445  *
446  *      Remove a protocol handler that was previously added to the kernel
447  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
448  *      from the kernel lists and can be freed or reused once this function
449  *      returns.
450  *
451  *      This call sleeps to guarantee that no CPU is looking at the packet
452  *      type after return.
453  */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456         __dev_remove_pack(pt);
457
458         synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462
463 /**
464  *      dev_add_offload - register offload handlers
465  *      @po: protocol offload declaration
466  *
467  *      Add protocol offload handlers to the networking stack. The passed
468  *      &proto_offload is linked into kernel lists and may not be freed until
469  *      it has been removed from the kernel lists.
470  *
471  *      This call does not sleep therefore it can not
472  *      guarantee all CPU's that are in middle of receiving packets
473  *      will see the new offload handlers (until the next received packet).
474  */
475 void dev_add_offload(struct packet_offload *po)
476 {
477         struct packet_offload *elem;
478
479         spin_lock(&offload_lock);
480         list_for_each_entry(elem, &offload_base, list) {
481                 if (po->priority < elem->priority)
482                         break;
483         }
484         list_add_rcu(&po->list, elem->list.prev);
485         spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488
489 /**
490  *      __dev_remove_offload     - remove offload handler
491  *      @po: packet offload declaration
492  *
493  *      Remove a protocol offload handler that was previously added to the
494  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
495  *      is removed from the kernel lists and can be freed or reused once this
496  *      function returns.
497  *
498  *      The packet type might still be in use by receivers
499  *      and must not be freed until after all the CPU's have gone
500  *      through a quiescent state.
501  */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504         struct list_head *head = &offload_base;
505         struct packet_offload *po1;
506
507         spin_lock(&offload_lock);
508
509         list_for_each_entry(po1, head, list) {
510                 if (po == po1) {
511                         list_del_rcu(&po->list);
512                         goto out;
513                 }
514         }
515
516         pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518         spin_unlock(&offload_lock);
519 }
520
521 /**
522  *      dev_remove_offload       - remove packet offload handler
523  *      @po: packet offload declaration
524  *
525  *      Remove a packet offload handler that was previously added to the kernel
526  *      offload handlers by dev_add_offload(). The passed &offload_type is
527  *      removed from the kernel lists and can be freed or reused once this
528  *      function returns.
529  *
530  *      This call sleeps to guarantee that no CPU is looking at the packet
531  *      type after return.
532  */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535         __dev_remove_offload(po);
536
537         synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540
541 /******************************************************************************
542
543                       Device Boot-time Settings Routines
544
545 *******************************************************************************/
546
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550 /**
551  *      netdev_boot_setup_add   - add new setup entry
552  *      @name: name of the device
553  *      @map: configured settings for the device
554  *
555  *      Adds new setup entry to the dev_boot_setup list.  The function
556  *      returns 0 on error and 1 on success.  This is a generic routine to
557  *      all netdevices.
558  */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561         struct netdev_boot_setup *s;
562         int i;
563
564         s = dev_boot_setup;
565         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567                         memset(s[i].name, 0, sizeof(s[i].name));
568                         strlcpy(s[i].name, name, IFNAMSIZ);
569                         memcpy(&s[i].map, map, sizeof(s[i].map));
570                         break;
571                 }
572         }
573
574         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576
577 /**
578  *      netdev_boot_setup_check - check boot time settings
579  *      @dev: the netdevice
580  *
581  *      Check boot time settings for the device.
582  *      The found settings are set for the device to be used
583  *      later in the device probing.
584  *      Returns 0 if no settings found, 1 if they are.
585  */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588         struct netdev_boot_setup *s = dev_boot_setup;
589         int i;
590
591         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593                     !strcmp(dev->name, s[i].name)) {
594                         dev->irq        = s[i].map.irq;
595                         dev->base_addr  = s[i].map.base_addr;
596                         dev->mem_start  = s[i].map.mem_start;
597                         dev->mem_end    = s[i].map.mem_end;
598                         return 1;
599                 }
600         }
601         return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604
605
606 /**
607  *      netdev_boot_base        - get address from boot time settings
608  *      @prefix: prefix for network device
609  *      @unit: id for network device
610  *
611  *      Check boot time settings for the base address of device.
612  *      The found settings are set for the device to be used
613  *      later in the device probing.
614  *      Returns 0 if no settings found.
615  */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618         const struct netdev_boot_setup *s = dev_boot_setup;
619         char name[IFNAMSIZ];
620         int i;
621
622         sprintf(name, "%s%d", prefix, unit);
623
624         /*
625          * If device already registered then return base of 1
626          * to indicate not to probe for this interface
627          */
628         if (__dev_get_by_name(&init_net, name))
629                 return 1;
630
631         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632                 if (!strcmp(name, s[i].name))
633                         return s[i].map.base_addr;
634         return 0;
635 }
636
637 /*
638  * Saves at boot time configured settings for any netdevice.
639  */
640 int __init netdev_boot_setup(char *str)
641 {
642         int ints[5];
643         struct ifmap map;
644
645         str = get_options(str, ARRAY_SIZE(ints), ints);
646         if (!str || !*str)
647                 return 0;
648
649         /* Save settings */
650         memset(&map, 0, sizeof(map));
651         if (ints[0] > 0)
652                 map.irq = ints[1];
653         if (ints[0] > 1)
654                 map.base_addr = ints[2];
655         if (ints[0] > 2)
656                 map.mem_start = ints[3];
657         if (ints[0] > 3)
658                 map.mem_end = ints[4];
659
660         /* Add new entry to the list */
661         return netdev_boot_setup_add(str, &map);
662 }
663
664 __setup("netdev=", netdev_boot_setup);
665
666 /*******************************************************************************
667
668                             Device Interface Subroutines
669
670 *******************************************************************************/
671
672 /**
673  *      dev_get_iflink  - get 'iflink' value of a interface
674  *      @dev: targeted interface
675  *
676  *      Indicates the ifindex the interface is linked to.
677  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
678  */
679
680 int dev_get_iflink(const struct net_device *dev)
681 {
682         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683                 return dev->netdev_ops->ndo_get_iflink(dev);
684
685         return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688
689 /**
690  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
691  *      @dev: targeted interface
692  *      @skb: The packet.
693  *
694  *      For better visibility of tunnel traffic OVS needs to retrieve
695  *      egress tunnel information for a packet. Following API allows
696  *      user to get this info.
697  */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700         struct ip_tunnel_info *info;
701
702         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
703                 return -EINVAL;
704
705         info = skb_tunnel_info_unclone(skb);
706         if (!info)
707                 return -ENOMEM;
708         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709                 return -EINVAL;
710
711         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
715 /**
716  *      __dev_get_by_name       - find a device by its name
717  *      @net: the applicable net namespace
718  *      @name: name to find
719  *
720  *      Find an interface by name. Must be called under RTNL semaphore
721  *      or @dev_base_lock. If the name is found a pointer to the device
722  *      is returned. If the name is not found then %NULL is returned. The
723  *      reference counters are not incremented so the caller must be
724  *      careful with locks.
725  */
726
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729         struct net_device *dev;
730         struct hlist_head *head = dev_name_hash(net, name);
731
732         hlist_for_each_entry(dev, head, name_hlist)
733                 if (!strncmp(dev->name, name, IFNAMSIZ))
734                         return dev;
735
736         return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739
740 /**
741  *      dev_get_by_name_rcu     - find a device by its name
742  *      @net: the applicable net namespace
743  *      @name: name to find
744  *
745  *      Find an interface by name.
746  *      If the name is found a pointer to the device is returned.
747  *      If the name is not found then %NULL is returned.
748  *      The reference counters are not incremented so the caller must be
749  *      careful with locks. The caller must hold RCU lock.
750  */
751
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754         struct net_device *dev;
755         struct hlist_head *head = dev_name_hash(net, name);
756
757         hlist_for_each_entry_rcu(dev, head, name_hlist)
758                 if (!strncmp(dev->name, name, IFNAMSIZ))
759                         return dev;
760
761         return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764
765 /**
766  *      dev_get_by_name         - find a device by its name
767  *      @net: the applicable net namespace
768  *      @name: name to find
769  *
770  *      Find an interface by name. This can be called from any
771  *      context and does its own locking. The returned handle has
772  *      the usage count incremented and the caller must use dev_put() to
773  *      release it when it is no longer needed. %NULL is returned if no
774  *      matching device is found.
775  */
776
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779         struct net_device *dev;
780
781         rcu_read_lock();
782         dev = dev_get_by_name_rcu(net, name);
783         if (dev)
784                 dev_hold(dev);
785         rcu_read_unlock();
786         return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789
790 /**
791  *      __dev_get_by_index - find a device by its ifindex
792  *      @net: the applicable net namespace
793  *      @ifindex: index of device
794  *
795  *      Search for an interface by index. Returns %NULL if the device
796  *      is not found or a pointer to the device. The device has not
797  *      had its reference counter increased so the caller must be careful
798  *      about locking. The caller must hold either the RTNL semaphore
799  *      or @dev_base_lock.
800  */
801
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804         struct net_device *dev;
805         struct hlist_head *head = dev_index_hash(net, ifindex);
806
807         hlist_for_each_entry(dev, head, index_hlist)
808                 if (dev->ifindex == ifindex)
809                         return dev;
810
811         return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814
815 /**
816  *      dev_get_by_index_rcu - find a device by its ifindex
817  *      @net: the applicable net namespace
818  *      @ifindex: index of device
819  *
820  *      Search for an interface by index. Returns %NULL if the device
821  *      is not found or a pointer to the device. The device has not
822  *      had its reference counter increased so the caller must be careful
823  *      about locking. The caller must hold RCU lock.
824  */
825
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828         struct net_device *dev;
829         struct hlist_head *head = dev_index_hash(net, ifindex);
830
831         hlist_for_each_entry_rcu(dev, head, index_hlist)
832                 if (dev->ifindex == ifindex)
833                         return dev;
834
835         return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838
839
840 /**
841  *      dev_get_by_index - find a device by its ifindex
842  *      @net: the applicable net namespace
843  *      @ifindex: index of device
844  *
845  *      Search for an interface by index. Returns NULL if the device
846  *      is not found or a pointer to the device. The device returned has
847  *      had a reference added and the pointer is safe until the user calls
848  *      dev_put to indicate they have finished with it.
849  */
850
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853         struct net_device *dev;
854
855         rcu_read_lock();
856         dev = dev_get_by_index_rcu(net, ifindex);
857         if (dev)
858                 dev_hold(dev);
859         rcu_read_unlock();
860         return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863
864 /**
865  *      netdev_get_name - get a netdevice name, knowing its ifindex.
866  *      @net: network namespace
867  *      @name: a pointer to the buffer where the name will be stored.
868  *      @ifindex: the ifindex of the interface to get the name from.
869  *
870  *      The use of raw_seqcount_begin() and cond_resched() before
871  *      retrying is required as we want to give the writers a chance
872  *      to complete when CONFIG_PREEMPT is not set.
873  */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876         struct net_device *dev;
877         unsigned int seq;
878
879 retry:
880         seq = raw_seqcount_begin(&devnet_rename_seq);
881         rcu_read_lock();
882         dev = dev_get_by_index_rcu(net, ifindex);
883         if (!dev) {
884                 rcu_read_unlock();
885                 return -ENODEV;
886         }
887
888         strcpy(name, dev->name);
889         rcu_read_unlock();
890         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891                 cond_resched();
892                 goto retry;
893         }
894
895         return 0;
896 }
897
898 /**
899  *      dev_getbyhwaddr_rcu - find a device by its hardware address
900  *      @net: the applicable net namespace
901  *      @type: media type of device
902  *      @ha: hardware address
903  *
904  *      Search for an interface by MAC address. Returns NULL if the device
905  *      is not found or a pointer to the device.
906  *      The caller must hold RCU or RTNL.
907  *      The returned device has not had its ref count increased
908  *      and the caller must therefore be careful about locking
909  *
910  */
911
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913                                        const char *ha)
914 {
915         struct net_device *dev;
916
917         for_each_netdev_rcu(net, dev)
918                 if (dev->type == type &&
919                     !memcmp(dev->dev_addr, ha, dev->addr_len))
920                         return dev;
921
922         return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928         struct net_device *dev;
929
930         ASSERT_RTNL();
931         for_each_netdev(net, dev)
932                 if (dev->type == type)
933                         return dev;
934
935         return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941         struct net_device *dev, *ret = NULL;
942
943         rcu_read_lock();
944         for_each_netdev_rcu(net, dev)
945                 if (dev->type == type) {
946                         dev_hold(dev);
947                         ret = dev;
948                         break;
949                 }
950         rcu_read_unlock();
951         return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955 /**
956  *      __dev_get_by_flags - find any device with given flags
957  *      @net: the applicable net namespace
958  *      @if_flags: IFF_* values
959  *      @mask: bitmask of bits in if_flags to check
960  *
961  *      Search for any interface with the given flags. Returns NULL if a device
962  *      is not found or a pointer to the device. Must be called inside
963  *      rtnl_lock(), and result refcount is unchanged.
964  */
965
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967                                       unsigned short mask)
968 {
969         struct net_device *dev, *ret;
970
971         ASSERT_RTNL();
972
973         ret = NULL;
974         for_each_netdev(net, dev) {
975                 if (((dev->flags ^ if_flags) & mask) == 0) {
976                         ret = dev;
977                         break;
978                 }
979         }
980         return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983
984 /**
985  *      dev_valid_name - check if name is okay for network device
986  *      @name: name string
987  *
988  *      Network device names need to be valid file names to
989  *      to allow sysfs to work.  We also disallow any kind of
990  *      whitespace.
991  */
992 bool dev_valid_name(const char *name)
993 {
994         if (*name == '\0')
995                 return false;
996         if (strlen(name) >= IFNAMSIZ)
997                 return false;
998         if (!strcmp(name, ".") || !strcmp(name, ".."))
999                 return false;
1000
1001         while (*name) {
1002                 if (*name == '/' || *name == ':' || isspace(*name))
1003                         return false;
1004                 name++;
1005         }
1006         return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009
1010 /**
1011  *      __dev_alloc_name - allocate a name for a device
1012  *      @net: network namespace to allocate the device name in
1013  *      @name: name format string
1014  *      @buf:  scratch buffer and result name string
1015  *
1016  *      Passed a format string - eg "lt%d" it will try and find a suitable
1017  *      id. It scans list of devices to build up a free map, then chooses
1018  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1019  *      while allocating the name and adding the device in order to avoid
1020  *      duplicates.
1021  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022  *      Returns the number of the unit assigned or a negative errno code.
1023  */
1024
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027         int i = 0;
1028         const char *p;
1029         const int max_netdevices = 8*PAGE_SIZE;
1030         unsigned long *inuse;
1031         struct net_device *d;
1032
1033         p = strnchr(name, IFNAMSIZ-1, '%');
1034         if (p) {
1035                 /*
1036                  * Verify the string as this thing may have come from
1037                  * the user.  There must be either one "%d" and no other "%"
1038                  * characters.
1039                  */
1040                 if (p[1] != 'd' || strchr(p + 2, '%'))
1041                         return -EINVAL;
1042
1043                 /* Use one page as a bit array of possible slots */
1044                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045                 if (!inuse)
1046                         return -ENOMEM;
1047
1048                 for_each_netdev(net, d) {
1049                         if (!sscanf(d->name, name, &i))
1050                                 continue;
1051                         if (i < 0 || i >= max_netdevices)
1052                                 continue;
1053
1054                         /*  avoid cases where sscanf is not exact inverse of printf */
1055                         snprintf(buf, IFNAMSIZ, name, i);
1056                         if (!strncmp(buf, d->name, IFNAMSIZ))
1057                                 set_bit(i, inuse);
1058                 }
1059
1060                 i = find_first_zero_bit(inuse, max_netdevices);
1061                 free_page((unsigned long) inuse);
1062         }
1063
1064         if (buf != name)
1065                 snprintf(buf, IFNAMSIZ, name, i);
1066         if (!__dev_get_by_name(net, buf))
1067                 return i;
1068
1069         /* It is possible to run out of possible slots
1070          * when the name is long and there isn't enough space left
1071          * for the digits, or if all bits are used.
1072          */
1073         return -ENFILE;
1074 }
1075
1076 /**
1077  *      dev_alloc_name - allocate a name for a device
1078  *      @dev: device
1079  *      @name: name format string
1080  *
1081  *      Passed a format string - eg "lt%d" it will try and find a suitable
1082  *      id. It scans list of devices to build up a free map, then chooses
1083  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1084  *      while allocating the name and adding the device in order to avoid
1085  *      duplicates.
1086  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087  *      Returns the number of the unit assigned or a negative errno code.
1088  */
1089
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092         char buf[IFNAMSIZ];
1093         struct net *net;
1094         int ret;
1095
1096         BUG_ON(!dev_net(dev));
1097         net = dev_net(dev);
1098         ret = __dev_alloc_name(net, name, buf);
1099         if (ret >= 0)
1100                 strlcpy(dev->name, buf, IFNAMSIZ);
1101         return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104
1105 static int dev_alloc_name_ns(struct net *net,
1106                              struct net_device *dev,
1107                              const char *name)
1108 {
1109         char buf[IFNAMSIZ];
1110         int ret;
1111
1112         ret = __dev_alloc_name(net, name, buf);
1113         if (ret >= 0)
1114                 strlcpy(dev->name, buf, IFNAMSIZ);
1115         return ret;
1116 }
1117
1118 static int dev_get_valid_name(struct net *net,
1119                               struct net_device *dev,
1120                               const char *name)
1121 {
1122         BUG_ON(!net);
1123
1124         if (!dev_valid_name(name))
1125                 return -EINVAL;
1126
1127         if (strchr(name, '%'))
1128                 return dev_alloc_name_ns(net, dev, name);
1129         else if (__dev_get_by_name(net, name))
1130                 return -EEXIST;
1131         else if (dev->name != name)
1132                 strlcpy(dev->name, name, IFNAMSIZ);
1133
1134         return 0;
1135 }
1136
1137 /**
1138  *      dev_change_name - change name of a device
1139  *      @dev: device
1140  *      @newname: name (or format string) must be at least IFNAMSIZ
1141  *
1142  *      Change name of a device, can pass format strings "eth%d".
1143  *      for wildcarding.
1144  */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147         unsigned char old_assign_type;
1148         char oldname[IFNAMSIZ];
1149         int err = 0;
1150         int ret;
1151         struct net *net;
1152
1153         ASSERT_RTNL();
1154         BUG_ON(!dev_net(dev));
1155
1156         net = dev_net(dev);
1157         if (dev->flags & IFF_UP)
1158                 return -EBUSY;
1159
1160         write_seqcount_begin(&devnet_rename_seq);
1161
1162         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163                 write_seqcount_end(&devnet_rename_seq);
1164                 return 0;
1165         }
1166
1167         memcpy(oldname, dev->name, IFNAMSIZ);
1168
1169         err = dev_get_valid_name(net, dev, newname);
1170         if (err < 0) {
1171                 write_seqcount_end(&devnet_rename_seq);
1172                 return err;
1173         }
1174
1175         if (oldname[0] && !strchr(oldname, '%'))
1176                 netdev_info(dev, "renamed from %s\n", oldname);
1177
1178         old_assign_type = dev->name_assign_type;
1179         dev->name_assign_type = NET_NAME_RENAMED;
1180
1181 rollback:
1182         ret = device_rename(&dev->dev, dev->name);
1183         if (ret) {
1184                 memcpy(dev->name, oldname, IFNAMSIZ);
1185                 dev->name_assign_type = old_assign_type;
1186                 write_seqcount_end(&devnet_rename_seq);
1187                 return ret;
1188         }
1189
1190         write_seqcount_end(&devnet_rename_seq);
1191
1192         netdev_adjacent_rename_links(dev, oldname);
1193
1194         write_lock_bh(&dev_base_lock);
1195         hlist_del_rcu(&dev->name_hlist);
1196         write_unlock_bh(&dev_base_lock);
1197
1198         synchronize_rcu();
1199
1200         write_lock_bh(&dev_base_lock);
1201         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202         write_unlock_bh(&dev_base_lock);
1203
1204         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205         ret = notifier_to_errno(ret);
1206
1207         if (ret) {
1208                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209                 if (err >= 0) {
1210                         err = ret;
1211                         write_seqcount_begin(&devnet_rename_seq);
1212                         memcpy(dev->name, oldname, IFNAMSIZ);
1213                         memcpy(oldname, newname, IFNAMSIZ);
1214                         dev->name_assign_type = old_assign_type;
1215                         old_assign_type = NET_NAME_RENAMED;
1216                         goto rollback;
1217                 } else {
1218                         pr_err("%s: name change rollback failed: %d\n",
1219                                dev->name, ret);
1220                 }
1221         }
1222
1223         return err;
1224 }
1225
1226 /**
1227  *      dev_set_alias - change ifalias of a device
1228  *      @dev: device
1229  *      @alias: name up to IFALIASZ
1230  *      @len: limit of bytes to copy from info
1231  *
1232  *      Set ifalias for a device,
1233  */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236         char *new_ifalias;
1237
1238         ASSERT_RTNL();
1239
1240         if (len >= IFALIASZ)
1241                 return -EINVAL;
1242
1243         if (!len) {
1244                 kfree(dev->ifalias);
1245                 dev->ifalias = NULL;
1246                 return 0;
1247         }
1248
1249         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250         if (!new_ifalias)
1251                 return -ENOMEM;
1252         dev->ifalias = new_ifalias;
1253
1254         strlcpy(dev->ifalias, alias, len+1);
1255         return len;
1256 }
1257
1258
1259 /**
1260  *      netdev_features_change - device changes features
1261  *      @dev: device to cause notification
1262  *
1263  *      Called to indicate a device has changed features.
1264  */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270
1271 /**
1272  *      netdev_state_change - device changes state
1273  *      @dev: device to cause notification
1274  *
1275  *      Called to indicate a device has changed state. This function calls
1276  *      the notifier chains for netdev_chain and sends a NEWLINK message
1277  *      to the routing socket.
1278  */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281         if (dev->flags & IFF_UP) {
1282                 struct netdev_notifier_change_info change_info;
1283
1284                 change_info.flags_changed = 0;
1285                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286                                               &change_info.info);
1287                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288         }
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291
1292 /**
1293  *      netdev_notify_peers - notify network peers about existence of @dev
1294  *      @dev: network device
1295  *
1296  * Generate traffic such that interested network peers are aware of
1297  * @dev, such as by generating a gratuitous ARP. This may be used when
1298  * a device wants to inform the rest of the network about some sort of
1299  * reconfiguration such as a failover event or virtual machine
1300  * migration.
1301  */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304         rtnl_lock();
1305         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306         rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309
1310 static int __dev_open(struct net_device *dev)
1311 {
1312         const struct net_device_ops *ops = dev->netdev_ops;
1313         int ret;
1314
1315         ASSERT_RTNL();
1316
1317         if (!netif_device_present(dev))
1318                 return -ENODEV;
1319
1320         /* Block netpoll from trying to do any rx path servicing.
1321          * If we don't do this there is a chance ndo_poll_controller
1322          * or ndo_poll may be running while we open the device
1323          */
1324         netpoll_poll_disable(dev);
1325
1326         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327         ret = notifier_to_errno(ret);
1328         if (ret)
1329                 return ret;
1330
1331         set_bit(__LINK_STATE_START, &dev->state);
1332
1333         if (ops->ndo_validate_addr)
1334                 ret = ops->ndo_validate_addr(dev);
1335
1336         if (!ret && ops->ndo_open)
1337                 ret = ops->ndo_open(dev);
1338
1339         netpoll_poll_enable(dev);
1340
1341         if (ret)
1342                 clear_bit(__LINK_STATE_START, &dev->state);
1343         else {
1344                 dev->flags |= IFF_UP;
1345                 dev_set_rx_mode(dev);
1346                 dev_activate(dev);
1347                 add_device_randomness(dev->dev_addr, dev->addr_len);
1348         }
1349
1350         return ret;
1351 }
1352
1353 /**
1354  *      dev_open        - prepare an interface for use.
1355  *      @dev:   device to open
1356  *
1357  *      Takes a device from down to up state. The device's private open
1358  *      function is invoked and then the multicast lists are loaded. Finally
1359  *      the device is moved into the up state and a %NETDEV_UP message is
1360  *      sent to the netdev notifier chain.
1361  *
1362  *      Calling this function on an active interface is a nop. On a failure
1363  *      a negative errno code is returned.
1364  */
1365 int dev_open(struct net_device *dev)
1366 {
1367         int ret;
1368
1369         if (dev->flags & IFF_UP)
1370                 return 0;
1371
1372         ret = __dev_open(dev);
1373         if (ret < 0)
1374                 return ret;
1375
1376         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377         call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379         return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385         struct net_device *dev;
1386
1387         ASSERT_RTNL();
1388         might_sleep();
1389
1390         list_for_each_entry(dev, head, close_list) {
1391                 /* Temporarily disable netpoll until the interface is down */
1392                 netpoll_poll_disable(dev);
1393
1394                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395
1396                 clear_bit(__LINK_STATE_START, &dev->state);
1397
1398                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399                  * can be even on different cpu. So just clear netif_running().
1400                  *
1401                  * dev->stop() will invoke napi_disable() on all of it's
1402                  * napi_struct instances on this device.
1403                  */
1404                 smp_mb__after_atomic(); /* Commit netif_running(). */
1405         }
1406
1407         dev_deactivate_many(head);
1408
1409         list_for_each_entry(dev, head, close_list) {
1410                 const struct net_device_ops *ops = dev->netdev_ops;
1411
1412                 /*
1413                  *      Call the device specific close. This cannot fail.
1414                  *      Only if device is UP
1415                  *
1416                  *      We allow it to be called even after a DETACH hot-plug
1417                  *      event.
1418                  */
1419                 if (ops->ndo_stop)
1420                         ops->ndo_stop(dev);
1421
1422                 dev->flags &= ~IFF_UP;
1423                 netpoll_poll_enable(dev);
1424         }
1425
1426         return 0;
1427 }
1428
1429 static int __dev_close(struct net_device *dev)
1430 {
1431         int retval;
1432         LIST_HEAD(single);
1433
1434         list_add(&dev->close_list, &single);
1435         retval = __dev_close_many(&single);
1436         list_del(&single);
1437
1438         return retval;
1439 }
1440
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443         struct net_device *dev, *tmp;
1444
1445         /* Remove the devices that don't need to be closed */
1446         list_for_each_entry_safe(dev, tmp, head, close_list)
1447                 if (!(dev->flags & IFF_UP))
1448                         list_del_init(&dev->close_list);
1449
1450         __dev_close_many(head);
1451
1452         list_for_each_entry_safe(dev, tmp, head, close_list) {
1453                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1455                 if (unlink)
1456                         list_del_init(&dev->close_list);
1457         }
1458
1459         return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462
1463 /**
1464  *      dev_close - shutdown an interface.
1465  *      @dev: device to shutdown
1466  *
1467  *      This function moves an active device into down state. A
1468  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470  *      chain.
1471  */
1472 int dev_close(struct net_device *dev)
1473 {
1474         if (dev->flags & IFF_UP) {
1475                 LIST_HEAD(single);
1476
1477                 list_add(&dev->close_list, &single);
1478                 dev_close_many(&single, true);
1479                 list_del(&single);
1480         }
1481         return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484
1485
1486 /**
1487  *      dev_disable_lro - disable Large Receive Offload on a device
1488  *      @dev: device
1489  *
1490  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1491  *      called under RTNL.  This is needed if received packets may be
1492  *      forwarded to another interface.
1493  */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496         struct net_device *lower_dev;
1497         struct list_head *iter;
1498
1499         dev->wanted_features &= ~NETIF_F_LRO;
1500         netdev_update_features(dev);
1501
1502         if (unlikely(dev->features & NETIF_F_LRO))
1503                 netdev_WARN(dev, "failed to disable LRO!\n");
1504
1505         netdev_for_each_lower_dev(dev, lower_dev, iter)
1506                 dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511                                    struct net_device *dev)
1512 {
1513         struct netdev_notifier_info info;
1514
1515         netdev_notifier_info_init(&info, dev);
1516         return nb->notifier_call(nb, val, &info);
1517 }
1518
1519 static int dev_boot_phase = 1;
1520
1521 /**
1522  *      register_netdevice_notifier - register a network notifier block
1523  *      @nb: notifier
1524  *
1525  *      Register a notifier to be called when network device events occur.
1526  *      The notifier passed is linked into the kernel structures and must
1527  *      not be reused until it has been unregistered. A negative errno code
1528  *      is returned on a failure.
1529  *
1530  *      When registered all registration and up events are replayed
1531  *      to the new notifier to allow device to have a race free
1532  *      view of the network device list.
1533  */
1534
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537         struct net_device *dev;
1538         struct net_device *last;
1539         struct net *net;
1540         int err;
1541
1542         rtnl_lock();
1543         err = raw_notifier_chain_register(&netdev_chain, nb);
1544         if (err)
1545                 goto unlock;
1546         if (dev_boot_phase)
1547                 goto unlock;
1548         for_each_net(net) {
1549                 for_each_netdev(net, dev) {
1550                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551                         err = notifier_to_errno(err);
1552                         if (err)
1553                                 goto rollback;
1554
1555                         if (!(dev->flags & IFF_UP))
1556                                 continue;
1557
1558                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1559                 }
1560         }
1561
1562 unlock:
1563         rtnl_unlock();
1564         return err;
1565
1566 rollback:
1567         last = dev;
1568         for_each_net(net) {
1569                 for_each_netdev(net, dev) {
1570                         if (dev == last)
1571                                 goto outroll;
1572
1573                         if (dev->flags & IFF_UP) {
1574                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575                                                         dev);
1576                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577                         }
1578                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579                 }
1580         }
1581
1582 outroll:
1583         raw_notifier_chain_unregister(&netdev_chain, nb);
1584         goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587
1588 /**
1589  *      unregister_netdevice_notifier - unregister a network notifier block
1590  *      @nb: notifier
1591  *
1592  *      Unregister a notifier previously registered by
1593  *      register_netdevice_notifier(). The notifier is unlinked into the
1594  *      kernel structures and may then be reused. A negative errno code
1595  *      is returned on a failure.
1596  *
1597  *      After unregistering unregister and down device events are synthesized
1598  *      for all devices on the device list to the removed notifier to remove
1599  *      the need for special case cleanup code.
1600  */
1601
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604         struct net_device *dev;
1605         struct net *net;
1606         int err;
1607
1608         rtnl_lock();
1609         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610         if (err)
1611                 goto unlock;
1612
1613         for_each_net(net) {
1614                 for_each_netdev(net, dev) {
1615                         if (dev->flags & IFF_UP) {
1616                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617                                                         dev);
1618                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619                         }
1620                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621                 }
1622         }
1623 unlock:
1624         rtnl_unlock();
1625         return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628
1629 /**
1630  *      call_netdevice_notifiers_info - call all network notifier blocks
1631  *      @val: value passed unmodified to notifier function
1632  *      @dev: net_device pointer passed unmodified to notifier function
1633  *      @info: notifier information data
1634  *
1635  *      Call all network notifier blocks.  Parameters and return value
1636  *      are as for raw_notifier_call_chain().
1637  */
1638
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640                                          struct net_device *dev,
1641                                          struct netdev_notifier_info *info)
1642 {
1643         ASSERT_RTNL();
1644         netdev_notifier_info_init(info, dev);
1645         return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647
1648 /**
1649  *      call_netdevice_notifiers - call all network notifier blocks
1650  *      @val: value passed unmodified to notifier function
1651  *      @dev: net_device pointer passed unmodified to notifier function
1652  *
1653  *      Call all network notifier blocks.  Parameters and return value
1654  *      are as for raw_notifier_call_chain().
1655  */
1656
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659         struct netdev_notifier_info info;
1660
1661         return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667
1668 void net_inc_ingress_queue(void)
1669 {
1670         static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674 void net_dec_ingress_queue(void)
1675 {
1676         static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683
1684 void net_inc_egress_queue(void)
1685 {
1686         static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690 void net_dec_egress_queue(void)
1691 {
1692         static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700  * If net_disable_timestamp() is called from irq context, defer the
1701  * static_key_slow_dec() calls.
1702  */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711         if (deferred) {
1712                 while (--deferred)
1713                         static_key_slow_dec(&netstamp_needed);
1714                 return;
1715         }
1716 #endif
1717         static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724         if (in_interrupt()) {
1725                 atomic_inc(&netstamp_needed_deferred);
1726                 return;
1727         }
1728 #endif
1729         static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735         skb->tstamp.tv64 = 0;
1736         if (static_key_false(&netstamp_needed))
1737                 __net_timestamp(skb);
1738 }
1739
1740 #define net_timestamp_check(COND, SKB)                  \
1741         if (static_key_false(&netstamp_needed)) {               \
1742                 if ((COND) && !(SKB)->tstamp.tv64)      \
1743                         __net_timestamp(SKB);           \
1744         }                                               \
1745
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748         unsigned int len;
1749
1750         if (!(dev->flags & IFF_UP))
1751                 return false;
1752
1753         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754         if (skb->len <= len)
1755                 return true;
1756
1757         /* if TSO is enabled, we don't care about the length as the packet
1758          * could be forwarded without being segmented before
1759          */
1760         if (skb_is_gso(skb))
1761                 return true;
1762
1763         return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770             unlikely(!is_skb_forwardable(dev, skb))) {
1771                 atomic_long_inc(&dev->rx_dropped);
1772                 kfree_skb(skb);
1773                 return NET_RX_DROP;
1774         }
1775
1776         skb_scrub_packet(skb, true);
1777         skb->priority = 0;
1778         skb->protocol = eth_type_trans(skb, dev);
1779         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780
1781         return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
1785 /**
1786  * dev_forward_skb - loopback an skb to another netif
1787  *
1788  * @dev: destination network device
1789  * @skb: buffer to forward
1790  *
1791  * return values:
1792  *      NET_RX_SUCCESS  (no congestion)
1793  *      NET_RX_DROP     (packet was dropped, but freed)
1794  *
1795  * dev_forward_skb can be used for injecting an skb from the
1796  * start_xmit function of one device into the receive queue
1797  * of another device.
1798  *
1799  * The receiving device may be in another namespace, so
1800  * we have to clear all information in the skb that could
1801  * impact namespace isolation.
1802  */
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 {
1805         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 }
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
1809 static inline int deliver_skb(struct sk_buff *skb,
1810                               struct packet_type *pt_prev,
1811                               struct net_device *orig_dev)
1812 {
1813         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814                 return -ENOMEM;
1815         atomic_inc(&skb->users);
1816         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 }
1818
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820                                           struct packet_type **pt,
1821                                           struct net_device *orig_dev,
1822                                           __be16 type,
1823                                           struct list_head *ptype_list)
1824 {
1825         struct packet_type *ptype, *pt_prev = *pt;
1826
1827         list_for_each_entry_rcu(ptype, ptype_list, list) {
1828                 if (ptype->type != type)
1829                         continue;
1830                 if (pt_prev)
1831                         deliver_skb(skb, pt_prev, orig_dev);
1832                 pt_prev = ptype;
1833         }
1834         *pt = pt_prev;
1835 }
1836
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 {
1839         if (!ptype->af_packet_priv || !skb->sk)
1840                 return false;
1841
1842         if (ptype->id_match)
1843                 return ptype->id_match(ptype, skb->sk);
1844         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845                 return true;
1846
1847         return false;
1848 }
1849
1850 /*
1851  *      Support routine. Sends outgoing frames to any network
1852  *      taps currently in use.
1853  */
1854
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 {
1857         struct packet_type *ptype;
1858         struct sk_buff *skb2 = NULL;
1859         struct packet_type *pt_prev = NULL;
1860         struct list_head *ptype_list = &ptype_all;
1861
1862         rcu_read_lock();
1863 again:
1864         list_for_each_entry_rcu(ptype, ptype_list, list) {
1865                 /* Never send packets back to the socket
1866                  * they originated from - MvS (miquels@drinkel.ow.org)
1867                  */
1868                 if (skb_loop_sk(ptype, skb))
1869                         continue;
1870
1871                 if (pt_prev) {
1872                         deliver_skb(skb2, pt_prev, skb->dev);
1873                         pt_prev = ptype;
1874                         continue;
1875                 }
1876
1877                 /* need to clone skb, done only once */
1878                 skb2 = skb_clone(skb, GFP_ATOMIC);
1879                 if (!skb2)
1880                         goto out_unlock;
1881
1882                 net_timestamp_set(skb2);
1883
1884                 /* skb->nh should be correctly
1885                  * set by sender, so that the second statement is
1886                  * just protection against buggy protocols.
1887                  */
1888                 skb_reset_mac_header(skb2);
1889
1890                 if (skb_network_header(skb2) < skb2->data ||
1891                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893                                              ntohs(skb2->protocol),
1894                                              dev->name);
1895                         skb_reset_network_header(skb2);
1896                 }
1897
1898                 skb2->transport_header = skb2->network_header;
1899                 skb2->pkt_type = PACKET_OUTGOING;
1900                 pt_prev = ptype;
1901         }
1902
1903         if (ptype_list == &ptype_all) {
1904                 ptype_list = &dev->ptype_all;
1905                 goto again;
1906         }
1907 out_unlock:
1908         if (pt_prev)
1909                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1910         rcu_read_unlock();
1911 }
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1913
1914 /**
1915  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916  * @dev: Network device
1917  * @txq: number of queues available
1918  *
1919  * If real_num_tx_queues is changed the tc mappings may no longer be
1920  * valid. To resolve this verify the tc mapping remains valid and if
1921  * not NULL the mapping. With no priorities mapping to this
1922  * offset/count pair it will no longer be used. In the worst case TC0
1923  * is invalid nothing can be done so disable priority mappings. If is
1924  * expected that drivers will fix this mapping if they can before
1925  * calling netif_set_real_num_tx_queues.
1926  */
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 {
1929         int i;
1930         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932         /* If TC0 is invalidated disable TC mapping */
1933         if (tc->offset + tc->count > txq) {
1934                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1935                 dev->num_tc = 0;
1936                 return;
1937         }
1938
1939         /* Invalidated prio to tc mappings set to TC0 */
1940         for (i = 1; i < TC_BITMASK + 1; i++) {
1941                 int q = netdev_get_prio_tc_map(dev, i);
1942
1943                 tc = &dev->tc_to_txq[q];
1944                 if (tc->offset + tc->count > txq) {
1945                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946                                 i, q);
1947                         netdev_set_prio_tc_map(dev, i, 0);
1948                 }
1949         }
1950 }
1951
1952 #ifdef CONFIG_XPS
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P)             \
1955         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958                                         int cpu, u16 index)
1959 {
1960         struct xps_map *map = NULL;
1961         int pos;
1962
1963         if (dev_maps)
1964                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965
1966         for (pos = 0; map && pos < map->len; pos++) {
1967                 if (map->queues[pos] == index) {
1968                         if (map->len > 1) {
1969                                 map->queues[pos] = map->queues[--map->len];
1970                         } else {
1971                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972                                 kfree_rcu(map, rcu);
1973                                 map = NULL;
1974                         }
1975                         break;
1976                 }
1977         }
1978
1979         return map;
1980 }
1981
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 {
1984         struct xps_dev_maps *dev_maps;
1985         int cpu, i;
1986         bool active = false;
1987
1988         mutex_lock(&xps_map_mutex);
1989         dev_maps = xmap_dereference(dev->xps_maps);
1990
1991         if (!dev_maps)
1992                 goto out_no_maps;
1993
1994         for_each_possible_cpu(cpu) {
1995                 for (i = index; i < dev->num_tx_queues; i++) {
1996                         if (!remove_xps_queue(dev_maps, cpu, i))
1997                                 break;
1998                 }
1999                 if (i == dev->num_tx_queues)
2000                         active = true;
2001         }
2002
2003         if (!active) {
2004                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005                 kfree_rcu(dev_maps, rcu);
2006         }
2007
2008         for (i = index; i < dev->num_tx_queues; i++)
2009                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010                                              NUMA_NO_NODE);
2011
2012 out_no_maps:
2013         mutex_unlock(&xps_map_mutex);
2014 }
2015
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2017                                       int cpu, u16 index)
2018 {
2019         struct xps_map *new_map;
2020         int alloc_len = XPS_MIN_MAP_ALLOC;
2021         int i, pos;
2022
2023         for (pos = 0; map && pos < map->len; pos++) {
2024                 if (map->queues[pos] != index)
2025                         continue;
2026                 return map;
2027         }
2028
2029         /* Need to add queue to this CPU's existing map */
2030         if (map) {
2031                 if (pos < map->alloc_len)
2032                         return map;
2033
2034                 alloc_len = map->alloc_len * 2;
2035         }
2036
2037         /* Need to allocate new map to store queue on this CPU's map */
2038         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039                                cpu_to_node(cpu));
2040         if (!new_map)
2041                 return NULL;
2042
2043         for (i = 0; i < pos; i++)
2044                 new_map->queues[i] = map->queues[i];
2045         new_map->alloc_len = alloc_len;
2046         new_map->len = pos;
2047
2048         return new_map;
2049 }
2050
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052                         u16 index)
2053 {
2054         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055         struct xps_map *map, *new_map;
2056         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057         int cpu, numa_node_id = -2;
2058         bool active = false;
2059
2060         mutex_lock(&xps_map_mutex);
2061
2062         dev_maps = xmap_dereference(dev->xps_maps);
2063
2064         /* allocate memory for queue storage */
2065         for_each_online_cpu(cpu) {
2066                 if (!cpumask_test_cpu(cpu, mask))
2067                         continue;
2068
2069                 if (!new_dev_maps)
2070                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071                 if (!new_dev_maps) {
2072                         mutex_unlock(&xps_map_mutex);
2073                         return -ENOMEM;
2074                 }
2075
2076                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077                                  NULL;
2078
2079                 map = expand_xps_map(map, cpu, index);
2080                 if (!map)
2081                         goto error;
2082
2083                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084         }
2085
2086         if (!new_dev_maps)
2087                 goto out_no_new_maps;
2088
2089         for_each_possible_cpu(cpu) {
2090                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091                         /* add queue to CPU maps */
2092                         int pos = 0;
2093
2094                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095                         while ((pos < map->len) && (map->queues[pos] != index))
2096                                 pos++;
2097
2098                         if (pos == map->len)
2099                                 map->queues[map->len++] = index;
2100 #ifdef CONFIG_NUMA
2101                         if (numa_node_id == -2)
2102                                 numa_node_id = cpu_to_node(cpu);
2103                         else if (numa_node_id != cpu_to_node(cpu))
2104                                 numa_node_id = -1;
2105 #endif
2106                 } else if (dev_maps) {
2107                         /* fill in the new device map from the old device map */
2108                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2110                 }
2111
2112         }
2113
2114         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
2116         /* Cleanup old maps */
2117         if (dev_maps) {
2118                 for_each_possible_cpu(cpu) {
2119                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121                         if (map && map != new_map)
2122                                 kfree_rcu(map, rcu);
2123                 }
2124
2125                 kfree_rcu(dev_maps, rcu);
2126         }
2127
2128         dev_maps = new_dev_maps;
2129         active = true;
2130
2131 out_no_new_maps:
2132         /* update Tx queue numa node */
2133         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134                                      (numa_node_id >= 0) ? numa_node_id :
2135                                      NUMA_NO_NODE);
2136
2137         if (!dev_maps)
2138                 goto out_no_maps;
2139
2140         /* removes queue from unused CPUs */
2141         for_each_possible_cpu(cpu) {
2142                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143                         continue;
2144
2145                 if (remove_xps_queue(dev_maps, cpu, index))
2146                         active = true;
2147         }
2148
2149         /* free map if not active */
2150         if (!active) {
2151                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152                 kfree_rcu(dev_maps, rcu);
2153         }
2154
2155 out_no_maps:
2156         mutex_unlock(&xps_map_mutex);
2157
2158         return 0;
2159 error:
2160         /* remove any maps that we added */
2161         for_each_possible_cpu(cpu) {
2162                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164                                  NULL;
2165                 if (new_map && new_map != map)
2166                         kfree(new_map);
2167         }
2168
2169         mutex_unlock(&xps_map_mutex);
2170
2171         kfree(new_dev_maps);
2172         return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176 #endif
2177 /*
2178  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180  */
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 {
2183         int rc;
2184
2185         if (txq < 1 || txq > dev->num_tx_queues)
2186                 return -EINVAL;
2187
2188         if (dev->reg_state == NETREG_REGISTERED ||
2189             dev->reg_state == NETREG_UNREGISTERING) {
2190                 ASSERT_RTNL();
2191
2192                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193                                                   txq);
2194                 if (rc)
2195                         return rc;
2196
2197                 if (dev->num_tc)
2198                         netif_setup_tc(dev, txq);
2199
2200                 if (txq < dev->real_num_tx_queues) {
2201                         qdisc_reset_all_tx_gt(dev, txq);
2202 #ifdef CONFIG_XPS
2203                         netif_reset_xps_queues_gt(dev, txq);
2204 #endif
2205                 }
2206         }
2207
2208         dev->real_num_tx_queues = txq;
2209         return 0;
2210 }
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212
2213 #ifdef CONFIG_SYSFS
2214 /**
2215  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2216  *      @dev: Network device
2217  *      @rxq: Actual number of RX queues
2218  *
2219  *      This must be called either with the rtnl_lock held or before
2220  *      registration of the net device.  Returns 0 on success, or a
2221  *      negative error code.  If called before registration, it always
2222  *      succeeds.
2223  */
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 {
2226         int rc;
2227
2228         if (rxq < 1 || rxq > dev->num_rx_queues)
2229                 return -EINVAL;
2230
2231         if (dev->reg_state == NETREG_REGISTERED) {
2232                 ASSERT_RTNL();
2233
2234                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235                                                   rxq);
2236                 if (rc)
2237                         return rc;
2238         }
2239
2240         dev->real_num_rx_queues = rxq;
2241         return 0;
2242 }
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 #endif
2245
2246 /**
2247  * netif_get_num_default_rss_queues - default number of RSS queues
2248  *
2249  * This routine should set an upper limit on the number of RSS queues
2250  * used by default by multiqueue devices.
2251  */
2252 int netif_get_num_default_rss_queues(void)
2253 {
2254         return is_kdump_kernel() ?
2255                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
2259 static void __netif_reschedule(struct Qdisc *q)
2260 {
2261         struct softnet_data *sd;
2262         unsigned long flags;
2263
2264         local_irq_save(flags);
2265         sd = this_cpu_ptr(&softnet_data);
2266         q->next_sched = NULL;
2267         *sd->output_queue_tailp = q;
2268         sd->output_queue_tailp = &q->next_sched;
2269         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270         local_irq_restore(flags);
2271 }
2272
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276                 __netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279
2280 struct dev_kfree_skb_cb {
2281         enum skb_free_reason reason;
2282 };
2283
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286         return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291         rcu_read_lock();
2292         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295                 __netif_schedule(q);
2296         }
2297         rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300
2301 /**
2302  *      netif_wake_subqueue - allow sending packets on subqueue
2303  *      @dev: network device
2304  *      @queue_index: sub queue index
2305  *
2306  * Resume individual transmit queue of a device with multiple transmit queues.
2307  */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313                 struct Qdisc *q;
2314
2315                 rcu_read_lock();
2316                 q = rcu_dereference(txq->qdisc);
2317                 __netif_schedule(q);
2318                 rcu_read_unlock();
2319         }
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326                 struct Qdisc *q;
2327
2328                 rcu_read_lock();
2329                 q = rcu_dereference(dev_queue->qdisc);
2330                 __netif_schedule(q);
2331                 rcu_read_unlock();
2332         }
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338         unsigned long flags;
2339
2340         if (likely(atomic_read(&skb->users) == 1)) {
2341                 smp_rmb();
2342                 atomic_set(&skb->users, 0);
2343         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344                 return;
2345         }
2346         get_kfree_skb_cb(skb)->reason = reason;
2347         local_irq_save(flags);
2348         skb->next = __this_cpu_read(softnet_data.completion_queue);
2349         __this_cpu_write(softnet_data.completion_queue, skb);
2350         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351         local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357         if (in_irq() || irqs_disabled())
2358                 __dev_kfree_skb_irq(skb, reason);
2359         else
2360                 dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363
2364
2365 /**
2366  * netif_device_detach - mark device as removed
2367  * @dev: network device
2368  *
2369  * Mark device as removed from system and therefore no longer available.
2370  */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374             netif_running(dev)) {
2375                 netif_tx_stop_all_queues(dev);
2376         }
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379
2380 /**
2381  * netif_device_attach - mark device as attached
2382  * @dev: network device
2383  *
2384  * Mark device as attached from system and restart if needed.
2385  */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389             netif_running(dev)) {
2390                 netif_tx_wake_all_queues(dev);
2391                 __netdev_watchdog_up(dev);
2392         }
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395
2396 /*
2397  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398  * to be used as a distribution range.
2399  */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401                   unsigned int num_tx_queues)
2402 {
2403         u32 hash;
2404         u16 qoffset = 0;
2405         u16 qcount = num_tx_queues;
2406
2407         if (skb_rx_queue_recorded(skb)) {
2408                 hash = skb_get_rx_queue(skb);
2409                 while (unlikely(hash >= num_tx_queues))
2410                         hash -= num_tx_queues;
2411                 return hash;
2412         }
2413
2414         if (dev->num_tc) {
2415                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416                 qoffset = dev->tc_to_txq[tc].offset;
2417                 qcount = dev->tc_to_txq[tc].count;
2418         }
2419
2420         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426         static const netdev_features_t null_features;
2427         struct net_device *dev = skb->dev;
2428         const char *name = "";
2429
2430         if (!net_ratelimit())
2431                 return;
2432
2433         if (dev) {
2434                 if (dev->dev.parent)
2435                         name = dev_driver_string(dev->dev.parent);
2436                 else
2437                         name = netdev_name(dev);
2438         }
2439         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440              "gso_type=%d ip_summed=%d\n",
2441              name, dev ? &dev->features : &null_features,
2442              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444              skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446
2447 /*
2448  * Invalidate hardware checksum when packet is to be mangled, and
2449  * complete checksum manually on outgoing path.
2450  */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453         __wsum csum;
2454         int ret = 0, offset;
2455
2456         if (skb->ip_summed == CHECKSUM_COMPLETE)
2457                 goto out_set_summed;
2458
2459         if (unlikely(skb_shinfo(skb)->gso_size)) {
2460                 skb_warn_bad_offload(skb);
2461                 return -EINVAL;
2462         }
2463
2464         /* Before computing a checksum, we should make sure no frag could
2465          * be modified by an external entity : checksum could be wrong.
2466          */
2467         if (skb_has_shared_frag(skb)) {
2468                 ret = __skb_linearize(skb);
2469                 if (ret)
2470                         goto out;
2471         }
2472
2473         offset = skb_checksum_start_offset(skb);
2474         BUG_ON(offset >= skb_headlen(skb));
2475         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477         offset += skb->csum_offset;
2478         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480         if (skb_cloned(skb) &&
2481             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483                 if (ret)
2484                         goto out;
2485         }
2486
2487         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2488 out_set_summed:
2489         skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491         return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496  * with limited checksum offload capabilities is able to offload the checksum
2497  * for a given packet.
2498  *
2499  * Arguments:
2500  *   skb - sk_buff for the packet in question
2501  *   spec - contains the description of what device can offload
2502  *   csum_encapped - returns true if the checksum being offloaded is
2503  *            encpasulated. That is it is checksum for the transport header
2504  *            in the inner headers.
2505  *   checksum_help - when set indicates that helper function should
2506  *            call skb_checksum_help if offload checks fail
2507  *
2508  * Returns:
2509  *   true: Packet has passed the checksum checks and should be offloadable to
2510  *         the device (a driver may still need to check for additional
2511  *         restrictions of its device)
2512  *   false: Checksum is not offloadable. If checksum_help was set then
2513  *         skb_checksum_help was called to resolve checksum for non-GSO
2514  *         packets and when IP protocol is not SCTP
2515  */
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517                             const struct skb_csum_offl_spec *spec,
2518                             bool *csum_encapped,
2519                             bool csum_help)
2520 {
2521         struct iphdr *iph;
2522         struct ipv6hdr *ipv6;
2523         void *nhdr;
2524         int protocol;
2525         u8 ip_proto;
2526
2527         if (skb->protocol == htons(ETH_P_8021Q) ||
2528             skb->protocol == htons(ETH_P_8021AD)) {
2529                 if (!spec->vlan_okay)
2530                         goto need_help;
2531         }
2532
2533         /* We check whether the checksum refers to a transport layer checksum in
2534          * the outermost header or an encapsulated transport layer checksum that
2535          * corresponds to the inner headers of the skb. If the checksum is for
2536          * something else in the packet we need help.
2537          */
2538         if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539                 /* Non-encapsulated checksum */
2540                 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541                 nhdr = skb_network_header(skb);
2542                 *csum_encapped = false;
2543                 if (spec->no_not_encapped)
2544                         goto need_help;
2545         } else if (skb->encapsulation && spec->encap_okay &&
2546                    skb_checksum_start_offset(skb) ==
2547                    skb_inner_transport_offset(skb)) {
2548                 /* Encapsulated checksum */
2549                 *csum_encapped = true;
2550                 switch (skb->inner_protocol_type) {
2551                 case ENCAP_TYPE_ETHER:
2552                         protocol = eproto_to_ipproto(skb->inner_protocol);
2553                         break;
2554                 case ENCAP_TYPE_IPPROTO:
2555                         protocol = skb->inner_protocol;
2556                         break;
2557                 }
2558                 nhdr = skb_inner_network_header(skb);
2559         } else {
2560                 goto need_help;
2561         }
2562
2563         switch (protocol) {
2564         case IPPROTO_IP:
2565                 if (!spec->ipv4_okay)
2566                         goto need_help;
2567                 iph = nhdr;
2568                 ip_proto = iph->protocol;
2569                 if (iph->ihl != 5 && !spec->ip_options_okay)
2570                         goto need_help;
2571                 break;
2572         case IPPROTO_IPV6:
2573                 if (!spec->ipv6_okay)
2574                         goto need_help;
2575                 if (spec->no_encapped_ipv6 && *csum_encapped)
2576                         goto need_help;
2577                 ipv6 = nhdr;
2578                 nhdr += sizeof(*ipv6);
2579                 ip_proto = ipv6->nexthdr;
2580                 break;
2581         default:
2582                 goto need_help;
2583         }
2584
2585 ip_proto_again:
2586         switch (ip_proto) {
2587         case IPPROTO_TCP:
2588                 if (!spec->tcp_okay ||
2589                     skb->csum_offset != offsetof(struct tcphdr, check))
2590                         goto need_help;
2591                 break;
2592         case IPPROTO_UDP:
2593                 if (!spec->udp_okay ||
2594                     skb->csum_offset != offsetof(struct udphdr, check))
2595                         goto need_help;
2596                 break;
2597         case IPPROTO_SCTP:
2598                 if (!spec->sctp_okay ||
2599                     skb->csum_offset != offsetof(struct sctphdr, checksum))
2600                         goto cant_help;
2601                 break;
2602         case NEXTHDR_HOP:
2603         case NEXTHDR_ROUTING:
2604         case NEXTHDR_DEST: {
2605                 u8 *opthdr = nhdr;
2606
2607                 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608                         goto need_help;
2609
2610                 ip_proto = opthdr[0];
2611                 nhdr += (opthdr[1] + 1) << 3;
2612
2613                 goto ip_proto_again;
2614         }
2615         default:
2616                 goto need_help;
2617         }
2618
2619         /* Passed the tests for offloading checksum */
2620         return true;
2621
2622 need_help:
2623         if (csum_help && !skb_shinfo(skb)->gso_size)
2624                 skb_checksum_help(skb);
2625 cant_help:
2626         return false;
2627 }
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2631 {
2632         __be16 type = skb->protocol;
2633
2634         /* Tunnel gso handlers can set protocol to ethernet. */
2635         if (type == htons(ETH_P_TEB)) {
2636                 struct ethhdr *eth;
2637
2638                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639                         return 0;
2640
2641                 eth = (struct ethhdr *)skb_mac_header(skb);
2642                 type = eth->h_proto;
2643         }
2644
2645         return __vlan_get_protocol(skb, type, depth);
2646 }
2647
2648 /**
2649  *      skb_mac_gso_segment - mac layer segmentation handler.
2650  *      @skb: buffer to segment
2651  *      @features: features for the output path (see dev->features)
2652  */
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654                                     netdev_features_t features)
2655 {
2656         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657         struct packet_offload *ptype;
2658         int vlan_depth = skb->mac_len;
2659         __be16 type = skb_network_protocol(skb, &vlan_depth);
2660
2661         if (unlikely(!type))
2662                 return ERR_PTR(-EINVAL);
2663
2664         __skb_pull(skb, vlan_depth);
2665
2666         rcu_read_lock();
2667         list_for_each_entry_rcu(ptype, &offload_base, list) {
2668                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2669                         segs = ptype->callbacks.gso_segment(skb, features);
2670                         break;
2671                 }
2672         }
2673         rcu_read_unlock();
2674
2675         __skb_push(skb, skb->data - skb_mac_header(skb));
2676
2677         return segs;
2678 }
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682 /* openvswitch calls this on rx path, so we need a different check.
2683  */
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685 {
2686         if (tx_path)
2687                 return skb->ip_summed != CHECKSUM_PARTIAL;
2688         else
2689                 return skb->ip_summed == CHECKSUM_NONE;
2690 }
2691
2692 /**
2693  *      __skb_gso_segment - Perform segmentation on skb.
2694  *      @skb: buffer to segment
2695  *      @features: features for the output path (see dev->features)
2696  *      @tx_path: whether it is called in TX path
2697  *
2698  *      This function segments the given skb and returns a list of segments.
2699  *
2700  *      It may return NULL if the skb requires no segmentation.  This is
2701  *      only possible when GSO is used for verifying header integrity.
2702  *
2703  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2704  */
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706                                   netdev_features_t features, bool tx_path)
2707 {
2708         if (unlikely(skb_needs_check(skb, tx_path))) {
2709                 int err;
2710
2711                 skb_warn_bad_offload(skb);
2712
2713                 err = skb_cow_head(skb, 0);
2714                 if (err < 0)
2715                         return ERR_PTR(err);
2716         }
2717
2718         /* Only report GSO partial support if it will enable us to
2719          * support segmentation on this frame without needing additional
2720          * work.
2721          */
2722         if (features & NETIF_F_GSO_PARTIAL) {
2723                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724                 struct net_device *dev = skb->dev;
2725
2726                 partial_features |= dev->features & dev->gso_partial_features;
2727                 if (!skb_gso_ok(skb, features | partial_features))
2728                         features &= ~NETIF_F_GSO_PARTIAL;
2729         }
2730
2731         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
2734         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735         SKB_GSO_CB(skb)->encap_level = 0;
2736
2737         skb_reset_mac_header(skb);
2738         skb_reset_mac_len(skb);
2739
2740         return skb_mac_gso_segment(skb, features);
2741 }
2742 EXPORT_SYMBOL(__skb_gso_segment);
2743
2744 /* Take action when hardware reception checksum errors are detected. */
2745 #ifdef CONFIG_BUG
2746 void netdev_rx_csum_fault(struct net_device *dev)
2747 {
2748         if (net_ratelimit()) {
2749                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2750                 dump_stack();
2751         }
2752 }
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2754 #endif
2755
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757  * 1. IOMMU is present and allows to map all the memory.
2758  * 2. No high memory really exists on this machine.
2759  */
2760
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2762 {
2763 #ifdef CONFIG_HIGHMEM
2764         int i;
2765         if (!(dev->features & NETIF_F_HIGHDMA)) {
2766                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768                         if (PageHighMem(skb_frag_page(frag)))
2769                                 return 1;
2770                 }
2771         }
2772
2773         if (PCI_DMA_BUS_IS_PHYS) {
2774                 struct device *pdev = dev->dev.parent;
2775
2776                 if (!pdev)
2777                         return 0;
2778                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782                                 return 1;
2783                 }
2784         }
2785 #endif
2786         return 0;
2787 }
2788
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790  * instead of standard features for the netdev.
2791  */
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794                                            netdev_features_t features,
2795                                            __be16 type)
2796 {
2797         if (eth_p_mpls(type))
2798                 features &= skb->dev->mpls_features;
2799
2800         return features;
2801 }
2802 #else
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804                                            netdev_features_t features,
2805                                            __be16 type)
2806 {
2807         return features;
2808 }
2809 #endif
2810
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812         netdev_features_t features)
2813 {
2814         int tmp;
2815         __be16 type;
2816
2817         type = skb_network_protocol(skb, &tmp);
2818         features = net_mpls_features(skb, features, type);
2819
2820         if (skb->ip_summed != CHECKSUM_NONE &&
2821             !can_checksum_protocol(features, type)) {
2822                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823         } else if (illegal_highdma(skb->dev, skb)) {
2824                 features &= ~NETIF_F_SG;
2825         }
2826
2827         return features;
2828 }
2829
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831                                           struct net_device *dev,
2832                                           netdev_features_t features)
2833 {
2834         return features;
2835 }
2836 EXPORT_SYMBOL(passthru_features_check);
2837
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839                                              struct net_device *dev,
2840                                              netdev_features_t features)
2841 {
2842         return vlan_features_check(skb, features);
2843 }
2844
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846                                             struct net_device *dev,
2847                                             netdev_features_t features)
2848 {
2849         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851         if (gso_segs > dev->gso_max_segs)
2852                 return features & ~NETIF_F_GSO_MASK;
2853
2854         /* Support for GSO partial features requires software
2855          * intervention before we can actually process the packets
2856          * so we need to strip support for any partial features now
2857          * and we can pull them back in after we have partially
2858          * segmented the frame.
2859          */
2860         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861                 features &= ~dev->gso_partial_features;
2862
2863         /* Make sure to clear the IPv4 ID mangling feature if the
2864          * IPv4 header has the potential to be fragmented.
2865          */
2866         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867                 struct iphdr *iph = skb->encapsulation ?
2868                                     inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870                 if (!(iph->frag_off & htons(IP_DF)))
2871                         features &= ~NETIF_F_TSO_MANGLEID;
2872         }
2873
2874         return features;
2875 }
2876
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2878 {
2879         struct net_device *dev = skb->dev;
2880         netdev_features_t features = dev->features;
2881
2882         if (skb_is_gso(skb))
2883                 features = gso_features_check(skb, dev, features);
2884
2885         /* If encapsulation offload request, verify we are testing
2886          * hardware encapsulation features instead of standard
2887          * features for the netdev
2888          */
2889         if (skb->encapsulation)
2890                 features &= dev->hw_enc_features;
2891
2892         if (skb_vlan_tagged(skb))
2893                 features = netdev_intersect_features(features,
2894                                                      dev->vlan_features |
2895                                                      NETIF_F_HW_VLAN_CTAG_TX |
2896                                                      NETIF_F_HW_VLAN_STAG_TX);
2897
2898         if (dev->netdev_ops->ndo_features_check)
2899                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900                                                                 features);
2901         else
2902                 features &= dflt_features_check(skb, dev, features);
2903
2904         return harmonize_features(skb, features);
2905 }
2906 EXPORT_SYMBOL(netif_skb_features);
2907
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909                     struct netdev_queue *txq, bool more)
2910 {
2911         unsigned int len;
2912         int rc;
2913
2914         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915                 dev_queue_xmit_nit(skb, dev);
2916
2917         len = skb->len;
2918         trace_net_dev_start_xmit(skb, dev);
2919         rc = netdev_start_xmit(skb, dev, txq, more);
2920         trace_net_dev_xmit(skb, rc, dev, len);
2921
2922         return rc;
2923 }
2924
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926                                     struct netdev_queue *txq, int *ret)
2927 {
2928         struct sk_buff *skb = first;
2929         int rc = NETDEV_TX_OK;
2930
2931         while (skb) {
2932                 struct sk_buff *next = skb->next;
2933
2934                 skb->next = NULL;
2935                 rc = xmit_one(skb, dev, txq, next != NULL);
2936                 if (unlikely(!dev_xmit_complete(rc))) {
2937                         skb->next = next;
2938                         goto out;
2939                 }
2940
2941                 skb = next;
2942                 if (netif_xmit_stopped(txq) && skb) {
2943                         rc = NETDEV_TX_BUSY;
2944                         break;
2945                 }
2946         }
2947
2948 out:
2949         *ret = rc;
2950         return skb;
2951 }
2952
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954                                           netdev_features_t features)
2955 {
2956         if (skb_vlan_tag_present(skb) &&
2957             !vlan_hw_offload_capable(features, skb->vlan_proto))
2958                 skb = __vlan_hwaccel_push_inside(skb);
2959         return skb;
2960 }
2961
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2963 {
2964         netdev_features_t features;
2965
2966         features = netif_skb_features(skb);
2967         skb = validate_xmit_vlan(skb, features);
2968         if (unlikely(!skb))
2969                 goto out_null;
2970
2971         if (netif_needs_gso(skb, features)) {
2972                 struct sk_buff *segs;
2973
2974                 segs = skb_gso_segment(skb, features);
2975                 if (IS_ERR(segs)) {
2976                         goto out_kfree_skb;
2977                 } else if (segs) {
2978                         consume_skb(skb);
2979                         skb = segs;
2980                 }
2981         } else {
2982                 if (skb_needs_linearize(skb, features) &&
2983                     __skb_linearize(skb))
2984                         goto out_kfree_skb;
2985
2986                 /* If packet is not checksummed and device does not
2987                  * support checksumming for this protocol, complete
2988                  * checksumming here.
2989                  */
2990                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991                         if (skb->encapsulation)
2992                                 skb_set_inner_transport_header(skb,
2993                                                                skb_checksum_start_offset(skb));
2994                         else
2995                                 skb_set_transport_header(skb,
2996                                                          skb_checksum_start_offset(skb));
2997                         if (!(features & NETIF_F_CSUM_MASK) &&
2998                             skb_checksum_help(skb))
2999                                 goto out_kfree_skb;
3000                 }
3001         }
3002
3003         return skb;
3004
3005 out_kfree_skb:
3006         kfree_skb(skb);
3007 out_null:
3008         atomic_long_inc(&dev->tx_dropped);
3009         return NULL;
3010 }
3011
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013 {
3014         struct sk_buff *next, *head = NULL, *tail;
3015
3016         for (; skb != NULL; skb = next) {
3017                 next = skb->next;
3018                 skb->next = NULL;
3019
3020                 /* in case skb wont be segmented, point to itself */
3021                 skb->prev = skb;
3022
3023                 skb = validate_xmit_skb(skb, dev);
3024                 if (!skb)
3025                         continue;
3026
3027                 if (!head)
3028                         head = skb;
3029                 else
3030                         tail->next = skb;
3031                 /* If skb was segmented, skb->prev points to
3032                  * the last segment. If not, it still contains skb.
3033                  */
3034                 tail = skb->prev;
3035         }
3036         return head;
3037 }
3038
3039 static void qdisc_pkt_len_init(struct sk_buff *skb)
3040 {
3041         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042
3043         qdisc_skb_cb(skb)->pkt_len = skb->len;
3044
3045         /* To get more precise estimation of bytes sent on wire,
3046          * we add to pkt_len the headers size of all segments
3047          */
3048         if (shinfo->gso_size)  {
3049                 unsigned int hdr_len;
3050                 u16 gso_segs = shinfo->gso_segs;
3051
3052                 /* mac layer + network layer */
3053                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054
3055                 /* + transport layer */
3056                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057                         hdr_len += tcp_hdrlen(skb);
3058                 else
3059                         hdr_len += sizeof(struct udphdr);
3060
3061                 if (shinfo->gso_type & SKB_GSO_DODGY)
3062                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063                                                 shinfo->gso_size);
3064
3065                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3066         }
3067 }
3068
3069 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070                                  struct net_device *dev,
3071                                  struct netdev_queue *txq)
3072 {
3073         spinlock_t *root_lock = qdisc_lock(q);
3074         struct sk_buff *to_free = NULL;
3075         bool contended;
3076         int rc;
3077
3078         qdisc_calculate_pkt_len(skb, q);
3079         /*
3080          * Heuristic to force contended enqueues to serialize on a
3081          * separate lock before trying to get qdisc main lock.
3082          * This permits qdisc->running owner to get the lock more
3083          * often and dequeue packets faster.
3084          */
3085         contended = qdisc_is_running(q);
3086         if (unlikely(contended))
3087                 spin_lock(&q->busylock);
3088
3089         spin_lock(root_lock);
3090         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3091                 __qdisc_drop(skb, &to_free);
3092                 rc = NET_XMIT_DROP;
3093         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3094                    qdisc_run_begin(q)) {
3095                 /*
3096                  * This is a work-conserving queue; there are no old skbs
3097                  * waiting to be sent out; and the qdisc is not running -
3098                  * xmit the skb directly.
3099                  */
3100
3101                 qdisc_bstats_update(q, skb);
3102
3103                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3104                         if (unlikely(contended)) {
3105                                 spin_unlock(&q->busylock);
3106                                 contended = false;
3107                         }
3108                         __qdisc_run(q);
3109                 } else
3110                         qdisc_run_end(q);
3111
3112                 rc = NET_XMIT_SUCCESS;
3113         } else {
3114                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3115                 if (qdisc_run_begin(q)) {
3116                         if (unlikely(contended)) {
3117                                 spin_unlock(&q->busylock);
3118                                 contended = false;
3119                         }
3120                         __qdisc_run(q);
3121                 }
3122         }
3123         spin_unlock(root_lock);
3124         if (unlikely(to_free))
3125                 kfree_skb_list(to_free);
3126         if (unlikely(contended))
3127                 spin_unlock(&q->busylock);
3128         return rc;
3129 }
3130
3131 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3132 static void skb_update_prio(struct sk_buff *skb)
3133 {
3134         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3135
3136         if (!skb->priority && skb->sk && map) {
3137                 unsigned int prioidx =
3138                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3139
3140                 if (prioidx < map->priomap_len)
3141                         skb->priority = map->priomap[prioidx];
3142         }
3143 }
3144 #else
3145 #define skb_update_prio(skb)
3146 #endif
3147
3148 DEFINE_PER_CPU(int, xmit_recursion);
3149 EXPORT_SYMBOL(xmit_recursion);
3150
3151 /**
3152  *      dev_loopback_xmit - loop back @skb
3153  *      @net: network namespace this loopback is happening in
3154  *      @sk:  sk needed to be a netfilter okfn
3155  *      @skb: buffer to transmit
3156  */
3157 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3158 {
3159         skb_reset_mac_header(skb);
3160         __skb_pull(skb, skb_network_offset(skb));
3161         skb->pkt_type = PACKET_LOOPBACK;
3162         skb->ip_summed = CHECKSUM_UNNECESSARY;
3163         WARN_ON(!skb_dst(skb));
3164         skb_dst_force(skb);
3165         netif_rx_ni(skb);
3166         return 0;
3167 }
3168 EXPORT_SYMBOL(dev_loopback_xmit);
3169
3170 #ifdef CONFIG_NET_EGRESS
3171 static struct sk_buff *
3172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173 {
3174         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175         struct tcf_result cl_res;
3176
3177         if (!cl)
3178                 return skb;
3179
3180         /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181          * earlier by the caller.
3182          */
3183         qdisc_bstats_cpu_update(cl->q, skb);
3184
3185         switch (tc_classify(skb, cl, &cl_res, false)) {
3186         case TC_ACT_OK:
3187         case TC_ACT_RECLASSIFY:
3188                 skb->tc_index = TC_H_MIN(cl_res.classid);
3189                 break;
3190         case TC_ACT_SHOT:
3191                 qdisc_qstats_cpu_drop(cl->q);
3192                 *ret = NET_XMIT_DROP;
3193                 kfree_skb(skb);
3194                 return NULL;
3195         case TC_ACT_STOLEN:
3196         case TC_ACT_QUEUED:
3197                 *ret = NET_XMIT_SUCCESS;
3198                 consume_skb(skb);
3199                 return NULL;
3200         case TC_ACT_REDIRECT:
3201                 /* No need to push/pop skb's mac_header here on egress! */
3202                 skb_do_redirect(skb);
3203                 *ret = NET_XMIT_SUCCESS;
3204                 return NULL;
3205         default:
3206                 break;
3207         }
3208
3209         return skb;
3210 }
3211 #endif /* CONFIG_NET_EGRESS */
3212
3213 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214 {
3215 #ifdef CONFIG_XPS
3216         struct xps_dev_maps *dev_maps;
3217         struct xps_map *map;
3218         int queue_index = -1;
3219
3220         rcu_read_lock();
3221         dev_maps = rcu_dereference(dev->xps_maps);
3222         if (dev_maps) {
3223                 map = rcu_dereference(
3224                     dev_maps->cpu_map[skb->sender_cpu - 1]);
3225                 if (map) {
3226                         if (map->len == 1)
3227                                 queue_index = map->queues[0];
3228                         else
3229                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230                                                                            map->len)];
3231                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3232                                 queue_index = -1;
3233                 }
3234         }
3235         rcu_read_unlock();
3236
3237         return queue_index;
3238 #else
3239         return -1;
3240 #endif
3241 }
3242
3243 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244 {
3245         struct sock *sk = skb->sk;
3246         int queue_index = sk_tx_queue_get(sk);
3247
3248         if (queue_index < 0 || skb->ooo_okay ||
3249             queue_index >= dev->real_num_tx_queues) {
3250                 int new_index = get_xps_queue(dev, skb);
3251                 if (new_index < 0)
3252                         new_index = skb_tx_hash(dev, skb);
3253
3254                 if (queue_index != new_index && sk &&
3255                     sk_fullsock(sk) &&
3256                     rcu_access_pointer(sk->sk_dst_cache))
3257                         sk_tx_queue_set(sk, new_index);
3258
3259                 queue_index = new_index;
3260         }
3261
3262         return queue_index;
3263 }
3264
3265 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266                                     struct sk_buff *skb,
3267                                     void *accel_priv)
3268 {
3269         int queue_index = 0;
3270
3271 #ifdef CONFIG_XPS
3272         u32 sender_cpu = skb->sender_cpu - 1;
3273
3274         if (sender_cpu >= (u32)NR_CPUS)
3275                 skb->sender_cpu = raw_smp_processor_id() + 1;
3276 #endif
3277
3278         if (dev->real_num_tx_queues != 1) {
3279                 const struct net_device_ops *ops = dev->netdev_ops;
3280                 if (ops->ndo_select_queue)
3281                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282                                                             __netdev_pick_tx);
3283                 else
3284                         queue_index = __netdev_pick_tx(dev, skb);
3285
3286                 if (!accel_priv)
3287                         queue_index = netdev_cap_txqueue(dev, queue_index);
3288         }
3289
3290         skb_set_queue_mapping(skb, queue_index);
3291         return netdev_get_tx_queue(dev, queue_index);
3292 }
3293
3294 /**
3295  *      __dev_queue_xmit - transmit a buffer
3296  *      @skb: buffer to transmit
3297  *      @accel_priv: private data used for L2 forwarding offload
3298  *
3299  *      Queue a buffer for transmission to a network device. The caller must
3300  *      have set the device and priority and built the buffer before calling
3301  *      this function. The function can be called from an interrupt.
3302  *
3303  *      A negative errno code is returned on a failure. A success does not
3304  *      guarantee the frame will be transmitted as it may be dropped due
3305  *      to congestion or traffic shaping.
3306  *
3307  * -----------------------------------------------------------------------------------
3308  *      I notice this method can also return errors from the queue disciplines,
3309  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3310  *      be positive.
3311  *
3312  *      Regardless of the return value, the skb is consumed, so it is currently
3313  *      difficult to retry a send to this method.  (You can bump the ref count
3314  *      before sending to hold a reference for retry if you are careful.)
3315  *
3316  *      When calling this method, interrupts MUST be enabled.  This is because
3317  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3318  *          --BLG
3319  */
3320 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3321 {
3322         struct net_device *dev = skb->dev;
3323         struct netdev_queue *txq;
3324         struct Qdisc *q;
3325         int rc = -ENOMEM;
3326
3327         skb_reset_mac_header(skb);
3328
3329         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331
3332         /* Disable soft irqs for various locks below. Also
3333          * stops preemption for RCU.
3334          */
3335         rcu_read_lock_bh();
3336
3337         skb_update_prio(skb);
3338
3339         qdisc_pkt_len_init(skb);
3340 #ifdef CONFIG_NET_CLS_ACT
3341         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342 # ifdef CONFIG_NET_EGRESS
3343         if (static_key_false(&egress_needed)) {
3344                 skb = sch_handle_egress(skb, &rc, dev);
3345                 if (!skb)
3346                         goto out;
3347         }
3348 # endif
3349 #endif
3350         /* If device/qdisc don't need skb->dst, release it right now while
3351          * its hot in this cpu cache.
3352          */
3353         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354                 skb_dst_drop(skb);
3355         else
3356                 skb_dst_force(skb);
3357
3358 #ifdef CONFIG_NET_SWITCHDEV
3359         /* Don't forward if offload device already forwarded */
3360         if (skb->offload_fwd_mark &&
3361             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3362                 consume_skb(skb);
3363                 rc = NET_XMIT_SUCCESS;
3364                 goto out;
3365         }
3366 #endif
3367
3368         txq = netdev_pick_tx(dev, skb, accel_priv);
3369         q = rcu_dereference_bh(txq->qdisc);
3370
3371         trace_net_dev_queue(skb);
3372         if (q->enqueue) {
3373                 rc = __dev_xmit_skb(skb, q, dev, txq);
3374                 goto out;
3375         }
3376
3377         /* The device has no queue. Common case for software devices:
3378            loopback, all the sorts of tunnels...
3379
3380            Really, it is unlikely that netif_tx_lock protection is necessary
3381            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3382            counters.)
3383            However, it is possible, that they rely on protection
3384            made by us here.
3385
3386            Check this and shot the lock. It is not prone from deadlocks.
3387            Either shot noqueue qdisc, it is even simpler 8)
3388          */
3389         if (dev->flags & IFF_UP) {
3390                 int cpu = smp_processor_id(); /* ok because BHs are off */
3391
3392                 if (txq->xmit_lock_owner != cpu) {
3393                         if (unlikely(__this_cpu_read(xmit_recursion) >
3394                                      XMIT_RECURSION_LIMIT))
3395                                 goto recursion_alert;
3396
3397                         skb = validate_xmit_skb(skb, dev);
3398                         if (!skb)
3399                                 goto out;
3400
3401                         HARD_TX_LOCK(dev, txq, cpu);
3402
3403                         if (!netif_xmit_stopped(txq)) {
3404                                 __this_cpu_inc(xmit_recursion);
3405                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3406                                 __this_cpu_dec(xmit_recursion);
3407                                 if (dev_xmit_complete(rc)) {
3408                                         HARD_TX_UNLOCK(dev, txq);
3409                                         goto out;
3410                                 }
3411                         }
3412                         HARD_TX_UNLOCK(dev, txq);
3413                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3414                                              dev->name);
3415                 } else {
3416                         /* Recursion is detected! It is possible,
3417                          * unfortunately
3418                          */
3419 recursion_alert:
3420                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3421                                              dev->name);
3422                 }
3423         }
3424
3425         rc = -ENETDOWN;
3426         rcu_read_unlock_bh();
3427
3428         atomic_long_inc(&dev->tx_dropped);
3429         kfree_skb_list(skb);
3430         return rc;
3431 out:
3432         rcu_read_unlock_bh();
3433         return rc;
3434 }
3435
3436 int dev_queue_xmit(struct sk_buff *skb)
3437 {
3438         return __dev_queue_xmit(skb, NULL);
3439 }
3440 EXPORT_SYMBOL(dev_queue_xmit);
3441
3442 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3443 {
3444         return __dev_queue_xmit(skb, accel_priv);
3445 }
3446 EXPORT_SYMBOL(dev_queue_xmit_accel);
3447
3448
3449 /*=======================================================================
3450                         Receiver routines
3451   =======================================================================*/
3452
3453 int netdev_max_backlog __read_mostly = 1000;
3454 EXPORT_SYMBOL(netdev_max_backlog);
3455
3456 int netdev_tstamp_prequeue __read_mostly = 1;
3457 int netdev_budget __read_mostly = 300;
3458 int weight_p __read_mostly = 64;            /* old backlog weight */
3459
3460 /* Called with irq disabled */
3461 static inline void ____napi_schedule(struct softnet_data *sd,
3462                                      struct napi_struct *napi)
3463 {
3464         list_add_tail(&napi->poll_list, &sd->poll_list);
3465         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3466 }
3467
3468 #ifdef CONFIG_RPS
3469
3470 /* One global table that all flow-based protocols share. */
3471 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3472 EXPORT_SYMBOL(rps_sock_flow_table);
3473 u32 rps_cpu_mask __read_mostly;
3474 EXPORT_SYMBOL(rps_cpu_mask);
3475
3476 struct static_key rps_needed __read_mostly;
3477 EXPORT_SYMBOL(rps_needed);
3478
3479 static struct rps_dev_flow *
3480 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3481             struct rps_dev_flow *rflow, u16 next_cpu)
3482 {
3483         if (next_cpu < nr_cpu_ids) {
3484 #ifdef CONFIG_RFS_ACCEL
3485                 struct netdev_rx_queue *rxqueue;
3486                 struct rps_dev_flow_table *flow_table;
3487                 struct rps_dev_flow *old_rflow;
3488                 u32 flow_id;
3489                 u16 rxq_index;
3490                 int rc;
3491
3492                 /* Should we steer this flow to a different hardware queue? */
3493                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3494                     !(dev->features & NETIF_F_NTUPLE))
3495                         goto out;
3496                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3497                 if (rxq_index == skb_get_rx_queue(skb))
3498                         goto out;
3499
3500                 rxqueue = dev->_rx + rxq_index;
3501                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3502                 if (!flow_table)
3503                         goto out;
3504                 flow_id = skb_get_hash(skb) & flow_table->mask;
3505                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3506                                                         rxq_index, flow_id);
3507                 if (rc < 0)
3508                         goto out;
3509                 old_rflow = rflow;
3510                 rflow = &flow_table->flows[flow_id];
3511                 rflow->filter = rc;
3512                 if (old_rflow->filter == rflow->filter)
3513                         old_rflow->filter = RPS_NO_FILTER;
3514         out:
3515 #endif
3516                 rflow->last_qtail =
3517                         per_cpu(softnet_data, next_cpu).input_queue_head;
3518         }
3519
3520         rflow->cpu = next_cpu;
3521         return rflow;
3522 }
3523
3524 /*
3525  * get_rps_cpu is called from netif_receive_skb and returns the target
3526  * CPU from the RPS map of the receiving queue for a given skb.
3527  * rcu_read_lock must be held on entry.
3528  */
3529 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3530                        struct rps_dev_flow **rflowp)
3531 {
3532         const struct rps_sock_flow_table *sock_flow_table;
3533         struct netdev_rx_queue *rxqueue = dev->_rx;
3534         struct rps_dev_flow_table *flow_table;
3535         struct rps_map *map;
3536         int cpu = -1;
3537         u32 tcpu;
3538         u32 hash;
3539
3540         if (skb_rx_queue_recorded(skb)) {
3541                 u16 index = skb_get_rx_queue(skb);
3542
3543                 if (unlikely(index >= dev->real_num_rx_queues)) {
3544                         WARN_ONCE(dev->real_num_rx_queues > 1,
3545                                   "%s received packet on queue %u, but number "
3546                                   "of RX queues is %u\n",
3547                                   dev->name, index, dev->real_num_rx_queues);
3548                         goto done;
3549                 }
3550                 rxqueue += index;
3551         }
3552
3553         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3554
3555         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3556         map = rcu_dereference(rxqueue->rps_map);
3557         if (!flow_table && !map)
3558                 goto done;
3559
3560         skb_reset_network_header(skb);
3561         hash = skb_get_hash(skb);
3562         if (!hash)
3563                 goto done;
3564
3565         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3566         if (flow_table && sock_flow_table) {
3567                 struct rps_dev_flow *rflow;
3568                 u32 next_cpu;
3569                 u32 ident;
3570
3571                 /* First check into global flow table if there is a match */
3572                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3573                 if ((ident ^ hash) & ~rps_cpu_mask)
3574                         goto try_rps;
3575
3576                 next_cpu = ident & rps_cpu_mask;
3577
3578                 /* OK, now we know there is a match,
3579                  * we can look at the local (per receive queue) flow table
3580                  */
3581                 rflow = &flow_table->flows[hash & flow_table->mask];
3582                 tcpu = rflow->cpu;
3583
3584                 /*
3585                  * If the desired CPU (where last recvmsg was done) is
3586                  * different from current CPU (one in the rx-queue flow
3587                  * table entry), switch if one of the following holds:
3588                  *   - Current CPU is unset (>= nr_cpu_ids).
3589                  *   - Current CPU is offline.
3590                  *   - The current CPU's queue tail has advanced beyond the
3591                  *     last packet that was enqueued using this table entry.
3592                  *     This guarantees that all previous packets for the flow
3593                  *     have been dequeued, thus preserving in order delivery.
3594                  */
3595                 if (unlikely(tcpu != next_cpu) &&
3596                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3597                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3598                       rflow->last_qtail)) >= 0)) {
3599                         tcpu = next_cpu;
3600                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3601                 }
3602
3603                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3604                         *rflowp = rflow;
3605                         cpu = tcpu;
3606                         goto done;
3607                 }
3608         }
3609
3610 try_rps:
3611
3612         if (map) {
3613                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3614                 if (cpu_online(tcpu)) {
3615                         cpu = tcpu;
3616                         goto done;
3617                 }
3618         }
3619
3620 done:
3621         return cpu;
3622 }
3623
3624 #ifdef CONFIG_RFS_ACCEL
3625
3626 /**
3627  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3628  * @dev: Device on which the filter was set
3629  * @rxq_index: RX queue index
3630  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3631  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3632  *
3633  * Drivers that implement ndo_rx_flow_steer() should periodically call
3634  * this function for each installed filter and remove the filters for
3635  * which it returns %true.
3636  */
3637 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3638                          u32 flow_id, u16 filter_id)
3639 {
3640         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3641         struct rps_dev_flow_table *flow_table;
3642         struct rps_dev_flow *rflow;
3643         bool expire = true;
3644         unsigned int cpu;
3645
3646         rcu_read_lock();
3647         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3648         if (flow_table && flow_id <= flow_table->mask) {
3649                 rflow = &flow_table->flows[flow_id];
3650                 cpu = ACCESS_ONCE(rflow->cpu);
3651                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3652                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3653                            rflow->last_qtail) <
3654                      (int)(10 * flow_table->mask)))
3655                         expire = false;
3656         }
3657         rcu_read_unlock();
3658         return expire;
3659 }
3660 EXPORT_SYMBOL(rps_may_expire_flow);
3661
3662 #endif /* CONFIG_RFS_ACCEL */
3663
3664 /* Called from hardirq (IPI) context */
3665 static void rps_trigger_softirq(void *data)
3666 {
3667         struct softnet_data *sd = data;
3668
3669         ____napi_schedule(sd, &sd->backlog);
3670         sd->received_rps++;
3671 }
3672
3673 #endif /* CONFIG_RPS */
3674
3675 /*
3676  * Check if this softnet_data structure is another cpu one
3677  * If yes, queue it to our IPI list and return 1
3678  * If no, return 0
3679  */
3680 static int rps_ipi_queued(struct softnet_data *sd)
3681 {
3682 #ifdef CONFIG_RPS
3683         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3684
3685         if (sd != mysd) {
3686                 sd->rps_ipi_next = mysd->rps_ipi_list;
3687                 mysd->rps_ipi_list = sd;
3688
3689                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3690                 return 1;
3691         }
3692 #endif /* CONFIG_RPS */
3693         return 0;
3694 }
3695
3696 #ifdef CONFIG_NET_FLOW_LIMIT
3697 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3698 #endif
3699
3700 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3701 {
3702 #ifdef CONFIG_NET_FLOW_LIMIT
3703         struct sd_flow_limit *fl;
3704         struct softnet_data *sd;
3705         unsigned int old_flow, new_flow;
3706
3707         if (qlen < (netdev_max_backlog >> 1))
3708                 return false;
3709
3710         sd = this_cpu_ptr(&softnet_data);
3711
3712         rcu_read_lock();
3713         fl = rcu_dereference(sd->flow_limit);
3714         if (fl) {
3715                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3716                 old_flow = fl->history[fl->history_head];
3717                 fl->history[fl->history_head] = new_flow;
3718
3719                 fl->history_head++;
3720                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3721
3722                 if (likely(fl->buckets[old_flow]))
3723                         fl->buckets[old_flow]--;
3724
3725                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3726                         fl->count++;
3727                         rcu_read_unlock();
3728                         return true;
3729                 }
3730         }
3731         rcu_read_unlock();
3732 #endif
3733         return false;
3734 }
3735
3736 /*
3737  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3738  * queue (may be a remote CPU queue).
3739  */
3740 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3741                               unsigned int *qtail)
3742 {
3743         struct softnet_data *sd;
3744         unsigned long flags;
3745         unsigned int qlen;
3746
3747         sd = &per_cpu(softnet_data, cpu);
3748
3749         local_irq_save(flags);
3750
3751         rps_lock(sd);
3752         if (!netif_running(skb->dev))
3753                 goto drop;
3754         qlen = skb_queue_len(&sd->input_pkt_queue);
3755         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3756                 if (qlen) {
3757 enqueue:
3758                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3759                         input_queue_tail_incr_save(sd, qtail);
3760                         rps_unlock(sd);
3761                         local_irq_restore(flags);
3762                         return NET_RX_SUCCESS;
3763                 }
3764
3765                 /* Schedule NAPI for backlog device
3766                  * We can use non atomic operation since we own the queue lock
3767                  */
3768                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3769                         if (!rps_ipi_queued(sd))
3770                                 ____napi_schedule(sd, &sd->backlog);
3771                 }
3772                 goto enqueue;
3773         }
3774
3775 drop:
3776         sd->dropped++;
3777         rps_unlock(sd);
3778
3779         local_irq_restore(flags);
3780
3781         atomic_long_inc(&skb->dev->rx_dropped);
3782         kfree_skb(skb);
3783         return NET_RX_DROP;
3784 }
3785
3786 static int netif_rx_internal(struct sk_buff *skb)
3787 {
3788         int ret;
3789
3790         net_timestamp_check(netdev_tstamp_prequeue, skb);
3791
3792         trace_netif_rx(skb);
3793 #ifdef CONFIG_RPS
3794         if (static_key_false(&rps_needed)) {
3795                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3796                 int cpu;
3797
3798                 preempt_disable();
3799                 rcu_read_lock();
3800
3801                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3802                 if (cpu < 0)
3803                         cpu = smp_processor_id();
3804
3805                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3806
3807                 rcu_read_unlock();
3808                 preempt_enable();
3809         } else
3810 #endif
3811         {
3812                 unsigned int qtail;
3813                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3814                 put_cpu();
3815         }
3816         return ret;
3817 }
3818
3819 /**
3820  *      netif_rx        -       post buffer to the network code
3821  *      @skb: buffer to post
3822  *
3823  *      This function receives a packet from a device driver and queues it for
3824  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3825  *      may be dropped during processing for congestion control or by the
3826  *      protocol layers.
3827  *
3828  *      return values:
3829  *      NET_RX_SUCCESS  (no congestion)
3830  *      NET_RX_DROP     (packet was dropped)
3831  *
3832  */
3833
3834 int netif_rx(struct sk_buff *skb)
3835 {
3836         trace_netif_rx_entry(skb);
3837
3838         return netif_rx_internal(skb);
3839 }
3840 EXPORT_SYMBOL(netif_rx);
3841
3842 int netif_rx_ni(struct sk_buff *skb)
3843 {
3844         int err;
3845
3846         trace_netif_rx_ni_entry(skb);
3847
3848         preempt_disable();
3849         err = netif_rx_internal(skb);
3850         if (local_softirq_pending())
3851                 do_softirq();
3852         preempt_enable();
3853
3854         return err;
3855 }
3856 EXPORT_SYMBOL(netif_rx_ni);
3857
3858 static void net_tx_action(struct softirq_action *h)
3859 {
3860         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3861
3862         if (sd->completion_queue) {
3863                 struct sk_buff *clist;
3864
3865                 local_irq_disable();
3866                 clist = sd->completion_queue;
3867                 sd->completion_queue = NULL;
3868                 local_irq_enable();
3869
3870                 while (clist) {
3871                         struct sk_buff *skb = clist;
3872                         clist = clist->next;
3873
3874                         WARN_ON(atomic_read(&skb->users));
3875                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3876                                 trace_consume_skb(skb);
3877                         else
3878                                 trace_kfree_skb(skb, net_tx_action);
3879
3880                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3881                                 __kfree_skb(skb);
3882                         else
3883                                 __kfree_skb_defer(skb);
3884                 }
3885
3886                 __kfree_skb_flush();
3887         }
3888
3889         if (sd->output_queue) {
3890                 struct Qdisc *head;
3891
3892                 local_irq_disable();
3893                 head = sd->output_queue;
3894                 sd->output_queue = NULL;
3895                 sd->output_queue_tailp = &sd->output_queue;
3896                 local_irq_enable();
3897
3898                 while (head) {
3899                         struct Qdisc *q = head;
3900                         spinlock_t *root_lock;
3901
3902                         head = head->next_sched;
3903
3904                         root_lock = qdisc_lock(q);
3905                         spin_lock(root_lock);
3906                         /* We need to make sure head->next_sched is read
3907                          * before clearing __QDISC_STATE_SCHED
3908                          */
3909                         smp_mb__before_atomic();
3910                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3911                         qdisc_run(q);
3912                         spin_unlock(root_lock);
3913                 }
3914         }
3915 }
3916
3917 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3918     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3919 /* This hook is defined here for ATM LANE */
3920 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3921                              unsigned char *addr) __read_mostly;
3922 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3923 #endif
3924
3925 static inline struct sk_buff *
3926 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3927                    struct net_device *orig_dev)
3928 {
3929 #ifdef CONFIG_NET_CLS_ACT
3930         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3931         struct tcf_result cl_res;
3932
3933         /* If there's at least one ingress present somewhere (so
3934          * we get here via enabled static key), remaining devices
3935          * that are not configured with an ingress qdisc will bail
3936          * out here.
3937          */
3938         if (!cl)
3939                 return skb;
3940         if (*pt_prev) {
3941                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3942                 *pt_prev = NULL;
3943         }
3944
3945         qdisc_skb_cb(skb)->pkt_len = skb->len;
3946         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3947         qdisc_bstats_cpu_update(cl->q, skb);
3948
3949         switch (tc_classify(skb, cl, &cl_res, false)) {
3950         case TC_ACT_OK:
3951         case TC_ACT_RECLASSIFY:
3952                 skb->tc_index = TC_H_MIN(cl_res.classid);
3953                 break;
3954         case TC_ACT_SHOT:
3955                 qdisc_qstats_cpu_drop(cl->q);
3956                 kfree_skb(skb);
3957                 return NULL;
3958         case TC_ACT_STOLEN:
3959         case TC_ACT_QUEUED:
3960                 consume_skb(skb);
3961                 return NULL;
3962         case TC_ACT_REDIRECT:
3963                 /* skb_mac_header check was done by cls/act_bpf, so
3964                  * we can safely push the L2 header back before
3965                  * redirecting to another netdev
3966                  */
3967                 __skb_push(skb, skb->mac_len);
3968                 skb_do_redirect(skb);
3969                 return NULL;
3970         default:
3971                 break;
3972         }
3973 #endif /* CONFIG_NET_CLS_ACT */
3974         return skb;
3975 }
3976
3977 /**
3978  *      netdev_is_rx_handler_busy - check if receive handler is registered
3979  *      @dev: device to check
3980  *
3981  *      Check if a receive handler is already registered for a given device.
3982  *      Return true if there one.
3983  *
3984  *      The caller must hold the rtnl_mutex.
3985  */
3986 bool netdev_is_rx_handler_busy(struct net_device *dev)
3987 {
3988         ASSERT_RTNL();
3989         return dev && rtnl_dereference(dev->rx_handler);
3990 }
3991 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3992
3993 /**
3994  *      netdev_rx_handler_register - register receive handler
3995  *      @dev: device to register a handler for
3996  *      @rx_handler: receive handler to register
3997  *      @rx_handler_data: data pointer that is used by rx handler
3998  *
3999  *      Register a receive handler for a device. This handler will then be
4000  *      called from __netif_receive_skb. A negative errno code is returned
4001  *      on a failure.
4002  *
4003  *      The caller must hold the rtnl_mutex.
4004  *
4005  *      For a general description of rx_handler, see enum rx_handler_result.
4006  */
4007 int netdev_rx_handler_register(struct net_device *dev,
4008                                rx_handler_func_t *rx_handler,
4009                                void *rx_handler_data)
4010 {
4011         ASSERT_RTNL();
4012
4013         if (dev->rx_handler)
4014                 return -EBUSY;
4015
4016         /* Note: rx_handler_data must be set before rx_handler */
4017         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4018         rcu_assign_pointer(dev->rx_handler, rx_handler);
4019
4020         return 0;
4021 }
4022 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4023
4024 /**
4025  *      netdev_rx_handler_unregister - unregister receive handler
4026  *      @dev: device to unregister a handler from
4027  *
4028  *      Unregister a receive handler from a device.
4029  *
4030  *      The caller must hold the rtnl_mutex.
4031  */
4032 void netdev_rx_handler_unregister(struct net_device *dev)
4033 {
4034
4035         ASSERT_RTNL();
4036         RCU_INIT_POINTER(dev->rx_handler, NULL);
4037         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4038          * section has a guarantee to see a non NULL rx_handler_data
4039          * as well.
4040          */
4041         synchronize_net();
4042         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4043 }
4044 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4045
4046 /*
4047  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4048  * the special handling of PFMEMALLOC skbs.
4049  */
4050 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4051 {
4052         switch (skb->protocol) {
4053         case htons(ETH_P_ARP):
4054         case htons(ETH_P_IP):
4055         case htons(ETH_P_IPV6):
4056         case htons(ETH_P_8021Q):
4057         case htons(ETH_P_8021AD):
4058                 return true;
4059         default:
4060                 return false;
4061         }
4062 }
4063
4064 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4065                              int *ret, struct net_device *orig_dev)
4066 {
4067 #ifdef CONFIG_NETFILTER_INGRESS
4068         if (nf_hook_ingress_active(skb)) {
4069                 if (*pt_prev) {
4070                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4071                         *pt_prev = NULL;
4072                 }
4073
4074                 return nf_hook_ingress(skb);
4075         }
4076 #endif /* CONFIG_NETFILTER_INGRESS */
4077         return 0;
4078 }
4079
4080 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4081 {
4082         struct packet_type *ptype, *pt_prev;
4083         rx_handler_func_t *rx_handler;
4084         struct net_device *orig_dev;
4085         bool deliver_exact = false;
4086         int ret = NET_RX_DROP;
4087         __be16 type;
4088
4089         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4090
4091         trace_netif_receive_skb(skb);
4092
4093         orig_dev = skb->dev;
4094
4095         skb_reset_network_header(skb);
4096         if (!skb_transport_header_was_set(skb))
4097                 skb_reset_transport_header(skb);
4098         skb_reset_mac_len(skb);
4099
4100         pt_prev = NULL;
4101
4102 another_round:
4103         skb->skb_iif = skb->dev->ifindex;
4104
4105         __this_cpu_inc(softnet_data.processed);
4106
4107         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4108             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4109                 skb = skb_vlan_untag(skb);
4110                 if (unlikely(!skb))
4111                         goto out;
4112         }
4113
4114 #ifdef CONFIG_NET_CLS_ACT
4115         if (skb->tc_verd & TC_NCLS) {
4116                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4117                 goto ncls;
4118         }
4119 #endif
4120
4121         if (pfmemalloc)
4122                 goto skip_taps;
4123
4124         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4125                 if (pt_prev)
4126                         ret = deliver_skb(skb, pt_prev, orig_dev);
4127                 pt_prev = ptype;
4128         }
4129
4130         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4131                 if (pt_prev)
4132                         ret = deliver_skb(skb, pt_prev, orig_dev);
4133                 pt_prev = ptype;
4134         }
4135
4136 skip_taps:
4137 #ifdef CONFIG_NET_INGRESS
4138         if (static_key_false(&ingress_needed)) {
4139                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4140                 if (!skb)
4141                         goto out;
4142
4143                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4144                         goto out;
4145         }
4146 #endif
4147 #ifdef CONFIG_NET_CLS_ACT
4148         skb->tc_verd = 0;
4149 ncls:
4150 #endif
4151         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4152                 goto drop;
4153
4154         if (skb_vlan_tag_present(skb)) {
4155                 if (pt_prev) {
4156                         ret = deliver_skb(skb, pt_prev, orig_dev);
4157                         pt_prev = NULL;
4158                 }
4159                 if (vlan_do_receive(&skb))
4160                         goto another_round;
4161                 else if (unlikely(!skb))
4162                         goto out;
4163         }
4164
4165         rx_handler = rcu_dereference(skb->dev->rx_handler);
4166         if (rx_handler) {
4167                 if (pt_prev) {
4168                         ret = deliver_skb(skb, pt_prev, orig_dev);
4169                         pt_prev = NULL;
4170                 }
4171                 switch (rx_handler(&skb)) {
4172                 case RX_HANDLER_CONSUMED:
4173                         ret = NET_RX_SUCCESS;
4174                         goto out;
4175                 case RX_HANDLER_ANOTHER:
4176                         goto another_round;
4177                 case RX_HANDLER_EXACT:
4178                         deliver_exact = true;
4179                 case RX_HANDLER_PASS:
4180                         break;
4181                 default:
4182                         BUG();
4183                 }
4184         }
4185
4186         if (unlikely(skb_vlan_tag_present(skb))) {
4187                 if (skb_vlan_tag_get_id(skb))
4188                         skb->pkt_type = PACKET_OTHERHOST;
4189                 /* Note: we might in the future use prio bits
4190                  * and set skb->priority like in vlan_do_receive()
4191                  * For the time being, just ignore Priority Code Point
4192                  */
4193                 skb->vlan_tci = 0;
4194         }
4195
4196         type = skb->protocol;
4197
4198         /* deliver only exact match when indicated */
4199         if (likely(!deliver_exact)) {
4200                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4201                                        &ptype_base[ntohs(type) &
4202                                                    PTYPE_HASH_MASK]);
4203         }
4204
4205         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4206                                &orig_dev->ptype_specific);
4207
4208         if (unlikely(skb->dev != orig_dev)) {
4209                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4210                                        &skb->dev->ptype_specific);
4211         }
4212
4213         if (pt_prev) {
4214                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4215                         goto drop;
4216                 else
4217                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4218         } else {
4219 drop:
4220                 if (!deliver_exact)
4221                         atomic_long_inc(&skb->dev->rx_dropped);
4222                 else
4223                         atomic_long_inc(&skb->dev->rx_nohandler);
4224                 kfree_skb(skb);
4225                 /* Jamal, now you will not able to escape explaining
4226                  * me how you were going to use this. :-)
4227                  */
4228                 ret = NET_RX_DROP;
4229         }
4230
4231 out:
4232         return ret;
4233 }
4234
4235 static int __netif_receive_skb(struct sk_buff *skb)
4236 {
4237         int ret;
4238
4239         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4240                 unsigned long pflags = current->flags;
4241
4242                 /*
4243                  * PFMEMALLOC skbs are special, they should
4244                  * - be delivered to SOCK_MEMALLOC sockets only
4245                  * - stay away from userspace
4246                  * - have bounded memory usage
4247                  *
4248                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4249                  * context down to all allocation sites.
4250                  */
4251                 current->flags |= PF_MEMALLOC;
4252                 ret = __netif_receive_skb_core(skb, true);
4253                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4254         } else
4255                 ret = __netif_receive_skb_core(skb, false);
4256
4257         return ret;
4258 }
4259
4260 static int netif_receive_skb_internal(struct sk_buff *skb)
4261 {
4262         int ret;
4263
4264         net_timestamp_check(netdev_tstamp_prequeue, skb);
4265
4266         if (skb_defer_rx_timestamp(skb))
4267                 return NET_RX_SUCCESS;
4268
4269         rcu_read_lock();
4270
4271 #ifdef CONFIG_RPS
4272         if (static_key_false(&rps_needed)) {
4273                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4274                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4275
4276                 if (cpu >= 0) {
4277                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4278                         rcu_read_unlock();
4279                         return ret;
4280                 }
4281         }
4282 #endif
4283         ret = __netif_receive_skb(skb);
4284         rcu_read_unlock();
4285         return ret;
4286 }
4287
4288 /**
4289  *      netif_receive_skb - process receive buffer from network
4290  *      @skb: buffer to process
4291  *
4292  *      netif_receive_skb() is the main receive data processing function.
4293  *      It always succeeds. The buffer may be dropped during processing
4294  *      for congestion control or by the protocol layers.
4295  *
4296  *      This function may only be called from softirq context and interrupts
4297  *      should be enabled.
4298  *
4299  *      Return values (usually ignored):
4300  *      NET_RX_SUCCESS: no congestion
4301  *      NET_RX_DROP: packet was dropped
4302  */
4303 int netif_receive_skb(struct sk_buff *skb)
4304 {
4305         trace_netif_receive_skb_entry(skb);
4306
4307         return netif_receive_skb_internal(skb);
4308 }
4309 EXPORT_SYMBOL(netif_receive_skb);
4310
4311 /* Network device is going away, flush any packets still pending
4312  * Called with irqs disabled.
4313  */
4314 static void flush_backlog(void *arg)
4315 {
4316         struct net_device *dev = arg;
4317         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4318         struct sk_buff *skb, *tmp;
4319
4320         rps_lock(sd);
4321         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4322                 if (skb->dev == dev) {
4323                         __skb_unlink(skb, &sd->input_pkt_queue);
4324                         kfree_skb(skb);
4325                         input_queue_head_incr(sd);
4326                 }
4327         }
4328         rps_unlock(sd);
4329
4330         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4331                 if (skb->dev == dev) {
4332                         __skb_unlink(skb, &sd->process_queue);
4333                         kfree_skb(skb);
4334                         input_queue_head_incr(sd);
4335                 }
4336         }
4337 }
4338
4339 static int napi_gro_complete(struct sk_buff *skb)
4340 {
4341         struct packet_offload *ptype;
4342         __be16 type = skb->protocol;
4343         struct list_head *head = &offload_base;
4344         int err = -ENOENT;
4345
4346         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4347
4348         if (NAPI_GRO_CB(skb)->count == 1) {
4349                 skb_shinfo(skb)->gso_size = 0;
4350                 goto out;
4351         }
4352
4353         rcu_read_lock();
4354         list_for_each_entry_rcu(ptype, head, list) {
4355                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4356                         continue;
4357
4358                 err = ptype->callbacks.gro_complete(skb, 0);
4359                 break;
4360         }
4361         rcu_read_unlock();
4362
4363         if (err) {
4364                 WARN_ON(&ptype->list == head);
4365                 kfree_skb(skb);
4366                 return NET_RX_SUCCESS;
4367         }
4368
4369 out:
4370         return netif_receive_skb_internal(skb);
4371 }
4372
4373 /* napi->gro_list contains packets ordered by age.
4374  * youngest packets at the head of it.
4375  * Complete skbs in reverse order to reduce latencies.
4376  */
4377 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4378 {
4379         struct sk_buff *skb, *prev = NULL;
4380
4381         /* scan list and build reverse chain */
4382         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4383                 skb->prev = prev;
4384                 prev = skb;
4385         }
4386
4387         for (skb = prev; skb; skb = prev) {
4388                 skb->next = NULL;
4389
4390                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4391                         return;
4392
4393                 prev = skb->prev;
4394                 napi_gro_complete(skb);
4395                 napi->gro_count--;
4396         }
4397
4398         napi->gro_list = NULL;
4399 }
4400 EXPORT_SYMBOL(napi_gro_flush);
4401
4402 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4403 {
4404         struct sk_buff *p;
4405         unsigned int maclen = skb->dev->hard_header_len;
4406         u32 hash = skb_get_hash_raw(skb);
4407
4408         for (p = napi->gro_list; p; p = p->next) {
4409                 unsigned long diffs;
4410
4411                 NAPI_GRO_CB(p)->flush = 0;
4412
4413                 if (hash != skb_get_hash_raw(p)) {
4414                         NAPI_GRO_CB(p)->same_flow = 0;
4415                         continue;
4416                 }
4417
4418                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4419                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4420                 diffs |= skb_metadata_dst_cmp(p, skb);
4421                 if (maclen == ETH_HLEN)
4422                         diffs |= compare_ether_header(skb_mac_header(p),
4423                                                       skb_mac_header(skb));
4424                 else if (!diffs)
4425                         diffs = memcmp(skb_mac_header(p),
4426                                        skb_mac_header(skb),
4427                                        maclen);
4428                 NAPI_GRO_CB(p)->same_flow = !diffs;
4429         }
4430 }
4431
4432 static void skb_gro_reset_offset(struct sk_buff *skb)
4433 {
4434         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4435         const skb_frag_t *frag0 = &pinfo->frags[0];
4436
4437         NAPI_GRO_CB(skb)->data_offset = 0;
4438         NAPI_GRO_CB(skb)->frag0 = NULL;
4439         NAPI_GRO_CB(skb)->frag0_len = 0;
4440
4441         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4442             pinfo->nr_frags &&
4443             !PageHighMem(skb_frag_page(frag0))) {
4444                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4445                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4446         }
4447 }
4448
4449 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4450 {
4451         struct skb_shared_info *pinfo = skb_shinfo(skb);
4452
4453         BUG_ON(skb->end - skb->tail < grow);
4454
4455         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4456
4457         skb->data_len -= grow;
4458         skb->tail += grow;
4459
4460         pinfo->frags[0].page_offset += grow;
4461         skb_frag_size_sub(&pinfo->frags[0], grow);
4462
4463         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4464                 skb_frag_unref(skb, 0);
4465                 memmove(pinfo->frags, pinfo->frags + 1,
4466                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4467         }
4468 }
4469
4470 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4471 {
4472         struct sk_buff **pp = NULL;
4473         struct packet_offload *ptype;
4474         __be16 type = skb->protocol;
4475         struct list_head *head = &offload_base;
4476         int same_flow;
4477         enum gro_result ret;
4478         int grow;
4479
4480         if (!(skb->dev->features & NETIF_F_GRO))
4481                 goto normal;
4482
4483         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4484                 goto normal;
4485
4486         gro_list_prepare(napi, skb);
4487
4488         rcu_read_lock();
4489         list_for_each_entry_rcu(ptype, head, list) {
4490                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4491                         continue;
4492
4493                 skb_set_network_header(skb, skb_gro_offset(skb));
4494                 skb_reset_mac_len(skb);
4495                 NAPI_GRO_CB(skb)->same_flow = 0;
4496                 NAPI_GRO_CB(skb)->flush = 0;
4497                 NAPI_GRO_CB(skb)->free = 0;
4498                 NAPI_GRO_CB(skb)->encap_mark = 0;
4499                 NAPI_GRO_CB(skb)->is_fou = 0;
4500                 NAPI_GRO_CB(skb)->is_atomic = 1;
4501                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4502
4503                 /* Setup for GRO checksum validation */
4504                 switch (skb->ip_summed) {
4505                 case CHECKSUM_COMPLETE:
4506                         NAPI_GRO_CB(skb)->csum = skb->csum;
4507                         NAPI_GRO_CB(skb)->csum_valid = 1;
4508                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4509                         break;
4510                 case CHECKSUM_UNNECESSARY:
4511                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4512                         NAPI_GRO_CB(skb)->csum_valid = 0;
4513                         break;
4514                 default:
4515                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4516                         NAPI_GRO_CB(skb)->csum_valid = 0;
4517                 }
4518
4519                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4520                 break;
4521         }
4522         rcu_read_unlock();
4523
4524         if (&ptype->list == head)
4525                 goto normal;
4526
4527         same_flow = NAPI_GRO_CB(skb)->same_flow;
4528         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4529
4530         if (pp) {
4531                 struct sk_buff *nskb = *pp;
4532
4533                 *pp = nskb->next;
4534                 nskb->next = NULL;
4535                 napi_gro_complete(nskb);
4536                 napi->gro_count--;
4537         }
4538
4539         if (same_flow)
4540                 goto ok;
4541
4542         if (NAPI_GRO_CB(skb)->flush)
4543                 goto normal;
4544
4545         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4546                 struct sk_buff *nskb = napi->gro_list;
4547
4548                 /* locate the end of the list to select the 'oldest' flow */
4549                 while (nskb->next) {
4550                         pp = &nskb->next;
4551                         nskb = *pp;
4552                 }
4553                 *pp = NULL;
4554                 nskb->next = NULL;
4555                 napi_gro_complete(nskb);
4556         } else {
4557                 napi->gro_count++;
4558         }
4559         NAPI_GRO_CB(skb)->count = 1;
4560         NAPI_GRO_CB(skb)->age = jiffies;
4561         NAPI_GRO_CB(skb)->last = skb;
4562         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4563         skb->next = napi->gro_list;
4564         napi->gro_list = skb;
4565         ret = GRO_HELD;
4566
4567 pull:
4568         grow = skb_gro_offset(skb) - skb_headlen(skb);
4569         if (grow > 0)
4570                 gro_pull_from_frag0(skb, grow);
4571 ok:
4572         return ret;
4573
4574 normal:
4575         ret = GRO_NORMAL;
4576         goto pull;
4577 }
4578
4579 struct packet_offload *gro_find_receive_by_type(__be16 type)
4580 {
4581         struct list_head *offload_head = &offload_base;
4582         struct packet_offload *ptype;
4583
4584         list_for_each_entry_rcu(ptype, offload_head, list) {
4585                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4586                         continue;
4587                 return ptype;
4588         }
4589         return NULL;
4590 }
4591 EXPORT_SYMBOL(gro_find_receive_by_type);
4592
4593 struct packet_offload *gro_find_complete_by_type(__be16 type)
4594 {
4595         struct list_head *offload_head = &offload_base;
4596         struct packet_offload *ptype;
4597
4598         list_for_each_entry_rcu(ptype, offload_head, list) {
4599                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4600                         continue;
4601                 return ptype;
4602         }
4603         return NULL;
4604 }
4605 EXPORT_SYMBOL(gro_find_complete_by_type);
4606
4607 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4608 {
4609         switch (ret) {
4610         case GRO_NORMAL:
4611                 if (netif_receive_skb_internal(skb))
4612                         ret = GRO_DROP;
4613                 break;
4614
4615         case GRO_DROP:
4616                 kfree_skb(skb);
4617                 break;
4618
4619         case GRO_MERGED_FREE:
4620                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4621                         skb_dst_drop(skb);
4622                         kmem_cache_free(skbuff_head_cache, skb);
4623                 } else {
4624                         __kfree_skb(skb);
4625                 }
4626                 break;
4627
4628         case GRO_HELD:
4629         case GRO_MERGED:
4630                 break;
4631         }
4632
4633         return ret;
4634 }
4635
4636 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4637 {
4638         skb_mark_napi_id(skb, napi);
4639         trace_napi_gro_receive_entry(skb);
4640
4641         skb_gro_reset_offset(skb);
4642
4643         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4644 }
4645 EXPORT_SYMBOL(napi_gro_receive);
4646
4647 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4648 {
4649         if (unlikely(skb->pfmemalloc)) {
4650                 consume_skb(skb);
4651                 return;
4652         }
4653         __skb_pull(skb, skb_headlen(skb));
4654         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4655         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4656         skb->vlan_tci = 0;
4657         skb->dev = napi->dev;
4658         skb->skb_iif = 0;
4659         skb->encapsulation = 0;
4660         skb_shinfo(skb)->gso_type = 0;
4661         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4662
4663         napi->skb = skb;
4664 }
4665
4666 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4667 {
4668         struct sk_buff *skb = napi->skb;
4669
4670         if (!skb) {
4671                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4672                 if (skb) {
4673                         napi->skb = skb;
4674                         skb_mark_napi_id(skb, napi);
4675                 }
4676         }
4677         return skb;
4678 }
4679 EXPORT_SYMBOL(napi_get_frags);
4680
4681 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4682                                       struct sk_buff *skb,
4683                                       gro_result_t ret)
4684 {
4685         switch (ret) {
4686         case GRO_NORMAL:
4687         case GRO_HELD:
4688                 __skb_push(skb, ETH_HLEN);
4689                 skb->protocol = eth_type_trans(skb, skb->dev);
4690                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4691                         ret = GRO_DROP;
4692                 break;
4693
4694         case GRO_DROP:
4695         case GRO_MERGED_FREE:
4696                 napi_reuse_skb(napi, skb);
4697                 break;
4698
4699         case GRO_MERGED:
4700                 break;
4701         }
4702
4703         return ret;
4704 }
4705
4706 /* Upper GRO stack assumes network header starts at gro_offset=0
4707  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4708  * We copy ethernet header into skb->data to have a common layout.
4709  */
4710 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4711 {
4712         struct sk_buff *skb = napi->skb;
4713         const struct ethhdr *eth;
4714         unsigned int hlen = sizeof(*eth);
4715
4716         napi->skb = NULL;
4717
4718         skb_reset_mac_header(skb);
4719         skb_gro_reset_offset(skb);
4720
4721         eth = skb_gro_header_fast(skb, 0);
4722         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4723                 eth = skb_gro_header_slow(skb, hlen, 0);
4724                 if (unlikely(!eth)) {
4725                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4726                                              __func__, napi->dev->name);
4727                         napi_reuse_skb(napi, skb);
4728                         return NULL;
4729                 }
4730         } else {
4731                 gro_pull_from_frag0(skb, hlen);
4732                 NAPI_GRO_CB(skb)->frag0 += hlen;
4733                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4734         }
4735         __skb_pull(skb, hlen);
4736
4737         /*
4738          * This works because the only protocols we care about don't require
4739          * special handling.
4740          * We'll fix it up properly in napi_frags_finish()
4741          */
4742         skb->protocol = eth->h_proto;
4743
4744         return skb;
4745 }
4746
4747 gro_result_t napi_gro_frags(struct napi_struct *napi)
4748 {
4749         struct sk_buff *skb = napi_frags_skb(napi);
4750
4751         if (!skb)
4752                 return GRO_DROP;
4753
4754         trace_napi_gro_frags_entry(skb);
4755
4756         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4757 }
4758 EXPORT_SYMBOL(napi_gro_frags);
4759
4760 /* Compute the checksum from gro_offset and return the folded value
4761  * after adding in any pseudo checksum.
4762  */
4763 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4764 {
4765         __wsum wsum;
4766         __sum16 sum;
4767
4768         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4769
4770         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4771         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4772         if (likely(!sum)) {
4773                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4774                     !skb->csum_complete_sw)
4775                         netdev_rx_csum_fault(skb->dev);
4776         }
4777
4778         NAPI_GRO_CB(skb)->csum = wsum;
4779         NAPI_GRO_CB(skb)->csum_valid = 1;
4780
4781         return sum;
4782 }
4783 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4784
4785 /*
4786  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4787  * Note: called with local irq disabled, but exits with local irq enabled.
4788  */
4789 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4790 {
4791 #ifdef CONFIG_RPS
4792         struct softnet_data *remsd = sd->rps_ipi_list;
4793
4794         if (remsd) {
4795                 sd->rps_ipi_list = NULL;
4796
4797                 local_irq_enable();
4798
4799                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4800                 while (remsd) {
4801                         struct softnet_data *next = remsd->rps_ipi_next;
4802
4803                         if (cpu_online(remsd->cpu))
4804                                 smp_call_function_single_async(remsd->cpu,
4805                                                            &remsd->csd);
4806                         remsd = next;
4807                 }
4808         } else
4809 #endif
4810                 local_irq_enable();
4811 }
4812
4813 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4814 {
4815 #ifdef CONFIG_RPS
4816         return sd->rps_ipi_list != NULL;
4817 #else
4818         return false;
4819 #endif
4820 }
4821
4822 static int process_backlog(struct napi_struct *napi, int quota)
4823 {
4824         int work = 0;
4825         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4826
4827         /* Check if we have pending ipi, its better to send them now,
4828          * not waiting net_rx_action() end.
4829          */
4830         if (sd_has_rps_ipi_waiting(sd)) {
4831                 local_irq_disable();
4832                 net_rps_action_and_irq_enable(sd);
4833         }
4834
4835         napi->weight = weight_p;
4836         local_irq_disable();
4837         while (1) {
4838                 struct sk_buff *skb;
4839
4840                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4841                         rcu_read_lock();
4842                         local_irq_enable();
4843                         __netif_receive_skb(skb);
4844                         rcu_read_unlock();
4845                         local_irq_disable();
4846                         input_queue_head_incr(sd);
4847                         if (++work >= quota) {
4848                                 local_irq_enable();
4849                                 return work;
4850                         }
4851                 }
4852
4853                 rps_lock(sd);
4854                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4855                         /*
4856                          * Inline a custom version of __napi_complete().
4857                          * only current cpu owns and manipulates this napi,
4858                          * and NAPI_STATE_SCHED is the only possible flag set
4859                          * on backlog.
4860                          * We can use a plain write instead of clear_bit(),
4861                          * and we dont need an smp_mb() memory barrier.
4862                          */
4863                         napi->state = 0;
4864                         rps_unlock(sd);
4865
4866                         break;
4867                 }
4868
4869                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4870                                            &sd->process_queue);
4871                 rps_unlock(sd);
4872         }
4873         local_irq_enable();
4874
4875         return work;
4876 }
4877
4878 /**
4879  * __napi_schedule - schedule for receive
4880  * @n: entry to schedule
4881  *
4882  * The entry's receive function will be scheduled to run.
4883  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4884  */
4885 void __napi_schedule(struct napi_struct *n)
4886 {
4887         unsigned long flags;
4888
4889         local_irq_save(flags);
4890         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4891         local_irq_restore(flags);
4892 }
4893 EXPORT_SYMBOL(__napi_schedule);
4894
4895 /**
4896  * __napi_schedule_irqoff - schedule for receive
4897  * @n: entry to schedule
4898  *
4899  * Variant of __napi_schedule() assuming hard irqs are masked
4900  */
4901 void __napi_schedule_irqoff(struct napi_struct *n)
4902 {
4903         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4904 }
4905 EXPORT_SYMBOL(__napi_schedule_irqoff);
4906
4907 void __napi_complete(struct napi_struct *n)
4908 {
4909         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4910
4911         list_del_init(&n->poll_list);
4912         smp_mb__before_atomic();
4913         clear_bit(NAPI_STATE_SCHED, &n->state);
4914 }
4915 EXPORT_SYMBOL(__napi_complete);
4916
4917 void napi_complete_done(struct napi_struct *n, int work_done)
4918 {
4919         unsigned long flags;
4920
4921         /*
4922          * don't let napi dequeue from the cpu poll list
4923          * just in case its running on a different cpu
4924          */
4925         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4926                 return;
4927
4928         if (n->gro_list) {
4929                 unsigned long timeout = 0;
4930
4931                 if (work_done)
4932                         timeout = n->dev->gro_flush_timeout;
4933
4934                 if (timeout)
4935                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4936                                       HRTIMER_MODE_REL_PINNED);
4937                 else
4938                         napi_gro_flush(n, false);
4939         }
4940         if (likely(list_empty(&n->poll_list))) {
4941                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4942         } else {
4943                 /* If n->poll_list is not empty, we need to mask irqs */
4944                 local_irq_save(flags);
4945                 __napi_complete(n);
4946                 local_irq_restore(flags);
4947         }
4948 }
4949 EXPORT_SYMBOL(napi_complete_done);
4950
4951 /* must be called under rcu_read_lock(), as we dont take a reference */
4952 static struct napi_struct *napi_by_id(unsigned int napi_id)
4953 {
4954         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4955         struct napi_struct *napi;
4956
4957         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4958                 if (napi->napi_id == napi_id)
4959                         return napi;
4960
4961         return NULL;
4962 }
4963
4964 #if defined(CONFIG_NET_RX_BUSY_POLL)
4965 #define BUSY_POLL_BUDGET 8
4966 bool sk_busy_loop(struct sock *sk, int nonblock)
4967 {
4968         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4969         int (*busy_poll)(struct napi_struct *dev);
4970         struct napi_struct *napi;
4971         int rc = false;
4972
4973         rcu_read_lock();
4974
4975         napi = napi_by_id(sk->sk_napi_id);
4976         if (!napi)
4977                 goto out;
4978
4979         /* Note: ndo_busy_poll method is optional in linux-4.5 */
4980         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4981
4982         do {
4983                 rc = 0;
4984                 local_bh_disable();
4985                 if (busy_poll) {
4986                         rc = busy_poll(napi);
4987                 } else if (napi_schedule_prep(napi)) {
4988                         void *have = netpoll_poll_lock(napi);
4989
4990                         if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4991                                 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4992                                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
4993                                 if (rc == BUSY_POLL_BUDGET) {
4994                                         napi_complete_done(napi, rc);
4995                                         napi_schedule(napi);
4996                                 }
4997                         }
4998                         netpoll_poll_unlock(have);
4999                 }
5000                 if (rc > 0)
5001                         __NET_ADD_STATS(sock_net(sk),
5002                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5003                 local_bh_enable();
5004
5005                 if (rc == LL_FLUSH_FAILED)
5006                         break; /* permanent failure */
5007
5008                 cpu_relax();
5009         } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5010                  !need_resched() && !busy_loop_timeout(end_time));
5011
5012         rc = !skb_queue_empty(&sk->sk_receive_queue);
5013 out:
5014         rcu_read_unlock();
5015         return rc;
5016 }
5017 EXPORT_SYMBOL(sk_busy_loop);
5018
5019 #endif /* CONFIG_NET_RX_BUSY_POLL */
5020
5021 void napi_hash_add(struct napi_struct *napi)
5022 {
5023         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5024             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5025                 return;
5026
5027         spin_lock(&napi_hash_lock);
5028
5029         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5030         do {
5031                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5032                         napi_gen_id = NR_CPUS + 1;
5033         } while (napi_by_id(napi_gen_id));
5034         napi->napi_id = napi_gen_id;
5035
5036         hlist_add_head_rcu(&napi->napi_hash_node,
5037                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5038
5039         spin_unlock(&napi_hash_lock);
5040 }
5041 EXPORT_SYMBOL_GPL(napi_hash_add);
5042
5043 /* Warning : caller is responsible to make sure rcu grace period
5044  * is respected before freeing memory containing @napi
5045  */
5046 bool napi_hash_del(struct napi_struct *napi)
5047 {
5048         bool rcu_sync_needed = false;
5049
5050         spin_lock(&napi_hash_lock);
5051
5052         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5053                 rcu_sync_needed = true;
5054                 hlist_del_rcu(&napi->napi_hash_node);
5055         }
5056         spin_unlock(&napi_hash_lock);
5057         return rcu_sync_needed;
5058 }
5059 EXPORT_SYMBOL_GPL(napi_hash_del);
5060
5061 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5062 {
5063         struct napi_struct *napi;
5064
5065         napi = container_of(timer, struct napi_struct, timer);
5066         if (napi->gro_list)
5067                 napi_schedule(napi);
5068
5069         return HRTIMER_NORESTART;
5070 }
5071
5072 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5073                     int (*poll)(struct napi_struct *, int), int weight)
5074 {
5075         INIT_LIST_HEAD(&napi->poll_list);
5076         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5077         napi->timer.function = napi_watchdog;
5078         napi->gro_count = 0;
5079         napi->gro_list = NULL;
5080         napi->skb = NULL;
5081         napi->poll = poll;
5082         if (weight > NAPI_POLL_WEIGHT)
5083                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5084                             weight, dev->name);
5085         napi->weight = weight;
5086         list_add(&napi->dev_list, &dev->napi_list);
5087         napi->dev = dev;
5088 #ifdef CONFIG_NETPOLL
5089         spin_lock_init(&napi->poll_lock);
5090         napi->poll_owner = -1;
5091 #endif
5092         set_bit(NAPI_STATE_SCHED, &napi->state);
5093         napi_hash_add(napi);
5094 }
5095 EXPORT_SYMBOL(netif_napi_add);
5096
5097 void napi_disable(struct napi_struct *n)
5098 {
5099         might_sleep();
5100         set_bit(NAPI_STATE_DISABLE, &n->state);
5101
5102         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5103                 msleep(1);
5104         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5105                 msleep(1);
5106
5107         hrtimer_cancel(&n->timer);
5108
5109         clear_bit(NAPI_STATE_DISABLE, &n->state);
5110 }
5111 EXPORT_SYMBOL(napi_disable);
5112
5113 /* Must be called in process context */
5114 void netif_napi_del(struct napi_struct *napi)
5115 {
5116         might_sleep();
5117         if (napi_hash_del(napi))
5118                 synchronize_net();
5119         list_del_init(&napi->dev_list);
5120         napi_free_frags(napi);
5121
5122         kfree_skb_list(napi->gro_list);
5123         napi->gro_list = NULL;
5124         napi->gro_count = 0;
5125 }
5126 EXPORT_SYMBOL(netif_napi_del);
5127
5128 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5129 {
5130         void *have;
5131         int work, weight;
5132
5133         list_del_init(&n->poll_list);
5134
5135         have = netpoll_poll_lock(n);
5136
5137         weight = n->weight;
5138
5139         /* This NAPI_STATE_SCHED test is for avoiding a race
5140          * with netpoll's poll_napi().  Only the entity which
5141          * obtains the lock and sees NAPI_STATE_SCHED set will
5142          * actually make the ->poll() call.  Therefore we avoid
5143          * accidentally calling ->poll() when NAPI is not scheduled.
5144          */
5145         work = 0;
5146         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5147                 work = n->poll(n, weight);
5148                 trace_napi_poll(n, work, weight);
5149         }
5150
5151         WARN_ON_ONCE(work > weight);
5152
5153         if (likely(work < weight))
5154                 goto out_unlock;
5155
5156         /* Drivers must not modify the NAPI state if they
5157          * consume the entire weight.  In such cases this code
5158          * still "owns" the NAPI instance and therefore can
5159          * move the instance around on the list at-will.
5160          */
5161         if (unlikely(napi_disable_pending(n))) {
5162                 napi_complete(n);
5163                 goto out_unlock;
5164         }
5165
5166         if (n->gro_list) {
5167                 /* flush too old packets
5168                  * If HZ < 1000, flush all packets.
5169                  */
5170                 napi_gro_flush(n, HZ >= 1000);
5171         }
5172
5173         /* Some drivers may have called napi_schedule
5174          * prior to exhausting their budget.
5175          */
5176         if (unlikely(!list_empty(&n->poll_list))) {
5177                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5178                              n->dev ? n->dev->name : "backlog");
5179                 goto out_unlock;
5180         }
5181
5182         list_add_tail(&n->poll_list, repoll);
5183
5184 out_unlock:
5185         netpoll_poll_unlock(have);
5186
5187         return work;
5188 }
5189
5190 static void net_rx_action(struct softirq_action *h)
5191 {
5192         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5193         unsigned long time_limit = jiffies + 2;
5194         int budget = netdev_budget;
5195         LIST_HEAD(list);
5196         LIST_HEAD(repoll);
5197
5198         local_irq_disable();
5199         list_splice_init(&sd->poll_list, &list);
5200         local_irq_enable();
5201
5202         for (;;) {
5203                 struct napi_struct *n;
5204
5205                 if (list_empty(&list)) {
5206                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5207                                 return;
5208                         break;
5209                 }
5210
5211                 n = list_first_entry(&list, struct napi_struct, poll_list);
5212                 budget -= napi_poll(n, &repoll);
5213
5214                 /* If softirq window is exhausted then punt.
5215                  * Allow this to run for 2 jiffies since which will allow
5216                  * an average latency of 1.5/HZ.
5217                  */
5218                 if (unlikely(budget <= 0 ||
5219                              time_after_eq(jiffies, time_limit))) {
5220                         sd->time_squeeze++;
5221                         break;
5222                 }
5223         }
5224
5225         __kfree_skb_flush();
5226         local_irq_disable();
5227
5228         list_splice_tail_init(&sd->poll_list, &list);
5229         list_splice_tail(&repoll, &list);
5230         list_splice(&list, &sd->poll_list);
5231         if (!list_empty(&sd->poll_list))
5232                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5233
5234         net_rps_action_and_irq_enable(sd);
5235 }
5236
5237 struct netdev_adjacent {
5238         struct net_device *dev;
5239
5240         /* upper master flag, there can only be one master device per list */
5241         bool master;
5242
5243         /* counter for the number of times this device was added to us */
5244         u16 ref_nr;
5245
5246         /* private field for the users */
5247         void *private;
5248
5249         struct list_head list;
5250         struct rcu_head rcu;
5251 };
5252
5253 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5254                                                  struct list_head *adj_list)
5255 {
5256         struct netdev_adjacent *adj;
5257
5258         list_for_each_entry(adj, adj_list, list) {
5259                 if (adj->dev == adj_dev)
5260                         return adj;
5261         }
5262         return NULL;
5263 }
5264
5265 /**
5266  * netdev_has_upper_dev - Check if device is linked to an upper device
5267  * @dev: device
5268  * @upper_dev: upper device to check
5269  *
5270  * Find out if a device is linked to specified upper device and return true
5271  * in case it is. Note that this checks only immediate upper device,
5272  * not through a complete stack of devices. The caller must hold the RTNL lock.
5273  */
5274 bool netdev_has_upper_dev(struct net_device *dev,
5275                           struct net_device *upper_dev)
5276 {
5277         ASSERT_RTNL();
5278
5279         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5280 }
5281 EXPORT_SYMBOL(netdev_has_upper_dev);
5282
5283 /**
5284  * netdev_has_any_upper_dev - Check if device is linked to some device
5285  * @dev: device
5286  *
5287  * Find out if a device is linked to an upper device and return true in case
5288  * it is. The caller must hold the RTNL lock.
5289  */
5290 static bool netdev_has_any_upper_dev(struct net_device *dev)
5291 {
5292         ASSERT_RTNL();
5293
5294         return !list_empty(&dev->all_adj_list.upper);
5295 }
5296
5297 /**
5298  * netdev_master_upper_dev_get - Get master upper device
5299  * @dev: device
5300  *
5301  * Find a master upper device and return pointer to it or NULL in case
5302  * it's not there. The caller must hold the RTNL lock.
5303  */
5304 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5305 {
5306         struct netdev_adjacent *upper;
5307
5308         ASSERT_RTNL();
5309
5310         if (list_empty(&dev->adj_list.upper))
5311                 return NULL;
5312
5313         upper = list_first_entry(&dev->adj_list.upper,
5314                                  struct netdev_adjacent, list);
5315         if (likely(upper->master))
5316                 return upper->dev;
5317         return NULL;
5318 }
5319 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5320
5321 void *netdev_adjacent_get_private(struct list_head *adj_list)
5322 {
5323         struct netdev_adjacent *adj;
5324
5325         adj = list_entry(adj_list, struct netdev_adjacent, list);
5326
5327         return adj->private;
5328 }
5329 EXPORT_SYMBOL(netdev_adjacent_get_private);
5330
5331 /**
5332  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5333  * @dev: device
5334  * @iter: list_head ** of the current position
5335  *
5336  * Gets the next device from the dev's upper list, starting from iter
5337  * position. The caller must hold RCU read lock.
5338  */
5339 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5340                                                  struct list_head **iter)
5341 {
5342         struct netdev_adjacent *upper;
5343
5344         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5345
5346         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5347
5348         if (&upper->list == &dev->adj_list.upper)
5349                 return NULL;
5350
5351         *iter = &upper->list;
5352
5353         return upper->dev;
5354 }
5355 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5356
5357 /**
5358  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5359  * @dev: device
5360  * @iter: list_head ** of the current position
5361  *
5362  * Gets the next device from the dev's upper list, starting from iter
5363  * position. The caller must hold RCU read lock.
5364  */
5365 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5366                                                      struct list_head **iter)
5367 {
5368         struct netdev_adjacent *upper;
5369
5370         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5371
5372         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5373
5374         if (&upper->list == &dev->all_adj_list.upper)
5375                 return NULL;
5376
5377         *iter = &upper->list;
5378
5379         return upper->dev;
5380 }
5381 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5382
5383 /**
5384  * netdev_lower_get_next_private - Get the next ->private from the
5385  *                                 lower neighbour list
5386  * @dev: device
5387  * @iter: list_head ** of the current position
5388  *
5389  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5390  * list, starting from iter position. The caller must hold either hold the
5391  * RTNL lock or its own locking that guarantees that the neighbour lower
5392  * list will remain unchanged.
5393  */
5394 void *netdev_lower_get_next_private(struct net_device *dev,
5395                                     struct list_head **iter)
5396 {
5397         struct netdev_adjacent *lower;
5398
5399         lower = list_entry(*iter, struct netdev_adjacent, list);
5400
5401         if (&lower->list == &dev->adj_list.lower)
5402                 return NULL;
5403
5404         *iter = lower->list.next;
5405
5406         return lower->private;
5407 }
5408 EXPORT_SYMBOL(netdev_lower_get_next_private);
5409
5410 /**
5411  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5412  *                                     lower neighbour list, RCU
5413  *                                     variant
5414  * @dev: device
5415  * @iter: list_head ** of the current position
5416  *
5417  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5418  * list, starting from iter position. The caller must hold RCU read lock.
5419  */
5420 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5421                                         struct list_head **iter)
5422 {
5423         struct netdev_adjacent *lower;
5424
5425         WARN_ON_ONCE(!rcu_read_lock_held());
5426
5427         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5428
5429         if (&lower->list == &dev->adj_list.lower)
5430                 return NULL;
5431
5432         *iter = &lower->list;
5433
5434         return lower->private;
5435 }
5436 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5437
5438 /**
5439  * netdev_lower_get_next - Get the next device from the lower neighbour
5440  *                         list
5441  * @dev: device
5442  * @iter: list_head ** of the current position
5443  *
5444  * Gets the next netdev_adjacent from the dev's lower neighbour
5445  * list, starting from iter position. The caller must hold RTNL lock or
5446  * its own locking that guarantees that the neighbour lower
5447  * list will remain unchanged.
5448  */
5449 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5450 {
5451         struct netdev_adjacent *lower;
5452
5453         lower = list_entry(*iter, struct netdev_adjacent, list);
5454
5455         if (&lower->list == &dev->adj_list.lower)
5456                 return NULL;
5457
5458         *iter = lower->list.next;
5459
5460         return lower->dev;
5461 }
5462 EXPORT_SYMBOL(netdev_lower_get_next);
5463
5464 /**
5465  * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5466  * @dev: device
5467  * @iter: list_head ** of the current position
5468  *
5469  * Gets the next netdev_adjacent from the dev's all lower neighbour
5470  * list, starting from iter position. The caller must hold RTNL lock or
5471  * its own locking that guarantees that the neighbour all lower
5472  * list will remain unchanged.
5473  */
5474 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5475 {
5476         struct netdev_adjacent *lower;
5477
5478         lower = list_entry(*iter, struct netdev_adjacent, list);
5479
5480         if (&lower->list == &dev->all_adj_list.lower)
5481                 return NULL;
5482
5483         *iter = lower->list.next;
5484
5485         return lower->dev;
5486 }
5487 EXPORT_SYMBOL(netdev_all_lower_get_next);
5488
5489 /**
5490  * netdev_all_lower_get_next_rcu - Get the next device from all
5491  *                                 lower neighbour list, RCU variant
5492  * @dev: device
5493  * @iter: list_head ** of the current position
5494  *
5495  * Gets the next netdev_adjacent from the dev's all lower neighbour
5496  * list, starting from iter position. The caller must hold RCU read lock.
5497  */
5498 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5499                                                  struct list_head **iter)
5500 {
5501         struct netdev_adjacent *lower;
5502
5503         lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5504                                        struct netdev_adjacent, list);
5505
5506         return lower ? lower->dev : NULL;
5507 }
5508 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5509
5510 /**
5511  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5512  *                                     lower neighbour list, RCU
5513  *                                     variant
5514  * @dev: device
5515  *
5516  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5517  * list. The caller must hold RCU read lock.
5518  */
5519 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5520 {
5521         struct netdev_adjacent *lower;
5522
5523         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5524                         struct netdev_adjacent, list);
5525         if (lower)
5526                 return lower->private;
5527         return NULL;
5528 }
5529 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5530
5531 /**
5532  * netdev_master_upper_dev_get_rcu - Get master upper device
5533  * @dev: device
5534  *
5535  * Find a master upper device and return pointer to it or NULL in case
5536  * it's not there. The caller must hold the RCU read lock.
5537  */
5538 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5539 {
5540         struct netdev_adjacent *upper;
5541
5542         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5543                                        struct netdev_adjacent, list);
5544         if (upper && likely(upper->master))
5545                 return upper->dev;
5546         return NULL;
5547 }
5548 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5549
5550 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5551                               struct net_device *adj_dev,
5552                               struct list_head *dev_list)
5553 {
5554         char linkname[IFNAMSIZ+7];
5555         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5556                 "upper_%s" : "lower_%s", adj_dev->name);
5557         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5558                                  linkname);
5559 }
5560 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5561                                char *name,
5562                                struct list_head *dev_list)
5563 {
5564         char linkname[IFNAMSIZ+7];
5565         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5566                 "upper_%s" : "lower_%s", name);
5567         sysfs_remove_link(&(dev->dev.kobj), linkname);
5568 }
5569
5570 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5571                                                  struct net_device *adj_dev,
5572                                                  struct list_head *dev_list)
5573 {
5574         return (dev_list == &dev->adj_list.upper ||
5575                 dev_list == &dev->adj_list.lower) &&
5576                 net_eq(dev_net(dev), dev_net(adj_dev));
5577 }
5578
5579 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5580                                         struct net_device *adj_dev,
5581                                         struct list_head *dev_list,
5582                                         void *private, bool master)
5583 {
5584         struct netdev_adjacent *adj;
5585         int ret;
5586
5587         adj = __netdev_find_adj(adj_dev, dev_list);
5588
5589         if (adj) {
5590                 adj->ref_nr++;
5591                 return 0;
5592         }
5593
5594         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5595         if (!adj)
5596                 return -ENOMEM;
5597
5598         adj->dev = adj_dev;
5599         adj->master = master;
5600         adj->ref_nr = 1;
5601         adj->private = private;
5602         dev_hold(adj_dev);
5603
5604         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5605                  adj_dev->name, dev->name, adj_dev->name);
5606
5607         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5608                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5609                 if (ret)
5610                         goto free_adj;
5611         }
5612
5613         /* Ensure that master link is always the first item in list. */
5614         if (master) {
5615                 ret = sysfs_create_link(&(dev->dev.kobj),
5616                                         &(adj_dev->dev.kobj), "master");
5617                 if (ret)
5618                         goto remove_symlinks;
5619
5620                 list_add_rcu(&adj->list, dev_list);
5621         } else {
5622                 list_add_tail_rcu(&adj->list, dev_list);
5623         }
5624
5625         return 0;
5626
5627 remove_symlinks:
5628         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5629                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5630 free_adj:
5631         kfree(adj);
5632         dev_put(adj_dev);
5633
5634         return ret;
5635 }
5636
5637 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5638                                          struct net_device *adj_dev,
5639                                          struct list_head *dev_list)
5640 {
5641         struct netdev_adjacent *adj;
5642
5643         adj = __netdev_find_adj(adj_dev, dev_list);
5644
5645         if (!adj) {
5646                 pr_err("tried to remove device %s from %s\n",
5647                        dev->name, adj_dev->name);
5648                 BUG();
5649         }
5650
5651         if (adj->ref_nr > 1) {
5652                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5653                          adj->ref_nr-1);
5654                 adj->ref_nr--;
5655                 return;
5656         }
5657
5658         if (adj->master)
5659                 sysfs_remove_link(&(dev->dev.kobj), "master");
5660
5661         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5662                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5663
5664         list_del_rcu(&adj->list);
5665         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5666                  adj_dev->name, dev->name, adj_dev->name);
5667         dev_put(adj_dev);
5668         kfree_rcu(adj, rcu);
5669 }
5670
5671 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5672                                             struct net_device *upper_dev,
5673                                             struct list_head *up_list,
5674                                             struct list_head *down_list,
5675                                             void *private, bool master)
5676 {
5677         int ret;
5678
5679         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5680                                            master);
5681         if (ret)
5682                 return ret;
5683
5684         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5685                                            false);
5686         if (ret) {
5687                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5688                 return ret;
5689         }
5690
5691         return 0;
5692 }
5693
5694 static int __netdev_adjacent_dev_link(struct net_device *dev,
5695                                       struct net_device *upper_dev)
5696 {
5697         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5698                                                 &dev->all_adj_list.upper,
5699                                                 &upper_dev->all_adj_list.lower,
5700                                                 NULL, false);
5701 }
5702
5703 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5704                                                struct net_device *upper_dev,
5705                                                struct list_head *up_list,
5706                                                struct list_head *down_list)
5707 {
5708         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5709         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5710 }
5711
5712 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5713                                          struct net_device *upper_dev)
5714 {
5715         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5716                                            &dev->all_adj_list.upper,
5717                                            &upper_dev->all_adj_list.lower);
5718 }
5719
5720 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5721                                                 struct net_device *upper_dev,
5722                                                 void *private, bool master)
5723 {
5724         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5725
5726         if (ret)
5727                 return ret;
5728
5729         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5730                                                &dev->adj_list.upper,
5731                                                &upper_dev->adj_list.lower,
5732                                                private, master);
5733         if (ret) {
5734                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5735                 return ret;
5736         }
5737
5738         return 0;
5739 }
5740
5741 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5742                                                    struct net_device *upper_dev)
5743 {
5744         __netdev_adjacent_dev_unlink(dev, upper_dev);
5745         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5746                                            &dev->adj_list.upper,
5747                                            &upper_dev->adj_list.lower);
5748 }
5749
5750 static int __netdev_upper_dev_link(struct net_device *dev,
5751                                    struct net_device *upper_dev, bool master,
5752                                    void *upper_priv, void *upper_info)
5753 {
5754         struct netdev_notifier_changeupper_info changeupper_info;
5755         struct netdev_adjacent *i, *j, *to_i, *to_j;
5756         int ret = 0;
5757
5758         ASSERT_RTNL();
5759
5760         if (dev == upper_dev)
5761                 return -EBUSY;
5762
5763         /* To prevent loops, check if dev is not upper device to upper_dev. */
5764         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5765                 return -EBUSY;
5766
5767         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5768                 return -EEXIST;
5769
5770         if (master && netdev_master_upper_dev_get(dev))
5771                 return -EBUSY;
5772
5773         changeupper_info.upper_dev = upper_dev;
5774         changeupper_info.master = master;
5775         changeupper_info.linking = true;
5776         changeupper_info.upper_info = upper_info;
5777
5778         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5779                                             &changeupper_info.info);
5780         ret = notifier_to_errno(ret);
5781         if (ret)
5782                 return ret;
5783
5784         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5785                                                    master);
5786         if (ret)
5787                 return ret;
5788
5789         /* Now that we linked these devs, make all the upper_dev's
5790          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5791          * versa, and don't forget the devices itself. All of these
5792          * links are non-neighbours.
5793          */
5794         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5795                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5796                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5797                                  i->dev->name, j->dev->name);
5798                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5799                         if (ret)
5800                                 goto rollback_mesh;
5801                 }
5802         }
5803
5804         /* add dev to every upper_dev's upper device */
5805         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5806                 pr_debug("linking %s's upper device %s with %s\n",
5807                          upper_dev->name, i->dev->name, dev->name);
5808                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5809                 if (ret)
5810                         goto rollback_upper_mesh;
5811         }
5812
5813         /* add upper_dev to every dev's lower device */
5814         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5815                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5816                          i->dev->name, upper_dev->name);
5817                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5818                 if (ret)
5819                         goto rollback_lower_mesh;
5820         }
5821
5822         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5823                                             &changeupper_info.info);
5824         ret = notifier_to_errno(ret);
5825         if (ret)
5826                 goto rollback_lower_mesh;
5827
5828         return 0;
5829
5830 rollback_lower_mesh:
5831         to_i = i;
5832         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5833                 if (i == to_i)
5834                         break;
5835                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5836         }
5837
5838         i = NULL;
5839
5840 rollback_upper_mesh:
5841         to_i = i;
5842         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5843                 if (i == to_i)
5844                         break;
5845                 __netdev_adjacent_dev_unlink(dev, i->dev);
5846         }
5847
5848         i = j = NULL;
5849
5850 rollback_mesh:
5851         to_i = i;
5852         to_j = j;
5853         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5854                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5855                         if (i == to_i && j == to_j)
5856                                 break;
5857                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5858                 }
5859                 if (i == to_i)
5860                         break;
5861         }
5862
5863         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5864
5865         return ret;
5866 }
5867
5868 /**
5869  * netdev_upper_dev_link - Add a link to the upper device
5870  * @dev: device
5871  * @upper_dev: new upper device
5872  *
5873  * Adds a link to device which is upper to this one. The caller must hold
5874  * the RTNL lock. On a failure a negative errno code is returned.
5875  * On success the reference counts are adjusted and the function
5876  * returns zero.
5877  */
5878 int netdev_upper_dev_link(struct net_device *dev,
5879                           struct net_device *upper_dev)
5880 {
5881         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5882 }
5883 EXPORT_SYMBOL(netdev_upper_dev_link);
5884
5885 /**
5886  * netdev_master_upper_dev_link - Add a master link to the upper device
5887  * @dev: device
5888  * @upper_dev: new upper device
5889  * @upper_priv: upper device private
5890  * @upper_info: upper info to be passed down via notifier
5891  *
5892  * Adds a link to device which is upper to this one. In this case, only
5893  * one master upper device can be linked, although other non-master devices
5894  * might be linked as well. The caller must hold the RTNL lock.
5895  * On a failure a negative errno code is returned. On success the reference
5896  * counts are adjusted and the function returns zero.
5897  */
5898 int netdev_master_upper_dev_link(struct net_device *dev,
5899                                  struct net_device *upper_dev,
5900                                  void *upper_priv, void *upper_info)
5901 {
5902         return __netdev_upper_dev_link(dev, upper_dev, true,
5903                                        upper_priv, upper_info);
5904 }
5905 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5906
5907 /**
5908  * netdev_upper_dev_unlink - Removes a link to upper device
5909  * @dev: device
5910  * @upper_dev: new upper device
5911  *
5912  * Removes a link to device which is upper to this one. The caller must hold
5913  * the RTNL lock.
5914  */
5915 void netdev_upper_dev_unlink(struct net_device *dev,
5916                              struct net_device *upper_dev)
5917 {
5918         struct netdev_notifier_changeupper_info changeupper_info;
5919         struct netdev_adjacent *i, *j;
5920         ASSERT_RTNL();
5921
5922         changeupper_info.upper_dev = upper_dev;
5923         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5924         changeupper_info.linking = false;
5925
5926         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5927                                       &changeupper_info.info);
5928
5929         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5930
5931         /* Here is the tricky part. We must remove all dev's lower
5932          * devices from all upper_dev's upper devices and vice
5933          * versa, to maintain the graph relationship.
5934          */
5935         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5936                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5937                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5938
5939         /* remove also the devices itself from lower/upper device
5940          * list
5941          */
5942         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5943                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5944
5945         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5946                 __netdev_adjacent_dev_unlink(dev, i->dev);
5947
5948         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5949                                       &changeupper_info.info);
5950 }
5951 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5952
5953 /**
5954  * netdev_bonding_info_change - Dispatch event about slave change
5955  * @dev: device
5956  * @bonding_info: info to dispatch
5957  *
5958  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5959  * The caller must hold the RTNL lock.
5960  */
5961 void netdev_bonding_info_change(struct net_device *dev,
5962                                 struct netdev_bonding_info *bonding_info)
5963 {
5964         struct netdev_notifier_bonding_info     info;
5965
5966         memcpy(&info.bonding_info, bonding_info,
5967                sizeof(struct netdev_bonding_info));
5968         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5969                                       &info.info);
5970 }
5971 EXPORT_SYMBOL(netdev_bonding_info_change);
5972
5973 static void netdev_adjacent_add_links(struct net_device *dev)
5974 {
5975         struct netdev_adjacent *iter;
5976
5977         struct net *net = dev_net(dev);
5978
5979         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5980                 if (!net_eq(net, dev_net(iter->dev)))
5981                         continue;
5982                 netdev_adjacent_sysfs_add(iter->dev, dev,
5983                                           &iter->dev->adj_list.lower);
5984                 netdev_adjacent_sysfs_add(dev, iter->dev,
5985                                           &dev->adj_list.upper);
5986         }
5987
5988         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5989                 if (!net_eq(net, dev_net(iter->dev)))
5990                         continue;
5991                 netdev_adjacent_sysfs_add(iter->dev, dev,
5992                                           &iter->dev->adj_list.upper);
5993                 netdev_adjacent_sysfs_add(dev, iter->dev,
5994                                           &dev->adj_list.lower);
5995         }
5996 }
5997
5998 static void netdev_adjacent_del_links(struct net_device *dev)
5999 {
6000         struct netdev_adjacent *iter;
6001
6002         struct net *net = dev_net(dev);
6003
6004         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6005                 if (!net_eq(net, dev_net(iter->dev)))
6006                         continue;
6007                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6008                                           &iter->dev->adj_list.lower);
6009                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6010                                           &dev->adj_list.upper);
6011         }
6012
6013         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6014                 if (!net_eq(net, dev_net(iter->dev)))
6015                         continue;
6016                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6017                                           &iter->dev->adj_list.upper);
6018                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6019                                           &dev->adj_list.lower);
6020         }
6021 }
6022
6023 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6024 {
6025         struct netdev_adjacent *iter;
6026
6027         struct net *net = dev_net(dev);
6028
6029         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6030                 if (!net_eq(net, dev_net(iter->dev)))
6031                         continue;
6032                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6033                                           &iter->dev->adj_list.lower);
6034                 netdev_adjacent_sysfs_add(iter->dev, dev,
6035                                           &iter->dev->adj_list.lower);
6036         }
6037
6038         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6039                 if (!net_eq(net, dev_net(iter->dev)))
6040                         continue;
6041                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6042                                           &iter->dev->adj_list.upper);
6043                 netdev_adjacent_sysfs_add(iter->dev, dev,
6044                                           &iter->dev->adj_list.upper);
6045         }
6046 }
6047
6048 void *netdev_lower_dev_get_private(struct net_device *dev,
6049                                    struct net_device *lower_dev)
6050 {
6051         struct netdev_adjacent *lower;
6052
6053         if (!lower_dev)
6054                 return NULL;
6055         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6056         if (!lower)
6057                 return NULL;
6058
6059         return lower->private;
6060 }
6061 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6062
6063
6064 int dev_get_nest_level(struct net_device *dev)
6065 {
6066         struct net_device *lower = NULL;
6067         struct list_head *iter;
6068         int max_nest = -1;
6069         int nest;
6070
6071         ASSERT_RTNL();
6072
6073         netdev_for_each_lower_dev(dev, lower, iter) {
6074                 nest = dev_get_nest_level(lower);
6075                 if (max_nest < nest)
6076                         max_nest = nest;
6077         }
6078
6079         return max_nest + 1;
6080 }
6081 EXPORT_SYMBOL(dev_get_nest_level);
6082
6083 /**
6084  * netdev_lower_change - Dispatch event about lower device state change
6085  * @lower_dev: device
6086  * @lower_state_info: state to dispatch
6087  *
6088  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6089  * The caller must hold the RTNL lock.
6090  */
6091 void netdev_lower_state_changed(struct net_device *lower_dev,
6092                                 void *lower_state_info)
6093 {
6094         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6095
6096         ASSERT_RTNL();
6097         changelowerstate_info.lower_state_info = lower_state_info;
6098         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6099                                       &changelowerstate_info.info);
6100 }
6101 EXPORT_SYMBOL(netdev_lower_state_changed);
6102
6103 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6104                                            struct neighbour *n)
6105 {
6106         struct net_device *lower_dev, *stop_dev;
6107         struct list_head *iter;
6108         int err;
6109
6110         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6111                 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6112                         continue;
6113                 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6114                 if (err) {
6115                         stop_dev = lower_dev;
6116                         goto rollback;
6117                 }
6118         }
6119         return 0;
6120
6121 rollback:
6122         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6123                 if (lower_dev == stop_dev)
6124                         break;
6125                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6126                         continue;
6127                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6128         }
6129         return err;
6130 }
6131 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6132
6133 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6134                                           struct neighbour *n)
6135 {
6136         struct net_device *lower_dev;
6137         struct list_head *iter;
6138
6139         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6140                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6141                         continue;
6142                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6143         }
6144 }
6145 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6146
6147 static void dev_change_rx_flags(struct net_device *dev, int flags)
6148 {
6149         const struct net_device_ops *ops = dev->netdev_ops;
6150
6151         if (ops->ndo_change_rx_flags)
6152                 ops->ndo_change_rx_flags(dev, flags);
6153 }
6154
6155 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6156 {
6157         unsigned int old_flags = dev->flags;
6158         kuid_t uid;
6159         kgid_t gid;
6160
6161         ASSERT_RTNL();
6162
6163         dev->flags |= IFF_PROMISC;
6164         dev->promiscuity += inc;
6165         if (dev->promiscuity == 0) {
6166                 /*
6167                  * Avoid overflow.
6168                  * If inc causes overflow, untouch promisc and return error.
6169                  */
6170                 if (inc < 0)
6171                         dev->flags &= ~IFF_PROMISC;
6172                 else {
6173                         dev->promiscuity -= inc;
6174                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6175                                 dev->name);
6176                         return -EOVERFLOW;
6177                 }
6178         }
6179         if (dev->flags != old_flags) {
6180                 pr_info("device %s %s promiscuous mode\n",
6181                         dev->name,
6182                         dev->flags & IFF_PROMISC ? "entered" : "left");
6183                 if (audit_enabled) {
6184                         current_uid_gid(&uid, &gid);
6185                         audit_log(current->audit_context, GFP_ATOMIC,
6186                                 AUDIT_ANOM_PROMISCUOUS,
6187                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6188                                 dev->name, (dev->flags & IFF_PROMISC),
6189                                 (old_flags & IFF_PROMISC),
6190                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6191                                 from_kuid(&init_user_ns, uid),
6192                                 from_kgid(&init_user_ns, gid),
6193                                 audit_get_sessionid(current));
6194                 }
6195
6196                 dev_change_rx_flags(dev, IFF_PROMISC);
6197         }
6198         if (notify)
6199                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6200         return 0;
6201 }
6202
6203 /**
6204  *      dev_set_promiscuity     - update promiscuity count on a device
6205  *      @dev: device
6206  *      @inc: modifier
6207  *
6208  *      Add or remove promiscuity from a device. While the count in the device
6209  *      remains above zero the interface remains promiscuous. Once it hits zero
6210  *      the device reverts back to normal filtering operation. A negative inc
6211  *      value is used to drop promiscuity on the device.
6212  *      Return 0 if successful or a negative errno code on error.
6213  */
6214 int dev_set_promiscuity(struct net_device *dev, int inc)
6215 {
6216         unsigned int old_flags = dev->flags;
6217         int err;
6218
6219         err = __dev_set_promiscuity(dev, inc, true);
6220         if (err < 0)
6221                 return err;
6222         if (dev->flags != old_flags)
6223                 dev_set_rx_mode(dev);
6224         return err;
6225 }
6226 EXPORT_SYMBOL(dev_set_promiscuity);
6227
6228 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6229 {
6230         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6231
6232         ASSERT_RTNL();
6233
6234         dev->flags |= IFF_ALLMULTI;
6235         dev->allmulti += inc;
6236         if (dev->allmulti == 0) {
6237                 /*
6238                  * Avoid overflow.
6239                  * If inc causes overflow, untouch allmulti and return error.
6240                  */
6241                 if (inc < 0)
6242                         dev->flags &= ~IFF_ALLMULTI;
6243                 else {
6244                         dev->allmulti -= inc;
6245                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6246                                 dev->name);
6247                         return -EOVERFLOW;
6248                 }
6249         }
6250         if (dev->flags ^ old_flags) {
6251                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6252                 dev_set_rx_mode(dev);
6253                 if (notify)
6254                         __dev_notify_flags(dev, old_flags,
6255                                            dev->gflags ^ old_gflags);
6256         }
6257         return 0;
6258 }
6259
6260 /**
6261  *      dev_set_allmulti        - update allmulti count on a device
6262  *      @dev: device
6263  *      @inc: modifier
6264  *
6265  *      Add or remove reception of all multicast frames to a device. While the
6266  *      count in the device remains above zero the interface remains listening
6267  *      to all interfaces. Once it hits zero the device reverts back to normal
6268  *      filtering operation. A negative @inc value is used to drop the counter
6269  *      when releasing a resource needing all multicasts.
6270  *      Return 0 if successful or a negative errno code on error.
6271  */
6272
6273 int dev_set_allmulti(struct net_device *dev, int inc)
6274 {
6275         return __dev_set_allmulti(dev, inc, true);
6276 }
6277 EXPORT_SYMBOL(dev_set_allmulti);
6278
6279 /*
6280  *      Upload unicast and multicast address lists to device and
6281  *      configure RX filtering. When the device doesn't support unicast
6282  *      filtering it is put in promiscuous mode while unicast addresses
6283  *      are present.
6284  */
6285 void __dev_set_rx_mode(struct net_device *dev)
6286 {
6287         const struct net_device_ops *ops = dev->netdev_ops;
6288
6289         /* dev_open will call this function so the list will stay sane. */
6290         if (!(dev->flags&IFF_UP))
6291                 return;
6292
6293         if (!netif_device_present(dev))
6294                 return;
6295
6296         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6297                 /* Unicast addresses changes may only happen under the rtnl,
6298                  * therefore calling __dev_set_promiscuity here is safe.
6299                  */
6300                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6301                         __dev_set_promiscuity(dev, 1, false);
6302                         dev->uc_promisc = true;
6303                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6304                         __dev_set_promiscuity(dev, -1, false);
6305                         dev->uc_promisc = false;
6306                 }
6307         }
6308
6309         if (ops->ndo_set_rx_mode)
6310                 ops->ndo_set_rx_mode(dev);
6311 }
6312
6313 void dev_set_rx_mode(struct net_device *dev)
6314 {
6315         netif_addr_lock_bh(dev);
6316         __dev_set_rx_mode(dev);
6317         netif_addr_unlock_bh(dev);
6318 }
6319
6320 /**
6321  *      dev_get_flags - get flags reported to userspace
6322  *      @dev: device
6323  *
6324  *      Get the combination of flag bits exported through APIs to userspace.
6325  */
6326 unsigned int dev_get_flags(const struct net_device *dev)
6327 {
6328         unsigned int flags;
6329
6330         flags = (dev->flags & ~(IFF_PROMISC |
6331                                 IFF_ALLMULTI |
6332                                 IFF_RUNNING |
6333                                 IFF_LOWER_UP |
6334                                 IFF_DORMANT)) |
6335                 (dev->gflags & (IFF_PROMISC |
6336                                 IFF_ALLMULTI));
6337
6338         if (netif_running(dev)) {
6339                 if (netif_oper_up(dev))
6340                         flags |= IFF_RUNNING;
6341                 if (netif_carrier_ok(dev))
6342                         flags |= IFF_LOWER_UP;
6343                 if (netif_dormant(dev))
6344                         flags |= IFF_DORMANT;
6345         }
6346
6347         return flags;
6348 }
6349 EXPORT_SYMBOL(dev_get_flags);
6350
6351 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6352 {
6353         unsigned int old_flags = dev->flags;
6354         int ret;
6355
6356         ASSERT_RTNL();
6357
6358         /*
6359          *      Set the flags on our device.
6360          */
6361
6362         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6363                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6364                                IFF_AUTOMEDIA)) |
6365                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6366                                     IFF_ALLMULTI));
6367
6368         /*
6369          *      Load in the correct multicast list now the flags have changed.
6370          */
6371
6372         if ((old_flags ^ flags) & IFF_MULTICAST)
6373                 dev_change_rx_flags(dev, IFF_MULTICAST);
6374
6375         dev_set_rx_mode(dev);
6376
6377         /*
6378          *      Have we downed the interface. We handle IFF_UP ourselves
6379          *      according to user attempts to set it, rather than blindly
6380          *      setting it.
6381          */
6382
6383         ret = 0;
6384         if ((old_flags ^ flags) & IFF_UP)
6385                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6386
6387         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6388                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6389                 unsigned int old_flags = dev->flags;
6390
6391                 dev->gflags ^= IFF_PROMISC;
6392
6393                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6394                         if (dev->flags != old_flags)
6395                                 dev_set_rx_mode(dev);
6396         }
6397
6398         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6399            is important. Some (broken) drivers set IFF_PROMISC, when
6400            IFF_ALLMULTI is requested not asking us and not reporting.
6401          */
6402         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6403                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6404
6405                 dev->gflags ^= IFF_ALLMULTI;
6406                 __dev_set_allmulti(dev, inc, false);
6407         }
6408
6409         return ret;
6410 }
6411
6412 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6413                         unsigned int gchanges)
6414 {
6415         unsigned int changes = dev->flags ^ old_flags;
6416
6417         if (gchanges)
6418                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6419
6420         if (changes & IFF_UP) {
6421                 if (dev->flags & IFF_UP)
6422                         call_netdevice_notifiers(NETDEV_UP, dev);
6423                 else
6424                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6425         }
6426
6427         if (dev->flags & IFF_UP &&
6428             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6429                 struct netdev_notifier_change_info change_info;
6430
6431                 change_info.flags_changed = changes;
6432                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6433                                               &change_info.info);
6434         }
6435 }
6436
6437 /**
6438  *      dev_change_flags - change device settings
6439  *      @dev: device
6440  *      @flags: device state flags
6441  *
6442  *      Change settings on device based state flags. The flags are
6443  *      in the userspace exported format.
6444  */
6445 int dev_change_flags(struct net_device *dev, unsigned int flags)
6446 {
6447         int ret;
6448         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6449
6450         ret = __dev_change_flags(dev, flags);
6451         if (ret < 0)
6452                 return ret;
6453
6454         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6455         __dev_notify_flags(dev, old_flags, changes);
6456         return ret;
6457 }
6458 EXPORT_SYMBOL(dev_change_flags);
6459
6460 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6461 {
6462         const struct net_device_ops *ops = dev->netdev_ops;
6463
6464         if (ops->ndo_change_mtu)
6465                 return ops->ndo_change_mtu(dev, new_mtu);
6466
6467         dev->mtu = new_mtu;
6468         return 0;
6469 }
6470
6471 /**
6472  *      dev_set_mtu - Change maximum transfer unit
6473  *      @dev: device
6474  *      @new_mtu: new transfer unit
6475  *
6476  *      Change the maximum transfer size of the network device.
6477  */
6478 int dev_set_mtu(struct net_device *dev, int new_mtu)
6479 {
6480         int err, orig_mtu;
6481
6482         if (new_mtu == dev->mtu)
6483                 return 0;
6484
6485         /*      MTU must be positive.    */
6486         if (new_mtu < 0)
6487                 return -EINVAL;
6488
6489         if (!netif_device_present(dev))
6490                 return -ENODEV;
6491
6492         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6493         err = notifier_to_errno(err);
6494         if (err)
6495                 return err;
6496
6497         orig_mtu = dev->mtu;
6498         err = __dev_set_mtu(dev, new_mtu);
6499
6500         if (!err) {
6501                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6502                 err = notifier_to_errno(err);
6503                 if (err) {
6504                         /* setting mtu back and notifying everyone again,
6505                          * so that they have a chance to revert changes.
6506                          */
6507                         __dev_set_mtu(dev, orig_mtu);
6508                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6509                 }
6510         }
6511         return err;
6512 }
6513 EXPORT_SYMBOL(dev_set_mtu);
6514
6515 /**
6516  *      dev_set_group - Change group this device belongs to
6517  *      @dev: device
6518  *      @new_group: group this device should belong to
6519  */
6520 void dev_set_group(struct net_device *dev, int new_group)
6521 {
6522         dev->group = new_group;
6523 }
6524 EXPORT_SYMBOL(dev_set_group);
6525
6526 /**
6527  *      dev_set_mac_address - Change Media Access Control Address
6528  *      @dev: device
6529  *      @sa: new address
6530  *
6531  *      Change the hardware (MAC) address of the device
6532  */
6533 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6534 {
6535         const struct net_device_ops *ops = dev->netdev_ops;
6536         int err;
6537
6538         if (!ops->ndo_set_mac_address)
6539                 return -EOPNOTSUPP;
6540         if (sa->sa_family != dev->type)
6541                 return -EINVAL;
6542         if (!netif_device_present(dev))
6543                 return -ENODEV;
6544         err = ops->ndo_set_mac_address(dev, sa);
6545         if (err)
6546                 return err;
6547         dev->addr_assign_type = NET_ADDR_SET;
6548         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6549         add_device_randomness(dev->dev_addr, dev->addr_len);
6550         return 0;
6551 }
6552 EXPORT_SYMBOL(dev_set_mac_address);
6553
6554 /**
6555  *      dev_change_carrier - Change device carrier
6556  *      @dev: device
6557  *      @new_carrier: new value
6558  *
6559  *      Change device carrier
6560  */
6561 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6562 {
6563         const struct net_device_ops *ops = dev->netdev_ops;
6564
6565         if (!ops->ndo_change_carrier)
6566                 return -EOPNOTSUPP;
6567         if (!netif_device_present(dev))
6568                 return -ENODEV;
6569         return ops->ndo_change_carrier(dev, new_carrier);
6570 }
6571 EXPORT_SYMBOL(dev_change_carrier);
6572
6573 /**
6574  *      dev_get_phys_port_id - Get device physical port ID
6575  *      @dev: device
6576  *      @ppid: port ID
6577  *
6578  *      Get device physical port ID
6579  */
6580 int dev_get_phys_port_id(struct net_device *dev,
6581                          struct netdev_phys_item_id *ppid)
6582 {
6583         const struct net_device_ops *ops = dev->netdev_ops;
6584
6585         if (!ops->ndo_get_phys_port_id)
6586                 return -EOPNOTSUPP;
6587         return ops->ndo_get_phys_port_id(dev, ppid);
6588 }
6589 EXPORT_SYMBOL(dev_get_phys_port_id);
6590
6591 /**
6592  *      dev_get_phys_port_name - Get device physical port name
6593  *      @dev: device
6594  *      @name: port name
6595  *      @len: limit of bytes to copy to name
6596  *
6597  *      Get device physical port name
6598  */
6599 int dev_get_phys_port_name(struct net_device *dev,
6600                            char *name, size_t len)
6601 {
6602         const struct net_device_ops *ops = dev->netdev_ops;
6603
6604         if (!ops->ndo_get_phys_port_name)
6605                 return -EOPNOTSUPP;
6606         return ops->ndo_get_phys_port_name(dev, name, len);
6607 }
6608 EXPORT_SYMBOL(dev_get_phys_port_name);
6609
6610 /**
6611  *      dev_change_proto_down - update protocol port state information
6612  *      @dev: device
6613  *      @proto_down: new value
6614  *
6615  *      This info can be used by switch drivers to set the phys state of the
6616  *      port.
6617  */
6618 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6619 {
6620         const struct net_device_ops *ops = dev->netdev_ops;
6621
6622         if (!ops->ndo_change_proto_down)
6623                 return -EOPNOTSUPP;
6624         if (!netif_device_present(dev))
6625                 return -ENODEV;
6626         return ops->ndo_change_proto_down(dev, proto_down);
6627 }
6628 EXPORT_SYMBOL(dev_change_proto_down);
6629
6630 /**
6631  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6632  *      @dev: device
6633  *      @fd: new program fd or negative value to clear
6634  *
6635  *      Set or clear a bpf program for a device
6636  */
6637 int dev_change_xdp_fd(struct net_device *dev, int fd)
6638 {
6639         const struct net_device_ops *ops = dev->netdev_ops;
6640         struct bpf_prog *prog = NULL;
6641         struct netdev_xdp xdp = {};
6642         int err;
6643
6644         if (!ops->ndo_xdp)
6645                 return -EOPNOTSUPP;
6646         if (fd >= 0) {
6647                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6648                 if (IS_ERR(prog))
6649                         return PTR_ERR(prog);
6650         }
6651
6652         xdp.command = XDP_SETUP_PROG;
6653         xdp.prog = prog;
6654         err = ops->ndo_xdp(dev, &xdp);
6655         if (err < 0 && prog)
6656                 bpf_prog_put(prog);
6657
6658         return err;
6659 }
6660 EXPORT_SYMBOL(dev_change_xdp_fd);
6661
6662 /**
6663  *      dev_new_index   -       allocate an ifindex
6664  *      @net: the applicable net namespace
6665  *
6666  *      Returns a suitable unique value for a new device interface
6667  *      number.  The caller must hold the rtnl semaphore or the
6668  *      dev_base_lock to be sure it remains unique.
6669  */
6670 static int dev_new_index(struct net *net)
6671 {
6672         int ifindex = net->ifindex;
6673         for (;;) {
6674                 if (++ifindex <= 0)
6675                         ifindex = 1;
6676                 if (!__dev_get_by_index(net, ifindex))
6677                         return net->ifindex = ifindex;
6678         }
6679 }
6680
6681 /* Delayed registration/unregisteration */
6682 static LIST_HEAD(net_todo_list);
6683 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6684
6685 static void net_set_todo(struct net_device *dev)
6686 {
6687         list_add_tail(&dev->todo_list, &net_todo_list);
6688         dev_net(dev)->dev_unreg_count++;
6689 }
6690
6691 static void rollback_registered_many(struct list_head *head)
6692 {
6693         struct net_device *dev, *tmp;
6694         LIST_HEAD(close_head);
6695
6696         BUG_ON(dev_boot_phase);
6697         ASSERT_RTNL();
6698
6699         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6700                 /* Some devices call without registering
6701                  * for initialization unwind. Remove those
6702                  * devices and proceed with the remaining.
6703                  */
6704                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6705                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6706                                  dev->name, dev);
6707
6708                         WARN_ON(1);
6709                         list_del(&dev->unreg_list);
6710                         continue;
6711                 }
6712                 dev->dismantle = true;
6713                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6714         }
6715
6716         /* If device is running, close it first. */
6717         list_for_each_entry(dev, head, unreg_list)
6718                 list_add_tail(&dev->close_list, &close_head);
6719         dev_close_many(&close_head, true);
6720
6721         list_for_each_entry(dev, head, unreg_list) {
6722                 /* And unlink it from device chain. */
6723                 unlist_netdevice(dev);
6724
6725                 dev->reg_state = NETREG_UNREGISTERING;
6726                 on_each_cpu(flush_backlog, dev, 1);
6727         }
6728
6729         synchronize_net();
6730
6731         list_for_each_entry(dev, head, unreg_list) {
6732                 struct sk_buff *skb = NULL;
6733
6734                 /* Shutdown queueing discipline. */
6735                 dev_shutdown(dev);
6736
6737
6738                 /* Notify protocols, that we are about to destroy
6739                    this device. They should clean all the things.
6740                 */
6741                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6742
6743                 if (!dev->rtnl_link_ops ||
6744                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6745                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6746                                                      GFP_KERNEL);
6747
6748                 /*
6749                  *      Flush the unicast and multicast chains
6750                  */
6751                 dev_uc_flush(dev);
6752                 dev_mc_flush(dev);
6753
6754                 if (dev->netdev_ops->ndo_uninit)
6755                         dev->netdev_ops->ndo_uninit(dev);
6756
6757                 if (skb)
6758                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6759
6760                 /* Notifier chain MUST detach us all upper devices. */
6761                 WARN_ON(netdev_has_any_upper_dev(dev));
6762
6763                 /* Remove entries from kobject tree */
6764                 netdev_unregister_kobject(dev);
6765 #ifdef CONFIG_XPS
6766                 /* Remove XPS queueing entries */
6767                 netif_reset_xps_queues_gt(dev, 0);
6768 #endif
6769         }
6770
6771         synchronize_net();
6772
6773         list_for_each_entry(dev, head, unreg_list)
6774                 dev_put(dev);
6775 }
6776
6777 static void rollback_registered(struct net_device *dev)
6778 {
6779         LIST_HEAD(single);
6780
6781         list_add(&dev->unreg_list, &single);
6782         rollback_registered_many(&single);
6783         list_del(&single);
6784 }
6785
6786 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6787         struct net_device *upper, netdev_features_t features)
6788 {
6789         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6790         netdev_features_t feature;
6791         int feature_bit;
6792
6793         for_each_netdev_feature(&upper_disables, feature_bit) {
6794                 feature = __NETIF_F_BIT(feature_bit);
6795                 if (!(upper->wanted_features & feature)
6796                     && (features & feature)) {
6797                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6798                                    &feature, upper->name);
6799                         features &= ~feature;
6800                 }
6801         }
6802
6803         return features;
6804 }
6805
6806 static void netdev_sync_lower_features(struct net_device *upper,
6807         struct net_device *lower, netdev_features_t features)
6808 {
6809         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6810         netdev_features_t feature;
6811         int feature_bit;
6812
6813         for_each_netdev_feature(&upper_disables, feature_bit) {
6814                 feature = __NETIF_F_BIT(feature_bit);
6815                 if (!(features & feature) && (lower->features & feature)) {
6816                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6817                                    &feature, lower->name);
6818                         lower->wanted_features &= ~feature;
6819                         netdev_update_features(lower);
6820
6821                         if (unlikely(lower->features & feature))
6822                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6823                                             &feature, lower->name);
6824                 }
6825         }
6826 }
6827
6828 static netdev_features_t netdev_fix_features(struct net_device *dev,
6829         netdev_features_t features)
6830 {
6831         /* Fix illegal checksum combinations */
6832         if ((features & NETIF_F_HW_CSUM) &&
6833             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6834                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6835                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6836         }
6837
6838         /* TSO requires that SG is present as well. */
6839         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6840                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6841                 features &= ~NETIF_F_ALL_TSO;
6842         }
6843
6844         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6845                                         !(features & NETIF_F_IP_CSUM)) {
6846                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6847                 features &= ~NETIF_F_TSO;
6848                 features &= ~NETIF_F_TSO_ECN;
6849         }
6850
6851         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6852                                          !(features & NETIF_F_IPV6_CSUM)) {
6853                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6854                 features &= ~NETIF_F_TSO6;
6855         }
6856
6857         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6858         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6859                 features &= ~NETIF_F_TSO_MANGLEID;
6860
6861         /* TSO ECN requires that TSO is present as well. */
6862         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6863                 features &= ~NETIF_F_TSO_ECN;
6864
6865         /* Software GSO depends on SG. */
6866         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6867                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6868                 features &= ~NETIF_F_GSO;
6869         }
6870
6871         /* UFO needs SG and checksumming */
6872         if (features & NETIF_F_UFO) {
6873                 /* maybe split UFO into V4 and V6? */
6874                 if (!(features & NETIF_F_HW_CSUM) &&
6875                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6876                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6877                         netdev_dbg(dev,
6878                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6879                         features &= ~NETIF_F_UFO;
6880                 }
6881
6882                 if (!(features & NETIF_F_SG)) {
6883                         netdev_dbg(dev,
6884                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6885                         features &= ~NETIF_F_UFO;
6886                 }
6887         }
6888
6889         /* GSO partial features require GSO partial be set */
6890         if ((features & dev->gso_partial_features) &&
6891             !(features & NETIF_F_GSO_PARTIAL)) {
6892                 netdev_dbg(dev,
6893                            "Dropping partially supported GSO features since no GSO partial.\n");
6894                 features &= ~dev->gso_partial_features;
6895         }
6896
6897 #ifdef CONFIG_NET_RX_BUSY_POLL
6898         if (dev->netdev_ops->ndo_busy_poll)
6899                 features |= NETIF_F_BUSY_POLL;
6900         else
6901 #endif
6902                 features &= ~NETIF_F_BUSY_POLL;
6903
6904         return features;
6905 }
6906
6907 int __netdev_update_features(struct net_device *dev)
6908 {
6909         struct net_device *upper, *lower;
6910         netdev_features_t features;
6911         struct list_head *iter;
6912         int err = -1;
6913
6914         ASSERT_RTNL();
6915
6916         features = netdev_get_wanted_features(dev);
6917
6918         if (dev->netdev_ops->ndo_fix_features)
6919                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6920
6921         /* driver might be less strict about feature dependencies */
6922         features = netdev_fix_features(dev, features);
6923
6924         /* some features can't be enabled if they're off an an upper device */
6925         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6926                 features = netdev_sync_upper_features(dev, upper, features);
6927
6928         if (dev->features == features)
6929                 goto sync_lower;
6930
6931         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6932                 &dev->features, &features);
6933
6934         if (dev->netdev_ops->ndo_set_features)
6935                 err = dev->netdev_ops->ndo_set_features(dev, features);
6936         else
6937                 err = 0;
6938
6939         if (unlikely(err < 0)) {
6940                 netdev_err(dev,
6941                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6942                         err, &features, &dev->features);
6943                 /* return non-0 since some features might have changed and
6944                  * it's better to fire a spurious notification than miss it
6945                  */
6946                 return -1;
6947         }
6948
6949 sync_lower:
6950         /* some features must be disabled on lower devices when disabled
6951          * on an upper device (think: bonding master or bridge)
6952          */
6953         netdev_for_each_lower_dev(dev, lower, iter)
6954                 netdev_sync_lower_features(dev, lower, features);
6955
6956         if (!err)
6957                 dev->features = features;
6958
6959         return err < 0 ? 0 : 1;
6960 }
6961
6962 /**
6963  *      netdev_update_features - recalculate device features
6964  *      @dev: the device to check
6965  *
6966  *      Recalculate dev->features set and send notifications if it
6967  *      has changed. Should be called after driver or hardware dependent
6968  *      conditions might have changed that influence the features.
6969  */
6970 void netdev_update_features(struct net_device *dev)
6971 {
6972         if (__netdev_update_features(dev))
6973                 netdev_features_change(dev);
6974 }
6975 EXPORT_SYMBOL(netdev_update_features);
6976
6977 /**
6978  *      netdev_change_features - recalculate device features
6979  *      @dev: the device to check
6980  *
6981  *      Recalculate dev->features set and send notifications even
6982  *      if they have not changed. Should be called instead of
6983  *      netdev_update_features() if also dev->vlan_features might
6984  *      have changed to allow the changes to be propagated to stacked
6985  *      VLAN devices.
6986  */
6987 void netdev_change_features(struct net_device *dev)
6988 {
6989         __netdev_update_features(dev);
6990         netdev_features_change(dev);
6991 }
6992 EXPORT_SYMBOL(netdev_change_features);
6993
6994 /**
6995  *      netif_stacked_transfer_operstate -      transfer operstate
6996  *      @rootdev: the root or lower level device to transfer state from
6997  *      @dev: the device to transfer operstate to
6998  *
6999  *      Transfer operational state from root to device. This is normally
7000  *      called when a stacking relationship exists between the root
7001  *      device and the device(a leaf device).
7002  */
7003 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7004                                         struct net_device *dev)
7005 {
7006         if (rootdev->operstate == IF_OPER_DORMANT)
7007                 netif_dormant_on(dev);
7008         else
7009                 netif_dormant_off(dev);
7010
7011         if (netif_carrier_ok(rootdev)) {
7012                 if (!netif_carrier_ok(dev))
7013                         netif_carrier_on(dev);
7014         } else {
7015                 if (netif_carrier_ok(dev))
7016                         netif_carrier_off(dev);
7017         }
7018 }
7019 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7020
7021 #ifdef CONFIG_SYSFS
7022 static int netif_alloc_rx_queues(struct net_device *dev)
7023 {
7024         unsigned int i, count = dev->num_rx_queues;
7025         struct netdev_rx_queue *rx;
7026         size_t sz = count * sizeof(*rx);
7027
7028         BUG_ON(count < 1);
7029
7030         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7031         if (!rx) {
7032                 rx = vzalloc(sz);
7033                 if (!rx)
7034                         return -ENOMEM;
7035         }
7036         dev->_rx = rx;
7037
7038         for (i = 0; i < count; i++)
7039                 rx[i].dev = dev;
7040         return 0;
7041 }
7042 #endif
7043
7044 static void netdev_init_one_queue(struct net_device *dev,
7045                                   struct netdev_queue *queue, void *_unused)
7046 {
7047         /* Initialize queue lock */
7048         spin_lock_init(&queue->_xmit_lock);
7049         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7050         queue->xmit_lock_owner = -1;
7051         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7052         queue->dev = dev;
7053 #ifdef CONFIG_BQL
7054         dql_init(&queue->dql, HZ);
7055 #endif
7056 }
7057
7058 static void netif_free_tx_queues(struct net_device *dev)
7059 {
7060         kvfree(dev->_tx);
7061 }
7062
7063 static int netif_alloc_netdev_queues(struct net_device *dev)
7064 {
7065         unsigned int count = dev->num_tx_queues;
7066         struct netdev_queue *tx;
7067         size_t sz = count * sizeof(*tx);
7068
7069         if (count < 1 || count > 0xffff)
7070                 return -EINVAL;
7071
7072         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7073         if (!tx) {
7074                 tx = vzalloc(sz);
7075                 if (!tx)
7076                         return -ENOMEM;
7077         }
7078         dev->_tx = tx;
7079
7080         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7081         spin_lock_init(&dev->tx_global_lock);
7082
7083         return 0;
7084 }
7085
7086 void netif_tx_stop_all_queues(struct net_device *dev)
7087 {
7088         unsigned int i;
7089
7090         for (i = 0; i < dev->num_tx_queues; i++) {
7091                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7092                 netif_tx_stop_queue(txq);
7093         }
7094 }
7095 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7096
7097 /**
7098  *      register_netdevice      - register a network device
7099  *      @dev: device to register
7100  *
7101  *      Take a completed network device structure and add it to the kernel
7102  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7103  *      chain. 0 is returned on success. A negative errno code is returned
7104  *      on a failure to set up the device, or if the name is a duplicate.
7105  *
7106  *      Callers must hold the rtnl semaphore. You may want
7107  *      register_netdev() instead of this.
7108  *
7109  *      BUGS:
7110  *      The locking appears insufficient to guarantee two parallel registers
7111  *      will not get the same name.
7112  */
7113
7114 int register_netdevice(struct net_device *dev)
7115 {
7116         int ret;
7117         struct net *net = dev_net(dev);
7118
7119         BUG_ON(dev_boot_phase);
7120         ASSERT_RTNL();
7121
7122         might_sleep();
7123
7124         /* When net_device's are persistent, this will be fatal. */
7125         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7126         BUG_ON(!net);
7127
7128         spin_lock_init(&dev->addr_list_lock);
7129         netdev_set_addr_lockdep_class(dev);
7130
7131         ret = dev_get_valid_name(net, dev, dev->name);
7132         if (ret < 0)
7133                 goto out;
7134
7135         /* Init, if this function is available */
7136         if (dev->netdev_ops->ndo_init) {
7137                 ret = dev->netdev_ops->ndo_init(dev);
7138                 if (ret) {
7139                         if (ret > 0)
7140                                 ret = -EIO;
7141                         goto out;
7142                 }
7143         }
7144
7145         if (((dev->hw_features | dev->features) &
7146              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7147             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7148              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7149                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7150                 ret = -EINVAL;
7151                 goto err_uninit;
7152         }
7153
7154         ret = -EBUSY;
7155         if (!dev->ifindex)
7156                 dev->ifindex = dev_new_index(net);
7157         else if (__dev_get_by_index(net, dev->ifindex))
7158                 goto err_uninit;
7159
7160         /* Transfer changeable features to wanted_features and enable
7161          * software offloads (GSO and GRO).
7162          */
7163         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7164         dev->features |= NETIF_F_SOFT_FEATURES;
7165         dev->wanted_features = dev->features & dev->hw_features;
7166
7167         if (!(dev->flags & IFF_LOOPBACK))
7168                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7169
7170         /* If IPv4 TCP segmentation offload is supported we should also
7171          * allow the device to enable segmenting the frame with the option
7172          * of ignoring a static IP ID value.  This doesn't enable the
7173          * feature itself but allows the user to enable it later.
7174          */
7175         if (dev->hw_features & NETIF_F_TSO)
7176                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7177         if (dev->vlan_features & NETIF_F_TSO)
7178                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7179         if (dev->mpls_features & NETIF_F_TSO)
7180                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7181         if (dev->hw_enc_features & NETIF_F_TSO)
7182                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7183
7184         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7185          */
7186         dev->vlan_features |= NETIF_F_HIGHDMA;
7187
7188         /* Make NETIF_F_SG inheritable to tunnel devices.
7189          */
7190         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7191
7192         /* Make NETIF_F_SG inheritable to MPLS.
7193          */
7194         dev->mpls_features |= NETIF_F_SG;
7195
7196         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7197         ret = notifier_to_errno(ret);
7198         if (ret)
7199                 goto err_uninit;
7200
7201         ret = netdev_register_kobject(dev);
7202         if (ret)
7203                 goto err_uninit;
7204         dev->reg_state = NETREG_REGISTERED;
7205
7206         __netdev_update_features(dev);
7207
7208         /*
7209          *      Default initial state at registry is that the
7210          *      device is present.
7211          */
7212
7213         set_bit(__LINK_STATE_PRESENT, &dev->state);
7214
7215         linkwatch_init_dev(dev);
7216
7217         dev_init_scheduler(dev);
7218         dev_hold(dev);
7219         list_netdevice(dev);
7220         add_device_randomness(dev->dev_addr, dev->addr_len);
7221
7222         /* If the device has permanent device address, driver should
7223          * set dev_addr and also addr_assign_type should be set to
7224          * NET_ADDR_PERM (default value).
7225          */
7226         if (dev->addr_assign_type == NET_ADDR_PERM)
7227                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7228
7229         /* Notify protocols, that a new device appeared. */
7230         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7231         ret = notifier_to_errno(ret);
7232         if (ret) {
7233                 rollback_registered(dev);
7234                 dev->reg_state = NETREG_UNREGISTERED;
7235         }
7236         /*
7237          *      Prevent userspace races by waiting until the network
7238          *      device is fully setup before sending notifications.
7239          */
7240         if (!dev->rtnl_link_ops ||
7241             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7242                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7243
7244 out:
7245         return ret;
7246
7247 err_uninit:
7248         if (dev->netdev_ops->ndo_uninit)
7249                 dev->netdev_ops->ndo_uninit(dev);
7250         goto out;
7251 }
7252 EXPORT_SYMBOL(register_netdevice);
7253
7254 /**
7255  *      init_dummy_netdev       - init a dummy network device for NAPI
7256  *      @dev: device to init
7257  *
7258  *      This takes a network device structure and initialize the minimum
7259  *      amount of fields so it can be used to schedule NAPI polls without
7260  *      registering a full blown interface. This is to be used by drivers
7261  *      that need to tie several hardware interfaces to a single NAPI
7262  *      poll scheduler due to HW limitations.
7263  */
7264 int init_dummy_netdev(struct net_device *dev)
7265 {
7266         /* Clear everything. Note we don't initialize spinlocks
7267          * are they aren't supposed to be taken by any of the
7268          * NAPI code and this dummy netdev is supposed to be
7269          * only ever used for NAPI polls
7270          */
7271         memset(dev, 0, sizeof(struct net_device));
7272
7273         /* make sure we BUG if trying to hit standard
7274          * register/unregister code path
7275          */
7276         dev->reg_state = NETREG_DUMMY;
7277
7278         /* NAPI wants this */
7279         INIT_LIST_HEAD(&dev->napi_list);
7280
7281         /* a dummy interface is started by default */
7282         set_bit(__LINK_STATE_PRESENT, &dev->state);
7283         set_bit(__LINK_STATE_START, &dev->state);
7284
7285         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7286          * because users of this 'device' dont need to change
7287          * its refcount.
7288          */
7289
7290         return 0;
7291 }
7292 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7293
7294
7295 /**
7296  *      register_netdev - register a network device
7297  *      @dev: device to register
7298  *
7299  *      Take a completed network device structure and add it to the kernel
7300  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7301  *      chain. 0 is returned on success. A negative errno code is returned
7302  *      on a failure to set up the device, or if the name is a duplicate.
7303  *
7304  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7305  *      and expands the device name if you passed a format string to
7306  *      alloc_netdev.
7307  */
7308 int register_netdev(struct net_device *dev)
7309 {
7310         int err;
7311
7312         rtnl_lock();
7313         err = register_netdevice(dev);
7314         rtnl_unlock();
7315         return err;
7316 }
7317 EXPORT_SYMBOL(register_netdev);
7318
7319 int netdev_refcnt_read(const struct net_device *dev)
7320 {
7321         int i, refcnt = 0;
7322
7323         for_each_possible_cpu(i)
7324                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7325         return refcnt;
7326 }
7327 EXPORT_SYMBOL(netdev_refcnt_read);
7328
7329 /**
7330  * netdev_wait_allrefs - wait until all references are gone.
7331  * @dev: target net_device
7332  *
7333  * This is called when unregistering network devices.
7334  *
7335  * Any protocol or device that holds a reference should register
7336  * for netdevice notification, and cleanup and put back the
7337  * reference if they receive an UNREGISTER event.
7338  * We can get stuck here if buggy protocols don't correctly
7339  * call dev_put.
7340  */
7341 static void netdev_wait_allrefs(struct net_device *dev)
7342 {
7343         unsigned long rebroadcast_time, warning_time;
7344         int refcnt;
7345
7346         linkwatch_forget_dev(dev);
7347
7348         rebroadcast_time = warning_time = jiffies;
7349         refcnt = netdev_refcnt_read(dev);
7350
7351         while (refcnt != 0) {
7352                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7353                         rtnl_lock();
7354
7355                         /* Rebroadcast unregister notification */
7356                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7357
7358                         __rtnl_unlock();
7359                         rcu_barrier();
7360                         rtnl_lock();
7361
7362                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7363                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7364                                      &dev->state)) {
7365                                 /* We must not have linkwatch events
7366                                  * pending on unregister. If this
7367                                  * happens, we simply run the queue
7368                                  * unscheduled, resulting in a noop
7369                                  * for this device.
7370                                  */
7371                                 linkwatch_run_queue();
7372                         }
7373
7374                         __rtnl_unlock();
7375
7376                         rebroadcast_time = jiffies;
7377                 }
7378
7379                 msleep(250);
7380
7381                 refcnt = netdev_refcnt_read(dev);
7382
7383                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7384                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7385                                  dev->name, refcnt);
7386                         warning_time = jiffies;
7387                 }
7388         }
7389 }
7390
7391 /* The sequence is:
7392  *
7393  *      rtnl_lock();
7394  *      ...
7395  *      register_netdevice(x1);
7396  *      register_netdevice(x2);
7397  *      ...
7398  *      unregister_netdevice(y1);
7399  *      unregister_netdevice(y2);
7400  *      ...
7401  *      rtnl_unlock();
7402  *      free_netdev(y1);
7403  *      free_netdev(y2);
7404  *
7405  * We are invoked by rtnl_unlock().
7406  * This allows us to deal with problems:
7407  * 1) We can delete sysfs objects which invoke hotplug
7408  *    without deadlocking with linkwatch via keventd.
7409  * 2) Since we run with the RTNL semaphore not held, we can sleep
7410  *    safely in order to wait for the netdev refcnt to drop to zero.
7411  *
7412  * We must not return until all unregister events added during
7413  * the interval the lock was held have been completed.
7414  */
7415 void netdev_run_todo(void)
7416 {
7417         struct list_head list;
7418
7419         /* Snapshot list, allow later requests */
7420         list_replace_init(&net_todo_list, &list);
7421
7422         __rtnl_unlock();
7423
7424
7425         /* Wait for rcu callbacks to finish before next phase */
7426         if (!list_empty(&list))
7427                 rcu_barrier();
7428
7429         while (!list_empty(&list)) {
7430                 struct net_device *dev
7431                         = list_first_entry(&list, struct net_device, todo_list);
7432                 list_del(&dev->todo_list);
7433
7434                 rtnl_lock();
7435                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7436                 __rtnl_unlock();
7437
7438                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7439                         pr_err("network todo '%s' but state %d\n",
7440                                dev->name, dev->reg_state);
7441                         dump_stack();
7442                         continue;
7443                 }
7444
7445                 dev->reg_state = NETREG_UNREGISTERED;
7446
7447                 netdev_wait_allrefs(dev);
7448
7449                 /* paranoia */
7450                 BUG_ON(netdev_refcnt_read(dev));
7451                 BUG_ON(!list_empty(&dev->ptype_all));
7452                 BUG_ON(!list_empty(&dev->ptype_specific));
7453                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7454                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7455                 WARN_ON(dev->dn_ptr);
7456
7457                 if (dev->destructor)
7458                         dev->destructor(dev);
7459
7460                 /* Report a network device has been unregistered */
7461                 rtnl_lock();
7462                 dev_net(dev)->dev_unreg_count--;
7463                 __rtnl_unlock();
7464                 wake_up(&netdev_unregistering_wq);
7465
7466                 /* Free network device */
7467                 kobject_put(&dev->dev.kobj);
7468         }
7469 }
7470
7471 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7472  * all the same fields in the same order as net_device_stats, with only
7473  * the type differing, but rtnl_link_stats64 may have additional fields
7474  * at the end for newer counters.
7475  */
7476 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7477                              const struct net_device_stats *netdev_stats)
7478 {
7479 #if BITS_PER_LONG == 64
7480         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7481         memcpy(stats64, netdev_stats, sizeof(*stats64));
7482         /* zero out counters that only exist in rtnl_link_stats64 */
7483         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7484                sizeof(*stats64) - sizeof(*netdev_stats));
7485 #else
7486         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7487         const unsigned long *src = (const unsigned long *)netdev_stats;
7488         u64 *dst = (u64 *)stats64;
7489
7490         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7491         for (i = 0; i < n; i++)
7492                 dst[i] = src[i];
7493         /* zero out counters that only exist in rtnl_link_stats64 */
7494         memset((char *)stats64 + n * sizeof(u64), 0,
7495                sizeof(*stats64) - n * sizeof(u64));
7496 #endif
7497 }
7498 EXPORT_SYMBOL(netdev_stats_to_stats64);
7499
7500 /**
7501  *      dev_get_stats   - get network device statistics
7502  *      @dev: device to get statistics from
7503  *      @storage: place to store stats
7504  *
7505  *      Get network statistics from device. Return @storage.
7506  *      The device driver may provide its own method by setting
7507  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7508  *      otherwise the internal statistics structure is used.
7509  */
7510 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7511                                         struct rtnl_link_stats64 *storage)
7512 {
7513         const struct net_device_ops *ops = dev->netdev_ops;
7514
7515         if (ops->ndo_get_stats64) {
7516                 memset(storage, 0, sizeof(*storage));
7517                 ops->ndo_get_stats64(dev, storage);
7518         } else if (ops->ndo_get_stats) {
7519                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7520         } else {
7521                 netdev_stats_to_stats64(storage, &dev->stats);
7522         }
7523         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7524         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7525         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7526         return storage;
7527 }
7528 EXPORT_SYMBOL(dev_get_stats);
7529
7530 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7531 {
7532         struct netdev_queue *queue = dev_ingress_queue(dev);
7533
7534 #ifdef CONFIG_NET_CLS_ACT
7535         if (queue)
7536                 return queue;
7537         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7538         if (!queue)
7539                 return NULL;
7540         netdev_init_one_queue(dev, queue, NULL);
7541         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7542         queue->qdisc_sleeping = &noop_qdisc;
7543         rcu_assign_pointer(dev->ingress_queue, queue);
7544 #endif
7545         return queue;
7546 }
7547
7548 static const struct ethtool_ops default_ethtool_ops;
7549
7550 void netdev_set_default_ethtool_ops(struct net_device *dev,
7551                                     const struct ethtool_ops *ops)
7552 {
7553         if (dev->ethtool_ops == &default_ethtool_ops)
7554                 dev->ethtool_ops = ops;
7555 }
7556 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7557
7558 void netdev_freemem(struct net_device *dev)
7559 {
7560         char *addr = (char *)dev - dev->padded;
7561
7562         kvfree(addr);
7563 }
7564
7565 /**
7566  *      alloc_netdev_mqs - allocate network device
7567  *      @sizeof_priv:           size of private data to allocate space for
7568  *      @name:                  device name format string
7569  *      @name_assign_type:      origin of device name
7570  *      @setup:                 callback to initialize device
7571  *      @txqs:                  the number of TX subqueues to allocate
7572  *      @rxqs:                  the number of RX subqueues to allocate
7573  *
7574  *      Allocates a struct net_device with private data area for driver use
7575  *      and performs basic initialization.  Also allocates subqueue structs
7576  *      for each queue on the device.
7577  */
7578 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7579                 unsigned char name_assign_type,
7580                 void (*setup)(struct net_device *),
7581                 unsigned int txqs, unsigned int rxqs)
7582 {
7583         struct net_device *dev;
7584         size_t alloc_size;
7585         struct net_device *p;
7586
7587         BUG_ON(strlen(name) >= sizeof(dev->name));
7588
7589         if (txqs < 1) {
7590                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7591                 return NULL;
7592         }
7593
7594 #ifdef CONFIG_SYSFS
7595         if (rxqs < 1) {
7596                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7597                 return NULL;
7598         }
7599 #endif
7600
7601         alloc_size = sizeof(struct net_device);
7602         if (sizeof_priv) {
7603                 /* ensure 32-byte alignment of private area */
7604                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7605                 alloc_size += sizeof_priv;
7606         }
7607         /* ensure 32-byte alignment of whole construct */
7608         alloc_size += NETDEV_ALIGN - 1;
7609
7610         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7611         if (!p)
7612                 p = vzalloc(alloc_size);
7613         if (!p)
7614                 return NULL;
7615
7616         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7617         dev->padded = (char *)dev - (char *)p;
7618
7619         dev->pcpu_refcnt = alloc_percpu(int);
7620         if (!dev->pcpu_refcnt)
7621                 goto free_dev;
7622
7623         if (dev_addr_init(dev))
7624                 goto free_pcpu;
7625
7626         dev_mc_init(dev);
7627         dev_uc_init(dev);
7628
7629         dev_net_set(dev, &init_net);
7630
7631         dev->gso_max_size = GSO_MAX_SIZE;
7632         dev->gso_max_segs = GSO_MAX_SEGS;
7633
7634         INIT_LIST_HEAD(&dev->napi_list);
7635         INIT_LIST_HEAD(&dev->unreg_list);
7636         INIT_LIST_HEAD(&dev->close_list);
7637         INIT_LIST_HEAD(&dev->link_watch_list);
7638         INIT_LIST_HEAD(&dev->adj_list.upper);
7639         INIT_LIST_HEAD(&dev->adj_list.lower);
7640         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7641         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7642         INIT_LIST_HEAD(&dev->ptype_all);
7643         INIT_LIST_HEAD(&dev->ptype_specific);
7644         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7645         setup(dev);
7646
7647         if (!dev->tx_queue_len) {
7648                 dev->priv_flags |= IFF_NO_QUEUE;
7649                 dev->tx_queue_len = 1;
7650         }
7651
7652         dev->num_tx_queues = txqs;
7653         dev->real_num_tx_queues = txqs;
7654         if (netif_alloc_netdev_queues(dev))
7655                 goto free_all;
7656
7657 #ifdef CONFIG_SYSFS
7658         dev->num_rx_queues = rxqs;
7659         dev->real_num_rx_queues = rxqs;
7660         if (netif_alloc_rx_queues(dev))
7661                 goto free_all;
7662 #endif
7663
7664         strcpy(dev->name, name);
7665         dev->name_assign_type = name_assign_type;
7666         dev->group = INIT_NETDEV_GROUP;
7667         if (!dev->ethtool_ops)
7668                 dev->ethtool_ops = &default_ethtool_ops;
7669
7670         nf_hook_ingress_init(dev);
7671
7672         return dev;
7673
7674 free_all:
7675         free_netdev(dev);
7676         return NULL;
7677
7678 free_pcpu:
7679         free_percpu(dev->pcpu_refcnt);
7680 free_dev:
7681         netdev_freemem(dev);
7682         return NULL;
7683 }
7684 EXPORT_SYMBOL(alloc_netdev_mqs);
7685
7686 /**
7687  *      free_netdev - free network device
7688  *      @dev: device
7689  *
7690  *      This function does the last stage of destroying an allocated device
7691  *      interface. The reference to the device object is released.
7692  *      If this is the last reference then it will be freed.
7693  *      Must be called in process context.
7694  */
7695 void free_netdev(struct net_device *dev)
7696 {
7697         struct napi_struct *p, *n;
7698
7699         might_sleep();
7700         netif_free_tx_queues(dev);
7701 #ifdef CONFIG_SYSFS
7702         kvfree(dev->_rx);
7703 #endif
7704
7705         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7706
7707         /* Flush device addresses */
7708         dev_addr_flush(dev);
7709
7710         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7711                 netif_napi_del(p);
7712
7713         free_percpu(dev->pcpu_refcnt);
7714         dev->pcpu_refcnt = NULL;
7715
7716         /*  Compatibility with error handling in drivers */
7717         if (dev->reg_state == NETREG_UNINITIALIZED) {
7718                 netdev_freemem(dev);
7719                 return;
7720         }
7721
7722         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7723         dev->reg_state = NETREG_RELEASED;
7724
7725         /* will free via device release */
7726         put_device(&dev->dev);
7727 }
7728 EXPORT_SYMBOL(free_netdev);
7729
7730 /**
7731  *      synchronize_net -  Synchronize with packet receive processing
7732  *
7733  *      Wait for packets currently being received to be done.
7734  *      Does not block later packets from starting.
7735  */
7736 void synchronize_net(void)
7737 {
7738         might_sleep();
7739         if (rtnl_is_locked())
7740                 synchronize_rcu_expedited();
7741         else
7742                 synchronize_rcu();
7743 }
7744 EXPORT_SYMBOL(synchronize_net);
7745
7746 /**
7747  *      unregister_netdevice_queue - remove device from the kernel
7748  *      @dev: device
7749  *      @head: list
7750  *
7751  *      This function shuts down a device interface and removes it
7752  *      from the kernel tables.
7753  *      If head not NULL, device is queued to be unregistered later.
7754  *
7755  *      Callers must hold the rtnl semaphore.  You may want
7756  *      unregister_netdev() instead of this.
7757  */
7758
7759 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7760 {
7761         ASSERT_RTNL();
7762
7763         if (head) {
7764                 list_move_tail(&dev->unreg_list, head);
7765         } else {
7766                 rollback_registered(dev);
7767                 /* Finish processing unregister after unlock */
7768                 net_set_todo(dev);
7769         }
7770 }
7771 EXPORT_SYMBOL(unregister_netdevice_queue);
7772
7773 /**
7774  *      unregister_netdevice_many - unregister many devices
7775  *      @head: list of devices
7776  *
7777  *  Note: As most callers use a stack allocated list_head,
7778  *  we force a list_del() to make sure stack wont be corrupted later.
7779  */
7780 void unregister_netdevice_many(struct list_head *head)
7781 {
7782         struct net_device *dev;
7783
7784         if (!list_empty(head)) {
7785                 rollback_registered_many(head);
7786                 list_for_each_entry(dev, head, unreg_list)
7787                         net_set_todo(dev);
7788                 list_del(head);
7789         }
7790 }
7791 EXPORT_SYMBOL(unregister_netdevice_many);
7792
7793 /**
7794  *      unregister_netdev - remove device from the kernel
7795  *      @dev: device
7796  *
7797  *      This function shuts down a device interface and removes it
7798  *      from the kernel tables.
7799  *
7800  *      This is just a wrapper for unregister_netdevice that takes
7801  *      the rtnl semaphore.  In general you want to use this and not
7802  *      unregister_netdevice.
7803  */
7804 void unregister_netdev(struct net_device *dev)
7805 {
7806         rtnl_lock();
7807         unregister_netdevice(dev);
7808         rtnl_unlock();
7809 }
7810 EXPORT_SYMBOL(unregister_netdev);
7811
7812 /**
7813  *      dev_change_net_namespace - move device to different nethost namespace
7814  *      @dev: device
7815  *      @net: network namespace
7816  *      @pat: If not NULL name pattern to try if the current device name
7817  *            is already taken in the destination network namespace.
7818  *
7819  *      This function shuts down a device interface and moves it
7820  *      to a new network namespace. On success 0 is returned, on
7821  *      a failure a netagive errno code is returned.
7822  *
7823  *      Callers must hold the rtnl semaphore.
7824  */
7825
7826 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7827 {
7828         int err;
7829
7830         ASSERT_RTNL();
7831
7832         /* Don't allow namespace local devices to be moved. */
7833         err = -EINVAL;
7834         if (dev->features & NETIF_F_NETNS_LOCAL)
7835                 goto out;
7836
7837         /* Ensure the device has been registrered */
7838         if (dev->reg_state != NETREG_REGISTERED)
7839                 goto out;
7840
7841         /* Get out if there is nothing todo */
7842         err = 0;
7843         if (net_eq(dev_net(dev), net))
7844                 goto out;
7845
7846         /* Pick the destination device name, and ensure
7847          * we can use it in the destination network namespace.
7848          */
7849         err = -EEXIST;
7850         if (__dev_get_by_name(net, dev->name)) {
7851                 /* We get here if we can't use the current device name */
7852                 if (!pat)
7853                         goto out;
7854                 if (dev_get_valid_name(net, dev, pat) < 0)
7855                         goto out;
7856         }
7857
7858         /*
7859          * And now a mini version of register_netdevice unregister_netdevice.
7860          */
7861
7862         /* If device is running close it first. */
7863         dev_close(dev);
7864
7865         /* And unlink it from device chain */
7866         err = -ENODEV;
7867         unlist_netdevice(dev);
7868
7869         synchronize_net();
7870
7871         /* Shutdown queueing discipline. */
7872         dev_shutdown(dev);
7873
7874         /* Notify protocols, that we are about to destroy
7875            this device. They should clean all the things.
7876
7877            Note that dev->reg_state stays at NETREG_REGISTERED.
7878            This is wanted because this way 8021q and macvlan know
7879            the device is just moving and can keep their slaves up.
7880         */
7881         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7882         rcu_barrier();
7883         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7884         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7885
7886         /*
7887          *      Flush the unicast and multicast chains
7888          */
7889         dev_uc_flush(dev);
7890         dev_mc_flush(dev);
7891
7892         /* Send a netdev-removed uevent to the old namespace */
7893         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7894         netdev_adjacent_del_links(dev);
7895
7896         /* Actually switch the network namespace */
7897         dev_net_set(dev, net);
7898
7899         /* If there is an ifindex conflict assign a new one */
7900         if (__dev_get_by_index(net, dev->ifindex))
7901                 dev->ifindex = dev_new_index(net);
7902
7903         /* Send a netdev-add uevent to the new namespace */
7904         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7905         netdev_adjacent_add_links(dev);
7906
7907         /* Fixup kobjects */
7908         err = device_rename(&dev->dev, dev->name);
7909         WARN_ON(err);
7910
7911         /* Add the device back in the hashes */
7912         list_netdevice(dev);
7913
7914         /* Notify protocols, that a new device appeared. */
7915         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7916
7917         /*
7918          *      Prevent userspace races by waiting until the network
7919          *      device is fully setup before sending notifications.
7920          */
7921         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7922
7923         synchronize_net();
7924         err = 0;
7925 out:
7926         return err;
7927 }
7928 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7929
7930 static int dev_cpu_callback(struct notifier_block *nfb,
7931                             unsigned long action,
7932                             void *ocpu)
7933 {
7934         struct sk_buff **list_skb;
7935         struct sk_buff *skb;
7936         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7937         struct softnet_data *sd, *oldsd;
7938
7939         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7940                 return NOTIFY_OK;
7941
7942         local_irq_disable();
7943         cpu = smp_processor_id();
7944         sd = &per_cpu(softnet_data, cpu);
7945         oldsd = &per_cpu(softnet_data, oldcpu);
7946
7947         /* Find end of our completion_queue. */
7948         list_skb = &sd->completion_queue;
7949         while (*list_skb)
7950                 list_skb = &(*list_skb)->next;
7951         /* Append completion queue from offline CPU. */
7952         *list_skb = oldsd->completion_queue;
7953         oldsd->completion_queue = NULL;
7954
7955         /* Append output queue from offline CPU. */
7956         if (oldsd->output_queue) {
7957                 *sd->output_queue_tailp = oldsd->output_queue;
7958                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7959                 oldsd->output_queue = NULL;
7960                 oldsd->output_queue_tailp = &oldsd->output_queue;
7961         }
7962         /* Append NAPI poll list from offline CPU, with one exception :
7963          * process_backlog() must be called by cpu owning percpu backlog.
7964          * We properly handle process_queue & input_pkt_queue later.
7965          */
7966         while (!list_empty(&oldsd->poll_list)) {
7967                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7968                                                             struct napi_struct,
7969                                                             poll_list);
7970
7971                 list_del_init(&napi->poll_list);
7972                 if (napi->poll == process_backlog)
7973                         napi->state = 0;
7974                 else
7975                         ____napi_schedule(sd, napi);
7976         }
7977
7978         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7979         local_irq_enable();
7980
7981         /* Process offline CPU's input_pkt_queue */
7982         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7983                 netif_rx_ni(skb);
7984                 input_queue_head_incr(oldsd);
7985         }
7986         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7987                 netif_rx_ni(skb);
7988                 input_queue_head_incr(oldsd);
7989         }
7990
7991         return NOTIFY_OK;
7992 }
7993
7994
7995 /**
7996  *      netdev_increment_features - increment feature set by one
7997  *      @all: current feature set
7998  *      @one: new feature set
7999  *      @mask: mask feature set
8000  *
8001  *      Computes a new feature set after adding a device with feature set
8002  *      @one to the master device with current feature set @all.  Will not
8003  *      enable anything that is off in @mask. Returns the new feature set.
8004  */
8005 netdev_features_t netdev_increment_features(netdev_features_t all,
8006         netdev_features_t one, netdev_features_t mask)
8007 {
8008         if (mask & NETIF_F_HW_CSUM)
8009                 mask |= NETIF_F_CSUM_MASK;
8010         mask |= NETIF_F_VLAN_CHALLENGED;
8011
8012         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8013         all &= one | ~NETIF_F_ALL_FOR_ALL;
8014
8015         /* If one device supports hw checksumming, set for all. */
8016         if (all & NETIF_F_HW_CSUM)
8017                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8018
8019         return all;
8020 }
8021 EXPORT_SYMBOL(netdev_increment_features);
8022
8023 static struct hlist_head * __net_init netdev_create_hash(void)
8024 {
8025         int i;
8026         struct hlist_head *hash;
8027
8028         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8029         if (hash != NULL)
8030                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8031                         INIT_HLIST_HEAD(&hash[i]);
8032
8033         return hash;
8034 }
8035
8036 /* Initialize per network namespace state */
8037 static int __net_init netdev_init(struct net *net)
8038 {
8039         if (net != &init_net)
8040                 INIT_LIST_HEAD(&net->dev_base_head);
8041
8042         net->dev_name_head = netdev_create_hash();
8043         if (net->dev_name_head == NULL)
8044                 goto err_name;
8045
8046         net->dev_index_head = netdev_create_hash();
8047         if (net->dev_index_head == NULL)
8048                 goto err_idx;
8049
8050         return 0;
8051
8052 err_idx:
8053         kfree(net->dev_name_head);
8054 err_name:
8055         return -ENOMEM;
8056 }
8057
8058 /**
8059  *      netdev_drivername - network driver for the device
8060  *      @dev: network device
8061  *
8062  *      Determine network driver for device.
8063  */
8064 const char *netdev_drivername(const struct net_device *dev)
8065 {
8066         const struct device_driver *driver;
8067         const struct device *parent;
8068         const char *empty = "";
8069
8070         parent = dev->dev.parent;
8071         if (!parent)
8072                 return empty;
8073
8074         driver = parent->driver;
8075         if (driver && driver->name)
8076                 return driver->name;
8077         return empty;
8078 }
8079
8080 static void __netdev_printk(const char *level, const struct net_device *dev,
8081                             struct va_format *vaf)
8082 {
8083         if (dev && dev->dev.parent) {
8084                 dev_printk_emit(level[1] - '0',
8085                                 dev->dev.parent,
8086                                 "%s %s %s%s: %pV",
8087                                 dev_driver_string(dev->dev.parent),
8088                                 dev_name(dev->dev.parent),
8089                                 netdev_name(dev), netdev_reg_state(dev),
8090                                 vaf);
8091         } else if (dev) {
8092                 printk("%s%s%s: %pV",
8093                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8094         } else {
8095                 printk("%s(NULL net_device): %pV", level, vaf);
8096         }
8097 }
8098
8099 void netdev_printk(const char *level, const struct net_device *dev,
8100                    const char *format, ...)
8101 {
8102         struct va_format vaf;
8103         va_list args;
8104
8105         va_start(args, format);
8106
8107         vaf.fmt = format;
8108         vaf.va = &args;
8109
8110         __netdev_printk(level, dev, &vaf);
8111
8112         va_end(args);
8113 }
8114 EXPORT_SYMBOL(netdev_printk);
8115
8116 #define define_netdev_printk_level(func, level)                 \
8117 void func(const struct net_device *dev, const char *fmt, ...)   \
8118 {                                                               \
8119         struct va_format vaf;                                   \
8120         va_list args;                                           \
8121                                                                 \
8122         va_start(args, fmt);                                    \
8123                                                                 \
8124         vaf.fmt = fmt;                                          \
8125         vaf.va = &args;                                         \
8126                                                                 \
8127         __netdev_printk(level, dev, &vaf);                      \
8128                                                                 \
8129         va_end(args);                                           \
8130 }                                                               \
8131 EXPORT_SYMBOL(func);
8132
8133 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8134 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8135 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8136 define_netdev_printk_level(netdev_err, KERN_ERR);
8137 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8138 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8139 define_netdev_printk_level(netdev_info, KERN_INFO);
8140
8141 static void __net_exit netdev_exit(struct net *net)
8142 {
8143         kfree(net->dev_name_head);
8144         kfree(net->dev_index_head);
8145 }
8146
8147 static struct pernet_operations __net_initdata netdev_net_ops = {
8148         .init = netdev_init,
8149         .exit = netdev_exit,
8150 };
8151
8152 static void __net_exit default_device_exit(struct net *net)
8153 {
8154         struct net_device *dev, *aux;
8155         /*
8156          * Push all migratable network devices back to the
8157          * initial network namespace
8158          */
8159         rtnl_lock();
8160         for_each_netdev_safe(net, dev, aux) {
8161                 int err;
8162                 char fb_name[IFNAMSIZ];
8163
8164                 /* Ignore unmoveable devices (i.e. loopback) */
8165                 if (dev->features & NETIF_F_NETNS_LOCAL)
8166                         continue;
8167
8168                 /* Leave virtual devices for the generic cleanup */
8169                 if (dev->rtnl_link_ops)
8170                         continue;
8171
8172                 /* Push remaining network devices to init_net */
8173                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8174                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8175                 if (err) {
8176                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8177                                  __func__, dev->name, err);
8178                         BUG();
8179                 }
8180         }
8181         rtnl_unlock();
8182 }
8183
8184 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8185 {
8186         /* Return with the rtnl_lock held when there are no network
8187          * devices unregistering in any network namespace in net_list.
8188          */
8189         struct net *net;
8190         bool unregistering;
8191         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8192
8193         add_wait_queue(&netdev_unregistering_wq, &wait);
8194         for (;;) {
8195                 unregistering = false;
8196                 rtnl_lock();
8197                 list_for_each_entry(net, net_list, exit_list) {
8198                         if (net->dev_unreg_count > 0) {
8199                                 unregistering = true;
8200                                 break;
8201                         }
8202                 }
8203                 if (!unregistering)
8204                         break;
8205                 __rtnl_unlock();
8206
8207                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8208         }
8209         remove_wait_queue(&netdev_unregistering_wq, &wait);
8210 }
8211
8212 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8213 {
8214         /* At exit all network devices most be removed from a network
8215          * namespace.  Do this in the reverse order of registration.
8216          * Do this across as many network namespaces as possible to
8217          * improve batching efficiency.
8218          */
8219         struct net_device *dev;
8220         struct net *net;
8221         LIST_HEAD(dev_kill_list);
8222
8223         /* To prevent network device cleanup code from dereferencing
8224          * loopback devices or network devices that have been freed
8225          * wait here for all pending unregistrations to complete,
8226          * before unregistring the loopback device and allowing the
8227          * network namespace be freed.
8228          *
8229          * The netdev todo list containing all network devices
8230          * unregistrations that happen in default_device_exit_batch
8231          * will run in the rtnl_unlock() at the end of
8232          * default_device_exit_batch.
8233          */
8234         rtnl_lock_unregistering(net_list);
8235         list_for_each_entry(net, net_list, exit_list) {
8236                 for_each_netdev_reverse(net, dev) {
8237                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8238                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8239                         else
8240                                 unregister_netdevice_queue(dev, &dev_kill_list);
8241                 }
8242         }
8243         unregister_netdevice_many(&dev_kill_list);
8244         rtnl_unlock();
8245 }
8246
8247 static struct pernet_operations __net_initdata default_device_ops = {
8248         .exit = default_device_exit,
8249         .exit_batch = default_device_exit_batch,
8250 };
8251
8252 /*
8253  *      Initialize the DEV module. At boot time this walks the device list and
8254  *      unhooks any devices that fail to initialise (normally hardware not
8255  *      present) and leaves us with a valid list of present and active devices.
8256  *
8257  */
8258
8259 /*
8260  *       This is called single threaded during boot, so no need
8261  *       to take the rtnl semaphore.
8262  */
8263 static int __init net_dev_init(void)
8264 {
8265         int i, rc = -ENOMEM;
8266
8267         BUG_ON(!dev_boot_phase);
8268
8269         if (dev_proc_init())
8270                 goto out;
8271
8272         if (netdev_kobject_init())
8273                 goto out;
8274
8275         INIT_LIST_HEAD(&ptype_all);
8276         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8277                 INIT_LIST_HEAD(&ptype_base[i]);
8278
8279         INIT_LIST_HEAD(&offload_base);
8280
8281         if (register_pernet_subsys(&netdev_net_ops))
8282                 goto out;
8283
8284         /*
8285          *      Initialise the packet receive queues.
8286          */
8287
8288         for_each_possible_cpu(i) {
8289                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8290
8291                 skb_queue_head_init(&sd->input_pkt_queue);
8292                 skb_queue_head_init(&sd->process_queue);
8293                 INIT_LIST_HEAD(&sd->poll_list);
8294                 sd->output_queue_tailp = &sd->output_queue;
8295 #ifdef CONFIG_RPS
8296                 sd->csd.func = rps_trigger_softirq;
8297                 sd->csd.info = sd;
8298                 sd->cpu = i;
8299 #endif
8300
8301                 sd->backlog.poll = process_backlog;
8302                 sd->backlog.weight = weight_p;
8303         }
8304
8305         dev_boot_phase = 0;
8306
8307         /* The loopback device is special if any other network devices
8308          * is present in a network namespace the loopback device must
8309          * be present. Since we now dynamically allocate and free the
8310          * loopback device ensure this invariant is maintained by
8311          * keeping the loopback device as the first device on the
8312          * list of network devices.  Ensuring the loopback devices
8313          * is the first device that appears and the last network device
8314          * that disappears.
8315          */
8316         if (register_pernet_device(&loopback_net_ops))
8317                 goto out;
8318
8319         if (register_pernet_device(&default_device_ops))
8320                 goto out;
8321
8322         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8323         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8324
8325         hotcpu_notifier(dev_cpu_callback, 0);
8326         dst_subsys_init();
8327         rc = 0;
8328 out:
8329         return rc;
8330 }
8331
8332 subsys_initcall(net_dev_init);