netfilter: nft_compat: restrict match/target protocol to u16
[platform/kernel/linux-rpi.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         kfree(name_node->name);
349         netdev_name_node_free(name_node);
350 }
351
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354         struct netdev_name_node *name_node;
355         struct net *net = dev_net(dev);
356
357         name_node = netdev_name_node_lookup(net, name);
358         if (!name_node)
359                 return -ENOENT;
360         /* lookup might have found our primary name or a name belonging
361          * to another device.
362          */
363         if (name_node == dev->name_node || name_node->dev != dev)
364                 return -EINVAL;
365
366         netdev_name_node_del(name_node);
367         synchronize_rcu();
368         __netdev_name_node_alt_destroy(name_node);
369
370         return 0;
371 }
372
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375         struct netdev_name_node *name_node, *tmp;
376
377         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378                 __netdev_name_node_alt_destroy(name_node);
379 }
380
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384         struct netdev_name_node *name_node;
385         struct net *net = dev_net(dev);
386
387         ASSERT_RTNL();
388
389         write_lock(&dev_base_lock);
390         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391         netdev_name_node_add(net, dev->name_node);
392         hlist_add_head_rcu(&dev->index_hlist,
393                            dev_index_hash(net, dev->ifindex));
394         write_unlock(&dev_base_lock);
395
396         netdev_for_each_altname(dev, name_node)
397                 netdev_name_node_add(net, name_node);
398
399         /* We reserved the ifindex, this can't fail */
400         WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401
402         dev_base_seq_inc(net);
403 }
404
405 /* Device list removal
406  * caller must respect a RCU grace period before freeing/reusing dev
407  */
408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410         struct netdev_name_node *name_node;
411         struct net *net = dev_net(dev);
412
413         ASSERT_RTNL();
414
415         xa_erase(&net->dev_by_index, dev->ifindex);
416
417         netdev_for_each_altname(dev, name_node)
418                 netdev_name_node_del(name_node);
419
420         /* Unlink dev from the device chain */
421         if (lock)
422                 write_lock(&dev_base_lock);
423         list_del_rcu(&dev->dev_list);
424         netdev_name_node_del(dev->name_node);
425         hlist_del_rcu(&dev->index_hlist);
426         if (lock)
427                 write_unlock(&dev_base_lock);
428
429         dev_base_seq_inc(dev_net(dev));
430 }
431
432 /*
433  *      Our notifier list
434  */
435
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437
438 /*
439  *      Device drivers call our routines to queue packets here. We empty the
440  *      queue in the local softnet handler.
441  */
442
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445
446 #ifdef CONFIG_LOCKDEP
447 /*
448  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449  * according to dev->type
450  */
451 static const unsigned short netdev_lock_type[] = {
452          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467
468 static const char *const netdev_lock_name[] = {
469         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487
488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490         int i;
491
492         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493                 if (netdev_lock_type[i] == dev_type)
494                         return i;
495         /* the last key is used by default */
496         return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498
499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500                                                  unsigned short dev_type)
501 {
502         int i;
503
504         i = netdev_lock_pos(dev_type);
505         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506                                    netdev_lock_name[i]);
507 }
508
509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511         int i;
512
513         i = netdev_lock_pos(dev->type);
514         lockdep_set_class_and_name(&dev->addr_list_lock,
515                                    &netdev_addr_lock_key[i],
516                                    netdev_lock_name[i]);
517 }
518 #else
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520                                                  unsigned short dev_type)
521 {
522 }
523
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528
529 /*******************************************************************************
530  *
531  *              Protocol management and registration routines
532  *
533  *******************************************************************************/
534
535
536 /*
537  *      Add a protocol ID to the list. Now that the input handler is
538  *      smarter we can dispense with all the messy stuff that used to be
539  *      here.
540  *
541  *      BEWARE!!! Protocol handlers, mangling input packets,
542  *      MUST BE last in hash buckets and checking protocol handlers
543  *      MUST start from promiscuous ptype_all chain in net_bh.
544  *      It is true now, do not change it.
545  *      Explanation follows: if protocol handler, mangling packet, will
546  *      be the first on list, it is not able to sense, that packet
547  *      is cloned and should be copied-on-write, so that it will
548  *      change it and subsequent readers will get broken packet.
549  *                                                      --ANK (980803)
550  */
551
552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554         if (pt->type == htons(ETH_P_ALL))
555                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556         else
557                 return pt->dev ? &pt->dev->ptype_specific :
558                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560
561 /**
562  *      dev_add_pack - add packet handler
563  *      @pt: packet type declaration
564  *
565  *      Add a protocol handler to the networking stack. The passed &packet_type
566  *      is linked into kernel lists and may not be freed until it has been
567  *      removed from the kernel lists.
568  *
569  *      This call does not sleep therefore it can not
570  *      guarantee all CPU's that are in middle of receiving packets
571  *      will see the new packet type (until the next received packet).
572  */
573
574 void dev_add_pack(struct packet_type *pt)
575 {
576         struct list_head *head = ptype_head(pt);
577
578         spin_lock(&ptype_lock);
579         list_add_rcu(&pt->list, head);
580         spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583
584 /**
585  *      __dev_remove_pack        - remove packet handler
586  *      @pt: packet type declaration
587  *
588  *      Remove a protocol handler that was previously added to the kernel
589  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
590  *      from the kernel lists and can be freed or reused once this function
591  *      returns.
592  *
593  *      The packet type might still be in use by receivers
594  *      and must not be freed until after all the CPU's have gone
595  *      through a quiescent state.
596  */
597 void __dev_remove_pack(struct packet_type *pt)
598 {
599         struct list_head *head = ptype_head(pt);
600         struct packet_type *pt1;
601
602         spin_lock(&ptype_lock);
603
604         list_for_each_entry(pt1, head, list) {
605                 if (pt == pt1) {
606                         list_del_rcu(&pt->list);
607                         goto out;
608                 }
609         }
610
611         pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613         spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616
617 /**
618  *      dev_remove_pack  - remove packet handler
619  *      @pt: packet type declaration
620  *
621  *      Remove a protocol handler that was previously added to the kernel
622  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
623  *      from the kernel lists and can be freed or reused once this function
624  *      returns.
625  *
626  *      This call sleeps to guarantee that no CPU is looking at the packet
627  *      type after return.
628  */
629 void dev_remove_pack(struct packet_type *pt)
630 {
631         __dev_remove_pack(pt);
632
633         synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636
637
638 /*******************************************************************************
639  *
640  *                          Device Interface Subroutines
641  *
642  *******************************************************************************/
643
644 /**
645  *      dev_get_iflink  - get 'iflink' value of a interface
646  *      @dev: targeted interface
647  *
648  *      Indicates the ifindex the interface is linked to.
649  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
650  */
651
652 int dev_get_iflink(const struct net_device *dev)
653 {
654         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655                 return dev->netdev_ops->ndo_get_iflink(dev);
656
657         return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660
661 /**
662  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
663  *      @dev: targeted interface
664  *      @skb: The packet.
665  *
666  *      For better visibility of tunnel traffic OVS needs to retrieve
667  *      egress tunnel information for a packet. Following API allows
668  *      user to get this info.
669  */
670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672         struct ip_tunnel_info *info;
673
674         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
675                 return -EINVAL;
676
677         info = skb_tunnel_info_unclone(skb);
678         if (!info)
679                 return -ENOMEM;
680         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681                 return -EINVAL;
682
683         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686
687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689         int k = stack->num_paths++;
690
691         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692                 return NULL;
693
694         return &stack->path[k];
695 }
696
697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698                           struct net_device_path_stack *stack)
699 {
700         const struct net_device *last_dev;
701         struct net_device_path_ctx ctx = {
702                 .dev    = dev,
703         };
704         struct net_device_path *path;
705         int ret = 0;
706
707         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708         stack->num_paths = 0;
709         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710                 last_dev = ctx.dev;
711                 path = dev_fwd_path(stack);
712                 if (!path)
713                         return -1;
714
715                 memset(path, 0, sizeof(struct net_device_path));
716                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717                 if (ret < 0)
718                         return -1;
719
720                 if (WARN_ON_ONCE(last_dev == ctx.dev))
721                         return -1;
722         }
723
724         if (!ctx.dev)
725                 return ret;
726
727         path = dev_fwd_path(stack);
728         if (!path)
729                 return -1;
730         path->type = DEV_PATH_ETHERNET;
731         path->dev = ctx.dev;
732
733         return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736
737 /**
738  *      __dev_get_by_name       - find a device by its name
739  *      @net: the applicable net namespace
740  *      @name: name to find
741  *
742  *      Find an interface by name. Must be called under RTNL semaphore
743  *      or @dev_base_lock. If the name is found a pointer to the device
744  *      is returned. If the name is not found then %NULL is returned. The
745  *      reference counters are not incremented so the caller must be
746  *      careful with locks.
747  */
748
749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751         struct netdev_name_node *node_name;
752
753         node_name = netdev_name_node_lookup(net, name);
754         return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757
758 /**
759  * dev_get_by_name_rcu  - find a device by its name
760  * @net: the applicable net namespace
761  * @name: name to find
762  *
763  * Find an interface by name.
764  * If the name is found a pointer to the device is returned.
765  * If the name is not found then %NULL is returned.
766  * The reference counters are not incremented so the caller must be
767  * careful with locks. The caller must hold RCU lock.
768  */
769
770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772         struct netdev_name_node *node_name;
773
774         node_name = netdev_name_node_lookup_rcu(net, name);
775         return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778
779 /* Deprecated for new users, call netdev_get_by_name() instead */
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782         struct net_device *dev;
783
784         rcu_read_lock();
785         dev = dev_get_by_name_rcu(net, name);
786         dev_hold(dev);
787         rcu_read_unlock();
788         return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791
792 /**
793  *      netdev_get_by_name() - find a device by its name
794  *      @net: the applicable net namespace
795  *      @name: name to find
796  *      @tracker: tracking object for the acquired reference
797  *      @gfp: allocation flags for the tracker
798  *
799  *      Find an interface by name. This can be called from any
800  *      context and does its own locking. The returned handle has
801  *      the usage count incremented and the caller must use netdev_put() to
802  *      release it when it is no longer needed. %NULL is returned if no
803  *      matching device is found.
804  */
805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806                                       netdevice_tracker *tracker, gfp_t gfp)
807 {
808         struct net_device *dev;
809
810         dev = dev_get_by_name(net, name);
811         if (dev)
812                 netdev_tracker_alloc(dev, tracker, gfp);
813         return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816
817 /**
818  *      __dev_get_by_index - find a device by its ifindex
819  *      @net: the applicable net namespace
820  *      @ifindex: index of device
821  *
822  *      Search for an interface by index. Returns %NULL if the device
823  *      is not found or a pointer to the device. The device has not
824  *      had its reference counter increased so the caller must be careful
825  *      about locking. The caller must hold either the RTNL semaphore
826  *      or @dev_base_lock.
827  */
828
829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831         struct net_device *dev;
832         struct hlist_head *head = dev_index_hash(net, ifindex);
833
834         hlist_for_each_entry(dev, head, index_hlist)
835                 if (dev->ifindex == ifindex)
836                         return dev;
837
838         return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841
842 /**
843  *      dev_get_by_index_rcu - find a device by its ifindex
844  *      @net: the applicable net namespace
845  *      @ifindex: index of device
846  *
847  *      Search for an interface by index. Returns %NULL if the device
848  *      is not found or a pointer to the device. The device has not
849  *      had its reference counter increased so the caller must be careful
850  *      about locking. The caller must hold RCU lock.
851  */
852
853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855         struct net_device *dev;
856         struct hlist_head *head = dev_index_hash(net, ifindex);
857
858         hlist_for_each_entry_rcu(dev, head, index_hlist)
859                 if (dev->ifindex == ifindex)
860                         return dev;
861
862         return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865
866 /* Deprecated for new users, call netdev_get_by_index() instead */
867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869         struct net_device *dev;
870
871         rcu_read_lock();
872         dev = dev_get_by_index_rcu(net, ifindex);
873         dev_hold(dev);
874         rcu_read_unlock();
875         return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878
879 /**
880  *      netdev_get_by_index() - find a device by its ifindex
881  *      @net: the applicable net namespace
882  *      @ifindex: index of device
883  *      @tracker: tracking object for the acquired reference
884  *      @gfp: allocation flags for the tracker
885  *
886  *      Search for an interface by index. Returns NULL if the device
887  *      is not found or a pointer to the device. The device returned has
888  *      had a reference added and the pointer is safe until the user calls
889  *      netdev_put() to indicate they have finished with it.
890  */
891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892                                        netdevice_tracker *tracker, gfp_t gfp)
893 {
894         struct net_device *dev;
895
896         dev = dev_get_by_index(net, ifindex);
897         if (dev)
898                 netdev_tracker_alloc(dev, tracker, gfp);
899         return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902
903 /**
904  *      dev_get_by_napi_id - find a device by napi_id
905  *      @napi_id: ID of the NAPI struct
906  *
907  *      Search for an interface by NAPI ID. Returns %NULL if the device
908  *      is not found or a pointer to the device. The device has not had
909  *      its reference counter increased so the caller must be careful
910  *      about locking. The caller must hold RCU lock.
911  */
912
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915         struct napi_struct *napi;
916
917         WARN_ON_ONCE(!rcu_read_lock_held());
918
919         if (napi_id < MIN_NAPI_ID)
920                 return NULL;
921
922         napi = napi_by_id(napi_id);
923
924         return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927
928 /**
929  *      netdev_get_name - get a netdevice name, knowing its ifindex.
930  *      @net: network namespace
931  *      @name: a pointer to the buffer where the name will be stored.
932  *      @ifindex: the ifindex of the interface to get the name from.
933  */
934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936         struct net_device *dev;
937         int ret;
938
939         down_read(&devnet_rename_sem);
940         rcu_read_lock();
941
942         dev = dev_get_by_index_rcu(net, ifindex);
943         if (!dev) {
944                 ret = -ENODEV;
945                 goto out;
946         }
947
948         strcpy(name, dev->name);
949
950         ret = 0;
951 out:
952         rcu_read_unlock();
953         up_read(&devnet_rename_sem);
954         return ret;
955 }
956
957 /**
958  *      dev_getbyhwaddr_rcu - find a device by its hardware address
959  *      @net: the applicable net namespace
960  *      @type: media type of device
961  *      @ha: hardware address
962  *
963  *      Search for an interface by MAC address. Returns NULL if the device
964  *      is not found or a pointer to the device.
965  *      The caller must hold RCU or RTNL.
966  *      The returned device has not had its ref count increased
967  *      and the caller must therefore be careful about locking
968  *
969  */
970
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972                                        const char *ha)
973 {
974         struct net_device *dev;
975
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type &&
978                     !memcmp(dev->dev_addr, ha, dev->addr_len))
979                         return dev;
980
981         return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987         struct net_device *dev, *ret = NULL;
988
989         rcu_read_lock();
990         for_each_netdev_rcu(net, dev)
991                 if (dev->type == type) {
992                         dev_hold(dev);
993                         ret = dev;
994                         break;
995                 }
996         rcu_read_unlock();
997         return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000
1001 /**
1002  *      __dev_get_by_flags - find any device with given flags
1003  *      @net: the applicable net namespace
1004  *      @if_flags: IFF_* values
1005  *      @mask: bitmask of bits in if_flags to check
1006  *
1007  *      Search for any interface with the given flags. Returns NULL if a device
1008  *      is not found or a pointer to the device. Must be called inside
1009  *      rtnl_lock(), and result refcount is unchanged.
1010  */
1011
1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013                                       unsigned short mask)
1014 {
1015         struct net_device *dev, *ret;
1016
1017         ASSERT_RTNL();
1018
1019         ret = NULL;
1020         for_each_netdev(net, dev) {
1021                 if (((dev->flags ^ if_flags) & mask) == 0) {
1022                         ret = dev;
1023                         break;
1024                 }
1025         }
1026         return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029
1030 /**
1031  *      dev_valid_name - check if name is okay for network device
1032  *      @name: name string
1033  *
1034  *      Network device names need to be valid file names to
1035  *      allow sysfs to work.  We also disallow any kind of
1036  *      whitespace.
1037  */
1038 bool dev_valid_name(const char *name)
1039 {
1040         if (*name == '\0')
1041                 return false;
1042         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043                 return false;
1044         if (!strcmp(name, ".") || !strcmp(name, ".."))
1045                 return false;
1046
1047         while (*name) {
1048                 if (*name == '/' || *name == ':' || isspace(*name))
1049                         return false;
1050                 name++;
1051         }
1052         return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055
1056 /**
1057  *      __dev_alloc_name - allocate a name for a device
1058  *      @net: network namespace to allocate the device name in
1059  *      @name: name format string
1060  *      @buf:  scratch buffer and result name string
1061  *
1062  *      Passed a format string - eg "lt%d" it will try and find a suitable
1063  *      id. It scans list of devices to build up a free map, then chooses
1064  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1065  *      while allocating the name and adding the device in order to avoid
1066  *      duplicates.
1067  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068  *      Returns the number of the unit assigned or a negative errno code.
1069  */
1070
1071 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1072 {
1073         int i = 0;
1074         const char *p;
1075         const int max_netdevices = 8*PAGE_SIZE;
1076         unsigned long *inuse;
1077         struct net_device *d;
1078
1079         if (!dev_valid_name(name))
1080                 return -EINVAL;
1081
1082         p = strchr(name, '%');
1083         if (p) {
1084                 /*
1085                  * Verify the string as this thing may have come from
1086                  * the user.  There must be either one "%d" and no other "%"
1087                  * characters.
1088                  */
1089                 if (p[1] != 'd' || strchr(p + 2, '%'))
1090                         return -EINVAL;
1091
1092                 /* Use one page as a bit array of possible slots */
1093                 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1094                 if (!inuse)
1095                         return -ENOMEM;
1096
1097                 for_each_netdev(net, d) {
1098                         struct netdev_name_node *name_node;
1099
1100                         netdev_for_each_altname(d, name_node) {
1101                                 if (!sscanf(name_node->name, name, &i))
1102                                         continue;
1103                                 if (i < 0 || i >= max_netdevices)
1104                                         continue;
1105
1106                                 /*  avoid cases where sscanf is not exact inverse of printf */
1107                                 snprintf(buf, IFNAMSIZ, name, i);
1108                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1109                                         __set_bit(i, inuse);
1110                         }
1111                         if (!sscanf(d->name, name, &i))
1112                                 continue;
1113                         if (i < 0 || i >= max_netdevices)
1114                                 continue;
1115
1116                         /*  avoid cases where sscanf is not exact inverse of printf */
1117                         snprintf(buf, IFNAMSIZ, name, i);
1118                         if (!strncmp(buf, d->name, IFNAMSIZ))
1119                                 __set_bit(i, inuse);
1120                 }
1121
1122                 i = find_first_zero_bit(inuse, max_netdevices);
1123                 bitmap_free(inuse);
1124         }
1125
1126         snprintf(buf, IFNAMSIZ, name, i);
1127         if (!netdev_name_in_use(net, buf))
1128                 return i;
1129
1130         /* It is possible to run out of possible slots
1131          * when the name is long and there isn't enough space left
1132          * for the digits, or if all bits are used.
1133          */
1134         return -ENFILE;
1135 }
1136
1137 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1138                                const char *want_name, char *out_name)
1139 {
1140         int ret;
1141
1142         if (!dev_valid_name(want_name))
1143                 return -EINVAL;
1144
1145         if (strchr(want_name, '%')) {
1146                 ret = __dev_alloc_name(net, want_name, out_name);
1147                 return ret < 0 ? ret : 0;
1148         } else if (netdev_name_in_use(net, want_name)) {
1149                 return -EEXIST;
1150         } else if (out_name != want_name) {
1151                 strscpy(out_name, want_name, IFNAMSIZ);
1152         }
1153
1154         return 0;
1155 }
1156
1157 static int dev_alloc_name_ns(struct net *net,
1158                              struct net_device *dev,
1159                              const char *name)
1160 {
1161         char buf[IFNAMSIZ];
1162         int ret;
1163
1164         BUG_ON(!net);
1165         ret = __dev_alloc_name(net, name, buf);
1166         if (ret >= 0)
1167                 strscpy(dev->name, buf, IFNAMSIZ);
1168         return ret;
1169 }
1170
1171 /**
1172  *      dev_alloc_name - allocate a name for a device
1173  *      @dev: device
1174  *      @name: name format string
1175  *
1176  *      Passed a format string - eg "lt%d" it will try and find a suitable
1177  *      id. It scans list of devices to build up a free map, then chooses
1178  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1179  *      while allocating the name and adding the device in order to avoid
1180  *      duplicates.
1181  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1182  *      Returns the number of the unit assigned or a negative errno code.
1183  */
1184
1185 int dev_alloc_name(struct net_device *dev, const char *name)
1186 {
1187         return dev_alloc_name_ns(dev_net(dev), dev, name);
1188 }
1189 EXPORT_SYMBOL(dev_alloc_name);
1190
1191 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1192                               const char *name)
1193 {
1194         char buf[IFNAMSIZ];
1195         int ret;
1196
1197         ret = dev_prep_valid_name(net, dev, name, buf);
1198         if (ret >= 0)
1199                 strscpy(dev->name, buf, IFNAMSIZ);
1200         return ret;
1201 }
1202
1203 /**
1204  *      dev_change_name - change name of a device
1205  *      @dev: device
1206  *      @newname: name (or format string) must be at least IFNAMSIZ
1207  *
1208  *      Change name of a device, can pass format strings "eth%d".
1209  *      for wildcarding.
1210  */
1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213         unsigned char old_assign_type;
1214         char oldname[IFNAMSIZ];
1215         int err = 0;
1216         int ret;
1217         struct net *net;
1218
1219         ASSERT_RTNL();
1220         BUG_ON(!dev_net(dev));
1221
1222         net = dev_net(dev);
1223
1224         down_write(&devnet_rename_sem);
1225
1226         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227                 up_write(&devnet_rename_sem);
1228                 return 0;
1229         }
1230
1231         memcpy(oldname, dev->name, IFNAMSIZ);
1232
1233         err = dev_get_valid_name(net, dev, newname);
1234         if (err < 0) {
1235                 up_write(&devnet_rename_sem);
1236                 return err;
1237         }
1238
1239         if (oldname[0] && !strchr(oldname, '%'))
1240                 netdev_info(dev, "renamed from %s%s\n", oldname,
1241                             dev->flags & IFF_UP ? " (while UP)" : "");
1242
1243         old_assign_type = dev->name_assign_type;
1244         dev->name_assign_type = NET_NAME_RENAMED;
1245
1246 rollback:
1247         ret = device_rename(&dev->dev, dev->name);
1248         if (ret) {
1249                 memcpy(dev->name, oldname, IFNAMSIZ);
1250                 dev->name_assign_type = old_assign_type;
1251                 up_write(&devnet_rename_sem);
1252                 return ret;
1253         }
1254
1255         up_write(&devnet_rename_sem);
1256
1257         netdev_adjacent_rename_links(dev, oldname);
1258
1259         write_lock(&dev_base_lock);
1260         netdev_name_node_del(dev->name_node);
1261         write_unlock(&dev_base_lock);
1262
1263         synchronize_rcu();
1264
1265         write_lock(&dev_base_lock);
1266         netdev_name_node_add(net, dev->name_node);
1267         write_unlock(&dev_base_lock);
1268
1269         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1270         ret = notifier_to_errno(ret);
1271
1272         if (ret) {
1273                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1274                 if (err >= 0) {
1275                         err = ret;
1276                         down_write(&devnet_rename_sem);
1277                         memcpy(dev->name, oldname, IFNAMSIZ);
1278                         memcpy(oldname, newname, IFNAMSIZ);
1279                         dev->name_assign_type = old_assign_type;
1280                         old_assign_type = NET_NAME_RENAMED;
1281                         goto rollback;
1282                 } else {
1283                         netdev_err(dev, "name change rollback failed: %d\n",
1284                                    ret);
1285                 }
1286         }
1287
1288         return err;
1289 }
1290
1291 /**
1292  *      dev_set_alias - change ifalias of a device
1293  *      @dev: device
1294  *      @alias: name up to IFALIASZ
1295  *      @len: limit of bytes to copy from info
1296  *
1297  *      Set ifalias for a device,
1298  */
1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1300 {
1301         struct dev_ifalias *new_alias = NULL;
1302
1303         if (len >= IFALIASZ)
1304                 return -EINVAL;
1305
1306         if (len) {
1307                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1308                 if (!new_alias)
1309                         return -ENOMEM;
1310
1311                 memcpy(new_alias->ifalias, alias, len);
1312                 new_alias->ifalias[len] = 0;
1313         }
1314
1315         mutex_lock(&ifalias_mutex);
1316         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1317                                         mutex_is_locked(&ifalias_mutex));
1318         mutex_unlock(&ifalias_mutex);
1319
1320         if (new_alias)
1321                 kfree_rcu(new_alias, rcuhead);
1322
1323         return len;
1324 }
1325 EXPORT_SYMBOL(dev_set_alias);
1326
1327 /**
1328  *      dev_get_alias - get ifalias of a device
1329  *      @dev: device
1330  *      @name: buffer to store name of ifalias
1331  *      @len: size of buffer
1332  *
1333  *      get ifalias for a device.  Caller must make sure dev cannot go
1334  *      away,  e.g. rcu read lock or own a reference count to device.
1335  */
1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1337 {
1338         const struct dev_ifalias *alias;
1339         int ret = 0;
1340
1341         rcu_read_lock();
1342         alias = rcu_dereference(dev->ifalias);
1343         if (alias)
1344                 ret = snprintf(name, len, "%s", alias->ifalias);
1345         rcu_read_unlock();
1346
1347         return ret;
1348 }
1349
1350 /**
1351  *      netdev_features_change - device changes features
1352  *      @dev: device to cause notification
1353  *
1354  *      Called to indicate a device has changed features.
1355  */
1356 void netdev_features_change(struct net_device *dev)
1357 {
1358         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1359 }
1360 EXPORT_SYMBOL(netdev_features_change);
1361
1362 /**
1363  *      netdev_state_change - device changes state
1364  *      @dev: device to cause notification
1365  *
1366  *      Called to indicate a device has changed state. This function calls
1367  *      the notifier chains for netdev_chain and sends a NEWLINK message
1368  *      to the routing socket.
1369  */
1370 void netdev_state_change(struct net_device *dev)
1371 {
1372         if (dev->flags & IFF_UP) {
1373                 struct netdev_notifier_change_info change_info = {
1374                         .info.dev = dev,
1375                 };
1376
1377                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1378                                               &change_info.info);
1379                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1380         }
1381 }
1382 EXPORT_SYMBOL(netdev_state_change);
1383
1384 /**
1385  * __netdev_notify_peers - notify network peers about existence of @dev,
1386  * to be called when rtnl lock is already held.
1387  * @dev: network device
1388  *
1389  * Generate traffic such that interested network peers are aware of
1390  * @dev, such as by generating a gratuitous ARP. This may be used when
1391  * a device wants to inform the rest of the network about some sort of
1392  * reconfiguration such as a failover event or virtual machine
1393  * migration.
1394  */
1395 void __netdev_notify_peers(struct net_device *dev)
1396 {
1397         ASSERT_RTNL();
1398         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 }
1401 EXPORT_SYMBOL(__netdev_notify_peers);
1402
1403 /**
1404  * netdev_notify_peers - notify network peers about existence of @dev
1405  * @dev: network device
1406  *
1407  * Generate traffic such that interested network peers are aware of
1408  * @dev, such as by generating a gratuitous ARP. This may be used when
1409  * a device wants to inform the rest of the network about some sort of
1410  * reconfiguration such as a failover event or virtual machine
1411  * migration.
1412  */
1413 void netdev_notify_peers(struct net_device *dev)
1414 {
1415         rtnl_lock();
1416         __netdev_notify_peers(dev);
1417         rtnl_unlock();
1418 }
1419 EXPORT_SYMBOL(netdev_notify_peers);
1420
1421 static int napi_threaded_poll(void *data);
1422
1423 static int napi_kthread_create(struct napi_struct *n)
1424 {
1425         int err = 0;
1426
1427         /* Create and wake up the kthread once to put it in
1428          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1429          * warning and work with loadavg.
1430          */
1431         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1432                                 n->dev->name, n->napi_id);
1433         if (IS_ERR(n->thread)) {
1434                 err = PTR_ERR(n->thread);
1435                 pr_err("kthread_run failed with err %d\n", err);
1436                 n->thread = NULL;
1437         }
1438
1439         return err;
1440 }
1441
1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1443 {
1444         const struct net_device_ops *ops = dev->netdev_ops;
1445         int ret;
1446
1447         ASSERT_RTNL();
1448         dev_addr_check(dev);
1449
1450         if (!netif_device_present(dev)) {
1451                 /* may be detached because parent is runtime-suspended */
1452                 if (dev->dev.parent)
1453                         pm_runtime_resume(dev->dev.parent);
1454                 if (!netif_device_present(dev))
1455                         return -ENODEV;
1456         }
1457
1458         /* Block netpoll from trying to do any rx path servicing.
1459          * If we don't do this there is a chance ndo_poll_controller
1460          * or ndo_poll may be running while we open the device
1461          */
1462         netpoll_poll_disable(dev);
1463
1464         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1465         ret = notifier_to_errno(ret);
1466         if (ret)
1467                 return ret;
1468
1469         set_bit(__LINK_STATE_START, &dev->state);
1470
1471         if (ops->ndo_validate_addr)
1472                 ret = ops->ndo_validate_addr(dev);
1473
1474         if (!ret && ops->ndo_open)
1475                 ret = ops->ndo_open(dev);
1476
1477         netpoll_poll_enable(dev);
1478
1479         if (ret)
1480                 clear_bit(__LINK_STATE_START, &dev->state);
1481         else {
1482                 dev->flags |= IFF_UP;
1483                 dev_set_rx_mode(dev);
1484                 dev_activate(dev);
1485                 add_device_randomness(dev->dev_addr, dev->addr_len);
1486         }
1487
1488         return ret;
1489 }
1490
1491 /**
1492  *      dev_open        - prepare an interface for use.
1493  *      @dev: device to open
1494  *      @extack: netlink extended ack
1495  *
1496  *      Takes a device from down to up state. The device's private open
1497  *      function is invoked and then the multicast lists are loaded. Finally
1498  *      the device is moved into the up state and a %NETDEV_UP message is
1499  *      sent to the netdev notifier chain.
1500  *
1501  *      Calling this function on an active interface is a nop. On a failure
1502  *      a negative errno code is returned.
1503  */
1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1505 {
1506         int ret;
1507
1508         if (dev->flags & IFF_UP)
1509                 return 0;
1510
1511         ret = __dev_open(dev, extack);
1512         if (ret < 0)
1513                 return ret;
1514
1515         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1516         call_netdevice_notifiers(NETDEV_UP, dev);
1517
1518         return ret;
1519 }
1520 EXPORT_SYMBOL(dev_open);
1521
1522 static void __dev_close_many(struct list_head *head)
1523 {
1524         struct net_device *dev;
1525
1526         ASSERT_RTNL();
1527         might_sleep();
1528
1529         list_for_each_entry(dev, head, close_list) {
1530                 /* Temporarily disable netpoll until the interface is down */
1531                 netpoll_poll_disable(dev);
1532
1533                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1534
1535                 clear_bit(__LINK_STATE_START, &dev->state);
1536
1537                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1538                  * can be even on different cpu. So just clear netif_running().
1539                  *
1540                  * dev->stop() will invoke napi_disable() on all of it's
1541                  * napi_struct instances on this device.
1542                  */
1543                 smp_mb__after_atomic(); /* Commit netif_running(). */
1544         }
1545
1546         dev_deactivate_many(head);
1547
1548         list_for_each_entry(dev, head, close_list) {
1549                 const struct net_device_ops *ops = dev->netdev_ops;
1550
1551                 /*
1552                  *      Call the device specific close. This cannot fail.
1553                  *      Only if device is UP
1554                  *
1555                  *      We allow it to be called even after a DETACH hot-plug
1556                  *      event.
1557                  */
1558                 if (ops->ndo_stop)
1559                         ops->ndo_stop(dev);
1560
1561                 dev->flags &= ~IFF_UP;
1562                 netpoll_poll_enable(dev);
1563         }
1564 }
1565
1566 static void __dev_close(struct net_device *dev)
1567 {
1568         LIST_HEAD(single);
1569
1570         list_add(&dev->close_list, &single);
1571         __dev_close_many(&single);
1572         list_del(&single);
1573 }
1574
1575 void dev_close_many(struct list_head *head, bool unlink)
1576 {
1577         struct net_device *dev, *tmp;
1578
1579         /* Remove the devices that don't need to be closed */
1580         list_for_each_entry_safe(dev, tmp, head, close_list)
1581                 if (!(dev->flags & IFF_UP))
1582                         list_del_init(&dev->close_list);
1583
1584         __dev_close_many(head);
1585
1586         list_for_each_entry_safe(dev, tmp, head, close_list) {
1587                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1588                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1589                 if (unlink)
1590                         list_del_init(&dev->close_list);
1591         }
1592 }
1593 EXPORT_SYMBOL(dev_close_many);
1594
1595 /**
1596  *      dev_close - shutdown an interface.
1597  *      @dev: device to shutdown
1598  *
1599  *      This function moves an active device into down state. A
1600  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1601  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1602  *      chain.
1603  */
1604 void dev_close(struct net_device *dev)
1605 {
1606         if (dev->flags & IFF_UP) {
1607                 LIST_HEAD(single);
1608
1609                 list_add(&dev->close_list, &single);
1610                 dev_close_many(&single, true);
1611                 list_del(&single);
1612         }
1613 }
1614 EXPORT_SYMBOL(dev_close);
1615
1616
1617 /**
1618  *      dev_disable_lro - disable Large Receive Offload on a device
1619  *      @dev: device
1620  *
1621  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1622  *      called under RTNL.  This is needed if received packets may be
1623  *      forwarded to another interface.
1624  */
1625 void dev_disable_lro(struct net_device *dev)
1626 {
1627         struct net_device *lower_dev;
1628         struct list_head *iter;
1629
1630         dev->wanted_features &= ~NETIF_F_LRO;
1631         netdev_update_features(dev);
1632
1633         if (unlikely(dev->features & NETIF_F_LRO))
1634                 netdev_WARN(dev, "failed to disable LRO!\n");
1635
1636         netdev_for_each_lower_dev(dev, lower_dev, iter)
1637                 dev_disable_lro(lower_dev);
1638 }
1639 EXPORT_SYMBOL(dev_disable_lro);
1640
1641 /**
1642  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1643  *      @dev: device
1644  *
1645  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1646  *      called under RTNL.  This is needed if Generic XDP is installed on
1647  *      the device.
1648  */
1649 static void dev_disable_gro_hw(struct net_device *dev)
1650 {
1651         dev->wanted_features &= ~NETIF_F_GRO_HW;
1652         netdev_update_features(dev);
1653
1654         if (unlikely(dev->features & NETIF_F_GRO_HW))
1655                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1656 }
1657
1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1659 {
1660 #define N(val)                                          \
1661         case NETDEV_##val:                              \
1662                 return "NETDEV_" __stringify(val);
1663         switch (cmd) {
1664         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1665         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1666         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1667         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1668         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1669         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1670         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1671         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1672         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1673         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1674         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1675         N(XDP_FEAT_CHANGE)
1676         }
1677 #undef N
1678         return "UNKNOWN_NETDEV_EVENT";
1679 }
1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1681
1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1683                                    struct net_device *dev)
1684 {
1685         struct netdev_notifier_info info = {
1686                 .dev = dev,
1687         };
1688
1689         return nb->notifier_call(nb, val, &info);
1690 }
1691
1692 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1693                                              struct net_device *dev)
1694 {
1695         int err;
1696
1697         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1698         err = notifier_to_errno(err);
1699         if (err)
1700                 return err;
1701
1702         if (!(dev->flags & IFF_UP))
1703                 return 0;
1704
1705         call_netdevice_notifier(nb, NETDEV_UP, dev);
1706         return 0;
1707 }
1708
1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1710                                                 struct net_device *dev)
1711 {
1712         if (dev->flags & IFF_UP) {
1713                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714                                         dev);
1715                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1716         }
1717         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1718 }
1719
1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1721                                                  struct net *net)
1722 {
1723         struct net_device *dev;
1724         int err;
1725
1726         for_each_netdev(net, dev) {
1727                 err = call_netdevice_register_notifiers(nb, dev);
1728                 if (err)
1729                         goto rollback;
1730         }
1731         return 0;
1732
1733 rollback:
1734         for_each_netdev_continue_reverse(net, dev)
1735                 call_netdevice_unregister_notifiers(nb, dev);
1736         return err;
1737 }
1738
1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1740                                                     struct net *net)
1741 {
1742         struct net_device *dev;
1743
1744         for_each_netdev(net, dev)
1745                 call_netdevice_unregister_notifiers(nb, dev);
1746 }
1747
1748 static int dev_boot_phase = 1;
1749
1750 /**
1751  * register_netdevice_notifier - register a network notifier block
1752  * @nb: notifier
1753  *
1754  * Register a notifier to be called when network device events occur.
1755  * The notifier passed is linked into the kernel structures and must
1756  * not be reused until it has been unregistered. A negative errno code
1757  * is returned on a failure.
1758  *
1759  * When registered all registration and up events are replayed
1760  * to the new notifier to allow device to have a race free
1761  * view of the network device list.
1762  */
1763
1764 int register_netdevice_notifier(struct notifier_block *nb)
1765 {
1766         struct net *net;
1767         int err;
1768
1769         /* Close race with setup_net() and cleanup_net() */
1770         down_write(&pernet_ops_rwsem);
1771         rtnl_lock();
1772         err = raw_notifier_chain_register(&netdev_chain, nb);
1773         if (err)
1774                 goto unlock;
1775         if (dev_boot_phase)
1776                 goto unlock;
1777         for_each_net(net) {
1778                 err = call_netdevice_register_net_notifiers(nb, net);
1779                 if (err)
1780                         goto rollback;
1781         }
1782
1783 unlock:
1784         rtnl_unlock();
1785         up_write(&pernet_ops_rwsem);
1786         return err;
1787
1788 rollback:
1789         for_each_net_continue_reverse(net)
1790                 call_netdevice_unregister_net_notifiers(nb, net);
1791
1792         raw_notifier_chain_unregister(&netdev_chain, nb);
1793         goto unlock;
1794 }
1795 EXPORT_SYMBOL(register_netdevice_notifier);
1796
1797 /**
1798  * unregister_netdevice_notifier - unregister a network notifier block
1799  * @nb: notifier
1800  *
1801  * Unregister a notifier previously registered by
1802  * register_netdevice_notifier(). The notifier is unlinked into the
1803  * kernel structures and may then be reused. A negative errno code
1804  * is returned on a failure.
1805  *
1806  * After unregistering unregister and down device events are synthesized
1807  * for all devices on the device list to the removed notifier to remove
1808  * the need for special case cleanup code.
1809  */
1810
1811 int unregister_netdevice_notifier(struct notifier_block *nb)
1812 {
1813         struct net *net;
1814         int err;
1815
1816         /* Close race with setup_net() and cleanup_net() */
1817         down_write(&pernet_ops_rwsem);
1818         rtnl_lock();
1819         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1820         if (err)
1821                 goto unlock;
1822
1823         for_each_net(net)
1824                 call_netdevice_unregister_net_notifiers(nb, net);
1825
1826 unlock:
1827         rtnl_unlock();
1828         up_write(&pernet_ops_rwsem);
1829         return err;
1830 }
1831 EXPORT_SYMBOL(unregister_netdevice_notifier);
1832
1833 static int __register_netdevice_notifier_net(struct net *net,
1834                                              struct notifier_block *nb,
1835                                              bool ignore_call_fail)
1836 {
1837         int err;
1838
1839         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1840         if (err)
1841                 return err;
1842         if (dev_boot_phase)
1843                 return 0;
1844
1845         err = call_netdevice_register_net_notifiers(nb, net);
1846         if (err && !ignore_call_fail)
1847                 goto chain_unregister;
1848
1849         return 0;
1850
1851 chain_unregister:
1852         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1853         return err;
1854 }
1855
1856 static int __unregister_netdevice_notifier_net(struct net *net,
1857                                                struct notifier_block *nb)
1858 {
1859         int err;
1860
1861         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862         if (err)
1863                 return err;
1864
1865         call_netdevice_unregister_net_notifiers(nb, net);
1866         return 0;
1867 }
1868
1869 /**
1870  * register_netdevice_notifier_net - register a per-netns network notifier block
1871  * @net: network namespace
1872  * @nb: notifier
1873  *
1874  * Register a notifier to be called when network device events occur.
1875  * The notifier passed is linked into the kernel structures and must
1876  * not be reused until it has been unregistered. A negative errno code
1877  * is returned on a failure.
1878  *
1879  * When registered all registration and up events are replayed
1880  * to the new notifier to allow device to have a race free
1881  * view of the network device list.
1882  */
1883
1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1885 {
1886         int err;
1887
1888         rtnl_lock();
1889         err = __register_netdevice_notifier_net(net, nb, false);
1890         rtnl_unlock();
1891         return err;
1892 }
1893 EXPORT_SYMBOL(register_netdevice_notifier_net);
1894
1895 /**
1896  * unregister_netdevice_notifier_net - unregister a per-netns
1897  *                                     network notifier block
1898  * @net: network namespace
1899  * @nb: notifier
1900  *
1901  * Unregister a notifier previously registered by
1902  * register_netdevice_notifier_net(). The notifier is unlinked from the
1903  * kernel structures and may then be reused. A negative errno code
1904  * is returned on a failure.
1905  *
1906  * After unregistering unregister and down device events are synthesized
1907  * for all devices on the device list to the removed notifier to remove
1908  * the need for special case cleanup code.
1909  */
1910
1911 int unregister_netdevice_notifier_net(struct net *net,
1912                                       struct notifier_block *nb)
1913 {
1914         int err;
1915
1916         rtnl_lock();
1917         err = __unregister_netdevice_notifier_net(net, nb);
1918         rtnl_unlock();
1919         return err;
1920 }
1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1922
1923 static void __move_netdevice_notifier_net(struct net *src_net,
1924                                           struct net *dst_net,
1925                                           struct notifier_block *nb)
1926 {
1927         __unregister_netdevice_notifier_net(src_net, nb);
1928         __register_netdevice_notifier_net(dst_net, nb, true);
1929 }
1930
1931 int register_netdevice_notifier_dev_net(struct net_device *dev,
1932                                         struct notifier_block *nb,
1933                                         struct netdev_net_notifier *nn)
1934 {
1935         int err;
1936
1937         rtnl_lock();
1938         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1939         if (!err) {
1940                 nn->nb = nb;
1941                 list_add(&nn->list, &dev->net_notifier_list);
1942         }
1943         rtnl_unlock();
1944         return err;
1945 }
1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1947
1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1949                                           struct notifier_block *nb,
1950                                           struct netdev_net_notifier *nn)
1951 {
1952         int err;
1953
1954         rtnl_lock();
1955         list_del(&nn->list);
1956         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1957         rtnl_unlock();
1958         return err;
1959 }
1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1961
1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1963                                              struct net *net)
1964 {
1965         struct netdev_net_notifier *nn;
1966
1967         list_for_each_entry(nn, &dev->net_notifier_list, list)
1968                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1969 }
1970
1971 /**
1972  *      call_netdevice_notifiers_info - call all network notifier blocks
1973  *      @val: value passed unmodified to notifier function
1974  *      @info: notifier information data
1975  *
1976  *      Call all network notifier blocks.  Parameters and return value
1977  *      are as for raw_notifier_call_chain().
1978  */
1979
1980 int call_netdevice_notifiers_info(unsigned long val,
1981                                   struct netdev_notifier_info *info)
1982 {
1983         struct net *net = dev_net(info->dev);
1984         int ret;
1985
1986         ASSERT_RTNL();
1987
1988         /* Run per-netns notifier block chain first, then run the global one.
1989          * Hopefully, one day, the global one is going to be removed after
1990          * all notifier block registrators get converted to be per-netns.
1991          */
1992         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1993         if (ret & NOTIFY_STOP_MASK)
1994                 return ret;
1995         return raw_notifier_call_chain(&netdev_chain, val, info);
1996 }
1997
1998 /**
1999  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2000  *                                             for and rollback on error
2001  *      @val_up: value passed unmodified to notifier function
2002  *      @val_down: value passed unmodified to the notifier function when
2003  *                 recovering from an error on @val_up
2004  *      @info: notifier information data
2005  *
2006  *      Call all per-netns network notifier blocks, but not notifier blocks on
2007  *      the global notifier chain. Parameters and return value are as for
2008  *      raw_notifier_call_chain_robust().
2009  */
2010
2011 static int
2012 call_netdevice_notifiers_info_robust(unsigned long val_up,
2013                                      unsigned long val_down,
2014                                      struct netdev_notifier_info *info)
2015 {
2016         struct net *net = dev_net(info->dev);
2017
2018         ASSERT_RTNL();
2019
2020         return raw_notifier_call_chain_robust(&net->netdev_chain,
2021                                               val_up, val_down, info);
2022 }
2023
2024 static int call_netdevice_notifiers_extack(unsigned long val,
2025                                            struct net_device *dev,
2026                                            struct netlink_ext_ack *extack)
2027 {
2028         struct netdev_notifier_info info = {
2029                 .dev = dev,
2030                 .extack = extack,
2031         };
2032
2033         return call_netdevice_notifiers_info(val, &info);
2034 }
2035
2036 /**
2037  *      call_netdevice_notifiers - call all network notifier blocks
2038  *      @val: value passed unmodified to notifier function
2039  *      @dev: net_device pointer passed unmodified to notifier function
2040  *
2041  *      Call all network notifier blocks.  Parameters and return value
2042  *      are as for raw_notifier_call_chain().
2043  */
2044
2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2046 {
2047         return call_netdevice_notifiers_extack(val, dev, NULL);
2048 }
2049 EXPORT_SYMBOL(call_netdevice_notifiers);
2050
2051 /**
2052  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2053  *      @val: value passed unmodified to notifier function
2054  *      @dev: net_device pointer passed unmodified to notifier function
2055  *      @arg: additional u32 argument passed to the notifier function
2056  *
2057  *      Call all network notifier blocks.  Parameters and return value
2058  *      are as for raw_notifier_call_chain().
2059  */
2060 static int call_netdevice_notifiers_mtu(unsigned long val,
2061                                         struct net_device *dev, u32 arg)
2062 {
2063         struct netdev_notifier_info_ext info = {
2064                 .info.dev = dev,
2065                 .ext.mtu = arg,
2066         };
2067
2068         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2069
2070         return call_netdevice_notifiers_info(val, &info.info);
2071 }
2072
2073 #ifdef CONFIG_NET_INGRESS
2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2075
2076 void net_inc_ingress_queue(void)
2077 {
2078         static_branch_inc(&ingress_needed_key);
2079 }
2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2081
2082 void net_dec_ingress_queue(void)
2083 {
2084         static_branch_dec(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2087 #endif
2088
2089 #ifdef CONFIG_NET_EGRESS
2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2091
2092 void net_inc_egress_queue(void)
2093 {
2094         static_branch_inc(&egress_needed_key);
2095 }
2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2097
2098 void net_dec_egress_queue(void)
2099 {
2100         static_branch_dec(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2103 #endif
2104
2105 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2106 EXPORT_SYMBOL(netstamp_needed_key);
2107 #ifdef CONFIG_JUMP_LABEL
2108 static atomic_t netstamp_needed_deferred;
2109 static atomic_t netstamp_wanted;
2110 static void netstamp_clear(struct work_struct *work)
2111 {
2112         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2113         int wanted;
2114
2115         wanted = atomic_add_return(deferred, &netstamp_wanted);
2116         if (wanted > 0)
2117                 static_branch_enable(&netstamp_needed_key);
2118         else
2119                 static_branch_disable(&netstamp_needed_key);
2120 }
2121 static DECLARE_WORK(netstamp_work, netstamp_clear);
2122 #endif
2123
2124 void net_enable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127         int wanted = atomic_read(&netstamp_wanted);
2128
2129         while (wanted > 0) {
2130                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2131                         return;
2132         }
2133         atomic_inc(&netstamp_needed_deferred);
2134         schedule_work(&netstamp_work);
2135 #else
2136         static_branch_inc(&netstamp_needed_key);
2137 #endif
2138 }
2139 EXPORT_SYMBOL(net_enable_timestamp);
2140
2141 void net_disable_timestamp(void)
2142 {
2143 #ifdef CONFIG_JUMP_LABEL
2144         int wanted = atomic_read(&netstamp_wanted);
2145
2146         while (wanted > 1) {
2147                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2148                         return;
2149         }
2150         atomic_dec(&netstamp_needed_deferred);
2151         schedule_work(&netstamp_work);
2152 #else
2153         static_branch_dec(&netstamp_needed_key);
2154 #endif
2155 }
2156 EXPORT_SYMBOL(net_disable_timestamp);
2157
2158 static inline void net_timestamp_set(struct sk_buff *skb)
2159 {
2160         skb->tstamp = 0;
2161         skb->mono_delivery_time = 0;
2162         if (static_branch_unlikely(&netstamp_needed_key))
2163                 skb->tstamp = ktime_get_real();
2164 }
2165
2166 #define net_timestamp_check(COND, SKB)                          \
2167         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2168                 if ((COND) && !(SKB)->tstamp)                   \
2169                         (SKB)->tstamp = ktime_get_real();       \
2170         }                                                       \
2171
2172 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2173 {
2174         return __is_skb_forwardable(dev, skb, true);
2175 }
2176 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2177
2178 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2179                               bool check_mtu)
2180 {
2181         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2182
2183         if (likely(!ret)) {
2184                 skb->protocol = eth_type_trans(skb, dev);
2185                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2186         }
2187
2188         return ret;
2189 }
2190
2191 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2192 {
2193         return __dev_forward_skb2(dev, skb, true);
2194 }
2195 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2196
2197 /**
2198  * dev_forward_skb - loopback an skb to another netif
2199  *
2200  * @dev: destination network device
2201  * @skb: buffer to forward
2202  *
2203  * return values:
2204  *      NET_RX_SUCCESS  (no congestion)
2205  *      NET_RX_DROP     (packet was dropped, but freed)
2206  *
2207  * dev_forward_skb can be used for injecting an skb from the
2208  * start_xmit function of one device into the receive queue
2209  * of another device.
2210  *
2211  * The receiving device may be in another namespace, so
2212  * we have to clear all information in the skb that could
2213  * impact namespace isolation.
2214  */
2215 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2216 {
2217         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2218 }
2219 EXPORT_SYMBOL_GPL(dev_forward_skb);
2220
2221 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2222 {
2223         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2224 }
2225
2226 static inline int deliver_skb(struct sk_buff *skb,
2227                               struct packet_type *pt_prev,
2228                               struct net_device *orig_dev)
2229 {
2230         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2231                 return -ENOMEM;
2232         refcount_inc(&skb->users);
2233         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2234 }
2235
2236 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2237                                           struct packet_type **pt,
2238                                           struct net_device *orig_dev,
2239                                           __be16 type,
2240                                           struct list_head *ptype_list)
2241 {
2242         struct packet_type *ptype, *pt_prev = *pt;
2243
2244         list_for_each_entry_rcu(ptype, ptype_list, list) {
2245                 if (ptype->type != type)
2246                         continue;
2247                 if (pt_prev)
2248                         deliver_skb(skb, pt_prev, orig_dev);
2249                 pt_prev = ptype;
2250         }
2251         *pt = pt_prev;
2252 }
2253
2254 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2255 {
2256         if (!ptype->af_packet_priv || !skb->sk)
2257                 return false;
2258
2259         if (ptype->id_match)
2260                 return ptype->id_match(ptype, skb->sk);
2261         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2262                 return true;
2263
2264         return false;
2265 }
2266
2267 /**
2268  * dev_nit_active - return true if any network interface taps are in use
2269  *
2270  * @dev: network device to check for the presence of taps
2271  */
2272 bool dev_nit_active(struct net_device *dev)
2273 {
2274         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2275 }
2276 EXPORT_SYMBOL_GPL(dev_nit_active);
2277
2278 /*
2279  *      Support routine. Sends outgoing frames to any network
2280  *      taps currently in use.
2281  */
2282
2283 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2284 {
2285         struct packet_type *ptype;
2286         struct sk_buff *skb2 = NULL;
2287         struct packet_type *pt_prev = NULL;
2288         struct list_head *ptype_list = &ptype_all;
2289
2290         rcu_read_lock();
2291 again:
2292         list_for_each_entry_rcu(ptype, ptype_list, list) {
2293                 if (ptype->ignore_outgoing)
2294                         continue;
2295
2296                 /* Never send packets back to the socket
2297                  * they originated from - MvS (miquels@drinkel.ow.org)
2298                  */
2299                 if (skb_loop_sk(ptype, skb))
2300                         continue;
2301
2302                 if (pt_prev) {
2303                         deliver_skb(skb2, pt_prev, skb->dev);
2304                         pt_prev = ptype;
2305                         continue;
2306                 }
2307
2308                 /* need to clone skb, done only once */
2309                 skb2 = skb_clone(skb, GFP_ATOMIC);
2310                 if (!skb2)
2311                         goto out_unlock;
2312
2313                 net_timestamp_set(skb2);
2314
2315                 /* skb->nh should be correctly
2316                  * set by sender, so that the second statement is
2317                  * just protection against buggy protocols.
2318                  */
2319                 skb_reset_mac_header(skb2);
2320
2321                 if (skb_network_header(skb2) < skb2->data ||
2322                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2323                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2324                                              ntohs(skb2->protocol),
2325                                              dev->name);
2326                         skb_reset_network_header(skb2);
2327                 }
2328
2329                 skb2->transport_header = skb2->network_header;
2330                 skb2->pkt_type = PACKET_OUTGOING;
2331                 pt_prev = ptype;
2332         }
2333
2334         if (ptype_list == &ptype_all) {
2335                 ptype_list = &dev->ptype_all;
2336                 goto again;
2337         }
2338 out_unlock:
2339         if (pt_prev) {
2340                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2341                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2342                 else
2343                         kfree_skb(skb2);
2344         }
2345         rcu_read_unlock();
2346 }
2347 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2348
2349 /**
2350  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2351  * @dev: Network device
2352  * @txq: number of queues available
2353  *
2354  * If real_num_tx_queues is changed the tc mappings may no longer be
2355  * valid. To resolve this verify the tc mapping remains valid and if
2356  * not NULL the mapping. With no priorities mapping to this
2357  * offset/count pair it will no longer be used. In the worst case TC0
2358  * is invalid nothing can be done so disable priority mappings. If is
2359  * expected that drivers will fix this mapping if they can before
2360  * calling netif_set_real_num_tx_queues.
2361  */
2362 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2363 {
2364         int i;
2365         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366
2367         /* If TC0 is invalidated disable TC mapping */
2368         if (tc->offset + tc->count > txq) {
2369                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2370                 dev->num_tc = 0;
2371                 return;
2372         }
2373
2374         /* Invalidated prio to tc mappings set to TC0 */
2375         for (i = 1; i < TC_BITMASK + 1; i++) {
2376                 int q = netdev_get_prio_tc_map(dev, i);
2377
2378                 tc = &dev->tc_to_txq[q];
2379                 if (tc->offset + tc->count > txq) {
2380                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2381                                     i, q);
2382                         netdev_set_prio_tc_map(dev, i, 0);
2383                 }
2384         }
2385 }
2386
2387 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2388 {
2389         if (dev->num_tc) {
2390                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2391                 int i;
2392
2393                 /* walk through the TCs and see if it falls into any of them */
2394                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2395                         if ((txq - tc->offset) < tc->count)
2396                                 return i;
2397                 }
2398
2399                 /* didn't find it, just return -1 to indicate no match */
2400                 return -1;
2401         }
2402
2403         return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_txq_to_tc);
2406
2407 #ifdef CONFIG_XPS
2408 static struct static_key xps_needed __read_mostly;
2409 static struct static_key xps_rxqs_needed __read_mostly;
2410 static DEFINE_MUTEX(xps_map_mutex);
2411 #define xmap_dereference(P)             \
2412         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2413
2414 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2415                              struct xps_dev_maps *old_maps, int tci, u16 index)
2416 {
2417         struct xps_map *map = NULL;
2418         int pos;
2419
2420         map = xmap_dereference(dev_maps->attr_map[tci]);
2421         if (!map)
2422                 return false;
2423
2424         for (pos = map->len; pos--;) {
2425                 if (map->queues[pos] != index)
2426                         continue;
2427
2428                 if (map->len > 1) {
2429                         map->queues[pos] = map->queues[--map->len];
2430                         break;
2431                 }
2432
2433                 if (old_maps)
2434                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2435                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2436                 kfree_rcu(map, rcu);
2437                 return false;
2438         }
2439
2440         return true;
2441 }
2442
2443 static bool remove_xps_queue_cpu(struct net_device *dev,
2444                                  struct xps_dev_maps *dev_maps,
2445                                  int cpu, u16 offset, u16 count)
2446 {
2447         int num_tc = dev_maps->num_tc;
2448         bool active = false;
2449         int tci;
2450
2451         for (tci = cpu * num_tc; num_tc--; tci++) {
2452                 int i, j;
2453
2454                 for (i = count, j = offset; i--; j++) {
2455                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2456                                 break;
2457                 }
2458
2459                 active |= i < 0;
2460         }
2461
2462         return active;
2463 }
2464
2465 static void reset_xps_maps(struct net_device *dev,
2466                            struct xps_dev_maps *dev_maps,
2467                            enum xps_map_type type)
2468 {
2469         static_key_slow_dec_cpuslocked(&xps_needed);
2470         if (type == XPS_RXQS)
2471                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2472
2473         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2474
2475         kfree_rcu(dev_maps, rcu);
2476 }
2477
2478 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2479                            u16 offset, u16 count)
2480 {
2481         struct xps_dev_maps *dev_maps;
2482         bool active = false;
2483         int i, j;
2484
2485         dev_maps = xmap_dereference(dev->xps_maps[type]);
2486         if (!dev_maps)
2487                 return;
2488
2489         for (j = 0; j < dev_maps->nr_ids; j++)
2490                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2491         if (!active)
2492                 reset_xps_maps(dev, dev_maps, type);
2493
2494         if (type == XPS_CPUS) {
2495                 for (i = offset + (count - 1); count--; i--)
2496                         netdev_queue_numa_node_write(
2497                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2498         }
2499 }
2500
2501 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2502                                    u16 count)
2503 {
2504         if (!static_key_false(&xps_needed))
2505                 return;
2506
2507         cpus_read_lock();
2508         mutex_lock(&xps_map_mutex);
2509
2510         if (static_key_false(&xps_rxqs_needed))
2511                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2512
2513         clean_xps_maps(dev, XPS_CPUS, offset, count);
2514
2515         mutex_unlock(&xps_map_mutex);
2516         cpus_read_unlock();
2517 }
2518
2519 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2520 {
2521         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2522 }
2523
2524 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2525                                       u16 index, bool is_rxqs_map)
2526 {
2527         struct xps_map *new_map;
2528         int alloc_len = XPS_MIN_MAP_ALLOC;
2529         int i, pos;
2530
2531         for (pos = 0; map && pos < map->len; pos++) {
2532                 if (map->queues[pos] != index)
2533                         continue;
2534                 return map;
2535         }
2536
2537         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2538         if (map) {
2539                 if (pos < map->alloc_len)
2540                         return map;
2541
2542                 alloc_len = map->alloc_len * 2;
2543         }
2544
2545         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2546          *  map
2547          */
2548         if (is_rxqs_map)
2549                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2550         else
2551                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2552                                        cpu_to_node(attr_index));
2553         if (!new_map)
2554                 return NULL;
2555
2556         for (i = 0; i < pos; i++)
2557                 new_map->queues[i] = map->queues[i];
2558         new_map->alloc_len = alloc_len;
2559         new_map->len = pos;
2560
2561         return new_map;
2562 }
2563
2564 /* Copy xps maps at a given index */
2565 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2566                               struct xps_dev_maps *new_dev_maps, int index,
2567                               int tc, bool skip_tc)
2568 {
2569         int i, tci = index * dev_maps->num_tc;
2570         struct xps_map *map;
2571
2572         /* copy maps belonging to foreign traffic classes */
2573         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2574                 if (i == tc && skip_tc)
2575                         continue;
2576
2577                 /* fill in the new device map from the old device map */
2578                 map = xmap_dereference(dev_maps->attr_map[tci]);
2579                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2580         }
2581 }
2582
2583 /* Must be called under cpus_read_lock */
2584 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2585                           u16 index, enum xps_map_type type)
2586 {
2587         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2588         const unsigned long *online_mask = NULL;
2589         bool active = false, copy = false;
2590         int i, j, tci, numa_node_id = -2;
2591         int maps_sz, num_tc = 1, tc = 0;
2592         struct xps_map *map, *new_map;
2593         unsigned int nr_ids;
2594
2595         WARN_ON_ONCE(index >= dev->num_tx_queues);
2596
2597         if (dev->num_tc) {
2598                 /* Do not allow XPS on subordinate device directly */
2599                 num_tc = dev->num_tc;
2600                 if (num_tc < 0)
2601                         return -EINVAL;
2602
2603                 /* If queue belongs to subordinate dev use its map */
2604                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2605
2606                 tc = netdev_txq_to_tc(dev, index);
2607                 if (tc < 0)
2608                         return -EINVAL;
2609         }
2610
2611         mutex_lock(&xps_map_mutex);
2612
2613         dev_maps = xmap_dereference(dev->xps_maps[type]);
2614         if (type == XPS_RXQS) {
2615                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2616                 nr_ids = dev->num_rx_queues;
2617         } else {
2618                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2619                 if (num_possible_cpus() > 1)
2620                         online_mask = cpumask_bits(cpu_online_mask);
2621                 nr_ids = nr_cpu_ids;
2622         }
2623
2624         if (maps_sz < L1_CACHE_BYTES)
2625                 maps_sz = L1_CACHE_BYTES;
2626
2627         /* The old dev_maps could be larger or smaller than the one we're
2628          * setting up now, as dev->num_tc or nr_ids could have been updated in
2629          * between. We could try to be smart, but let's be safe instead and only
2630          * copy foreign traffic classes if the two map sizes match.
2631          */
2632         if (dev_maps &&
2633             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2634                 copy = true;
2635
2636         /* allocate memory for queue storage */
2637         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2638              j < nr_ids;) {
2639                 if (!new_dev_maps) {
2640                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2641                         if (!new_dev_maps) {
2642                                 mutex_unlock(&xps_map_mutex);
2643                                 return -ENOMEM;
2644                         }
2645
2646                         new_dev_maps->nr_ids = nr_ids;
2647                         new_dev_maps->num_tc = num_tc;
2648                 }
2649
2650                 tci = j * num_tc + tc;
2651                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2652
2653                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2654                 if (!map)
2655                         goto error;
2656
2657                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2658         }
2659
2660         if (!new_dev_maps)
2661                 goto out_no_new_maps;
2662
2663         if (!dev_maps) {
2664                 /* Increment static keys at most once per type */
2665                 static_key_slow_inc_cpuslocked(&xps_needed);
2666                 if (type == XPS_RXQS)
2667                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2668         }
2669
2670         for (j = 0; j < nr_ids; j++) {
2671                 bool skip_tc = false;
2672
2673                 tci = j * num_tc + tc;
2674                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2675                     netif_attr_test_online(j, online_mask, nr_ids)) {
2676                         /* add tx-queue to CPU/rx-queue maps */
2677                         int pos = 0;
2678
2679                         skip_tc = true;
2680
2681                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2682                         while ((pos < map->len) && (map->queues[pos] != index))
2683                                 pos++;
2684
2685                         if (pos == map->len)
2686                                 map->queues[map->len++] = index;
2687 #ifdef CONFIG_NUMA
2688                         if (type == XPS_CPUS) {
2689                                 if (numa_node_id == -2)
2690                                         numa_node_id = cpu_to_node(j);
2691                                 else if (numa_node_id != cpu_to_node(j))
2692                                         numa_node_id = -1;
2693                         }
2694 #endif
2695                 }
2696
2697                 if (copy)
2698                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2699                                           skip_tc);
2700         }
2701
2702         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2703
2704         /* Cleanup old maps */
2705         if (!dev_maps)
2706                 goto out_no_old_maps;
2707
2708         for (j = 0; j < dev_maps->nr_ids; j++) {
2709                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2710                         map = xmap_dereference(dev_maps->attr_map[tci]);
2711                         if (!map)
2712                                 continue;
2713
2714                         if (copy) {
2715                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2716                                 if (map == new_map)
2717                                         continue;
2718                         }
2719
2720                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2721                         kfree_rcu(map, rcu);
2722                 }
2723         }
2724
2725         old_dev_maps = dev_maps;
2726
2727 out_no_old_maps:
2728         dev_maps = new_dev_maps;
2729         active = true;
2730
2731 out_no_new_maps:
2732         if (type == XPS_CPUS)
2733                 /* update Tx queue numa node */
2734                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2735                                              (numa_node_id >= 0) ?
2736                                              numa_node_id : NUMA_NO_NODE);
2737
2738         if (!dev_maps)
2739                 goto out_no_maps;
2740
2741         /* removes tx-queue from unused CPUs/rx-queues */
2742         for (j = 0; j < dev_maps->nr_ids; j++) {
2743                 tci = j * dev_maps->num_tc;
2744
2745                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2746                         if (i == tc &&
2747                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2748                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2749                                 continue;
2750
2751                         active |= remove_xps_queue(dev_maps,
2752                                                    copy ? old_dev_maps : NULL,
2753                                                    tci, index);
2754                 }
2755         }
2756
2757         if (old_dev_maps)
2758                 kfree_rcu(old_dev_maps, rcu);
2759
2760         /* free map if not active */
2761         if (!active)
2762                 reset_xps_maps(dev, dev_maps, type);
2763
2764 out_no_maps:
2765         mutex_unlock(&xps_map_mutex);
2766
2767         return 0;
2768 error:
2769         /* remove any maps that we added */
2770         for (j = 0; j < nr_ids; j++) {
2771                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2772                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2773                         map = copy ?
2774                               xmap_dereference(dev_maps->attr_map[tci]) :
2775                               NULL;
2776                         if (new_map && new_map != map)
2777                                 kfree(new_map);
2778                 }
2779         }
2780
2781         mutex_unlock(&xps_map_mutex);
2782
2783         kfree(new_dev_maps);
2784         return -ENOMEM;
2785 }
2786 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2787
2788 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2789                         u16 index)
2790 {
2791         int ret;
2792
2793         cpus_read_lock();
2794         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2795         cpus_read_unlock();
2796
2797         return ret;
2798 }
2799 EXPORT_SYMBOL(netif_set_xps_queue);
2800
2801 #endif
2802 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2803 {
2804         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2805
2806         /* Unbind any subordinate channels */
2807         while (txq-- != &dev->_tx[0]) {
2808                 if (txq->sb_dev)
2809                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2810         }
2811 }
2812
2813 void netdev_reset_tc(struct net_device *dev)
2814 {
2815 #ifdef CONFIG_XPS
2816         netif_reset_xps_queues_gt(dev, 0);
2817 #endif
2818         netdev_unbind_all_sb_channels(dev);
2819
2820         /* Reset TC configuration of device */
2821         dev->num_tc = 0;
2822         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2823         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2824 }
2825 EXPORT_SYMBOL(netdev_reset_tc);
2826
2827 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2828 {
2829         if (tc >= dev->num_tc)
2830                 return -EINVAL;
2831
2832 #ifdef CONFIG_XPS
2833         netif_reset_xps_queues(dev, offset, count);
2834 #endif
2835         dev->tc_to_txq[tc].count = count;
2836         dev->tc_to_txq[tc].offset = offset;
2837         return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_set_tc_queue);
2840
2841 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2842 {
2843         if (num_tc > TC_MAX_QUEUE)
2844                 return -EINVAL;
2845
2846 #ifdef CONFIG_XPS
2847         netif_reset_xps_queues_gt(dev, 0);
2848 #endif
2849         netdev_unbind_all_sb_channels(dev);
2850
2851         dev->num_tc = num_tc;
2852         return 0;
2853 }
2854 EXPORT_SYMBOL(netdev_set_num_tc);
2855
2856 void netdev_unbind_sb_channel(struct net_device *dev,
2857                               struct net_device *sb_dev)
2858 {
2859         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2860
2861 #ifdef CONFIG_XPS
2862         netif_reset_xps_queues_gt(sb_dev, 0);
2863 #endif
2864         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2865         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2866
2867         while (txq-- != &dev->_tx[0]) {
2868                 if (txq->sb_dev == sb_dev)
2869                         txq->sb_dev = NULL;
2870         }
2871 }
2872 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2873
2874 int netdev_bind_sb_channel_queue(struct net_device *dev,
2875                                  struct net_device *sb_dev,
2876                                  u8 tc, u16 count, u16 offset)
2877 {
2878         /* Make certain the sb_dev and dev are already configured */
2879         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2880                 return -EINVAL;
2881
2882         /* We cannot hand out queues we don't have */
2883         if ((offset + count) > dev->real_num_tx_queues)
2884                 return -EINVAL;
2885
2886         /* Record the mapping */
2887         sb_dev->tc_to_txq[tc].count = count;
2888         sb_dev->tc_to_txq[tc].offset = offset;
2889
2890         /* Provide a way for Tx queue to find the tc_to_txq map or
2891          * XPS map for itself.
2892          */
2893         while (count--)
2894                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2895
2896         return 0;
2897 }
2898 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2899
2900 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2901 {
2902         /* Do not use a multiqueue device to represent a subordinate channel */
2903         if (netif_is_multiqueue(dev))
2904                 return -ENODEV;
2905
2906         /* We allow channels 1 - 32767 to be used for subordinate channels.
2907          * Channel 0 is meant to be "native" mode and used only to represent
2908          * the main root device. We allow writing 0 to reset the device back
2909          * to normal mode after being used as a subordinate channel.
2910          */
2911         if (channel > S16_MAX)
2912                 return -EINVAL;
2913
2914         dev->num_tc = -channel;
2915
2916         return 0;
2917 }
2918 EXPORT_SYMBOL(netdev_set_sb_channel);
2919
2920 /*
2921  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2922  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2923  */
2924 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2925 {
2926         bool disabling;
2927         int rc;
2928
2929         disabling = txq < dev->real_num_tx_queues;
2930
2931         if (txq < 1 || txq > dev->num_tx_queues)
2932                 return -EINVAL;
2933
2934         if (dev->reg_state == NETREG_REGISTERED ||
2935             dev->reg_state == NETREG_UNREGISTERING) {
2936                 ASSERT_RTNL();
2937
2938                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2939                                                   txq);
2940                 if (rc)
2941                         return rc;
2942
2943                 if (dev->num_tc)
2944                         netif_setup_tc(dev, txq);
2945
2946                 dev_qdisc_change_real_num_tx(dev, txq);
2947
2948                 dev->real_num_tx_queues = txq;
2949
2950                 if (disabling) {
2951                         synchronize_net();
2952                         qdisc_reset_all_tx_gt(dev, txq);
2953 #ifdef CONFIG_XPS
2954                         netif_reset_xps_queues_gt(dev, txq);
2955 #endif
2956                 }
2957         } else {
2958                 dev->real_num_tx_queues = txq;
2959         }
2960
2961         return 0;
2962 }
2963 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2964
2965 #ifdef CONFIG_SYSFS
2966 /**
2967  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2968  *      @dev: Network device
2969  *      @rxq: Actual number of RX queues
2970  *
2971  *      This must be called either with the rtnl_lock held or before
2972  *      registration of the net device.  Returns 0 on success, or a
2973  *      negative error code.  If called before registration, it always
2974  *      succeeds.
2975  */
2976 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2977 {
2978         int rc;
2979
2980         if (rxq < 1 || rxq > dev->num_rx_queues)
2981                 return -EINVAL;
2982
2983         if (dev->reg_state == NETREG_REGISTERED) {
2984                 ASSERT_RTNL();
2985
2986                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2987                                                   rxq);
2988                 if (rc)
2989                         return rc;
2990         }
2991
2992         dev->real_num_rx_queues = rxq;
2993         return 0;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2996 #endif
2997
2998 /**
2999  *      netif_set_real_num_queues - set actual number of RX and TX queues used
3000  *      @dev: Network device
3001  *      @txq: Actual number of TX queues
3002  *      @rxq: Actual number of RX queues
3003  *
3004  *      Set the real number of both TX and RX queues.
3005  *      Does nothing if the number of queues is already correct.
3006  */
3007 int netif_set_real_num_queues(struct net_device *dev,
3008                               unsigned int txq, unsigned int rxq)
3009 {
3010         unsigned int old_rxq = dev->real_num_rx_queues;
3011         int err;
3012
3013         if (txq < 1 || txq > dev->num_tx_queues ||
3014             rxq < 1 || rxq > dev->num_rx_queues)
3015                 return -EINVAL;
3016
3017         /* Start from increases, so the error path only does decreases -
3018          * decreases can't fail.
3019          */
3020         if (rxq > dev->real_num_rx_queues) {
3021                 err = netif_set_real_num_rx_queues(dev, rxq);
3022                 if (err)
3023                         return err;
3024         }
3025         if (txq > dev->real_num_tx_queues) {
3026                 err = netif_set_real_num_tx_queues(dev, txq);
3027                 if (err)
3028                         goto undo_rx;
3029         }
3030         if (rxq < dev->real_num_rx_queues)
3031                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3032         if (txq < dev->real_num_tx_queues)
3033                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3034
3035         return 0;
3036 undo_rx:
3037         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3038         return err;
3039 }
3040 EXPORT_SYMBOL(netif_set_real_num_queues);
3041
3042 /**
3043  * netif_set_tso_max_size() - set the max size of TSO frames supported
3044  * @dev:        netdev to update
3045  * @size:       max skb->len of a TSO frame
3046  *
3047  * Set the limit on the size of TSO super-frames the device can handle.
3048  * Unless explicitly set the stack will assume the value of
3049  * %GSO_LEGACY_MAX_SIZE.
3050  */
3051 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3052 {
3053         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3054         if (size < READ_ONCE(dev->gso_max_size))
3055                 netif_set_gso_max_size(dev, size);
3056         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3057                 netif_set_gso_ipv4_max_size(dev, size);
3058 }
3059 EXPORT_SYMBOL(netif_set_tso_max_size);
3060
3061 /**
3062  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3063  * @dev:        netdev to update
3064  * @segs:       max number of TCP segments
3065  *
3066  * Set the limit on the number of TCP segments the device can generate from
3067  * a single TSO super-frame.
3068  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3069  */
3070 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3071 {
3072         dev->tso_max_segs = segs;
3073         if (segs < READ_ONCE(dev->gso_max_segs))
3074                 netif_set_gso_max_segs(dev, segs);
3075 }
3076 EXPORT_SYMBOL(netif_set_tso_max_segs);
3077
3078 /**
3079  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3080  * @to:         netdev to update
3081  * @from:       netdev from which to copy the limits
3082  */
3083 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3084 {
3085         netif_set_tso_max_size(to, from->tso_max_size);
3086         netif_set_tso_max_segs(to, from->tso_max_segs);
3087 }
3088 EXPORT_SYMBOL(netif_inherit_tso_max);
3089
3090 /**
3091  * netif_get_num_default_rss_queues - default number of RSS queues
3092  *
3093  * Default value is the number of physical cores if there are only 1 or 2, or
3094  * divided by 2 if there are more.
3095  */
3096 int netif_get_num_default_rss_queues(void)
3097 {
3098         cpumask_var_t cpus;
3099         int cpu, count = 0;
3100
3101         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3102                 return 1;
3103
3104         cpumask_copy(cpus, cpu_online_mask);
3105         for_each_cpu(cpu, cpus) {
3106                 ++count;
3107                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3108         }
3109         free_cpumask_var(cpus);
3110
3111         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3112 }
3113 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3114
3115 static void __netif_reschedule(struct Qdisc *q)
3116 {
3117         struct softnet_data *sd;
3118         unsigned long flags;
3119
3120         local_irq_save(flags);
3121         sd = this_cpu_ptr(&softnet_data);
3122         q->next_sched = NULL;
3123         *sd->output_queue_tailp = q;
3124         sd->output_queue_tailp = &q->next_sched;
3125         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3126         local_irq_restore(flags);
3127 }
3128
3129 void __netif_schedule(struct Qdisc *q)
3130 {
3131         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3132                 __netif_reschedule(q);
3133 }
3134 EXPORT_SYMBOL(__netif_schedule);
3135
3136 struct dev_kfree_skb_cb {
3137         enum skb_drop_reason reason;
3138 };
3139
3140 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3141 {
3142         return (struct dev_kfree_skb_cb *)skb->cb;
3143 }
3144
3145 void netif_schedule_queue(struct netdev_queue *txq)
3146 {
3147         rcu_read_lock();
3148         if (!netif_xmit_stopped(txq)) {
3149                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3150
3151                 __netif_schedule(q);
3152         }
3153         rcu_read_unlock();
3154 }
3155 EXPORT_SYMBOL(netif_schedule_queue);
3156
3157 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3158 {
3159         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3160                 struct Qdisc *q;
3161
3162                 rcu_read_lock();
3163                 q = rcu_dereference(dev_queue->qdisc);
3164                 __netif_schedule(q);
3165                 rcu_read_unlock();
3166         }
3167 }
3168 EXPORT_SYMBOL(netif_tx_wake_queue);
3169
3170 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3171 {
3172         unsigned long flags;
3173
3174         if (unlikely(!skb))
3175                 return;
3176
3177         if (likely(refcount_read(&skb->users) == 1)) {
3178                 smp_rmb();
3179                 refcount_set(&skb->users, 0);
3180         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3181                 return;
3182         }
3183         get_kfree_skb_cb(skb)->reason = reason;
3184         local_irq_save(flags);
3185         skb->next = __this_cpu_read(softnet_data.completion_queue);
3186         __this_cpu_write(softnet_data.completion_queue, skb);
3187         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3188         local_irq_restore(flags);
3189 }
3190 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3191
3192 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3193 {
3194         if (in_hardirq() || irqs_disabled())
3195                 dev_kfree_skb_irq_reason(skb, reason);
3196         else
3197                 kfree_skb_reason(skb, reason);
3198 }
3199 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3200
3201
3202 /**
3203  * netif_device_detach - mark device as removed
3204  * @dev: network device
3205  *
3206  * Mark device as removed from system and therefore no longer available.
3207  */
3208 void netif_device_detach(struct net_device *dev)
3209 {
3210         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3211             netif_running(dev)) {
3212                 netif_tx_stop_all_queues(dev);
3213         }
3214 }
3215 EXPORT_SYMBOL(netif_device_detach);
3216
3217 /**
3218  * netif_device_attach - mark device as attached
3219  * @dev: network device
3220  *
3221  * Mark device as attached from system and restart if needed.
3222  */
3223 void netif_device_attach(struct net_device *dev)
3224 {
3225         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3226             netif_running(dev)) {
3227                 netif_tx_wake_all_queues(dev);
3228                 __netdev_watchdog_up(dev);
3229         }
3230 }
3231 EXPORT_SYMBOL(netif_device_attach);
3232
3233 /*
3234  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3235  * to be used as a distribution range.
3236  */
3237 static u16 skb_tx_hash(const struct net_device *dev,
3238                        const struct net_device *sb_dev,
3239                        struct sk_buff *skb)
3240 {
3241         u32 hash;
3242         u16 qoffset = 0;
3243         u16 qcount = dev->real_num_tx_queues;
3244
3245         if (dev->num_tc) {
3246                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3247
3248                 qoffset = sb_dev->tc_to_txq[tc].offset;
3249                 qcount = sb_dev->tc_to_txq[tc].count;
3250                 if (unlikely(!qcount)) {
3251                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3252                                              sb_dev->name, qoffset, tc);
3253                         qoffset = 0;
3254                         qcount = dev->real_num_tx_queues;
3255                 }
3256         }
3257
3258         if (skb_rx_queue_recorded(skb)) {
3259                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3260                 hash = skb_get_rx_queue(skb);
3261                 if (hash >= qoffset)
3262                         hash -= qoffset;
3263                 while (unlikely(hash >= qcount))
3264                         hash -= qcount;
3265                 return hash + qoffset;
3266         }
3267
3268         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3269 }
3270
3271 void skb_warn_bad_offload(const struct sk_buff *skb)
3272 {
3273         static const netdev_features_t null_features;
3274         struct net_device *dev = skb->dev;
3275         const char *name = "";
3276
3277         if (!net_ratelimit())
3278                 return;
3279
3280         if (dev) {
3281                 if (dev->dev.parent)
3282                         name = dev_driver_string(dev->dev.parent);
3283                 else
3284                         name = netdev_name(dev);
3285         }
3286         skb_dump(KERN_WARNING, skb, false);
3287         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3288              name, dev ? &dev->features : &null_features,
3289              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3290 }
3291
3292 /*
3293  * Invalidate hardware checksum when packet is to be mangled, and
3294  * complete checksum manually on outgoing path.
3295  */
3296 int skb_checksum_help(struct sk_buff *skb)
3297 {
3298         __wsum csum;
3299         int ret = 0, offset;
3300
3301         if (skb->ip_summed == CHECKSUM_COMPLETE)
3302                 goto out_set_summed;
3303
3304         if (unlikely(skb_is_gso(skb))) {
3305                 skb_warn_bad_offload(skb);
3306                 return -EINVAL;
3307         }
3308
3309         /* Before computing a checksum, we should make sure no frag could
3310          * be modified by an external entity : checksum could be wrong.
3311          */
3312         if (skb_has_shared_frag(skb)) {
3313                 ret = __skb_linearize(skb);
3314                 if (ret)
3315                         goto out;
3316         }
3317
3318         offset = skb_checksum_start_offset(skb);
3319         ret = -EINVAL;
3320         if (unlikely(offset >= skb_headlen(skb))) {
3321                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3322                 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3323                           offset, skb_headlen(skb));
3324                 goto out;
3325         }
3326         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3327
3328         offset += skb->csum_offset;
3329         if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3330                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3331                 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3332                           offset + sizeof(__sum16), skb_headlen(skb));
3333                 goto out;
3334         }
3335         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3336         if (ret)
3337                 goto out;
3338
3339         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3340 out_set_summed:
3341         skb->ip_summed = CHECKSUM_NONE;
3342 out:
3343         return ret;
3344 }
3345 EXPORT_SYMBOL(skb_checksum_help);
3346
3347 int skb_crc32c_csum_help(struct sk_buff *skb)
3348 {
3349         __le32 crc32c_csum;
3350         int ret = 0, offset, start;
3351
3352         if (skb->ip_summed != CHECKSUM_PARTIAL)
3353                 goto out;
3354
3355         if (unlikely(skb_is_gso(skb)))
3356                 goto out;
3357
3358         /* Before computing a checksum, we should make sure no frag could
3359          * be modified by an external entity : checksum could be wrong.
3360          */
3361         if (unlikely(skb_has_shared_frag(skb))) {
3362                 ret = __skb_linearize(skb);
3363                 if (ret)
3364                         goto out;
3365         }
3366         start = skb_checksum_start_offset(skb);
3367         offset = start + offsetof(struct sctphdr, checksum);
3368         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3369                 ret = -EINVAL;
3370                 goto out;
3371         }
3372
3373         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3374         if (ret)
3375                 goto out;
3376
3377         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3378                                                   skb->len - start, ~(__u32)0,
3379                                                   crc32c_csum_stub));
3380         *(__le32 *)(skb->data + offset) = crc32c_csum;
3381         skb_reset_csum_not_inet(skb);
3382 out:
3383         return ret;
3384 }
3385
3386 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3387 {
3388         __be16 type = skb->protocol;
3389
3390         /* Tunnel gso handlers can set protocol to ethernet. */
3391         if (type == htons(ETH_P_TEB)) {
3392                 struct ethhdr *eth;
3393
3394                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3395                         return 0;
3396
3397                 eth = (struct ethhdr *)skb->data;
3398                 type = eth->h_proto;
3399         }
3400
3401         return vlan_get_protocol_and_depth(skb, type, depth);
3402 }
3403
3404
3405 /* Take action when hardware reception checksum errors are detected. */
3406 #ifdef CONFIG_BUG
3407 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3408 {
3409         netdev_err(dev, "hw csum failure\n");
3410         skb_dump(KERN_ERR, skb, true);
3411         dump_stack();
3412 }
3413
3414 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3415 {
3416         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3417 }
3418 EXPORT_SYMBOL(netdev_rx_csum_fault);
3419 #endif
3420
3421 /* XXX: check that highmem exists at all on the given machine. */
3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 #ifdef CONFIG_HIGHMEM
3425         int i;
3426
3427         if (!(dev->features & NETIF_F_HIGHDMA)) {
3428                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3430
3431                         if (PageHighMem(skb_frag_page(frag)))
3432                                 return 1;
3433                 }
3434         }
3435 #endif
3436         return 0;
3437 }
3438
3439 /* If MPLS offload request, verify we are testing hardware MPLS features
3440  * instead of standard features for the netdev.
3441  */
3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444                                            netdev_features_t features,
3445                                            __be16 type)
3446 {
3447         if (eth_p_mpls(type))
3448                 features &= skb->dev->mpls_features;
3449
3450         return features;
3451 }
3452 #else
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454                                            netdev_features_t features,
3455                                            __be16 type)
3456 {
3457         return features;
3458 }
3459 #endif
3460
3461 static netdev_features_t harmonize_features(struct sk_buff *skb,
3462         netdev_features_t features)
3463 {
3464         __be16 type;
3465
3466         type = skb_network_protocol(skb, NULL);
3467         features = net_mpls_features(skb, features, type);
3468
3469         if (skb->ip_summed != CHECKSUM_NONE &&
3470             !can_checksum_protocol(features, type)) {
3471                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3472         }
3473         if (illegal_highdma(skb->dev, skb))
3474                 features &= ~NETIF_F_SG;
3475
3476         return features;
3477 }
3478
3479 netdev_features_t passthru_features_check(struct sk_buff *skb,
3480                                           struct net_device *dev,
3481                                           netdev_features_t features)
3482 {
3483         return features;
3484 }
3485 EXPORT_SYMBOL(passthru_features_check);
3486
3487 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488                                              struct net_device *dev,
3489                                              netdev_features_t features)
3490 {
3491         return vlan_features_check(skb, features);
3492 }
3493
3494 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495                                             struct net_device *dev,
3496                                             netdev_features_t features)
3497 {
3498         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499
3500         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3501                 return features & ~NETIF_F_GSO_MASK;
3502
3503         if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3504                 return features & ~NETIF_F_GSO_MASK;
3505
3506         if (!skb_shinfo(skb)->gso_type) {
3507                 skb_warn_bad_offload(skb);
3508                 return features & ~NETIF_F_GSO_MASK;
3509         }
3510
3511         /* Support for GSO partial features requires software
3512          * intervention before we can actually process the packets
3513          * so we need to strip support for any partial features now
3514          * and we can pull them back in after we have partially
3515          * segmented the frame.
3516          */
3517         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3518                 features &= ~dev->gso_partial_features;
3519
3520         /* Make sure to clear the IPv4 ID mangling feature if the
3521          * IPv4 header has the potential to be fragmented.
3522          */
3523         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3524                 struct iphdr *iph = skb->encapsulation ?
3525                                     inner_ip_hdr(skb) : ip_hdr(skb);
3526
3527                 if (!(iph->frag_off & htons(IP_DF)))
3528                         features &= ~NETIF_F_TSO_MANGLEID;
3529         }
3530
3531         return features;
3532 }
3533
3534 netdev_features_t netif_skb_features(struct sk_buff *skb)
3535 {
3536         struct net_device *dev = skb->dev;
3537         netdev_features_t features = dev->features;
3538
3539         if (skb_is_gso(skb))
3540                 features = gso_features_check(skb, dev, features);
3541
3542         /* If encapsulation offload request, verify we are testing
3543          * hardware encapsulation features instead of standard
3544          * features for the netdev
3545          */
3546         if (skb->encapsulation)
3547                 features &= dev->hw_enc_features;
3548
3549         if (skb_vlan_tagged(skb))
3550                 features = netdev_intersect_features(features,
3551                                                      dev->vlan_features |
3552                                                      NETIF_F_HW_VLAN_CTAG_TX |
3553                                                      NETIF_F_HW_VLAN_STAG_TX);
3554
3555         if (dev->netdev_ops->ndo_features_check)
3556                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3557                                                                 features);
3558         else
3559                 features &= dflt_features_check(skb, dev, features);
3560
3561         return harmonize_features(skb, features);
3562 }
3563 EXPORT_SYMBOL(netif_skb_features);
3564
3565 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3566                     struct netdev_queue *txq, bool more)
3567 {
3568         unsigned int len;
3569         int rc;
3570
3571         if (dev_nit_active(dev))
3572                 dev_queue_xmit_nit(skb, dev);
3573
3574         len = skb->len;
3575         trace_net_dev_start_xmit(skb, dev);
3576         rc = netdev_start_xmit(skb, dev, txq, more);
3577         trace_net_dev_xmit(skb, rc, dev, len);
3578
3579         return rc;
3580 }
3581
3582 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3583                                     struct netdev_queue *txq, int *ret)
3584 {
3585         struct sk_buff *skb = first;
3586         int rc = NETDEV_TX_OK;
3587
3588         while (skb) {
3589                 struct sk_buff *next = skb->next;
3590
3591                 skb_mark_not_on_list(skb);
3592                 rc = xmit_one(skb, dev, txq, next != NULL);
3593                 if (unlikely(!dev_xmit_complete(rc))) {
3594                         skb->next = next;
3595                         goto out;
3596                 }
3597
3598                 skb = next;
3599                 if (netif_tx_queue_stopped(txq) && skb) {
3600                         rc = NETDEV_TX_BUSY;
3601                         break;
3602                 }
3603         }
3604
3605 out:
3606         *ret = rc;
3607         return skb;
3608 }
3609
3610 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3611                                           netdev_features_t features)
3612 {
3613         if (skb_vlan_tag_present(skb) &&
3614             !vlan_hw_offload_capable(features, skb->vlan_proto))
3615                 skb = __vlan_hwaccel_push_inside(skb);
3616         return skb;
3617 }
3618
3619 int skb_csum_hwoffload_help(struct sk_buff *skb,
3620                             const netdev_features_t features)
3621 {
3622         if (unlikely(skb_csum_is_sctp(skb)))
3623                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3624                         skb_crc32c_csum_help(skb);
3625
3626         if (features & NETIF_F_HW_CSUM)
3627                 return 0;
3628
3629         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3630                 switch (skb->csum_offset) {
3631                 case offsetof(struct tcphdr, check):
3632                 case offsetof(struct udphdr, check):
3633                         return 0;
3634                 }
3635         }
3636
3637         return skb_checksum_help(skb);
3638 }
3639 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3640
3641 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3642 {
3643         netdev_features_t features;
3644
3645         features = netif_skb_features(skb);
3646         skb = validate_xmit_vlan(skb, features);
3647         if (unlikely(!skb))
3648                 goto out_null;
3649
3650         skb = sk_validate_xmit_skb(skb, dev);
3651         if (unlikely(!skb))
3652                 goto out_null;
3653
3654         if (netif_needs_gso(skb, features)) {
3655                 struct sk_buff *segs;
3656
3657                 segs = skb_gso_segment(skb, features);
3658                 if (IS_ERR(segs)) {
3659                         goto out_kfree_skb;
3660                 } else if (segs) {
3661                         consume_skb(skb);
3662                         skb = segs;
3663                 }
3664         } else {
3665                 if (skb_needs_linearize(skb, features) &&
3666                     __skb_linearize(skb))
3667                         goto out_kfree_skb;
3668
3669                 /* If packet is not checksummed and device does not
3670                  * support checksumming for this protocol, complete
3671                  * checksumming here.
3672                  */
3673                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3674                         if (skb->encapsulation)
3675                                 skb_set_inner_transport_header(skb,
3676                                                                skb_checksum_start_offset(skb));
3677                         else
3678                                 skb_set_transport_header(skb,
3679                                                          skb_checksum_start_offset(skb));
3680                         if (skb_csum_hwoffload_help(skb, features))
3681                                 goto out_kfree_skb;
3682                 }
3683         }
3684
3685         skb = validate_xmit_xfrm(skb, features, again);
3686
3687         return skb;
3688
3689 out_kfree_skb:
3690         kfree_skb(skb);
3691 out_null:
3692         dev_core_stats_tx_dropped_inc(dev);
3693         return NULL;
3694 }
3695
3696 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3697 {
3698         struct sk_buff *next, *head = NULL, *tail;
3699
3700         for (; skb != NULL; skb = next) {
3701                 next = skb->next;
3702                 skb_mark_not_on_list(skb);
3703
3704                 /* in case skb wont be segmented, point to itself */
3705                 skb->prev = skb;
3706
3707                 skb = validate_xmit_skb(skb, dev, again);
3708                 if (!skb)
3709                         continue;
3710
3711                 if (!head)
3712                         head = skb;
3713                 else
3714                         tail->next = skb;
3715                 /* If skb was segmented, skb->prev points to
3716                  * the last segment. If not, it still contains skb.
3717                  */
3718                 tail = skb->prev;
3719         }
3720         return head;
3721 }
3722 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3723
3724 static void qdisc_pkt_len_init(struct sk_buff *skb)
3725 {
3726         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3727
3728         qdisc_skb_cb(skb)->pkt_len = skb->len;
3729
3730         /* To get more precise estimation of bytes sent on wire,
3731          * we add to pkt_len the headers size of all segments
3732          */
3733         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3734                 u16 gso_segs = shinfo->gso_segs;
3735                 unsigned int hdr_len;
3736
3737                 /* mac layer + network layer */
3738                 hdr_len = skb_transport_offset(skb);
3739
3740                 /* + transport layer */
3741                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3742                         const struct tcphdr *th;
3743                         struct tcphdr _tcphdr;
3744
3745                         th = skb_header_pointer(skb, hdr_len,
3746                                                 sizeof(_tcphdr), &_tcphdr);
3747                         if (likely(th))
3748                                 hdr_len += __tcp_hdrlen(th);
3749                 } else {
3750                         struct udphdr _udphdr;
3751
3752                         if (skb_header_pointer(skb, hdr_len,
3753                                                sizeof(_udphdr), &_udphdr))
3754                                 hdr_len += sizeof(struct udphdr);
3755                 }
3756
3757                 if (shinfo->gso_type & SKB_GSO_DODGY)
3758                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3759                                                 shinfo->gso_size);
3760
3761                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3762         }
3763 }
3764
3765 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3766                              struct sk_buff **to_free,
3767                              struct netdev_queue *txq)
3768 {
3769         int rc;
3770
3771         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3772         if (rc == NET_XMIT_SUCCESS)
3773                 trace_qdisc_enqueue(q, txq, skb);
3774         return rc;
3775 }
3776
3777 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3778                                  struct net_device *dev,
3779                                  struct netdev_queue *txq)
3780 {
3781         spinlock_t *root_lock = qdisc_lock(q);
3782         struct sk_buff *to_free = NULL;
3783         bool contended;
3784         int rc;
3785
3786         qdisc_calculate_pkt_len(skb, q);
3787
3788         if (q->flags & TCQ_F_NOLOCK) {
3789                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3790                     qdisc_run_begin(q)) {
3791                         /* Retest nolock_qdisc_is_empty() within the protection
3792                          * of q->seqlock to protect from racing with requeuing.
3793                          */
3794                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3795                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3796                                 __qdisc_run(q);
3797                                 qdisc_run_end(q);
3798
3799                                 goto no_lock_out;
3800                         }
3801
3802                         qdisc_bstats_cpu_update(q, skb);
3803                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3804                             !nolock_qdisc_is_empty(q))
3805                                 __qdisc_run(q);
3806
3807                         qdisc_run_end(q);
3808                         return NET_XMIT_SUCCESS;
3809                 }
3810
3811                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3812                 qdisc_run(q);
3813
3814 no_lock_out:
3815                 if (unlikely(to_free))
3816                         kfree_skb_list_reason(to_free,
3817                                               SKB_DROP_REASON_QDISC_DROP);
3818                 return rc;
3819         }
3820
3821         /*
3822          * Heuristic to force contended enqueues to serialize on a
3823          * separate lock before trying to get qdisc main lock.
3824          * This permits qdisc->running owner to get the lock more
3825          * often and dequeue packets faster.
3826          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3827          * and then other tasks will only enqueue packets. The packets will be
3828          * sent after the qdisc owner is scheduled again. To prevent this
3829          * scenario the task always serialize on the lock.
3830          */
3831         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3832         if (unlikely(contended))
3833                 spin_lock(&q->busylock);
3834
3835         spin_lock(root_lock);
3836         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3837                 __qdisc_drop(skb, &to_free);
3838                 rc = NET_XMIT_DROP;
3839         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3840                    qdisc_run_begin(q)) {
3841                 /*
3842                  * This is a work-conserving queue; there are no old skbs
3843                  * waiting to be sent out; and the qdisc is not running -
3844                  * xmit the skb directly.
3845                  */
3846
3847                 qdisc_bstats_update(q, skb);
3848
3849                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3850                         if (unlikely(contended)) {
3851                                 spin_unlock(&q->busylock);
3852                                 contended = false;
3853                         }
3854                         __qdisc_run(q);
3855                 }
3856
3857                 qdisc_run_end(q);
3858                 rc = NET_XMIT_SUCCESS;
3859         } else {
3860                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3861                 if (qdisc_run_begin(q)) {
3862                         if (unlikely(contended)) {
3863                                 spin_unlock(&q->busylock);
3864                                 contended = false;
3865                         }
3866                         __qdisc_run(q);
3867                         qdisc_run_end(q);
3868                 }
3869         }
3870         spin_unlock(root_lock);
3871         if (unlikely(to_free))
3872                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3873         if (unlikely(contended))
3874                 spin_unlock(&q->busylock);
3875         return rc;
3876 }
3877
3878 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3879 static void skb_update_prio(struct sk_buff *skb)
3880 {
3881         const struct netprio_map *map;
3882         const struct sock *sk;
3883         unsigned int prioidx;
3884
3885         if (skb->priority)
3886                 return;
3887         map = rcu_dereference_bh(skb->dev->priomap);
3888         if (!map)
3889                 return;
3890         sk = skb_to_full_sk(skb);
3891         if (!sk)
3892                 return;
3893
3894         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3895
3896         if (prioidx < map->priomap_len)
3897                 skb->priority = map->priomap[prioidx];
3898 }
3899 #else
3900 #define skb_update_prio(skb)
3901 #endif
3902
3903 /**
3904  *      dev_loopback_xmit - loop back @skb
3905  *      @net: network namespace this loopback is happening in
3906  *      @sk:  sk needed to be a netfilter okfn
3907  *      @skb: buffer to transmit
3908  */
3909 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3910 {
3911         skb_reset_mac_header(skb);
3912         __skb_pull(skb, skb_network_offset(skb));
3913         skb->pkt_type = PACKET_LOOPBACK;
3914         if (skb->ip_summed == CHECKSUM_NONE)
3915                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3916         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3917         skb_dst_force(skb);
3918         netif_rx(skb);
3919         return 0;
3920 }
3921 EXPORT_SYMBOL(dev_loopback_xmit);
3922
3923 #ifdef CONFIG_NET_EGRESS
3924 static struct netdev_queue *
3925 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3926 {
3927         int qm = skb_get_queue_mapping(skb);
3928
3929         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3930 }
3931
3932 static bool netdev_xmit_txqueue_skipped(void)
3933 {
3934         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3935 }
3936
3937 void netdev_xmit_skip_txqueue(bool skip)
3938 {
3939         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3940 }
3941 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3942 #endif /* CONFIG_NET_EGRESS */
3943
3944 #ifdef CONFIG_NET_XGRESS
3945 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3946 {
3947         int ret = TC_ACT_UNSPEC;
3948 #ifdef CONFIG_NET_CLS_ACT
3949         struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3950         struct tcf_result res;
3951
3952         if (!miniq)
3953                 return ret;
3954
3955         tc_skb_cb(skb)->mru = 0;
3956         tc_skb_cb(skb)->post_ct = false;
3957
3958         mini_qdisc_bstats_cpu_update(miniq, skb);
3959         ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3960         /* Only tcf related quirks below. */
3961         switch (ret) {
3962         case TC_ACT_SHOT:
3963                 mini_qdisc_qstats_cpu_drop(miniq);
3964                 break;
3965         case TC_ACT_OK:
3966         case TC_ACT_RECLASSIFY:
3967                 skb->tc_index = TC_H_MIN(res.classid);
3968                 break;
3969         }
3970 #endif /* CONFIG_NET_CLS_ACT */
3971         return ret;
3972 }
3973
3974 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3975
3976 void tcx_inc(void)
3977 {
3978         static_branch_inc(&tcx_needed_key);
3979 }
3980
3981 void tcx_dec(void)
3982 {
3983         static_branch_dec(&tcx_needed_key);
3984 }
3985
3986 static __always_inline enum tcx_action_base
3987 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3988         const bool needs_mac)
3989 {
3990         const struct bpf_mprog_fp *fp;
3991         const struct bpf_prog *prog;
3992         int ret = TCX_NEXT;
3993
3994         if (needs_mac)
3995                 __skb_push(skb, skb->mac_len);
3996         bpf_mprog_foreach_prog(entry, fp, prog) {
3997                 bpf_compute_data_pointers(skb);
3998                 ret = bpf_prog_run(prog, skb);
3999                 if (ret != TCX_NEXT)
4000                         break;
4001         }
4002         if (needs_mac)
4003                 __skb_pull(skb, skb->mac_len);
4004         return tcx_action_code(skb, ret);
4005 }
4006
4007 static __always_inline struct sk_buff *
4008 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4009                    struct net_device *orig_dev, bool *another)
4010 {
4011         struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4012         int sch_ret;
4013
4014         if (!entry)
4015                 return skb;
4016         if (*pt_prev) {
4017                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4018                 *pt_prev = NULL;
4019         }
4020
4021         qdisc_skb_cb(skb)->pkt_len = skb->len;
4022         tcx_set_ingress(skb, true);
4023
4024         if (static_branch_unlikely(&tcx_needed_key)) {
4025                 sch_ret = tcx_run(entry, skb, true);
4026                 if (sch_ret != TC_ACT_UNSPEC)
4027                         goto ingress_verdict;
4028         }
4029         sch_ret = tc_run(tcx_entry(entry), skb);
4030 ingress_verdict:
4031         switch (sch_ret) {
4032         case TC_ACT_REDIRECT:
4033                 /* skb_mac_header check was done by BPF, so we can safely
4034                  * push the L2 header back before redirecting to another
4035                  * netdev.
4036                  */
4037                 __skb_push(skb, skb->mac_len);
4038                 if (skb_do_redirect(skb) == -EAGAIN) {
4039                         __skb_pull(skb, skb->mac_len);
4040                         *another = true;
4041                         break;
4042                 }
4043                 *ret = NET_RX_SUCCESS;
4044                 return NULL;
4045         case TC_ACT_SHOT:
4046                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4047                 *ret = NET_RX_DROP;
4048                 return NULL;
4049         /* used by tc_run */
4050         case TC_ACT_STOLEN:
4051         case TC_ACT_QUEUED:
4052         case TC_ACT_TRAP:
4053                 consume_skb(skb);
4054                 fallthrough;
4055         case TC_ACT_CONSUMED:
4056                 *ret = NET_RX_SUCCESS;
4057                 return NULL;
4058         }
4059
4060         return skb;
4061 }
4062
4063 static __always_inline struct sk_buff *
4064 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4065 {
4066         struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4067         int sch_ret;
4068
4069         if (!entry)
4070                 return skb;
4071
4072         /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4073          * already set by the caller.
4074          */
4075         if (static_branch_unlikely(&tcx_needed_key)) {
4076                 sch_ret = tcx_run(entry, skb, false);
4077                 if (sch_ret != TC_ACT_UNSPEC)
4078                         goto egress_verdict;
4079         }
4080         sch_ret = tc_run(tcx_entry(entry), skb);
4081 egress_verdict:
4082         switch (sch_ret) {
4083         case TC_ACT_REDIRECT:
4084                 /* No need to push/pop skb's mac_header here on egress! */
4085                 skb_do_redirect(skb);
4086                 *ret = NET_XMIT_SUCCESS;
4087                 return NULL;
4088         case TC_ACT_SHOT:
4089                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4090                 *ret = NET_XMIT_DROP;
4091                 return NULL;
4092         /* used by tc_run */
4093         case TC_ACT_STOLEN:
4094         case TC_ACT_QUEUED:
4095         case TC_ACT_TRAP:
4096                 consume_skb(skb);
4097                 fallthrough;
4098         case TC_ACT_CONSUMED:
4099                 *ret = NET_XMIT_SUCCESS;
4100                 return NULL;
4101         }
4102
4103         return skb;
4104 }
4105 #else
4106 static __always_inline struct sk_buff *
4107 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4108                    struct net_device *orig_dev, bool *another)
4109 {
4110         return skb;
4111 }
4112
4113 static __always_inline struct sk_buff *
4114 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4115 {
4116         return skb;
4117 }
4118 #endif /* CONFIG_NET_XGRESS */
4119
4120 #ifdef CONFIG_XPS
4121 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4122                                struct xps_dev_maps *dev_maps, unsigned int tci)
4123 {
4124         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4125         struct xps_map *map;
4126         int queue_index = -1;
4127
4128         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4129                 return queue_index;
4130
4131         tci *= dev_maps->num_tc;
4132         tci += tc;
4133
4134         map = rcu_dereference(dev_maps->attr_map[tci]);
4135         if (map) {
4136                 if (map->len == 1)
4137                         queue_index = map->queues[0];
4138                 else
4139                         queue_index = map->queues[reciprocal_scale(
4140                                                 skb_get_hash(skb), map->len)];
4141                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4142                         queue_index = -1;
4143         }
4144         return queue_index;
4145 }
4146 #endif
4147
4148 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4149                          struct sk_buff *skb)
4150 {
4151 #ifdef CONFIG_XPS
4152         struct xps_dev_maps *dev_maps;
4153         struct sock *sk = skb->sk;
4154         int queue_index = -1;
4155
4156         if (!static_key_false(&xps_needed))
4157                 return -1;
4158
4159         rcu_read_lock();
4160         if (!static_key_false(&xps_rxqs_needed))
4161                 goto get_cpus_map;
4162
4163         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4164         if (dev_maps) {
4165                 int tci = sk_rx_queue_get(sk);
4166
4167                 if (tci >= 0)
4168                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4169                                                           tci);
4170         }
4171
4172 get_cpus_map:
4173         if (queue_index < 0) {
4174                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4175                 if (dev_maps) {
4176                         unsigned int tci = skb->sender_cpu - 1;
4177
4178                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4179                                                           tci);
4180                 }
4181         }
4182         rcu_read_unlock();
4183
4184         return queue_index;
4185 #else
4186         return -1;
4187 #endif
4188 }
4189
4190 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4191                      struct net_device *sb_dev)
4192 {
4193         return 0;
4194 }
4195 EXPORT_SYMBOL(dev_pick_tx_zero);
4196
4197 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4198                        struct net_device *sb_dev)
4199 {
4200         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4201 }
4202 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4203
4204 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4205                      struct net_device *sb_dev)
4206 {
4207         struct sock *sk = skb->sk;
4208         int queue_index = sk_tx_queue_get(sk);
4209
4210         sb_dev = sb_dev ? : dev;
4211
4212         if (queue_index < 0 || skb->ooo_okay ||
4213             queue_index >= dev->real_num_tx_queues) {
4214                 int new_index = get_xps_queue(dev, sb_dev, skb);
4215
4216                 if (new_index < 0)
4217                         new_index = skb_tx_hash(dev, sb_dev, skb);
4218
4219                 if (queue_index != new_index && sk &&
4220                     sk_fullsock(sk) &&
4221                     rcu_access_pointer(sk->sk_dst_cache))
4222                         sk_tx_queue_set(sk, new_index);
4223
4224                 queue_index = new_index;
4225         }
4226
4227         return queue_index;
4228 }
4229 EXPORT_SYMBOL(netdev_pick_tx);
4230
4231 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4232                                          struct sk_buff *skb,
4233                                          struct net_device *sb_dev)
4234 {
4235         int queue_index = 0;
4236
4237 #ifdef CONFIG_XPS
4238         u32 sender_cpu = skb->sender_cpu - 1;
4239
4240         if (sender_cpu >= (u32)NR_CPUS)
4241                 skb->sender_cpu = raw_smp_processor_id() + 1;
4242 #endif
4243
4244         if (dev->real_num_tx_queues != 1) {
4245                 const struct net_device_ops *ops = dev->netdev_ops;
4246
4247                 if (ops->ndo_select_queue)
4248                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4249                 else
4250                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4251
4252                 queue_index = netdev_cap_txqueue(dev, queue_index);
4253         }
4254
4255         skb_set_queue_mapping(skb, queue_index);
4256         return netdev_get_tx_queue(dev, queue_index);
4257 }
4258
4259 /**
4260  * __dev_queue_xmit() - transmit a buffer
4261  * @skb:        buffer to transmit
4262  * @sb_dev:     suboordinate device used for L2 forwarding offload
4263  *
4264  * Queue a buffer for transmission to a network device. The caller must
4265  * have set the device and priority and built the buffer before calling
4266  * this function. The function can be called from an interrupt.
4267  *
4268  * When calling this method, interrupts MUST be enabled. This is because
4269  * the BH enable code must have IRQs enabled so that it will not deadlock.
4270  *
4271  * Regardless of the return value, the skb is consumed, so it is currently
4272  * difficult to retry a send to this method. (You can bump the ref count
4273  * before sending to hold a reference for retry if you are careful.)
4274  *
4275  * Return:
4276  * * 0                          - buffer successfully transmitted
4277  * * positive qdisc return code - NET_XMIT_DROP etc.
4278  * * negative errno             - other errors
4279  */
4280 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4281 {
4282         struct net_device *dev = skb->dev;
4283         struct netdev_queue *txq = NULL;
4284         struct Qdisc *q;
4285         int rc = -ENOMEM;
4286         bool again = false;
4287
4288         skb_reset_mac_header(skb);
4289         skb_assert_len(skb);
4290
4291         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4292                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4293
4294         /* Disable soft irqs for various locks below. Also
4295          * stops preemption for RCU.
4296          */
4297         rcu_read_lock_bh();
4298
4299         skb_update_prio(skb);
4300
4301         qdisc_pkt_len_init(skb);
4302         tcx_set_ingress(skb, false);
4303 #ifdef CONFIG_NET_EGRESS
4304         if (static_branch_unlikely(&egress_needed_key)) {
4305                 if (nf_hook_egress_active()) {
4306                         skb = nf_hook_egress(skb, &rc, dev);
4307                         if (!skb)
4308                                 goto out;
4309                 }
4310
4311                 netdev_xmit_skip_txqueue(false);
4312
4313                 nf_skip_egress(skb, true);
4314                 skb = sch_handle_egress(skb, &rc, dev);
4315                 if (!skb)
4316                         goto out;
4317                 nf_skip_egress(skb, false);
4318
4319                 if (netdev_xmit_txqueue_skipped())
4320                         txq = netdev_tx_queue_mapping(dev, skb);
4321         }
4322 #endif
4323         /* If device/qdisc don't need skb->dst, release it right now while
4324          * its hot in this cpu cache.
4325          */
4326         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4327                 skb_dst_drop(skb);
4328         else
4329                 skb_dst_force(skb);
4330
4331         if (!txq)
4332                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4333
4334         q = rcu_dereference_bh(txq->qdisc);
4335
4336         trace_net_dev_queue(skb);
4337         if (q->enqueue) {
4338                 rc = __dev_xmit_skb(skb, q, dev, txq);
4339                 goto out;
4340         }
4341
4342         /* The device has no queue. Common case for software devices:
4343          * loopback, all the sorts of tunnels...
4344
4345          * Really, it is unlikely that netif_tx_lock protection is necessary
4346          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4347          * counters.)
4348          * However, it is possible, that they rely on protection
4349          * made by us here.
4350
4351          * Check this and shot the lock. It is not prone from deadlocks.
4352          *Either shot noqueue qdisc, it is even simpler 8)
4353          */
4354         if (dev->flags & IFF_UP) {
4355                 int cpu = smp_processor_id(); /* ok because BHs are off */
4356
4357                 /* Other cpus might concurrently change txq->xmit_lock_owner
4358                  * to -1 or to their cpu id, but not to our id.
4359                  */
4360                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4361                         if (dev_xmit_recursion())
4362                                 goto recursion_alert;
4363
4364                         skb = validate_xmit_skb(skb, dev, &again);
4365                         if (!skb)
4366                                 goto out;
4367
4368                         HARD_TX_LOCK(dev, txq, cpu);
4369
4370                         if (!netif_xmit_stopped(txq)) {
4371                                 dev_xmit_recursion_inc();
4372                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4373                                 dev_xmit_recursion_dec();
4374                                 if (dev_xmit_complete(rc)) {
4375                                         HARD_TX_UNLOCK(dev, txq);
4376                                         goto out;
4377                                 }
4378                         }
4379                         HARD_TX_UNLOCK(dev, txq);
4380                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4381                                              dev->name);
4382                 } else {
4383                         /* Recursion is detected! It is possible,
4384                          * unfortunately
4385                          */
4386 recursion_alert:
4387                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4388                                              dev->name);
4389                 }
4390         }
4391
4392         rc = -ENETDOWN;
4393         rcu_read_unlock_bh();
4394
4395         dev_core_stats_tx_dropped_inc(dev);
4396         kfree_skb_list(skb);
4397         return rc;
4398 out:
4399         rcu_read_unlock_bh();
4400         return rc;
4401 }
4402 EXPORT_SYMBOL(__dev_queue_xmit);
4403
4404 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4405 {
4406         struct net_device *dev = skb->dev;
4407         struct sk_buff *orig_skb = skb;
4408         struct netdev_queue *txq;
4409         int ret = NETDEV_TX_BUSY;
4410         bool again = false;
4411
4412         if (unlikely(!netif_running(dev) ||
4413                      !netif_carrier_ok(dev)))
4414                 goto drop;
4415
4416         skb = validate_xmit_skb_list(skb, dev, &again);
4417         if (skb != orig_skb)
4418                 goto drop;
4419
4420         skb_set_queue_mapping(skb, queue_id);
4421         txq = skb_get_tx_queue(dev, skb);
4422
4423         local_bh_disable();
4424
4425         dev_xmit_recursion_inc();
4426         HARD_TX_LOCK(dev, txq, smp_processor_id());
4427         if (!netif_xmit_frozen_or_drv_stopped(txq))
4428                 ret = netdev_start_xmit(skb, dev, txq, false);
4429         HARD_TX_UNLOCK(dev, txq);
4430         dev_xmit_recursion_dec();
4431
4432         local_bh_enable();
4433         return ret;
4434 drop:
4435         dev_core_stats_tx_dropped_inc(dev);
4436         kfree_skb_list(skb);
4437         return NET_XMIT_DROP;
4438 }
4439 EXPORT_SYMBOL(__dev_direct_xmit);
4440
4441 /*************************************************************************
4442  *                      Receiver routines
4443  *************************************************************************/
4444
4445 int netdev_max_backlog __read_mostly = 1000;
4446 EXPORT_SYMBOL(netdev_max_backlog);
4447
4448 int netdev_tstamp_prequeue __read_mostly = 1;
4449 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4450 int netdev_budget __read_mostly = 300;
4451 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4452 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4453 int weight_p __read_mostly = 64;           /* old backlog weight */
4454 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4455 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4456 int dev_rx_weight __read_mostly = 64;
4457 int dev_tx_weight __read_mostly = 64;
4458
4459 /* Called with irq disabled */
4460 static inline void ____napi_schedule(struct softnet_data *sd,
4461                                      struct napi_struct *napi)
4462 {
4463         struct task_struct *thread;
4464
4465         lockdep_assert_irqs_disabled();
4466
4467         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4468                 /* Paired with smp_mb__before_atomic() in
4469                  * napi_enable()/dev_set_threaded().
4470                  * Use READ_ONCE() to guarantee a complete
4471                  * read on napi->thread. Only call
4472                  * wake_up_process() when it's not NULL.
4473                  */
4474                 thread = READ_ONCE(napi->thread);
4475                 if (thread) {
4476                         /* Avoid doing set_bit() if the thread is in
4477                          * INTERRUPTIBLE state, cause napi_thread_wait()
4478                          * makes sure to proceed with napi polling
4479                          * if the thread is explicitly woken from here.
4480                          */
4481                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4482                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4483                         wake_up_process(thread);
4484                         return;
4485                 }
4486         }
4487
4488         list_add_tail(&napi->poll_list, &sd->poll_list);
4489         WRITE_ONCE(napi->list_owner, smp_processor_id());
4490         /* If not called from net_rx_action()
4491          * we have to raise NET_RX_SOFTIRQ.
4492          */
4493         if (!sd->in_net_rx_action)
4494                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4495 }
4496
4497 #ifdef CONFIG_RPS
4498
4499 /* One global table that all flow-based protocols share. */
4500 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4501 EXPORT_SYMBOL(rps_sock_flow_table);
4502 u32 rps_cpu_mask __read_mostly;
4503 EXPORT_SYMBOL(rps_cpu_mask);
4504
4505 struct static_key_false rps_needed __read_mostly;
4506 EXPORT_SYMBOL(rps_needed);
4507 struct static_key_false rfs_needed __read_mostly;
4508 EXPORT_SYMBOL(rfs_needed);
4509
4510 static struct rps_dev_flow *
4511 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4512             struct rps_dev_flow *rflow, u16 next_cpu)
4513 {
4514         if (next_cpu < nr_cpu_ids) {
4515 #ifdef CONFIG_RFS_ACCEL
4516                 struct netdev_rx_queue *rxqueue;
4517                 struct rps_dev_flow_table *flow_table;
4518                 struct rps_dev_flow *old_rflow;
4519                 u32 flow_id;
4520                 u16 rxq_index;
4521                 int rc;
4522
4523                 /* Should we steer this flow to a different hardware queue? */
4524                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4525                     !(dev->features & NETIF_F_NTUPLE))
4526                         goto out;
4527                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4528                 if (rxq_index == skb_get_rx_queue(skb))
4529                         goto out;
4530
4531                 rxqueue = dev->_rx + rxq_index;
4532                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4533                 if (!flow_table)
4534                         goto out;
4535                 flow_id = skb_get_hash(skb) & flow_table->mask;
4536                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4537                                                         rxq_index, flow_id);
4538                 if (rc < 0)
4539                         goto out;
4540                 old_rflow = rflow;
4541                 rflow = &flow_table->flows[flow_id];
4542                 rflow->filter = rc;
4543                 if (old_rflow->filter == rflow->filter)
4544                         old_rflow->filter = RPS_NO_FILTER;
4545         out:
4546 #endif
4547                 rflow->last_qtail =
4548                         per_cpu(softnet_data, next_cpu).input_queue_head;
4549         }
4550
4551         rflow->cpu = next_cpu;
4552         return rflow;
4553 }
4554
4555 /*
4556  * get_rps_cpu is called from netif_receive_skb and returns the target
4557  * CPU from the RPS map of the receiving queue for a given skb.
4558  * rcu_read_lock must be held on entry.
4559  */
4560 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4561                        struct rps_dev_flow **rflowp)
4562 {
4563         const struct rps_sock_flow_table *sock_flow_table;
4564         struct netdev_rx_queue *rxqueue = dev->_rx;
4565         struct rps_dev_flow_table *flow_table;
4566         struct rps_map *map;
4567         int cpu = -1;
4568         u32 tcpu;
4569         u32 hash;
4570
4571         if (skb_rx_queue_recorded(skb)) {
4572                 u16 index = skb_get_rx_queue(skb);
4573
4574                 if (unlikely(index >= dev->real_num_rx_queues)) {
4575                         WARN_ONCE(dev->real_num_rx_queues > 1,
4576                                   "%s received packet on queue %u, but number "
4577                                   "of RX queues is %u\n",
4578                                   dev->name, index, dev->real_num_rx_queues);
4579                         goto done;
4580                 }
4581                 rxqueue += index;
4582         }
4583
4584         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4585
4586         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4587         map = rcu_dereference(rxqueue->rps_map);
4588         if (!flow_table && !map)
4589                 goto done;
4590
4591         skb_reset_network_header(skb);
4592         hash = skb_get_hash(skb);
4593         if (!hash)
4594                 goto done;
4595
4596         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4597         if (flow_table && sock_flow_table) {
4598                 struct rps_dev_flow *rflow;
4599                 u32 next_cpu;
4600                 u32 ident;
4601
4602                 /* First check into global flow table if there is a match.
4603                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4604                  */
4605                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4606                 if ((ident ^ hash) & ~rps_cpu_mask)
4607                         goto try_rps;
4608
4609                 next_cpu = ident & rps_cpu_mask;
4610
4611                 /* OK, now we know there is a match,
4612                  * we can look at the local (per receive queue) flow table
4613                  */
4614                 rflow = &flow_table->flows[hash & flow_table->mask];
4615                 tcpu = rflow->cpu;
4616
4617                 /*
4618                  * If the desired CPU (where last recvmsg was done) is
4619                  * different from current CPU (one in the rx-queue flow
4620                  * table entry), switch if one of the following holds:
4621                  *   - Current CPU is unset (>= nr_cpu_ids).
4622                  *   - Current CPU is offline.
4623                  *   - The current CPU's queue tail has advanced beyond the
4624                  *     last packet that was enqueued using this table entry.
4625                  *     This guarantees that all previous packets for the flow
4626                  *     have been dequeued, thus preserving in order delivery.
4627                  */
4628                 if (unlikely(tcpu != next_cpu) &&
4629                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4630                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4631                       rflow->last_qtail)) >= 0)) {
4632                         tcpu = next_cpu;
4633                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4634                 }
4635
4636                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4637                         *rflowp = rflow;
4638                         cpu = tcpu;
4639                         goto done;
4640                 }
4641         }
4642
4643 try_rps:
4644
4645         if (map) {
4646                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4647                 if (cpu_online(tcpu)) {
4648                         cpu = tcpu;
4649                         goto done;
4650                 }
4651         }
4652
4653 done:
4654         return cpu;
4655 }
4656
4657 #ifdef CONFIG_RFS_ACCEL
4658
4659 /**
4660  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4661  * @dev: Device on which the filter was set
4662  * @rxq_index: RX queue index
4663  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4664  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4665  *
4666  * Drivers that implement ndo_rx_flow_steer() should periodically call
4667  * this function for each installed filter and remove the filters for
4668  * which it returns %true.
4669  */
4670 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4671                          u32 flow_id, u16 filter_id)
4672 {
4673         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4674         struct rps_dev_flow_table *flow_table;
4675         struct rps_dev_flow *rflow;
4676         bool expire = true;
4677         unsigned int cpu;
4678
4679         rcu_read_lock();
4680         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4681         if (flow_table && flow_id <= flow_table->mask) {
4682                 rflow = &flow_table->flows[flow_id];
4683                 cpu = READ_ONCE(rflow->cpu);
4684                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4685                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4686                            rflow->last_qtail) <
4687                      (int)(10 * flow_table->mask)))
4688                         expire = false;
4689         }
4690         rcu_read_unlock();
4691         return expire;
4692 }
4693 EXPORT_SYMBOL(rps_may_expire_flow);
4694
4695 #endif /* CONFIG_RFS_ACCEL */
4696
4697 /* Called from hardirq (IPI) context */
4698 static void rps_trigger_softirq(void *data)
4699 {
4700         struct softnet_data *sd = data;
4701
4702         ____napi_schedule(sd, &sd->backlog);
4703         sd->received_rps++;
4704 }
4705
4706 #endif /* CONFIG_RPS */
4707
4708 /* Called from hardirq (IPI) context */
4709 static void trigger_rx_softirq(void *data)
4710 {
4711         struct softnet_data *sd = data;
4712
4713         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4714         smp_store_release(&sd->defer_ipi_scheduled, 0);
4715 }
4716
4717 /*
4718  * After we queued a packet into sd->input_pkt_queue,
4719  * we need to make sure this queue is serviced soon.
4720  *
4721  * - If this is another cpu queue, link it to our rps_ipi_list,
4722  *   and make sure we will process rps_ipi_list from net_rx_action().
4723  *
4724  * - If this is our own queue, NAPI schedule our backlog.
4725  *   Note that this also raises NET_RX_SOFTIRQ.
4726  */
4727 static void napi_schedule_rps(struct softnet_data *sd)
4728 {
4729         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4730
4731 #ifdef CONFIG_RPS
4732         if (sd != mysd) {
4733                 sd->rps_ipi_next = mysd->rps_ipi_list;
4734                 mysd->rps_ipi_list = sd;
4735
4736                 /* If not called from net_rx_action() or napi_threaded_poll()
4737                  * we have to raise NET_RX_SOFTIRQ.
4738                  */
4739                 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4740                         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4741                 return;
4742         }
4743 #endif /* CONFIG_RPS */
4744         __napi_schedule_irqoff(&mysd->backlog);
4745 }
4746
4747 #ifdef CONFIG_NET_FLOW_LIMIT
4748 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4749 #endif
4750
4751 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4752 {
4753 #ifdef CONFIG_NET_FLOW_LIMIT
4754         struct sd_flow_limit *fl;
4755         struct softnet_data *sd;
4756         unsigned int old_flow, new_flow;
4757
4758         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4759                 return false;
4760
4761         sd = this_cpu_ptr(&softnet_data);
4762
4763         rcu_read_lock();
4764         fl = rcu_dereference(sd->flow_limit);
4765         if (fl) {
4766                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4767                 old_flow = fl->history[fl->history_head];
4768                 fl->history[fl->history_head] = new_flow;
4769
4770                 fl->history_head++;
4771                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4772
4773                 if (likely(fl->buckets[old_flow]))
4774                         fl->buckets[old_flow]--;
4775
4776                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4777                         fl->count++;
4778                         rcu_read_unlock();
4779                         return true;
4780                 }
4781         }
4782         rcu_read_unlock();
4783 #endif
4784         return false;
4785 }
4786
4787 /*
4788  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4789  * queue (may be a remote CPU queue).
4790  */
4791 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4792                               unsigned int *qtail)
4793 {
4794         enum skb_drop_reason reason;
4795         struct softnet_data *sd;
4796         unsigned long flags;
4797         unsigned int qlen;
4798
4799         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4800         sd = &per_cpu(softnet_data, cpu);
4801
4802         rps_lock_irqsave(sd, &flags);
4803         if (!netif_running(skb->dev))
4804                 goto drop;
4805         qlen = skb_queue_len(&sd->input_pkt_queue);
4806         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4807                 if (qlen) {
4808 enqueue:
4809                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4810                         input_queue_tail_incr_save(sd, qtail);
4811                         rps_unlock_irq_restore(sd, &flags);
4812                         return NET_RX_SUCCESS;
4813                 }
4814
4815                 /* Schedule NAPI for backlog device
4816                  * We can use non atomic operation since we own the queue lock
4817                  */
4818                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4819                         napi_schedule_rps(sd);
4820                 goto enqueue;
4821         }
4822         reason = SKB_DROP_REASON_CPU_BACKLOG;
4823
4824 drop:
4825         sd->dropped++;
4826         rps_unlock_irq_restore(sd, &flags);
4827
4828         dev_core_stats_rx_dropped_inc(skb->dev);
4829         kfree_skb_reason(skb, reason);
4830         return NET_RX_DROP;
4831 }
4832
4833 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4834 {
4835         struct net_device *dev = skb->dev;
4836         struct netdev_rx_queue *rxqueue;
4837
4838         rxqueue = dev->_rx;
4839
4840         if (skb_rx_queue_recorded(skb)) {
4841                 u16 index = skb_get_rx_queue(skb);
4842
4843                 if (unlikely(index >= dev->real_num_rx_queues)) {
4844                         WARN_ONCE(dev->real_num_rx_queues > 1,
4845                                   "%s received packet on queue %u, but number "
4846                                   "of RX queues is %u\n",
4847                                   dev->name, index, dev->real_num_rx_queues);
4848
4849                         return rxqueue; /* Return first rxqueue */
4850                 }
4851                 rxqueue += index;
4852         }
4853         return rxqueue;
4854 }
4855
4856 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4857                              struct bpf_prog *xdp_prog)
4858 {
4859         void *orig_data, *orig_data_end, *hard_start;
4860         struct netdev_rx_queue *rxqueue;
4861         bool orig_bcast, orig_host;
4862         u32 mac_len, frame_sz;
4863         __be16 orig_eth_type;
4864         struct ethhdr *eth;
4865         u32 metalen, act;
4866         int off;
4867
4868         /* The XDP program wants to see the packet starting at the MAC
4869          * header.
4870          */
4871         mac_len = skb->data - skb_mac_header(skb);
4872         hard_start = skb->data - skb_headroom(skb);
4873
4874         /* SKB "head" area always have tailroom for skb_shared_info */
4875         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4876         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4877
4878         rxqueue = netif_get_rxqueue(skb);
4879         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4880         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4881                          skb_headlen(skb) + mac_len, true);
4882
4883         orig_data_end = xdp->data_end;
4884         orig_data = xdp->data;
4885         eth = (struct ethhdr *)xdp->data;
4886         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4887         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4888         orig_eth_type = eth->h_proto;
4889
4890         act = bpf_prog_run_xdp(xdp_prog, xdp);
4891
4892         /* check if bpf_xdp_adjust_head was used */
4893         off = xdp->data - orig_data;
4894         if (off) {
4895                 if (off > 0)
4896                         __skb_pull(skb, off);
4897                 else if (off < 0)
4898                         __skb_push(skb, -off);
4899
4900                 skb->mac_header += off;
4901                 skb_reset_network_header(skb);
4902         }
4903
4904         /* check if bpf_xdp_adjust_tail was used */
4905         off = xdp->data_end - orig_data_end;
4906         if (off != 0) {
4907                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4908                 skb->len += off; /* positive on grow, negative on shrink */
4909         }
4910
4911         /* check if XDP changed eth hdr such SKB needs update */
4912         eth = (struct ethhdr *)xdp->data;
4913         if ((orig_eth_type != eth->h_proto) ||
4914             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4915                                                   skb->dev->dev_addr)) ||
4916             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4917                 __skb_push(skb, ETH_HLEN);
4918                 skb->pkt_type = PACKET_HOST;
4919                 skb->protocol = eth_type_trans(skb, skb->dev);
4920         }
4921
4922         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4923          * before calling us again on redirect path. We do not call do_redirect
4924          * as we leave that up to the caller.
4925          *
4926          * Caller is responsible for managing lifetime of skb (i.e. calling
4927          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4928          */
4929         switch (act) {
4930         case XDP_REDIRECT:
4931         case XDP_TX:
4932                 __skb_push(skb, mac_len);
4933                 break;
4934         case XDP_PASS:
4935                 metalen = xdp->data - xdp->data_meta;
4936                 if (metalen)
4937                         skb_metadata_set(skb, metalen);
4938                 break;
4939         }
4940
4941         return act;
4942 }
4943
4944 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4945                                      struct xdp_buff *xdp,
4946                                      struct bpf_prog *xdp_prog)
4947 {
4948         u32 act = XDP_DROP;
4949
4950         /* Reinjected packets coming from act_mirred or similar should
4951          * not get XDP generic processing.
4952          */
4953         if (skb_is_redirected(skb))
4954                 return XDP_PASS;
4955
4956         /* XDP packets must be linear and must have sufficient headroom
4957          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4958          * native XDP provides, thus we need to do it here as well.
4959          */
4960         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4961             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4962                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4963                 int troom = skb->tail + skb->data_len - skb->end;
4964
4965                 /* In case we have to go down the path and also linearize,
4966                  * then lets do the pskb_expand_head() work just once here.
4967                  */
4968                 if (pskb_expand_head(skb,
4969                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4970                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4971                         goto do_drop;
4972                 if (skb_linearize(skb))
4973                         goto do_drop;
4974         }
4975
4976         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4977         switch (act) {
4978         case XDP_REDIRECT:
4979         case XDP_TX:
4980         case XDP_PASS:
4981                 break;
4982         default:
4983                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4984                 fallthrough;
4985         case XDP_ABORTED:
4986                 trace_xdp_exception(skb->dev, xdp_prog, act);
4987                 fallthrough;
4988         case XDP_DROP:
4989         do_drop:
4990                 kfree_skb(skb);
4991                 break;
4992         }
4993
4994         return act;
4995 }
4996
4997 /* When doing generic XDP we have to bypass the qdisc layer and the
4998  * network taps in order to match in-driver-XDP behavior. This also means
4999  * that XDP packets are able to starve other packets going through a qdisc,
5000  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5001  * queues, so they do not have this starvation issue.
5002  */
5003 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5004 {
5005         struct net_device *dev = skb->dev;
5006         struct netdev_queue *txq;
5007         bool free_skb = true;
5008         int cpu, rc;
5009
5010         txq = netdev_core_pick_tx(dev, skb, NULL);
5011         cpu = smp_processor_id();
5012         HARD_TX_LOCK(dev, txq, cpu);
5013         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5014                 rc = netdev_start_xmit(skb, dev, txq, 0);
5015                 if (dev_xmit_complete(rc))
5016                         free_skb = false;
5017         }
5018         HARD_TX_UNLOCK(dev, txq);
5019         if (free_skb) {
5020                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5021                 dev_core_stats_tx_dropped_inc(dev);
5022                 kfree_skb(skb);
5023         }
5024 }
5025
5026 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5027
5028 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5029 {
5030         if (xdp_prog) {
5031                 struct xdp_buff xdp;
5032                 u32 act;
5033                 int err;
5034
5035                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5036                 if (act != XDP_PASS) {
5037                         switch (act) {
5038                         case XDP_REDIRECT:
5039                                 err = xdp_do_generic_redirect(skb->dev, skb,
5040                                                               &xdp, xdp_prog);
5041                                 if (err)
5042                                         goto out_redir;
5043                                 break;
5044                         case XDP_TX:
5045                                 generic_xdp_tx(skb, xdp_prog);
5046                                 break;
5047                         }
5048                         return XDP_DROP;
5049                 }
5050         }
5051         return XDP_PASS;
5052 out_redir:
5053         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5054         return XDP_DROP;
5055 }
5056 EXPORT_SYMBOL_GPL(do_xdp_generic);
5057
5058 static int netif_rx_internal(struct sk_buff *skb)
5059 {
5060         int ret;
5061
5062         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5063
5064         trace_netif_rx(skb);
5065
5066 #ifdef CONFIG_RPS
5067         if (static_branch_unlikely(&rps_needed)) {
5068                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5069                 int cpu;
5070
5071                 rcu_read_lock();
5072
5073                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5074                 if (cpu < 0)
5075                         cpu = smp_processor_id();
5076
5077                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5078
5079                 rcu_read_unlock();
5080         } else
5081 #endif
5082         {
5083                 unsigned int qtail;
5084
5085                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5086         }
5087         return ret;
5088 }
5089
5090 /**
5091  *      __netif_rx      -       Slightly optimized version of netif_rx
5092  *      @skb: buffer to post
5093  *
5094  *      This behaves as netif_rx except that it does not disable bottom halves.
5095  *      As a result this function may only be invoked from the interrupt context
5096  *      (either hard or soft interrupt).
5097  */
5098 int __netif_rx(struct sk_buff *skb)
5099 {
5100         int ret;
5101
5102         lockdep_assert_once(hardirq_count() | softirq_count());
5103
5104         trace_netif_rx_entry(skb);
5105         ret = netif_rx_internal(skb);
5106         trace_netif_rx_exit(ret);
5107         return ret;
5108 }
5109 EXPORT_SYMBOL(__netif_rx);
5110
5111 /**
5112  *      netif_rx        -       post buffer to the network code
5113  *      @skb: buffer to post
5114  *
5115  *      This function receives a packet from a device driver and queues it for
5116  *      the upper (protocol) levels to process via the backlog NAPI device. It
5117  *      always succeeds. The buffer may be dropped during processing for
5118  *      congestion control or by the protocol layers.
5119  *      The network buffer is passed via the backlog NAPI device. Modern NIC
5120  *      driver should use NAPI and GRO.
5121  *      This function can used from interrupt and from process context. The
5122  *      caller from process context must not disable interrupts before invoking
5123  *      this function.
5124  *
5125  *      return values:
5126  *      NET_RX_SUCCESS  (no congestion)
5127  *      NET_RX_DROP     (packet was dropped)
5128  *
5129  */
5130 int netif_rx(struct sk_buff *skb)
5131 {
5132         bool need_bh_off = !(hardirq_count() | softirq_count());
5133         int ret;
5134
5135         if (need_bh_off)
5136                 local_bh_disable();
5137         trace_netif_rx_entry(skb);
5138         ret = netif_rx_internal(skb);
5139         trace_netif_rx_exit(ret);
5140         if (need_bh_off)
5141                 local_bh_enable();
5142         return ret;
5143 }
5144 EXPORT_SYMBOL(netif_rx);
5145
5146 static __latent_entropy void net_tx_action(struct softirq_action *h)
5147 {
5148         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5149
5150         if (sd->completion_queue) {
5151                 struct sk_buff *clist;
5152
5153                 local_irq_disable();
5154                 clist = sd->completion_queue;
5155                 sd->completion_queue = NULL;
5156                 local_irq_enable();
5157
5158                 while (clist) {
5159                         struct sk_buff *skb = clist;
5160
5161                         clist = clist->next;
5162
5163                         WARN_ON(refcount_read(&skb->users));
5164                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5165                                 trace_consume_skb(skb, net_tx_action);
5166                         else
5167                                 trace_kfree_skb(skb, net_tx_action,
5168                                                 get_kfree_skb_cb(skb)->reason);
5169
5170                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5171                                 __kfree_skb(skb);
5172                         else
5173                                 __napi_kfree_skb(skb,
5174                                                  get_kfree_skb_cb(skb)->reason);
5175                 }
5176         }
5177
5178         if (sd->output_queue) {
5179                 struct Qdisc *head;
5180
5181                 local_irq_disable();
5182                 head = sd->output_queue;
5183                 sd->output_queue = NULL;
5184                 sd->output_queue_tailp = &sd->output_queue;
5185                 local_irq_enable();
5186
5187                 rcu_read_lock();
5188
5189                 while (head) {
5190                         struct Qdisc *q = head;
5191                         spinlock_t *root_lock = NULL;
5192
5193                         head = head->next_sched;
5194
5195                         /* We need to make sure head->next_sched is read
5196                          * before clearing __QDISC_STATE_SCHED
5197                          */
5198                         smp_mb__before_atomic();
5199
5200                         if (!(q->flags & TCQ_F_NOLOCK)) {
5201                                 root_lock = qdisc_lock(q);
5202                                 spin_lock(root_lock);
5203                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5204                                                      &q->state))) {
5205                                 /* There is a synchronize_net() between
5206                                  * STATE_DEACTIVATED flag being set and
5207                                  * qdisc_reset()/some_qdisc_is_busy() in
5208                                  * dev_deactivate(), so we can safely bail out
5209                                  * early here to avoid data race between
5210                                  * qdisc_deactivate() and some_qdisc_is_busy()
5211                                  * for lockless qdisc.
5212                                  */
5213                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5214                                 continue;
5215                         }
5216
5217                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5218                         qdisc_run(q);
5219                         if (root_lock)
5220                                 spin_unlock(root_lock);
5221                 }
5222
5223                 rcu_read_unlock();
5224         }
5225
5226         xfrm_dev_backlog(sd);
5227 }
5228
5229 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5230 /* This hook is defined here for ATM LANE */
5231 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5232                              unsigned char *addr) __read_mostly;
5233 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5234 #endif
5235
5236 /**
5237  *      netdev_is_rx_handler_busy - check if receive handler is registered
5238  *      @dev: device to check
5239  *
5240  *      Check if a receive handler is already registered for a given device.
5241  *      Return true if there one.
5242  *
5243  *      The caller must hold the rtnl_mutex.
5244  */
5245 bool netdev_is_rx_handler_busy(struct net_device *dev)
5246 {
5247         ASSERT_RTNL();
5248         return dev && rtnl_dereference(dev->rx_handler);
5249 }
5250 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5251
5252 /**
5253  *      netdev_rx_handler_register - register receive handler
5254  *      @dev: device to register a handler for
5255  *      @rx_handler: receive handler to register
5256  *      @rx_handler_data: data pointer that is used by rx handler
5257  *
5258  *      Register a receive handler for a device. This handler will then be
5259  *      called from __netif_receive_skb. A negative errno code is returned
5260  *      on a failure.
5261  *
5262  *      The caller must hold the rtnl_mutex.
5263  *
5264  *      For a general description of rx_handler, see enum rx_handler_result.
5265  */
5266 int netdev_rx_handler_register(struct net_device *dev,
5267                                rx_handler_func_t *rx_handler,
5268                                void *rx_handler_data)
5269 {
5270         if (netdev_is_rx_handler_busy(dev))
5271                 return -EBUSY;
5272
5273         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5274                 return -EINVAL;
5275
5276         /* Note: rx_handler_data must be set before rx_handler */
5277         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5278         rcu_assign_pointer(dev->rx_handler, rx_handler);
5279
5280         return 0;
5281 }
5282 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5283
5284 /**
5285  *      netdev_rx_handler_unregister - unregister receive handler
5286  *      @dev: device to unregister a handler from
5287  *
5288  *      Unregister a receive handler from a device.
5289  *
5290  *      The caller must hold the rtnl_mutex.
5291  */
5292 void netdev_rx_handler_unregister(struct net_device *dev)
5293 {
5294
5295         ASSERT_RTNL();
5296         RCU_INIT_POINTER(dev->rx_handler, NULL);
5297         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5298          * section has a guarantee to see a non NULL rx_handler_data
5299          * as well.
5300          */
5301         synchronize_net();
5302         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5303 }
5304 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5305
5306 /*
5307  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5308  * the special handling of PFMEMALLOC skbs.
5309  */
5310 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5311 {
5312         switch (skb->protocol) {
5313         case htons(ETH_P_ARP):
5314         case htons(ETH_P_IP):
5315         case htons(ETH_P_IPV6):
5316         case htons(ETH_P_8021Q):
5317         case htons(ETH_P_8021AD):
5318                 return true;
5319         default:
5320                 return false;
5321         }
5322 }
5323
5324 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5325                              int *ret, struct net_device *orig_dev)
5326 {
5327         if (nf_hook_ingress_active(skb)) {
5328                 int ingress_retval;
5329
5330                 if (*pt_prev) {
5331                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5332                         *pt_prev = NULL;
5333                 }
5334
5335                 rcu_read_lock();
5336                 ingress_retval = nf_hook_ingress(skb);
5337                 rcu_read_unlock();
5338                 return ingress_retval;
5339         }
5340         return 0;
5341 }
5342
5343 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5344                                     struct packet_type **ppt_prev)
5345 {
5346         struct packet_type *ptype, *pt_prev;
5347         rx_handler_func_t *rx_handler;
5348         struct sk_buff *skb = *pskb;
5349         struct net_device *orig_dev;
5350         bool deliver_exact = false;
5351         int ret = NET_RX_DROP;
5352         __be16 type;
5353
5354         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5355
5356         trace_netif_receive_skb(skb);
5357
5358         orig_dev = skb->dev;
5359
5360         skb_reset_network_header(skb);
5361         if (!skb_transport_header_was_set(skb))
5362                 skb_reset_transport_header(skb);
5363         skb_reset_mac_len(skb);
5364
5365         pt_prev = NULL;
5366
5367 another_round:
5368         skb->skb_iif = skb->dev->ifindex;
5369
5370         __this_cpu_inc(softnet_data.processed);
5371
5372         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5373                 int ret2;
5374
5375                 migrate_disable();
5376                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5377                 migrate_enable();
5378
5379                 if (ret2 != XDP_PASS) {
5380                         ret = NET_RX_DROP;
5381                         goto out;
5382                 }
5383         }
5384
5385         if (eth_type_vlan(skb->protocol)) {
5386                 skb = skb_vlan_untag(skb);
5387                 if (unlikely(!skb))
5388                         goto out;
5389         }
5390
5391         if (skb_skip_tc_classify(skb))
5392                 goto skip_classify;
5393
5394         if (pfmemalloc)
5395                 goto skip_taps;
5396
5397         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5398                 if (pt_prev)
5399                         ret = deliver_skb(skb, pt_prev, orig_dev);
5400                 pt_prev = ptype;
5401         }
5402
5403         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5404                 if (pt_prev)
5405                         ret = deliver_skb(skb, pt_prev, orig_dev);
5406                 pt_prev = ptype;
5407         }
5408
5409 skip_taps:
5410 #ifdef CONFIG_NET_INGRESS
5411         if (static_branch_unlikely(&ingress_needed_key)) {
5412                 bool another = false;
5413
5414                 nf_skip_egress(skb, true);
5415                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5416                                          &another);
5417                 if (another)
5418                         goto another_round;
5419                 if (!skb)
5420                         goto out;
5421
5422                 nf_skip_egress(skb, false);
5423                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5424                         goto out;
5425         }
5426 #endif
5427         skb_reset_redirect(skb);
5428 skip_classify:
5429         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5430                 goto drop;
5431
5432         if (skb_vlan_tag_present(skb)) {
5433                 if (pt_prev) {
5434                         ret = deliver_skb(skb, pt_prev, orig_dev);
5435                         pt_prev = NULL;
5436                 }
5437                 if (vlan_do_receive(&skb))
5438                         goto another_round;
5439                 else if (unlikely(!skb))
5440                         goto out;
5441         }
5442
5443         rx_handler = rcu_dereference(skb->dev->rx_handler);
5444         if (rx_handler) {
5445                 if (pt_prev) {
5446                         ret = deliver_skb(skb, pt_prev, orig_dev);
5447                         pt_prev = NULL;
5448                 }
5449                 switch (rx_handler(&skb)) {
5450                 case RX_HANDLER_CONSUMED:
5451                         ret = NET_RX_SUCCESS;
5452                         goto out;
5453                 case RX_HANDLER_ANOTHER:
5454                         goto another_round;
5455                 case RX_HANDLER_EXACT:
5456                         deliver_exact = true;
5457                         break;
5458                 case RX_HANDLER_PASS:
5459                         break;
5460                 default:
5461                         BUG();
5462                 }
5463         }
5464
5465         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5466 check_vlan_id:
5467                 if (skb_vlan_tag_get_id(skb)) {
5468                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5469                          * find vlan device.
5470                          */
5471                         skb->pkt_type = PACKET_OTHERHOST;
5472                 } else if (eth_type_vlan(skb->protocol)) {
5473                         /* Outer header is 802.1P with vlan 0, inner header is
5474                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5475                          * not find vlan dev for vlan id 0.
5476                          */
5477                         __vlan_hwaccel_clear_tag(skb);
5478                         skb = skb_vlan_untag(skb);
5479                         if (unlikely(!skb))
5480                                 goto out;
5481                         if (vlan_do_receive(&skb))
5482                                 /* After stripping off 802.1P header with vlan 0
5483                                  * vlan dev is found for inner header.
5484                                  */
5485                                 goto another_round;
5486                         else if (unlikely(!skb))
5487                                 goto out;
5488                         else
5489                                 /* We have stripped outer 802.1P vlan 0 header.
5490                                  * But could not find vlan dev.
5491                                  * check again for vlan id to set OTHERHOST.
5492                                  */
5493                                 goto check_vlan_id;
5494                 }
5495                 /* Note: we might in the future use prio bits
5496                  * and set skb->priority like in vlan_do_receive()
5497                  * For the time being, just ignore Priority Code Point
5498                  */
5499                 __vlan_hwaccel_clear_tag(skb);
5500         }
5501
5502         type = skb->protocol;
5503
5504         /* deliver only exact match when indicated */
5505         if (likely(!deliver_exact)) {
5506                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5507                                        &ptype_base[ntohs(type) &
5508                                                    PTYPE_HASH_MASK]);
5509         }
5510
5511         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5512                                &orig_dev->ptype_specific);
5513
5514         if (unlikely(skb->dev != orig_dev)) {
5515                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5516                                        &skb->dev->ptype_specific);
5517         }
5518
5519         if (pt_prev) {
5520                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5521                         goto drop;
5522                 *ppt_prev = pt_prev;
5523         } else {
5524 drop:
5525                 if (!deliver_exact)
5526                         dev_core_stats_rx_dropped_inc(skb->dev);
5527                 else
5528                         dev_core_stats_rx_nohandler_inc(skb->dev);
5529                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5530                 /* Jamal, now you will not able to escape explaining
5531                  * me how you were going to use this. :-)
5532                  */
5533                 ret = NET_RX_DROP;
5534         }
5535
5536 out:
5537         /* The invariant here is that if *ppt_prev is not NULL
5538          * then skb should also be non-NULL.
5539          *
5540          * Apparently *ppt_prev assignment above holds this invariant due to
5541          * skb dereferencing near it.
5542          */
5543         *pskb = skb;
5544         return ret;
5545 }
5546
5547 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5548 {
5549         struct net_device *orig_dev = skb->dev;
5550         struct packet_type *pt_prev = NULL;
5551         int ret;
5552
5553         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5554         if (pt_prev)
5555                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5556                                          skb->dev, pt_prev, orig_dev);
5557         return ret;
5558 }
5559
5560 /**
5561  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5562  *      @skb: buffer to process
5563  *
5564  *      More direct receive version of netif_receive_skb().  It should
5565  *      only be used by callers that have a need to skip RPS and Generic XDP.
5566  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5567  *
5568  *      This function may only be called from softirq context and interrupts
5569  *      should be enabled.
5570  *
5571  *      Return values (usually ignored):
5572  *      NET_RX_SUCCESS: no congestion
5573  *      NET_RX_DROP: packet was dropped
5574  */
5575 int netif_receive_skb_core(struct sk_buff *skb)
5576 {
5577         int ret;
5578
5579         rcu_read_lock();
5580         ret = __netif_receive_skb_one_core(skb, false);
5581         rcu_read_unlock();
5582
5583         return ret;
5584 }
5585 EXPORT_SYMBOL(netif_receive_skb_core);
5586
5587 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5588                                                   struct packet_type *pt_prev,
5589                                                   struct net_device *orig_dev)
5590 {
5591         struct sk_buff *skb, *next;
5592
5593         if (!pt_prev)
5594                 return;
5595         if (list_empty(head))
5596                 return;
5597         if (pt_prev->list_func != NULL)
5598                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5599                                    ip_list_rcv, head, pt_prev, orig_dev);
5600         else
5601                 list_for_each_entry_safe(skb, next, head, list) {
5602                         skb_list_del_init(skb);
5603                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5604                 }
5605 }
5606
5607 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5608 {
5609         /* Fast-path assumptions:
5610          * - There is no RX handler.
5611          * - Only one packet_type matches.
5612          * If either of these fails, we will end up doing some per-packet
5613          * processing in-line, then handling the 'last ptype' for the whole
5614          * sublist.  This can't cause out-of-order delivery to any single ptype,
5615          * because the 'last ptype' must be constant across the sublist, and all
5616          * other ptypes are handled per-packet.
5617          */
5618         /* Current (common) ptype of sublist */
5619         struct packet_type *pt_curr = NULL;
5620         /* Current (common) orig_dev of sublist */
5621         struct net_device *od_curr = NULL;
5622         struct list_head sublist;
5623         struct sk_buff *skb, *next;
5624
5625         INIT_LIST_HEAD(&sublist);
5626         list_for_each_entry_safe(skb, next, head, list) {
5627                 struct net_device *orig_dev = skb->dev;
5628                 struct packet_type *pt_prev = NULL;
5629
5630                 skb_list_del_init(skb);
5631                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5632                 if (!pt_prev)
5633                         continue;
5634                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5635                         /* dispatch old sublist */
5636                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5637                         /* start new sublist */
5638                         INIT_LIST_HEAD(&sublist);
5639                         pt_curr = pt_prev;
5640                         od_curr = orig_dev;
5641                 }
5642                 list_add_tail(&skb->list, &sublist);
5643         }
5644
5645         /* dispatch final sublist */
5646         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5647 }
5648
5649 static int __netif_receive_skb(struct sk_buff *skb)
5650 {
5651         int ret;
5652
5653         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5654                 unsigned int noreclaim_flag;
5655
5656                 /*
5657                  * PFMEMALLOC skbs are special, they should
5658                  * - be delivered to SOCK_MEMALLOC sockets only
5659                  * - stay away from userspace
5660                  * - have bounded memory usage
5661                  *
5662                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5663                  * context down to all allocation sites.
5664                  */
5665                 noreclaim_flag = memalloc_noreclaim_save();
5666                 ret = __netif_receive_skb_one_core(skb, true);
5667                 memalloc_noreclaim_restore(noreclaim_flag);
5668         } else
5669                 ret = __netif_receive_skb_one_core(skb, false);
5670
5671         return ret;
5672 }
5673
5674 static void __netif_receive_skb_list(struct list_head *head)
5675 {
5676         unsigned long noreclaim_flag = 0;
5677         struct sk_buff *skb, *next;
5678         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5679
5680         list_for_each_entry_safe(skb, next, head, list) {
5681                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5682                         struct list_head sublist;
5683
5684                         /* Handle the previous sublist */
5685                         list_cut_before(&sublist, head, &skb->list);
5686                         if (!list_empty(&sublist))
5687                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5688                         pfmemalloc = !pfmemalloc;
5689                         /* See comments in __netif_receive_skb */
5690                         if (pfmemalloc)
5691                                 noreclaim_flag = memalloc_noreclaim_save();
5692                         else
5693                                 memalloc_noreclaim_restore(noreclaim_flag);
5694                 }
5695         }
5696         /* Handle the remaining sublist */
5697         if (!list_empty(head))
5698                 __netif_receive_skb_list_core(head, pfmemalloc);
5699         /* Restore pflags */
5700         if (pfmemalloc)
5701                 memalloc_noreclaim_restore(noreclaim_flag);
5702 }
5703
5704 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5705 {
5706         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5707         struct bpf_prog *new = xdp->prog;
5708         int ret = 0;
5709
5710         switch (xdp->command) {
5711         case XDP_SETUP_PROG:
5712                 rcu_assign_pointer(dev->xdp_prog, new);
5713                 if (old)
5714                         bpf_prog_put(old);
5715
5716                 if (old && !new) {
5717                         static_branch_dec(&generic_xdp_needed_key);
5718                 } else if (new && !old) {
5719                         static_branch_inc(&generic_xdp_needed_key);
5720                         dev_disable_lro(dev);
5721                         dev_disable_gro_hw(dev);
5722                 }
5723                 break;
5724
5725         default:
5726                 ret = -EINVAL;
5727                 break;
5728         }
5729
5730         return ret;
5731 }
5732
5733 static int netif_receive_skb_internal(struct sk_buff *skb)
5734 {
5735         int ret;
5736
5737         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5738
5739         if (skb_defer_rx_timestamp(skb))
5740                 return NET_RX_SUCCESS;
5741
5742         rcu_read_lock();
5743 #ifdef CONFIG_RPS
5744         if (static_branch_unlikely(&rps_needed)) {
5745                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5746                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5747
5748                 if (cpu >= 0) {
5749                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5750                         rcu_read_unlock();
5751                         return ret;
5752                 }
5753         }
5754 #endif
5755         ret = __netif_receive_skb(skb);
5756         rcu_read_unlock();
5757         return ret;
5758 }
5759
5760 void netif_receive_skb_list_internal(struct list_head *head)
5761 {
5762         struct sk_buff *skb, *next;
5763         struct list_head sublist;
5764
5765         INIT_LIST_HEAD(&sublist);
5766         list_for_each_entry_safe(skb, next, head, list) {
5767                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5768                 skb_list_del_init(skb);
5769                 if (!skb_defer_rx_timestamp(skb))
5770                         list_add_tail(&skb->list, &sublist);
5771         }
5772         list_splice_init(&sublist, head);
5773
5774         rcu_read_lock();
5775 #ifdef CONFIG_RPS
5776         if (static_branch_unlikely(&rps_needed)) {
5777                 list_for_each_entry_safe(skb, next, head, list) {
5778                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5779                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5780
5781                         if (cpu >= 0) {
5782                                 /* Will be handled, remove from list */
5783                                 skb_list_del_init(skb);
5784                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5785                         }
5786                 }
5787         }
5788 #endif
5789         __netif_receive_skb_list(head);
5790         rcu_read_unlock();
5791 }
5792
5793 /**
5794  *      netif_receive_skb - process receive buffer from network
5795  *      @skb: buffer to process
5796  *
5797  *      netif_receive_skb() is the main receive data processing function.
5798  *      It always succeeds. The buffer may be dropped during processing
5799  *      for congestion control or by the protocol layers.
5800  *
5801  *      This function may only be called from softirq context and interrupts
5802  *      should be enabled.
5803  *
5804  *      Return values (usually ignored):
5805  *      NET_RX_SUCCESS: no congestion
5806  *      NET_RX_DROP: packet was dropped
5807  */
5808 int netif_receive_skb(struct sk_buff *skb)
5809 {
5810         int ret;
5811
5812         trace_netif_receive_skb_entry(skb);
5813
5814         ret = netif_receive_skb_internal(skb);
5815         trace_netif_receive_skb_exit(ret);
5816
5817         return ret;
5818 }
5819 EXPORT_SYMBOL(netif_receive_skb);
5820
5821 /**
5822  *      netif_receive_skb_list - process many receive buffers from network
5823  *      @head: list of skbs to process.
5824  *
5825  *      Since return value of netif_receive_skb() is normally ignored, and
5826  *      wouldn't be meaningful for a list, this function returns void.
5827  *
5828  *      This function may only be called from softirq context and interrupts
5829  *      should be enabled.
5830  */
5831 void netif_receive_skb_list(struct list_head *head)
5832 {
5833         struct sk_buff *skb;
5834
5835         if (list_empty(head))
5836                 return;
5837         if (trace_netif_receive_skb_list_entry_enabled()) {
5838                 list_for_each_entry(skb, head, list)
5839                         trace_netif_receive_skb_list_entry(skb);
5840         }
5841         netif_receive_skb_list_internal(head);
5842         trace_netif_receive_skb_list_exit(0);
5843 }
5844 EXPORT_SYMBOL(netif_receive_skb_list);
5845
5846 static DEFINE_PER_CPU(struct work_struct, flush_works);
5847
5848 /* Network device is going away, flush any packets still pending */
5849 static void flush_backlog(struct work_struct *work)
5850 {
5851         struct sk_buff *skb, *tmp;
5852         struct softnet_data *sd;
5853
5854         local_bh_disable();
5855         sd = this_cpu_ptr(&softnet_data);
5856
5857         rps_lock_irq_disable(sd);
5858         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5859                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5860                         __skb_unlink(skb, &sd->input_pkt_queue);
5861                         dev_kfree_skb_irq(skb);
5862                         input_queue_head_incr(sd);
5863                 }
5864         }
5865         rps_unlock_irq_enable(sd);
5866
5867         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5868                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5869                         __skb_unlink(skb, &sd->process_queue);
5870                         kfree_skb(skb);
5871                         input_queue_head_incr(sd);
5872                 }
5873         }
5874         local_bh_enable();
5875 }
5876
5877 static bool flush_required(int cpu)
5878 {
5879 #if IS_ENABLED(CONFIG_RPS)
5880         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5881         bool do_flush;
5882
5883         rps_lock_irq_disable(sd);
5884
5885         /* as insertion into process_queue happens with the rps lock held,
5886          * process_queue access may race only with dequeue
5887          */
5888         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5889                    !skb_queue_empty_lockless(&sd->process_queue);
5890         rps_unlock_irq_enable(sd);
5891
5892         return do_flush;
5893 #endif
5894         /* without RPS we can't safely check input_pkt_queue: during a
5895          * concurrent remote skb_queue_splice() we can detect as empty both
5896          * input_pkt_queue and process_queue even if the latter could end-up
5897          * containing a lot of packets.
5898          */
5899         return true;
5900 }
5901
5902 static void flush_all_backlogs(void)
5903 {
5904         static cpumask_t flush_cpus;
5905         unsigned int cpu;
5906
5907         /* since we are under rtnl lock protection we can use static data
5908          * for the cpumask and avoid allocating on stack the possibly
5909          * large mask
5910          */
5911         ASSERT_RTNL();
5912
5913         cpus_read_lock();
5914
5915         cpumask_clear(&flush_cpus);
5916         for_each_online_cpu(cpu) {
5917                 if (flush_required(cpu)) {
5918                         queue_work_on(cpu, system_highpri_wq,
5919                                       per_cpu_ptr(&flush_works, cpu));
5920                         cpumask_set_cpu(cpu, &flush_cpus);
5921                 }
5922         }
5923
5924         /* we can have in flight packet[s] on the cpus we are not flushing,
5925          * synchronize_net() in unregister_netdevice_many() will take care of
5926          * them
5927          */
5928         for_each_cpu(cpu, &flush_cpus)
5929                 flush_work(per_cpu_ptr(&flush_works, cpu));
5930
5931         cpus_read_unlock();
5932 }
5933
5934 static void net_rps_send_ipi(struct softnet_data *remsd)
5935 {
5936 #ifdef CONFIG_RPS
5937         while (remsd) {
5938                 struct softnet_data *next = remsd->rps_ipi_next;
5939
5940                 if (cpu_online(remsd->cpu))
5941                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5942                 remsd = next;
5943         }
5944 #endif
5945 }
5946
5947 /*
5948  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5949  * Note: called with local irq disabled, but exits with local irq enabled.
5950  */
5951 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5952 {
5953 #ifdef CONFIG_RPS
5954         struct softnet_data *remsd = sd->rps_ipi_list;
5955
5956         if (remsd) {
5957                 sd->rps_ipi_list = NULL;
5958
5959                 local_irq_enable();
5960
5961                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5962                 net_rps_send_ipi(remsd);
5963         } else
5964 #endif
5965                 local_irq_enable();
5966 }
5967
5968 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5969 {
5970 #ifdef CONFIG_RPS
5971         return sd->rps_ipi_list != NULL;
5972 #else
5973         return false;
5974 #endif
5975 }
5976
5977 static int process_backlog(struct napi_struct *napi, int quota)
5978 {
5979         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5980         bool again = true;
5981         int work = 0;
5982
5983         /* Check if we have pending ipi, its better to send them now,
5984          * not waiting net_rx_action() end.
5985          */
5986         if (sd_has_rps_ipi_waiting(sd)) {
5987                 local_irq_disable();
5988                 net_rps_action_and_irq_enable(sd);
5989         }
5990
5991         napi->weight = READ_ONCE(dev_rx_weight);
5992         while (again) {
5993                 struct sk_buff *skb;
5994
5995                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5996                         rcu_read_lock();
5997                         __netif_receive_skb(skb);
5998                         rcu_read_unlock();
5999                         input_queue_head_incr(sd);
6000                         if (++work >= quota)
6001                                 return work;
6002
6003                 }
6004
6005                 rps_lock_irq_disable(sd);
6006                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6007                         /*
6008                          * Inline a custom version of __napi_complete().
6009                          * only current cpu owns and manipulates this napi,
6010                          * and NAPI_STATE_SCHED is the only possible flag set
6011                          * on backlog.
6012                          * We can use a plain write instead of clear_bit(),
6013                          * and we dont need an smp_mb() memory barrier.
6014                          */
6015                         napi->state = 0;
6016                         again = false;
6017                 } else {
6018                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6019                                                    &sd->process_queue);
6020                 }
6021                 rps_unlock_irq_enable(sd);
6022         }
6023
6024         return work;
6025 }
6026
6027 /**
6028  * __napi_schedule - schedule for receive
6029  * @n: entry to schedule
6030  *
6031  * The entry's receive function will be scheduled to run.
6032  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6033  */
6034 void __napi_schedule(struct napi_struct *n)
6035 {
6036         unsigned long flags;
6037
6038         local_irq_save(flags);
6039         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6040         local_irq_restore(flags);
6041 }
6042 EXPORT_SYMBOL(__napi_schedule);
6043
6044 /**
6045  *      napi_schedule_prep - check if napi can be scheduled
6046  *      @n: napi context
6047  *
6048  * Test if NAPI routine is already running, and if not mark
6049  * it as running.  This is used as a condition variable to
6050  * insure only one NAPI poll instance runs.  We also make
6051  * sure there is no pending NAPI disable.
6052  */
6053 bool napi_schedule_prep(struct napi_struct *n)
6054 {
6055         unsigned long new, val = READ_ONCE(n->state);
6056
6057         do {
6058                 if (unlikely(val & NAPIF_STATE_DISABLE))
6059                         return false;
6060                 new = val | NAPIF_STATE_SCHED;
6061
6062                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6063                  * This was suggested by Alexander Duyck, as compiler
6064                  * emits better code than :
6065                  * if (val & NAPIF_STATE_SCHED)
6066                  *     new |= NAPIF_STATE_MISSED;
6067                  */
6068                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6069                                                    NAPIF_STATE_MISSED;
6070         } while (!try_cmpxchg(&n->state, &val, new));
6071
6072         return !(val & NAPIF_STATE_SCHED);
6073 }
6074 EXPORT_SYMBOL(napi_schedule_prep);
6075
6076 /**
6077  * __napi_schedule_irqoff - schedule for receive
6078  * @n: entry to schedule
6079  *
6080  * Variant of __napi_schedule() assuming hard irqs are masked.
6081  *
6082  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6083  * because the interrupt disabled assumption might not be true
6084  * due to force-threaded interrupts and spinlock substitution.
6085  */
6086 void __napi_schedule_irqoff(struct napi_struct *n)
6087 {
6088         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6089                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6090         else
6091                 __napi_schedule(n);
6092 }
6093 EXPORT_SYMBOL(__napi_schedule_irqoff);
6094
6095 bool napi_complete_done(struct napi_struct *n, int work_done)
6096 {
6097         unsigned long flags, val, new, timeout = 0;
6098         bool ret = true;
6099
6100         /*
6101          * 1) Don't let napi dequeue from the cpu poll list
6102          *    just in case its running on a different cpu.
6103          * 2) If we are busy polling, do nothing here, we have
6104          *    the guarantee we will be called later.
6105          */
6106         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6107                                  NAPIF_STATE_IN_BUSY_POLL)))
6108                 return false;
6109
6110         if (work_done) {
6111                 if (n->gro_bitmask)
6112                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6113                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6114         }
6115         if (n->defer_hard_irqs_count > 0) {
6116                 n->defer_hard_irqs_count--;
6117                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6118                 if (timeout)
6119                         ret = false;
6120         }
6121         if (n->gro_bitmask) {
6122                 /* When the NAPI instance uses a timeout and keeps postponing
6123                  * it, we need to bound somehow the time packets are kept in
6124                  * the GRO layer
6125                  */
6126                 napi_gro_flush(n, !!timeout);
6127         }
6128
6129         gro_normal_list(n);
6130
6131         if (unlikely(!list_empty(&n->poll_list))) {
6132                 /* If n->poll_list is not empty, we need to mask irqs */
6133                 local_irq_save(flags);
6134                 list_del_init(&n->poll_list);
6135                 local_irq_restore(flags);
6136         }
6137         WRITE_ONCE(n->list_owner, -1);
6138
6139         val = READ_ONCE(n->state);
6140         do {
6141                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6142
6143                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6144                               NAPIF_STATE_SCHED_THREADED |
6145                               NAPIF_STATE_PREFER_BUSY_POLL);
6146
6147                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6148                  * because we will call napi->poll() one more time.
6149                  * This C code was suggested by Alexander Duyck to help gcc.
6150                  */
6151                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6152                                                     NAPIF_STATE_SCHED;
6153         } while (!try_cmpxchg(&n->state, &val, new));
6154
6155         if (unlikely(val & NAPIF_STATE_MISSED)) {
6156                 __napi_schedule(n);
6157                 return false;
6158         }
6159
6160         if (timeout)
6161                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6162                               HRTIMER_MODE_REL_PINNED);
6163         return ret;
6164 }
6165 EXPORT_SYMBOL(napi_complete_done);
6166
6167 /* must be called under rcu_read_lock(), as we dont take a reference */
6168 static struct napi_struct *napi_by_id(unsigned int napi_id)
6169 {
6170         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6171         struct napi_struct *napi;
6172
6173         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6174                 if (napi->napi_id == napi_id)
6175                         return napi;
6176
6177         return NULL;
6178 }
6179
6180 #if defined(CONFIG_NET_RX_BUSY_POLL)
6181
6182 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6183 {
6184         if (!skip_schedule) {
6185                 gro_normal_list(napi);
6186                 __napi_schedule(napi);
6187                 return;
6188         }
6189
6190         if (napi->gro_bitmask) {
6191                 /* flush too old packets
6192                  * If HZ < 1000, flush all packets.
6193                  */
6194                 napi_gro_flush(napi, HZ >= 1000);
6195         }
6196
6197         gro_normal_list(napi);
6198         clear_bit(NAPI_STATE_SCHED, &napi->state);
6199 }
6200
6201 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6202                            u16 budget)
6203 {
6204         bool skip_schedule = false;
6205         unsigned long timeout;
6206         int rc;
6207
6208         /* Busy polling means there is a high chance device driver hard irq
6209          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6210          * set in napi_schedule_prep().
6211          * Since we are about to call napi->poll() once more, we can safely
6212          * clear NAPI_STATE_MISSED.
6213          *
6214          * Note: x86 could use a single "lock and ..." instruction
6215          * to perform these two clear_bit()
6216          */
6217         clear_bit(NAPI_STATE_MISSED, &napi->state);
6218         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6219
6220         local_bh_disable();
6221
6222         if (prefer_busy_poll) {
6223                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6224                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6225                 if (napi->defer_hard_irqs_count && timeout) {
6226                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6227                         skip_schedule = true;
6228                 }
6229         }
6230
6231         /* All we really want here is to re-enable device interrupts.
6232          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6233          */
6234         rc = napi->poll(napi, budget);
6235         /* We can't gro_normal_list() here, because napi->poll() might have
6236          * rearmed the napi (napi_complete_done()) in which case it could
6237          * already be running on another CPU.
6238          */
6239         trace_napi_poll(napi, rc, budget);
6240         netpoll_poll_unlock(have_poll_lock);
6241         if (rc == budget)
6242                 __busy_poll_stop(napi, skip_schedule);
6243         local_bh_enable();
6244 }
6245
6246 void napi_busy_loop(unsigned int napi_id,
6247                     bool (*loop_end)(void *, unsigned long),
6248                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6249 {
6250         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6251         int (*napi_poll)(struct napi_struct *napi, int budget);
6252         void *have_poll_lock = NULL;
6253         struct napi_struct *napi;
6254
6255 restart:
6256         napi_poll = NULL;
6257
6258         rcu_read_lock();
6259
6260         napi = napi_by_id(napi_id);
6261         if (!napi)
6262                 goto out;
6263
6264         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6265                 preempt_disable();
6266         for (;;) {
6267                 int work = 0;
6268
6269                 local_bh_disable();
6270                 if (!napi_poll) {
6271                         unsigned long val = READ_ONCE(napi->state);
6272
6273                         /* If multiple threads are competing for this napi,
6274                          * we avoid dirtying napi->state as much as we can.
6275                          */
6276                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6277                                    NAPIF_STATE_IN_BUSY_POLL)) {
6278                                 if (prefer_busy_poll)
6279                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6280                                 goto count;
6281                         }
6282                         if (cmpxchg(&napi->state, val,
6283                                     val | NAPIF_STATE_IN_BUSY_POLL |
6284                                           NAPIF_STATE_SCHED) != val) {
6285                                 if (prefer_busy_poll)
6286                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6287                                 goto count;
6288                         }
6289                         have_poll_lock = netpoll_poll_lock(napi);
6290                         napi_poll = napi->poll;
6291                 }
6292                 work = napi_poll(napi, budget);
6293                 trace_napi_poll(napi, work, budget);
6294                 gro_normal_list(napi);
6295 count:
6296                 if (work > 0)
6297                         __NET_ADD_STATS(dev_net(napi->dev),
6298                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6299                 local_bh_enable();
6300
6301                 if (!loop_end || loop_end(loop_end_arg, start_time))
6302                         break;
6303
6304                 if (unlikely(need_resched())) {
6305                         if (napi_poll)
6306                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6307                         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6308                                 preempt_enable();
6309                         rcu_read_unlock();
6310                         cond_resched();
6311                         if (loop_end(loop_end_arg, start_time))
6312                                 return;
6313                         goto restart;
6314                 }
6315                 cpu_relax();
6316         }
6317         if (napi_poll)
6318                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6319         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6320                 preempt_enable();
6321 out:
6322         rcu_read_unlock();
6323 }
6324 EXPORT_SYMBOL(napi_busy_loop);
6325
6326 #endif /* CONFIG_NET_RX_BUSY_POLL */
6327
6328 static void napi_hash_add(struct napi_struct *napi)
6329 {
6330         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6331                 return;
6332
6333         spin_lock(&napi_hash_lock);
6334
6335         /* 0..NR_CPUS range is reserved for sender_cpu use */
6336         do {
6337                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6338                         napi_gen_id = MIN_NAPI_ID;
6339         } while (napi_by_id(napi_gen_id));
6340         napi->napi_id = napi_gen_id;
6341
6342         hlist_add_head_rcu(&napi->napi_hash_node,
6343                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6344
6345         spin_unlock(&napi_hash_lock);
6346 }
6347
6348 /* Warning : caller is responsible to make sure rcu grace period
6349  * is respected before freeing memory containing @napi
6350  */
6351 static void napi_hash_del(struct napi_struct *napi)
6352 {
6353         spin_lock(&napi_hash_lock);
6354
6355         hlist_del_init_rcu(&napi->napi_hash_node);
6356
6357         spin_unlock(&napi_hash_lock);
6358 }
6359
6360 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6361 {
6362         struct napi_struct *napi;
6363
6364         napi = container_of(timer, struct napi_struct, timer);
6365
6366         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6367          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6368          */
6369         if (!napi_disable_pending(napi) &&
6370             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6371                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6372                 __napi_schedule_irqoff(napi);
6373         }
6374
6375         return HRTIMER_NORESTART;
6376 }
6377
6378 static void init_gro_hash(struct napi_struct *napi)
6379 {
6380         int i;
6381
6382         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6383                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6384                 napi->gro_hash[i].count = 0;
6385         }
6386         napi->gro_bitmask = 0;
6387 }
6388
6389 int dev_set_threaded(struct net_device *dev, bool threaded)
6390 {
6391         struct napi_struct *napi;
6392         int err = 0;
6393
6394         if (dev->threaded == threaded)
6395                 return 0;
6396
6397         if (threaded) {
6398                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6399                         if (!napi->thread) {
6400                                 err = napi_kthread_create(napi);
6401                                 if (err) {
6402                                         threaded = false;
6403                                         break;
6404                                 }
6405                         }
6406                 }
6407         }
6408
6409         dev->threaded = threaded;
6410
6411         /* Make sure kthread is created before THREADED bit
6412          * is set.
6413          */
6414         smp_mb__before_atomic();
6415
6416         /* Setting/unsetting threaded mode on a napi might not immediately
6417          * take effect, if the current napi instance is actively being
6418          * polled. In this case, the switch between threaded mode and
6419          * softirq mode will happen in the next round of napi_schedule().
6420          * This should not cause hiccups/stalls to the live traffic.
6421          */
6422         list_for_each_entry(napi, &dev->napi_list, dev_list)
6423                 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6424
6425         return err;
6426 }
6427 EXPORT_SYMBOL(dev_set_threaded);
6428
6429 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6430                            int (*poll)(struct napi_struct *, int), int weight)
6431 {
6432         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6433                 return;
6434
6435         INIT_LIST_HEAD(&napi->poll_list);
6436         INIT_HLIST_NODE(&napi->napi_hash_node);
6437         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6438         napi->timer.function = napi_watchdog;
6439         init_gro_hash(napi);
6440         napi->skb = NULL;
6441         INIT_LIST_HEAD(&napi->rx_list);
6442         napi->rx_count = 0;
6443         napi->poll = poll;
6444         if (weight > NAPI_POLL_WEIGHT)
6445                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6446                                 weight);
6447         napi->weight = weight;
6448         napi->dev = dev;
6449 #ifdef CONFIG_NETPOLL
6450         napi->poll_owner = -1;
6451 #endif
6452         napi->list_owner = -1;
6453         set_bit(NAPI_STATE_SCHED, &napi->state);
6454         set_bit(NAPI_STATE_NPSVC, &napi->state);
6455         list_add_rcu(&napi->dev_list, &dev->napi_list);
6456         napi_hash_add(napi);
6457         napi_get_frags_check(napi);
6458         /* Create kthread for this napi if dev->threaded is set.
6459          * Clear dev->threaded if kthread creation failed so that
6460          * threaded mode will not be enabled in napi_enable().
6461          */
6462         if (dev->threaded && napi_kthread_create(napi))
6463                 dev->threaded = 0;
6464 }
6465 EXPORT_SYMBOL(netif_napi_add_weight);
6466
6467 void napi_disable(struct napi_struct *n)
6468 {
6469         unsigned long val, new;
6470
6471         might_sleep();
6472         set_bit(NAPI_STATE_DISABLE, &n->state);
6473
6474         val = READ_ONCE(n->state);
6475         do {
6476                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6477                         usleep_range(20, 200);
6478                         val = READ_ONCE(n->state);
6479                 }
6480
6481                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6482                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6483         } while (!try_cmpxchg(&n->state, &val, new));
6484
6485         hrtimer_cancel(&n->timer);
6486
6487         clear_bit(NAPI_STATE_DISABLE, &n->state);
6488 }
6489 EXPORT_SYMBOL(napi_disable);
6490
6491 /**
6492  *      napi_enable - enable NAPI scheduling
6493  *      @n: NAPI context
6494  *
6495  * Resume NAPI from being scheduled on this context.
6496  * Must be paired with napi_disable.
6497  */
6498 void napi_enable(struct napi_struct *n)
6499 {
6500         unsigned long new, val = READ_ONCE(n->state);
6501
6502         do {
6503                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6504
6505                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6506                 if (n->dev->threaded && n->thread)
6507                         new |= NAPIF_STATE_THREADED;
6508         } while (!try_cmpxchg(&n->state, &val, new));
6509 }
6510 EXPORT_SYMBOL(napi_enable);
6511
6512 static void flush_gro_hash(struct napi_struct *napi)
6513 {
6514         int i;
6515
6516         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6517                 struct sk_buff *skb, *n;
6518
6519                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6520                         kfree_skb(skb);
6521                 napi->gro_hash[i].count = 0;
6522         }
6523 }
6524
6525 /* Must be called in process context */
6526 void __netif_napi_del(struct napi_struct *napi)
6527 {
6528         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6529                 return;
6530
6531         napi_hash_del(napi);
6532         list_del_rcu(&napi->dev_list);
6533         napi_free_frags(napi);
6534
6535         flush_gro_hash(napi);
6536         napi->gro_bitmask = 0;
6537
6538         if (napi->thread) {
6539                 kthread_stop(napi->thread);
6540                 napi->thread = NULL;
6541         }
6542 }
6543 EXPORT_SYMBOL(__netif_napi_del);
6544
6545 static int __napi_poll(struct napi_struct *n, bool *repoll)
6546 {
6547         int work, weight;
6548
6549         weight = n->weight;
6550
6551         /* This NAPI_STATE_SCHED test is for avoiding a race
6552          * with netpoll's poll_napi().  Only the entity which
6553          * obtains the lock and sees NAPI_STATE_SCHED set will
6554          * actually make the ->poll() call.  Therefore we avoid
6555          * accidentally calling ->poll() when NAPI is not scheduled.
6556          */
6557         work = 0;
6558         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6559                 work = n->poll(n, weight);
6560                 trace_napi_poll(n, work, weight);
6561         }
6562
6563         if (unlikely(work > weight))
6564                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6565                                 n->poll, work, weight);
6566
6567         if (likely(work < weight))
6568                 return work;
6569
6570         /* Drivers must not modify the NAPI state if they
6571          * consume the entire weight.  In such cases this code
6572          * still "owns" the NAPI instance and therefore can
6573          * move the instance around on the list at-will.
6574          */
6575         if (unlikely(napi_disable_pending(n))) {
6576                 napi_complete(n);
6577                 return work;
6578         }
6579
6580         /* The NAPI context has more processing work, but busy-polling
6581          * is preferred. Exit early.
6582          */
6583         if (napi_prefer_busy_poll(n)) {
6584                 if (napi_complete_done(n, work)) {
6585                         /* If timeout is not set, we need to make sure
6586                          * that the NAPI is re-scheduled.
6587                          */
6588                         napi_schedule(n);
6589                 }
6590                 return work;
6591         }
6592
6593         if (n->gro_bitmask) {
6594                 /* flush too old packets
6595                  * If HZ < 1000, flush all packets.
6596                  */
6597                 napi_gro_flush(n, HZ >= 1000);
6598         }
6599
6600         gro_normal_list(n);
6601
6602         /* Some drivers may have called napi_schedule
6603          * prior to exhausting their budget.
6604          */
6605         if (unlikely(!list_empty(&n->poll_list))) {
6606                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6607                              n->dev ? n->dev->name : "backlog");
6608                 return work;
6609         }
6610
6611         *repoll = true;
6612
6613         return work;
6614 }
6615
6616 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6617 {
6618         bool do_repoll = false;
6619         void *have;
6620         int work;
6621
6622         list_del_init(&n->poll_list);
6623
6624         have = netpoll_poll_lock(n);
6625
6626         work = __napi_poll(n, &do_repoll);
6627
6628         if (do_repoll)
6629                 list_add_tail(&n->poll_list, repoll);
6630
6631         netpoll_poll_unlock(have);
6632
6633         return work;
6634 }
6635
6636 static int napi_thread_wait(struct napi_struct *napi)
6637 {
6638         bool woken = false;
6639
6640         set_current_state(TASK_INTERRUPTIBLE);
6641
6642         while (!kthread_should_stop()) {
6643                 /* Testing SCHED_THREADED bit here to make sure the current
6644                  * kthread owns this napi and could poll on this napi.
6645                  * Testing SCHED bit is not enough because SCHED bit might be
6646                  * set by some other busy poll thread or by napi_disable().
6647                  */
6648                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6649                         WARN_ON(!list_empty(&napi->poll_list));
6650                         __set_current_state(TASK_RUNNING);
6651                         return 0;
6652                 }
6653
6654                 schedule();
6655                 /* woken being true indicates this thread owns this napi. */
6656                 woken = true;
6657                 set_current_state(TASK_INTERRUPTIBLE);
6658         }
6659         __set_current_state(TASK_RUNNING);
6660
6661         return -1;
6662 }
6663
6664 static void skb_defer_free_flush(struct softnet_data *sd)
6665 {
6666         struct sk_buff *skb, *next;
6667
6668         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6669         if (!READ_ONCE(sd->defer_list))
6670                 return;
6671
6672         spin_lock(&sd->defer_lock);
6673         skb = sd->defer_list;
6674         sd->defer_list = NULL;
6675         sd->defer_count = 0;
6676         spin_unlock(&sd->defer_lock);
6677
6678         while (skb != NULL) {
6679                 next = skb->next;
6680                 napi_consume_skb(skb, 1);
6681                 skb = next;
6682         }
6683 }
6684
6685 static int napi_threaded_poll(void *data)
6686 {
6687         struct napi_struct *napi = data;
6688         struct softnet_data *sd;
6689         void *have;
6690
6691         while (!napi_thread_wait(napi)) {
6692                 for (;;) {
6693                         bool repoll = false;
6694
6695                         local_bh_disable();
6696                         sd = this_cpu_ptr(&softnet_data);
6697                         sd->in_napi_threaded_poll = true;
6698
6699                         have = netpoll_poll_lock(napi);
6700                         __napi_poll(napi, &repoll);
6701                         netpoll_poll_unlock(have);
6702
6703                         sd->in_napi_threaded_poll = false;
6704                         barrier();
6705
6706                         if (sd_has_rps_ipi_waiting(sd)) {
6707                                 local_irq_disable();
6708                                 net_rps_action_and_irq_enable(sd);
6709                         }
6710                         skb_defer_free_flush(sd);
6711                         local_bh_enable();
6712
6713                         if (!repoll)
6714                                 break;
6715
6716                         cond_resched();
6717                 }
6718         }
6719         return 0;
6720 }
6721
6722 static __latent_entropy void net_rx_action(struct softirq_action *h)
6723 {
6724         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6725         unsigned long time_limit = jiffies +
6726                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6727         int budget = READ_ONCE(netdev_budget);
6728         LIST_HEAD(list);
6729         LIST_HEAD(repoll);
6730
6731 start:
6732         sd->in_net_rx_action = true;
6733         local_irq_disable();
6734         list_splice_init(&sd->poll_list, &list);
6735         local_irq_enable();
6736
6737         for (;;) {
6738                 struct napi_struct *n;
6739
6740                 skb_defer_free_flush(sd);
6741
6742                 if (list_empty(&list)) {
6743                         if (list_empty(&repoll)) {
6744                                 sd->in_net_rx_action = false;
6745                                 barrier();
6746                                 /* We need to check if ____napi_schedule()
6747                                  * had refilled poll_list while
6748                                  * sd->in_net_rx_action was true.
6749                                  */
6750                                 if (!list_empty(&sd->poll_list))
6751                                         goto start;
6752                                 if (!sd_has_rps_ipi_waiting(sd))
6753                                         goto end;
6754                         }
6755                         break;
6756                 }
6757
6758                 n = list_first_entry(&list, struct napi_struct, poll_list);
6759                 budget -= napi_poll(n, &repoll);
6760
6761                 /* If softirq window is exhausted then punt.
6762                  * Allow this to run for 2 jiffies since which will allow
6763                  * an average latency of 1.5/HZ.
6764                  */
6765                 if (unlikely(budget <= 0 ||
6766                              time_after_eq(jiffies, time_limit))) {
6767                         sd->time_squeeze++;
6768                         break;
6769                 }
6770         }
6771
6772         local_irq_disable();
6773
6774         list_splice_tail_init(&sd->poll_list, &list);
6775         list_splice_tail(&repoll, &list);
6776         list_splice(&list, &sd->poll_list);
6777         if (!list_empty(&sd->poll_list))
6778                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6779         else
6780                 sd->in_net_rx_action = false;
6781
6782         net_rps_action_and_irq_enable(sd);
6783 end:;
6784 }
6785
6786 struct netdev_adjacent {
6787         struct net_device *dev;
6788         netdevice_tracker dev_tracker;
6789
6790         /* upper master flag, there can only be one master device per list */
6791         bool master;
6792
6793         /* lookup ignore flag */
6794         bool ignore;
6795
6796         /* counter for the number of times this device was added to us */
6797         u16 ref_nr;
6798
6799         /* private field for the users */
6800         void *private;
6801
6802         struct list_head list;
6803         struct rcu_head rcu;
6804 };
6805
6806 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6807                                                  struct list_head *adj_list)
6808 {
6809         struct netdev_adjacent *adj;
6810
6811         list_for_each_entry(adj, adj_list, list) {
6812                 if (adj->dev == adj_dev)
6813                         return adj;
6814         }
6815         return NULL;
6816 }
6817
6818 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6819                                     struct netdev_nested_priv *priv)
6820 {
6821         struct net_device *dev = (struct net_device *)priv->data;
6822
6823         return upper_dev == dev;
6824 }
6825
6826 /**
6827  * netdev_has_upper_dev - Check if device is linked to an upper device
6828  * @dev: device
6829  * @upper_dev: upper device to check
6830  *
6831  * Find out if a device is linked to specified upper device and return true
6832  * in case it is. Note that this checks only immediate upper device,
6833  * not through a complete stack of devices. The caller must hold the RTNL lock.
6834  */
6835 bool netdev_has_upper_dev(struct net_device *dev,
6836                           struct net_device *upper_dev)
6837 {
6838         struct netdev_nested_priv priv = {
6839                 .data = (void *)upper_dev,
6840         };
6841
6842         ASSERT_RTNL();
6843
6844         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6845                                              &priv);
6846 }
6847 EXPORT_SYMBOL(netdev_has_upper_dev);
6848
6849 /**
6850  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6851  * @dev: device
6852  * @upper_dev: upper device to check
6853  *
6854  * Find out if a device is linked to specified upper device and return true
6855  * in case it is. Note that this checks the entire upper device chain.
6856  * The caller must hold rcu lock.
6857  */
6858
6859 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6860                                   struct net_device *upper_dev)
6861 {
6862         struct netdev_nested_priv priv = {
6863                 .data = (void *)upper_dev,
6864         };
6865
6866         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6867                                                &priv);
6868 }
6869 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6870
6871 /**
6872  * netdev_has_any_upper_dev - Check if device is linked to some device
6873  * @dev: device
6874  *
6875  * Find out if a device is linked to an upper device and return true in case
6876  * it is. The caller must hold the RTNL lock.
6877  */
6878 bool netdev_has_any_upper_dev(struct net_device *dev)
6879 {
6880         ASSERT_RTNL();
6881
6882         return !list_empty(&dev->adj_list.upper);
6883 }
6884 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6885
6886 /**
6887  * netdev_master_upper_dev_get - Get master upper device
6888  * @dev: device
6889  *
6890  * Find a master upper device and return pointer to it or NULL in case
6891  * it's not there. The caller must hold the RTNL lock.
6892  */
6893 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6894 {
6895         struct netdev_adjacent *upper;
6896
6897         ASSERT_RTNL();
6898
6899         if (list_empty(&dev->adj_list.upper))
6900                 return NULL;
6901
6902         upper = list_first_entry(&dev->adj_list.upper,
6903                                  struct netdev_adjacent, list);
6904         if (likely(upper->master))
6905                 return upper->dev;
6906         return NULL;
6907 }
6908 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6909
6910 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6911 {
6912         struct netdev_adjacent *upper;
6913
6914         ASSERT_RTNL();
6915
6916         if (list_empty(&dev->adj_list.upper))
6917                 return NULL;
6918
6919         upper = list_first_entry(&dev->adj_list.upper,
6920                                  struct netdev_adjacent, list);
6921         if (likely(upper->master) && !upper->ignore)
6922                 return upper->dev;
6923         return NULL;
6924 }
6925
6926 /**
6927  * netdev_has_any_lower_dev - Check if device is linked to some device
6928  * @dev: device
6929  *
6930  * Find out if a device is linked to a lower device and return true in case
6931  * it is. The caller must hold the RTNL lock.
6932  */
6933 static bool netdev_has_any_lower_dev(struct net_device *dev)
6934 {
6935         ASSERT_RTNL();
6936
6937         return !list_empty(&dev->adj_list.lower);
6938 }
6939
6940 void *netdev_adjacent_get_private(struct list_head *adj_list)
6941 {
6942         struct netdev_adjacent *adj;
6943
6944         adj = list_entry(adj_list, struct netdev_adjacent, list);
6945
6946         return adj->private;
6947 }
6948 EXPORT_SYMBOL(netdev_adjacent_get_private);
6949
6950 /**
6951  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6952  * @dev: device
6953  * @iter: list_head ** of the current position
6954  *
6955  * Gets the next device from the dev's upper list, starting from iter
6956  * position. The caller must hold RCU read lock.
6957  */
6958 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6959                                                  struct list_head **iter)
6960 {
6961         struct netdev_adjacent *upper;
6962
6963         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6964
6965         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6966
6967         if (&upper->list == &dev->adj_list.upper)
6968                 return NULL;
6969
6970         *iter = &upper->list;
6971
6972         return upper->dev;
6973 }
6974 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6975
6976 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6977                                                   struct list_head **iter,
6978                                                   bool *ignore)
6979 {
6980         struct netdev_adjacent *upper;
6981
6982         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6983
6984         if (&upper->list == &dev->adj_list.upper)
6985                 return NULL;
6986
6987         *iter = &upper->list;
6988         *ignore = upper->ignore;
6989
6990         return upper->dev;
6991 }
6992
6993 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6994                                                     struct list_head **iter)
6995 {
6996         struct netdev_adjacent *upper;
6997
6998         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6999
7000         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7001
7002         if (&upper->list == &dev->adj_list.upper)
7003                 return NULL;
7004
7005         *iter = &upper->list;
7006
7007         return upper->dev;
7008 }
7009
7010 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7011                                        int (*fn)(struct net_device *dev,
7012                                          struct netdev_nested_priv *priv),
7013                                        struct netdev_nested_priv *priv)
7014 {
7015         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7016         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7017         int ret, cur = 0;
7018         bool ignore;
7019
7020         now = dev;
7021         iter = &dev->adj_list.upper;
7022
7023         while (1) {
7024                 if (now != dev) {
7025                         ret = fn(now, priv);
7026                         if (ret)
7027                                 return ret;
7028                 }
7029
7030                 next = NULL;
7031                 while (1) {
7032                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7033                         if (!udev)
7034                                 break;
7035                         if (ignore)
7036                                 continue;
7037
7038                         next = udev;
7039                         niter = &udev->adj_list.upper;
7040                         dev_stack[cur] = now;
7041                         iter_stack[cur++] = iter;
7042                         break;
7043                 }
7044
7045                 if (!next) {
7046                         if (!cur)
7047                                 return 0;
7048                         next = dev_stack[--cur];
7049                         niter = iter_stack[cur];
7050                 }
7051
7052                 now = next;
7053                 iter = niter;
7054         }
7055
7056         return 0;
7057 }
7058
7059 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7060                                   int (*fn)(struct net_device *dev,
7061                                             struct netdev_nested_priv *priv),
7062                                   struct netdev_nested_priv *priv)
7063 {
7064         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7065         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7066         int ret, cur = 0;
7067
7068         now = dev;
7069         iter = &dev->adj_list.upper;
7070
7071         while (1) {
7072                 if (now != dev) {
7073                         ret = fn(now, priv);
7074                         if (ret)
7075                                 return ret;
7076                 }
7077
7078                 next = NULL;
7079                 while (1) {
7080                         udev = netdev_next_upper_dev_rcu(now, &iter);
7081                         if (!udev)
7082                                 break;
7083
7084                         next = udev;
7085                         niter = &udev->adj_list.upper;
7086                         dev_stack[cur] = now;
7087                         iter_stack[cur++] = iter;
7088                         break;
7089                 }
7090
7091                 if (!next) {
7092                         if (!cur)
7093                                 return 0;
7094                         next = dev_stack[--cur];
7095                         niter = iter_stack[cur];
7096                 }
7097
7098                 now = next;
7099                 iter = niter;
7100         }
7101
7102         return 0;
7103 }
7104 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7105
7106 static bool __netdev_has_upper_dev(struct net_device *dev,
7107                                    struct net_device *upper_dev)
7108 {
7109         struct netdev_nested_priv priv = {
7110                 .flags = 0,
7111                 .data = (void *)upper_dev,
7112         };
7113
7114         ASSERT_RTNL();
7115
7116         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7117                                            &priv);
7118 }
7119
7120 /**
7121  * netdev_lower_get_next_private - Get the next ->private from the
7122  *                                 lower neighbour list
7123  * @dev: device
7124  * @iter: list_head ** of the current position
7125  *
7126  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7127  * list, starting from iter position. The caller must hold either hold the
7128  * RTNL lock or its own locking that guarantees that the neighbour lower
7129  * list will remain unchanged.
7130  */
7131 void *netdev_lower_get_next_private(struct net_device *dev,
7132                                     struct list_head **iter)
7133 {
7134         struct netdev_adjacent *lower;
7135
7136         lower = list_entry(*iter, struct netdev_adjacent, list);
7137
7138         if (&lower->list == &dev->adj_list.lower)
7139                 return NULL;
7140
7141         *iter = lower->list.next;
7142
7143         return lower->private;
7144 }
7145 EXPORT_SYMBOL(netdev_lower_get_next_private);
7146
7147 /**
7148  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7149  *                                     lower neighbour list, RCU
7150  *                                     variant
7151  * @dev: device
7152  * @iter: list_head ** of the current position
7153  *
7154  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7155  * list, starting from iter position. The caller must hold RCU read lock.
7156  */
7157 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7158                                         struct list_head **iter)
7159 {
7160         struct netdev_adjacent *lower;
7161
7162         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7163
7164         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7165
7166         if (&lower->list == &dev->adj_list.lower)
7167                 return NULL;
7168
7169         *iter = &lower->list;
7170
7171         return lower->private;
7172 }
7173 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7174
7175 /**
7176  * netdev_lower_get_next - Get the next device from the lower neighbour
7177  *                         list
7178  * @dev: device
7179  * @iter: list_head ** of the current position
7180  *
7181  * Gets the next netdev_adjacent from the dev's lower neighbour
7182  * list, starting from iter position. The caller must hold RTNL lock or
7183  * its own locking that guarantees that the neighbour lower
7184  * list will remain unchanged.
7185  */
7186 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7187 {
7188         struct netdev_adjacent *lower;
7189
7190         lower = list_entry(*iter, struct netdev_adjacent, list);
7191
7192         if (&lower->list == &dev->adj_list.lower)
7193                 return NULL;
7194
7195         *iter = lower->list.next;
7196
7197         return lower->dev;
7198 }
7199 EXPORT_SYMBOL(netdev_lower_get_next);
7200
7201 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7202                                                 struct list_head **iter)
7203 {
7204         struct netdev_adjacent *lower;
7205
7206         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7207
7208         if (&lower->list == &dev->adj_list.lower)
7209                 return NULL;
7210
7211         *iter = &lower->list;
7212
7213         return lower->dev;
7214 }
7215
7216 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7217                                                   struct list_head **iter,
7218                                                   bool *ignore)
7219 {
7220         struct netdev_adjacent *lower;
7221
7222         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7223
7224         if (&lower->list == &dev->adj_list.lower)
7225                 return NULL;
7226
7227         *iter = &lower->list;
7228         *ignore = lower->ignore;
7229
7230         return lower->dev;
7231 }
7232
7233 int netdev_walk_all_lower_dev(struct net_device *dev,
7234                               int (*fn)(struct net_device *dev,
7235                                         struct netdev_nested_priv *priv),
7236                               struct netdev_nested_priv *priv)
7237 {
7238         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7239         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7240         int ret, cur = 0;
7241
7242         now = dev;
7243         iter = &dev->adj_list.lower;
7244
7245         while (1) {
7246                 if (now != dev) {
7247                         ret = fn(now, priv);
7248                         if (ret)
7249                                 return ret;
7250                 }
7251
7252                 next = NULL;
7253                 while (1) {
7254                         ldev = netdev_next_lower_dev(now, &iter);
7255                         if (!ldev)
7256                                 break;
7257
7258                         next = ldev;
7259                         niter = &ldev->adj_list.lower;
7260                         dev_stack[cur] = now;
7261                         iter_stack[cur++] = iter;
7262                         break;
7263                 }
7264
7265                 if (!next) {
7266                         if (!cur)
7267                                 return 0;
7268                         next = dev_stack[--cur];
7269                         niter = iter_stack[cur];
7270                 }
7271
7272                 now = next;
7273                 iter = niter;
7274         }
7275
7276         return 0;
7277 }
7278 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7279
7280 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7281                                        int (*fn)(struct net_device *dev,
7282                                          struct netdev_nested_priv *priv),
7283                                        struct netdev_nested_priv *priv)
7284 {
7285         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7286         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7287         int ret, cur = 0;
7288         bool ignore;
7289
7290         now = dev;
7291         iter = &dev->adj_list.lower;
7292
7293         while (1) {
7294                 if (now != dev) {
7295                         ret = fn(now, priv);
7296                         if (ret)
7297                                 return ret;
7298                 }
7299
7300                 next = NULL;
7301                 while (1) {
7302                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7303                         if (!ldev)
7304                                 break;
7305                         if (ignore)
7306                                 continue;
7307
7308                         next = ldev;
7309                         niter = &ldev->adj_list.lower;
7310                         dev_stack[cur] = now;
7311                         iter_stack[cur++] = iter;
7312                         break;
7313                 }
7314
7315                 if (!next) {
7316                         if (!cur)
7317                                 return 0;
7318                         next = dev_stack[--cur];
7319                         niter = iter_stack[cur];
7320                 }
7321
7322                 now = next;
7323                 iter = niter;
7324         }
7325
7326         return 0;
7327 }
7328
7329 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7330                                              struct list_head **iter)
7331 {
7332         struct netdev_adjacent *lower;
7333
7334         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7335         if (&lower->list == &dev->adj_list.lower)
7336                 return NULL;
7337
7338         *iter = &lower->list;
7339
7340         return lower->dev;
7341 }
7342 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7343
7344 static u8 __netdev_upper_depth(struct net_device *dev)
7345 {
7346         struct net_device *udev;
7347         struct list_head *iter;
7348         u8 max_depth = 0;
7349         bool ignore;
7350
7351         for (iter = &dev->adj_list.upper,
7352              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7353              udev;
7354              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7355                 if (ignore)
7356                         continue;
7357                 if (max_depth < udev->upper_level)
7358                         max_depth = udev->upper_level;
7359         }
7360
7361         return max_depth;
7362 }
7363
7364 static u8 __netdev_lower_depth(struct net_device *dev)
7365 {
7366         struct net_device *ldev;
7367         struct list_head *iter;
7368         u8 max_depth = 0;
7369         bool ignore;
7370
7371         for (iter = &dev->adj_list.lower,
7372              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7373              ldev;
7374              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7375                 if (ignore)
7376                         continue;
7377                 if (max_depth < ldev->lower_level)
7378                         max_depth = ldev->lower_level;
7379         }
7380
7381         return max_depth;
7382 }
7383
7384 static int __netdev_update_upper_level(struct net_device *dev,
7385                                        struct netdev_nested_priv *__unused)
7386 {
7387         dev->upper_level = __netdev_upper_depth(dev) + 1;
7388         return 0;
7389 }
7390
7391 #ifdef CONFIG_LOCKDEP
7392 static LIST_HEAD(net_unlink_list);
7393
7394 static void net_unlink_todo(struct net_device *dev)
7395 {
7396         if (list_empty(&dev->unlink_list))
7397                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7398 }
7399 #endif
7400
7401 static int __netdev_update_lower_level(struct net_device *dev,
7402                                        struct netdev_nested_priv *priv)
7403 {
7404         dev->lower_level = __netdev_lower_depth(dev) + 1;
7405
7406 #ifdef CONFIG_LOCKDEP
7407         if (!priv)
7408                 return 0;
7409
7410         if (priv->flags & NESTED_SYNC_IMM)
7411                 dev->nested_level = dev->lower_level - 1;
7412         if (priv->flags & NESTED_SYNC_TODO)
7413                 net_unlink_todo(dev);
7414 #endif
7415         return 0;
7416 }
7417
7418 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7419                                   int (*fn)(struct net_device *dev,
7420                                             struct netdev_nested_priv *priv),
7421                                   struct netdev_nested_priv *priv)
7422 {
7423         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7424         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7425         int ret, cur = 0;
7426
7427         now = dev;
7428         iter = &dev->adj_list.lower;
7429
7430         while (1) {
7431                 if (now != dev) {
7432                         ret = fn(now, priv);
7433                         if (ret)
7434                                 return ret;
7435                 }
7436
7437                 next = NULL;
7438                 while (1) {
7439                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7440                         if (!ldev)
7441                                 break;
7442
7443                         next = ldev;
7444                         niter = &ldev->adj_list.lower;
7445                         dev_stack[cur] = now;
7446                         iter_stack[cur++] = iter;
7447                         break;
7448                 }
7449
7450                 if (!next) {
7451                         if (!cur)
7452                                 return 0;
7453                         next = dev_stack[--cur];
7454                         niter = iter_stack[cur];
7455                 }
7456
7457                 now = next;
7458                 iter = niter;
7459         }
7460
7461         return 0;
7462 }
7463 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7464
7465 /**
7466  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7467  *                                     lower neighbour list, RCU
7468  *                                     variant
7469  * @dev: device
7470  *
7471  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7472  * list. The caller must hold RCU read lock.
7473  */
7474 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7475 {
7476         struct netdev_adjacent *lower;
7477
7478         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7479                         struct netdev_adjacent, list);
7480         if (lower)
7481                 return lower->private;
7482         return NULL;
7483 }
7484 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7485
7486 /**
7487  * netdev_master_upper_dev_get_rcu - Get master upper device
7488  * @dev: device
7489  *
7490  * Find a master upper device and return pointer to it or NULL in case
7491  * it's not there. The caller must hold the RCU read lock.
7492  */
7493 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7494 {
7495         struct netdev_adjacent *upper;
7496
7497         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7498                                        struct netdev_adjacent, list);
7499         if (upper && likely(upper->master))
7500                 return upper->dev;
7501         return NULL;
7502 }
7503 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7504
7505 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7506                               struct net_device *adj_dev,
7507                               struct list_head *dev_list)
7508 {
7509         char linkname[IFNAMSIZ+7];
7510
7511         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7512                 "upper_%s" : "lower_%s", adj_dev->name);
7513         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7514                                  linkname);
7515 }
7516 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7517                                char *name,
7518                                struct list_head *dev_list)
7519 {
7520         char linkname[IFNAMSIZ+7];
7521
7522         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7523                 "upper_%s" : "lower_%s", name);
7524         sysfs_remove_link(&(dev->dev.kobj), linkname);
7525 }
7526
7527 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7528                                                  struct net_device *adj_dev,
7529                                                  struct list_head *dev_list)
7530 {
7531         return (dev_list == &dev->adj_list.upper ||
7532                 dev_list == &dev->adj_list.lower) &&
7533                 net_eq(dev_net(dev), dev_net(adj_dev));
7534 }
7535
7536 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7537                                         struct net_device *adj_dev,
7538                                         struct list_head *dev_list,
7539                                         void *private, bool master)
7540 {
7541         struct netdev_adjacent *adj;
7542         int ret;
7543
7544         adj = __netdev_find_adj(adj_dev, dev_list);
7545
7546         if (adj) {
7547                 adj->ref_nr += 1;
7548                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7549                          dev->name, adj_dev->name, adj->ref_nr);
7550
7551                 return 0;
7552         }
7553
7554         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7555         if (!adj)
7556                 return -ENOMEM;
7557
7558         adj->dev = adj_dev;
7559         adj->master = master;
7560         adj->ref_nr = 1;
7561         adj->private = private;
7562         adj->ignore = false;
7563         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7564
7565         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7566                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7567
7568         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7569                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7570                 if (ret)
7571                         goto free_adj;
7572         }
7573
7574         /* Ensure that master link is always the first item in list. */
7575         if (master) {
7576                 ret = sysfs_create_link(&(dev->dev.kobj),
7577                                         &(adj_dev->dev.kobj), "master");
7578                 if (ret)
7579                         goto remove_symlinks;
7580
7581                 list_add_rcu(&adj->list, dev_list);
7582         } else {
7583                 list_add_tail_rcu(&adj->list, dev_list);
7584         }
7585
7586         return 0;
7587
7588 remove_symlinks:
7589         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7590                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7591 free_adj:
7592         netdev_put(adj_dev, &adj->dev_tracker);
7593         kfree(adj);
7594
7595         return ret;
7596 }
7597
7598 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7599                                          struct net_device *adj_dev,
7600                                          u16 ref_nr,
7601                                          struct list_head *dev_list)
7602 {
7603         struct netdev_adjacent *adj;
7604
7605         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7606                  dev->name, adj_dev->name, ref_nr);
7607
7608         adj = __netdev_find_adj(adj_dev, dev_list);
7609
7610         if (!adj) {
7611                 pr_err("Adjacency does not exist for device %s from %s\n",
7612                        dev->name, adj_dev->name);
7613                 WARN_ON(1);
7614                 return;
7615         }
7616
7617         if (adj->ref_nr > ref_nr) {
7618                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7619                          dev->name, adj_dev->name, ref_nr,
7620                          adj->ref_nr - ref_nr);
7621                 adj->ref_nr -= ref_nr;
7622                 return;
7623         }
7624
7625         if (adj->master)
7626                 sysfs_remove_link(&(dev->dev.kobj), "master");
7627
7628         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7629                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7630
7631         list_del_rcu(&adj->list);
7632         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7633                  adj_dev->name, dev->name, adj_dev->name);
7634         netdev_put(adj_dev, &adj->dev_tracker);
7635         kfree_rcu(adj, rcu);
7636 }
7637
7638 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7639                                             struct net_device *upper_dev,
7640                                             struct list_head *up_list,
7641                                             struct list_head *down_list,
7642                                             void *private, bool master)
7643 {
7644         int ret;
7645
7646         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7647                                            private, master);
7648         if (ret)
7649                 return ret;
7650
7651         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7652                                            private, false);
7653         if (ret) {
7654                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7655                 return ret;
7656         }
7657
7658         return 0;
7659 }
7660
7661 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7662                                                struct net_device *upper_dev,
7663                                                u16 ref_nr,
7664                                                struct list_head *up_list,
7665                                                struct list_head *down_list)
7666 {
7667         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7668         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7669 }
7670
7671 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7672                                                 struct net_device *upper_dev,
7673                                                 void *private, bool master)
7674 {
7675         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7676                                                 &dev->adj_list.upper,
7677                                                 &upper_dev->adj_list.lower,
7678                                                 private, master);
7679 }
7680
7681 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7682                                                    struct net_device *upper_dev)
7683 {
7684         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7685                                            &dev->adj_list.upper,
7686                                            &upper_dev->adj_list.lower);
7687 }
7688
7689 static int __netdev_upper_dev_link(struct net_device *dev,
7690                                    struct net_device *upper_dev, bool master,
7691                                    void *upper_priv, void *upper_info,
7692                                    struct netdev_nested_priv *priv,
7693                                    struct netlink_ext_ack *extack)
7694 {
7695         struct netdev_notifier_changeupper_info changeupper_info = {
7696                 .info = {
7697                         .dev = dev,
7698                         .extack = extack,
7699                 },
7700                 .upper_dev = upper_dev,
7701                 .master = master,
7702                 .linking = true,
7703                 .upper_info = upper_info,
7704         };
7705         struct net_device *master_dev;
7706         int ret = 0;
7707
7708         ASSERT_RTNL();
7709
7710         if (dev == upper_dev)
7711                 return -EBUSY;
7712
7713         /* To prevent loops, check if dev is not upper device to upper_dev. */
7714         if (__netdev_has_upper_dev(upper_dev, dev))
7715                 return -EBUSY;
7716
7717         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7718                 return -EMLINK;
7719
7720         if (!master) {
7721                 if (__netdev_has_upper_dev(dev, upper_dev))
7722                         return -EEXIST;
7723         } else {
7724                 master_dev = __netdev_master_upper_dev_get(dev);
7725                 if (master_dev)
7726                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7727         }
7728
7729         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7730                                             &changeupper_info.info);
7731         ret = notifier_to_errno(ret);
7732         if (ret)
7733                 return ret;
7734
7735         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7736                                                    master);
7737         if (ret)
7738                 return ret;
7739
7740         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7741                                             &changeupper_info.info);
7742         ret = notifier_to_errno(ret);
7743         if (ret)
7744                 goto rollback;
7745
7746         __netdev_update_upper_level(dev, NULL);
7747         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7748
7749         __netdev_update_lower_level(upper_dev, priv);
7750         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7751                                     priv);
7752
7753         return 0;
7754
7755 rollback:
7756         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7757
7758         return ret;
7759 }
7760
7761 /**
7762  * netdev_upper_dev_link - Add a link to the upper device
7763  * @dev: device
7764  * @upper_dev: new upper device
7765  * @extack: netlink extended ack
7766  *
7767  * Adds a link to device which is upper to this one. The caller must hold
7768  * the RTNL lock. On a failure a negative errno code is returned.
7769  * On success the reference counts are adjusted and the function
7770  * returns zero.
7771  */
7772 int netdev_upper_dev_link(struct net_device *dev,
7773                           struct net_device *upper_dev,
7774                           struct netlink_ext_ack *extack)
7775 {
7776         struct netdev_nested_priv priv = {
7777                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7778                 .data = NULL,
7779         };
7780
7781         return __netdev_upper_dev_link(dev, upper_dev, false,
7782                                        NULL, NULL, &priv, extack);
7783 }
7784 EXPORT_SYMBOL(netdev_upper_dev_link);
7785
7786 /**
7787  * netdev_master_upper_dev_link - Add a master link to the upper device
7788  * @dev: device
7789  * @upper_dev: new upper device
7790  * @upper_priv: upper device private
7791  * @upper_info: upper info to be passed down via notifier
7792  * @extack: netlink extended ack
7793  *
7794  * Adds a link to device which is upper to this one. In this case, only
7795  * one master upper device can be linked, although other non-master devices
7796  * might be linked as well. The caller must hold the RTNL lock.
7797  * On a failure a negative errno code is returned. On success the reference
7798  * counts are adjusted and the function returns zero.
7799  */
7800 int netdev_master_upper_dev_link(struct net_device *dev,
7801                                  struct net_device *upper_dev,
7802                                  void *upper_priv, void *upper_info,
7803                                  struct netlink_ext_ack *extack)
7804 {
7805         struct netdev_nested_priv priv = {
7806                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7807                 .data = NULL,
7808         };
7809
7810         return __netdev_upper_dev_link(dev, upper_dev, true,
7811                                        upper_priv, upper_info, &priv, extack);
7812 }
7813 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7814
7815 static void __netdev_upper_dev_unlink(struct net_device *dev,
7816                                       struct net_device *upper_dev,
7817                                       struct netdev_nested_priv *priv)
7818 {
7819         struct netdev_notifier_changeupper_info changeupper_info = {
7820                 .info = {
7821                         .dev = dev,
7822                 },
7823                 .upper_dev = upper_dev,
7824                 .linking = false,
7825         };
7826
7827         ASSERT_RTNL();
7828
7829         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7830
7831         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7832                                       &changeupper_info.info);
7833
7834         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7835
7836         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7837                                       &changeupper_info.info);
7838
7839         __netdev_update_upper_level(dev, NULL);
7840         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7841
7842         __netdev_update_lower_level(upper_dev, priv);
7843         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7844                                     priv);
7845 }
7846
7847 /**
7848  * netdev_upper_dev_unlink - Removes a link to upper device
7849  * @dev: device
7850  * @upper_dev: new upper device
7851  *
7852  * Removes a link to device which is upper to this one. The caller must hold
7853  * the RTNL lock.
7854  */
7855 void netdev_upper_dev_unlink(struct net_device *dev,
7856                              struct net_device *upper_dev)
7857 {
7858         struct netdev_nested_priv priv = {
7859                 .flags = NESTED_SYNC_TODO,
7860                 .data = NULL,
7861         };
7862
7863         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7864 }
7865 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7866
7867 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7868                                       struct net_device *lower_dev,
7869                                       bool val)
7870 {
7871         struct netdev_adjacent *adj;
7872
7873         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7874         if (adj)
7875                 adj->ignore = val;
7876
7877         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7878         if (adj)
7879                 adj->ignore = val;
7880 }
7881
7882 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7883                                         struct net_device *lower_dev)
7884 {
7885         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7886 }
7887
7888 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7889                                        struct net_device *lower_dev)
7890 {
7891         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7892 }
7893
7894 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7895                                    struct net_device *new_dev,
7896                                    struct net_device *dev,
7897                                    struct netlink_ext_ack *extack)
7898 {
7899         struct netdev_nested_priv priv = {
7900                 .flags = 0,
7901                 .data = NULL,
7902         };
7903         int err;
7904
7905         if (!new_dev)
7906                 return 0;
7907
7908         if (old_dev && new_dev != old_dev)
7909                 netdev_adjacent_dev_disable(dev, old_dev);
7910         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7911                                       extack);
7912         if (err) {
7913                 if (old_dev && new_dev != old_dev)
7914                         netdev_adjacent_dev_enable(dev, old_dev);
7915                 return err;
7916         }
7917
7918         return 0;
7919 }
7920 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7921
7922 void netdev_adjacent_change_commit(struct net_device *old_dev,
7923                                    struct net_device *new_dev,
7924                                    struct net_device *dev)
7925 {
7926         struct netdev_nested_priv priv = {
7927                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7928                 .data = NULL,
7929         };
7930
7931         if (!new_dev || !old_dev)
7932                 return;
7933
7934         if (new_dev == old_dev)
7935                 return;
7936
7937         netdev_adjacent_dev_enable(dev, old_dev);
7938         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7939 }
7940 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7941
7942 void netdev_adjacent_change_abort(struct net_device *old_dev,
7943                                   struct net_device *new_dev,
7944                                   struct net_device *dev)
7945 {
7946         struct netdev_nested_priv priv = {
7947                 .flags = 0,
7948                 .data = NULL,
7949         };
7950
7951         if (!new_dev)
7952                 return;
7953
7954         if (old_dev && new_dev != old_dev)
7955                 netdev_adjacent_dev_enable(dev, old_dev);
7956
7957         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7958 }
7959 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7960
7961 /**
7962  * netdev_bonding_info_change - Dispatch event about slave change
7963  * @dev: device
7964  * @bonding_info: info to dispatch
7965  *
7966  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7967  * The caller must hold the RTNL lock.
7968  */
7969 void netdev_bonding_info_change(struct net_device *dev,
7970                                 struct netdev_bonding_info *bonding_info)
7971 {
7972         struct netdev_notifier_bonding_info info = {
7973                 .info.dev = dev,
7974         };
7975
7976         memcpy(&info.bonding_info, bonding_info,
7977                sizeof(struct netdev_bonding_info));
7978         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7979                                       &info.info);
7980 }
7981 EXPORT_SYMBOL(netdev_bonding_info_change);
7982
7983 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7984                                            struct netlink_ext_ack *extack)
7985 {
7986         struct netdev_notifier_offload_xstats_info info = {
7987                 .info.dev = dev,
7988                 .info.extack = extack,
7989                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7990         };
7991         int err;
7992         int rc;
7993
7994         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7995                                          GFP_KERNEL);
7996         if (!dev->offload_xstats_l3)
7997                 return -ENOMEM;
7998
7999         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8000                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
8001                                                   &info.info);
8002         err = notifier_to_errno(rc);
8003         if (err)
8004                 goto free_stats;
8005
8006         return 0;
8007
8008 free_stats:
8009         kfree(dev->offload_xstats_l3);
8010         dev->offload_xstats_l3 = NULL;
8011         return err;
8012 }
8013
8014 int netdev_offload_xstats_enable(struct net_device *dev,
8015                                  enum netdev_offload_xstats_type type,
8016                                  struct netlink_ext_ack *extack)
8017 {
8018         ASSERT_RTNL();
8019
8020         if (netdev_offload_xstats_enabled(dev, type))
8021                 return -EALREADY;
8022
8023         switch (type) {
8024         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8025                 return netdev_offload_xstats_enable_l3(dev, extack);
8026         }
8027
8028         WARN_ON(1);
8029         return -EINVAL;
8030 }
8031 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8032
8033 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8034 {
8035         struct netdev_notifier_offload_xstats_info info = {
8036                 .info.dev = dev,
8037                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8038         };
8039
8040         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8041                                       &info.info);
8042         kfree(dev->offload_xstats_l3);
8043         dev->offload_xstats_l3 = NULL;
8044 }
8045
8046 int netdev_offload_xstats_disable(struct net_device *dev,
8047                                   enum netdev_offload_xstats_type type)
8048 {
8049         ASSERT_RTNL();
8050
8051         if (!netdev_offload_xstats_enabled(dev, type))
8052                 return -EALREADY;
8053
8054         switch (type) {
8055         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8056                 netdev_offload_xstats_disable_l3(dev);
8057                 return 0;
8058         }
8059
8060         WARN_ON(1);
8061         return -EINVAL;
8062 }
8063 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8064
8065 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8066 {
8067         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8068 }
8069
8070 static struct rtnl_hw_stats64 *
8071 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8072                               enum netdev_offload_xstats_type type)
8073 {
8074         switch (type) {
8075         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8076                 return dev->offload_xstats_l3;
8077         }
8078
8079         WARN_ON(1);
8080         return NULL;
8081 }
8082
8083 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8084                                    enum netdev_offload_xstats_type type)
8085 {
8086         ASSERT_RTNL();
8087
8088         return netdev_offload_xstats_get_ptr(dev, type);
8089 }
8090 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8091
8092 struct netdev_notifier_offload_xstats_ru {
8093         bool used;
8094 };
8095
8096 struct netdev_notifier_offload_xstats_rd {
8097         struct rtnl_hw_stats64 stats;
8098         bool used;
8099 };
8100
8101 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8102                                   const struct rtnl_hw_stats64 *src)
8103 {
8104         dest->rx_packets          += src->rx_packets;
8105         dest->tx_packets          += src->tx_packets;
8106         dest->rx_bytes            += src->rx_bytes;
8107         dest->tx_bytes            += src->tx_bytes;
8108         dest->rx_errors           += src->rx_errors;
8109         dest->tx_errors           += src->tx_errors;
8110         dest->rx_dropped          += src->rx_dropped;
8111         dest->tx_dropped          += src->tx_dropped;
8112         dest->multicast           += src->multicast;
8113 }
8114
8115 static int netdev_offload_xstats_get_used(struct net_device *dev,
8116                                           enum netdev_offload_xstats_type type,
8117                                           bool *p_used,
8118                                           struct netlink_ext_ack *extack)
8119 {
8120         struct netdev_notifier_offload_xstats_ru report_used = {};
8121         struct netdev_notifier_offload_xstats_info info = {
8122                 .info.dev = dev,
8123                 .info.extack = extack,
8124                 .type = type,
8125                 .report_used = &report_used,
8126         };
8127         int rc;
8128
8129         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8130         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8131                                            &info.info);
8132         *p_used = report_used.used;
8133         return notifier_to_errno(rc);
8134 }
8135
8136 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8137                                            enum netdev_offload_xstats_type type,
8138                                            struct rtnl_hw_stats64 *p_stats,
8139                                            bool *p_used,
8140                                            struct netlink_ext_ack *extack)
8141 {
8142         struct netdev_notifier_offload_xstats_rd report_delta = {};
8143         struct netdev_notifier_offload_xstats_info info = {
8144                 .info.dev = dev,
8145                 .info.extack = extack,
8146                 .type = type,
8147                 .report_delta = &report_delta,
8148         };
8149         struct rtnl_hw_stats64 *stats;
8150         int rc;
8151
8152         stats = netdev_offload_xstats_get_ptr(dev, type);
8153         if (WARN_ON(!stats))
8154                 return -EINVAL;
8155
8156         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8157                                            &info.info);
8158
8159         /* Cache whatever we got, even if there was an error, otherwise the
8160          * successful stats retrievals would get lost.
8161          */
8162         netdev_hw_stats64_add(stats, &report_delta.stats);
8163
8164         if (p_stats)
8165                 *p_stats = *stats;
8166         *p_used = report_delta.used;
8167
8168         return notifier_to_errno(rc);
8169 }
8170
8171 int netdev_offload_xstats_get(struct net_device *dev,
8172                               enum netdev_offload_xstats_type type,
8173                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8174                               struct netlink_ext_ack *extack)
8175 {
8176         ASSERT_RTNL();
8177
8178         if (p_stats)
8179                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8180                                                        p_used, extack);
8181         else
8182                 return netdev_offload_xstats_get_used(dev, type, p_used,
8183                                                       extack);
8184 }
8185 EXPORT_SYMBOL(netdev_offload_xstats_get);
8186
8187 void
8188 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8189                                    const struct rtnl_hw_stats64 *stats)
8190 {
8191         report_delta->used = true;
8192         netdev_hw_stats64_add(&report_delta->stats, stats);
8193 }
8194 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8195
8196 void
8197 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8198 {
8199         report_used->used = true;
8200 }
8201 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8202
8203 void netdev_offload_xstats_push_delta(struct net_device *dev,
8204                                       enum netdev_offload_xstats_type type,
8205                                       const struct rtnl_hw_stats64 *p_stats)
8206 {
8207         struct rtnl_hw_stats64 *stats;
8208
8209         ASSERT_RTNL();
8210
8211         stats = netdev_offload_xstats_get_ptr(dev, type);
8212         if (WARN_ON(!stats))
8213                 return;
8214
8215         netdev_hw_stats64_add(stats, p_stats);
8216 }
8217 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8218
8219 /**
8220  * netdev_get_xmit_slave - Get the xmit slave of master device
8221  * @dev: device
8222  * @skb: The packet
8223  * @all_slaves: assume all the slaves are active
8224  *
8225  * The reference counters are not incremented so the caller must be
8226  * careful with locks. The caller must hold RCU lock.
8227  * %NULL is returned if no slave is found.
8228  */
8229
8230 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8231                                          struct sk_buff *skb,
8232                                          bool all_slaves)
8233 {
8234         const struct net_device_ops *ops = dev->netdev_ops;
8235
8236         if (!ops->ndo_get_xmit_slave)
8237                 return NULL;
8238         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8239 }
8240 EXPORT_SYMBOL(netdev_get_xmit_slave);
8241
8242 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8243                                                   struct sock *sk)
8244 {
8245         const struct net_device_ops *ops = dev->netdev_ops;
8246
8247         if (!ops->ndo_sk_get_lower_dev)
8248                 return NULL;
8249         return ops->ndo_sk_get_lower_dev(dev, sk);
8250 }
8251
8252 /**
8253  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8254  * @dev: device
8255  * @sk: the socket
8256  *
8257  * %NULL is returned if no lower device is found.
8258  */
8259
8260 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8261                                             struct sock *sk)
8262 {
8263         struct net_device *lower;
8264
8265         lower = netdev_sk_get_lower_dev(dev, sk);
8266         while (lower) {
8267                 dev = lower;
8268                 lower = netdev_sk_get_lower_dev(dev, sk);
8269         }
8270
8271         return dev;
8272 }
8273 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8274
8275 static void netdev_adjacent_add_links(struct net_device *dev)
8276 {
8277         struct netdev_adjacent *iter;
8278
8279         struct net *net = dev_net(dev);
8280
8281         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8282                 if (!net_eq(net, dev_net(iter->dev)))
8283                         continue;
8284                 netdev_adjacent_sysfs_add(iter->dev, dev,
8285                                           &iter->dev->adj_list.lower);
8286                 netdev_adjacent_sysfs_add(dev, iter->dev,
8287                                           &dev->adj_list.upper);
8288         }
8289
8290         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8291                 if (!net_eq(net, dev_net(iter->dev)))
8292                         continue;
8293                 netdev_adjacent_sysfs_add(iter->dev, dev,
8294                                           &iter->dev->adj_list.upper);
8295                 netdev_adjacent_sysfs_add(dev, iter->dev,
8296                                           &dev->adj_list.lower);
8297         }
8298 }
8299
8300 static void netdev_adjacent_del_links(struct net_device *dev)
8301 {
8302         struct netdev_adjacent *iter;
8303
8304         struct net *net = dev_net(dev);
8305
8306         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8307                 if (!net_eq(net, dev_net(iter->dev)))
8308                         continue;
8309                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8310                                           &iter->dev->adj_list.lower);
8311                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8312                                           &dev->adj_list.upper);
8313         }
8314
8315         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8316                 if (!net_eq(net, dev_net(iter->dev)))
8317                         continue;
8318                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8319                                           &iter->dev->adj_list.upper);
8320                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8321                                           &dev->adj_list.lower);
8322         }
8323 }
8324
8325 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8326 {
8327         struct netdev_adjacent *iter;
8328
8329         struct net *net = dev_net(dev);
8330
8331         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8332                 if (!net_eq(net, dev_net(iter->dev)))
8333                         continue;
8334                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8335                                           &iter->dev->adj_list.lower);
8336                 netdev_adjacent_sysfs_add(iter->dev, dev,
8337                                           &iter->dev->adj_list.lower);
8338         }
8339
8340         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8341                 if (!net_eq(net, dev_net(iter->dev)))
8342                         continue;
8343                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8344                                           &iter->dev->adj_list.upper);
8345                 netdev_adjacent_sysfs_add(iter->dev, dev,
8346                                           &iter->dev->adj_list.upper);
8347         }
8348 }
8349
8350 void *netdev_lower_dev_get_private(struct net_device *dev,
8351                                    struct net_device *lower_dev)
8352 {
8353         struct netdev_adjacent *lower;
8354
8355         if (!lower_dev)
8356                 return NULL;
8357         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8358         if (!lower)
8359                 return NULL;
8360
8361         return lower->private;
8362 }
8363 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8364
8365
8366 /**
8367  * netdev_lower_state_changed - Dispatch event about lower device state change
8368  * @lower_dev: device
8369  * @lower_state_info: state to dispatch
8370  *
8371  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8372  * The caller must hold the RTNL lock.
8373  */
8374 void netdev_lower_state_changed(struct net_device *lower_dev,
8375                                 void *lower_state_info)
8376 {
8377         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8378                 .info.dev = lower_dev,
8379         };
8380
8381         ASSERT_RTNL();
8382         changelowerstate_info.lower_state_info = lower_state_info;
8383         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8384                                       &changelowerstate_info.info);
8385 }
8386 EXPORT_SYMBOL(netdev_lower_state_changed);
8387
8388 static void dev_change_rx_flags(struct net_device *dev, int flags)
8389 {
8390         const struct net_device_ops *ops = dev->netdev_ops;
8391
8392         if (ops->ndo_change_rx_flags)
8393                 ops->ndo_change_rx_flags(dev, flags);
8394 }
8395
8396 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8397 {
8398         unsigned int old_flags = dev->flags;
8399         kuid_t uid;
8400         kgid_t gid;
8401
8402         ASSERT_RTNL();
8403
8404         dev->flags |= IFF_PROMISC;
8405         dev->promiscuity += inc;
8406         if (dev->promiscuity == 0) {
8407                 /*
8408                  * Avoid overflow.
8409                  * If inc causes overflow, untouch promisc and return error.
8410                  */
8411                 if (inc < 0)
8412                         dev->flags &= ~IFF_PROMISC;
8413                 else {
8414                         dev->promiscuity -= inc;
8415                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8416                         return -EOVERFLOW;
8417                 }
8418         }
8419         if (dev->flags != old_flags) {
8420                 netdev_info(dev, "%s promiscuous mode\n",
8421                             dev->flags & IFF_PROMISC ? "entered" : "left");
8422                 if (audit_enabled) {
8423                         current_uid_gid(&uid, &gid);
8424                         audit_log(audit_context(), GFP_ATOMIC,
8425                                   AUDIT_ANOM_PROMISCUOUS,
8426                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8427                                   dev->name, (dev->flags & IFF_PROMISC),
8428                                   (old_flags & IFF_PROMISC),
8429                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8430                                   from_kuid(&init_user_ns, uid),
8431                                   from_kgid(&init_user_ns, gid),
8432                                   audit_get_sessionid(current));
8433                 }
8434
8435                 dev_change_rx_flags(dev, IFF_PROMISC);
8436         }
8437         if (notify)
8438                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8439         return 0;
8440 }
8441
8442 /**
8443  *      dev_set_promiscuity     - update promiscuity count on a device
8444  *      @dev: device
8445  *      @inc: modifier
8446  *
8447  *      Add or remove promiscuity from a device. While the count in the device
8448  *      remains above zero the interface remains promiscuous. Once it hits zero
8449  *      the device reverts back to normal filtering operation. A negative inc
8450  *      value is used to drop promiscuity on the device.
8451  *      Return 0 if successful or a negative errno code on error.
8452  */
8453 int dev_set_promiscuity(struct net_device *dev, int inc)
8454 {
8455         unsigned int old_flags = dev->flags;
8456         int err;
8457
8458         err = __dev_set_promiscuity(dev, inc, true);
8459         if (err < 0)
8460                 return err;
8461         if (dev->flags != old_flags)
8462                 dev_set_rx_mode(dev);
8463         return err;
8464 }
8465 EXPORT_SYMBOL(dev_set_promiscuity);
8466
8467 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8468 {
8469         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8470
8471         ASSERT_RTNL();
8472
8473         dev->flags |= IFF_ALLMULTI;
8474         dev->allmulti += inc;
8475         if (dev->allmulti == 0) {
8476                 /*
8477                  * Avoid overflow.
8478                  * If inc causes overflow, untouch allmulti and return error.
8479                  */
8480                 if (inc < 0)
8481                         dev->flags &= ~IFF_ALLMULTI;
8482                 else {
8483                         dev->allmulti -= inc;
8484                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8485                         return -EOVERFLOW;
8486                 }
8487         }
8488         if (dev->flags ^ old_flags) {
8489                 netdev_info(dev, "%s allmulticast mode\n",
8490                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8491                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8492                 dev_set_rx_mode(dev);
8493                 if (notify)
8494                         __dev_notify_flags(dev, old_flags,
8495                                            dev->gflags ^ old_gflags, 0, NULL);
8496         }
8497         return 0;
8498 }
8499
8500 /**
8501  *      dev_set_allmulti        - update allmulti count on a device
8502  *      @dev: device
8503  *      @inc: modifier
8504  *
8505  *      Add or remove reception of all multicast frames to a device. While the
8506  *      count in the device remains above zero the interface remains listening
8507  *      to all interfaces. Once it hits zero the device reverts back to normal
8508  *      filtering operation. A negative @inc value is used to drop the counter
8509  *      when releasing a resource needing all multicasts.
8510  *      Return 0 if successful or a negative errno code on error.
8511  */
8512
8513 int dev_set_allmulti(struct net_device *dev, int inc)
8514 {
8515         return __dev_set_allmulti(dev, inc, true);
8516 }
8517 EXPORT_SYMBOL(dev_set_allmulti);
8518
8519 /*
8520  *      Upload unicast and multicast address lists to device and
8521  *      configure RX filtering. When the device doesn't support unicast
8522  *      filtering it is put in promiscuous mode while unicast addresses
8523  *      are present.
8524  */
8525 void __dev_set_rx_mode(struct net_device *dev)
8526 {
8527         const struct net_device_ops *ops = dev->netdev_ops;
8528
8529         /* dev_open will call this function so the list will stay sane. */
8530         if (!(dev->flags&IFF_UP))
8531                 return;
8532
8533         if (!netif_device_present(dev))
8534                 return;
8535
8536         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8537                 /* Unicast addresses changes may only happen under the rtnl,
8538                  * therefore calling __dev_set_promiscuity here is safe.
8539                  */
8540                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8541                         __dev_set_promiscuity(dev, 1, false);
8542                         dev->uc_promisc = true;
8543                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8544                         __dev_set_promiscuity(dev, -1, false);
8545                         dev->uc_promisc = false;
8546                 }
8547         }
8548
8549         if (ops->ndo_set_rx_mode)
8550                 ops->ndo_set_rx_mode(dev);
8551 }
8552
8553 void dev_set_rx_mode(struct net_device *dev)
8554 {
8555         netif_addr_lock_bh(dev);
8556         __dev_set_rx_mode(dev);
8557         netif_addr_unlock_bh(dev);
8558 }
8559
8560 /**
8561  *      dev_get_flags - get flags reported to userspace
8562  *      @dev: device
8563  *
8564  *      Get the combination of flag bits exported through APIs to userspace.
8565  */
8566 unsigned int dev_get_flags(const struct net_device *dev)
8567 {
8568         unsigned int flags;
8569
8570         flags = (dev->flags & ~(IFF_PROMISC |
8571                                 IFF_ALLMULTI |
8572                                 IFF_RUNNING |
8573                                 IFF_LOWER_UP |
8574                                 IFF_DORMANT)) |
8575                 (dev->gflags & (IFF_PROMISC |
8576                                 IFF_ALLMULTI));
8577
8578         if (netif_running(dev)) {
8579                 if (netif_oper_up(dev))
8580                         flags |= IFF_RUNNING;
8581                 if (netif_carrier_ok(dev))
8582                         flags |= IFF_LOWER_UP;
8583                 if (netif_dormant(dev))
8584                         flags |= IFF_DORMANT;
8585         }
8586
8587         return flags;
8588 }
8589 EXPORT_SYMBOL(dev_get_flags);
8590
8591 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8592                        struct netlink_ext_ack *extack)
8593 {
8594         unsigned int old_flags = dev->flags;
8595         int ret;
8596
8597         ASSERT_RTNL();
8598
8599         /*
8600          *      Set the flags on our device.
8601          */
8602
8603         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8604                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8605                                IFF_AUTOMEDIA)) |
8606                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8607                                     IFF_ALLMULTI));
8608
8609         /*
8610          *      Load in the correct multicast list now the flags have changed.
8611          */
8612
8613         if ((old_flags ^ flags) & IFF_MULTICAST)
8614                 dev_change_rx_flags(dev, IFF_MULTICAST);
8615
8616         dev_set_rx_mode(dev);
8617
8618         /*
8619          *      Have we downed the interface. We handle IFF_UP ourselves
8620          *      according to user attempts to set it, rather than blindly
8621          *      setting it.
8622          */
8623
8624         ret = 0;
8625         if ((old_flags ^ flags) & IFF_UP) {
8626                 if (old_flags & IFF_UP)
8627                         __dev_close(dev);
8628                 else
8629                         ret = __dev_open(dev, extack);
8630         }
8631
8632         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8633                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8634                 unsigned int old_flags = dev->flags;
8635
8636                 dev->gflags ^= IFF_PROMISC;
8637
8638                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8639                         if (dev->flags != old_flags)
8640                                 dev_set_rx_mode(dev);
8641         }
8642
8643         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8644          * is important. Some (broken) drivers set IFF_PROMISC, when
8645          * IFF_ALLMULTI is requested not asking us and not reporting.
8646          */
8647         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8648                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8649
8650                 dev->gflags ^= IFF_ALLMULTI;
8651                 __dev_set_allmulti(dev, inc, false);
8652         }
8653
8654         return ret;
8655 }
8656
8657 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8658                         unsigned int gchanges, u32 portid,
8659                         const struct nlmsghdr *nlh)
8660 {
8661         unsigned int changes = dev->flags ^ old_flags;
8662
8663         if (gchanges)
8664                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8665
8666         if (changes & IFF_UP) {
8667                 if (dev->flags & IFF_UP)
8668                         call_netdevice_notifiers(NETDEV_UP, dev);
8669                 else
8670                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8671         }
8672
8673         if (dev->flags & IFF_UP &&
8674             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8675                 struct netdev_notifier_change_info change_info = {
8676                         .info = {
8677                                 .dev = dev,
8678                         },
8679                         .flags_changed = changes,
8680                 };
8681
8682                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8683         }
8684 }
8685
8686 /**
8687  *      dev_change_flags - change device settings
8688  *      @dev: device
8689  *      @flags: device state flags
8690  *      @extack: netlink extended ack
8691  *
8692  *      Change settings on device based state flags. The flags are
8693  *      in the userspace exported format.
8694  */
8695 int dev_change_flags(struct net_device *dev, unsigned int flags,
8696                      struct netlink_ext_ack *extack)
8697 {
8698         int ret;
8699         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8700
8701         ret = __dev_change_flags(dev, flags, extack);
8702         if (ret < 0)
8703                 return ret;
8704
8705         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8706         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8707         return ret;
8708 }
8709 EXPORT_SYMBOL(dev_change_flags);
8710
8711 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8712 {
8713         const struct net_device_ops *ops = dev->netdev_ops;
8714
8715         if (ops->ndo_change_mtu)
8716                 return ops->ndo_change_mtu(dev, new_mtu);
8717
8718         /* Pairs with all the lockless reads of dev->mtu in the stack */
8719         WRITE_ONCE(dev->mtu, new_mtu);
8720         return 0;
8721 }
8722 EXPORT_SYMBOL(__dev_set_mtu);
8723
8724 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8725                      struct netlink_ext_ack *extack)
8726 {
8727         /* MTU must be positive, and in range */
8728         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8729                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8730                 return -EINVAL;
8731         }
8732
8733         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8734                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8735                 return -EINVAL;
8736         }
8737         return 0;
8738 }
8739
8740 /**
8741  *      dev_set_mtu_ext - Change maximum transfer unit
8742  *      @dev: device
8743  *      @new_mtu: new transfer unit
8744  *      @extack: netlink extended ack
8745  *
8746  *      Change the maximum transfer size of the network device.
8747  */
8748 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8749                     struct netlink_ext_ack *extack)
8750 {
8751         int err, orig_mtu;
8752
8753         if (new_mtu == dev->mtu)
8754                 return 0;
8755
8756         err = dev_validate_mtu(dev, new_mtu, extack);
8757         if (err)
8758                 return err;
8759
8760         if (!netif_device_present(dev))
8761                 return -ENODEV;
8762
8763         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8764         err = notifier_to_errno(err);
8765         if (err)
8766                 return err;
8767
8768         orig_mtu = dev->mtu;
8769         err = __dev_set_mtu(dev, new_mtu);
8770
8771         if (!err) {
8772                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8773                                                    orig_mtu);
8774                 err = notifier_to_errno(err);
8775                 if (err) {
8776                         /* setting mtu back and notifying everyone again,
8777                          * so that they have a chance to revert changes.
8778                          */
8779                         __dev_set_mtu(dev, orig_mtu);
8780                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8781                                                      new_mtu);
8782                 }
8783         }
8784         return err;
8785 }
8786
8787 int dev_set_mtu(struct net_device *dev, int new_mtu)
8788 {
8789         struct netlink_ext_ack extack;
8790         int err;
8791
8792         memset(&extack, 0, sizeof(extack));
8793         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8794         if (err && extack._msg)
8795                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8796         return err;
8797 }
8798 EXPORT_SYMBOL(dev_set_mtu);
8799
8800 /**
8801  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8802  *      @dev: device
8803  *      @new_len: new tx queue length
8804  */
8805 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8806 {
8807         unsigned int orig_len = dev->tx_queue_len;
8808         int res;
8809
8810         if (new_len != (unsigned int)new_len)
8811                 return -ERANGE;
8812
8813         if (new_len != orig_len) {
8814                 dev->tx_queue_len = new_len;
8815                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8816                 res = notifier_to_errno(res);
8817                 if (res)
8818                         goto err_rollback;
8819                 res = dev_qdisc_change_tx_queue_len(dev);
8820                 if (res)
8821                         goto err_rollback;
8822         }
8823
8824         return 0;
8825
8826 err_rollback:
8827         netdev_err(dev, "refused to change device tx_queue_len\n");
8828         dev->tx_queue_len = orig_len;
8829         return res;
8830 }
8831
8832 /**
8833  *      dev_set_group - Change group this device belongs to
8834  *      @dev: device
8835  *      @new_group: group this device should belong to
8836  */
8837 void dev_set_group(struct net_device *dev, int new_group)
8838 {
8839         dev->group = new_group;
8840 }
8841
8842 /**
8843  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8844  *      @dev: device
8845  *      @addr: new address
8846  *      @extack: netlink extended ack
8847  */
8848 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8849                               struct netlink_ext_ack *extack)
8850 {
8851         struct netdev_notifier_pre_changeaddr_info info = {
8852                 .info.dev = dev,
8853                 .info.extack = extack,
8854                 .dev_addr = addr,
8855         };
8856         int rc;
8857
8858         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8859         return notifier_to_errno(rc);
8860 }
8861 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8862
8863 /**
8864  *      dev_set_mac_address - Change Media Access Control Address
8865  *      @dev: device
8866  *      @sa: new address
8867  *      @extack: netlink extended ack
8868  *
8869  *      Change the hardware (MAC) address of the device
8870  */
8871 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8872                         struct netlink_ext_ack *extack)
8873 {
8874         const struct net_device_ops *ops = dev->netdev_ops;
8875         int err;
8876
8877         if (!ops->ndo_set_mac_address)
8878                 return -EOPNOTSUPP;
8879         if (sa->sa_family != dev->type)
8880                 return -EINVAL;
8881         if (!netif_device_present(dev))
8882                 return -ENODEV;
8883         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8884         if (err)
8885                 return err;
8886         if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8887                 err = ops->ndo_set_mac_address(dev, sa);
8888                 if (err)
8889                         return err;
8890         }
8891         dev->addr_assign_type = NET_ADDR_SET;
8892         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8893         add_device_randomness(dev->dev_addr, dev->addr_len);
8894         return 0;
8895 }
8896 EXPORT_SYMBOL(dev_set_mac_address);
8897
8898 static DECLARE_RWSEM(dev_addr_sem);
8899
8900 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8901                              struct netlink_ext_ack *extack)
8902 {
8903         int ret;
8904
8905         down_write(&dev_addr_sem);
8906         ret = dev_set_mac_address(dev, sa, extack);
8907         up_write(&dev_addr_sem);
8908         return ret;
8909 }
8910 EXPORT_SYMBOL(dev_set_mac_address_user);
8911
8912 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8913 {
8914         size_t size = sizeof(sa->sa_data_min);
8915         struct net_device *dev;
8916         int ret = 0;
8917
8918         down_read(&dev_addr_sem);
8919         rcu_read_lock();
8920
8921         dev = dev_get_by_name_rcu(net, dev_name);
8922         if (!dev) {
8923                 ret = -ENODEV;
8924                 goto unlock;
8925         }
8926         if (!dev->addr_len)
8927                 memset(sa->sa_data, 0, size);
8928         else
8929                 memcpy(sa->sa_data, dev->dev_addr,
8930                        min_t(size_t, size, dev->addr_len));
8931         sa->sa_family = dev->type;
8932
8933 unlock:
8934         rcu_read_unlock();
8935         up_read(&dev_addr_sem);
8936         return ret;
8937 }
8938 EXPORT_SYMBOL(dev_get_mac_address);
8939
8940 /**
8941  *      dev_change_carrier - Change device carrier
8942  *      @dev: device
8943  *      @new_carrier: new value
8944  *
8945  *      Change device carrier
8946  */
8947 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8948 {
8949         const struct net_device_ops *ops = dev->netdev_ops;
8950
8951         if (!ops->ndo_change_carrier)
8952                 return -EOPNOTSUPP;
8953         if (!netif_device_present(dev))
8954                 return -ENODEV;
8955         return ops->ndo_change_carrier(dev, new_carrier);
8956 }
8957
8958 /**
8959  *      dev_get_phys_port_id - Get device physical port ID
8960  *      @dev: device
8961  *      @ppid: port ID
8962  *
8963  *      Get device physical port ID
8964  */
8965 int dev_get_phys_port_id(struct net_device *dev,
8966                          struct netdev_phys_item_id *ppid)
8967 {
8968         const struct net_device_ops *ops = dev->netdev_ops;
8969
8970         if (!ops->ndo_get_phys_port_id)
8971                 return -EOPNOTSUPP;
8972         return ops->ndo_get_phys_port_id(dev, ppid);
8973 }
8974
8975 /**
8976  *      dev_get_phys_port_name - Get device physical port name
8977  *      @dev: device
8978  *      @name: port name
8979  *      @len: limit of bytes to copy to name
8980  *
8981  *      Get device physical port name
8982  */
8983 int dev_get_phys_port_name(struct net_device *dev,
8984                            char *name, size_t len)
8985 {
8986         const struct net_device_ops *ops = dev->netdev_ops;
8987         int err;
8988
8989         if (ops->ndo_get_phys_port_name) {
8990                 err = ops->ndo_get_phys_port_name(dev, name, len);
8991                 if (err != -EOPNOTSUPP)
8992                         return err;
8993         }
8994         return devlink_compat_phys_port_name_get(dev, name, len);
8995 }
8996
8997 /**
8998  *      dev_get_port_parent_id - Get the device's port parent identifier
8999  *      @dev: network device
9000  *      @ppid: pointer to a storage for the port's parent identifier
9001  *      @recurse: allow/disallow recursion to lower devices
9002  *
9003  *      Get the devices's port parent identifier
9004  */
9005 int dev_get_port_parent_id(struct net_device *dev,
9006                            struct netdev_phys_item_id *ppid,
9007                            bool recurse)
9008 {
9009         const struct net_device_ops *ops = dev->netdev_ops;
9010         struct netdev_phys_item_id first = { };
9011         struct net_device *lower_dev;
9012         struct list_head *iter;
9013         int err;
9014
9015         if (ops->ndo_get_port_parent_id) {
9016                 err = ops->ndo_get_port_parent_id(dev, ppid);
9017                 if (err != -EOPNOTSUPP)
9018                         return err;
9019         }
9020
9021         err = devlink_compat_switch_id_get(dev, ppid);
9022         if (!recurse || err != -EOPNOTSUPP)
9023                 return err;
9024
9025         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9026                 err = dev_get_port_parent_id(lower_dev, ppid, true);
9027                 if (err)
9028                         break;
9029                 if (!first.id_len)
9030                         first = *ppid;
9031                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9032                         return -EOPNOTSUPP;
9033         }
9034
9035         return err;
9036 }
9037 EXPORT_SYMBOL(dev_get_port_parent_id);
9038
9039 /**
9040  *      netdev_port_same_parent_id - Indicate if two network devices have
9041  *      the same port parent identifier
9042  *      @a: first network device
9043  *      @b: second network device
9044  */
9045 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9046 {
9047         struct netdev_phys_item_id a_id = { };
9048         struct netdev_phys_item_id b_id = { };
9049
9050         if (dev_get_port_parent_id(a, &a_id, true) ||
9051             dev_get_port_parent_id(b, &b_id, true))
9052                 return false;
9053
9054         return netdev_phys_item_id_same(&a_id, &b_id);
9055 }
9056 EXPORT_SYMBOL(netdev_port_same_parent_id);
9057
9058 /**
9059  *      dev_change_proto_down - set carrier according to proto_down.
9060  *
9061  *      @dev: device
9062  *      @proto_down: new value
9063  */
9064 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9065 {
9066         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9067                 return -EOPNOTSUPP;
9068         if (!netif_device_present(dev))
9069                 return -ENODEV;
9070         if (proto_down)
9071                 netif_carrier_off(dev);
9072         else
9073                 netif_carrier_on(dev);
9074         dev->proto_down = proto_down;
9075         return 0;
9076 }
9077
9078 /**
9079  *      dev_change_proto_down_reason - proto down reason
9080  *
9081  *      @dev: device
9082  *      @mask: proto down mask
9083  *      @value: proto down value
9084  */
9085 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9086                                   u32 value)
9087 {
9088         int b;
9089
9090         if (!mask) {
9091                 dev->proto_down_reason = value;
9092         } else {
9093                 for_each_set_bit(b, &mask, 32) {
9094                         if (value & (1 << b))
9095                                 dev->proto_down_reason |= BIT(b);
9096                         else
9097                                 dev->proto_down_reason &= ~BIT(b);
9098                 }
9099         }
9100 }
9101
9102 struct bpf_xdp_link {
9103         struct bpf_link link;
9104         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9105         int flags;
9106 };
9107
9108 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9109 {
9110         if (flags & XDP_FLAGS_HW_MODE)
9111                 return XDP_MODE_HW;
9112         if (flags & XDP_FLAGS_DRV_MODE)
9113                 return XDP_MODE_DRV;
9114         if (flags & XDP_FLAGS_SKB_MODE)
9115                 return XDP_MODE_SKB;
9116         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9117 }
9118
9119 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9120 {
9121         switch (mode) {
9122         case XDP_MODE_SKB:
9123                 return generic_xdp_install;
9124         case XDP_MODE_DRV:
9125         case XDP_MODE_HW:
9126                 return dev->netdev_ops->ndo_bpf;
9127         default:
9128                 return NULL;
9129         }
9130 }
9131
9132 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9133                                          enum bpf_xdp_mode mode)
9134 {
9135         return dev->xdp_state[mode].link;
9136 }
9137
9138 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9139                                      enum bpf_xdp_mode mode)
9140 {
9141         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9142
9143         if (link)
9144                 return link->link.prog;
9145         return dev->xdp_state[mode].prog;
9146 }
9147
9148 u8 dev_xdp_prog_count(struct net_device *dev)
9149 {
9150         u8 count = 0;
9151         int i;
9152
9153         for (i = 0; i < __MAX_XDP_MODE; i++)
9154                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9155                         count++;
9156         return count;
9157 }
9158 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9159
9160 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9161 {
9162         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9163
9164         return prog ? prog->aux->id : 0;
9165 }
9166
9167 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9168                              struct bpf_xdp_link *link)
9169 {
9170         dev->xdp_state[mode].link = link;
9171         dev->xdp_state[mode].prog = NULL;
9172 }
9173
9174 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9175                              struct bpf_prog *prog)
9176 {
9177         dev->xdp_state[mode].link = NULL;
9178         dev->xdp_state[mode].prog = prog;
9179 }
9180
9181 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9182                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9183                            u32 flags, struct bpf_prog *prog)
9184 {
9185         struct netdev_bpf xdp;
9186         int err;
9187
9188         memset(&xdp, 0, sizeof(xdp));
9189         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9190         xdp.extack = extack;
9191         xdp.flags = flags;
9192         xdp.prog = prog;
9193
9194         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9195          * "moved" into driver), so they don't increment it on their own, but
9196          * they do decrement refcnt when program is detached or replaced.
9197          * Given net_device also owns link/prog, we need to bump refcnt here
9198          * to prevent drivers from underflowing it.
9199          */
9200         if (prog)
9201                 bpf_prog_inc(prog);
9202         err = bpf_op(dev, &xdp);
9203         if (err) {
9204                 if (prog)
9205                         bpf_prog_put(prog);
9206                 return err;
9207         }
9208
9209         if (mode != XDP_MODE_HW)
9210                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9211
9212         return 0;
9213 }
9214
9215 static void dev_xdp_uninstall(struct net_device *dev)
9216 {
9217         struct bpf_xdp_link *link;
9218         struct bpf_prog *prog;
9219         enum bpf_xdp_mode mode;
9220         bpf_op_t bpf_op;
9221
9222         ASSERT_RTNL();
9223
9224         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9225                 prog = dev_xdp_prog(dev, mode);
9226                 if (!prog)
9227                         continue;
9228
9229                 bpf_op = dev_xdp_bpf_op(dev, mode);
9230                 if (!bpf_op)
9231                         continue;
9232
9233                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9234
9235                 /* auto-detach link from net device */
9236                 link = dev_xdp_link(dev, mode);
9237                 if (link)
9238                         link->dev = NULL;
9239                 else
9240                         bpf_prog_put(prog);
9241
9242                 dev_xdp_set_link(dev, mode, NULL);
9243         }
9244 }
9245
9246 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9247                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9248                           struct bpf_prog *old_prog, u32 flags)
9249 {
9250         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9251         struct bpf_prog *cur_prog;
9252         struct net_device *upper;
9253         struct list_head *iter;
9254         enum bpf_xdp_mode mode;
9255         bpf_op_t bpf_op;
9256         int err;
9257
9258         ASSERT_RTNL();
9259
9260         /* either link or prog attachment, never both */
9261         if (link && (new_prog || old_prog))
9262                 return -EINVAL;
9263         /* link supports only XDP mode flags */
9264         if (link && (flags & ~XDP_FLAGS_MODES)) {
9265                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9266                 return -EINVAL;
9267         }
9268         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9269         if (num_modes > 1) {
9270                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9271                 return -EINVAL;
9272         }
9273         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9274         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9275                 NL_SET_ERR_MSG(extack,
9276                                "More than one program loaded, unset mode is ambiguous");
9277                 return -EINVAL;
9278         }
9279         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9280         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9281                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9282                 return -EINVAL;
9283         }
9284
9285         mode = dev_xdp_mode(dev, flags);
9286         /* can't replace attached link */
9287         if (dev_xdp_link(dev, mode)) {
9288                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9289                 return -EBUSY;
9290         }
9291
9292         /* don't allow if an upper device already has a program */
9293         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9294                 if (dev_xdp_prog_count(upper) > 0) {
9295                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9296                         return -EEXIST;
9297                 }
9298         }
9299
9300         cur_prog = dev_xdp_prog(dev, mode);
9301         /* can't replace attached prog with link */
9302         if (link && cur_prog) {
9303                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9304                 return -EBUSY;
9305         }
9306         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9307                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9308                 return -EEXIST;
9309         }
9310
9311         /* put effective new program into new_prog */
9312         if (link)
9313                 new_prog = link->link.prog;
9314
9315         if (new_prog) {
9316                 bool offload = mode == XDP_MODE_HW;
9317                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9318                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9319
9320                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9321                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9322                         return -EBUSY;
9323                 }
9324                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9325                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9326                         return -EEXIST;
9327                 }
9328                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9329                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9330                         return -EINVAL;
9331                 }
9332                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9333                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9334                         return -EINVAL;
9335                 }
9336                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9337                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9338                         return -EINVAL;
9339                 }
9340                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9341                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9342                         return -EINVAL;
9343                 }
9344         }
9345
9346         /* don't call drivers if the effective program didn't change */
9347         if (new_prog != cur_prog) {
9348                 bpf_op = dev_xdp_bpf_op(dev, mode);
9349                 if (!bpf_op) {
9350                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9351                         return -EOPNOTSUPP;
9352                 }
9353
9354                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9355                 if (err)
9356                         return err;
9357         }
9358
9359         if (link)
9360                 dev_xdp_set_link(dev, mode, link);
9361         else
9362                 dev_xdp_set_prog(dev, mode, new_prog);
9363         if (cur_prog)
9364                 bpf_prog_put(cur_prog);
9365
9366         return 0;
9367 }
9368
9369 static int dev_xdp_attach_link(struct net_device *dev,
9370                                struct netlink_ext_ack *extack,
9371                                struct bpf_xdp_link *link)
9372 {
9373         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9374 }
9375
9376 static int dev_xdp_detach_link(struct net_device *dev,
9377                                struct netlink_ext_ack *extack,
9378                                struct bpf_xdp_link *link)
9379 {
9380         enum bpf_xdp_mode mode;
9381         bpf_op_t bpf_op;
9382
9383         ASSERT_RTNL();
9384
9385         mode = dev_xdp_mode(dev, link->flags);
9386         if (dev_xdp_link(dev, mode) != link)
9387                 return -EINVAL;
9388
9389         bpf_op = dev_xdp_bpf_op(dev, mode);
9390         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9391         dev_xdp_set_link(dev, mode, NULL);
9392         return 0;
9393 }
9394
9395 static void bpf_xdp_link_release(struct bpf_link *link)
9396 {
9397         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9398
9399         rtnl_lock();
9400
9401         /* if racing with net_device's tear down, xdp_link->dev might be
9402          * already NULL, in which case link was already auto-detached
9403          */
9404         if (xdp_link->dev) {
9405                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9406                 xdp_link->dev = NULL;
9407         }
9408
9409         rtnl_unlock();
9410 }
9411
9412 static int bpf_xdp_link_detach(struct bpf_link *link)
9413 {
9414         bpf_xdp_link_release(link);
9415         return 0;
9416 }
9417
9418 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9419 {
9420         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9421
9422         kfree(xdp_link);
9423 }
9424
9425 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9426                                      struct seq_file *seq)
9427 {
9428         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9429         u32 ifindex = 0;
9430
9431         rtnl_lock();
9432         if (xdp_link->dev)
9433                 ifindex = xdp_link->dev->ifindex;
9434         rtnl_unlock();
9435
9436         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9437 }
9438
9439 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9440                                        struct bpf_link_info *info)
9441 {
9442         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9443         u32 ifindex = 0;
9444
9445         rtnl_lock();
9446         if (xdp_link->dev)
9447                 ifindex = xdp_link->dev->ifindex;
9448         rtnl_unlock();
9449
9450         info->xdp.ifindex = ifindex;
9451         return 0;
9452 }
9453
9454 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9455                                struct bpf_prog *old_prog)
9456 {
9457         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9458         enum bpf_xdp_mode mode;
9459         bpf_op_t bpf_op;
9460         int err = 0;
9461
9462         rtnl_lock();
9463
9464         /* link might have been auto-released already, so fail */
9465         if (!xdp_link->dev) {
9466                 err = -ENOLINK;
9467                 goto out_unlock;
9468         }
9469
9470         if (old_prog && link->prog != old_prog) {
9471                 err = -EPERM;
9472                 goto out_unlock;
9473         }
9474         old_prog = link->prog;
9475         if (old_prog->type != new_prog->type ||
9476             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9477                 err = -EINVAL;
9478                 goto out_unlock;
9479         }
9480
9481         if (old_prog == new_prog) {
9482                 /* no-op, don't disturb drivers */
9483                 bpf_prog_put(new_prog);
9484                 goto out_unlock;
9485         }
9486
9487         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9488         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9489         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9490                               xdp_link->flags, new_prog);
9491         if (err)
9492                 goto out_unlock;
9493
9494         old_prog = xchg(&link->prog, new_prog);
9495         bpf_prog_put(old_prog);
9496
9497 out_unlock:
9498         rtnl_unlock();
9499         return err;
9500 }
9501
9502 static const struct bpf_link_ops bpf_xdp_link_lops = {
9503         .release = bpf_xdp_link_release,
9504         .dealloc = bpf_xdp_link_dealloc,
9505         .detach = bpf_xdp_link_detach,
9506         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9507         .fill_link_info = bpf_xdp_link_fill_link_info,
9508         .update_prog = bpf_xdp_link_update,
9509 };
9510
9511 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9512 {
9513         struct net *net = current->nsproxy->net_ns;
9514         struct bpf_link_primer link_primer;
9515         struct netlink_ext_ack extack = {};
9516         struct bpf_xdp_link *link;
9517         struct net_device *dev;
9518         int err, fd;
9519
9520         rtnl_lock();
9521         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9522         if (!dev) {
9523                 rtnl_unlock();
9524                 return -EINVAL;
9525         }
9526
9527         link = kzalloc(sizeof(*link), GFP_USER);
9528         if (!link) {
9529                 err = -ENOMEM;
9530                 goto unlock;
9531         }
9532
9533         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9534         link->dev = dev;
9535         link->flags = attr->link_create.flags;
9536
9537         err = bpf_link_prime(&link->link, &link_primer);
9538         if (err) {
9539                 kfree(link);
9540                 goto unlock;
9541         }
9542
9543         err = dev_xdp_attach_link(dev, &extack, link);
9544         rtnl_unlock();
9545
9546         if (err) {
9547                 link->dev = NULL;
9548                 bpf_link_cleanup(&link_primer);
9549                 trace_bpf_xdp_link_attach_failed(extack._msg);
9550                 goto out_put_dev;
9551         }
9552
9553         fd = bpf_link_settle(&link_primer);
9554         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9555         dev_put(dev);
9556         return fd;
9557
9558 unlock:
9559         rtnl_unlock();
9560
9561 out_put_dev:
9562         dev_put(dev);
9563         return err;
9564 }
9565
9566 /**
9567  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9568  *      @dev: device
9569  *      @extack: netlink extended ack
9570  *      @fd: new program fd or negative value to clear
9571  *      @expected_fd: old program fd that userspace expects to replace or clear
9572  *      @flags: xdp-related flags
9573  *
9574  *      Set or clear a bpf program for a device
9575  */
9576 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9577                       int fd, int expected_fd, u32 flags)
9578 {
9579         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9580         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9581         int err;
9582
9583         ASSERT_RTNL();
9584
9585         if (fd >= 0) {
9586                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9587                                                  mode != XDP_MODE_SKB);
9588                 if (IS_ERR(new_prog))
9589                         return PTR_ERR(new_prog);
9590         }
9591
9592         if (expected_fd >= 0) {
9593                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9594                                                  mode != XDP_MODE_SKB);
9595                 if (IS_ERR(old_prog)) {
9596                         err = PTR_ERR(old_prog);
9597                         old_prog = NULL;
9598                         goto err_out;
9599                 }
9600         }
9601
9602         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9603
9604 err_out:
9605         if (err && new_prog)
9606                 bpf_prog_put(new_prog);
9607         if (old_prog)
9608                 bpf_prog_put(old_prog);
9609         return err;
9610 }
9611
9612 /**
9613  * dev_index_reserve() - allocate an ifindex in a namespace
9614  * @net: the applicable net namespace
9615  * @ifindex: requested ifindex, pass %0 to get one allocated
9616  *
9617  * Allocate a ifindex for a new device. Caller must either use the ifindex
9618  * to store the device (via list_netdevice()) or call dev_index_release()
9619  * to give the index up.
9620  *
9621  * Return: a suitable unique value for a new device interface number or -errno.
9622  */
9623 static int dev_index_reserve(struct net *net, u32 ifindex)
9624 {
9625         int err;
9626
9627         if (ifindex > INT_MAX) {
9628                 DEBUG_NET_WARN_ON_ONCE(1);
9629                 return -EINVAL;
9630         }
9631
9632         if (!ifindex)
9633                 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9634                                       xa_limit_31b, &net->ifindex, GFP_KERNEL);
9635         else
9636                 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9637         if (err < 0)
9638                 return err;
9639
9640         return ifindex;
9641 }
9642
9643 static void dev_index_release(struct net *net, int ifindex)
9644 {
9645         /* Expect only unused indexes, unlist_netdevice() removes the used */
9646         WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9647 }
9648
9649 /* Delayed registration/unregisteration */
9650 LIST_HEAD(net_todo_list);
9651 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9652
9653 static void net_set_todo(struct net_device *dev)
9654 {
9655         list_add_tail(&dev->todo_list, &net_todo_list);
9656         atomic_inc(&dev_net(dev)->dev_unreg_count);
9657 }
9658
9659 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9660         struct net_device *upper, netdev_features_t features)
9661 {
9662         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9663         netdev_features_t feature;
9664         int feature_bit;
9665
9666         for_each_netdev_feature(upper_disables, feature_bit) {
9667                 feature = __NETIF_F_BIT(feature_bit);
9668                 if (!(upper->wanted_features & feature)
9669                     && (features & feature)) {
9670                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9671                                    &feature, upper->name);
9672                         features &= ~feature;
9673                 }
9674         }
9675
9676         return features;
9677 }
9678
9679 static void netdev_sync_lower_features(struct net_device *upper,
9680         struct net_device *lower, netdev_features_t features)
9681 {
9682         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9683         netdev_features_t feature;
9684         int feature_bit;
9685
9686         for_each_netdev_feature(upper_disables, feature_bit) {
9687                 feature = __NETIF_F_BIT(feature_bit);
9688                 if (!(features & feature) && (lower->features & feature)) {
9689                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9690                                    &feature, lower->name);
9691                         lower->wanted_features &= ~feature;
9692                         __netdev_update_features(lower);
9693
9694                         if (unlikely(lower->features & feature))
9695                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9696                                             &feature, lower->name);
9697                         else
9698                                 netdev_features_change(lower);
9699                 }
9700         }
9701 }
9702
9703 static netdev_features_t netdev_fix_features(struct net_device *dev,
9704         netdev_features_t features)
9705 {
9706         /* Fix illegal checksum combinations */
9707         if ((features & NETIF_F_HW_CSUM) &&
9708             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9709                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9710                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9711         }
9712
9713         /* TSO requires that SG is present as well. */
9714         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9715                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9716                 features &= ~NETIF_F_ALL_TSO;
9717         }
9718
9719         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9720                                         !(features & NETIF_F_IP_CSUM)) {
9721                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9722                 features &= ~NETIF_F_TSO;
9723                 features &= ~NETIF_F_TSO_ECN;
9724         }
9725
9726         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9727                                          !(features & NETIF_F_IPV6_CSUM)) {
9728                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9729                 features &= ~NETIF_F_TSO6;
9730         }
9731
9732         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9733         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9734                 features &= ~NETIF_F_TSO_MANGLEID;
9735
9736         /* TSO ECN requires that TSO is present as well. */
9737         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9738                 features &= ~NETIF_F_TSO_ECN;
9739
9740         /* Software GSO depends on SG. */
9741         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9742                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9743                 features &= ~NETIF_F_GSO;
9744         }
9745
9746         /* GSO partial features require GSO partial be set */
9747         if ((features & dev->gso_partial_features) &&
9748             !(features & NETIF_F_GSO_PARTIAL)) {
9749                 netdev_dbg(dev,
9750                            "Dropping partially supported GSO features since no GSO partial.\n");
9751                 features &= ~dev->gso_partial_features;
9752         }
9753
9754         if (!(features & NETIF_F_RXCSUM)) {
9755                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9756                  * successfully merged by hardware must also have the
9757                  * checksum verified by hardware.  If the user does not
9758                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9759                  */
9760                 if (features & NETIF_F_GRO_HW) {
9761                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9762                         features &= ~NETIF_F_GRO_HW;
9763                 }
9764         }
9765
9766         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9767         if (features & NETIF_F_RXFCS) {
9768                 if (features & NETIF_F_LRO) {
9769                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9770                         features &= ~NETIF_F_LRO;
9771                 }
9772
9773                 if (features & NETIF_F_GRO_HW) {
9774                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9775                         features &= ~NETIF_F_GRO_HW;
9776                 }
9777         }
9778
9779         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9780                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9781                 features &= ~NETIF_F_LRO;
9782         }
9783
9784         if (features & NETIF_F_HW_TLS_TX) {
9785                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9786                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9787                 bool hw_csum = features & NETIF_F_HW_CSUM;
9788
9789                 if (!ip_csum && !hw_csum) {
9790                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9791                         features &= ~NETIF_F_HW_TLS_TX;
9792                 }
9793         }
9794
9795         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9796                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9797                 features &= ~NETIF_F_HW_TLS_RX;
9798         }
9799
9800         return features;
9801 }
9802
9803 int __netdev_update_features(struct net_device *dev)
9804 {
9805         struct net_device *upper, *lower;
9806         netdev_features_t features;
9807         struct list_head *iter;
9808         int err = -1;
9809
9810         ASSERT_RTNL();
9811
9812         features = netdev_get_wanted_features(dev);
9813
9814         if (dev->netdev_ops->ndo_fix_features)
9815                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9816
9817         /* driver might be less strict about feature dependencies */
9818         features = netdev_fix_features(dev, features);
9819
9820         /* some features can't be enabled if they're off on an upper device */
9821         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9822                 features = netdev_sync_upper_features(dev, upper, features);
9823
9824         if (dev->features == features)
9825                 goto sync_lower;
9826
9827         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9828                 &dev->features, &features);
9829
9830         if (dev->netdev_ops->ndo_set_features)
9831                 err = dev->netdev_ops->ndo_set_features(dev, features);
9832         else
9833                 err = 0;
9834
9835         if (unlikely(err < 0)) {
9836                 netdev_err(dev,
9837                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9838                         err, &features, &dev->features);
9839                 /* return non-0 since some features might have changed and
9840                  * it's better to fire a spurious notification than miss it
9841                  */
9842                 return -1;
9843         }
9844
9845 sync_lower:
9846         /* some features must be disabled on lower devices when disabled
9847          * on an upper device (think: bonding master or bridge)
9848          */
9849         netdev_for_each_lower_dev(dev, lower, iter)
9850                 netdev_sync_lower_features(dev, lower, features);
9851
9852         if (!err) {
9853                 netdev_features_t diff = features ^ dev->features;
9854
9855                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9856                         /* udp_tunnel_{get,drop}_rx_info both need
9857                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9858                          * device, or they won't do anything.
9859                          * Thus we need to update dev->features
9860                          * *before* calling udp_tunnel_get_rx_info,
9861                          * but *after* calling udp_tunnel_drop_rx_info.
9862                          */
9863                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9864                                 dev->features = features;
9865                                 udp_tunnel_get_rx_info(dev);
9866                         } else {
9867                                 udp_tunnel_drop_rx_info(dev);
9868                         }
9869                 }
9870
9871                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9872                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9873                                 dev->features = features;
9874                                 err |= vlan_get_rx_ctag_filter_info(dev);
9875                         } else {
9876                                 vlan_drop_rx_ctag_filter_info(dev);
9877                         }
9878                 }
9879
9880                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9881                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9882                                 dev->features = features;
9883                                 err |= vlan_get_rx_stag_filter_info(dev);
9884                         } else {
9885                                 vlan_drop_rx_stag_filter_info(dev);
9886                         }
9887                 }
9888
9889                 dev->features = features;
9890         }
9891
9892         return err < 0 ? 0 : 1;
9893 }
9894
9895 /**
9896  *      netdev_update_features - recalculate device features
9897  *      @dev: the device to check
9898  *
9899  *      Recalculate dev->features set and send notifications if it
9900  *      has changed. Should be called after driver or hardware dependent
9901  *      conditions might have changed that influence the features.
9902  */
9903 void netdev_update_features(struct net_device *dev)
9904 {
9905         if (__netdev_update_features(dev))
9906                 netdev_features_change(dev);
9907 }
9908 EXPORT_SYMBOL(netdev_update_features);
9909
9910 /**
9911  *      netdev_change_features - recalculate device features
9912  *      @dev: the device to check
9913  *
9914  *      Recalculate dev->features set and send notifications even
9915  *      if they have not changed. Should be called instead of
9916  *      netdev_update_features() if also dev->vlan_features might
9917  *      have changed to allow the changes to be propagated to stacked
9918  *      VLAN devices.
9919  */
9920 void netdev_change_features(struct net_device *dev)
9921 {
9922         __netdev_update_features(dev);
9923         netdev_features_change(dev);
9924 }
9925 EXPORT_SYMBOL(netdev_change_features);
9926
9927 /**
9928  *      netif_stacked_transfer_operstate -      transfer operstate
9929  *      @rootdev: the root or lower level device to transfer state from
9930  *      @dev: the device to transfer operstate to
9931  *
9932  *      Transfer operational state from root to device. This is normally
9933  *      called when a stacking relationship exists between the root
9934  *      device and the device(a leaf device).
9935  */
9936 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9937                                         struct net_device *dev)
9938 {
9939         if (rootdev->operstate == IF_OPER_DORMANT)
9940                 netif_dormant_on(dev);
9941         else
9942                 netif_dormant_off(dev);
9943
9944         if (rootdev->operstate == IF_OPER_TESTING)
9945                 netif_testing_on(dev);
9946         else
9947                 netif_testing_off(dev);
9948
9949         if (netif_carrier_ok(rootdev))
9950                 netif_carrier_on(dev);
9951         else
9952                 netif_carrier_off(dev);
9953 }
9954 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9955
9956 static int netif_alloc_rx_queues(struct net_device *dev)
9957 {
9958         unsigned int i, count = dev->num_rx_queues;
9959         struct netdev_rx_queue *rx;
9960         size_t sz = count * sizeof(*rx);
9961         int err = 0;
9962
9963         BUG_ON(count < 1);
9964
9965         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9966         if (!rx)
9967                 return -ENOMEM;
9968
9969         dev->_rx = rx;
9970
9971         for (i = 0; i < count; i++) {
9972                 rx[i].dev = dev;
9973
9974                 /* XDP RX-queue setup */
9975                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9976                 if (err < 0)
9977                         goto err_rxq_info;
9978         }
9979         return 0;
9980
9981 err_rxq_info:
9982         /* Rollback successful reg's and free other resources */
9983         while (i--)
9984                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9985         kvfree(dev->_rx);
9986         dev->_rx = NULL;
9987         return err;
9988 }
9989
9990 static void netif_free_rx_queues(struct net_device *dev)
9991 {
9992         unsigned int i, count = dev->num_rx_queues;
9993
9994         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9995         if (!dev->_rx)
9996                 return;
9997
9998         for (i = 0; i < count; i++)
9999                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10000
10001         kvfree(dev->_rx);
10002 }
10003
10004 static void netdev_init_one_queue(struct net_device *dev,
10005                                   struct netdev_queue *queue, void *_unused)
10006 {
10007         /* Initialize queue lock */
10008         spin_lock_init(&queue->_xmit_lock);
10009         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10010         queue->xmit_lock_owner = -1;
10011         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10012         queue->dev = dev;
10013 #ifdef CONFIG_BQL
10014         dql_init(&queue->dql, HZ);
10015 #endif
10016 }
10017
10018 static void netif_free_tx_queues(struct net_device *dev)
10019 {
10020         kvfree(dev->_tx);
10021 }
10022
10023 static int netif_alloc_netdev_queues(struct net_device *dev)
10024 {
10025         unsigned int count = dev->num_tx_queues;
10026         struct netdev_queue *tx;
10027         size_t sz = count * sizeof(*tx);
10028
10029         if (count < 1 || count > 0xffff)
10030                 return -EINVAL;
10031
10032         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10033         if (!tx)
10034                 return -ENOMEM;
10035
10036         dev->_tx = tx;
10037
10038         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10039         spin_lock_init(&dev->tx_global_lock);
10040
10041         return 0;
10042 }
10043
10044 void netif_tx_stop_all_queues(struct net_device *dev)
10045 {
10046         unsigned int i;
10047
10048         for (i = 0; i < dev->num_tx_queues; i++) {
10049                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10050
10051                 netif_tx_stop_queue(txq);
10052         }
10053 }
10054 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10055
10056 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10057 {
10058         void __percpu *v;
10059
10060         /* Drivers implementing ndo_get_peer_dev must support tstat
10061          * accounting, so that skb_do_redirect() can bump the dev's
10062          * RX stats upon network namespace switch.
10063          */
10064         if (dev->netdev_ops->ndo_get_peer_dev &&
10065             dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10066                 return -EOPNOTSUPP;
10067
10068         switch (dev->pcpu_stat_type) {
10069         case NETDEV_PCPU_STAT_NONE:
10070                 return 0;
10071         case NETDEV_PCPU_STAT_LSTATS:
10072                 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10073                 break;
10074         case NETDEV_PCPU_STAT_TSTATS:
10075                 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10076                 break;
10077         case NETDEV_PCPU_STAT_DSTATS:
10078                 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10079                 break;
10080         default:
10081                 return -EINVAL;
10082         }
10083
10084         return v ? 0 : -ENOMEM;
10085 }
10086
10087 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10088 {
10089         switch (dev->pcpu_stat_type) {
10090         case NETDEV_PCPU_STAT_NONE:
10091                 return;
10092         case NETDEV_PCPU_STAT_LSTATS:
10093                 free_percpu(dev->lstats);
10094                 break;
10095         case NETDEV_PCPU_STAT_TSTATS:
10096                 free_percpu(dev->tstats);
10097                 break;
10098         case NETDEV_PCPU_STAT_DSTATS:
10099                 free_percpu(dev->dstats);
10100                 break;
10101         }
10102 }
10103
10104 /**
10105  * register_netdevice() - register a network device
10106  * @dev: device to register
10107  *
10108  * Take a prepared network device structure and make it externally accessible.
10109  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10110  * Callers must hold the rtnl lock - you may want register_netdev()
10111  * instead of this.
10112  */
10113 int register_netdevice(struct net_device *dev)
10114 {
10115         int ret;
10116         struct net *net = dev_net(dev);
10117
10118         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10119                      NETDEV_FEATURE_COUNT);
10120         BUG_ON(dev_boot_phase);
10121         ASSERT_RTNL();
10122
10123         might_sleep();
10124
10125         /* When net_device's are persistent, this will be fatal. */
10126         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10127         BUG_ON(!net);
10128
10129         ret = ethtool_check_ops(dev->ethtool_ops);
10130         if (ret)
10131                 return ret;
10132
10133         spin_lock_init(&dev->addr_list_lock);
10134         netdev_set_addr_lockdep_class(dev);
10135
10136         ret = dev_get_valid_name(net, dev, dev->name);
10137         if (ret < 0)
10138                 goto out;
10139
10140         ret = -ENOMEM;
10141         dev->name_node = netdev_name_node_head_alloc(dev);
10142         if (!dev->name_node)
10143                 goto out;
10144
10145         /* Init, if this function is available */
10146         if (dev->netdev_ops->ndo_init) {
10147                 ret = dev->netdev_ops->ndo_init(dev);
10148                 if (ret) {
10149                         if (ret > 0)
10150                                 ret = -EIO;
10151                         goto err_free_name;
10152                 }
10153         }
10154
10155         if (((dev->hw_features | dev->features) &
10156              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10157             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10158              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10159                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10160                 ret = -EINVAL;
10161                 goto err_uninit;
10162         }
10163
10164         ret = netdev_do_alloc_pcpu_stats(dev);
10165         if (ret)
10166                 goto err_uninit;
10167
10168         ret = dev_index_reserve(net, dev->ifindex);
10169         if (ret < 0)
10170                 goto err_free_pcpu;
10171         dev->ifindex = ret;
10172
10173         /* Transfer changeable features to wanted_features and enable
10174          * software offloads (GSO and GRO).
10175          */
10176         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10177         dev->features |= NETIF_F_SOFT_FEATURES;
10178
10179         if (dev->udp_tunnel_nic_info) {
10180                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10181                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10182         }
10183
10184         dev->wanted_features = dev->features & dev->hw_features;
10185
10186         if (!(dev->flags & IFF_LOOPBACK))
10187                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10188
10189         /* If IPv4 TCP segmentation offload is supported we should also
10190          * allow the device to enable segmenting the frame with the option
10191          * of ignoring a static IP ID value.  This doesn't enable the
10192          * feature itself but allows the user to enable it later.
10193          */
10194         if (dev->hw_features & NETIF_F_TSO)
10195                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10196         if (dev->vlan_features & NETIF_F_TSO)
10197                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10198         if (dev->mpls_features & NETIF_F_TSO)
10199                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10200         if (dev->hw_enc_features & NETIF_F_TSO)
10201                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10202
10203         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10204          */
10205         dev->vlan_features |= NETIF_F_HIGHDMA;
10206
10207         /* Make NETIF_F_SG inheritable to tunnel devices.
10208          */
10209         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10210
10211         /* Make NETIF_F_SG inheritable to MPLS.
10212          */
10213         dev->mpls_features |= NETIF_F_SG;
10214
10215         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10216         ret = notifier_to_errno(ret);
10217         if (ret)
10218                 goto err_ifindex_release;
10219
10220         ret = netdev_register_kobject(dev);
10221         write_lock(&dev_base_lock);
10222         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10223         write_unlock(&dev_base_lock);
10224         if (ret)
10225                 goto err_uninit_notify;
10226
10227         __netdev_update_features(dev);
10228
10229         /*
10230          *      Default initial state at registry is that the
10231          *      device is present.
10232          */
10233
10234         set_bit(__LINK_STATE_PRESENT, &dev->state);
10235
10236         linkwatch_init_dev(dev);
10237
10238         dev_init_scheduler(dev);
10239
10240         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10241         list_netdevice(dev);
10242
10243         add_device_randomness(dev->dev_addr, dev->addr_len);
10244
10245         /* If the device has permanent device address, driver should
10246          * set dev_addr and also addr_assign_type should be set to
10247          * NET_ADDR_PERM (default value).
10248          */
10249         if (dev->addr_assign_type == NET_ADDR_PERM)
10250                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10251
10252         /* Notify protocols, that a new device appeared. */
10253         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10254         ret = notifier_to_errno(ret);
10255         if (ret) {
10256                 /* Expect explicit free_netdev() on failure */
10257                 dev->needs_free_netdev = false;
10258                 unregister_netdevice_queue(dev, NULL);
10259                 goto out;
10260         }
10261         /*
10262          *      Prevent userspace races by waiting until the network
10263          *      device is fully setup before sending notifications.
10264          */
10265         if (!dev->rtnl_link_ops ||
10266             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10267                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10268
10269 out:
10270         return ret;
10271
10272 err_uninit_notify:
10273         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10274 err_ifindex_release:
10275         dev_index_release(net, dev->ifindex);
10276 err_free_pcpu:
10277         netdev_do_free_pcpu_stats(dev);
10278 err_uninit:
10279         if (dev->netdev_ops->ndo_uninit)
10280                 dev->netdev_ops->ndo_uninit(dev);
10281         if (dev->priv_destructor)
10282                 dev->priv_destructor(dev);
10283 err_free_name:
10284         netdev_name_node_free(dev->name_node);
10285         goto out;
10286 }
10287 EXPORT_SYMBOL(register_netdevice);
10288
10289 /**
10290  *      init_dummy_netdev       - init a dummy network device for NAPI
10291  *      @dev: device to init
10292  *
10293  *      This takes a network device structure and initialize the minimum
10294  *      amount of fields so it can be used to schedule NAPI polls without
10295  *      registering a full blown interface. This is to be used by drivers
10296  *      that need to tie several hardware interfaces to a single NAPI
10297  *      poll scheduler due to HW limitations.
10298  */
10299 int init_dummy_netdev(struct net_device *dev)
10300 {
10301         /* Clear everything. Note we don't initialize spinlocks
10302          * are they aren't supposed to be taken by any of the
10303          * NAPI code and this dummy netdev is supposed to be
10304          * only ever used for NAPI polls
10305          */
10306         memset(dev, 0, sizeof(struct net_device));
10307
10308         /* make sure we BUG if trying to hit standard
10309          * register/unregister code path
10310          */
10311         dev->reg_state = NETREG_DUMMY;
10312
10313         /* NAPI wants this */
10314         INIT_LIST_HEAD(&dev->napi_list);
10315
10316         /* a dummy interface is started by default */
10317         set_bit(__LINK_STATE_PRESENT, &dev->state);
10318         set_bit(__LINK_STATE_START, &dev->state);
10319
10320         /* napi_busy_loop stats accounting wants this */
10321         dev_net_set(dev, &init_net);
10322
10323         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10324          * because users of this 'device' dont need to change
10325          * its refcount.
10326          */
10327
10328         return 0;
10329 }
10330 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10331
10332
10333 /**
10334  *      register_netdev - register a network device
10335  *      @dev: device to register
10336  *
10337  *      Take a completed network device structure and add it to the kernel
10338  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10339  *      chain. 0 is returned on success. A negative errno code is returned
10340  *      on a failure to set up the device, or if the name is a duplicate.
10341  *
10342  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10343  *      and expands the device name if you passed a format string to
10344  *      alloc_netdev.
10345  */
10346 int register_netdev(struct net_device *dev)
10347 {
10348         int err;
10349
10350         if (rtnl_lock_killable())
10351                 return -EINTR;
10352         err = register_netdevice(dev);
10353         rtnl_unlock();
10354         return err;
10355 }
10356 EXPORT_SYMBOL(register_netdev);
10357
10358 int netdev_refcnt_read(const struct net_device *dev)
10359 {
10360 #ifdef CONFIG_PCPU_DEV_REFCNT
10361         int i, refcnt = 0;
10362
10363         for_each_possible_cpu(i)
10364                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10365         return refcnt;
10366 #else
10367         return refcount_read(&dev->dev_refcnt);
10368 #endif
10369 }
10370 EXPORT_SYMBOL(netdev_refcnt_read);
10371
10372 int netdev_unregister_timeout_secs __read_mostly = 10;
10373
10374 #define WAIT_REFS_MIN_MSECS 1
10375 #define WAIT_REFS_MAX_MSECS 250
10376 /**
10377  * netdev_wait_allrefs_any - wait until all references are gone.
10378  * @list: list of net_devices to wait on
10379  *
10380  * This is called when unregistering network devices.
10381  *
10382  * Any protocol or device that holds a reference should register
10383  * for netdevice notification, and cleanup and put back the
10384  * reference if they receive an UNREGISTER event.
10385  * We can get stuck here if buggy protocols don't correctly
10386  * call dev_put.
10387  */
10388 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10389 {
10390         unsigned long rebroadcast_time, warning_time;
10391         struct net_device *dev;
10392         int wait = 0;
10393
10394         rebroadcast_time = warning_time = jiffies;
10395
10396         list_for_each_entry(dev, list, todo_list)
10397                 if (netdev_refcnt_read(dev) == 1)
10398                         return dev;
10399
10400         while (true) {
10401                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10402                         rtnl_lock();
10403
10404                         /* Rebroadcast unregister notification */
10405                         list_for_each_entry(dev, list, todo_list)
10406                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10407
10408                         __rtnl_unlock();
10409                         rcu_barrier();
10410                         rtnl_lock();
10411
10412                         list_for_each_entry(dev, list, todo_list)
10413                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10414                                              &dev->state)) {
10415                                         /* We must not have linkwatch events
10416                                          * pending on unregister. If this
10417                                          * happens, we simply run the queue
10418                                          * unscheduled, resulting in a noop
10419                                          * for this device.
10420                                          */
10421                                         linkwatch_run_queue();
10422                                         break;
10423                                 }
10424
10425                         __rtnl_unlock();
10426
10427                         rebroadcast_time = jiffies;
10428                 }
10429
10430                 if (!wait) {
10431                         rcu_barrier();
10432                         wait = WAIT_REFS_MIN_MSECS;
10433                 } else {
10434                         msleep(wait);
10435                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10436                 }
10437
10438                 list_for_each_entry(dev, list, todo_list)
10439                         if (netdev_refcnt_read(dev) == 1)
10440                                 return dev;
10441
10442                 if (time_after(jiffies, warning_time +
10443                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10444                         list_for_each_entry(dev, list, todo_list) {
10445                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10446                                          dev->name, netdev_refcnt_read(dev));
10447                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10448                         }
10449
10450                         warning_time = jiffies;
10451                 }
10452         }
10453 }
10454
10455 /* The sequence is:
10456  *
10457  *      rtnl_lock();
10458  *      ...
10459  *      register_netdevice(x1);
10460  *      register_netdevice(x2);
10461  *      ...
10462  *      unregister_netdevice(y1);
10463  *      unregister_netdevice(y2);
10464  *      ...
10465  *      rtnl_unlock();
10466  *      free_netdev(y1);
10467  *      free_netdev(y2);
10468  *
10469  * We are invoked by rtnl_unlock().
10470  * This allows us to deal with problems:
10471  * 1) We can delete sysfs objects which invoke hotplug
10472  *    without deadlocking with linkwatch via keventd.
10473  * 2) Since we run with the RTNL semaphore not held, we can sleep
10474  *    safely in order to wait for the netdev refcnt to drop to zero.
10475  *
10476  * We must not return until all unregister events added during
10477  * the interval the lock was held have been completed.
10478  */
10479 void netdev_run_todo(void)
10480 {
10481         struct net_device *dev, *tmp;
10482         struct list_head list;
10483 #ifdef CONFIG_LOCKDEP
10484         struct list_head unlink_list;
10485
10486         list_replace_init(&net_unlink_list, &unlink_list);
10487
10488         while (!list_empty(&unlink_list)) {
10489                 struct net_device *dev = list_first_entry(&unlink_list,
10490                                                           struct net_device,
10491                                                           unlink_list);
10492                 list_del_init(&dev->unlink_list);
10493                 dev->nested_level = dev->lower_level - 1;
10494         }
10495 #endif
10496
10497         /* Snapshot list, allow later requests */
10498         list_replace_init(&net_todo_list, &list);
10499
10500         __rtnl_unlock();
10501
10502         /* Wait for rcu callbacks to finish before next phase */
10503         if (!list_empty(&list))
10504                 rcu_barrier();
10505
10506         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10507                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10508                         netdev_WARN(dev, "run_todo but not unregistering\n");
10509                         list_del(&dev->todo_list);
10510                         continue;
10511                 }
10512
10513                 write_lock(&dev_base_lock);
10514                 dev->reg_state = NETREG_UNREGISTERED;
10515                 write_unlock(&dev_base_lock);
10516                 linkwatch_forget_dev(dev);
10517         }
10518
10519         while (!list_empty(&list)) {
10520                 dev = netdev_wait_allrefs_any(&list);
10521                 list_del(&dev->todo_list);
10522
10523                 /* paranoia */
10524                 BUG_ON(netdev_refcnt_read(dev) != 1);
10525                 BUG_ON(!list_empty(&dev->ptype_all));
10526                 BUG_ON(!list_empty(&dev->ptype_specific));
10527                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10528                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10529
10530                 netdev_do_free_pcpu_stats(dev);
10531                 if (dev->priv_destructor)
10532                         dev->priv_destructor(dev);
10533                 if (dev->needs_free_netdev)
10534                         free_netdev(dev);
10535
10536                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10537                         wake_up(&netdev_unregistering_wq);
10538
10539                 /* Free network device */
10540                 kobject_put(&dev->dev.kobj);
10541         }
10542 }
10543
10544 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10545  * all the same fields in the same order as net_device_stats, with only
10546  * the type differing, but rtnl_link_stats64 may have additional fields
10547  * at the end for newer counters.
10548  */
10549 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10550                              const struct net_device_stats *netdev_stats)
10551 {
10552         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10553         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10554         u64 *dst = (u64 *)stats64;
10555
10556         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10557         for (i = 0; i < n; i++)
10558                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10559         /* zero out counters that only exist in rtnl_link_stats64 */
10560         memset((char *)stats64 + n * sizeof(u64), 0,
10561                sizeof(*stats64) - n * sizeof(u64));
10562 }
10563 EXPORT_SYMBOL(netdev_stats_to_stats64);
10564
10565 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10566 {
10567         struct net_device_core_stats __percpu *p;
10568
10569         p = alloc_percpu_gfp(struct net_device_core_stats,
10570                              GFP_ATOMIC | __GFP_NOWARN);
10571
10572         if (p && cmpxchg(&dev->core_stats, NULL, p))
10573                 free_percpu(p);
10574
10575         /* This READ_ONCE() pairs with the cmpxchg() above */
10576         return READ_ONCE(dev->core_stats);
10577 }
10578 EXPORT_SYMBOL(netdev_core_stats_alloc);
10579
10580 /**
10581  *      dev_get_stats   - get network device statistics
10582  *      @dev: device to get statistics from
10583  *      @storage: place to store stats
10584  *
10585  *      Get network statistics from device. Return @storage.
10586  *      The device driver may provide its own method by setting
10587  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10588  *      otherwise the internal statistics structure is used.
10589  */
10590 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10591                                         struct rtnl_link_stats64 *storage)
10592 {
10593         const struct net_device_ops *ops = dev->netdev_ops;
10594         const struct net_device_core_stats __percpu *p;
10595
10596         if (ops->ndo_get_stats64) {
10597                 memset(storage, 0, sizeof(*storage));
10598                 ops->ndo_get_stats64(dev, storage);
10599         } else if (ops->ndo_get_stats) {
10600                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10601         } else {
10602                 netdev_stats_to_stats64(storage, &dev->stats);
10603         }
10604
10605         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10606         p = READ_ONCE(dev->core_stats);
10607         if (p) {
10608                 const struct net_device_core_stats *core_stats;
10609                 int i;
10610
10611                 for_each_possible_cpu(i) {
10612                         core_stats = per_cpu_ptr(p, i);
10613                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10614                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10615                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10616                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10617                 }
10618         }
10619         return storage;
10620 }
10621 EXPORT_SYMBOL(dev_get_stats);
10622
10623 /**
10624  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10625  *      @s: place to store stats
10626  *      @netstats: per-cpu network stats to read from
10627  *
10628  *      Read per-cpu network statistics and populate the related fields in @s.
10629  */
10630 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10631                            const struct pcpu_sw_netstats __percpu *netstats)
10632 {
10633         int cpu;
10634
10635         for_each_possible_cpu(cpu) {
10636                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10637                 const struct pcpu_sw_netstats *stats;
10638                 unsigned int start;
10639
10640                 stats = per_cpu_ptr(netstats, cpu);
10641                 do {
10642                         start = u64_stats_fetch_begin(&stats->syncp);
10643                         rx_packets = u64_stats_read(&stats->rx_packets);
10644                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10645                         tx_packets = u64_stats_read(&stats->tx_packets);
10646                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10647                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10648
10649                 s->rx_packets += rx_packets;
10650                 s->rx_bytes   += rx_bytes;
10651                 s->tx_packets += tx_packets;
10652                 s->tx_bytes   += tx_bytes;
10653         }
10654 }
10655 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10656
10657 /**
10658  *      dev_get_tstats64 - ndo_get_stats64 implementation
10659  *      @dev: device to get statistics from
10660  *      @s: place to store stats
10661  *
10662  *      Populate @s from dev->stats and dev->tstats. Can be used as
10663  *      ndo_get_stats64() callback.
10664  */
10665 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10666 {
10667         netdev_stats_to_stats64(s, &dev->stats);
10668         dev_fetch_sw_netstats(s, dev->tstats);
10669 }
10670 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10671
10672 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10673 {
10674         struct netdev_queue *queue = dev_ingress_queue(dev);
10675
10676 #ifdef CONFIG_NET_CLS_ACT
10677         if (queue)
10678                 return queue;
10679         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10680         if (!queue)
10681                 return NULL;
10682         netdev_init_one_queue(dev, queue, NULL);
10683         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10684         RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10685         rcu_assign_pointer(dev->ingress_queue, queue);
10686 #endif
10687         return queue;
10688 }
10689
10690 static const struct ethtool_ops default_ethtool_ops;
10691
10692 void netdev_set_default_ethtool_ops(struct net_device *dev,
10693                                     const struct ethtool_ops *ops)
10694 {
10695         if (dev->ethtool_ops == &default_ethtool_ops)
10696                 dev->ethtool_ops = ops;
10697 }
10698 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10699
10700 /**
10701  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10702  * @dev: netdev to enable the IRQ coalescing on
10703  *
10704  * Sets a conservative default for SW IRQ coalescing. Users can use
10705  * sysfs attributes to override the default values.
10706  */
10707 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10708 {
10709         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10710
10711         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10712                 dev->gro_flush_timeout = 20000;
10713                 dev->napi_defer_hard_irqs = 1;
10714         }
10715 }
10716 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10717
10718 void netdev_freemem(struct net_device *dev)
10719 {
10720         char *addr = (char *)dev - dev->padded;
10721
10722         kvfree(addr);
10723 }
10724
10725 /**
10726  * alloc_netdev_mqs - allocate network device
10727  * @sizeof_priv: size of private data to allocate space for
10728  * @name: device name format string
10729  * @name_assign_type: origin of device name
10730  * @setup: callback to initialize device
10731  * @txqs: the number of TX subqueues to allocate
10732  * @rxqs: the number of RX subqueues to allocate
10733  *
10734  * Allocates a struct net_device with private data area for driver use
10735  * and performs basic initialization.  Also allocates subqueue structs
10736  * for each queue on the device.
10737  */
10738 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10739                 unsigned char name_assign_type,
10740                 void (*setup)(struct net_device *),
10741                 unsigned int txqs, unsigned int rxqs)
10742 {
10743         struct net_device *dev;
10744         unsigned int alloc_size;
10745         struct net_device *p;
10746
10747         BUG_ON(strlen(name) >= sizeof(dev->name));
10748
10749         if (txqs < 1) {
10750                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10751                 return NULL;
10752         }
10753
10754         if (rxqs < 1) {
10755                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10756                 return NULL;
10757         }
10758
10759         alloc_size = sizeof(struct net_device);
10760         if (sizeof_priv) {
10761                 /* ensure 32-byte alignment of private area */
10762                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10763                 alloc_size += sizeof_priv;
10764         }
10765         /* ensure 32-byte alignment of whole construct */
10766         alloc_size += NETDEV_ALIGN - 1;
10767
10768         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10769         if (!p)
10770                 return NULL;
10771
10772         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10773         dev->padded = (char *)dev - (char *)p;
10774
10775         ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10776 #ifdef CONFIG_PCPU_DEV_REFCNT
10777         dev->pcpu_refcnt = alloc_percpu(int);
10778         if (!dev->pcpu_refcnt)
10779                 goto free_dev;
10780         __dev_hold(dev);
10781 #else
10782         refcount_set(&dev->dev_refcnt, 1);
10783 #endif
10784
10785         if (dev_addr_init(dev))
10786                 goto free_pcpu;
10787
10788         dev_mc_init(dev);
10789         dev_uc_init(dev);
10790
10791         dev_net_set(dev, &init_net);
10792
10793         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10794         dev->xdp_zc_max_segs = 1;
10795         dev->gso_max_segs = GSO_MAX_SEGS;
10796         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10797         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10798         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10799         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10800         dev->tso_max_segs = TSO_MAX_SEGS;
10801         dev->upper_level = 1;
10802         dev->lower_level = 1;
10803 #ifdef CONFIG_LOCKDEP
10804         dev->nested_level = 0;
10805         INIT_LIST_HEAD(&dev->unlink_list);
10806 #endif
10807
10808         INIT_LIST_HEAD(&dev->napi_list);
10809         INIT_LIST_HEAD(&dev->unreg_list);
10810         INIT_LIST_HEAD(&dev->close_list);
10811         INIT_LIST_HEAD(&dev->link_watch_list);
10812         INIT_LIST_HEAD(&dev->adj_list.upper);
10813         INIT_LIST_HEAD(&dev->adj_list.lower);
10814         INIT_LIST_HEAD(&dev->ptype_all);
10815         INIT_LIST_HEAD(&dev->ptype_specific);
10816         INIT_LIST_HEAD(&dev->net_notifier_list);
10817 #ifdef CONFIG_NET_SCHED
10818         hash_init(dev->qdisc_hash);
10819 #endif
10820         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10821         setup(dev);
10822
10823         if (!dev->tx_queue_len) {
10824                 dev->priv_flags |= IFF_NO_QUEUE;
10825                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10826         }
10827
10828         dev->num_tx_queues = txqs;
10829         dev->real_num_tx_queues = txqs;
10830         if (netif_alloc_netdev_queues(dev))
10831                 goto free_all;
10832
10833         dev->num_rx_queues = rxqs;
10834         dev->real_num_rx_queues = rxqs;
10835         if (netif_alloc_rx_queues(dev))
10836                 goto free_all;
10837
10838         strcpy(dev->name, name);
10839         dev->name_assign_type = name_assign_type;
10840         dev->group = INIT_NETDEV_GROUP;
10841         if (!dev->ethtool_ops)
10842                 dev->ethtool_ops = &default_ethtool_ops;
10843
10844         nf_hook_netdev_init(dev);
10845
10846         return dev;
10847
10848 free_all:
10849         free_netdev(dev);
10850         return NULL;
10851
10852 free_pcpu:
10853 #ifdef CONFIG_PCPU_DEV_REFCNT
10854         free_percpu(dev->pcpu_refcnt);
10855 free_dev:
10856 #endif
10857         netdev_freemem(dev);
10858         return NULL;
10859 }
10860 EXPORT_SYMBOL(alloc_netdev_mqs);
10861
10862 /**
10863  * free_netdev - free network device
10864  * @dev: device
10865  *
10866  * This function does the last stage of destroying an allocated device
10867  * interface. The reference to the device object is released. If this
10868  * is the last reference then it will be freed.Must be called in process
10869  * context.
10870  */
10871 void free_netdev(struct net_device *dev)
10872 {
10873         struct napi_struct *p, *n;
10874
10875         might_sleep();
10876
10877         /* When called immediately after register_netdevice() failed the unwind
10878          * handling may still be dismantling the device. Handle that case by
10879          * deferring the free.
10880          */
10881         if (dev->reg_state == NETREG_UNREGISTERING) {
10882                 ASSERT_RTNL();
10883                 dev->needs_free_netdev = true;
10884                 return;
10885         }
10886
10887         netif_free_tx_queues(dev);
10888         netif_free_rx_queues(dev);
10889
10890         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10891
10892         /* Flush device addresses */
10893         dev_addr_flush(dev);
10894
10895         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10896                 netif_napi_del(p);
10897
10898         ref_tracker_dir_exit(&dev->refcnt_tracker);
10899 #ifdef CONFIG_PCPU_DEV_REFCNT
10900         free_percpu(dev->pcpu_refcnt);
10901         dev->pcpu_refcnt = NULL;
10902 #endif
10903         free_percpu(dev->core_stats);
10904         dev->core_stats = NULL;
10905         free_percpu(dev->xdp_bulkq);
10906         dev->xdp_bulkq = NULL;
10907
10908         /*  Compatibility with error handling in drivers */
10909         if (dev->reg_state == NETREG_UNINITIALIZED) {
10910                 netdev_freemem(dev);
10911                 return;
10912         }
10913
10914         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10915         dev->reg_state = NETREG_RELEASED;
10916
10917         /* will free via device release */
10918         put_device(&dev->dev);
10919 }
10920 EXPORT_SYMBOL(free_netdev);
10921
10922 /**
10923  *      synchronize_net -  Synchronize with packet receive processing
10924  *
10925  *      Wait for packets currently being received to be done.
10926  *      Does not block later packets from starting.
10927  */
10928 void synchronize_net(void)
10929 {
10930         might_sleep();
10931         if (rtnl_is_locked())
10932                 synchronize_rcu_expedited();
10933         else
10934                 synchronize_rcu();
10935 }
10936 EXPORT_SYMBOL(synchronize_net);
10937
10938 /**
10939  *      unregister_netdevice_queue - remove device from the kernel
10940  *      @dev: device
10941  *      @head: list
10942  *
10943  *      This function shuts down a device interface and removes it
10944  *      from the kernel tables.
10945  *      If head not NULL, device is queued to be unregistered later.
10946  *
10947  *      Callers must hold the rtnl semaphore.  You may want
10948  *      unregister_netdev() instead of this.
10949  */
10950
10951 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10952 {
10953         ASSERT_RTNL();
10954
10955         if (head) {
10956                 list_move_tail(&dev->unreg_list, head);
10957         } else {
10958                 LIST_HEAD(single);
10959
10960                 list_add(&dev->unreg_list, &single);
10961                 unregister_netdevice_many(&single);
10962         }
10963 }
10964 EXPORT_SYMBOL(unregister_netdevice_queue);
10965
10966 void unregister_netdevice_many_notify(struct list_head *head,
10967                                       u32 portid, const struct nlmsghdr *nlh)
10968 {
10969         struct net_device *dev, *tmp;
10970         LIST_HEAD(close_head);
10971
10972         BUG_ON(dev_boot_phase);
10973         ASSERT_RTNL();
10974
10975         if (list_empty(head))
10976                 return;
10977
10978         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10979                 /* Some devices call without registering
10980                  * for initialization unwind. Remove those
10981                  * devices and proceed with the remaining.
10982                  */
10983                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10984                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10985                                  dev->name, dev);
10986
10987                         WARN_ON(1);
10988                         list_del(&dev->unreg_list);
10989                         continue;
10990                 }
10991                 dev->dismantle = true;
10992                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10993         }
10994
10995         /* If device is running, close it first. */
10996         list_for_each_entry(dev, head, unreg_list)
10997                 list_add_tail(&dev->close_list, &close_head);
10998         dev_close_many(&close_head, true);
10999
11000         list_for_each_entry(dev, head, unreg_list) {
11001                 /* And unlink it from device chain. */
11002                 write_lock(&dev_base_lock);
11003                 unlist_netdevice(dev, false);
11004                 dev->reg_state = NETREG_UNREGISTERING;
11005                 write_unlock(&dev_base_lock);
11006         }
11007         flush_all_backlogs();
11008
11009         synchronize_net();
11010
11011         list_for_each_entry(dev, head, unreg_list) {
11012                 struct sk_buff *skb = NULL;
11013
11014                 /* Shutdown queueing discipline. */
11015                 dev_shutdown(dev);
11016                 dev_tcx_uninstall(dev);
11017                 dev_xdp_uninstall(dev);
11018                 bpf_dev_bound_netdev_unregister(dev);
11019
11020                 netdev_offload_xstats_disable_all(dev);
11021
11022                 /* Notify protocols, that we are about to destroy
11023                  * this device. They should clean all the things.
11024                  */
11025                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11026
11027                 if (!dev->rtnl_link_ops ||
11028                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11029                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11030                                                      GFP_KERNEL, NULL, 0,
11031                                                      portid, nlh);
11032
11033                 /*
11034                  *      Flush the unicast and multicast chains
11035                  */
11036                 dev_uc_flush(dev);
11037                 dev_mc_flush(dev);
11038
11039                 netdev_name_node_alt_flush(dev);
11040                 netdev_name_node_free(dev->name_node);
11041
11042                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11043
11044                 if (dev->netdev_ops->ndo_uninit)
11045                         dev->netdev_ops->ndo_uninit(dev);
11046
11047                 if (skb)
11048                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11049
11050                 /* Notifier chain MUST detach us all upper devices. */
11051                 WARN_ON(netdev_has_any_upper_dev(dev));
11052                 WARN_ON(netdev_has_any_lower_dev(dev));
11053
11054                 /* Remove entries from kobject tree */
11055                 netdev_unregister_kobject(dev);
11056 #ifdef CONFIG_XPS
11057                 /* Remove XPS queueing entries */
11058                 netif_reset_xps_queues_gt(dev, 0);
11059 #endif
11060         }
11061
11062         synchronize_net();
11063
11064         list_for_each_entry(dev, head, unreg_list) {
11065                 netdev_put(dev, &dev->dev_registered_tracker);
11066                 net_set_todo(dev);
11067         }
11068
11069         list_del(head);
11070 }
11071
11072 /**
11073  *      unregister_netdevice_many - unregister many devices
11074  *      @head: list of devices
11075  *
11076  *  Note: As most callers use a stack allocated list_head,
11077  *  we force a list_del() to make sure stack wont be corrupted later.
11078  */
11079 void unregister_netdevice_many(struct list_head *head)
11080 {
11081         unregister_netdevice_many_notify(head, 0, NULL);
11082 }
11083 EXPORT_SYMBOL(unregister_netdevice_many);
11084
11085 /**
11086  *      unregister_netdev - remove device from the kernel
11087  *      @dev: device
11088  *
11089  *      This function shuts down a device interface and removes it
11090  *      from the kernel tables.
11091  *
11092  *      This is just a wrapper for unregister_netdevice that takes
11093  *      the rtnl semaphore.  In general you want to use this and not
11094  *      unregister_netdevice.
11095  */
11096 void unregister_netdev(struct net_device *dev)
11097 {
11098         rtnl_lock();
11099         unregister_netdevice(dev);
11100         rtnl_unlock();
11101 }
11102 EXPORT_SYMBOL(unregister_netdev);
11103
11104 /**
11105  *      __dev_change_net_namespace - move device to different nethost namespace
11106  *      @dev: device
11107  *      @net: network namespace
11108  *      @pat: If not NULL name pattern to try if the current device name
11109  *            is already taken in the destination network namespace.
11110  *      @new_ifindex: If not zero, specifies device index in the target
11111  *                    namespace.
11112  *
11113  *      This function shuts down a device interface and moves it
11114  *      to a new network namespace. On success 0 is returned, on
11115  *      a failure a netagive errno code is returned.
11116  *
11117  *      Callers must hold the rtnl semaphore.
11118  */
11119
11120 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11121                                const char *pat, int new_ifindex)
11122 {
11123         struct netdev_name_node *name_node;
11124         struct net *net_old = dev_net(dev);
11125         char new_name[IFNAMSIZ] = {};
11126         int err, new_nsid;
11127
11128         ASSERT_RTNL();
11129
11130         /* Don't allow namespace local devices to be moved. */
11131         err = -EINVAL;
11132         if (dev->features & NETIF_F_NETNS_LOCAL)
11133                 goto out;
11134
11135         /* Ensure the device has been registrered */
11136         if (dev->reg_state != NETREG_REGISTERED)
11137                 goto out;
11138
11139         /* Get out if there is nothing todo */
11140         err = 0;
11141         if (net_eq(net_old, net))
11142                 goto out;
11143
11144         /* Pick the destination device name, and ensure
11145          * we can use it in the destination network namespace.
11146          */
11147         err = -EEXIST;
11148         if (netdev_name_in_use(net, dev->name)) {
11149                 /* We get here if we can't use the current device name */
11150                 if (!pat)
11151                         goto out;
11152                 err = dev_prep_valid_name(net, dev, pat, new_name);
11153                 if (err < 0)
11154                         goto out;
11155         }
11156         /* Check that none of the altnames conflicts. */
11157         err = -EEXIST;
11158         netdev_for_each_altname(dev, name_node)
11159                 if (netdev_name_in_use(net, name_node->name))
11160                         goto out;
11161
11162         /* Check that new_ifindex isn't used yet. */
11163         if (new_ifindex) {
11164                 err = dev_index_reserve(net, new_ifindex);
11165                 if (err < 0)
11166                         goto out;
11167         } else {
11168                 /* If there is an ifindex conflict assign a new one */
11169                 err = dev_index_reserve(net, dev->ifindex);
11170                 if (err == -EBUSY)
11171                         err = dev_index_reserve(net, 0);
11172                 if (err < 0)
11173                         goto out;
11174                 new_ifindex = err;
11175         }
11176
11177         /*
11178          * And now a mini version of register_netdevice unregister_netdevice.
11179          */
11180
11181         /* If device is running close it first. */
11182         dev_close(dev);
11183
11184         /* And unlink it from device chain */
11185         unlist_netdevice(dev, true);
11186
11187         synchronize_net();
11188
11189         /* Shutdown queueing discipline. */
11190         dev_shutdown(dev);
11191
11192         /* Notify protocols, that we are about to destroy
11193          * this device. They should clean all the things.
11194          *
11195          * Note that dev->reg_state stays at NETREG_REGISTERED.
11196          * This is wanted because this way 8021q and macvlan know
11197          * the device is just moving and can keep their slaves up.
11198          */
11199         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11200         rcu_barrier();
11201
11202         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11203
11204         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11205                             new_ifindex);
11206
11207         /*
11208          *      Flush the unicast and multicast chains
11209          */
11210         dev_uc_flush(dev);
11211         dev_mc_flush(dev);
11212
11213         /* Send a netdev-removed uevent to the old namespace */
11214         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11215         netdev_adjacent_del_links(dev);
11216
11217         /* Move per-net netdevice notifiers that are following the netdevice */
11218         move_netdevice_notifiers_dev_net(dev, net);
11219
11220         /* Actually switch the network namespace */
11221         dev_net_set(dev, net);
11222         dev->ifindex = new_ifindex;
11223
11224         /* Send a netdev-add uevent to the new namespace */
11225         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11226         netdev_adjacent_add_links(dev);
11227
11228         if (new_name[0]) /* Rename the netdev to prepared name */
11229                 strscpy(dev->name, new_name, IFNAMSIZ);
11230
11231         /* Fixup kobjects */
11232         err = device_rename(&dev->dev, dev->name);
11233         WARN_ON(err);
11234
11235         /* Adapt owner in case owning user namespace of target network
11236          * namespace is different from the original one.
11237          */
11238         err = netdev_change_owner(dev, net_old, net);
11239         WARN_ON(err);
11240
11241         /* Add the device back in the hashes */
11242         list_netdevice(dev);
11243
11244         /* Notify protocols, that a new device appeared. */
11245         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11246
11247         /*
11248          *      Prevent userspace races by waiting until the network
11249          *      device is fully setup before sending notifications.
11250          */
11251         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11252
11253         synchronize_net();
11254         err = 0;
11255 out:
11256         return err;
11257 }
11258 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11259
11260 static int dev_cpu_dead(unsigned int oldcpu)
11261 {
11262         struct sk_buff **list_skb;
11263         struct sk_buff *skb;
11264         unsigned int cpu;
11265         struct softnet_data *sd, *oldsd, *remsd = NULL;
11266
11267         local_irq_disable();
11268         cpu = smp_processor_id();
11269         sd = &per_cpu(softnet_data, cpu);
11270         oldsd = &per_cpu(softnet_data, oldcpu);
11271
11272         /* Find end of our completion_queue. */
11273         list_skb = &sd->completion_queue;
11274         while (*list_skb)
11275                 list_skb = &(*list_skb)->next;
11276         /* Append completion queue from offline CPU. */
11277         *list_skb = oldsd->completion_queue;
11278         oldsd->completion_queue = NULL;
11279
11280         /* Append output queue from offline CPU. */
11281         if (oldsd->output_queue) {
11282                 *sd->output_queue_tailp = oldsd->output_queue;
11283                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11284                 oldsd->output_queue = NULL;
11285                 oldsd->output_queue_tailp = &oldsd->output_queue;
11286         }
11287         /* Append NAPI poll list from offline CPU, with one exception :
11288          * process_backlog() must be called by cpu owning percpu backlog.
11289          * We properly handle process_queue & input_pkt_queue later.
11290          */
11291         while (!list_empty(&oldsd->poll_list)) {
11292                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11293                                                             struct napi_struct,
11294                                                             poll_list);
11295
11296                 list_del_init(&napi->poll_list);
11297                 if (napi->poll == process_backlog)
11298                         napi->state = 0;
11299                 else
11300                         ____napi_schedule(sd, napi);
11301         }
11302
11303         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11304         local_irq_enable();
11305
11306 #ifdef CONFIG_RPS
11307         remsd = oldsd->rps_ipi_list;
11308         oldsd->rps_ipi_list = NULL;
11309 #endif
11310         /* send out pending IPI's on offline CPU */
11311         net_rps_send_ipi(remsd);
11312
11313         /* Process offline CPU's input_pkt_queue */
11314         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11315                 netif_rx(skb);
11316                 input_queue_head_incr(oldsd);
11317         }
11318         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11319                 netif_rx(skb);
11320                 input_queue_head_incr(oldsd);
11321         }
11322
11323         return 0;
11324 }
11325
11326 /**
11327  *      netdev_increment_features - increment feature set by one
11328  *      @all: current feature set
11329  *      @one: new feature set
11330  *      @mask: mask feature set
11331  *
11332  *      Computes a new feature set after adding a device with feature set
11333  *      @one to the master device with current feature set @all.  Will not
11334  *      enable anything that is off in @mask. Returns the new feature set.
11335  */
11336 netdev_features_t netdev_increment_features(netdev_features_t all,
11337         netdev_features_t one, netdev_features_t mask)
11338 {
11339         if (mask & NETIF_F_HW_CSUM)
11340                 mask |= NETIF_F_CSUM_MASK;
11341         mask |= NETIF_F_VLAN_CHALLENGED;
11342
11343         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11344         all &= one | ~NETIF_F_ALL_FOR_ALL;
11345
11346         /* If one device supports hw checksumming, set for all. */
11347         if (all & NETIF_F_HW_CSUM)
11348                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11349
11350         return all;
11351 }
11352 EXPORT_SYMBOL(netdev_increment_features);
11353
11354 static struct hlist_head * __net_init netdev_create_hash(void)
11355 {
11356         int i;
11357         struct hlist_head *hash;
11358
11359         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11360         if (hash != NULL)
11361                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11362                         INIT_HLIST_HEAD(&hash[i]);
11363
11364         return hash;
11365 }
11366
11367 /* Initialize per network namespace state */
11368 static int __net_init netdev_init(struct net *net)
11369 {
11370         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11371                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11372
11373         INIT_LIST_HEAD(&net->dev_base_head);
11374
11375         net->dev_name_head = netdev_create_hash();
11376         if (net->dev_name_head == NULL)
11377                 goto err_name;
11378
11379         net->dev_index_head = netdev_create_hash();
11380         if (net->dev_index_head == NULL)
11381                 goto err_idx;
11382
11383         xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11384
11385         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11386
11387         return 0;
11388
11389 err_idx:
11390         kfree(net->dev_name_head);
11391 err_name:
11392         return -ENOMEM;
11393 }
11394
11395 /**
11396  *      netdev_drivername - network driver for the device
11397  *      @dev: network device
11398  *
11399  *      Determine network driver for device.
11400  */
11401 const char *netdev_drivername(const struct net_device *dev)
11402 {
11403         const struct device_driver *driver;
11404         const struct device *parent;
11405         const char *empty = "";
11406
11407         parent = dev->dev.parent;
11408         if (!parent)
11409                 return empty;
11410
11411         driver = parent->driver;
11412         if (driver && driver->name)
11413                 return driver->name;
11414         return empty;
11415 }
11416
11417 static void __netdev_printk(const char *level, const struct net_device *dev,
11418                             struct va_format *vaf)
11419 {
11420         if (dev && dev->dev.parent) {
11421                 dev_printk_emit(level[1] - '0',
11422                                 dev->dev.parent,
11423                                 "%s %s %s%s: %pV",
11424                                 dev_driver_string(dev->dev.parent),
11425                                 dev_name(dev->dev.parent),
11426                                 netdev_name(dev), netdev_reg_state(dev),
11427                                 vaf);
11428         } else if (dev) {
11429                 printk("%s%s%s: %pV",
11430                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11431         } else {
11432                 printk("%s(NULL net_device): %pV", level, vaf);
11433         }
11434 }
11435
11436 void netdev_printk(const char *level, const struct net_device *dev,
11437                    const char *format, ...)
11438 {
11439         struct va_format vaf;
11440         va_list args;
11441
11442         va_start(args, format);
11443
11444         vaf.fmt = format;
11445         vaf.va = &args;
11446
11447         __netdev_printk(level, dev, &vaf);
11448
11449         va_end(args);
11450 }
11451 EXPORT_SYMBOL(netdev_printk);
11452
11453 #define define_netdev_printk_level(func, level)                 \
11454 void func(const struct net_device *dev, const char *fmt, ...)   \
11455 {                                                               \
11456         struct va_format vaf;                                   \
11457         va_list args;                                           \
11458                                                                 \
11459         va_start(args, fmt);                                    \
11460                                                                 \
11461         vaf.fmt = fmt;                                          \
11462         vaf.va = &args;                                         \
11463                                                                 \
11464         __netdev_printk(level, dev, &vaf);                      \
11465                                                                 \
11466         va_end(args);                                           \
11467 }                                                               \
11468 EXPORT_SYMBOL(func);
11469
11470 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11471 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11472 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11473 define_netdev_printk_level(netdev_err, KERN_ERR);
11474 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11475 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11476 define_netdev_printk_level(netdev_info, KERN_INFO);
11477
11478 static void __net_exit netdev_exit(struct net *net)
11479 {
11480         kfree(net->dev_name_head);
11481         kfree(net->dev_index_head);
11482         xa_destroy(&net->dev_by_index);
11483         if (net != &init_net)
11484                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11485 }
11486
11487 static struct pernet_operations __net_initdata netdev_net_ops = {
11488         .init = netdev_init,
11489         .exit = netdev_exit,
11490 };
11491
11492 static void __net_exit default_device_exit_net(struct net *net)
11493 {
11494         struct netdev_name_node *name_node, *tmp;
11495         struct net_device *dev, *aux;
11496         /*
11497          * Push all migratable network devices back to the
11498          * initial network namespace
11499          */
11500         ASSERT_RTNL();
11501         for_each_netdev_safe(net, dev, aux) {
11502                 int err;
11503                 char fb_name[IFNAMSIZ];
11504
11505                 /* Ignore unmoveable devices (i.e. loopback) */
11506                 if (dev->features & NETIF_F_NETNS_LOCAL)
11507                         continue;
11508
11509                 /* Leave virtual devices for the generic cleanup */
11510                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11511                         continue;
11512
11513                 /* Push remaining network devices to init_net */
11514                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11515                 if (netdev_name_in_use(&init_net, fb_name))
11516                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11517
11518                 netdev_for_each_altname_safe(dev, name_node, tmp)
11519                         if (netdev_name_in_use(&init_net, name_node->name)) {
11520                                 netdev_name_node_del(name_node);
11521                                 synchronize_rcu();
11522                                 __netdev_name_node_alt_destroy(name_node);
11523                         }
11524
11525                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11526                 if (err) {
11527                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11528                                  __func__, dev->name, err);
11529                         BUG();
11530                 }
11531         }
11532 }
11533
11534 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11535 {
11536         /* At exit all network devices most be removed from a network
11537          * namespace.  Do this in the reverse order of registration.
11538          * Do this across as many network namespaces as possible to
11539          * improve batching efficiency.
11540          */
11541         struct net_device *dev;
11542         struct net *net;
11543         LIST_HEAD(dev_kill_list);
11544
11545         rtnl_lock();
11546         list_for_each_entry(net, net_list, exit_list) {
11547                 default_device_exit_net(net);
11548                 cond_resched();
11549         }
11550
11551         list_for_each_entry(net, net_list, exit_list) {
11552                 for_each_netdev_reverse(net, dev) {
11553                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11554                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11555                         else
11556                                 unregister_netdevice_queue(dev, &dev_kill_list);
11557                 }
11558         }
11559         unregister_netdevice_many(&dev_kill_list);
11560         rtnl_unlock();
11561 }
11562
11563 static struct pernet_operations __net_initdata default_device_ops = {
11564         .exit_batch = default_device_exit_batch,
11565 };
11566
11567 /*
11568  *      Initialize the DEV module. At boot time this walks the device list and
11569  *      unhooks any devices that fail to initialise (normally hardware not
11570  *      present) and leaves us with a valid list of present and active devices.
11571  *
11572  */
11573
11574 /*
11575  *       This is called single threaded during boot, so no need
11576  *       to take the rtnl semaphore.
11577  */
11578 static int __init net_dev_init(void)
11579 {
11580         int i, rc = -ENOMEM;
11581
11582         BUG_ON(!dev_boot_phase);
11583
11584         if (dev_proc_init())
11585                 goto out;
11586
11587         if (netdev_kobject_init())
11588                 goto out;
11589
11590         INIT_LIST_HEAD(&ptype_all);
11591         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11592                 INIT_LIST_HEAD(&ptype_base[i]);
11593
11594         if (register_pernet_subsys(&netdev_net_ops))
11595                 goto out;
11596
11597         /*
11598          *      Initialise the packet receive queues.
11599          */
11600
11601         for_each_possible_cpu(i) {
11602                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11603                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11604
11605                 INIT_WORK(flush, flush_backlog);
11606
11607                 skb_queue_head_init(&sd->input_pkt_queue);
11608                 skb_queue_head_init(&sd->process_queue);
11609 #ifdef CONFIG_XFRM_OFFLOAD
11610                 skb_queue_head_init(&sd->xfrm_backlog);
11611 #endif
11612                 INIT_LIST_HEAD(&sd->poll_list);
11613                 sd->output_queue_tailp = &sd->output_queue;
11614 #ifdef CONFIG_RPS
11615                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11616                 sd->cpu = i;
11617 #endif
11618                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11619                 spin_lock_init(&sd->defer_lock);
11620
11621                 init_gro_hash(&sd->backlog);
11622                 sd->backlog.poll = process_backlog;
11623                 sd->backlog.weight = weight_p;
11624         }
11625
11626         dev_boot_phase = 0;
11627
11628         /* The loopback device is special if any other network devices
11629          * is present in a network namespace the loopback device must
11630          * be present. Since we now dynamically allocate and free the
11631          * loopback device ensure this invariant is maintained by
11632          * keeping the loopback device as the first device on the
11633          * list of network devices.  Ensuring the loopback devices
11634          * is the first device that appears and the last network device
11635          * that disappears.
11636          */
11637         if (register_pernet_device(&loopback_net_ops))
11638                 goto out;
11639
11640         if (register_pernet_device(&default_device_ops))
11641                 goto out;
11642
11643         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11644         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11645
11646         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11647                                        NULL, dev_cpu_dead);
11648         WARN_ON(rc < 0);
11649         rc = 0;
11650 out:
11651         return rc;
11652 }
11653
11654 subsys_initcall(net_dev_init);