net, neigh: Fix null-ptr-deref in neigh_table_clear()
[platform/kernel/linux-rpi.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156 #define MAX_GRO_SKBS 8
157
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;       /* Taps */
165 static struct list_head offload_base __read_mostly;
166
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169                                          struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171                                            struct net_device *dev,
172                                            struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 static DEFINE_MUTEX(ifalias_mutex);
198
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205 static DECLARE_RWSEM(devnet_rename_sem);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209         while (++net->dev_base_seq == 0)
210                 ;
211 }
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235         spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240                                                        const char *name)
241 {
242         struct netdev_name_node *name_node;
243
244         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245         if (!name_node)
246                 return NULL;
247         INIT_HLIST_NODE(&name_node->hlist);
248         name_node->dev = dev;
249         name_node->name = name;
250         return name_node;
251 }
252
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = netdev_name_node_alloc(dev, dev->name);
259         if (!name_node)
260                 return NULL;
261         INIT_LIST_HEAD(&name_node->list);
262         return name_node;
263 }
264
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267         kfree(name_node);
268 }
269
270 static void netdev_name_node_add(struct net *net,
271                                  struct netdev_name_node *name_node)
272 {
273         hlist_add_head_rcu(&name_node->hlist,
274                            dev_name_hash(net, name_node->name));
275 }
276
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279         hlist_del_rcu(&name_node->hlist);
280 }
281
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283                                                         const char *name)
284 {
285         struct hlist_head *head = dev_name_hash(net, name);
286         struct netdev_name_node *name_node;
287
288         hlist_for_each_entry(name_node, head, hlist)
289                 if (!strcmp(name_node->name, name))
290                         return name_node;
291         return NULL;
292 }
293
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295                                                             const char *name)
296 {
297         struct hlist_head *head = dev_name_hash(net, name);
298         struct netdev_name_node *name_node;
299
300         hlist_for_each_entry_rcu(name_node, head, hlist)
301                 if (!strcmp(name_node->name, name))
302                         return name_node;
303         return NULL;
304 }
305
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308         struct netdev_name_node *name_node;
309         struct net *net = dev_net(dev);
310
311         name_node = netdev_name_node_lookup(net, name);
312         if (name_node)
313                 return -EEXIST;
314         name_node = netdev_name_node_alloc(dev, name);
315         if (!name_node)
316                 return -ENOMEM;
317         netdev_name_node_add(net, name_node);
318         /* The node that holds dev->name acts as a head of per-device list. */
319         list_add_tail(&name_node->list, &dev->name_node->list);
320
321         return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327         list_del(&name_node->list);
328         netdev_name_node_del(name_node);
329         kfree(name_node->name);
330         netdev_name_node_free(name_node);
331 }
332
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335         struct netdev_name_node *name_node;
336         struct net *net = dev_net(dev);
337
338         name_node = netdev_name_node_lookup(net, name);
339         if (!name_node)
340                 return -ENOENT;
341         /* lookup might have found our primary name or a name belonging
342          * to another device.
343          */
344         if (name_node == dev->name_node || name_node->dev != dev)
345                 return -EINVAL;
346
347         __netdev_name_node_alt_destroy(name_node);
348
349         return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352
353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355         struct netdev_name_node *name_node, *tmp;
356
357         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358                 __netdev_name_node_alt_destroy(name_node);
359 }
360
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
363 {
364         struct net *net = dev_net(dev);
365
366         ASSERT_RTNL();
367
368         write_lock(&dev_base_lock);
369         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370         netdev_name_node_add(net, dev->name_node);
371         hlist_add_head_rcu(&dev->index_hlist,
372                            dev_index_hash(net, dev->ifindex));
373         write_unlock(&dev_base_lock);
374
375         dev_base_seq_inc(net);
376 }
377
378 /* Device list removal
379  * caller must respect a RCU grace period before freeing/reusing dev
380  */
381 static void unlist_netdevice(struct net_device *dev, bool lock)
382 {
383         ASSERT_RTNL();
384
385         /* Unlink dev from the device chain */
386         if (lock)
387                 write_lock(&dev_base_lock);
388         list_del_rcu(&dev->dev_list);
389         netdev_name_node_del(dev->name_node);
390         hlist_del_rcu(&dev->index_hlist);
391         if (lock)
392                 write_unlock(&dev_base_lock);
393
394         dev_base_seq_inc(dev_net(dev));
395 }
396
397 /*
398  *      Our notifier list
399  */
400
401 static RAW_NOTIFIER_HEAD(netdev_chain);
402
403 /*
404  *      Device drivers call our routines to queue packets here. We empty the
405  *      queue in the local softnet handler.
406  */
407
408 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
409 EXPORT_PER_CPU_SYMBOL(softnet_data);
410
411 #ifdef CONFIG_LOCKDEP
412 /*
413  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
414  * according to dev->type
415  */
416 static const unsigned short netdev_lock_type[] = {
417          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
418          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
419          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
420          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
421          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
422          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
423          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
424          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
425          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
426          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
427          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
428          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
429          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
430          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
431          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
432
433 static const char *const netdev_lock_name[] = {
434         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
435         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
436         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
437         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
438         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
439         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
440         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
441         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
442         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
443         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
444         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
445         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
446         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
447         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
448         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
449
450 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
451 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
452
453 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
454 {
455         int i;
456
457         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
458                 if (netdev_lock_type[i] == dev_type)
459                         return i;
460         /* the last key is used by default */
461         return ARRAY_SIZE(netdev_lock_type) - 1;
462 }
463
464 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
465                                                  unsigned short dev_type)
466 {
467         int i;
468
469         i = netdev_lock_pos(dev_type);
470         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
471                                    netdev_lock_name[i]);
472 }
473
474 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
475 {
476         int i;
477
478         i = netdev_lock_pos(dev->type);
479         lockdep_set_class_and_name(&dev->addr_list_lock,
480                                    &netdev_addr_lock_key[i],
481                                    netdev_lock_name[i]);
482 }
483 #else
484 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
485                                                  unsigned short dev_type)
486 {
487 }
488
489 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
490 {
491 }
492 #endif
493
494 /*******************************************************************************
495  *
496  *              Protocol management and registration routines
497  *
498  *******************************************************************************/
499
500
501 /*
502  *      Add a protocol ID to the list. Now that the input handler is
503  *      smarter we can dispense with all the messy stuff that used to be
504  *      here.
505  *
506  *      BEWARE!!! Protocol handlers, mangling input packets,
507  *      MUST BE last in hash buckets and checking protocol handlers
508  *      MUST start from promiscuous ptype_all chain in net_bh.
509  *      It is true now, do not change it.
510  *      Explanation follows: if protocol handler, mangling packet, will
511  *      be the first on list, it is not able to sense, that packet
512  *      is cloned and should be copied-on-write, so that it will
513  *      change it and subsequent readers will get broken packet.
514  *                                                      --ANK (980803)
515  */
516
517 static inline struct list_head *ptype_head(const struct packet_type *pt)
518 {
519         if (pt->type == htons(ETH_P_ALL))
520                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
521         else
522                 return pt->dev ? &pt->dev->ptype_specific :
523                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
524 }
525
526 /**
527  *      dev_add_pack - add packet handler
528  *      @pt: packet type declaration
529  *
530  *      Add a protocol handler to the networking stack. The passed &packet_type
531  *      is linked into kernel lists and may not be freed until it has been
532  *      removed from the kernel lists.
533  *
534  *      This call does not sleep therefore it can not
535  *      guarantee all CPU's that are in middle of receiving packets
536  *      will see the new packet type (until the next received packet).
537  */
538
539 void dev_add_pack(struct packet_type *pt)
540 {
541         struct list_head *head = ptype_head(pt);
542
543         spin_lock(&ptype_lock);
544         list_add_rcu(&pt->list, head);
545         spin_unlock(&ptype_lock);
546 }
547 EXPORT_SYMBOL(dev_add_pack);
548
549 /**
550  *      __dev_remove_pack        - remove packet handler
551  *      @pt: packet type declaration
552  *
553  *      Remove a protocol handler that was previously added to the kernel
554  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
555  *      from the kernel lists and can be freed or reused once this function
556  *      returns.
557  *
558  *      The packet type might still be in use by receivers
559  *      and must not be freed until after all the CPU's have gone
560  *      through a quiescent state.
561  */
562 void __dev_remove_pack(struct packet_type *pt)
563 {
564         struct list_head *head = ptype_head(pt);
565         struct packet_type *pt1;
566
567         spin_lock(&ptype_lock);
568
569         list_for_each_entry(pt1, head, list) {
570                 if (pt == pt1) {
571                         list_del_rcu(&pt->list);
572                         goto out;
573                 }
574         }
575
576         pr_warn("dev_remove_pack: %p not found\n", pt);
577 out:
578         spin_unlock(&ptype_lock);
579 }
580 EXPORT_SYMBOL(__dev_remove_pack);
581
582 /**
583  *      dev_remove_pack  - remove packet handler
584  *      @pt: packet type declaration
585  *
586  *      Remove a protocol handler that was previously added to the kernel
587  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
588  *      from the kernel lists and can be freed or reused once this function
589  *      returns.
590  *
591  *      This call sleeps to guarantee that no CPU is looking at the packet
592  *      type after return.
593  */
594 void dev_remove_pack(struct packet_type *pt)
595 {
596         __dev_remove_pack(pt);
597
598         synchronize_net();
599 }
600 EXPORT_SYMBOL(dev_remove_pack);
601
602
603 /**
604  *      dev_add_offload - register offload handlers
605  *      @po: protocol offload declaration
606  *
607  *      Add protocol offload handlers to the networking stack. The passed
608  *      &proto_offload is linked into kernel lists and may not be freed until
609  *      it has been removed from the kernel lists.
610  *
611  *      This call does not sleep therefore it can not
612  *      guarantee all CPU's that are in middle of receiving packets
613  *      will see the new offload handlers (until the next received packet).
614  */
615 void dev_add_offload(struct packet_offload *po)
616 {
617         struct packet_offload *elem;
618
619         spin_lock(&offload_lock);
620         list_for_each_entry(elem, &offload_base, list) {
621                 if (po->priority < elem->priority)
622                         break;
623         }
624         list_add_rcu(&po->list, elem->list.prev);
625         spin_unlock(&offload_lock);
626 }
627 EXPORT_SYMBOL(dev_add_offload);
628
629 /**
630  *      __dev_remove_offload     - remove offload handler
631  *      @po: packet offload declaration
632  *
633  *      Remove a protocol offload handler that was previously added to the
634  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
635  *      is removed from the kernel lists and can be freed or reused once this
636  *      function returns.
637  *
638  *      The packet type might still be in use by receivers
639  *      and must not be freed until after all the CPU's have gone
640  *      through a quiescent state.
641  */
642 static void __dev_remove_offload(struct packet_offload *po)
643 {
644         struct list_head *head = &offload_base;
645         struct packet_offload *po1;
646
647         spin_lock(&offload_lock);
648
649         list_for_each_entry(po1, head, list) {
650                 if (po == po1) {
651                         list_del_rcu(&po->list);
652                         goto out;
653                 }
654         }
655
656         pr_warn("dev_remove_offload: %p not found\n", po);
657 out:
658         spin_unlock(&offload_lock);
659 }
660
661 /**
662  *      dev_remove_offload       - remove packet offload handler
663  *      @po: packet offload declaration
664  *
665  *      Remove a packet offload handler that was previously added to the kernel
666  *      offload handlers by dev_add_offload(). The passed &offload_type is
667  *      removed from the kernel lists and can be freed or reused once this
668  *      function returns.
669  *
670  *      This call sleeps to guarantee that no CPU is looking at the packet
671  *      type after return.
672  */
673 void dev_remove_offload(struct packet_offload *po)
674 {
675         __dev_remove_offload(po);
676
677         synchronize_net();
678 }
679 EXPORT_SYMBOL(dev_remove_offload);
680
681 /*******************************************************************************
682  *
683  *                          Device Interface Subroutines
684  *
685  *******************************************************************************/
686
687 /**
688  *      dev_get_iflink  - get 'iflink' value of a interface
689  *      @dev: targeted interface
690  *
691  *      Indicates the ifindex the interface is linked to.
692  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
693  */
694
695 int dev_get_iflink(const struct net_device *dev)
696 {
697         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
698                 return dev->netdev_ops->ndo_get_iflink(dev);
699
700         return dev->ifindex;
701 }
702 EXPORT_SYMBOL(dev_get_iflink);
703
704 /**
705  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
706  *      @dev: targeted interface
707  *      @skb: The packet.
708  *
709  *      For better visibility of tunnel traffic OVS needs to retrieve
710  *      egress tunnel information for a packet. Following API allows
711  *      user to get this info.
712  */
713 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
714 {
715         struct ip_tunnel_info *info;
716
717         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
718                 return -EINVAL;
719
720         info = skb_tunnel_info_unclone(skb);
721         if (!info)
722                 return -ENOMEM;
723         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
724                 return -EINVAL;
725
726         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
727 }
728 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
729
730 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
731 {
732         int k = stack->num_paths++;
733
734         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
735                 return NULL;
736
737         return &stack->path[k];
738 }
739
740 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
741                           struct net_device_path_stack *stack)
742 {
743         const struct net_device *last_dev;
744         struct net_device_path_ctx ctx = {
745                 .dev    = dev,
746         };
747         struct net_device_path *path;
748         int ret = 0;
749
750         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
751         stack->num_paths = 0;
752         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
753                 last_dev = ctx.dev;
754                 path = dev_fwd_path(stack);
755                 if (!path)
756                         return -1;
757
758                 memset(path, 0, sizeof(struct net_device_path));
759                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
760                 if (ret < 0)
761                         return -1;
762
763                 if (WARN_ON_ONCE(last_dev == ctx.dev))
764                         return -1;
765         }
766         path = dev_fwd_path(stack);
767         if (!path)
768                 return -1;
769         path->type = DEV_PATH_ETHERNET;
770         path->dev = ctx.dev;
771
772         return ret;
773 }
774 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
775
776 /**
777  *      __dev_get_by_name       - find a device by its name
778  *      @net: the applicable net namespace
779  *      @name: name to find
780  *
781  *      Find an interface by name. Must be called under RTNL semaphore
782  *      or @dev_base_lock. If the name is found a pointer to the device
783  *      is returned. If the name is not found then %NULL is returned. The
784  *      reference counters are not incremented so the caller must be
785  *      careful with locks.
786  */
787
788 struct net_device *__dev_get_by_name(struct net *net, const char *name)
789 {
790         struct netdev_name_node *node_name;
791
792         node_name = netdev_name_node_lookup(net, name);
793         return node_name ? node_name->dev : NULL;
794 }
795 EXPORT_SYMBOL(__dev_get_by_name);
796
797 /**
798  * dev_get_by_name_rcu  - find a device by its name
799  * @net: the applicable net namespace
800  * @name: name to find
801  *
802  * Find an interface by name.
803  * If the name is found a pointer to the device is returned.
804  * If the name is not found then %NULL is returned.
805  * The reference counters are not incremented so the caller must be
806  * careful with locks. The caller must hold RCU lock.
807  */
808
809 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
810 {
811         struct netdev_name_node *node_name;
812
813         node_name = netdev_name_node_lookup_rcu(net, name);
814         return node_name ? node_name->dev : NULL;
815 }
816 EXPORT_SYMBOL(dev_get_by_name_rcu);
817
818 /**
819  *      dev_get_by_name         - find a device by its name
820  *      @net: the applicable net namespace
821  *      @name: name to find
822  *
823  *      Find an interface by name. This can be called from any
824  *      context and does its own locking. The returned handle has
825  *      the usage count incremented and the caller must use dev_put() to
826  *      release it when it is no longer needed. %NULL is returned if no
827  *      matching device is found.
828  */
829
830 struct net_device *dev_get_by_name(struct net *net, const char *name)
831 {
832         struct net_device *dev;
833
834         rcu_read_lock();
835         dev = dev_get_by_name_rcu(net, name);
836         dev_hold(dev);
837         rcu_read_unlock();
838         return dev;
839 }
840 EXPORT_SYMBOL(dev_get_by_name);
841
842 /**
843  *      __dev_get_by_index - find a device by its ifindex
844  *      @net: the applicable net namespace
845  *      @ifindex: index of device
846  *
847  *      Search for an interface by index. Returns %NULL if the device
848  *      is not found or a pointer to the device. The device has not
849  *      had its reference counter increased so the caller must be careful
850  *      about locking. The caller must hold either the RTNL semaphore
851  *      or @dev_base_lock.
852  */
853
854 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
855 {
856         struct net_device *dev;
857         struct hlist_head *head = dev_index_hash(net, ifindex);
858
859         hlist_for_each_entry(dev, head, index_hlist)
860                 if (dev->ifindex == ifindex)
861                         return dev;
862
863         return NULL;
864 }
865 EXPORT_SYMBOL(__dev_get_by_index);
866
867 /**
868  *      dev_get_by_index_rcu - find a device by its ifindex
869  *      @net: the applicable net namespace
870  *      @ifindex: index of device
871  *
872  *      Search for an interface by index. Returns %NULL if the device
873  *      is not found or a pointer to the device. The device has not
874  *      had its reference counter increased so the caller must be careful
875  *      about locking. The caller must hold RCU lock.
876  */
877
878 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
879 {
880         struct net_device *dev;
881         struct hlist_head *head = dev_index_hash(net, ifindex);
882
883         hlist_for_each_entry_rcu(dev, head, index_hlist)
884                 if (dev->ifindex == ifindex)
885                         return dev;
886
887         return NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_index_rcu);
890
891
892 /**
893  *      dev_get_by_index - find a device by its ifindex
894  *      @net: the applicable net namespace
895  *      @ifindex: index of device
896  *
897  *      Search for an interface by index. Returns NULL if the device
898  *      is not found or a pointer to the device. The device returned has
899  *      had a reference added and the pointer is safe until the user calls
900  *      dev_put to indicate they have finished with it.
901  */
902
903 struct net_device *dev_get_by_index(struct net *net, int ifindex)
904 {
905         struct net_device *dev;
906
907         rcu_read_lock();
908         dev = dev_get_by_index_rcu(net, ifindex);
909         dev_hold(dev);
910         rcu_read_unlock();
911         return dev;
912 }
913 EXPORT_SYMBOL(dev_get_by_index);
914
915 /**
916  *      dev_get_by_napi_id - find a device by napi_id
917  *      @napi_id: ID of the NAPI struct
918  *
919  *      Search for an interface by NAPI ID. Returns %NULL if the device
920  *      is not found or a pointer to the device. The device has not had
921  *      its reference counter increased so the caller must be careful
922  *      about locking. The caller must hold RCU lock.
923  */
924
925 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
926 {
927         struct napi_struct *napi;
928
929         WARN_ON_ONCE(!rcu_read_lock_held());
930
931         if (napi_id < MIN_NAPI_ID)
932                 return NULL;
933
934         napi = napi_by_id(napi_id);
935
936         return napi ? napi->dev : NULL;
937 }
938 EXPORT_SYMBOL(dev_get_by_napi_id);
939
940 /**
941  *      netdev_get_name - get a netdevice name, knowing its ifindex.
942  *      @net: network namespace
943  *      @name: a pointer to the buffer where the name will be stored.
944  *      @ifindex: the ifindex of the interface to get the name from.
945  */
946 int netdev_get_name(struct net *net, char *name, int ifindex)
947 {
948         struct net_device *dev;
949         int ret;
950
951         down_read(&devnet_rename_sem);
952         rcu_read_lock();
953
954         dev = dev_get_by_index_rcu(net, ifindex);
955         if (!dev) {
956                 ret = -ENODEV;
957                 goto out;
958         }
959
960         strcpy(name, dev->name);
961
962         ret = 0;
963 out:
964         rcu_read_unlock();
965         up_read(&devnet_rename_sem);
966         return ret;
967 }
968
969 /**
970  *      dev_getbyhwaddr_rcu - find a device by its hardware address
971  *      @net: the applicable net namespace
972  *      @type: media type of device
973  *      @ha: hardware address
974  *
975  *      Search for an interface by MAC address. Returns NULL if the device
976  *      is not found or a pointer to the device.
977  *      The caller must hold RCU or RTNL.
978  *      The returned device has not had its ref count increased
979  *      and the caller must therefore be careful about locking
980  *
981  */
982
983 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
984                                        const char *ha)
985 {
986         struct net_device *dev;
987
988         for_each_netdev_rcu(net, dev)
989                 if (dev->type == type &&
990                     !memcmp(dev->dev_addr, ha, dev->addr_len))
991                         return dev;
992
993         return NULL;
994 }
995 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
996
997 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
998 {
999         struct net_device *dev, *ret = NULL;
1000
1001         rcu_read_lock();
1002         for_each_netdev_rcu(net, dev)
1003                 if (dev->type == type) {
1004                         dev_hold(dev);
1005                         ret = dev;
1006                         break;
1007                 }
1008         rcu_read_unlock();
1009         return ret;
1010 }
1011 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1012
1013 /**
1014  *      __dev_get_by_flags - find any device with given flags
1015  *      @net: the applicable net namespace
1016  *      @if_flags: IFF_* values
1017  *      @mask: bitmask of bits in if_flags to check
1018  *
1019  *      Search for any interface with the given flags. Returns NULL if a device
1020  *      is not found or a pointer to the device. Must be called inside
1021  *      rtnl_lock(), and result refcount is unchanged.
1022  */
1023
1024 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1025                                       unsigned short mask)
1026 {
1027         struct net_device *dev, *ret;
1028
1029         ASSERT_RTNL();
1030
1031         ret = NULL;
1032         for_each_netdev(net, dev) {
1033                 if (((dev->flags ^ if_flags) & mask) == 0) {
1034                         ret = dev;
1035                         break;
1036                 }
1037         }
1038         return ret;
1039 }
1040 EXPORT_SYMBOL(__dev_get_by_flags);
1041
1042 /**
1043  *      dev_valid_name - check if name is okay for network device
1044  *      @name: name string
1045  *
1046  *      Network device names need to be valid file names to
1047  *      allow sysfs to work.  We also disallow any kind of
1048  *      whitespace.
1049  */
1050 bool dev_valid_name(const char *name)
1051 {
1052         if (*name == '\0')
1053                 return false;
1054         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1055                 return false;
1056         if (!strcmp(name, ".") || !strcmp(name, ".."))
1057                 return false;
1058
1059         while (*name) {
1060                 if (*name == '/' || *name == ':' || isspace(*name))
1061                         return false;
1062                 name++;
1063         }
1064         return true;
1065 }
1066 EXPORT_SYMBOL(dev_valid_name);
1067
1068 /**
1069  *      __dev_alloc_name - allocate a name for a device
1070  *      @net: network namespace to allocate the device name in
1071  *      @name: name format string
1072  *      @buf:  scratch buffer and result name string
1073  *
1074  *      Passed a format string - eg "lt%d" it will try and find a suitable
1075  *      id. It scans list of devices to build up a free map, then chooses
1076  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1077  *      while allocating the name and adding the device in order to avoid
1078  *      duplicates.
1079  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1080  *      Returns the number of the unit assigned or a negative errno code.
1081  */
1082
1083 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1084 {
1085         int i = 0;
1086         const char *p;
1087         const int max_netdevices = 8*PAGE_SIZE;
1088         unsigned long *inuse;
1089         struct net_device *d;
1090
1091         if (!dev_valid_name(name))
1092                 return -EINVAL;
1093
1094         p = strchr(name, '%');
1095         if (p) {
1096                 /*
1097                  * Verify the string as this thing may have come from
1098                  * the user.  There must be either one "%d" and no other "%"
1099                  * characters.
1100                  */
1101                 if (p[1] != 'd' || strchr(p + 2, '%'))
1102                         return -EINVAL;
1103
1104                 /* Use one page as a bit array of possible slots */
1105                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1106                 if (!inuse)
1107                         return -ENOMEM;
1108
1109                 for_each_netdev(net, d) {
1110                         struct netdev_name_node *name_node;
1111                         list_for_each_entry(name_node, &d->name_node->list, list) {
1112                                 if (!sscanf(name_node->name, name, &i))
1113                                         continue;
1114                                 if (i < 0 || i >= max_netdevices)
1115                                         continue;
1116
1117                                 /*  avoid cases where sscanf is not exact inverse of printf */
1118                                 snprintf(buf, IFNAMSIZ, name, i);
1119                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1120                                         set_bit(i, inuse);
1121                         }
1122                         if (!sscanf(d->name, name, &i))
1123                                 continue;
1124                         if (i < 0 || i >= max_netdevices)
1125                                 continue;
1126
1127                         /*  avoid cases where sscanf is not exact inverse of printf */
1128                         snprintf(buf, IFNAMSIZ, name, i);
1129                         if (!strncmp(buf, d->name, IFNAMSIZ))
1130                                 set_bit(i, inuse);
1131                 }
1132
1133                 i = find_first_zero_bit(inuse, max_netdevices);
1134                 free_page((unsigned long) inuse);
1135         }
1136
1137         snprintf(buf, IFNAMSIZ, name, i);
1138         if (!__dev_get_by_name(net, buf))
1139                 return i;
1140
1141         /* It is possible to run out of possible slots
1142          * when the name is long and there isn't enough space left
1143          * for the digits, or if all bits are used.
1144          */
1145         return -ENFILE;
1146 }
1147
1148 static int dev_alloc_name_ns(struct net *net,
1149                              struct net_device *dev,
1150                              const char *name)
1151 {
1152         char buf[IFNAMSIZ];
1153         int ret;
1154
1155         BUG_ON(!net);
1156         ret = __dev_alloc_name(net, name, buf);
1157         if (ret >= 0)
1158                 strlcpy(dev->name, buf, IFNAMSIZ);
1159         return ret;
1160 }
1161
1162 /**
1163  *      dev_alloc_name - allocate a name for a device
1164  *      @dev: device
1165  *      @name: name format string
1166  *
1167  *      Passed a format string - eg "lt%d" it will try and find a suitable
1168  *      id. It scans list of devices to build up a free map, then chooses
1169  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1170  *      while allocating the name and adding the device in order to avoid
1171  *      duplicates.
1172  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1173  *      Returns the number of the unit assigned or a negative errno code.
1174  */
1175
1176 int dev_alloc_name(struct net_device *dev, const char *name)
1177 {
1178         return dev_alloc_name_ns(dev_net(dev), dev, name);
1179 }
1180 EXPORT_SYMBOL(dev_alloc_name);
1181
1182 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1183                               const char *name)
1184 {
1185         BUG_ON(!net);
1186
1187         if (!dev_valid_name(name))
1188                 return -EINVAL;
1189
1190         if (strchr(name, '%'))
1191                 return dev_alloc_name_ns(net, dev, name);
1192         else if (__dev_get_by_name(net, name))
1193                 return -EEXIST;
1194         else if (dev->name != name)
1195                 strlcpy(dev->name, name, IFNAMSIZ);
1196
1197         return 0;
1198 }
1199
1200 /**
1201  *      dev_change_name - change name of a device
1202  *      @dev: device
1203  *      @newname: name (or format string) must be at least IFNAMSIZ
1204  *
1205  *      Change name of a device, can pass format strings "eth%d".
1206  *      for wildcarding.
1207  */
1208 int dev_change_name(struct net_device *dev, const char *newname)
1209 {
1210         unsigned char old_assign_type;
1211         char oldname[IFNAMSIZ];
1212         int err = 0;
1213         int ret;
1214         struct net *net;
1215
1216         ASSERT_RTNL();
1217         BUG_ON(!dev_net(dev));
1218
1219         net = dev_net(dev);
1220
1221         /* Some auto-enslaved devices e.g. failover slaves are
1222          * special, as userspace might rename the device after
1223          * the interface had been brought up and running since
1224          * the point kernel initiated auto-enslavement. Allow
1225          * live name change even when these slave devices are
1226          * up and running.
1227          *
1228          * Typically, users of these auto-enslaving devices
1229          * don't actually care about slave name change, as
1230          * they are supposed to operate on master interface
1231          * directly.
1232          */
1233         if (dev->flags & IFF_UP &&
1234             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1235                 return -EBUSY;
1236
1237         down_write(&devnet_rename_sem);
1238
1239         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1240                 up_write(&devnet_rename_sem);
1241                 return 0;
1242         }
1243
1244         memcpy(oldname, dev->name, IFNAMSIZ);
1245
1246         err = dev_get_valid_name(net, dev, newname);
1247         if (err < 0) {
1248                 up_write(&devnet_rename_sem);
1249                 return err;
1250         }
1251
1252         if (oldname[0] && !strchr(oldname, '%'))
1253                 netdev_info(dev, "renamed from %s\n", oldname);
1254
1255         old_assign_type = dev->name_assign_type;
1256         dev->name_assign_type = NET_NAME_RENAMED;
1257
1258 rollback:
1259         ret = device_rename(&dev->dev, dev->name);
1260         if (ret) {
1261                 memcpy(dev->name, oldname, IFNAMSIZ);
1262                 dev->name_assign_type = old_assign_type;
1263                 up_write(&devnet_rename_sem);
1264                 return ret;
1265         }
1266
1267         up_write(&devnet_rename_sem);
1268
1269         netdev_adjacent_rename_links(dev, oldname);
1270
1271         write_lock(&dev_base_lock);
1272         netdev_name_node_del(dev->name_node);
1273         write_unlock(&dev_base_lock);
1274
1275         synchronize_rcu();
1276
1277         write_lock(&dev_base_lock);
1278         netdev_name_node_add(net, dev->name_node);
1279         write_unlock(&dev_base_lock);
1280
1281         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1282         ret = notifier_to_errno(ret);
1283
1284         if (ret) {
1285                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1286                 if (err >= 0) {
1287                         err = ret;
1288                         down_write(&devnet_rename_sem);
1289                         memcpy(dev->name, oldname, IFNAMSIZ);
1290                         memcpy(oldname, newname, IFNAMSIZ);
1291                         dev->name_assign_type = old_assign_type;
1292                         old_assign_type = NET_NAME_RENAMED;
1293                         goto rollback;
1294                 } else {
1295                         pr_err("%s: name change rollback failed: %d\n",
1296                                dev->name, ret);
1297                 }
1298         }
1299
1300         return err;
1301 }
1302
1303 /**
1304  *      dev_set_alias - change ifalias of a device
1305  *      @dev: device
1306  *      @alias: name up to IFALIASZ
1307  *      @len: limit of bytes to copy from info
1308  *
1309  *      Set ifalias for a device,
1310  */
1311 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1312 {
1313         struct dev_ifalias *new_alias = NULL;
1314
1315         if (len >= IFALIASZ)
1316                 return -EINVAL;
1317
1318         if (len) {
1319                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1320                 if (!new_alias)
1321                         return -ENOMEM;
1322
1323                 memcpy(new_alias->ifalias, alias, len);
1324                 new_alias->ifalias[len] = 0;
1325         }
1326
1327         mutex_lock(&ifalias_mutex);
1328         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1329                                         mutex_is_locked(&ifalias_mutex));
1330         mutex_unlock(&ifalias_mutex);
1331
1332         if (new_alias)
1333                 kfree_rcu(new_alias, rcuhead);
1334
1335         return len;
1336 }
1337 EXPORT_SYMBOL(dev_set_alias);
1338
1339 /**
1340  *      dev_get_alias - get ifalias of a device
1341  *      @dev: device
1342  *      @name: buffer to store name of ifalias
1343  *      @len: size of buffer
1344  *
1345  *      get ifalias for a device.  Caller must make sure dev cannot go
1346  *      away,  e.g. rcu read lock or own a reference count to device.
1347  */
1348 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1349 {
1350         const struct dev_ifalias *alias;
1351         int ret = 0;
1352
1353         rcu_read_lock();
1354         alias = rcu_dereference(dev->ifalias);
1355         if (alias)
1356                 ret = snprintf(name, len, "%s", alias->ifalias);
1357         rcu_read_unlock();
1358
1359         return ret;
1360 }
1361
1362 /**
1363  *      netdev_features_change - device changes features
1364  *      @dev: device to cause notification
1365  *
1366  *      Called to indicate a device has changed features.
1367  */
1368 void netdev_features_change(struct net_device *dev)
1369 {
1370         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1371 }
1372 EXPORT_SYMBOL(netdev_features_change);
1373
1374 /**
1375  *      netdev_state_change - device changes state
1376  *      @dev: device to cause notification
1377  *
1378  *      Called to indicate a device has changed state. This function calls
1379  *      the notifier chains for netdev_chain and sends a NEWLINK message
1380  *      to the routing socket.
1381  */
1382 void netdev_state_change(struct net_device *dev)
1383 {
1384         if (dev->flags & IFF_UP) {
1385                 struct netdev_notifier_change_info change_info = {
1386                         .info.dev = dev,
1387                 };
1388
1389                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1390                                               &change_info.info);
1391                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1392         }
1393 }
1394 EXPORT_SYMBOL(netdev_state_change);
1395
1396 /**
1397  * __netdev_notify_peers - notify network peers about existence of @dev,
1398  * to be called when rtnl lock is already held.
1399  * @dev: network device
1400  *
1401  * Generate traffic such that interested network peers are aware of
1402  * @dev, such as by generating a gratuitous ARP. This may be used when
1403  * a device wants to inform the rest of the network about some sort of
1404  * reconfiguration such as a failover event or virtual machine
1405  * migration.
1406  */
1407 void __netdev_notify_peers(struct net_device *dev)
1408 {
1409         ASSERT_RTNL();
1410         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1411         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1412 }
1413 EXPORT_SYMBOL(__netdev_notify_peers);
1414
1415 /**
1416  * netdev_notify_peers - notify network peers about existence of @dev
1417  * @dev: network device
1418  *
1419  * Generate traffic such that interested network peers are aware of
1420  * @dev, such as by generating a gratuitous ARP. This may be used when
1421  * a device wants to inform the rest of the network about some sort of
1422  * reconfiguration such as a failover event or virtual machine
1423  * migration.
1424  */
1425 void netdev_notify_peers(struct net_device *dev)
1426 {
1427         rtnl_lock();
1428         __netdev_notify_peers(dev);
1429         rtnl_unlock();
1430 }
1431 EXPORT_SYMBOL(netdev_notify_peers);
1432
1433 static int napi_threaded_poll(void *data);
1434
1435 static int napi_kthread_create(struct napi_struct *n)
1436 {
1437         int err = 0;
1438
1439         /* Create and wake up the kthread once to put it in
1440          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1441          * warning and work with loadavg.
1442          */
1443         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1444                                 n->dev->name, n->napi_id);
1445         if (IS_ERR(n->thread)) {
1446                 err = PTR_ERR(n->thread);
1447                 pr_err("kthread_run failed with err %d\n", err);
1448                 n->thread = NULL;
1449         }
1450
1451         return err;
1452 }
1453
1454 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1455 {
1456         const struct net_device_ops *ops = dev->netdev_ops;
1457         int ret;
1458
1459         ASSERT_RTNL();
1460
1461         if (!netif_device_present(dev)) {
1462                 /* may be detached because parent is runtime-suspended */
1463                 if (dev->dev.parent)
1464                         pm_runtime_resume(dev->dev.parent);
1465                 if (!netif_device_present(dev))
1466                         return -ENODEV;
1467         }
1468
1469         /* Block netpoll from trying to do any rx path servicing.
1470          * If we don't do this there is a chance ndo_poll_controller
1471          * or ndo_poll may be running while we open the device
1472          */
1473         netpoll_poll_disable(dev);
1474
1475         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1476         ret = notifier_to_errno(ret);
1477         if (ret)
1478                 return ret;
1479
1480         set_bit(__LINK_STATE_START, &dev->state);
1481
1482         if (ops->ndo_validate_addr)
1483                 ret = ops->ndo_validate_addr(dev);
1484
1485         if (!ret && ops->ndo_open)
1486                 ret = ops->ndo_open(dev);
1487
1488         netpoll_poll_enable(dev);
1489
1490         if (ret)
1491                 clear_bit(__LINK_STATE_START, &dev->state);
1492         else {
1493                 dev->flags |= IFF_UP;
1494                 dev_set_rx_mode(dev);
1495                 dev_activate(dev);
1496                 add_device_randomness(dev->dev_addr, dev->addr_len);
1497         }
1498
1499         return ret;
1500 }
1501
1502 /**
1503  *      dev_open        - prepare an interface for use.
1504  *      @dev: device to open
1505  *      @extack: netlink extended ack
1506  *
1507  *      Takes a device from down to up state. The device's private open
1508  *      function is invoked and then the multicast lists are loaded. Finally
1509  *      the device is moved into the up state and a %NETDEV_UP message is
1510  *      sent to the netdev notifier chain.
1511  *
1512  *      Calling this function on an active interface is a nop. On a failure
1513  *      a negative errno code is returned.
1514  */
1515 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1516 {
1517         int ret;
1518
1519         if (dev->flags & IFF_UP)
1520                 return 0;
1521
1522         ret = __dev_open(dev, extack);
1523         if (ret < 0)
1524                 return ret;
1525
1526         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1527         call_netdevice_notifiers(NETDEV_UP, dev);
1528
1529         return ret;
1530 }
1531 EXPORT_SYMBOL(dev_open);
1532
1533 static void __dev_close_many(struct list_head *head)
1534 {
1535         struct net_device *dev;
1536
1537         ASSERT_RTNL();
1538         might_sleep();
1539
1540         list_for_each_entry(dev, head, close_list) {
1541                 /* Temporarily disable netpoll until the interface is down */
1542                 netpoll_poll_disable(dev);
1543
1544                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1545
1546                 clear_bit(__LINK_STATE_START, &dev->state);
1547
1548                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1549                  * can be even on different cpu. So just clear netif_running().
1550                  *
1551                  * dev->stop() will invoke napi_disable() on all of it's
1552                  * napi_struct instances on this device.
1553                  */
1554                 smp_mb__after_atomic(); /* Commit netif_running(). */
1555         }
1556
1557         dev_deactivate_many(head);
1558
1559         list_for_each_entry(dev, head, close_list) {
1560                 const struct net_device_ops *ops = dev->netdev_ops;
1561
1562                 /*
1563                  *      Call the device specific close. This cannot fail.
1564                  *      Only if device is UP
1565                  *
1566                  *      We allow it to be called even after a DETACH hot-plug
1567                  *      event.
1568                  */
1569                 if (ops->ndo_stop)
1570                         ops->ndo_stop(dev);
1571
1572                 dev->flags &= ~IFF_UP;
1573                 netpoll_poll_enable(dev);
1574         }
1575 }
1576
1577 static void __dev_close(struct net_device *dev)
1578 {
1579         LIST_HEAD(single);
1580
1581         list_add(&dev->close_list, &single);
1582         __dev_close_many(&single);
1583         list_del(&single);
1584 }
1585
1586 void dev_close_many(struct list_head *head, bool unlink)
1587 {
1588         struct net_device *dev, *tmp;
1589
1590         /* Remove the devices that don't need to be closed */
1591         list_for_each_entry_safe(dev, tmp, head, close_list)
1592                 if (!(dev->flags & IFF_UP))
1593                         list_del_init(&dev->close_list);
1594
1595         __dev_close_many(head);
1596
1597         list_for_each_entry_safe(dev, tmp, head, close_list) {
1598                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1599                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1600                 if (unlink)
1601                         list_del_init(&dev->close_list);
1602         }
1603 }
1604 EXPORT_SYMBOL(dev_close_many);
1605
1606 /**
1607  *      dev_close - shutdown an interface.
1608  *      @dev: device to shutdown
1609  *
1610  *      This function moves an active device into down state. A
1611  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1612  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1613  *      chain.
1614  */
1615 void dev_close(struct net_device *dev)
1616 {
1617         if (dev->flags & IFF_UP) {
1618                 LIST_HEAD(single);
1619
1620                 list_add(&dev->close_list, &single);
1621                 dev_close_many(&single, true);
1622                 list_del(&single);
1623         }
1624 }
1625 EXPORT_SYMBOL(dev_close);
1626
1627
1628 /**
1629  *      dev_disable_lro - disable Large Receive Offload on a device
1630  *      @dev: device
1631  *
1632  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1633  *      called under RTNL.  This is needed if received packets may be
1634  *      forwarded to another interface.
1635  */
1636 void dev_disable_lro(struct net_device *dev)
1637 {
1638         struct net_device *lower_dev;
1639         struct list_head *iter;
1640
1641         dev->wanted_features &= ~NETIF_F_LRO;
1642         netdev_update_features(dev);
1643
1644         if (unlikely(dev->features & NETIF_F_LRO))
1645                 netdev_WARN(dev, "failed to disable LRO!\n");
1646
1647         netdev_for_each_lower_dev(dev, lower_dev, iter)
1648                 dev_disable_lro(lower_dev);
1649 }
1650 EXPORT_SYMBOL(dev_disable_lro);
1651
1652 /**
1653  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1654  *      @dev: device
1655  *
1656  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1657  *      called under RTNL.  This is needed if Generic XDP is installed on
1658  *      the device.
1659  */
1660 static void dev_disable_gro_hw(struct net_device *dev)
1661 {
1662         dev->wanted_features &= ~NETIF_F_GRO_HW;
1663         netdev_update_features(dev);
1664
1665         if (unlikely(dev->features & NETIF_F_GRO_HW))
1666                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1667 }
1668
1669 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1670 {
1671 #define N(val)                                          \
1672         case NETDEV_##val:                              \
1673                 return "NETDEV_" __stringify(val);
1674         switch (cmd) {
1675         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1676         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1677         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1678         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1679         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1680         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1681         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1682         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1683         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1684         N(PRE_CHANGEADDR)
1685         }
1686 #undef N
1687         return "UNKNOWN_NETDEV_EVENT";
1688 }
1689 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1690
1691 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1692                                    struct net_device *dev)
1693 {
1694         struct netdev_notifier_info info = {
1695                 .dev = dev,
1696         };
1697
1698         return nb->notifier_call(nb, val, &info);
1699 }
1700
1701 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1702                                              struct net_device *dev)
1703 {
1704         int err;
1705
1706         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1707         err = notifier_to_errno(err);
1708         if (err)
1709                 return err;
1710
1711         if (!(dev->flags & IFF_UP))
1712                 return 0;
1713
1714         call_netdevice_notifier(nb, NETDEV_UP, dev);
1715         return 0;
1716 }
1717
1718 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1719                                                 struct net_device *dev)
1720 {
1721         if (dev->flags & IFF_UP) {
1722                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723                                         dev);
1724                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1725         }
1726         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1727 }
1728
1729 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1730                                                  struct net *net)
1731 {
1732         struct net_device *dev;
1733         int err;
1734
1735         for_each_netdev(net, dev) {
1736                 err = call_netdevice_register_notifiers(nb, dev);
1737                 if (err)
1738                         goto rollback;
1739         }
1740         return 0;
1741
1742 rollback:
1743         for_each_netdev_continue_reverse(net, dev)
1744                 call_netdevice_unregister_notifiers(nb, dev);
1745         return err;
1746 }
1747
1748 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1749                                                     struct net *net)
1750 {
1751         struct net_device *dev;
1752
1753         for_each_netdev(net, dev)
1754                 call_netdevice_unregister_notifiers(nb, dev);
1755 }
1756
1757 static int dev_boot_phase = 1;
1758
1759 /**
1760  * register_netdevice_notifier - register a network notifier block
1761  * @nb: notifier
1762  *
1763  * Register a notifier to be called when network device events occur.
1764  * The notifier passed is linked into the kernel structures and must
1765  * not be reused until it has been unregistered. A negative errno code
1766  * is returned on a failure.
1767  *
1768  * When registered all registration and up events are replayed
1769  * to the new notifier to allow device to have a race free
1770  * view of the network device list.
1771  */
1772
1773 int register_netdevice_notifier(struct notifier_block *nb)
1774 {
1775         struct net *net;
1776         int err;
1777
1778         /* Close race with setup_net() and cleanup_net() */
1779         down_write(&pernet_ops_rwsem);
1780         rtnl_lock();
1781         err = raw_notifier_chain_register(&netdev_chain, nb);
1782         if (err)
1783                 goto unlock;
1784         if (dev_boot_phase)
1785                 goto unlock;
1786         for_each_net(net) {
1787                 err = call_netdevice_register_net_notifiers(nb, net);
1788                 if (err)
1789                         goto rollback;
1790         }
1791
1792 unlock:
1793         rtnl_unlock();
1794         up_write(&pernet_ops_rwsem);
1795         return err;
1796
1797 rollback:
1798         for_each_net_continue_reverse(net)
1799                 call_netdevice_unregister_net_notifiers(nb, net);
1800
1801         raw_notifier_chain_unregister(&netdev_chain, nb);
1802         goto unlock;
1803 }
1804 EXPORT_SYMBOL(register_netdevice_notifier);
1805
1806 /**
1807  * unregister_netdevice_notifier - unregister a network notifier block
1808  * @nb: notifier
1809  *
1810  * Unregister a notifier previously registered by
1811  * register_netdevice_notifier(). The notifier is unlinked into the
1812  * kernel structures and may then be reused. A negative errno code
1813  * is returned on a failure.
1814  *
1815  * After unregistering unregister and down device events are synthesized
1816  * for all devices on the device list to the removed notifier to remove
1817  * the need for special case cleanup code.
1818  */
1819
1820 int unregister_netdevice_notifier(struct notifier_block *nb)
1821 {
1822         struct net *net;
1823         int err;
1824
1825         /* Close race with setup_net() and cleanup_net() */
1826         down_write(&pernet_ops_rwsem);
1827         rtnl_lock();
1828         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1829         if (err)
1830                 goto unlock;
1831
1832         for_each_net(net)
1833                 call_netdevice_unregister_net_notifiers(nb, net);
1834
1835 unlock:
1836         rtnl_unlock();
1837         up_write(&pernet_ops_rwsem);
1838         return err;
1839 }
1840 EXPORT_SYMBOL(unregister_netdevice_notifier);
1841
1842 static int __register_netdevice_notifier_net(struct net *net,
1843                                              struct notifier_block *nb,
1844                                              bool ignore_call_fail)
1845 {
1846         int err;
1847
1848         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1849         if (err)
1850                 return err;
1851         if (dev_boot_phase)
1852                 return 0;
1853
1854         err = call_netdevice_register_net_notifiers(nb, net);
1855         if (err && !ignore_call_fail)
1856                 goto chain_unregister;
1857
1858         return 0;
1859
1860 chain_unregister:
1861         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862         return err;
1863 }
1864
1865 static int __unregister_netdevice_notifier_net(struct net *net,
1866                                                struct notifier_block *nb)
1867 {
1868         int err;
1869
1870         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1871         if (err)
1872                 return err;
1873
1874         call_netdevice_unregister_net_notifiers(nb, net);
1875         return 0;
1876 }
1877
1878 /**
1879  * register_netdevice_notifier_net - register a per-netns network notifier block
1880  * @net: network namespace
1881  * @nb: notifier
1882  *
1883  * Register a notifier to be called when network device events occur.
1884  * The notifier passed is linked into the kernel structures and must
1885  * not be reused until it has been unregistered. A negative errno code
1886  * is returned on a failure.
1887  *
1888  * When registered all registration and up events are replayed
1889  * to the new notifier to allow device to have a race free
1890  * view of the network device list.
1891  */
1892
1893 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1894 {
1895         int err;
1896
1897         rtnl_lock();
1898         err = __register_netdevice_notifier_net(net, nb, false);
1899         rtnl_unlock();
1900         return err;
1901 }
1902 EXPORT_SYMBOL(register_netdevice_notifier_net);
1903
1904 /**
1905  * unregister_netdevice_notifier_net - unregister a per-netns
1906  *                                     network notifier block
1907  * @net: network namespace
1908  * @nb: notifier
1909  *
1910  * Unregister a notifier previously registered by
1911  * register_netdevice_notifier(). The notifier is unlinked into the
1912  * kernel structures and may then be reused. A negative errno code
1913  * is returned on a failure.
1914  *
1915  * After unregistering unregister and down device events are synthesized
1916  * for all devices on the device list to the removed notifier to remove
1917  * the need for special case cleanup code.
1918  */
1919
1920 int unregister_netdevice_notifier_net(struct net *net,
1921                                       struct notifier_block *nb)
1922 {
1923         int err;
1924
1925         rtnl_lock();
1926         err = __unregister_netdevice_notifier_net(net, nb);
1927         rtnl_unlock();
1928         return err;
1929 }
1930 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1931
1932 int register_netdevice_notifier_dev_net(struct net_device *dev,
1933                                         struct notifier_block *nb,
1934                                         struct netdev_net_notifier *nn)
1935 {
1936         int err;
1937
1938         rtnl_lock();
1939         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1940         if (!err) {
1941                 nn->nb = nb;
1942                 list_add(&nn->list, &dev->net_notifier_list);
1943         }
1944         rtnl_unlock();
1945         return err;
1946 }
1947 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1948
1949 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1950                                           struct notifier_block *nb,
1951                                           struct netdev_net_notifier *nn)
1952 {
1953         int err;
1954
1955         rtnl_lock();
1956         list_del(&nn->list);
1957         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1958         rtnl_unlock();
1959         return err;
1960 }
1961 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1962
1963 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1964                                              struct net *net)
1965 {
1966         struct netdev_net_notifier *nn;
1967
1968         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1969                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1970                 __register_netdevice_notifier_net(net, nn->nb, true);
1971         }
1972 }
1973
1974 /**
1975  *      call_netdevice_notifiers_info - call all network notifier blocks
1976  *      @val: value passed unmodified to notifier function
1977  *      @info: notifier information data
1978  *
1979  *      Call all network notifier blocks.  Parameters and return value
1980  *      are as for raw_notifier_call_chain().
1981  */
1982
1983 static int call_netdevice_notifiers_info(unsigned long val,
1984                                          struct netdev_notifier_info *info)
1985 {
1986         struct net *net = dev_net(info->dev);
1987         int ret;
1988
1989         ASSERT_RTNL();
1990
1991         /* Run per-netns notifier block chain first, then run the global one.
1992          * Hopefully, one day, the global one is going to be removed after
1993          * all notifier block registrators get converted to be per-netns.
1994          */
1995         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1996         if (ret & NOTIFY_STOP_MASK)
1997                 return ret;
1998         return raw_notifier_call_chain(&netdev_chain, val, info);
1999 }
2000
2001 static int call_netdevice_notifiers_extack(unsigned long val,
2002                                            struct net_device *dev,
2003                                            struct netlink_ext_ack *extack)
2004 {
2005         struct netdev_notifier_info info = {
2006                 .dev = dev,
2007                 .extack = extack,
2008         };
2009
2010         return call_netdevice_notifiers_info(val, &info);
2011 }
2012
2013 /**
2014  *      call_netdevice_notifiers - call all network notifier blocks
2015  *      @val: value passed unmodified to notifier function
2016  *      @dev: net_device pointer passed unmodified to notifier function
2017  *
2018  *      Call all network notifier blocks.  Parameters and return value
2019  *      are as for raw_notifier_call_chain().
2020  */
2021
2022 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2023 {
2024         return call_netdevice_notifiers_extack(val, dev, NULL);
2025 }
2026 EXPORT_SYMBOL(call_netdevice_notifiers);
2027
2028 /**
2029  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2030  *      @val: value passed unmodified to notifier function
2031  *      @dev: net_device pointer passed unmodified to notifier function
2032  *      @arg: additional u32 argument passed to the notifier function
2033  *
2034  *      Call all network notifier blocks.  Parameters and return value
2035  *      are as for raw_notifier_call_chain().
2036  */
2037 static int call_netdevice_notifiers_mtu(unsigned long val,
2038                                         struct net_device *dev, u32 arg)
2039 {
2040         struct netdev_notifier_info_ext info = {
2041                 .info.dev = dev,
2042                 .ext.mtu = arg,
2043         };
2044
2045         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2046
2047         return call_netdevice_notifiers_info(val, &info.info);
2048 }
2049
2050 #ifdef CONFIG_NET_INGRESS
2051 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2052
2053 void net_inc_ingress_queue(void)
2054 {
2055         static_branch_inc(&ingress_needed_key);
2056 }
2057 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2058
2059 void net_dec_ingress_queue(void)
2060 {
2061         static_branch_dec(&ingress_needed_key);
2062 }
2063 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2064 #endif
2065
2066 #ifdef CONFIG_NET_EGRESS
2067 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2068
2069 void net_inc_egress_queue(void)
2070 {
2071         static_branch_inc(&egress_needed_key);
2072 }
2073 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2074
2075 void net_dec_egress_queue(void)
2076 {
2077         static_branch_dec(&egress_needed_key);
2078 }
2079 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2080 #endif
2081
2082 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2083 #ifdef CONFIG_JUMP_LABEL
2084 static atomic_t netstamp_needed_deferred;
2085 static atomic_t netstamp_wanted;
2086 static void netstamp_clear(struct work_struct *work)
2087 {
2088         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2089         int wanted;
2090
2091         wanted = atomic_add_return(deferred, &netstamp_wanted);
2092         if (wanted > 0)
2093                 static_branch_enable(&netstamp_needed_key);
2094         else
2095                 static_branch_disable(&netstamp_needed_key);
2096 }
2097 static DECLARE_WORK(netstamp_work, netstamp_clear);
2098 #endif
2099
2100 void net_enable_timestamp(void)
2101 {
2102 #ifdef CONFIG_JUMP_LABEL
2103         int wanted;
2104
2105         while (1) {
2106                 wanted = atomic_read(&netstamp_wanted);
2107                 if (wanted <= 0)
2108                         break;
2109                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2110                         return;
2111         }
2112         atomic_inc(&netstamp_needed_deferred);
2113         schedule_work(&netstamp_work);
2114 #else
2115         static_branch_inc(&netstamp_needed_key);
2116 #endif
2117 }
2118 EXPORT_SYMBOL(net_enable_timestamp);
2119
2120 void net_disable_timestamp(void)
2121 {
2122 #ifdef CONFIG_JUMP_LABEL
2123         int wanted;
2124
2125         while (1) {
2126                 wanted = atomic_read(&netstamp_wanted);
2127                 if (wanted <= 1)
2128                         break;
2129                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2130                         return;
2131         }
2132         atomic_dec(&netstamp_needed_deferred);
2133         schedule_work(&netstamp_work);
2134 #else
2135         static_branch_dec(&netstamp_needed_key);
2136 #endif
2137 }
2138 EXPORT_SYMBOL(net_disable_timestamp);
2139
2140 static inline void net_timestamp_set(struct sk_buff *skb)
2141 {
2142         skb->tstamp = 0;
2143         if (static_branch_unlikely(&netstamp_needed_key))
2144                 __net_timestamp(skb);
2145 }
2146
2147 #define net_timestamp_check(COND, SKB)                          \
2148         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2149                 if ((COND) && !(SKB)->tstamp)                   \
2150                         __net_timestamp(SKB);                   \
2151         }                                                       \
2152
2153 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2154 {
2155         return __is_skb_forwardable(dev, skb, true);
2156 }
2157 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2158
2159 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2160                               bool check_mtu)
2161 {
2162         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2163
2164         if (likely(!ret)) {
2165                 skb->protocol = eth_type_trans(skb, dev);
2166                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2167         }
2168
2169         return ret;
2170 }
2171
2172 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2173 {
2174         return __dev_forward_skb2(dev, skb, true);
2175 }
2176 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2177
2178 /**
2179  * dev_forward_skb - loopback an skb to another netif
2180  *
2181  * @dev: destination network device
2182  * @skb: buffer to forward
2183  *
2184  * return values:
2185  *      NET_RX_SUCCESS  (no congestion)
2186  *      NET_RX_DROP     (packet was dropped, but freed)
2187  *
2188  * dev_forward_skb can be used for injecting an skb from the
2189  * start_xmit function of one device into the receive queue
2190  * of another device.
2191  *
2192  * The receiving device may be in another namespace, so
2193  * we have to clear all information in the skb that could
2194  * impact namespace isolation.
2195  */
2196 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2197 {
2198         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2199 }
2200 EXPORT_SYMBOL_GPL(dev_forward_skb);
2201
2202 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2203 {
2204         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2205 }
2206
2207 static inline int deliver_skb(struct sk_buff *skb,
2208                               struct packet_type *pt_prev,
2209                               struct net_device *orig_dev)
2210 {
2211         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2212                 return -ENOMEM;
2213         refcount_inc(&skb->users);
2214         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2215 }
2216
2217 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2218                                           struct packet_type **pt,
2219                                           struct net_device *orig_dev,
2220                                           __be16 type,
2221                                           struct list_head *ptype_list)
2222 {
2223         struct packet_type *ptype, *pt_prev = *pt;
2224
2225         list_for_each_entry_rcu(ptype, ptype_list, list) {
2226                 if (ptype->type != type)
2227                         continue;
2228                 if (pt_prev)
2229                         deliver_skb(skb, pt_prev, orig_dev);
2230                 pt_prev = ptype;
2231         }
2232         *pt = pt_prev;
2233 }
2234
2235 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2236 {
2237         if (!ptype->af_packet_priv || !skb->sk)
2238                 return false;
2239
2240         if (ptype->id_match)
2241                 return ptype->id_match(ptype, skb->sk);
2242         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2243                 return true;
2244
2245         return false;
2246 }
2247
2248 /**
2249  * dev_nit_active - return true if any network interface taps are in use
2250  *
2251  * @dev: network device to check for the presence of taps
2252  */
2253 bool dev_nit_active(struct net_device *dev)
2254 {
2255         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2256 }
2257 EXPORT_SYMBOL_GPL(dev_nit_active);
2258
2259 /*
2260  *      Support routine. Sends outgoing frames to any network
2261  *      taps currently in use.
2262  */
2263
2264 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2265 {
2266         struct packet_type *ptype;
2267         struct sk_buff *skb2 = NULL;
2268         struct packet_type *pt_prev = NULL;
2269         struct list_head *ptype_list = &ptype_all;
2270
2271         rcu_read_lock();
2272 again:
2273         list_for_each_entry_rcu(ptype, ptype_list, list) {
2274                 if (ptype->ignore_outgoing)
2275                         continue;
2276
2277                 /* Never send packets back to the socket
2278                  * they originated from - MvS (miquels@drinkel.ow.org)
2279                  */
2280                 if (skb_loop_sk(ptype, skb))
2281                         continue;
2282
2283                 if (pt_prev) {
2284                         deliver_skb(skb2, pt_prev, skb->dev);
2285                         pt_prev = ptype;
2286                         continue;
2287                 }
2288
2289                 /* need to clone skb, done only once */
2290                 skb2 = skb_clone(skb, GFP_ATOMIC);
2291                 if (!skb2)
2292                         goto out_unlock;
2293
2294                 net_timestamp_set(skb2);
2295
2296                 /* skb->nh should be correctly
2297                  * set by sender, so that the second statement is
2298                  * just protection against buggy protocols.
2299                  */
2300                 skb_reset_mac_header(skb2);
2301
2302                 if (skb_network_header(skb2) < skb2->data ||
2303                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2304                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2305                                              ntohs(skb2->protocol),
2306                                              dev->name);
2307                         skb_reset_network_header(skb2);
2308                 }
2309
2310                 skb2->transport_header = skb2->network_header;
2311                 skb2->pkt_type = PACKET_OUTGOING;
2312                 pt_prev = ptype;
2313         }
2314
2315         if (ptype_list == &ptype_all) {
2316                 ptype_list = &dev->ptype_all;
2317                 goto again;
2318         }
2319 out_unlock:
2320         if (pt_prev) {
2321                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2322                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2323                 else
2324                         kfree_skb(skb2);
2325         }
2326         rcu_read_unlock();
2327 }
2328 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2329
2330 /**
2331  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2332  * @dev: Network device
2333  * @txq: number of queues available
2334  *
2335  * If real_num_tx_queues is changed the tc mappings may no longer be
2336  * valid. To resolve this verify the tc mapping remains valid and if
2337  * not NULL the mapping. With no priorities mapping to this
2338  * offset/count pair it will no longer be used. In the worst case TC0
2339  * is invalid nothing can be done so disable priority mappings. If is
2340  * expected that drivers will fix this mapping if they can before
2341  * calling netif_set_real_num_tx_queues.
2342  */
2343 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2344 {
2345         int i;
2346         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347
2348         /* If TC0 is invalidated disable TC mapping */
2349         if (tc->offset + tc->count > txq) {
2350                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2351                 dev->num_tc = 0;
2352                 return;
2353         }
2354
2355         /* Invalidated prio to tc mappings set to TC0 */
2356         for (i = 1; i < TC_BITMASK + 1; i++) {
2357                 int q = netdev_get_prio_tc_map(dev, i);
2358
2359                 tc = &dev->tc_to_txq[q];
2360                 if (tc->offset + tc->count > txq) {
2361                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2362                                 i, q);
2363                         netdev_set_prio_tc_map(dev, i, 0);
2364                 }
2365         }
2366 }
2367
2368 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2369 {
2370         if (dev->num_tc) {
2371                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2372                 int i;
2373
2374                 /* walk through the TCs and see if it falls into any of them */
2375                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2376                         if ((txq - tc->offset) < tc->count)
2377                                 return i;
2378                 }
2379
2380                 /* didn't find it, just return -1 to indicate no match */
2381                 return -1;
2382         }
2383
2384         return 0;
2385 }
2386 EXPORT_SYMBOL(netdev_txq_to_tc);
2387
2388 #ifdef CONFIG_XPS
2389 static struct static_key xps_needed __read_mostly;
2390 static struct static_key xps_rxqs_needed __read_mostly;
2391 static DEFINE_MUTEX(xps_map_mutex);
2392 #define xmap_dereference(P)             \
2393         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2394
2395 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2396                              struct xps_dev_maps *old_maps, int tci, u16 index)
2397 {
2398         struct xps_map *map = NULL;
2399         int pos;
2400
2401         if (dev_maps)
2402                 map = xmap_dereference(dev_maps->attr_map[tci]);
2403         if (!map)
2404                 return false;
2405
2406         for (pos = map->len; pos--;) {
2407                 if (map->queues[pos] != index)
2408                         continue;
2409
2410                 if (map->len > 1) {
2411                         map->queues[pos] = map->queues[--map->len];
2412                         break;
2413                 }
2414
2415                 if (old_maps)
2416                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2417                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2418                 kfree_rcu(map, rcu);
2419                 return false;
2420         }
2421
2422         return true;
2423 }
2424
2425 static bool remove_xps_queue_cpu(struct net_device *dev,
2426                                  struct xps_dev_maps *dev_maps,
2427                                  int cpu, u16 offset, u16 count)
2428 {
2429         int num_tc = dev_maps->num_tc;
2430         bool active = false;
2431         int tci;
2432
2433         for (tci = cpu * num_tc; num_tc--; tci++) {
2434                 int i, j;
2435
2436                 for (i = count, j = offset; i--; j++) {
2437                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2438                                 break;
2439                 }
2440
2441                 active |= i < 0;
2442         }
2443
2444         return active;
2445 }
2446
2447 static void reset_xps_maps(struct net_device *dev,
2448                            struct xps_dev_maps *dev_maps,
2449                            enum xps_map_type type)
2450 {
2451         static_key_slow_dec_cpuslocked(&xps_needed);
2452         if (type == XPS_RXQS)
2453                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2454
2455         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2456
2457         kfree_rcu(dev_maps, rcu);
2458 }
2459
2460 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2461                            u16 offset, u16 count)
2462 {
2463         struct xps_dev_maps *dev_maps;
2464         bool active = false;
2465         int i, j;
2466
2467         dev_maps = xmap_dereference(dev->xps_maps[type]);
2468         if (!dev_maps)
2469                 return;
2470
2471         for (j = 0; j < dev_maps->nr_ids; j++)
2472                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2473         if (!active)
2474                 reset_xps_maps(dev, dev_maps, type);
2475
2476         if (type == XPS_CPUS) {
2477                 for (i = offset + (count - 1); count--; i--)
2478                         netdev_queue_numa_node_write(
2479                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2480         }
2481 }
2482
2483 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2484                                    u16 count)
2485 {
2486         if (!static_key_false(&xps_needed))
2487                 return;
2488
2489         cpus_read_lock();
2490         mutex_lock(&xps_map_mutex);
2491
2492         if (static_key_false(&xps_rxqs_needed))
2493                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2494
2495         clean_xps_maps(dev, XPS_CPUS, offset, count);
2496
2497         mutex_unlock(&xps_map_mutex);
2498         cpus_read_unlock();
2499 }
2500
2501 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2502 {
2503         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2504 }
2505
2506 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2507                                       u16 index, bool is_rxqs_map)
2508 {
2509         struct xps_map *new_map;
2510         int alloc_len = XPS_MIN_MAP_ALLOC;
2511         int i, pos;
2512
2513         for (pos = 0; map && pos < map->len; pos++) {
2514                 if (map->queues[pos] != index)
2515                         continue;
2516                 return map;
2517         }
2518
2519         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2520         if (map) {
2521                 if (pos < map->alloc_len)
2522                         return map;
2523
2524                 alloc_len = map->alloc_len * 2;
2525         }
2526
2527         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2528          *  map
2529          */
2530         if (is_rxqs_map)
2531                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2532         else
2533                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2534                                        cpu_to_node(attr_index));
2535         if (!new_map)
2536                 return NULL;
2537
2538         for (i = 0; i < pos; i++)
2539                 new_map->queues[i] = map->queues[i];
2540         new_map->alloc_len = alloc_len;
2541         new_map->len = pos;
2542
2543         return new_map;
2544 }
2545
2546 /* Copy xps maps at a given index */
2547 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2548                               struct xps_dev_maps *new_dev_maps, int index,
2549                               int tc, bool skip_tc)
2550 {
2551         int i, tci = index * dev_maps->num_tc;
2552         struct xps_map *map;
2553
2554         /* copy maps belonging to foreign traffic classes */
2555         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2556                 if (i == tc && skip_tc)
2557                         continue;
2558
2559                 /* fill in the new device map from the old device map */
2560                 map = xmap_dereference(dev_maps->attr_map[tci]);
2561                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2562         }
2563 }
2564
2565 /* Must be called under cpus_read_lock */
2566 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2567                           u16 index, enum xps_map_type type)
2568 {
2569         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2570         const unsigned long *online_mask = NULL;
2571         bool active = false, copy = false;
2572         int i, j, tci, numa_node_id = -2;
2573         int maps_sz, num_tc = 1, tc = 0;
2574         struct xps_map *map, *new_map;
2575         unsigned int nr_ids;
2576
2577         if (dev->num_tc) {
2578                 /* Do not allow XPS on subordinate device directly */
2579                 num_tc = dev->num_tc;
2580                 if (num_tc < 0)
2581                         return -EINVAL;
2582
2583                 /* If queue belongs to subordinate dev use its map */
2584                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2585
2586                 tc = netdev_txq_to_tc(dev, index);
2587                 if (tc < 0)
2588                         return -EINVAL;
2589         }
2590
2591         mutex_lock(&xps_map_mutex);
2592
2593         dev_maps = xmap_dereference(dev->xps_maps[type]);
2594         if (type == XPS_RXQS) {
2595                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2596                 nr_ids = dev->num_rx_queues;
2597         } else {
2598                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2599                 if (num_possible_cpus() > 1)
2600                         online_mask = cpumask_bits(cpu_online_mask);
2601                 nr_ids = nr_cpu_ids;
2602         }
2603
2604         if (maps_sz < L1_CACHE_BYTES)
2605                 maps_sz = L1_CACHE_BYTES;
2606
2607         /* The old dev_maps could be larger or smaller than the one we're
2608          * setting up now, as dev->num_tc or nr_ids could have been updated in
2609          * between. We could try to be smart, but let's be safe instead and only
2610          * copy foreign traffic classes if the two map sizes match.
2611          */
2612         if (dev_maps &&
2613             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2614                 copy = true;
2615
2616         /* allocate memory for queue storage */
2617         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2618              j < nr_ids;) {
2619                 if (!new_dev_maps) {
2620                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2621                         if (!new_dev_maps) {
2622                                 mutex_unlock(&xps_map_mutex);
2623                                 return -ENOMEM;
2624                         }
2625
2626                         new_dev_maps->nr_ids = nr_ids;
2627                         new_dev_maps->num_tc = num_tc;
2628                 }
2629
2630                 tci = j * num_tc + tc;
2631                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2632
2633                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2634                 if (!map)
2635                         goto error;
2636
2637                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2638         }
2639
2640         if (!new_dev_maps)
2641                 goto out_no_new_maps;
2642
2643         if (!dev_maps) {
2644                 /* Increment static keys at most once per type */
2645                 static_key_slow_inc_cpuslocked(&xps_needed);
2646                 if (type == XPS_RXQS)
2647                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2648         }
2649
2650         for (j = 0; j < nr_ids; j++) {
2651                 bool skip_tc = false;
2652
2653                 tci = j * num_tc + tc;
2654                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2655                     netif_attr_test_online(j, online_mask, nr_ids)) {
2656                         /* add tx-queue to CPU/rx-queue maps */
2657                         int pos = 0;
2658
2659                         skip_tc = true;
2660
2661                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2662                         while ((pos < map->len) && (map->queues[pos] != index))
2663                                 pos++;
2664
2665                         if (pos == map->len)
2666                                 map->queues[map->len++] = index;
2667 #ifdef CONFIG_NUMA
2668                         if (type == XPS_CPUS) {
2669                                 if (numa_node_id == -2)
2670                                         numa_node_id = cpu_to_node(j);
2671                                 else if (numa_node_id != cpu_to_node(j))
2672                                         numa_node_id = -1;
2673                         }
2674 #endif
2675                 }
2676
2677                 if (copy)
2678                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2679                                           skip_tc);
2680         }
2681
2682         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2683
2684         /* Cleanup old maps */
2685         if (!dev_maps)
2686                 goto out_no_old_maps;
2687
2688         for (j = 0; j < dev_maps->nr_ids; j++) {
2689                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2690                         map = xmap_dereference(dev_maps->attr_map[tci]);
2691                         if (!map)
2692                                 continue;
2693
2694                         if (copy) {
2695                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2696                                 if (map == new_map)
2697                                         continue;
2698                         }
2699
2700                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2701                         kfree_rcu(map, rcu);
2702                 }
2703         }
2704
2705         old_dev_maps = dev_maps;
2706
2707 out_no_old_maps:
2708         dev_maps = new_dev_maps;
2709         active = true;
2710
2711 out_no_new_maps:
2712         if (type == XPS_CPUS)
2713                 /* update Tx queue numa node */
2714                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2715                                              (numa_node_id >= 0) ?
2716                                              numa_node_id : NUMA_NO_NODE);
2717
2718         if (!dev_maps)
2719                 goto out_no_maps;
2720
2721         /* removes tx-queue from unused CPUs/rx-queues */
2722         for (j = 0; j < dev_maps->nr_ids; j++) {
2723                 tci = j * dev_maps->num_tc;
2724
2725                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2726                         if (i == tc &&
2727                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2728                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2729                                 continue;
2730
2731                         active |= remove_xps_queue(dev_maps,
2732                                                    copy ? old_dev_maps : NULL,
2733                                                    tci, index);
2734                 }
2735         }
2736
2737         if (old_dev_maps)
2738                 kfree_rcu(old_dev_maps, rcu);
2739
2740         /* free map if not active */
2741         if (!active)
2742                 reset_xps_maps(dev, dev_maps, type);
2743
2744 out_no_maps:
2745         mutex_unlock(&xps_map_mutex);
2746
2747         return 0;
2748 error:
2749         /* remove any maps that we added */
2750         for (j = 0; j < nr_ids; j++) {
2751                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2752                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2753                         map = copy ?
2754                               xmap_dereference(dev_maps->attr_map[tci]) :
2755                               NULL;
2756                         if (new_map && new_map != map)
2757                                 kfree(new_map);
2758                 }
2759         }
2760
2761         mutex_unlock(&xps_map_mutex);
2762
2763         kfree(new_dev_maps);
2764         return -ENOMEM;
2765 }
2766 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2767
2768 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2769                         u16 index)
2770 {
2771         int ret;
2772
2773         cpus_read_lock();
2774         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2775         cpus_read_unlock();
2776
2777         return ret;
2778 }
2779 EXPORT_SYMBOL(netif_set_xps_queue);
2780
2781 #endif
2782 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2783 {
2784         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2785
2786         /* Unbind any subordinate channels */
2787         while (txq-- != &dev->_tx[0]) {
2788                 if (txq->sb_dev)
2789                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2790         }
2791 }
2792
2793 void netdev_reset_tc(struct net_device *dev)
2794 {
2795 #ifdef CONFIG_XPS
2796         netif_reset_xps_queues_gt(dev, 0);
2797 #endif
2798         netdev_unbind_all_sb_channels(dev);
2799
2800         /* Reset TC configuration of device */
2801         dev->num_tc = 0;
2802         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2803         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2804 }
2805 EXPORT_SYMBOL(netdev_reset_tc);
2806
2807 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2808 {
2809         if (tc >= dev->num_tc)
2810                 return -EINVAL;
2811
2812 #ifdef CONFIG_XPS
2813         netif_reset_xps_queues(dev, offset, count);
2814 #endif
2815         dev->tc_to_txq[tc].count = count;
2816         dev->tc_to_txq[tc].offset = offset;
2817         return 0;
2818 }
2819 EXPORT_SYMBOL(netdev_set_tc_queue);
2820
2821 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2822 {
2823         if (num_tc > TC_MAX_QUEUE)
2824                 return -EINVAL;
2825
2826 #ifdef CONFIG_XPS
2827         netif_reset_xps_queues_gt(dev, 0);
2828 #endif
2829         netdev_unbind_all_sb_channels(dev);
2830
2831         dev->num_tc = num_tc;
2832         return 0;
2833 }
2834 EXPORT_SYMBOL(netdev_set_num_tc);
2835
2836 void netdev_unbind_sb_channel(struct net_device *dev,
2837                               struct net_device *sb_dev)
2838 {
2839         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2840
2841 #ifdef CONFIG_XPS
2842         netif_reset_xps_queues_gt(sb_dev, 0);
2843 #endif
2844         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2845         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2846
2847         while (txq-- != &dev->_tx[0]) {
2848                 if (txq->sb_dev == sb_dev)
2849                         txq->sb_dev = NULL;
2850         }
2851 }
2852 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2853
2854 int netdev_bind_sb_channel_queue(struct net_device *dev,
2855                                  struct net_device *sb_dev,
2856                                  u8 tc, u16 count, u16 offset)
2857 {
2858         /* Make certain the sb_dev and dev are already configured */
2859         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2860                 return -EINVAL;
2861
2862         /* We cannot hand out queues we don't have */
2863         if ((offset + count) > dev->real_num_tx_queues)
2864                 return -EINVAL;
2865
2866         /* Record the mapping */
2867         sb_dev->tc_to_txq[tc].count = count;
2868         sb_dev->tc_to_txq[tc].offset = offset;
2869
2870         /* Provide a way for Tx queue to find the tc_to_txq map or
2871          * XPS map for itself.
2872          */
2873         while (count--)
2874                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2875
2876         return 0;
2877 }
2878 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2879
2880 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2881 {
2882         /* Do not use a multiqueue device to represent a subordinate channel */
2883         if (netif_is_multiqueue(dev))
2884                 return -ENODEV;
2885
2886         /* We allow channels 1 - 32767 to be used for subordinate channels.
2887          * Channel 0 is meant to be "native" mode and used only to represent
2888          * the main root device. We allow writing 0 to reset the device back
2889          * to normal mode after being used as a subordinate channel.
2890          */
2891         if (channel > S16_MAX)
2892                 return -EINVAL;
2893
2894         dev->num_tc = -channel;
2895
2896         return 0;
2897 }
2898 EXPORT_SYMBOL(netdev_set_sb_channel);
2899
2900 /*
2901  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2902  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2903  */
2904 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2905 {
2906         bool disabling;
2907         int rc;
2908
2909         disabling = txq < dev->real_num_tx_queues;
2910
2911         if (txq < 1 || txq > dev->num_tx_queues)
2912                 return -EINVAL;
2913
2914         if (dev->reg_state == NETREG_REGISTERED ||
2915             dev->reg_state == NETREG_UNREGISTERING) {
2916                 ASSERT_RTNL();
2917
2918                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2919                                                   txq);
2920                 if (rc)
2921                         return rc;
2922
2923                 if (dev->num_tc)
2924                         netif_setup_tc(dev, txq);
2925
2926                 dev_qdisc_change_real_num_tx(dev, txq);
2927
2928                 dev->real_num_tx_queues = txq;
2929
2930                 if (disabling) {
2931                         synchronize_net();
2932                         qdisc_reset_all_tx_gt(dev, txq);
2933 #ifdef CONFIG_XPS
2934                         netif_reset_xps_queues_gt(dev, txq);
2935 #endif
2936                 }
2937         } else {
2938                 dev->real_num_tx_queues = txq;
2939         }
2940
2941         return 0;
2942 }
2943 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2944
2945 #ifdef CONFIG_SYSFS
2946 /**
2947  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2948  *      @dev: Network device
2949  *      @rxq: Actual number of RX queues
2950  *
2951  *      This must be called either with the rtnl_lock held or before
2952  *      registration of the net device.  Returns 0 on success, or a
2953  *      negative error code.  If called before registration, it always
2954  *      succeeds.
2955  */
2956 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2957 {
2958         int rc;
2959
2960         if (rxq < 1 || rxq > dev->num_rx_queues)
2961                 return -EINVAL;
2962
2963         if (dev->reg_state == NETREG_REGISTERED) {
2964                 ASSERT_RTNL();
2965
2966                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2967                                                   rxq);
2968                 if (rc)
2969                         return rc;
2970         }
2971
2972         dev->real_num_rx_queues = rxq;
2973         return 0;
2974 }
2975 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2976 #endif
2977
2978 /**
2979  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2980  *      @dev: Network device
2981  *      @txq: Actual number of TX queues
2982  *      @rxq: Actual number of RX queues
2983  *
2984  *      Set the real number of both TX and RX queues.
2985  *      Does nothing if the number of queues is already correct.
2986  */
2987 int netif_set_real_num_queues(struct net_device *dev,
2988                               unsigned int txq, unsigned int rxq)
2989 {
2990         unsigned int old_rxq = dev->real_num_rx_queues;
2991         int err;
2992
2993         if (txq < 1 || txq > dev->num_tx_queues ||
2994             rxq < 1 || rxq > dev->num_rx_queues)
2995                 return -EINVAL;
2996
2997         /* Start from increases, so the error path only does decreases -
2998          * decreases can't fail.
2999          */
3000         if (rxq > dev->real_num_rx_queues) {
3001                 err = netif_set_real_num_rx_queues(dev, rxq);
3002                 if (err)
3003                         return err;
3004         }
3005         if (txq > dev->real_num_tx_queues) {
3006                 err = netif_set_real_num_tx_queues(dev, txq);
3007                 if (err)
3008                         goto undo_rx;
3009         }
3010         if (rxq < dev->real_num_rx_queues)
3011                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3012         if (txq < dev->real_num_tx_queues)
3013                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3014
3015         return 0;
3016 undo_rx:
3017         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3018         return err;
3019 }
3020 EXPORT_SYMBOL(netif_set_real_num_queues);
3021
3022 /**
3023  * netif_get_num_default_rss_queues - default number of RSS queues
3024  *
3025  * This routine should set an upper limit on the number of RSS queues
3026  * used by default by multiqueue devices.
3027  */
3028 int netif_get_num_default_rss_queues(void)
3029 {
3030         return is_kdump_kernel() ?
3031                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3032 }
3033 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3034
3035 static void __netif_reschedule(struct Qdisc *q)
3036 {
3037         struct softnet_data *sd;
3038         unsigned long flags;
3039
3040         local_irq_save(flags);
3041         sd = this_cpu_ptr(&softnet_data);
3042         q->next_sched = NULL;
3043         *sd->output_queue_tailp = q;
3044         sd->output_queue_tailp = &q->next_sched;
3045         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3046         local_irq_restore(flags);
3047 }
3048
3049 void __netif_schedule(struct Qdisc *q)
3050 {
3051         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3052                 __netif_reschedule(q);
3053 }
3054 EXPORT_SYMBOL(__netif_schedule);
3055
3056 struct dev_kfree_skb_cb {
3057         enum skb_free_reason reason;
3058 };
3059
3060 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3061 {
3062         return (struct dev_kfree_skb_cb *)skb->cb;
3063 }
3064
3065 void netif_schedule_queue(struct netdev_queue *txq)
3066 {
3067         rcu_read_lock();
3068         if (!netif_xmit_stopped(txq)) {
3069                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3070
3071                 __netif_schedule(q);
3072         }
3073         rcu_read_unlock();
3074 }
3075 EXPORT_SYMBOL(netif_schedule_queue);
3076
3077 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3078 {
3079         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3080                 struct Qdisc *q;
3081
3082                 rcu_read_lock();
3083                 q = rcu_dereference(dev_queue->qdisc);
3084                 __netif_schedule(q);
3085                 rcu_read_unlock();
3086         }
3087 }
3088 EXPORT_SYMBOL(netif_tx_wake_queue);
3089
3090 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3091 {
3092         unsigned long flags;
3093
3094         if (unlikely(!skb))
3095                 return;
3096
3097         if (likely(refcount_read(&skb->users) == 1)) {
3098                 smp_rmb();
3099                 refcount_set(&skb->users, 0);
3100         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3101                 return;
3102         }
3103         get_kfree_skb_cb(skb)->reason = reason;
3104         local_irq_save(flags);
3105         skb->next = __this_cpu_read(softnet_data.completion_queue);
3106         __this_cpu_write(softnet_data.completion_queue, skb);
3107         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3108         local_irq_restore(flags);
3109 }
3110 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3111
3112 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3113 {
3114         if (in_hardirq() || irqs_disabled())
3115                 __dev_kfree_skb_irq(skb, reason);
3116         else
3117                 dev_kfree_skb(skb);
3118 }
3119 EXPORT_SYMBOL(__dev_kfree_skb_any);
3120
3121
3122 /**
3123  * netif_device_detach - mark device as removed
3124  * @dev: network device
3125  *
3126  * Mark device as removed from system and therefore no longer available.
3127  */
3128 void netif_device_detach(struct net_device *dev)
3129 {
3130         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3131             netif_running(dev)) {
3132                 netif_tx_stop_all_queues(dev);
3133         }
3134 }
3135 EXPORT_SYMBOL(netif_device_detach);
3136
3137 /**
3138  * netif_device_attach - mark device as attached
3139  * @dev: network device
3140  *
3141  * Mark device as attached from system and restart if needed.
3142  */
3143 void netif_device_attach(struct net_device *dev)
3144 {
3145         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3146             netif_running(dev)) {
3147                 netif_tx_wake_all_queues(dev);
3148                 __netdev_watchdog_up(dev);
3149         }
3150 }
3151 EXPORT_SYMBOL(netif_device_attach);
3152
3153 /*
3154  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3155  * to be used as a distribution range.
3156  */
3157 static u16 skb_tx_hash(const struct net_device *dev,
3158                        const struct net_device *sb_dev,
3159                        struct sk_buff *skb)
3160 {
3161         u32 hash;
3162         u16 qoffset = 0;
3163         u16 qcount = dev->real_num_tx_queues;
3164
3165         if (dev->num_tc) {
3166                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3167
3168                 qoffset = sb_dev->tc_to_txq[tc].offset;
3169                 qcount = sb_dev->tc_to_txq[tc].count;
3170                 if (unlikely(!qcount)) {
3171                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3172                                              sb_dev->name, qoffset, tc);
3173                         qoffset = 0;
3174                         qcount = dev->real_num_tx_queues;
3175                 }
3176         }
3177
3178         if (skb_rx_queue_recorded(skb)) {
3179                 hash = skb_get_rx_queue(skb);
3180                 if (hash >= qoffset)
3181                         hash -= qoffset;
3182                 while (unlikely(hash >= qcount))
3183                         hash -= qcount;
3184                 return hash + qoffset;
3185         }
3186
3187         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3188 }
3189
3190 static void skb_warn_bad_offload(const struct sk_buff *skb)
3191 {
3192         static const netdev_features_t null_features;
3193         struct net_device *dev = skb->dev;
3194         const char *name = "";
3195
3196         if (!net_ratelimit())
3197                 return;
3198
3199         if (dev) {
3200                 if (dev->dev.parent)
3201                         name = dev_driver_string(dev->dev.parent);
3202                 else
3203                         name = netdev_name(dev);
3204         }
3205         skb_dump(KERN_WARNING, skb, false);
3206         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3207              name, dev ? &dev->features : &null_features,
3208              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3209 }
3210
3211 /*
3212  * Invalidate hardware checksum when packet is to be mangled, and
3213  * complete checksum manually on outgoing path.
3214  */
3215 int skb_checksum_help(struct sk_buff *skb)
3216 {
3217         __wsum csum;
3218         int ret = 0, offset;
3219
3220         if (skb->ip_summed == CHECKSUM_COMPLETE)
3221                 goto out_set_summed;
3222
3223         if (unlikely(skb_is_gso(skb))) {
3224                 skb_warn_bad_offload(skb);
3225                 return -EINVAL;
3226         }
3227
3228         /* Before computing a checksum, we should make sure no frag could
3229          * be modified by an external entity : checksum could be wrong.
3230          */
3231         if (skb_has_shared_frag(skb)) {
3232                 ret = __skb_linearize(skb);
3233                 if (ret)
3234                         goto out;
3235         }
3236
3237         offset = skb_checksum_start_offset(skb);
3238         ret = -EINVAL;
3239         if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
3240                 goto out;
3241
3242         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3243
3244         offset += skb->csum_offset;
3245         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb)))
3246                 goto out;
3247
3248         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3249         if (ret)
3250                 goto out;
3251
3252         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3253 out_set_summed:
3254         skb->ip_summed = CHECKSUM_NONE;
3255 out:
3256         return ret;
3257 }
3258 EXPORT_SYMBOL(skb_checksum_help);
3259
3260 int skb_crc32c_csum_help(struct sk_buff *skb)
3261 {
3262         __le32 crc32c_csum;
3263         int ret = 0, offset, start;
3264
3265         if (skb->ip_summed != CHECKSUM_PARTIAL)
3266                 goto out;
3267
3268         if (unlikely(skb_is_gso(skb)))
3269                 goto out;
3270
3271         /* Before computing a checksum, we should make sure no frag could
3272          * be modified by an external entity : checksum could be wrong.
3273          */
3274         if (unlikely(skb_has_shared_frag(skb))) {
3275                 ret = __skb_linearize(skb);
3276                 if (ret)
3277                         goto out;
3278         }
3279         start = skb_checksum_start_offset(skb);
3280         offset = start + offsetof(struct sctphdr, checksum);
3281         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3282                 ret = -EINVAL;
3283                 goto out;
3284         }
3285
3286         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3287         if (ret)
3288                 goto out;
3289
3290         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3291                                                   skb->len - start, ~(__u32)0,
3292                                                   crc32c_csum_stub));
3293         *(__le32 *)(skb->data + offset) = crc32c_csum;
3294         skb->ip_summed = CHECKSUM_NONE;
3295         skb->csum_not_inet = 0;
3296 out:
3297         return ret;
3298 }
3299
3300 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3301 {
3302         __be16 type = skb->protocol;
3303
3304         /* Tunnel gso handlers can set protocol to ethernet. */
3305         if (type == htons(ETH_P_TEB)) {
3306                 struct ethhdr *eth;
3307
3308                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3309                         return 0;
3310
3311                 eth = (struct ethhdr *)skb->data;
3312                 type = eth->h_proto;
3313         }
3314
3315         return __vlan_get_protocol(skb, type, depth);
3316 }
3317
3318 /**
3319  *      skb_mac_gso_segment - mac layer segmentation handler.
3320  *      @skb: buffer to segment
3321  *      @features: features for the output path (see dev->features)
3322  */
3323 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3324                                     netdev_features_t features)
3325 {
3326         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3327         struct packet_offload *ptype;
3328         int vlan_depth = skb->mac_len;
3329         __be16 type = skb_network_protocol(skb, &vlan_depth);
3330
3331         if (unlikely(!type))
3332                 return ERR_PTR(-EINVAL);
3333
3334         __skb_pull(skb, vlan_depth);
3335
3336         rcu_read_lock();
3337         list_for_each_entry_rcu(ptype, &offload_base, list) {
3338                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3339                         segs = ptype->callbacks.gso_segment(skb, features);
3340                         break;
3341                 }
3342         }
3343         rcu_read_unlock();
3344
3345         __skb_push(skb, skb->data - skb_mac_header(skb));
3346
3347         return segs;
3348 }
3349 EXPORT_SYMBOL(skb_mac_gso_segment);
3350
3351
3352 /* openvswitch calls this on rx path, so we need a different check.
3353  */
3354 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3355 {
3356         if (tx_path)
3357                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3358                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3359
3360         return skb->ip_summed == CHECKSUM_NONE;
3361 }
3362
3363 /**
3364  *      __skb_gso_segment - Perform segmentation on skb.
3365  *      @skb: buffer to segment
3366  *      @features: features for the output path (see dev->features)
3367  *      @tx_path: whether it is called in TX path
3368  *
3369  *      This function segments the given skb and returns a list of segments.
3370  *
3371  *      It may return NULL if the skb requires no segmentation.  This is
3372  *      only possible when GSO is used for verifying header integrity.
3373  *
3374  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3375  */
3376 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3377                                   netdev_features_t features, bool tx_path)
3378 {
3379         struct sk_buff *segs;
3380
3381         if (unlikely(skb_needs_check(skb, tx_path))) {
3382                 int err;
3383
3384                 /* We're going to init ->check field in TCP or UDP header */
3385                 err = skb_cow_head(skb, 0);
3386                 if (err < 0)
3387                         return ERR_PTR(err);
3388         }
3389
3390         /* Only report GSO partial support if it will enable us to
3391          * support segmentation on this frame without needing additional
3392          * work.
3393          */
3394         if (features & NETIF_F_GSO_PARTIAL) {
3395                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3396                 struct net_device *dev = skb->dev;
3397
3398                 partial_features |= dev->features & dev->gso_partial_features;
3399                 if (!skb_gso_ok(skb, features | partial_features))
3400                         features &= ~NETIF_F_GSO_PARTIAL;
3401         }
3402
3403         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3404                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3405
3406         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3407         SKB_GSO_CB(skb)->encap_level = 0;
3408
3409         skb_reset_mac_header(skb);
3410         skb_reset_mac_len(skb);
3411
3412         segs = skb_mac_gso_segment(skb, features);
3413
3414         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3415                 skb_warn_bad_offload(skb);
3416
3417         return segs;
3418 }
3419 EXPORT_SYMBOL(__skb_gso_segment);
3420
3421 /* Take action when hardware reception checksum errors are detected. */
3422 #ifdef CONFIG_BUG
3423 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3424 {
3425         pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3426         skb_dump(KERN_ERR, skb, true);
3427         dump_stack();
3428 }
3429
3430 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3431 {
3432         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3433 }
3434 EXPORT_SYMBOL(netdev_rx_csum_fault);
3435 #endif
3436
3437 /* XXX: check that highmem exists at all on the given machine. */
3438 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3439 {
3440 #ifdef CONFIG_HIGHMEM
3441         int i;
3442
3443         if (!(dev->features & NETIF_F_HIGHDMA)) {
3444                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3445                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3446
3447                         if (PageHighMem(skb_frag_page(frag)))
3448                                 return 1;
3449                 }
3450         }
3451 #endif
3452         return 0;
3453 }
3454
3455 /* If MPLS offload request, verify we are testing hardware MPLS features
3456  * instead of standard features for the netdev.
3457  */
3458 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3459 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3460                                            netdev_features_t features,
3461                                            __be16 type)
3462 {
3463         if (eth_p_mpls(type))
3464                 features &= skb->dev->mpls_features;
3465
3466         return features;
3467 }
3468 #else
3469 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3470                                            netdev_features_t features,
3471                                            __be16 type)
3472 {
3473         return features;
3474 }
3475 #endif
3476
3477 static netdev_features_t harmonize_features(struct sk_buff *skb,
3478         netdev_features_t features)
3479 {
3480         __be16 type;
3481
3482         type = skb_network_protocol(skb, NULL);
3483         features = net_mpls_features(skb, features, type);
3484
3485         if (skb->ip_summed != CHECKSUM_NONE &&
3486             !can_checksum_protocol(features, type)) {
3487                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3488         }
3489         if (illegal_highdma(skb->dev, skb))
3490                 features &= ~NETIF_F_SG;
3491
3492         return features;
3493 }
3494
3495 netdev_features_t passthru_features_check(struct sk_buff *skb,
3496                                           struct net_device *dev,
3497                                           netdev_features_t features)
3498 {
3499         return features;
3500 }
3501 EXPORT_SYMBOL(passthru_features_check);
3502
3503 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3504                                              struct net_device *dev,
3505                                              netdev_features_t features)
3506 {
3507         return vlan_features_check(skb, features);
3508 }
3509
3510 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3511                                             struct net_device *dev,
3512                                             netdev_features_t features)
3513 {
3514         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3515
3516         if (gso_segs > dev->gso_max_segs)
3517                 return features & ~NETIF_F_GSO_MASK;
3518
3519         if (!skb_shinfo(skb)->gso_type) {
3520                 skb_warn_bad_offload(skb);
3521                 return features & ~NETIF_F_GSO_MASK;
3522         }
3523
3524         /* Support for GSO partial features requires software
3525          * intervention before we can actually process the packets
3526          * so we need to strip support for any partial features now
3527          * and we can pull them back in after we have partially
3528          * segmented the frame.
3529          */
3530         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3531                 features &= ~dev->gso_partial_features;
3532
3533         /* Make sure to clear the IPv4 ID mangling feature if the
3534          * IPv4 header has the potential to be fragmented.
3535          */
3536         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3537                 struct iphdr *iph = skb->encapsulation ?
3538                                     inner_ip_hdr(skb) : ip_hdr(skb);
3539
3540                 if (!(iph->frag_off & htons(IP_DF)))
3541                         features &= ~NETIF_F_TSO_MANGLEID;
3542         }
3543
3544         return features;
3545 }
3546
3547 netdev_features_t netif_skb_features(struct sk_buff *skb)
3548 {
3549         struct net_device *dev = skb->dev;
3550         netdev_features_t features = dev->features;
3551
3552         if (skb_is_gso(skb))
3553                 features = gso_features_check(skb, dev, features);
3554
3555         /* If encapsulation offload request, verify we are testing
3556          * hardware encapsulation features instead of standard
3557          * features for the netdev
3558          */
3559         if (skb->encapsulation)
3560                 features &= dev->hw_enc_features;
3561
3562         if (skb_vlan_tagged(skb))
3563                 features = netdev_intersect_features(features,
3564                                                      dev->vlan_features |
3565                                                      NETIF_F_HW_VLAN_CTAG_TX |
3566                                                      NETIF_F_HW_VLAN_STAG_TX);
3567
3568         if (dev->netdev_ops->ndo_features_check)
3569                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3570                                                                 features);
3571         else
3572                 features &= dflt_features_check(skb, dev, features);
3573
3574         return harmonize_features(skb, features);
3575 }
3576 EXPORT_SYMBOL(netif_skb_features);
3577
3578 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3579                     struct netdev_queue *txq, bool more)
3580 {
3581         unsigned int len;
3582         int rc;
3583
3584         if (dev_nit_active(dev))
3585                 dev_queue_xmit_nit(skb, dev);
3586
3587         len = skb->len;
3588         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3589         trace_net_dev_start_xmit(skb, dev);
3590         rc = netdev_start_xmit(skb, dev, txq, more);
3591         trace_net_dev_xmit(skb, rc, dev, len);
3592
3593         return rc;
3594 }
3595
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597                                     struct netdev_queue *txq, int *ret)
3598 {
3599         struct sk_buff *skb = first;
3600         int rc = NETDEV_TX_OK;
3601
3602         while (skb) {
3603                 struct sk_buff *next = skb->next;
3604
3605                 skb_mark_not_on_list(skb);
3606                 rc = xmit_one(skb, dev, txq, next != NULL);
3607                 if (unlikely(!dev_xmit_complete(rc))) {
3608                         skb->next = next;
3609                         goto out;
3610                 }
3611
3612                 skb = next;
3613                 if (netif_tx_queue_stopped(txq) && skb) {
3614                         rc = NETDEV_TX_BUSY;
3615                         break;
3616                 }
3617         }
3618
3619 out:
3620         *ret = rc;
3621         return skb;
3622 }
3623
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625                                           netdev_features_t features)
3626 {
3627         if (skb_vlan_tag_present(skb) &&
3628             !vlan_hw_offload_capable(features, skb->vlan_proto))
3629                 skb = __vlan_hwaccel_push_inside(skb);
3630         return skb;
3631 }
3632
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634                             const netdev_features_t features)
3635 {
3636         if (unlikely(skb_csum_is_sctp(skb)))
3637                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638                         skb_crc32c_csum_help(skb);
3639
3640         if (features & NETIF_F_HW_CSUM)
3641                 return 0;
3642
3643         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644                 switch (skb->csum_offset) {
3645                 case offsetof(struct tcphdr, check):
3646                 case offsetof(struct udphdr, check):
3647                         return 0;
3648                 }
3649         }
3650
3651         return skb_checksum_help(skb);
3652 }
3653 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654
3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656 {
3657         netdev_features_t features;
3658
3659         features = netif_skb_features(skb);
3660         skb = validate_xmit_vlan(skb, features);
3661         if (unlikely(!skb))
3662                 goto out_null;
3663
3664         skb = sk_validate_xmit_skb(skb, dev);
3665         if (unlikely(!skb))
3666                 goto out_null;
3667
3668         if (netif_needs_gso(skb, features)) {
3669                 struct sk_buff *segs;
3670
3671                 segs = skb_gso_segment(skb, features);
3672                 if (IS_ERR(segs)) {
3673                         goto out_kfree_skb;
3674                 } else if (segs) {
3675                         consume_skb(skb);
3676                         skb = segs;
3677                 }
3678         } else {
3679                 if (skb_needs_linearize(skb, features) &&
3680                     __skb_linearize(skb))
3681                         goto out_kfree_skb;
3682
3683                 /* If packet is not checksummed and device does not
3684                  * support checksumming for this protocol, complete
3685                  * checksumming here.
3686                  */
3687                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688                         if (skb->encapsulation)
3689                                 skb_set_inner_transport_header(skb,
3690                                                                skb_checksum_start_offset(skb));
3691                         else
3692                                 skb_set_transport_header(skb,
3693                                                          skb_checksum_start_offset(skb));
3694                         if (skb_csum_hwoffload_help(skb, features))
3695                                 goto out_kfree_skb;
3696                 }
3697         }
3698
3699         skb = validate_xmit_xfrm(skb, features, again);
3700
3701         return skb;
3702
3703 out_kfree_skb:
3704         kfree_skb(skb);
3705 out_null:
3706         atomic_long_inc(&dev->tx_dropped);
3707         return NULL;
3708 }
3709
3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711 {
3712         struct sk_buff *next, *head = NULL, *tail;
3713
3714         for (; skb != NULL; skb = next) {
3715                 next = skb->next;
3716                 skb_mark_not_on_list(skb);
3717
3718                 /* in case skb wont be segmented, point to itself */
3719                 skb->prev = skb;
3720
3721                 skb = validate_xmit_skb(skb, dev, again);
3722                 if (!skb)
3723                         continue;
3724
3725                 if (!head)
3726                         head = skb;
3727                 else
3728                         tail->next = skb;
3729                 /* If skb was segmented, skb->prev points to
3730                  * the last segment. If not, it still contains skb.
3731                  */
3732                 tail = skb->prev;
3733         }
3734         return head;
3735 }
3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737
3738 static void qdisc_pkt_len_init(struct sk_buff *skb)
3739 {
3740         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741
3742         qdisc_skb_cb(skb)->pkt_len = skb->len;
3743
3744         /* To get more precise estimation of bytes sent on wire,
3745          * we add to pkt_len the headers size of all segments
3746          */
3747         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748                 unsigned int hdr_len;
3749                 u16 gso_segs = shinfo->gso_segs;
3750
3751                 /* mac layer + network layer */
3752                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753
3754                 /* + transport layer */
3755                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756                         const struct tcphdr *th;
3757                         struct tcphdr _tcphdr;
3758
3759                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3760                                                 sizeof(_tcphdr), &_tcphdr);
3761                         if (likely(th))
3762                                 hdr_len += __tcp_hdrlen(th);
3763                 } else {
3764                         struct udphdr _udphdr;
3765
3766                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3767                                                sizeof(_udphdr), &_udphdr))
3768                                 hdr_len += sizeof(struct udphdr);
3769                 }
3770
3771                 if (shinfo->gso_type & SKB_GSO_DODGY)
3772                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773                                                 shinfo->gso_size);
3774
3775                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776         }
3777 }
3778
3779 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780                              struct sk_buff **to_free,
3781                              struct netdev_queue *txq)
3782 {
3783         int rc;
3784
3785         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786         if (rc == NET_XMIT_SUCCESS)
3787                 trace_qdisc_enqueue(q, txq, skb);
3788         return rc;
3789 }
3790
3791 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792                                  struct net_device *dev,
3793                                  struct netdev_queue *txq)
3794 {
3795         spinlock_t *root_lock = qdisc_lock(q);
3796         struct sk_buff *to_free = NULL;
3797         bool contended;
3798         int rc;
3799
3800         qdisc_calculate_pkt_len(skb, q);
3801
3802         if (q->flags & TCQ_F_NOLOCK) {
3803                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804                     qdisc_run_begin(q)) {
3805                         /* Retest nolock_qdisc_is_empty() within the protection
3806                          * of q->seqlock to protect from racing with requeuing.
3807                          */
3808                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3809                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810                                 __qdisc_run(q);
3811                                 qdisc_run_end(q);
3812
3813                                 goto no_lock_out;
3814                         }
3815
3816                         qdisc_bstats_cpu_update(q, skb);
3817                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818                             !nolock_qdisc_is_empty(q))
3819                                 __qdisc_run(q);
3820
3821                         qdisc_run_end(q);
3822                         return NET_XMIT_SUCCESS;
3823                 }
3824
3825                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826                 qdisc_run(q);
3827
3828 no_lock_out:
3829                 if (unlikely(to_free))
3830                         kfree_skb_list(to_free);
3831                 return rc;
3832         }
3833
3834         /*
3835          * Heuristic to force contended enqueues to serialize on a
3836          * separate lock before trying to get qdisc main lock.
3837          * This permits qdisc->running owner to get the lock more
3838          * often and dequeue packets faster.
3839          */
3840         contended = qdisc_is_running(q);
3841         if (unlikely(contended))
3842                 spin_lock(&q->busylock);
3843
3844         spin_lock(root_lock);
3845         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3846                 __qdisc_drop(skb, &to_free);
3847                 rc = NET_XMIT_DROP;
3848         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3849                    qdisc_run_begin(q)) {
3850                 /*
3851                  * This is a work-conserving queue; there are no old skbs
3852                  * waiting to be sent out; and the qdisc is not running -
3853                  * xmit the skb directly.
3854                  */
3855
3856                 qdisc_bstats_update(q, skb);
3857
3858                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3859                         if (unlikely(contended)) {
3860                                 spin_unlock(&q->busylock);
3861                                 contended = false;
3862                         }
3863                         __qdisc_run(q);
3864                 }
3865
3866                 qdisc_run_end(q);
3867                 rc = NET_XMIT_SUCCESS;
3868         } else {
3869                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3870                 if (qdisc_run_begin(q)) {
3871                         if (unlikely(contended)) {
3872                                 spin_unlock(&q->busylock);
3873                                 contended = false;
3874                         }
3875                         __qdisc_run(q);
3876                         qdisc_run_end(q);
3877                 }
3878         }
3879         spin_unlock(root_lock);
3880         if (unlikely(to_free))
3881                 kfree_skb_list(to_free);
3882         if (unlikely(contended))
3883                 spin_unlock(&q->busylock);
3884         return rc;
3885 }
3886
3887 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3888 static void skb_update_prio(struct sk_buff *skb)
3889 {
3890         const struct netprio_map *map;
3891         const struct sock *sk;
3892         unsigned int prioidx;
3893
3894         if (skb->priority)
3895                 return;
3896         map = rcu_dereference_bh(skb->dev->priomap);
3897         if (!map)
3898                 return;
3899         sk = skb_to_full_sk(skb);
3900         if (!sk)
3901                 return;
3902
3903         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3904
3905         if (prioidx < map->priomap_len)
3906                 skb->priority = map->priomap[prioidx];
3907 }
3908 #else
3909 #define skb_update_prio(skb)
3910 #endif
3911
3912 /**
3913  *      dev_loopback_xmit - loop back @skb
3914  *      @net: network namespace this loopback is happening in
3915  *      @sk:  sk needed to be a netfilter okfn
3916  *      @skb: buffer to transmit
3917  */
3918 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3919 {
3920         skb_reset_mac_header(skb);
3921         __skb_pull(skb, skb_network_offset(skb));
3922         skb->pkt_type = PACKET_LOOPBACK;
3923         if (skb->ip_summed == CHECKSUM_NONE)
3924                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3925         WARN_ON(!skb_dst(skb));
3926         skb_dst_force(skb);
3927         netif_rx_ni(skb);
3928         return 0;
3929 }
3930 EXPORT_SYMBOL(dev_loopback_xmit);
3931
3932 #ifdef CONFIG_NET_EGRESS
3933 static struct sk_buff *
3934 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3935 {
3936         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3937         struct tcf_result cl_res;
3938
3939         if (!miniq)
3940                 return skb;
3941
3942         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3943         tc_skb_cb(skb)->mru = 0;
3944         tc_skb_cb(skb)->post_ct = false;
3945         mini_qdisc_bstats_cpu_update(miniq, skb);
3946
3947         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3948         case TC_ACT_OK:
3949         case TC_ACT_RECLASSIFY:
3950                 skb->tc_index = TC_H_MIN(cl_res.classid);
3951                 break;
3952         case TC_ACT_SHOT:
3953                 mini_qdisc_qstats_cpu_drop(miniq);
3954                 *ret = NET_XMIT_DROP;
3955                 kfree_skb(skb);
3956                 return NULL;
3957         case TC_ACT_STOLEN:
3958         case TC_ACT_QUEUED:
3959         case TC_ACT_TRAP:
3960                 *ret = NET_XMIT_SUCCESS;
3961                 consume_skb(skb);
3962                 return NULL;
3963         case TC_ACT_REDIRECT:
3964                 /* No need to push/pop skb's mac_header here on egress! */
3965                 skb_do_redirect(skb);
3966                 *ret = NET_XMIT_SUCCESS;
3967                 return NULL;
3968         default:
3969                 break;
3970         }
3971
3972         return skb;
3973 }
3974 #endif /* CONFIG_NET_EGRESS */
3975
3976 #ifdef CONFIG_XPS
3977 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3978                                struct xps_dev_maps *dev_maps, unsigned int tci)
3979 {
3980         int tc = netdev_get_prio_tc_map(dev, skb->priority);
3981         struct xps_map *map;
3982         int queue_index = -1;
3983
3984         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3985                 return queue_index;
3986
3987         tci *= dev_maps->num_tc;
3988         tci += tc;
3989
3990         map = rcu_dereference(dev_maps->attr_map[tci]);
3991         if (map) {
3992                 if (map->len == 1)
3993                         queue_index = map->queues[0];
3994                 else
3995                         queue_index = map->queues[reciprocal_scale(
3996                                                 skb_get_hash(skb), map->len)];
3997                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3998                         queue_index = -1;
3999         }
4000         return queue_index;
4001 }
4002 #endif
4003
4004 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4005                          struct sk_buff *skb)
4006 {
4007 #ifdef CONFIG_XPS
4008         struct xps_dev_maps *dev_maps;
4009         struct sock *sk = skb->sk;
4010         int queue_index = -1;
4011
4012         if (!static_key_false(&xps_needed))
4013                 return -1;
4014
4015         rcu_read_lock();
4016         if (!static_key_false(&xps_rxqs_needed))
4017                 goto get_cpus_map;
4018
4019         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4020         if (dev_maps) {
4021                 int tci = sk_rx_queue_get(sk);
4022
4023                 if (tci >= 0)
4024                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4025                                                           tci);
4026         }
4027
4028 get_cpus_map:
4029         if (queue_index < 0) {
4030                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4031                 if (dev_maps) {
4032                         unsigned int tci = skb->sender_cpu - 1;
4033
4034                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4035                                                           tci);
4036                 }
4037         }
4038         rcu_read_unlock();
4039
4040         return queue_index;
4041 #else
4042         return -1;
4043 #endif
4044 }
4045
4046 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4047                      struct net_device *sb_dev)
4048 {
4049         return 0;
4050 }
4051 EXPORT_SYMBOL(dev_pick_tx_zero);
4052
4053 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4054                        struct net_device *sb_dev)
4055 {
4056         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4057 }
4058 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4059
4060 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4061                      struct net_device *sb_dev)
4062 {
4063         struct sock *sk = skb->sk;
4064         int queue_index = sk_tx_queue_get(sk);
4065
4066         sb_dev = sb_dev ? : dev;
4067
4068         if (queue_index < 0 || skb->ooo_okay ||
4069             queue_index >= dev->real_num_tx_queues) {
4070                 int new_index = get_xps_queue(dev, sb_dev, skb);
4071
4072                 if (new_index < 0)
4073                         new_index = skb_tx_hash(dev, sb_dev, skb);
4074
4075                 if (queue_index != new_index && sk &&
4076                     sk_fullsock(sk) &&
4077                     rcu_access_pointer(sk->sk_dst_cache))
4078                         sk_tx_queue_set(sk, new_index);
4079
4080                 queue_index = new_index;
4081         }
4082
4083         return queue_index;
4084 }
4085 EXPORT_SYMBOL(netdev_pick_tx);
4086
4087 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4088                                          struct sk_buff *skb,
4089                                          struct net_device *sb_dev)
4090 {
4091         int queue_index = 0;
4092
4093 #ifdef CONFIG_XPS
4094         u32 sender_cpu = skb->sender_cpu - 1;
4095
4096         if (sender_cpu >= (u32)NR_CPUS)
4097                 skb->sender_cpu = raw_smp_processor_id() + 1;
4098 #endif
4099
4100         if (dev->real_num_tx_queues != 1) {
4101                 const struct net_device_ops *ops = dev->netdev_ops;
4102
4103                 if (ops->ndo_select_queue)
4104                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4105                 else
4106                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4107
4108                 queue_index = netdev_cap_txqueue(dev, queue_index);
4109         }
4110
4111         skb_set_queue_mapping(skb, queue_index);
4112         return netdev_get_tx_queue(dev, queue_index);
4113 }
4114
4115 /**
4116  *      __dev_queue_xmit - transmit a buffer
4117  *      @skb: buffer to transmit
4118  *      @sb_dev: suboordinate device used for L2 forwarding offload
4119  *
4120  *      Queue a buffer for transmission to a network device. The caller must
4121  *      have set the device and priority and built the buffer before calling
4122  *      this function. The function can be called from an interrupt.
4123  *
4124  *      A negative errno code is returned on a failure. A success does not
4125  *      guarantee the frame will be transmitted as it may be dropped due
4126  *      to congestion or traffic shaping.
4127  *
4128  * -----------------------------------------------------------------------------------
4129  *      I notice this method can also return errors from the queue disciplines,
4130  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4131  *      be positive.
4132  *
4133  *      Regardless of the return value, the skb is consumed, so it is currently
4134  *      difficult to retry a send to this method.  (You can bump the ref count
4135  *      before sending to hold a reference for retry if you are careful.)
4136  *
4137  *      When calling this method, interrupts MUST be enabled.  This is because
4138  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4139  *          --BLG
4140  */
4141 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4142 {
4143         struct net_device *dev = skb->dev;
4144         struct netdev_queue *txq;
4145         struct Qdisc *q;
4146         int rc = -ENOMEM;
4147         bool again = false;
4148
4149         skb_reset_mac_header(skb);
4150         skb_assert_len(skb);
4151
4152         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4153                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4154
4155         /* Disable soft irqs for various locks below. Also
4156          * stops preemption for RCU.
4157          */
4158         rcu_read_lock_bh();
4159
4160         skb_update_prio(skb);
4161
4162         qdisc_pkt_len_init(skb);
4163 #ifdef CONFIG_NET_CLS_ACT
4164         skb->tc_at_ingress = 0;
4165 # ifdef CONFIG_NET_EGRESS
4166         if (static_branch_unlikely(&egress_needed_key)) {
4167                 skb = sch_handle_egress(skb, &rc, dev);
4168                 if (!skb)
4169                         goto out;
4170         }
4171 # endif
4172 #endif
4173         /* If device/qdisc don't need skb->dst, release it right now while
4174          * its hot in this cpu cache.
4175          */
4176         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4177                 skb_dst_drop(skb);
4178         else
4179                 skb_dst_force(skb);
4180
4181         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4182         q = rcu_dereference_bh(txq->qdisc);
4183
4184         trace_net_dev_queue(skb);
4185         if (q->enqueue) {
4186                 rc = __dev_xmit_skb(skb, q, dev, txq);
4187                 goto out;
4188         }
4189
4190         /* The device has no queue. Common case for software devices:
4191          * loopback, all the sorts of tunnels...
4192
4193          * Really, it is unlikely that netif_tx_lock protection is necessary
4194          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4195          * counters.)
4196          * However, it is possible, that they rely on protection
4197          * made by us here.
4198
4199          * Check this and shot the lock. It is not prone from deadlocks.
4200          *Either shot noqueue qdisc, it is even simpler 8)
4201          */
4202         if (dev->flags & IFF_UP) {
4203                 int cpu = smp_processor_id(); /* ok because BHs are off */
4204
4205                 /* Other cpus might concurrently change txq->xmit_lock_owner
4206                  * to -1 or to their cpu id, but not to our id.
4207                  */
4208                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4209                         if (dev_xmit_recursion())
4210                                 goto recursion_alert;
4211
4212                         skb = validate_xmit_skb(skb, dev, &again);
4213                         if (!skb)
4214                                 goto out;
4215
4216                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4217                         HARD_TX_LOCK(dev, txq, cpu);
4218
4219                         if (!netif_xmit_stopped(txq)) {
4220                                 dev_xmit_recursion_inc();
4221                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4222                                 dev_xmit_recursion_dec();
4223                                 if (dev_xmit_complete(rc)) {
4224                                         HARD_TX_UNLOCK(dev, txq);
4225                                         goto out;
4226                                 }
4227                         }
4228                         HARD_TX_UNLOCK(dev, txq);
4229                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4230                                              dev->name);
4231                 } else {
4232                         /* Recursion is detected! It is possible,
4233                          * unfortunately
4234                          */
4235 recursion_alert:
4236                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4237                                              dev->name);
4238                 }
4239         }
4240
4241         rc = -ENETDOWN;
4242         rcu_read_unlock_bh();
4243
4244         atomic_long_inc(&dev->tx_dropped);
4245         kfree_skb_list(skb);
4246         return rc;
4247 out:
4248         rcu_read_unlock_bh();
4249         return rc;
4250 }
4251
4252 int dev_queue_xmit(struct sk_buff *skb)
4253 {
4254         return __dev_queue_xmit(skb, NULL);
4255 }
4256 EXPORT_SYMBOL(dev_queue_xmit);
4257
4258 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4259 {
4260         return __dev_queue_xmit(skb, sb_dev);
4261 }
4262 EXPORT_SYMBOL(dev_queue_xmit_accel);
4263
4264 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4265 {
4266         struct net_device *dev = skb->dev;
4267         struct sk_buff *orig_skb = skb;
4268         struct netdev_queue *txq;
4269         int ret = NETDEV_TX_BUSY;
4270         bool again = false;
4271
4272         if (unlikely(!netif_running(dev) ||
4273                      !netif_carrier_ok(dev)))
4274                 goto drop;
4275
4276         skb = validate_xmit_skb_list(skb, dev, &again);
4277         if (skb != orig_skb)
4278                 goto drop;
4279
4280         skb_set_queue_mapping(skb, queue_id);
4281         txq = skb_get_tx_queue(dev, skb);
4282         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4283
4284         local_bh_disable();
4285
4286         dev_xmit_recursion_inc();
4287         HARD_TX_LOCK(dev, txq, smp_processor_id());
4288         if (!netif_xmit_frozen_or_drv_stopped(txq))
4289                 ret = netdev_start_xmit(skb, dev, txq, false);
4290         HARD_TX_UNLOCK(dev, txq);
4291         dev_xmit_recursion_dec();
4292
4293         local_bh_enable();
4294         return ret;
4295 drop:
4296         atomic_long_inc(&dev->tx_dropped);
4297         kfree_skb_list(skb);
4298         return NET_XMIT_DROP;
4299 }
4300 EXPORT_SYMBOL(__dev_direct_xmit);
4301
4302 /*************************************************************************
4303  *                      Receiver routines
4304  *************************************************************************/
4305
4306 int netdev_max_backlog __read_mostly = 1000;
4307 EXPORT_SYMBOL(netdev_max_backlog);
4308
4309 int netdev_tstamp_prequeue __read_mostly = 1;
4310 int netdev_budget __read_mostly = 300;
4311 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4312 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4313 int weight_p __read_mostly = 64;           /* old backlog weight */
4314 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4315 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4316 int dev_rx_weight __read_mostly = 64;
4317 int dev_tx_weight __read_mostly = 64;
4318 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4319 int gro_normal_batch __read_mostly = 8;
4320
4321 /* Called with irq disabled */
4322 static inline void ____napi_schedule(struct softnet_data *sd,
4323                                      struct napi_struct *napi)
4324 {
4325         struct task_struct *thread;
4326
4327         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4328                 /* Paired with smp_mb__before_atomic() in
4329                  * napi_enable()/dev_set_threaded().
4330                  * Use READ_ONCE() to guarantee a complete
4331                  * read on napi->thread. Only call
4332                  * wake_up_process() when it's not NULL.
4333                  */
4334                 thread = READ_ONCE(napi->thread);
4335                 if (thread) {
4336                         /* Avoid doing set_bit() if the thread is in
4337                          * INTERRUPTIBLE state, cause napi_thread_wait()
4338                          * makes sure to proceed with napi polling
4339                          * if the thread is explicitly woken from here.
4340                          */
4341                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4342                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4343                         wake_up_process(thread);
4344                         return;
4345                 }
4346         }
4347
4348         list_add_tail(&napi->poll_list, &sd->poll_list);
4349         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4350 }
4351
4352 #ifdef CONFIG_RPS
4353
4354 /* One global table that all flow-based protocols share. */
4355 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4356 EXPORT_SYMBOL(rps_sock_flow_table);
4357 u32 rps_cpu_mask __read_mostly;
4358 EXPORT_SYMBOL(rps_cpu_mask);
4359
4360 struct static_key_false rps_needed __read_mostly;
4361 EXPORT_SYMBOL(rps_needed);
4362 struct static_key_false rfs_needed __read_mostly;
4363 EXPORT_SYMBOL(rfs_needed);
4364
4365 static struct rps_dev_flow *
4366 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4367             struct rps_dev_flow *rflow, u16 next_cpu)
4368 {
4369         if (next_cpu < nr_cpu_ids) {
4370 #ifdef CONFIG_RFS_ACCEL
4371                 struct netdev_rx_queue *rxqueue;
4372                 struct rps_dev_flow_table *flow_table;
4373                 struct rps_dev_flow *old_rflow;
4374                 u32 flow_id;
4375                 u16 rxq_index;
4376                 int rc;
4377
4378                 /* Should we steer this flow to a different hardware queue? */
4379                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4380                     !(dev->features & NETIF_F_NTUPLE))
4381                         goto out;
4382                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4383                 if (rxq_index == skb_get_rx_queue(skb))
4384                         goto out;
4385
4386                 rxqueue = dev->_rx + rxq_index;
4387                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4388                 if (!flow_table)
4389                         goto out;
4390                 flow_id = skb_get_hash(skb) & flow_table->mask;
4391                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4392                                                         rxq_index, flow_id);
4393                 if (rc < 0)
4394                         goto out;
4395                 old_rflow = rflow;
4396                 rflow = &flow_table->flows[flow_id];
4397                 rflow->filter = rc;
4398                 if (old_rflow->filter == rflow->filter)
4399                         old_rflow->filter = RPS_NO_FILTER;
4400         out:
4401 #endif
4402                 rflow->last_qtail =
4403                         per_cpu(softnet_data, next_cpu).input_queue_head;
4404         }
4405
4406         rflow->cpu = next_cpu;
4407         return rflow;
4408 }
4409
4410 /*
4411  * get_rps_cpu is called from netif_receive_skb and returns the target
4412  * CPU from the RPS map of the receiving queue for a given skb.
4413  * rcu_read_lock must be held on entry.
4414  */
4415 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4416                        struct rps_dev_flow **rflowp)
4417 {
4418         const struct rps_sock_flow_table *sock_flow_table;
4419         struct netdev_rx_queue *rxqueue = dev->_rx;
4420         struct rps_dev_flow_table *flow_table;
4421         struct rps_map *map;
4422         int cpu = -1;
4423         u32 tcpu;
4424         u32 hash;
4425
4426         if (skb_rx_queue_recorded(skb)) {
4427                 u16 index = skb_get_rx_queue(skb);
4428
4429                 if (unlikely(index >= dev->real_num_rx_queues)) {
4430                         WARN_ONCE(dev->real_num_rx_queues > 1,
4431                                   "%s received packet on queue %u, but number "
4432                                   "of RX queues is %u\n",
4433                                   dev->name, index, dev->real_num_rx_queues);
4434                         goto done;
4435                 }
4436                 rxqueue += index;
4437         }
4438
4439         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4440
4441         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4442         map = rcu_dereference(rxqueue->rps_map);
4443         if (!flow_table && !map)
4444                 goto done;
4445
4446         skb_reset_network_header(skb);
4447         hash = skb_get_hash(skb);
4448         if (!hash)
4449                 goto done;
4450
4451         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4452         if (flow_table && sock_flow_table) {
4453                 struct rps_dev_flow *rflow;
4454                 u32 next_cpu;
4455                 u32 ident;
4456
4457                 /* First check into global flow table if there is a match */
4458                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4459                 if ((ident ^ hash) & ~rps_cpu_mask)
4460                         goto try_rps;
4461
4462                 next_cpu = ident & rps_cpu_mask;
4463
4464                 /* OK, now we know there is a match,
4465                  * we can look at the local (per receive queue) flow table
4466                  */
4467                 rflow = &flow_table->flows[hash & flow_table->mask];
4468                 tcpu = rflow->cpu;
4469
4470                 /*
4471                  * If the desired CPU (where last recvmsg was done) is
4472                  * different from current CPU (one in the rx-queue flow
4473                  * table entry), switch if one of the following holds:
4474                  *   - Current CPU is unset (>= nr_cpu_ids).
4475                  *   - Current CPU is offline.
4476                  *   - The current CPU's queue tail has advanced beyond the
4477                  *     last packet that was enqueued using this table entry.
4478                  *     This guarantees that all previous packets for the flow
4479                  *     have been dequeued, thus preserving in order delivery.
4480                  */
4481                 if (unlikely(tcpu != next_cpu) &&
4482                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4483                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4484                       rflow->last_qtail)) >= 0)) {
4485                         tcpu = next_cpu;
4486                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4487                 }
4488
4489                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4490                         *rflowp = rflow;
4491                         cpu = tcpu;
4492                         goto done;
4493                 }
4494         }
4495
4496 try_rps:
4497
4498         if (map) {
4499                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4500                 if (cpu_online(tcpu)) {
4501                         cpu = tcpu;
4502                         goto done;
4503                 }
4504         }
4505
4506 done:
4507         return cpu;
4508 }
4509
4510 #ifdef CONFIG_RFS_ACCEL
4511
4512 /**
4513  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4514  * @dev: Device on which the filter was set
4515  * @rxq_index: RX queue index
4516  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4517  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4518  *
4519  * Drivers that implement ndo_rx_flow_steer() should periodically call
4520  * this function for each installed filter and remove the filters for
4521  * which it returns %true.
4522  */
4523 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4524                          u32 flow_id, u16 filter_id)
4525 {
4526         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4527         struct rps_dev_flow_table *flow_table;
4528         struct rps_dev_flow *rflow;
4529         bool expire = true;
4530         unsigned int cpu;
4531
4532         rcu_read_lock();
4533         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4534         if (flow_table && flow_id <= flow_table->mask) {
4535                 rflow = &flow_table->flows[flow_id];
4536                 cpu = READ_ONCE(rflow->cpu);
4537                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4538                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4539                            rflow->last_qtail) <
4540                      (int)(10 * flow_table->mask)))
4541                         expire = false;
4542         }
4543         rcu_read_unlock();
4544         return expire;
4545 }
4546 EXPORT_SYMBOL(rps_may_expire_flow);
4547
4548 #endif /* CONFIG_RFS_ACCEL */
4549
4550 /* Called from hardirq (IPI) context */
4551 static void rps_trigger_softirq(void *data)
4552 {
4553         struct softnet_data *sd = data;
4554
4555         ____napi_schedule(sd, &sd->backlog);
4556         sd->received_rps++;
4557 }
4558
4559 #endif /* CONFIG_RPS */
4560
4561 /*
4562  * Check if this softnet_data structure is another cpu one
4563  * If yes, queue it to our IPI list and return 1
4564  * If no, return 0
4565  */
4566 static int rps_ipi_queued(struct softnet_data *sd)
4567 {
4568 #ifdef CONFIG_RPS
4569         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4570
4571         if (sd != mysd) {
4572                 sd->rps_ipi_next = mysd->rps_ipi_list;
4573                 mysd->rps_ipi_list = sd;
4574
4575                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4576                 return 1;
4577         }
4578 #endif /* CONFIG_RPS */
4579         return 0;
4580 }
4581
4582 #ifdef CONFIG_NET_FLOW_LIMIT
4583 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4584 #endif
4585
4586 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4587 {
4588 #ifdef CONFIG_NET_FLOW_LIMIT
4589         struct sd_flow_limit *fl;
4590         struct softnet_data *sd;
4591         unsigned int old_flow, new_flow;
4592
4593         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4594                 return false;
4595
4596         sd = this_cpu_ptr(&softnet_data);
4597
4598         rcu_read_lock();
4599         fl = rcu_dereference(sd->flow_limit);
4600         if (fl) {
4601                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4602                 old_flow = fl->history[fl->history_head];
4603                 fl->history[fl->history_head] = new_flow;
4604
4605                 fl->history_head++;
4606                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4607
4608                 if (likely(fl->buckets[old_flow]))
4609                         fl->buckets[old_flow]--;
4610
4611                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4612                         fl->count++;
4613                         rcu_read_unlock();
4614                         return true;
4615                 }
4616         }
4617         rcu_read_unlock();
4618 #endif
4619         return false;
4620 }
4621
4622 /*
4623  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4624  * queue (may be a remote CPU queue).
4625  */
4626 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4627                               unsigned int *qtail)
4628 {
4629         struct softnet_data *sd;
4630         unsigned long flags;
4631         unsigned int qlen;
4632
4633         sd = &per_cpu(softnet_data, cpu);
4634
4635         local_irq_save(flags);
4636
4637         rps_lock(sd);
4638         if (!netif_running(skb->dev))
4639                 goto drop;
4640         qlen = skb_queue_len(&sd->input_pkt_queue);
4641         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4642                 if (qlen) {
4643 enqueue:
4644                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4645                         input_queue_tail_incr_save(sd, qtail);
4646                         rps_unlock(sd);
4647                         local_irq_restore(flags);
4648                         return NET_RX_SUCCESS;
4649                 }
4650
4651                 /* Schedule NAPI for backlog device
4652                  * We can use non atomic operation since we own the queue lock
4653                  */
4654                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4655                         if (!rps_ipi_queued(sd))
4656                                 ____napi_schedule(sd, &sd->backlog);
4657                 }
4658                 goto enqueue;
4659         }
4660
4661 drop:
4662         sd->dropped++;
4663         rps_unlock(sd);
4664
4665         local_irq_restore(flags);
4666
4667         atomic_long_inc(&skb->dev->rx_dropped);
4668         kfree_skb(skb);
4669         return NET_RX_DROP;
4670 }
4671
4672 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4673 {
4674         struct net_device *dev = skb->dev;
4675         struct netdev_rx_queue *rxqueue;
4676
4677         rxqueue = dev->_rx;
4678
4679         if (skb_rx_queue_recorded(skb)) {
4680                 u16 index = skb_get_rx_queue(skb);
4681
4682                 if (unlikely(index >= dev->real_num_rx_queues)) {
4683                         WARN_ONCE(dev->real_num_rx_queues > 1,
4684                                   "%s received packet on queue %u, but number "
4685                                   "of RX queues is %u\n",
4686                                   dev->name, index, dev->real_num_rx_queues);
4687
4688                         return rxqueue; /* Return first rxqueue */
4689                 }
4690                 rxqueue += index;
4691         }
4692         return rxqueue;
4693 }
4694
4695 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4696                              struct bpf_prog *xdp_prog)
4697 {
4698         void *orig_data, *orig_data_end, *hard_start;
4699         struct netdev_rx_queue *rxqueue;
4700         bool orig_bcast, orig_host;
4701         u32 mac_len, frame_sz;
4702         __be16 orig_eth_type;
4703         struct ethhdr *eth;
4704         u32 metalen, act;
4705         int off;
4706
4707         /* The XDP program wants to see the packet starting at the MAC
4708          * header.
4709          */
4710         mac_len = skb->data - skb_mac_header(skb);
4711         hard_start = skb->data - skb_headroom(skb);
4712
4713         /* SKB "head" area always have tailroom for skb_shared_info */
4714         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4715         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4716
4717         rxqueue = netif_get_rxqueue(skb);
4718         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4719         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4720                          skb_headlen(skb) + mac_len, true);
4721
4722         orig_data_end = xdp->data_end;
4723         orig_data = xdp->data;
4724         eth = (struct ethhdr *)xdp->data;
4725         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4726         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4727         orig_eth_type = eth->h_proto;
4728
4729         act = bpf_prog_run_xdp(xdp_prog, xdp);
4730
4731         /* check if bpf_xdp_adjust_head was used */
4732         off = xdp->data - orig_data;
4733         if (off) {
4734                 if (off > 0)
4735                         __skb_pull(skb, off);
4736                 else if (off < 0)
4737                         __skb_push(skb, -off);
4738
4739                 skb->mac_header += off;
4740                 skb_reset_network_header(skb);
4741         }
4742
4743         /* check if bpf_xdp_adjust_tail was used */
4744         off = xdp->data_end - orig_data_end;
4745         if (off != 0) {
4746                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4747                 skb->len += off; /* positive on grow, negative on shrink */
4748         }
4749
4750         /* check if XDP changed eth hdr such SKB needs update */
4751         eth = (struct ethhdr *)xdp->data;
4752         if ((orig_eth_type != eth->h_proto) ||
4753             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4754                                                   skb->dev->dev_addr)) ||
4755             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4756                 __skb_push(skb, ETH_HLEN);
4757                 skb->pkt_type = PACKET_HOST;
4758                 skb->protocol = eth_type_trans(skb, skb->dev);
4759         }
4760
4761         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4762          * before calling us again on redirect path. We do not call do_redirect
4763          * as we leave that up to the caller.
4764          *
4765          * Caller is responsible for managing lifetime of skb (i.e. calling
4766          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4767          */
4768         switch (act) {
4769         case XDP_REDIRECT:
4770         case XDP_TX:
4771                 __skb_push(skb, mac_len);
4772                 break;
4773         case XDP_PASS:
4774                 metalen = xdp->data - xdp->data_meta;
4775                 if (metalen)
4776                         skb_metadata_set(skb, metalen);
4777                 break;
4778         }
4779
4780         return act;
4781 }
4782
4783 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4784                                      struct xdp_buff *xdp,
4785                                      struct bpf_prog *xdp_prog)
4786 {
4787         u32 act = XDP_DROP;
4788
4789         /* Reinjected packets coming from act_mirred or similar should
4790          * not get XDP generic processing.
4791          */
4792         if (skb_is_redirected(skb))
4793                 return XDP_PASS;
4794
4795         /* XDP packets must be linear and must have sufficient headroom
4796          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4797          * native XDP provides, thus we need to do it here as well.
4798          */
4799         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4800             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4801                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4802                 int troom = skb->tail + skb->data_len - skb->end;
4803
4804                 /* In case we have to go down the path and also linearize,
4805                  * then lets do the pskb_expand_head() work just once here.
4806                  */
4807                 if (pskb_expand_head(skb,
4808                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4809                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4810                         goto do_drop;
4811                 if (skb_linearize(skb))
4812                         goto do_drop;
4813         }
4814
4815         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4816         switch (act) {
4817         case XDP_REDIRECT:
4818         case XDP_TX:
4819         case XDP_PASS:
4820                 break;
4821         default:
4822                 bpf_warn_invalid_xdp_action(act);
4823                 fallthrough;
4824         case XDP_ABORTED:
4825                 trace_xdp_exception(skb->dev, xdp_prog, act);
4826                 fallthrough;
4827         case XDP_DROP:
4828         do_drop:
4829                 kfree_skb(skb);
4830                 break;
4831         }
4832
4833         return act;
4834 }
4835
4836 /* When doing generic XDP we have to bypass the qdisc layer and the
4837  * network taps in order to match in-driver-XDP behavior.
4838  */
4839 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4840 {
4841         struct net_device *dev = skb->dev;
4842         struct netdev_queue *txq;
4843         bool free_skb = true;
4844         int cpu, rc;
4845
4846         txq = netdev_core_pick_tx(dev, skb, NULL);
4847         cpu = smp_processor_id();
4848         HARD_TX_LOCK(dev, txq, cpu);
4849         if (!netif_xmit_stopped(txq)) {
4850                 rc = netdev_start_xmit(skb, dev, txq, 0);
4851                 if (dev_xmit_complete(rc))
4852                         free_skb = false;
4853         }
4854         HARD_TX_UNLOCK(dev, txq);
4855         if (free_skb) {
4856                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4857                 kfree_skb(skb);
4858         }
4859 }
4860
4861 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4862
4863 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4864 {
4865         if (xdp_prog) {
4866                 struct xdp_buff xdp;
4867                 u32 act;
4868                 int err;
4869
4870                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4871                 if (act != XDP_PASS) {
4872                         switch (act) {
4873                         case XDP_REDIRECT:
4874                                 err = xdp_do_generic_redirect(skb->dev, skb,
4875                                                               &xdp, xdp_prog);
4876                                 if (err)
4877                                         goto out_redir;
4878                                 break;
4879                         case XDP_TX:
4880                                 generic_xdp_tx(skb, xdp_prog);
4881                                 break;
4882                         }
4883                         return XDP_DROP;
4884                 }
4885         }
4886         return XDP_PASS;
4887 out_redir:
4888         kfree_skb(skb);
4889         return XDP_DROP;
4890 }
4891 EXPORT_SYMBOL_GPL(do_xdp_generic);
4892
4893 static int netif_rx_internal(struct sk_buff *skb)
4894 {
4895         int ret;
4896
4897         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4898
4899         trace_netif_rx(skb);
4900
4901 #ifdef CONFIG_RPS
4902         if (static_branch_unlikely(&rps_needed)) {
4903                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4904                 int cpu;
4905
4906                 preempt_disable();
4907                 rcu_read_lock();
4908
4909                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4910                 if (cpu < 0)
4911                         cpu = smp_processor_id();
4912
4913                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4914
4915                 rcu_read_unlock();
4916                 preempt_enable();
4917         } else
4918 #endif
4919         {
4920                 unsigned int qtail;
4921
4922                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4923                 put_cpu();
4924         }
4925         return ret;
4926 }
4927
4928 /**
4929  *      netif_rx        -       post buffer to the network code
4930  *      @skb: buffer to post
4931  *
4932  *      This function receives a packet from a device driver and queues it for
4933  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4934  *      may be dropped during processing for congestion control or by the
4935  *      protocol layers.
4936  *
4937  *      return values:
4938  *      NET_RX_SUCCESS  (no congestion)
4939  *      NET_RX_DROP     (packet was dropped)
4940  *
4941  */
4942
4943 int netif_rx(struct sk_buff *skb)
4944 {
4945         int ret;
4946
4947         trace_netif_rx_entry(skb);
4948
4949         ret = netif_rx_internal(skb);
4950         trace_netif_rx_exit(ret);
4951
4952         return ret;
4953 }
4954 EXPORT_SYMBOL(netif_rx);
4955
4956 int netif_rx_ni(struct sk_buff *skb)
4957 {
4958         int err;
4959
4960         trace_netif_rx_ni_entry(skb);
4961
4962         preempt_disable();
4963         err = netif_rx_internal(skb);
4964         if (local_softirq_pending())
4965                 do_softirq();
4966         preempt_enable();
4967         trace_netif_rx_ni_exit(err);
4968
4969         return err;
4970 }
4971 EXPORT_SYMBOL(netif_rx_ni);
4972
4973 int netif_rx_any_context(struct sk_buff *skb)
4974 {
4975         /*
4976          * If invoked from contexts which do not invoke bottom half
4977          * processing either at return from interrupt or when softrqs are
4978          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4979          * directly.
4980          */
4981         if (in_interrupt())
4982                 return netif_rx(skb);
4983         else
4984                 return netif_rx_ni(skb);
4985 }
4986 EXPORT_SYMBOL(netif_rx_any_context);
4987
4988 static __latent_entropy void net_tx_action(struct softirq_action *h)
4989 {
4990         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4991
4992         if (sd->completion_queue) {
4993                 struct sk_buff *clist;
4994
4995                 local_irq_disable();
4996                 clist = sd->completion_queue;
4997                 sd->completion_queue = NULL;
4998                 local_irq_enable();
4999
5000                 while (clist) {
5001                         struct sk_buff *skb = clist;
5002
5003                         clist = clist->next;
5004
5005                         WARN_ON(refcount_read(&skb->users));
5006                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5007                                 trace_consume_skb(skb);
5008                         else
5009                                 trace_kfree_skb(skb, net_tx_action,
5010                                                 SKB_DROP_REASON_NOT_SPECIFIED);
5011
5012                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5013                                 __kfree_skb(skb);
5014                         else
5015                                 __kfree_skb_defer(skb);
5016                 }
5017         }
5018
5019         if (sd->output_queue) {
5020                 struct Qdisc *head;
5021
5022                 local_irq_disable();
5023                 head = sd->output_queue;
5024                 sd->output_queue = NULL;
5025                 sd->output_queue_tailp = &sd->output_queue;
5026                 local_irq_enable();
5027
5028                 rcu_read_lock();
5029
5030                 while (head) {
5031                         struct Qdisc *q = head;
5032                         spinlock_t *root_lock = NULL;
5033
5034                         head = head->next_sched;
5035
5036                         /* We need to make sure head->next_sched is read
5037                          * before clearing __QDISC_STATE_SCHED
5038                          */
5039                         smp_mb__before_atomic();
5040
5041                         if (!(q->flags & TCQ_F_NOLOCK)) {
5042                                 root_lock = qdisc_lock(q);
5043                                 spin_lock(root_lock);
5044                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5045                                                      &q->state))) {
5046                                 /* There is a synchronize_net() between
5047                                  * STATE_DEACTIVATED flag being set and
5048                                  * qdisc_reset()/some_qdisc_is_busy() in
5049                                  * dev_deactivate(), so we can safely bail out
5050                                  * early here to avoid data race between
5051                                  * qdisc_deactivate() and some_qdisc_is_busy()
5052                                  * for lockless qdisc.
5053                                  */
5054                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5055                                 continue;
5056                         }
5057
5058                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5059                         qdisc_run(q);
5060                         if (root_lock)
5061                                 spin_unlock(root_lock);
5062                 }
5063
5064                 rcu_read_unlock();
5065         }
5066
5067         xfrm_dev_backlog(sd);
5068 }
5069
5070 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5071 /* This hook is defined here for ATM LANE */
5072 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5073                              unsigned char *addr) __read_mostly;
5074 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5075 #endif
5076
5077 static inline struct sk_buff *
5078 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5079                    struct net_device *orig_dev, bool *another)
5080 {
5081 #ifdef CONFIG_NET_CLS_ACT
5082         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5083         struct tcf_result cl_res;
5084
5085         /* If there's at least one ingress present somewhere (so
5086          * we get here via enabled static key), remaining devices
5087          * that are not configured with an ingress qdisc will bail
5088          * out here.
5089          */
5090         if (!miniq)
5091                 return skb;
5092
5093         if (*pt_prev) {
5094                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5095                 *pt_prev = NULL;
5096         }
5097
5098         qdisc_skb_cb(skb)->pkt_len = skb->len;
5099         tc_skb_cb(skb)->mru = 0;
5100         tc_skb_cb(skb)->post_ct = false;
5101         skb->tc_at_ingress = 1;
5102         mini_qdisc_bstats_cpu_update(miniq, skb);
5103
5104         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5105         case TC_ACT_OK:
5106         case TC_ACT_RECLASSIFY:
5107                 skb->tc_index = TC_H_MIN(cl_res.classid);
5108                 break;
5109         case TC_ACT_SHOT:
5110                 mini_qdisc_qstats_cpu_drop(miniq);
5111                 kfree_skb(skb);
5112                 return NULL;
5113         case TC_ACT_STOLEN:
5114         case TC_ACT_QUEUED:
5115         case TC_ACT_TRAP:
5116                 consume_skb(skb);
5117                 return NULL;
5118         case TC_ACT_REDIRECT:
5119                 /* skb_mac_header check was done by cls/act_bpf, so
5120                  * we can safely push the L2 header back before
5121                  * redirecting to another netdev
5122                  */
5123                 __skb_push(skb, skb->mac_len);
5124                 if (skb_do_redirect(skb) == -EAGAIN) {
5125                         __skb_pull(skb, skb->mac_len);
5126                         *another = true;
5127                         break;
5128                 }
5129                 return NULL;
5130         case TC_ACT_CONSUMED:
5131                 return NULL;
5132         default:
5133                 break;
5134         }
5135 #endif /* CONFIG_NET_CLS_ACT */
5136         return skb;
5137 }
5138
5139 /**
5140  *      netdev_is_rx_handler_busy - check if receive handler is registered
5141  *      @dev: device to check
5142  *
5143  *      Check if a receive handler is already registered for a given device.
5144  *      Return true if there one.
5145  *
5146  *      The caller must hold the rtnl_mutex.
5147  */
5148 bool netdev_is_rx_handler_busy(struct net_device *dev)
5149 {
5150         ASSERT_RTNL();
5151         return dev && rtnl_dereference(dev->rx_handler);
5152 }
5153 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5154
5155 /**
5156  *      netdev_rx_handler_register - register receive handler
5157  *      @dev: device to register a handler for
5158  *      @rx_handler: receive handler to register
5159  *      @rx_handler_data: data pointer that is used by rx handler
5160  *
5161  *      Register a receive handler for a device. This handler will then be
5162  *      called from __netif_receive_skb. A negative errno code is returned
5163  *      on a failure.
5164  *
5165  *      The caller must hold the rtnl_mutex.
5166  *
5167  *      For a general description of rx_handler, see enum rx_handler_result.
5168  */
5169 int netdev_rx_handler_register(struct net_device *dev,
5170                                rx_handler_func_t *rx_handler,
5171                                void *rx_handler_data)
5172 {
5173         if (netdev_is_rx_handler_busy(dev))
5174                 return -EBUSY;
5175
5176         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5177                 return -EINVAL;
5178
5179         /* Note: rx_handler_data must be set before rx_handler */
5180         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5181         rcu_assign_pointer(dev->rx_handler, rx_handler);
5182
5183         return 0;
5184 }
5185 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5186
5187 /**
5188  *      netdev_rx_handler_unregister - unregister receive handler
5189  *      @dev: device to unregister a handler from
5190  *
5191  *      Unregister a receive handler from a device.
5192  *
5193  *      The caller must hold the rtnl_mutex.
5194  */
5195 void netdev_rx_handler_unregister(struct net_device *dev)
5196 {
5197
5198         ASSERT_RTNL();
5199         RCU_INIT_POINTER(dev->rx_handler, NULL);
5200         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5201          * section has a guarantee to see a non NULL rx_handler_data
5202          * as well.
5203          */
5204         synchronize_net();
5205         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5206 }
5207 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5208
5209 /*
5210  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5211  * the special handling of PFMEMALLOC skbs.
5212  */
5213 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5214 {
5215         switch (skb->protocol) {
5216         case htons(ETH_P_ARP):
5217         case htons(ETH_P_IP):
5218         case htons(ETH_P_IPV6):
5219         case htons(ETH_P_8021Q):
5220         case htons(ETH_P_8021AD):
5221                 return true;
5222         default:
5223                 return false;
5224         }
5225 }
5226
5227 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5228                              int *ret, struct net_device *orig_dev)
5229 {
5230         if (nf_hook_ingress_active(skb)) {
5231                 int ingress_retval;
5232
5233                 if (*pt_prev) {
5234                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5235                         *pt_prev = NULL;
5236                 }
5237
5238                 rcu_read_lock();
5239                 ingress_retval = nf_hook_ingress(skb);
5240                 rcu_read_unlock();
5241                 return ingress_retval;
5242         }
5243         return 0;
5244 }
5245
5246 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5247                                     struct packet_type **ppt_prev)
5248 {
5249         struct packet_type *ptype, *pt_prev;
5250         rx_handler_func_t *rx_handler;
5251         struct sk_buff *skb = *pskb;
5252         struct net_device *orig_dev;
5253         bool deliver_exact = false;
5254         int ret = NET_RX_DROP;
5255         __be16 type;
5256
5257         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5258
5259         trace_netif_receive_skb(skb);
5260
5261         orig_dev = skb->dev;
5262
5263         skb_reset_network_header(skb);
5264         if (!skb_transport_header_was_set(skb))
5265                 skb_reset_transport_header(skb);
5266         skb_reset_mac_len(skb);
5267
5268         pt_prev = NULL;
5269
5270 another_round:
5271         skb->skb_iif = skb->dev->ifindex;
5272
5273         __this_cpu_inc(softnet_data.processed);
5274
5275         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5276                 int ret2;
5277
5278                 migrate_disable();
5279                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5280                 migrate_enable();
5281
5282                 if (ret2 != XDP_PASS) {
5283                         ret = NET_RX_DROP;
5284                         goto out;
5285                 }
5286         }
5287
5288         if (eth_type_vlan(skb->protocol)) {
5289                 skb = skb_vlan_untag(skb);
5290                 if (unlikely(!skb))
5291                         goto out;
5292         }
5293
5294         if (skb_skip_tc_classify(skb))
5295                 goto skip_classify;
5296
5297         if (pfmemalloc)
5298                 goto skip_taps;
5299
5300         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5301                 if (pt_prev)
5302                         ret = deliver_skb(skb, pt_prev, orig_dev);
5303                 pt_prev = ptype;
5304         }
5305
5306         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5307                 if (pt_prev)
5308                         ret = deliver_skb(skb, pt_prev, orig_dev);
5309                 pt_prev = ptype;
5310         }
5311
5312 skip_taps:
5313 #ifdef CONFIG_NET_INGRESS
5314         if (static_branch_unlikely(&ingress_needed_key)) {
5315                 bool another = false;
5316
5317                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5318                                          &another);
5319                 if (another)
5320                         goto another_round;
5321                 if (!skb)
5322                         goto out;
5323
5324                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5325                         goto out;
5326         }
5327 #endif
5328         skb_reset_redirect(skb);
5329 skip_classify:
5330         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5331                 goto drop;
5332
5333         if (skb_vlan_tag_present(skb)) {
5334                 if (pt_prev) {
5335                         ret = deliver_skb(skb, pt_prev, orig_dev);
5336                         pt_prev = NULL;
5337                 }
5338                 if (vlan_do_receive(&skb))
5339                         goto another_round;
5340                 else if (unlikely(!skb))
5341                         goto out;
5342         }
5343
5344         rx_handler = rcu_dereference(skb->dev->rx_handler);
5345         if (rx_handler) {
5346                 if (pt_prev) {
5347                         ret = deliver_skb(skb, pt_prev, orig_dev);
5348                         pt_prev = NULL;
5349                 }
5350                 switch (rx_handler(&skb)) {
5351                 case RX_HANDLER_CONSUMED:
5352                         ret = NET_RX_SUCCESS;
5353                         goto out;
5354                 case RX_HANDLER_ANOTHER:
5355                         goto another_round;
5356                 case RX_HANDLER_EXACT:
5357                         deliver_exact = true;
5358                         break;
5359                 case RX_HANDLER_PASS:
5360                         break;
5361                 default:
5362                         BUG();
5363                 }
5364         }
5365
5366         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5367 check_vlan_id:
5368                 if (skb_vlan_tag_get_id(skb)) {
5369                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5370                          * find vlan device.
5371                          */
5372                         skb->pkt_type = PACKET_OTHERHOST;
5373                 } else if (eth_type_vlan(skb->protocol)) {
5374                         /* Outer header is 802.1P with vlan 0, inner header is
5375                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5376                          * not find vlan dev for vlan id 0.
5377                          */
5378                         __vlan_hwaccel_clear_tag(skb);
5379                         skb = skb_vlan_untag(skb);
5380                         if (unlikely(!skb))
5381                                 goto out;
5382                         if (vlan_do_receive(&skb))
5383                                 /* After stripping off 802.1P header with vlan 0
5384                                  * vlan dev is found for inner header.
5385                                  */
5386                                 goto another_round;
5387                         else if (unlikely(!skb))
5388                                 goto out;
5389                         else
5390                                 /* We have stripped outer 802.1P vlan 0 header.
5391                                  * But could not find vlan dev.
5392                                  * check again for vlan id to set OTHERHOST.
5393                                  */
5394                                 goto check_vlan_id;
5395                 }
5396                 /* Note: we might in the future use prio bits
5397                  * and set skb->priority like in vlan_do_receive()
5398                  * For the time being, just ignore Priority Code Point
5399                  */
5400                 __vlan_hwaccel_clear_tag(skb);
5401         }
5402
5403         type = skb->protocol;
5404
5405         /* deliver only exact match when indicated */
5406         if (likely(!deliver_exact)) {
5407                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5408                                        &ptype_base[ntohs(type) &
5409                                                    PTYPE_HASH_MASK]);
5410         }
5411
5412         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5413                                &orig_dev->ptype_specific);
5414
5415         if (unlikely(skb->dev != orig_dev)) {
5416                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5417                                        &skb->dev->ptype_specific);
5418         }
5419
5420         if (pt_prev) {
5421                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5422                         goto drop;
5423                 *ppt_prev = pt_prev;
5424         } else {
5425 drop:
5426                 if (!deliver_exact)
5427                         atomic_long_inc(&skb->dev->rx_dropped);
5428                 else
5429                         atomic_long_inc(&skb->dev->rx_nohandler);
5430                 kfree_skb(skb);
5431                 /* Jamal, now you will not able to escape explaining
5432                  * me how you were going to use this. :-)
5433                  */
5434                 ret = NET_RX_DROP;
5435         }
5436
5437 out:
5438         /* The invariant here is that if *ppt_prev is not NULL
5439          * then skb should also be non-NULL.
5440          *
5441          * Apparently *ppt_prev assignment above holds this invariant due to
5442          * skb dereferencing near it.
5443          */
5444         *pskb = skb;
5445         return ret;
5446 }
5447
5448 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5449 {
5450         struct net_device *orig_dev = skb->dev;
5451         struct packet_type *pt_prev = NULL;
5452         int ret;
5453
5454         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5455         if (pt_prev)
5456                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5457                                          skb->dev, pt_prev, orig_dev);
5458         return ret;
5459 }
5460
5461 /**
5462  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5463  *      @skb: buffer to process
5464  *
5465  *      More direct receive version of netif_receive_skb().  It should
5466  *      only be used by callers that have a need to skip RPS and Generic XDP.
5467  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5468  *
5469  *      This function may only be called from softirq context and interrupts
5470  *      should be enabled.
5471  *
5472  *      Return values (usually ignored):
5473  *      NET_RX_SUCCESS: no congestion
5474  *      NET_RX_DROP: packet was dropped
5475  */
5476 int netif_receive_skb_core(struct sk_buff *skb)
5477 {
5478         int ret;
5479
5480         rcu_read_lock();
5481         ret = __netif_receive_skb_one_core(skb, false);
5482         rcu_read_unlock();
5483
5484         return ret;
5485 }
5486 EXPORT_SYMBOL(netif_receive_skb_core);
5487
5488 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5489                                                   struct packet_type *pt_prev,
5490                                                   struct net_device *orig_dev)
5491 {
5492         struct sk_buff *skb, *next;
5493
5494         if (!pt_prev)
5495                 return;
5496         if (list_empty(head))
5497                 return;
5498         if (pt_prev->list_func != NULL)
5499                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5500                                    ip_list_rcv, head, pt_prev, orig_dev);
5501         else
5502                 list_for_each_entry_safe(skb, next, head, list) {
5503                         skb_list_del_init(skb);
5504                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5505                 }
5506 }
5507
5508 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5509 {
5510         /* Fast-path assumptions:
5511          * - There is no RX handler.
5512          * - Only one packet_type matches.
5513          * If either of these fails, we will end up doing some per-packet
5514          * processing in-line, then handling the 'last ptype' for the whole
5515          * sublist.  This can't cause out-of-order delivery to any single ptype,
5516          * because the 'last ptype' must be constant across the sublist, and all
5517          * other ptypes are handled per-packet.
5518          */
5519         /* Current (common) ptype of sublist */
5520         struct packet_type *pt_curr = NULL;
5521         /* Current (common) orig_dev of sublist */
5522         struct net_device *od_curr = NULL;
5523         struct list_head sublist;
5524         struct sk_buff *skb, *next;
5525
5526         INIT_LIST_HEAD(&sublist);
5527         list_for_each_entry_safe(skb, next, head, list) {
5528                 struct net_device *orig_dev = skb->dev;
5529                 struct packet_type *pt_prev = NULL;
5530
5531                 skb_list_del_init(skb);
5532                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5533                 if (!pt_prev)
5534                         continue;
5535                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5536                         /* dispatch old sublist */
5537                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5538                         /* start new sublist */
5539                         INIT_LIST_HEAD(&sublist);
5540                         pt_curr = pt_prev;
5541                         od_curr = orig_dev;
5542                 }
5543                 list_add_tail(&skb->list, &sublist);
5544         }
5545
5546         /* dispatch final sublist */
5547         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5548 }
5549
5550 static int __netif_receive_skb(struct sk_buff *skb)
5551 {
5552         int ret;
5553
5554         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5555                 unsigned int noreclaim_flag;
5556
5557                 /*
5558                  * PFMEMALLOC skbs are special, they should
5559                  * - be delivered to SOCK_MEMALLOC sockets only
5560                  * - stay away from userspace
5561                  * - have bounded memory usage
5562                  *
5563                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5564                  * context down to all allocation sites.
5565                  */
5566                 noreclaim_flag = memalloc_noreclaim_save();
5567                 ret = __netif_receive_skb_one_core(skb, true);
5568                 memalloc_noreclaim_restore(noreclaim_flag);
5569         } else
5570                 ret = __netif_receive_skb_one_core(skb, false);
5571
5572         return ret;
5573 }
5574
5575 static void __netif_receive_skb_list(struct list_head *head)
5576 {
5577         unsigned long noreclaim_flag = 0;
5578         struct sk_buff *skb, *next;
5579         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5580
5581         list_for_each_entry_safe(skb, next, head, list) {
5582                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5583                         struct list_head sublist;
5584
5585                         /* Handle the previous sublist */
5586                         list_cut_before(&sublist, head, &skb->list);
5587                         if (!list_empty(&sublist))
5588                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5589                         pfmemalloc = !pfmemalloc;
5590                         /* See comments in __netif_receive_skb */
5591                         if (pfmemalloc)
5592                                 noreclaim_flag = memalloc_noreclaim_save();
5593                         else
5594                                 memalloc_noreclaim_restore(noreclaim_flag);
5595                 }
5596         }
5597         /* Handle the remaining sublist */
5598         if (!list_empty(head))
5599                 __netif_receive_skb_list_core(head, pfmemalloc);
5600         /* Restore pflags */
5601         if (pfmemalloc)
5602                 memalloc_noreclaim_restore(noreclaim_flag);
5603 }
5604
5605 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5606 {
5607         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5608         struct bpf_prog *new = xdp->prog;
5609         int ret = 0;
5610
5611         switch (xdp->command) {
5612         case XDP_SETUP_PROG:
5613                 rcu_assign_pointer(dev->xdp_prog, new);
5614                 if (old)
5615                         bpf_prog_put(old);
5616
5617                 if (old && !new) {
5618                         static_branch_dec(&generic_xdp_needed_key);
5619                 } else if (new && !old) {
5620                         static_branch_inc(&generic_xdp_needed_key);
5621                         dev_disable_lro(dev);
5622                         dev_disable_gro_hw(dev);
5623                 }
5624                 break;
5625
5626         default:
5627                 ret = -EINVAL;
5628                 break;
5629         }
5630
5631         return ret;
5632 }
5633
5634 static int netif_receive_skb_internal(struct sk_buff *skb)
5635 {
5636         int ret;
5637
5638         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5639
5640         if (skb_defer_rx_timestamp(skb))
5641                 return NET_RX_SUCCESS;
5642
5643         rcu_read_lock();
5644 #ifdef CONFIG_RPS
5645         if (static_branch_unlikely(&rps_needed)) {
5646                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5647                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5648
5649                 if (cpu >= 0) {
5650                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5651                         rcu_read_unlock();
5652                         return ret;
5653                 }
5654         }
5655 #endif
5656         ret = __netif_receive_skb(skb);
5657         rcu_read_unlock();
5658         return ret;
5659 }
5660
5661 static void netif_receive_skb_list_internal(struct list_head *head)
5662 {
5663         struct sk_buff *skb, *next;
5664         struct list_head sublist;
5665
5666         INIT_LIST_HEAD(&sublist);
5667         list_for_each_entry_safe(skb, next, head, list) {
5668                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5669                 skb_list_del_init(skb);
5670                 if (!skb_defer_rx_timestamp(skb))
5671                         list_add_tail(&skb->list, &sublist);
5672         }
5673         list_splice_init(&sublist, head);
5674
5675         rcu_read_lock();
5676 #ifdef CONFIG_RPS
5677         if (static_branch_unlikely(&rps_needed)) {
5678                 list_for_each_entry_safe(skb, next, head, list) {
5679                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5680                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5681
5682                         if (cpu >= 0) {
5683                                 /* Will be handled, remove from list */
5684                                 skb_list_del_init(skb);
5685                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5686                         }
5687                 }
5688         }
5689 #endif
5690         __netif_receive_skb_list(head);
5691         rcu_read_unlock();
5692 }
5693
5694 /**
5695  *      netif_receive_skb - process receive buffer from network
5696  *      @skb: buffer to process
5697  *
5698  *      netif_receive_skb() is the main receive data processing function.
5699  *      It always succeeds. The buffer may be dropped during processing
5700  *      for congestion control or by the protocol layers.
5701  *
5702  *      This function may only be called from softirq context and interrupts
5703  *      should be enabled.
5704  *
5705  *      Return values (usually ignored):
5706  *      NET_RX_SUCCESS: no congestion
5707  *      NET_RX_DROP: packet was dropped
5708  */
5709 int netif_receive_skb(struct sk_buff *skb)
5710 {
5711         int ret;
5712
5713         trace_netif_receive_skb_entry(skb);
5714
5715         ret = netif_receive_skb_internal(skb);
5716         trace_netif_receive_skb_exit(ret);
5717
5718         return ret;
5719 }
5720 EXPORT_SYMBOL(netif_receive_skb);
5721
5722 /**
5723  *      netif_receive_skb_list - process many receive buffers from network
5724  *      @head: list of skbs to process.
5725  *
5726  *      Since return value of netif_receive_skb() is normally ignored, and
5727  *      wouldn't be meaningful for a list, this function returns void.
5728  *
5729  *      This function may only be called from softirq context and interrupts
5730  *      should be enabled.
5731  */
5732 void netif_receive_skb_list(struct list_head *head)
5733 {
5734         struct sk_buff *skb;
5735
5736         if (list_empty(head))
5737                 return;
5738         if (trace_netif_receive_skb_list_entry_enabled()) {
5739                 list_for_each_entry(skb, head, list)
5740                         trace_netif_receive_skb_list_entry(skb);
5741         }
5742         netif_receive_skb_list_internal(head);
5743         trace_netif_receive_skb_list_exit(0);
5744 }
5745 EXPORT_SYMBOL(netif_receive_skb_list);
5746
5747 static DEFINE_PER_CPU(struct work_struct, flush_works);
5748
5749 /* Network device is going away, flush any packets still pending */
5750 static void flush_backlog(struct work_struct *work)
5751 {
5752         struct sk_buff *skb, *tmp;
5753         struct softnet_data *sd;
5754
5755         local_bh_disable();
5756         sd = this_cpu_ptr(&softnet_data);
5757
5758         local_irq_disable();
5759         rps_lock(sd);
5760         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5761                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5762                         __skb_unlink(skb, &sd->input_pkt_queue);
5763                         dev_kfree_skb_irq(skb);
5764                         input_queue_head_incr(sd);
5765                 }
5766         }
5767         rps_unlock(sd);
5768         local_irq_enable();
5769
5770         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5771                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5772                         __skb_unlink(skb, &sd->process_queue);
5773                         kfree_skb(skb);
5774                         input_queue_head_incr(sd);
5775                 }
5776         }
5777         local_bh_enable();
5778 }
5779
5780 static bool flush_required(int cpu)
5781 {
5782 #if IS_ENABLED(CONFIG_RPS)
5783         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5784         bool do_flush;
5785
5786         local_irq_disable();
5787         rps_lock(sd);
5788
5789         /* as insertion into process_queue happens with the rps lock held,
5790          * process_queue access may race only with dequeue
5791          */
5792         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5793                    !skb_queue_empty_lockless(&sd->process_queue);
5794         rps_unlock(sd);
5795         local_irq_enable();
5796
5797         return do_flush;
5798 #endif
5799         /* without RPS we can't safely check input_pkt_queue: during a
5800          * concurrent remote skb_queue_splice() we can detect as empty both
5801          * input_pkt_queue and process_queue even if the latter could end-up
5802          * containing a lot of packets.
5803          */
5804         return true;
5805 }
5806
5807 static void flush_all_backlogs(void)
5808 {
5809         static cpumask_t flush_cpus;
5810         unsigned int cpu;
5811
5812         /* since we are under rtnl lock protection we can use static data
5813          * for the cpumask and avoid allocating on stack the possibly
5814          * large mask
5815          */
5816         ASSERT_RTNL();
5817
5818         cpus_read_lock();
5819
5820         cpumask_clear(&flush_cpus);
5821         for_each_online_cpu(cpu) {
5822                 if (flush_required(cpu)) {
5823                         queue_work_on(cpu, system_highpri_wq,
5824                                       per_cpu_ptr(&flush_works, cpu));
5825                         cpumask_set_cpu(cpu, &flush_cpus);
5826                 }
5827         }
5828
5829         /* we can have in flight packet[s] on the cpus we are not flushing,
5830          * synchronize_net() in unregister_netdevice_many() will take care of
5831          * them
5832          */
5833         for_each_cpu(cpu, &flush_cpus)
5834                 flush_work(per_cpu_ptr(&flush_works, cpu));
5835
5836         cpus_read_unlock();
5837 }
5838
5839 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5840 static void gro_normal_list(struct napi_struct *napi)
5841 {
5842         if (!napi->rx_count)
5843                 return;
5844         netif_receive_skb_list_internal(&napi->rx_list);
5845         INIT_LIST_HEAD(&napi->rx_list);
5846         napi->rx_count = 0;
5847 }
5848
5849 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5850  * pass the whole batch up to the stack.
5851  */
5852 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5853 {
5854         list_add_tail(&skb->list, &napi->rx_list);
5855         napi->rx_count += segs;
5856         if (napi->rx_count >= gro_normal_batch)
5857                 gro_normal_list(napi);
5858 }
5859
5860 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5861 {
5862         struct packet_offload *ptype;
5863         __be16 type = skb->protocol;
5864         struct list_head *head = &offload_base;
5865         int err = -ENOENT;
5866
5867         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5868
5869         if (NAPI_GRO_CB(skb)->count == 1) {
5870                 skb_shinfo(skb)->gso_size = 0;
5871                 goto out;
5872         }
5873
5874         rcu_read_lock();
5875         list_for_each_entry_rcu(ptype, head, list) {
5876                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5877                         continue;
5878
5879                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5880                                          ipv6_gro_complete, inet_gro_complete,
5881                                          skb, 0);
5882                 break;
5883         }
5884         rcu_read_unlock();
5885
5886         if (err) {
5887                 WARN_ON(&ptype->list == head);
5888                 kfree_skb(skb);
5889                 return NET_RX_SUCCESS;
5890         }
5891
5892 out:
5893         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5894         return NET_RX_SUCCESS;
5895 }
5896
5897 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5898                                    bool flush_old)
5899 {
5900         struct list_head *head = &napi->gro_hash[index].list;
5901         struct sk_buff *skb, *p;
5902
5903         list_for_each_entry_safe_reverse(skb, p, head, list) {
5904                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5905                         return;
5906                 skb_list_del_init(skb);
5907                 napi_gro_complete(napi, skb);
5908                 napi->gro_hash[index].count--;
5909         }
5910
5911         if (!napi->gro_hash[index].count)
5912                 __clear_bit(index, &napi->gro_bitmask);
5913 }
5914
5915 /* napi->gro_hash[].list contains packets ordered by age.
5916  * youngest packets at the head of it.
5917  * Complete skbs in reverse order to reduce latencies.
5918  */
5919 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5920 {
5921         unsigned long bitmask = napi->gro_bitmask;
5922         unsigned int i, base = ~0U;
5923
5924         while ((i = ffs(bitmask)) != 0) {
5925                 bitmask >>= i;
5926                 base += i;
5927                 __napi_gro_flush_chain(napi, base, flush_old);
5928         }
5929 }
5930 EXPORT_SYMBOL(napi_gro_flush);
5931
5932 static void gro_list_prepare(const struct list_head *head,
5933                              const struct sk_buff *skb)
5934 {
5935         unsigned int maclen = skb->dev->hard_header_len;
5936         u32 hash = skb_get_hash_raw(skb);
5937         struct sk_buff *p;
5938
5939         list_for_each_entry(p, head, list) {
5940                 unsigned long diffs;
5941
5942                 NAPI_GRO_CB(p)->flush = 0;
5943
5944                 if (hash != skb_get_hash_raw(p)) {
5945                         NAPI_GRO_CB(p)->same_flow = 0;
5946                         continue;
5947                 }
5948
5949                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5950                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5951                 if (skb_vlan_tag_present(p))
5952                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5953                 diffs |= skb_metadata_differs(p, skb);
5954                 if (maclen == ETH_HLEN)
5955                         diffs |= compare_ether_header(skb_mac_header(p),
5956                                                       skb_mac_header(skb));
5957                 else if (!diffs)
5958                         diffs = memcmp(skb_mac_header(p),
5959                                        skb_mac_header(skb),
5960                                        maclen);
5961
5962                 /* in most common scenarions 'slow_gro' is 0
5963                  * otherwise we are already on some slower paths
5964                  * either skip all the infrequent tests altogether or
5965                  * avoid trying too hard to skip each of them individually
5966                  */
5967                 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5968 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5969                         struct tc_skb_ext *skb_ext;
5970                         struct tc_skb_ext *p_ext;
5971 #endif
5972
5973                         diffs |= p->sk != skb->sk;
5974                         diffs |= skb_metadata_dst_cmp(p, skb);
5975                         diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5976
5977 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5978                         skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5979                         p_ext = skb_ext_find(p, TC_SKB_EXT);
5980
5981                         diffs |= (!!p_ext) ^ (!!skb_ext);
5982                         if (!diffs && unlikely(skb_ext))
5983                                 diffs |= p_ext->chain ^ skb_ext->chain;
5984 #endif
5985                 }
5986
5987                 NAPI_GRO_CB(p)->same_flow = !diffs;
5988         }
5989 }
5990
5991 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5992 {
5993         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5994         const skb_frag_t *frag0 = &pinfo->frags[0];
5995
5996         NAPI_GRO_CB(skb)->data_offset = 0;
5997         NAPI_GRO_CB(skb)->frag0 = NULL;
5998         NAPI_GRO_CB(skb)->frag0_len = 0;
5999
6000         if (!skb_headlen(skb) && pinfo->nr_frags &&
6001             !PageHighMem(skb_frag_page(frag0)) &&
6002             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6003                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6004                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6005                                                     skb_frag_size(frag0),
6006                                                     skb->end - skb->tail);
6007         }
6008 }
6009
6010 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6011 {
6012         struct skb_shared_info *pinfo = skb_shinfo(skb);
6013
6014         BUG_ON(skb->end - skb->tail < grow);
6015
6016         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6017
6018         skb->data_len -= grow;
6019         skb->tail += grow;
6020
6021         skb_frag_off_add(&pinfo->frags[0], grow);
6022         skb_frag_size_sub(&pinfo->frags[0], grow);
6023
6024         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6025                 skb_frag_unref(skb, 0);
6026                 memmove(pinfo->frags, pinfo->frags + 1,
6027                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6028         }
6029 }
6030
6031 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6032 {
6033         struct sk_buff *oldest;
6034
6035         oldest = list_last_entry(head, struct sk_buff, list);
6036
6037         /* We are called with head length >= MAX_GRO_SKBS, so this is
6038          * impossible.
6039          */
6040         if (WARN_ON_ONCE(!oldest))
6041                 return;
6042
6043         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6044          * SKB to the chain.
6045          */
6046         skb_list_del_init(oldest);
6047         napi_gro_complete(napi, oldest);
6048 }
6049
6050 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6051 {
6052         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6053         struct gro_list *gro_list = &napi->gro_hash[bucket];
6054         struct list_head *head = &offload_base;
6055         struct packet_offload *ptype;
6056         __be16 type = skb->protocol;
6057         struct sk_buff *pp = NULL;
6058         enum gro_result ret;
6059         int same_flow;
6060         int grow;
6061
6062         if (netif_elide_gro(skb->dev))
6063                 goto normal;
6064
6065         gro_list_prepare(&gro_list->list, skb);
6066
6067         rcu_read_lock();
6068         list_for_each_entry_rcu(ptype, head, list) {
6069                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6070                         continue;
6071
6072                 skb_set_network_header(skb, skb_gro_offset(skb));
6073                 skb_reset_mac_len(skb);
6074                 NAPI_GRO_CB(skb)->same_flow = 0;
6075                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6076                 NAPI_GRO_CB(skb)->free = 0;
6077                 NAPI_GRO_CB(skb)->encap_mark = 0;
6078                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6079                 NAPI_GRO_CB(skb)->is_fou = 0;
6080                 NAPI_GRO_CB(skb)->is_atomic = 1;
6081                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6082
6083                 /* Setup for GRO checksum validation */
6084                 switch (skb->ip_summed) {
6085                 case CHECKSUM_COMPLETE:
6086                         NAPI_GRO_CB(skb)->csum = skb->csum;
6087                         NAPI_GRO_CB(skb)->csum_valid = 1;
6088                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6089                         break;
6090                 case CHECKSUM_UNNECESSARY:
6091                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6092                         NAPI_GRO_CB(skb)->csum_valid = 0;
6093                         break;
6094                 default:
6095                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6096                         NAPI_GRO_CB(skb)->csum_valid = 0;
6097                 }
6098
6099                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6100                                         ipv6_gro_receive, inet_gro_receive,
6101                                         &gro_list->list, skb);
6102                 break;
6103         }
6104         rcu_read_unlock();
6105
6106         if (&ptype->list == head)
6107                 goto normal;
6108
6109         if (PTR_ERR(pp) == -EINPROGRESS) {
6110                 ret = GRO_CONSUMED;
6111                 goto ok;
6112         }
6113
6114         same_flow = NAPI_GRO_CB(skb)->same_flow;
6115         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6116
6117         if (pp) {
6118                 skb_list_del_init(pp);
6119                 napi_gro_complete(napi, pp);
6120                 gro_list->count--;
6121         }
6122
6123         if (same_flow)
6124                 goto ok;
6125
6126         if (NAPI_GRO_CB(skb)->flush)
6127                 goto normal;
6128
6129         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6130                 gro_flush_oldest(napi, &gro_list->list);
6131         else
6132                 gro_list->count++;
6133
6134         NAPI_GRO_CB(skb)->count = 1;
6135         NAPI_GRO_CB(skb)->age = jiffies;
6136         NAPI_GRO_CB(skb)->last = skb;
6137         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6138         list_add(&skb->list, &gro_list->list);
6139         ret = GRO_HELD;
6140
6141 pull:
6142         grow = skb_gro_offset(skb) - skb_headlen(skb);
6143         if (grow > 0)
6144                 gro_pull_from_frag0(skb, grow);
6145 ok:
6146         if (gro_list->count) {
6147                 if (!test_bit(bucket, &napi->gro_bitmask))
6148                         __set_bit(bucket, &napi->gro_bitmask);
6149         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6150                 __clear_bit(bucket, &napi->gro_bitmask);
6151         }
6152
6153         return ret;
6154
6155 normal:
6156         ret = GRO_NORMAL;
6157         goto pull;
6158 }
6159
6160 struct packet_offload *gro_find_receive_by_type(__be16 type)
6161 {
6162         struct list_head *offload_head = &offload_base;
6163         struct packet_offload *ptype;
6164
6165         list_for_each_entry_rcu(ptype, offload_head, list) {
6166                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6167                         continue;
6168                 return ptype;
6169         }
6170         return NULL;
6171 }
6172 EXPORT_SYMBOL(gro_find_receive_by_type);
6173
6174 struct packet_offload *gro_find_complete_by_type(__be16 type)
6175 {
6176         struct list_head *offload_head = &offload_base;
6177         struct packet_offload *ptype;
6178
6179         list_for_each_entry_rcu(ptype, offload_head, list) {
6180                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6181                         continue;
6182                 return ptype;
6183         }
6184         return NULL;
6185 }
6186 EXPORT_SYMBOL(gro_find_complete_by_type);
6187
6188 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6189                                     struct sk_buff *skb,
6190                                     gro_result_t ret)
6191 {
6192         switch (ret) {
6193         case GRO_NORMAL:
6194                 gro_normal_one(napi, skb, 1);
6195                 break;
6196
6197         case GRO_MERGED_FREE:
6198                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6199                         napi_skb_free_stolen_head(skb);
6200                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6201                         __kfree_skb(skb);
6202                 else
6203                         __kfree_skb_defer(skb);
6204                 break;
6205
6206         case GRO_HELD:
6207         case GRO_MERGED:
6208         case GRO_CONSUMED:
6209                 break;
6210         }
6211
6212         return ret;
6213 }
6214
6215 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6216 {
6217         gro_result_t ret;
6218
6219         skb_mark_napi_id(skb, napi);
6220         trace_napi_gro_receive_entry(skb);
6221
6222         skb_gro_reset_offset(skb, 0);
6223
6224         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6225         trace_napi_gro_receive_exit(ret);
6226
6227         return ret;
6228 }
6229 EXPORT_SYMBOL(napi_gro_receive);
6230
6231 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6232 {
6233         if (unlikely(skb->pfmemalloc)) {
6234                 consume_skb(skb);
6235                 return;
6236         }
6237         __skb_pull(skb, skb_headlen(skb));
6238         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6239         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6240         __vlan_hwaccel_clear_tag(skb);
6241         skb->dev = napi->dev;
6242         skb->skb_iif = 0;
6243
6244         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6245         skb->pkt_type = PACKET_HOST;
6246
6247         skb->encapsulation = 0;
6248         skb_shinfo(skb)->gso_type = 0;
6249         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6250         if (unlikely(skb->slow_gro)) {
6251                 skb_orphan(skb);
6252                 skb_ext_reset(skb);
6253                 nf_reset_ct(skb);
6254                 skb->slow_gro = 0;
6255         }
6256
6257         napi->skb = skb;
6258 }
6259
6260 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6261 {
6262         struct sk_buff *skb = napi->skb;
6263
6264         if (!skb) {
6265                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6266                 if (skb) {
6267                         napi->skb = skb;
6268                         skb_mark_napi_id(skb, napi);
6269                 }
6270         }
6271         return skb;
6272 }
6273 EXPORT_SYMBOL(napi_get_frags);
6274
6275 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6276                                       struct sk_buff *skb,
6277                                       gro_result_t ret)
6278 {
6279         switch (ret) {
6280         case GRO_NORMAL:
6281         case GRO_HELD:
6282                 __skb_push(skb, ETH_HLEN);
6283                 skb->protocol = eth_type_trans(skb, skb->dev);
6284                 if (ret == GRO_NORMAL)
6285                         gro_normal_one(napi, skb, 1);
6286                 break;
6287
6288         case GRO_MERGED_FREE:
6289                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6290                         napi_skb_free_stolen_head(skb);
6291                 else
6292                         napi_reuse_skb(napi, skb);
6293                 break;
6294
6295         case GRO_MERGED:
6296         case GRO_CONSUMED:
6297                 break;
6298         }
6299
6300         return ret;
6301 }
6302
6303 /* Upper GRO stack assumes network header starts at gro_offset=0
6304  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6305  * We copy ethernet header into skb->data to have a common layout.
6306  */
6307 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6308 {
6309         struct sk_buff *skb = napi->skb;
6310         const struct ethhdr *eth;
6311         unsigned int hlen = sizeof(*eth);
6312
6313         napi->skb = NULL;
6314
6315         skb_reset_mac_header(skb);
6316         skb_gro_reset_offset(skb, hlen);
6317
6318         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6319                 eth = skb_gro_header_slow(skb, hlen, 0);
6320                 if (unlikely(!eth)) {
6321                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6322                                              __func__, napi->dev->name);
6323                         napi_reuse_skb(napi, skb);
6324                         return NULL;
6325                 }
6326         } else {
6327                 eth = (const struct ethhdr *)skb->data;
6328                 gro_pull_from_frag0(skb, hlen);
6329                 NAPI_GRO_CB(skb)->frag0 += hlen;
6330                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6331         }
6332         __skb_pull(skb, hlen);
6333
6334         /*
6335          * This works because the only protocols we care about don't require
6336          * special handling.
6337          * We'll fix it up properly in napi_frags_finish()
6338          */
6339         skb->protocol = eth->h_proto;
6340
6341         return skb;
6342 }
6343
6344 gro_result_t napi_gro_frags(struct napi_struct *napi)
6345 {
6346         gro_result_t ret;
6347         struct sk_buff *skb = napi_frags_skb(napi);
6348
6349         trace_napi_gro_frags_entry(skb);
6350
6351         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6352         trace_napi_gro_frags_exit(ret);
6353
6354         return ret;
6355 }
6356 EXPORT_SYMBOL(napi_gro_frags);
6357
6358 /* Compute the checksum from gro_offset and return the folded value
6359  * after adding in any pseudo checksum.
6360  */
6361 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6362 {
6363         __wsum wsum;
6364         __sum16 sum;
6365
6366         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6367
6368         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6369         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6370         /* See comments in __skb_checksum_complete(). */
6371         if (likely(!sum)) {
6372                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6373                     !skb->csum_complete_sw)
6374                         netdev_rx_csum_fault(skb->dev, skb);
6375         }
6376
6377         NAPI_GRO_CB(skb)->csum = wsum;
6378         NAPI_GRO_CB(skb)->csum_valid = 1;
6379
6380         return sum;
6381 }
6382 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6383
6384 static void net_rps_send_ipi(struct softnet_data *remsd)
6385 {
6386 #ifdef CONFIG_RPS
6387         while (remsd) {
6388                 struct softnet_data *next = remsd->rps_ipi_next;
6389
6390                 if (cpu_online(remsd->cpu))
6391                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6392                 remsd = next;
6393         }
6394 #endif
6395 }
6396
6397 /*
6398  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6399  * Note: called with local irq disabled, but exits with local irq enabled.
6400  */
6401 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6402 {
6403 #ifdef CONFIG_RPS
6404         struct softnet_data *remsd = sd->rps_ipi_list;
6405
6406         if (remsd) {
6407                 sd->rps_ipi_list = NULL;
6408
6409                 local_irq_enable();
6410
6411                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6412                 net_rps_send_ipi(remsd);
6413         } else
6414 #endif
6415                 local_irq_enable();
6416 }
6417
6418 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6419 {
6420 #ifdef CONFIG_RPS
6421         return sd->rps_ipi_list != NULL;
6422 #else
6423         return false;
6424 #endif
6425 }
6426
6427 static int process_backlog(struct napi_struct *napi, int quota)
6428 {
6429         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6430         bool again = true;
6431         int work = 0;
6432
6433         /* Check if we have pending ipi, its better to send them now,
6434          * not waiting net_rx_action() end.
6435          */
6436         if (sd_has_rps_ipi_waiting(sd)) {
6437                 local_irq_disable();
6438                 net_rps_action_and_irq_enable(sd);
6439         }
6440
6441         napi->weight = READ_ONCE(dev_rx_weight);
6442         while (again) {
6443                 struct sk_buff *skb;
6444
6445                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6446                         rcu_read_lock();
6447                         __netif_receive_skb(skb);
6448                         rcu_read_unlock();
6449                         input_queue_head_incr(sd);
6450                         if (++work >= quota)
6451                                 return work;
6452
6453                 }
6454
6455                 local_irq_disable();
6456                 rps_lock(sd);
6457                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6458                         /*
6459                          * Inline a custom version of __napi_complete().
6460                          * only current cpu owns and manipulates this napi,
6461                          * and NAPI_STATE_SCHED is the only possible flag set
6462                          * on backlog.
6463                          * We can use a plain write instead of clear_bit(),
6464                          * and we dont need an smp_mb() memory barrier.
6465                          */
6466                         napi->state = 0;
6467                         again = false;
6468                 } else {
6469                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6470                                                    &sd->process_queue);
6471                 }
6472                 rps_unlock(sd);
6473                 local_irq_enable();
6474         }
6475
6476         return work;
6477 }
6478
6479 /**
6480  * __napi_schedule - schedule for receive
6481  * @n: entry to schedule
6482  *
6483  * The entry's receive function will be scheduled to run.
6484  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6485  */
6486 void __napi_schedule(struct napi_struct *n)
6487 {
6488         unsigned long flags;
6489
6490         local_irq_save(flags);
6491         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6492         local_irq_restore(flags);
6493 }
6494 EXPORT_SYMBOL(__napi_schedule);
6495
6496 /**
6497  *      napi_schedule_prep - check if napi can be scheduled
6498  *      @n: napi context
6499  *
6500  * Test if NAPI routine is already running, and if not mark
6501  * it as running.  This is used as a condition variable to
6502  * insure only one NAPI poll instance runs.  We also make
6503  * sure there is no pending NAPI disable.
6504  */
6505 bool napi_schedule_prep(struct napi_struct *n)
6506 {
6507         unsigned long val, new;
6508
6509         do {
6510                 val = READ_ONCE(n->state);
6511                 if (unlikely(val & NAPIF_STATE_DISABLE))
6512                         return false;
6513                 new = val | NAPIF_STATE_SCHED;
6514
6515                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6516                  * This was suggested by Alexander Duyck, as compiler
6517                  * emits better code than :
6518                  * if (val & NAPIF_STATE_SCHED)
6519                  *     new |= NAPIF_STATE_MISSED;
6520                  */
6521                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6522                                                    NAPIF_STATE_MISSED;
6523         } while (cmpxchg(&n->state, val, new) != val);
6524
6525         return !(val & NAPIF_STATE_SCHED);
6526 }
6527 EXPORT_SYMBOL(napi_schedule_prep);
6528
6529 /**
6530  * __napi_schedule_irqoff - schedule for receive
6531  * @n: entry to schedule
6532  *
6533  * Variant of __napi_schedule() assuming hard irqs are masked.
6534  *
6535  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6536  * because the interrupt disabled assumption might not be true
6537  * due to force-threaded interrupts and spinlock substitution.
6538  */
6539 void __napi_schedule_irqoff(struct napi_struct *n)
6540 {
6541         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6542                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6543         else
6544                 __napi_schedule(n);
6545 }
6546 EXPORT_SYMBOL(__napi_schedule_irqoff);
6547
6548 bool napi_complete_done(struct napi_struct *n, int work_done)
6549 {
6550         unsigned long flags, val, new, timeout = 0;
6551         bool ret = true;
6552
6553         /*
6554          * 1) Don't let napi dequeue from the cpu poll list
6555          *    just in case its running on a different cpu.
6556          * 2) If we are busy polling, do nothing here, we have
6557          *    the guarantee we will be called later.
6558          */
6559         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6560                                  NAPIF_STATE_IN_BUSY_POLL)))
6561                 return false;
6562
6563         if (work_done) {
6564                 if (n->gro_bitmask)
6565                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6566                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6567         }
6568         if (n->defer_hard_irqs_count > 0) {
6569                 n->defer_hard_irqs_count--;
6570                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6571                 if (timeout)
6572                         ret = false;
6573         }
6574         if (n->gro_bitmask) {
6575                 /* When the NAPI instance uses a timeout and keeps postponing
6576                  * it, we need to bound somehow the time packets are kept in
6577                  * the GRO layer
6578                  */
6579                 napi_gro_flush(n, !!timeout);
6580         }
6581
6582         gro_normal_list(n);
6583
6584         if (unlikely(!list_empty(&n->poll_list))) {
6585                 /* If n->poll_list is not empty, we need to mask irqs */
6586                 local_irq_save(flags);
6587                 list_del_init(&n->poll_list);
6588                 local_irq_restore(flags);
6589         }
6590
6591         do {
6592                 val = READ_ONCE(n->state);
6593
6594                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6595
6596                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6597                               NAPIF_STATE_SCHED_THREADED |
6598                               NAPIF_STATE_PREFER_BUSY_POLL);
6599
6600                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6601                  * because we will call napi->poll() one more time.
6602                  * This C code was suggested by Alexander Duyck to help gcc.
6603                  */
6604                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6605                                                     NAPIF_STATE_SCHED;
6606         } while (cmpxchg(&n->state, val, new) != val);
6607
6608         if (unlikely(val & NAPIF_STATE_MISSED)) {
6609                 __napi_schedule(n);
6610                 return false;
6611         }
6612
6613         if (timeout)
6614                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6615                               HRTIMER_MODE_REL_PINNED);
6616         return ret;
6617 }
6618 EXPORT_SYMBOL(napi_complete_done);
6619
6620 /* must be called under rcu_read_lock(), as we dont take a reference */
6621 static struct napi_struct *napi_by_id(unsigned int napi_id)
6622 {
6623         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6624         struct napi_struct *napi;
6625
6626         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6627                 if (napi->napi_id == napi_id)
6628                         return napi;
6629
6630         return NULL;
6631 }
6632
6633 #if defined(CONFIG_NET_RX_BUSY_POLL)
6634
6635 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6636 {
6637         if (!skip_schedule) {
6638                 gro_normal_list(napi);
6639                 __napi_schedule(napi);
6640                 return;
6641         }
6642
6643         if (napi->gro_bitmask) {
6644                 /* flush too old packets
6645                  * If HZ < 1000, flush all packets.
6646                  */
6647                 napi_gro_flush(napi, HZ >= 1000);
6648         }
6649
6650         gro_normal_list(napi);
6651         clear_bit(NAPI_STATE_SCHED, &napi->state);
6652 }
6653
6654 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6655                            u16 budget)
6656 {
6657         bool skip_schedule = false;
6658         unsigned long timeout;
6659         int rc;
6660
6661         /* Busy polling means there is a high chance device driver hard irq
6662          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6663          * set in napi_schedule_prep().
6664          * Since we are about to call napi->poll() once more, we can safely
6665          * clear NAPI_STATE_MISSED.
6666          *
6667          * Note: x86 could use a single "lock and ..." instruction
6668          * to perform these two clear_bit()
6669          */
6670         clear_bit(NAPI_STATE_MISSED, &napi->state);
6671         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6672
6673         local_bh_disable();
6674
6675         if (prefer_busy_poll) {
6676                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6677                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6678                 if (napi->defer_hard_irqs_count && timeout) {
6679                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6680                         skip_schedule = true;
6681                 }
6682         }
6683
6684         /* All we really want here is to re-enable device interrupts.
6685          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6686          */
6687         rc = napi->poll(napi, budget);
6688         /* We can't gro_normal_list() here, because napi->poll() might have
6689          * rearmed the napi (napi_complete_done()) in which case it could
6690          * already be running on another CPU.
6691          */
6692         trace_napi_poll(napi, rc, budget);
6693         netpoll_poll_unlock(have_poll_lock);
6694         if (rc == budget)
6695                 __busy_poll_stop(napi, skip_schedule);
6696         local_bh_enable();
6697 }
6698
6699 void napi_busy_loop(unsigned int napi_id,
6700                     bool (*loop_end)(void *, unsigned long),
6701                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6702 {
6703         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6704         int (*napi_poll)(struct napi_struct *napi, int budget);
6705         void *have_poll_lock = NULL;
6706         struct napi_struct *napi;
6707
6708 restart:
6709         napi_poll = NULL;
6710
6711         rcu_read_lock();
6712
6713         napi = napi_by_id(napi_id);
6714         if (!napi)
6715                 goto out;
6716
6717         preempt_disable();
6718         for (;;) {
6719                 int work = 0;
6720
6721                 local_bh_disable();
6722                 if (!napi_poll) {
6723                         unsigned long val = READ_ONCE(napi->state);
6724
6725                         /* If multiple threads are competing for this napi,
6726                          * we avoid dirtying napi->state as much as we can.
6727                          */
6728                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6729                                    NAPIF_STATE_IN_BUSY_POLL)) {
6730                                 if (prefer_busy_poll)
6731                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6732                                 goto count;
6733                         }
6734                         if (cmpxchg(&napi->state, val,
6735                                     val | NAPIF_STATE_IN_BUSY_POLL |
6736                                           NAPIF_STATE_SCHED) != val) {
6737                                 if (prefer_busy_poll)
6738                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6739                                 goto count;
6740                         }
6741                         have_poll_lock = netpoll_poll_lock(napi);
6742                         napi_poll = napi->poll;
6743                 }
6744                 work = napi_poll(napi, budget);
6745                 trace_napi_poll(napi, work, budget);
6746                 gro_normal_list(napi);
6747 count:
6748                 if (work > 0)
6749                         __NET_ADD_STATS(dev_net(napi->dev),
6750                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6751                 local_bh_enable();
6752
6753                 if (!loop_end || loop_end(loop_end_arg, start_time))
6754                         break;
6755
6756                 if (unlikely(need_resched())) {
6757                         if (napi_poll)
6758                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6759                         preempt_enable();
6760                         rcu_read_unlock();
6761                         cond_resched();
6762                         if (loop_end(loop_end_arg, start_time))
6763                                 return;
6764                         goto restart;
6765                 }
6766                 cpu_relax();
6767         }
6768         if (napi_poll)
6769                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6770         preempt_enable();
6771 out:
6772         rcu_read_unlock();
6773 }
6774 EXPORT_SYMBOL(napi_busy_loop);
6775
6776 #endif /* CONFIG_NET_RX_BUSY_POLL */
6777
6778 static void napi_hash_add(struct napi_struct *napi)
6779 {
6780         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6781                 return;
6782
6783         spin_lock(&napi_hash_lock);
6784
6785         /* 0..NR_CPUS range is reserved for sender_cpu use */
6786         do {
6787                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6788                         napi_gen_id = MIN_NAPI_ID;
6789         } while (napi_by_id(napi_gen_id));
6790         napi->napi_id = napi_gen_id;
6791
6792         hlist_add_head_rcu(&napi->napi_hash_node,
6793                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6794
6795         spin_unlock(&napi_hash_lock);
6796 }
6797
6798 /* Warning : caller is responsible to make sure rcu grace period
6799  * is respected before freeing memory containing @napi
6800  */
6801 static void napi_hash_del(struct napi_struct *napi)
6802 {
6803         spin_lock(&napi_hash_lock);
6804
6805         hlist_del_init_rcu(&napi->napi_hash_node);
6806
6807         spin_unlock(&napi_hash_lock);
6808 }
6809
6810 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6811 {
6812         struct napi_struct *napi;
6813
6814         napi = container_of(timer, struct napi_struct, timer);
6815
6816         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6817          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6818          */
6819         if (!napi_disable_pending(napi) &&
6820             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6821                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6822                 __napi_schedule_irqoff(napi);
6823         }
6824
6825         return HRTIMER_NORESTART;
6826 }
6827
6828 static void init_gro_hash(struct napi_struct *napi)
6829 {
6830         int i;
6831
6832         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6833                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6834                 napi->gro_hash[i].count = 0;
6835         }
6836         napi->gro_bitmask = 0;
6837 }
6838
6839 int dev_set_threaded(struct net_device *dev, bool threaded)
6840 {
6841         struct napi_struct *napi;
6842         int err = 0;
6843
6844         if (dev->threaded == threaded)
6845                 return 0;
6846
6847         if (threaded) {
6848                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6849                         if (!napi->thread) {
6850                                 err = napi_kthread_create(napi);
6851                                 if (err) {
6852                                         threaded = false;
6853                                         break;
6854                                 }
6855                         }
6856                 }
6857         }
6858
6859         dev->threaded = threaded;
6860
6861         /* Make sure kthread is created before THREADED bit
6862          * is set.
6863          */
6864         smp_mb__before_atomic();
6865
6866         /* Setting/unsetting threaded mode on a napi might not immediately
6867          * take effect, if the current napi instance is actively being
6868          * polled. In this case, the switch between threaded mode and
6869          * softirq mode will happen in the next round of napi_schedule().
6870          * This should not cause hiccups/stalls to the live traffic.
6871          */
6872         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6873                 if (threaded)
6874                         set_bit(NAPI_STATE_THREADED, &napi->state);
6875                 else
6876                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6877         }
6878
6879         return err;
6880 }
6881 EXPORT_SYMBOL(dev_set_threaded);
6882
6883 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6884                     int (*poll)(struct napi_struct *, int), int weight)
6885 {
6886         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6887                 return;
6888
6889         INIT_LIST_HEAD(&napi->poll_list);
6890         INIT_HLIST_NODE(&napi->napi_hash_node);
6891         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6892         napi->timer.function = napi_watchdog;
6893         init_gro_hash(napi);
6894         napi->skb = NULL;
6895         INIT_LIST_HEAD(&napi->rx_list);
6896         napi->rx_count = 0;
6897         napi->poll = poll;
6898         if (weight > NAPI_POLL_WEIGHT)
6899                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6900                                 weight);
6901         napi->weight = weight;
6902         napi->dev = dev;
6903 #ifdef CONFIG_NETPOLL
6904         napi->poll_owner = -1;
6905 #endif
6906         set_bit(NAPI_STATE_SCHED, &napi->state);
6907         set_bit(NAPI_STATE_NPSVC, &napi->state);
6908         list_add_rcu(&napi->dev_list, &dev->napi_list);
6909         napi_hash_add(napi);
6910         /* Create kthread for this napi if dev->threaded is set.
6911          * Clear dev->threaded if kthread creation failed so that
6912          * threaded mode will not be enabled in napi_enable().
6913          */
6914         if (dev->threaded && napi_kthread_create(napi))
6915                 dev->threaded = 0;
6916 }
6917 EXPORT_SYMBOL(netif_napi_add);
6918
6919 void napi_disable(struct napi_struct *n)
6920 {
6921         might_sleep();
6922         set_bit(NAPI_STATE_DISABLE, &n->state);
6923
6924         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6925                 msleep(1);
6926         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6927                 msleep(1);
6928
6929         hrtimer_cancel(&n->timer);
6930
6931         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6932         clear_bit(NAPI_STATE_DISABLE, &n->state);
6933         clear_bit(NAPI_STATE_THREADED, &n->state);
6934 }
6935 EXPORT_SYMBOL(napi_disable);
6936
6937 /**
6938  *      napi_enable - enable NAPI scheduling
6939  *      @n: NAPI context
6940  *
6941  * Resume NAPI from being scheduled on this context.
6942  * Must be paired with napi_disable.
6943  */
6944 void napi_enable(struct napi_struct *n)
6945 {
6946         unsigned long val, new;
6947
6948         do {
6949                 val = READ_ONCE(n->state);
6950                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6951
6952                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6953                 if (n->dev->threaded && n->thread)
6954                         new |= NAPIF_STATE_THREADED;
6955         } while (cmpxchg(&n->state, val, new) != val);
6956 }
6957 EXPORT_SYMBOL(napi_enable);
6958
6959 static void flush_gro_hash(struct napi_struct *napi)
6960 {
6961         int i;
6962
6963         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6964                 struct sk_buff *skb, *n;
6965
6966                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6967                         kfree_skb(skb);
6968                 napi->gro_hash[i].count = 0;
6969         }
6970 }
6971
6972 /* Must be called in process context */
6973 void __netif_napi_del(struct napi_struct *napi)
6974 {
6975         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6976                 return;
6977
6978         napi_hash_del(napi);
6979         list_del_rcu(&napi->dev_list);
6980         napi_free_frags(napi);
6981
6982         flush_gro_hash(napi);
6983         napi->gro_bitmask = 0;
6984
6985         if (napi->thread) {
6986                 kthread_stop(napi->thread);
6987                 napi->thread = NULL;
6988         }
6989 }
6990 EXPORT_SYMBOL(__netif_napi_del);
6991
6992 static int __napi_poll(struct napi_struct *n, bool *repoll)
6993 {
6994         int work, weight;
6995
6996         weight = n->weight;
6997
6998         /* This NAPI_STATE_SCHED test is for avoiding a race
6999          * with netpoll's poll_napi().  Only the entity which
7000          * obtains the lock and sees NAPI_STATE_SCHED set will
7001          * actually make the ->poll() call.  Therefore we avoid
7002          * accidentally calling ->poll() when NAPI is not scheduled.
7003          */
7004         work = 0;
7005         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7006                 work = n->poll(n, weight);
7007                 trace_napi_poll(n, work, weight);
7008         }
7009
7010         if (unlikely(work > weight))
7011                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7012                             n->poll, work, weight);
7013
7014         if (likely(work < weight))
7015                 return work;
7016
7017         /* Drivers must not modify the NAPI state if they
7018          * consume the entire weight.  In such cases this code
7019          * still "owns" the NAPI instance and therefore can
7020          * move the instance around on the list at-will.
7021          */
7022         if (unlikely(napi_disable_pending(n))) {
7023                 napi_complete(n);
7024                 return work;
7025         }
7026
7027         /* The NAPI context has more processing work, but busy-polling
7028          * is preferred. Exit early.
7029          */
7030         if (napi_prefer_busy_poll(n)) {
7031                 if (napi_complete_done(n, work)) {
7032                         /* If timeout is not set, we need to make sure
7033                          * that the NAPI is re-scheduled.
7034                          */
7035                         napi_schedule(n);
7036                 }
7037                 return work;
7038         }
7039
7040         if (n->gro_bitmask) {
7041                 /* flush too old packets
7042                  * If HZ < 1000, flush all packets.
7043                  */
7044                 napi_gro_flush(n, HZ >= 1000);
7045         }
7046
7047         gro_normal_list(n);
7048
7049         /* Some drivers may have called napi_schedule
7050          * prior to exhausting their budget.
7051          */
7052         if (unlikely(!list_empty(&n->poll_list))) {
7053                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7054                              n->dev ? n->dev->name : "backlog");
7055                 return work;
7056         }
7057
7058         *repoll = true;
7059
7060         return work;
7061 }
7062
7063 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7064 {
7065         bool do_repoll = false;
7066         void *have;
7067         int work;
7068
7069         list_del_init(&n->poll_list);
7070
7071         have = netpoll_poll_lock(n);
7072
7073         work = __napi_poll(n, &do_repoll);
7074
7075         if (do_repoll)
7076                 list_add_tail(&n->poll_list, repoll);
7077
7078         netpoll_poll_unlock(have);
7079
7080         return work;
7081 }
7082
7083 static int napi_thread_wait(struct napi_struct *napi)
7084 {
7085         bool woken = false;
7086
7087         set_current_state(TASK_INTERRUPTIBLE);
7088
7089         while (!kthread_should_stop()) {
7090                 /* Testing SCHED_THREADED bit here to make sure the current
7091                  * kthread owns this napi and could poll on this napi.
7092                  * Testing SCHED bit is not enough because SCHED bit might be
7093                  * set by some other busy poll thread or by napi_disable().
7094                  */
7095                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7096                         WARN_ON(!list_empty(&napi->poll_list));
7097                         __set_current_state(TASK_RUNNING);
7098                         return 0;
7099                 }
7100
7101                 schedule();
7102                 /* woken being true indicates this thread owns this napi. */
7103                 woken = true;
7104                 set_current_state(TASK_INTERRUPTIBLE);
7105         }
7106         __set_current_state(TASK_RUNNING);
7107
7108         return -1;
7109 }
7110
7111 static int napi_threaded_poll(void *data)
7112 {
7113         struct napi_struct *napi = data;
7114         void *have;
7115
7116         while (!napi_thread_wait(napi)) {
7117                 for (;;) {
7118                         bool repoll = false;
7119
7120                         local_bh_disable();
7121
7122                         have = netpoll_poll_lock(napi);
7123                         __napi_poll(napi, &repoll);
7124                         netpoll_poll_unlock(have);
7125
7126                         local_bh_enable();
7127
7128                         if (!repoll)
7129                                 break;
7130
7131                         cond_resched();
7132                 }
7133         }
7134         return 0;
7135 }
7136
7137 static __latent_entropy void net_rx_action(struct softirq_action *h)
7138 {
7139         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7140         unsigned long time_limit = jiffies +
7141                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
7142         int budget = READ_ONCE(netdev_budget);
7143         LIST_HEAD(list);
7144         LIST_HEAD(repoll);
7145
7146         local_irq_disable();
7147         list_splice_init(&sd->poll_list, &list);
7148         local_irq_enable();
7149
7150         for (;;) {
7151                 struct napi_struct *n;
7152
7153                 if (list_empty(&list)) {
7154                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7155                                 return;
7156                         break;
7157                 }
7158
7159                 n = list_first_entry(&list, struct napi_struct, poll_list);
7160                 budget -= napi_poll(n, &repoll);
7161
7162                 /* If softirq window is exhausted then punt.
7163                  * Allow this to run for 2 jiffies since which will allow
7164                  * an average latency of 1.5/HZ.
7165                  */
7166                 if (unlikely(budget <= 0 ||
7167                              time_after_eq(jiffies, time_limit))) {
7168                         sd->time_squeeze++;
7169                         break;
7170                 }
7171         }
7172
7173         local_irq_disable();
7174
7175         list_splice_tail_init(&sd->poll_list, &list);
7176         list_splice_tail(&repoll, &list);
7177         list_splice(&list, &sd->poll_list);
7178         if (!list_empty(&sd->poll_list))
7179                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7180
7181         net_rps_action_and_irq_enable(sd);
7182 }
7183
7184 struct netdev_adjacent {
7185         struct net_device *dev;
7186
7187         /* upper master flag, there can only be one master device per list */
7188         bool master;
7189
7190         /* lookup ignore flag */
7191         bool ignore;
7192
7193         /* counter for the number of times this device was added to us */
7194         u16 ref_nr;
7195
7196         /* private field for the users */
7197         void *private;
7198
7199         struct list_head list;
7200         struct rcu_head rcu;
7201 };
7202
7203 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7204                                                  struct list_head *adj_list)
7205 {
7206         struct netdev_adjacent *adj;
7207
7208         list_for_each_entry(adj, adj_list, list) {
7209                 if (adj->dev == adj_dev)
7210                         return adj;
7211         }
7212         return NULL;
7213 }
7214
7215 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7216                                     struct netdev_nested_priv *priv)
7217 {
7218         struct net_device *dev = (struct net_device *)priv->data;
7219
7220         return upper_dev == dev;
7221 }
7222
7223 /**
7224  * netdev_has_upper_dev - Check if device is linked to an upper device
7225  * @dev: device
7226  * @upper_dev: upper device to check
7227  *
7228  * Find out if a device is linked to specified upper device and return true
7229  * in case it is. Note that this checks only immediate upper device,
7230  * not through a complete stack of devices. The caller must hold the RTNL lock.
7231  */
7232 bool netdev_has_upper_dev(struct net_device *dev,
7233                           struct net_device *upper_dev)
7234 {
7235         struct netdev_nested_priv priv = {
7236                 .data = (void *)upper_dev,
7237         };
7238
7239         ASSERT_RTNL();
7240
7241         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7242                                              &priv);
7243 }
7244 EXPORT_SYMBOL(netdev_has_upper_dev);
7245
7246 /**
7247  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7248  * @dev: device
7249  * @upper_dev: upper device to check
7250  *
7251  * Find out if a device is linked to specified upper device and return true
7252  * in case it is. Note that this checks the entire upper device chain.
7253  * The caller must hold rcu lock.
7254  */
7255
7256 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7257                                   struct net_device *upper_dev)
7258 {
7259         struct netdev_nested_priv priv = {
7260                 .data = (void *)upper_dev,
7261         };
7262
7263         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7264                                                &priv);
7265 }
7266 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7267
7268 /**
7269  * netdev_has_any_upper_dev - Check if device is linked to some device
7270  * @dev: device
7271  *
7272  * Find out if a device is linked to an upper device and return true in case
7273  * it is. The caller must hold the RTNL lock.
7274  */
7275 bool netdev_has_any_upper_dev(struct net_device *dev)
7276 {
7277         ASSERT_RTNL();
7278
7279         return !list_empty(&dev->adj_list.upper);
7280 }
7281 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7282
7283 /**
7284  * netdev_master_upper_dev_get - Get master upper device
7285  * @dev: device
7286  *
7287  * Find a master upper device and return pointer to it or NULL in case
7288  * it's not there. The caller must hold the RTNL lock.
7289  */
7290 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7291 {
7292         struct netdev_adjacent *upper;
7293
7294         ASSERT_RTNL();
7295
7296         if (list_empty(&dev->adj_list.upper))
7297                 return NULL;
7298
7299         upper = list_first_entry(&dev->adj_list.upper,
7300                                  struct netdev_adjacent, list);
7301         if (likely(upper->master))
7302                 return upper->dev;
7303         return NULL;
7304 }
7305 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7306
7307 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7308 {
7309         struct netdev_adjacent *upper;
7310
7311         ASSERT_RTNL();
7312
7313         if (list_empty(&dev->adj_list.upper))
7314                 return NULL;
7315
7316         upper = list_first_entry(&dev->adj_list.upper,
7317                                  struct netdev_adjacent, list);
7318         if (likely(upper->master) && !upper->ignore)
7319                 return upper->dev;
7320         return NULL;
7321 }
7322
7323 /**
7324  * netdev_has_any_lower_dev - Check if device is linked to some device
7325  * @dev: device
7326  *
7327  * Find out if a device is linked to a lower device and return true in case
7328  * it is. The caller must hold the RTNL lock.
7329  */
7330 static bool netdev_has_any_lower_dev(struct net_device *dev)
7331 {
7332         ASSERT_RTNL();
7333
7334         return !list_empty(&dev->adj_list.lower);
7335 }
7336
7337 void *netdev_adjacent_get_private(struct list_head *adj_list)
7338 {
7339         struct netdev_adjacent *adj;
7340
7341         adj = list_entry(adj_list, struct netdev_adjacent, list);
7342
7343         return adj->private;
7344 }
7345 EXPORT_SYMBOL(netdev_adjacent_get_private);
7346
7347 /**
7348  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7349  * @dev: device
7350  * @iter: list_head ** of the current position
7351  *
7352  * Gets the next device from the dev's upper list, starting from iter
7353  * position. The caller must hold RCU read lock.
7354  */
7355 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7356                                                  struct list_head **iter)
7357 {
7358         struct netdev_adjacent *upper;
7359
7360         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7361
7362         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7363
7364         if (&upper->list == &dev->adj_list.upper)
7365                 return NULL;
7366
7367         *iter = &upper->list;
7368
7369         return upper->dev;
7370 }
7371 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7372
7373 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7374                                                   struct list_head **iter,
7375                                                   bool *ignore)
7376 {
7377         struct netdev_adjacent *upper;
7378
7379         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7380
7381         if (&upper->list == &dev->adj_list.upper)
7382                 return NULL;
7383
7384         *iter = &upper->list;
7385         *ignore = upper->ignore;
7386
7387         return upper->dev;
7388 }
7389
7390 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7391                                                     struct list_head **iter)
7392 {
7393         struct netdev_adjacent *upper;
7394
7395         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7396
7397         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7398
7399         if (&upper->list == &dev->adj_list.upper)
7400                 return NULL;
7401
7402         *iter = &upper->list;
7403
7404         return upper->dev;
7405 }
7406
7407 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7408                                        int (*fn)(struct net_device *dev,
7409                                          struct netdev_nested_priv *priv),
7410                                        struct netdev_nested_priv *priv)
7411 {
7412         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7413         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7414         int ret, cur = 0;
7415         bool ignore;
7416
7417         now = dev;
7418         iter = &dev->adj_list.upper;
7419
7420         while (1) {
7421                 if (now != dev) {
7422                         ret = fn(now, priv);
7423                         if (ret)
7424                                 return ret;
7425                 }
7426
7427                 next = NULL;
7428                 while (1) {
7429                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7430                         if (!udev)
7431                                 break;
7432                         if (ignore)
7433                                 continue;
7434
7435                         next = udev;
7436                         niter = &udev->adj_list.upper;
7437                         dev_stack[cur] = now;
7438                         iter_stack[cur++] = iter;
7439                         break;
7440                 }
7441
7442                 if (!next) {
7443                         if (!cur)
7444                                 return 0;
7445                         next = dev_stack[--cur];
7446                         niter = iter_stack[cur];
7447                 }
7448
7449                 now = next;
7450                 iter = niter;
7451         }
7452
7453         return 0;
7454 }
7455
7456 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7457                                   int (*fn)(struct net_device *dev,
7458                                             struct netdev_nested_priv *priv),
7459                                   struct netdev_nested_priv *priv)
7460 {
7461         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7462         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7463         int ret, cur = 0;
7464
7465         now = dev;
7466         iter = &dev->adj_list.upper;
7467
7468         while (1) {
7469                 if (now != dev) {
7470                         ret = fn(now, priv);
7471                         if (ret)
7472                                 return ret;
7473                 }
7474
7475                 next = NULL;
7476                 while (1) {
7477                         udev = netdev_next_upper_dev_rcu(now, &iter);
7478                         if (!udev)
7479                                 break;
7480
7481                         next = udev;
7482                         niter = &udev->adj_list.upper;
7483                         dev_stack[cur] = now;
7484                         iter_stack[cur++] = iter;
7485                         break;
7486                 }
7487
7488                 if (!next) {
7489                         if (!cur)
7490                                 return 0;
7491                         next = dev_stack[--cur];
7492                         niter = iter_stack[cur];
7493                 }
7494
7495                 now = next;
7496                 iter = niter;
7497         }
7498
7499         return 0;
7500 }
7501 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7502
7503 static bool __netdev_has_upper_dev(struct net_device *dev,
7504                                    struct net_device *upper_dev)
7505 {
7506         struct netdev_nested_priv priv = {
7507                 .flags = 0,
7508                 .data = (void *)upper_dev,
7509         };
7510
7511         ASSERT_RTNL();
7512
7513         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7514                                            &priv);
7515 }
7516
7517 /**
7518  * netdev_lower_get_next_private - Get the next ->private from the
7519  *                                 lower neighbour list
7520  * @dev: device
7521  * @iter: list_head ** of the current position
7522  *
7523  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7524  * list, starting from iter position. The caller must hold either hold the
7525  * RTNL lock or its own locking that guarantees that the neighbour lower
7526  * list will remain unchanged.
7527  */
7528 void *netdev_lower_get_next_private(struct net_device *dev,
7529                                     struct list_head **iter)
7530 {
7531         struct netdev_adjacent *lower;
7532
7533         lower = list_entry(*iter, struct netdev_adjacent, list);
7534
7535         if (&lower->list == &dev->adj_list.lower)
7536                 return NULL;
7537
7538         *iter = lower->list.next;
7539
7540         return lower->private;
7541 }
7542 EXPORT_SYMBOL(netdev_lower_get_next_private);
7543
7544 /**
7545  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7546  *                                     lower neighbour list, RCU
7547  *                                     variant
7548  * @dev: device
7549  * @iter: list_head ** of the current position
7550  *
7551  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7552  * list, starting from iter position. The caller must hold RCU read lock.
7553  */
7554 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7555                                         struct list_head **iter)
7556 {
7557         struct netdev_adjacent *lower;
7558
7559         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7560
7561         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7562
7563         if (&lower->list == &dev->adj_list.lower)
7564                 return NULL;
7565
7566         *iter = &lower->list;
7567
7568         return lower->private;
7569 }
7570 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7571
7572 /**
7573  * netdev_lower_get_next - Get the next device from the lower neighbour
7574  *                         list
7575  * @dev: device
7576  * @iter: list_head ** of the current position
7577  *
7578  * Gets the next netdev_adjacent from the dev's lower neighbour
7579  * list, starting from iter position. The caller must hold RTNL lock or
7580  * its own locking that guarantees that the neighbour lower
7581  * list will remain unchanged.
7582  */
7583 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7584 {
7585         struct netdev_adjacent *lower;
7586
7587         lower = list_entry(*iter, struct netdev_adjacent, list);
7588
7589         if (&lower->list == &dev->adj_list.lower)
7590                 return NULL;
7591
7592         *iter = lower->list.next;
7593
7594         return lower->dev;
7595 }
7596 EXPORT_SYMBOL(netdev_lower_get_next);
7597
7598 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7599                                                 struct list_head **iter)
7600 {
7601         struct netdev_adjacent *lower;
7602
7603         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7604
7605         if (&lower->list == &dev->adj_list.lower)
7606                 return NULL;
7607
7608         *iter = &lower->list;
7609
7610         return lower->dev;
7611 }
7612
7613 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7614                                                   struct list_head **iter,
7615                                                   bool *ignore)
7616 {
7617         struct netdev_adjacent *lower;
7618
7619         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7620
7621         if (&lower->list == &dev->adj_list.lower)
7622                 return NULL;
7623
7624         *iter = &lower->list;
7625         *ignore = lower->ignore;
7626
7627         return lower->dev;
7628 }
7629
7630 int netdev_walk_all_lower_dev(struct net_device *dev,
7631                               int (*fn)(struct net_device *dev,
7632                                         struct netdev_nested_priv *priv),
7633                               struct netdev_nested_priv *priv)
7634 {
7635         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7636         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7637         int ret, cur = 0;
7638
7639         now = dev;
7640         iter = &dev->adj_list.lower;
7641
7642         while (1) {
7643                 if (now != dev) {
7644                         ret = fn(now, priv);
7645                         if (ret)
7646                                 return ret;
7647                 }
7648
7649                 next = NULL;
7650                 while (1) {
7651                         ldev = netdev_next_lower_dev(now, &iter);
7652                         if (!ldev)
7653                                 break;
7654
7655                         next = ldev;
7656                         niter = &ldev->adj_list.lower;
7657                         dev_stack[cur] = now;
7658                         iter_stack[cur++] = iter;
7659                         break;
7660                 }
7661
7662                 if (!next) {
7663                         if (!cur)
7664                                 return 0;
7665                         next = dev_stack[--cur];
7666                         niter = iter_stack[cur];
7667                 }
7668
7669                 now = next;
7670                 iter = niter;
7671         }
7672
7673         return 0;
7674 }
7675 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7676
7677 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7678                                        int (*fn)(struct net_device *dev,
7679                                          struct netdev_nested_priv *priv),
7680                                        struct netdev_nested_priv *priv)
7681 {
7682         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7683         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7684         int ret, cur = 0;
7685         bool ignore;
7686
7687         now = dev;
7688         iter = &dev->adj_list.lower;
7689
7690         while (1) {
7691                 if (now != dev) {
7692                         ret = fn(now, priv);
7693                         if (ret)
7694                                 return ret;
7695                 }
7696
7697                 next = NULL;
7698                 while (1) {
7699                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7700                         if (!ldev)
7701                                 break;
7702                         if (ignore)
7703                                 continue;
7704
7705                         next = ldev;
7706                         niter = &ldev->adj_list.lower;
7707                         dev_stack[cur] = now;
7708                         iter_stack[cur++] = iter;
7709                         break;
7710                 }
7711
7712                 if (!next) {
7713                         if (!cur)
7714                                 return 0;
7715                         next = dev_stack[--cur];
7716                         niter = iter_stack[cur];
7717                 }
7718
7719                 now = next;
7720                 iter = niter;
7721         }
7722
7723         return 0;
7724 }
7725
7726 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7727                                              struct list_head **iter)
7728 {
7729         struct netdev_adjacent *lower;
7730
7731         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7732         if (&lower->list == &dev->adj_list.lower)
7733                 return NULL;
7734
7735         *iter = &lower->list;
7736
7737         return lower->dev;
7738 }
7739 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7740
7741 static u8 __netdev_upper_depth(struct net_device *dev)
7742 {
7743         struct net_device *udev;
7744         struct list_head *iter;
7745         u8 max_depth = 0;
7746         bool ignore;
7747
7748         for (iter = &dev->adj_list.upper,
7749              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7750              udev;
7751              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7752                 if (ignore)
7753                         continue;
7754                 if (max_depth < udev->upper_level)
7755                         max_depth = udev->upper_level;
7756         }
7757
7758         return max_depth;
7759 }
7760
7761 static u8 __netdev_lower_depth(struct net_device *dev)
7762 {
7763         struct net_device *ldev;
7764         struct list_head *iter;
7765         u8 max_depth = 0;
7766         bool ignore;
7767
7768         for (iter = &dev->adj_list.lower,
7769              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7770              ldev;
7771              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7772                 if (ignore)
7773                         continue;
7774                 if (max_depth < ldev->lower_level)
7775                         max_depth = ldev->lower_level;
7776         }
7777
7778         return max_depth;
7779 }
7780
7781 static int __netdev_update_upper_level(struct net_device *dev,
7782                                        struct netdev_nested_priv *__unused)
7783 {
7784         dev->upper_level = __netdev_upper_depth(dev) + 1;
7785         return 0;
7786 }
7787
7788 static int __netdev_update_lower_level(struct net_device *dev,
7789                                        struct netdev_nested_priv *priv)
7790 {
7791         dev->lower_level = __netdev_lower_depth(dev) + 1;
7792
7793 #ifdef CONFIG_LOCKDEP
7794         if (!priv)
7795                 return 0;
7796
7797         if (priv->flags & NESTED_SYNC_IMM)
7798                 dev->nested_level = dev->lower_level - 1;
7799         if (priv->flags & NESTED_SYNC_TODO)
7800                 net_unlink_todo(dev);
7801 #endif
7802         return 0;
7803 }
7804
7805 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7806                                   int (*fn)(struct net_device *dev,
7807                                             struct netdev_nested_priv *priv),
7808                                   struct netdev_nested_priv *priv)
7809 {
7810         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7811         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7812         int ret, cur = 0;
7813
7814         now = dev;
7815         iter = &dev->adj_list.lower;
7816
7817         while (1) {
7818                 if (now != dev) {
7819                         ret = fn(now, priv);
7820                         if (ret)
7821                                 return ret;
7822                 }
7823
7824                 next = NULL;
7825                 while (1) {
7826                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7827                         if (!ldev)
7828                                 break;
7829
7830                         next = ldev;
7831                         niter = &ldev->adj_list.lower;
7832                         dev_stack[cur] = now;
7833                         iter_stack[cur++] = iter;
7834                         break;
7835                 }
7836
7837                 if (!next) {
7838                         if (!cur)
7839                                 return 0;
7840                         next = dev_stack[--cur];
7841                         niter = iter_stack[cur];
7842                 }
7843
7844                 now = next;
7845                 iter = niter;
7846         }
7847
7848         return 0;
7849 }
7850 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7851
7852 /**
7853  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7854  *                                     lower neighbour list, RCU
7855  *                                     variant
7856  * @dev: device
7857  *
7858  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7859  * list. The caller must hold RCU read lock.
7860  */
7861 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7862 {
7863         struct netdev_adjacent *lower;
7864
7865         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7866                         struct netdev_adjacent, list);
7867         if (lower)
7868                 return lower->private;
7869         return NULL;
7870 }
7871 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7872
7873 /**
7874  * netdev_master_upper_dev_get_rcu - Get master upper device
7875  * @dev: device
7876  *
7877  * Find a master upper device and return pointer to it or NULL in case
7878  * it's not there. The caller must hold the RCU read lock.
7879  */
7880 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7881 {
7882         struct netdev_adjacent *upper;
7883
7884         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7885                                        struct netdev_adjacent, list);
7886         if (upper && likely(upper->master))
7887                 return upper->dev;
7888         return NULL;
7889 }
7890 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7891
7892 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7893                               struct net_device *adj_dev,
7894                               struct list_head *dev_list)
7895 {
7896         char linkname[IFNAMSIZ+7];
7897
7898         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7899                 "upper_%s" : "lower_%s", adj_dev->name);
7900         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7901                                  linkname);
7902 }
7903 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7904                                char *name,
7905                                struct list_head *dev_list)
7906 {
7907         char linkname[IFNAMSIZ+7];
7908
7909         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7910                 "upper_%s" : "lower_%s", name);
7911         sysfs_remove_link(&(dev->dev.kobj), linkname);
7912 }
7913
7914 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7915                                                  struct net_device *adj_dev,
7916                                                  struct list_head *dev_list)
7917 {
7918         return (dev_list == &dev->adj_list.upper ||
7919                 dev_list == &dev->adj_list.lower) &&
7920                 net_eq(dev_net(dev), dev_net(adj_dev));
7921 }
7922
7923 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7924                                         struct net_device *adj_dev,
7925                                         struct list_head *dev_list,
7926                                         void *private, bool master)
7927 {
7928         struct netdev_adjacent *adj;
7929         int ret;
7930
7931         adj = __netdev_find_adj(adj_dev, dev_list);
7932
7933         if (adj) {
7934                 adj->ref_nr += 1;
7935                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7936                          dev->name, adj_dev->name, adj->ref_nr);
7937
7938                 return 0;
7939         }
7940
7941         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7942         if (!adj)
7943                 return -ENOMEM;
7944
7945         adj->dev = adj_dev;
7946         adj->master = master;
7947         adj->ref_nr = 1;
7948         adj->private = private;
7949         adj->ignore = false;
7950         dev_hold(adj_dev);
7951
7952         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7953                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7954
7955         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7956                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7957                 if (ret)
7958                         goto free_adj;
7959         }
7960
7961         /* Ensure that master link is always the first item in list. */
7962         if (master) {
7963                 ret = sysfs_create_link(&(dev->dev.kobj),
7964                                         &(adj_dev->dev.kobj), "master");
7965                 if (ret)
7966                         goto remove_symlinks;
7967
7968                 list_add_rcu(&adj->list, dev_list);
7969         } else {
7970                 list_add_tail_rcu(&adj->list, dev_list);
7971         }
7972
7973         return 0;
7974
7975 remove_symlinks:
7976         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7977                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7978 free_adj:
7979         kfree(adj);
7980         dev_put(adj_dev);
7981
7982         return ret;
7983 }
7984
7985 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7986                                          struct net_device *adj_dev,
7987                                          u16 ref_nr,
7988                                          struct list_head *dev_list)
7989 {
7990         struct netdev_adjacent *adj;
7991
7992         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7993                  dev->name, adj_dev->name, ref_nr);
7994
7995         adj = __netdev_find_adj(adj_dev, dev_list);
7996
7997         if (!adj) {
7998                 pr_err("Adjacency does not exist for device %s from %s\n",
7999                        dev->name, adj_dev->name);
8000                 WARN_ON(1);
8001                 return;
8002         }
8003
8004         if (adj->ref_nr > ref_nr) {
8005                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8006                          dev->name, adj_dev->name, ref_nr,
8007                          adj->ref_nr - ref_nr);
8008                 adj->ref_nr -= ref_nr;
8009                 return;
8010         }
8011
8012         if (adj->master)
8013                 sysfs_remove_link(&(dev->dev.kobj), "master");
8014
8015         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8016                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8017
8018         list_del_rcu(&adj->list);
8019         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8020                  adj_dev->name, dev->name, adj_dev->name);
8021         dev_put(adj_dev);
8022         kfree_rcu(adj, rcu);
8023 }
8024
8025 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8026                                             struct net_device *upper_dev,
8027                                             struct list_head *up_list,
8028                                             struct list_head *down_list,
8029                                             void *private, bool master)
8030 {
8031         int ret;
8032
8033         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8034                                            private, master);
8035         if (ret)
8036                 return ret;
8037
8038         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8039                                            private, false);
8040         if (ret) {
8041                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8042                 return ret;
8043         }
8044
8045         return 0;
8046 }
8047
8048 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8049                                                struct net_device *upper_dev,
8050                                                u16 ref_nr,
8051                                                struct list_head *up_list,
8052                                                struct list_head *down_list)
8053 {
8054         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8055         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8056 }
8057
8058 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8059                                                 struct net_device *upper_dev,
8060                                                 void *private, bool master)
8061 {
8062         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8063                                                 &dev->adj_list.upper,
8064                                                 &upper_dev->adj_list.lower,
8065                                                 private, master);
8066 }
8067
8068 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8069                                                    struct net_device *upper_dev)
8070 {
8071         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8072                                            &dev->adj_list.upper,
8073                                            &upper_dev->adj_list.lower);
8074 }
8075
8076 static int __netdev_upper_dev_link(struct net_device *dev,
8077                                    struct net_device *upper_dev, bool master,
8078                                    void *upper_priv, void *upper_info,
8079                                    struct netdev_nested_priv *priv,
8080                                    struct netlink_ext_ack *extack)
8081 {
8082         struct netdev_notifier_changeupper_info changeupper_info = {
8083                 .info = {
8084                         .dev = dev,
8085                         .extack = extack,
8086                 },
8087                 .upper_dev = upper_dev,
8088                 .master = master,
8089                 .linking = true,
8090                 .upper_info = upper_info,
8091         };
8092         struct net_device *master_dev;
8093         int ret = 0;
8094
8095         ASSERT_RTNL();
8096
8097         if (dev == upper_dev)
8098                 return -EBUSY;
8099
8100         /* To prevent loops, check if dev is not upper device to upper_dev. */
8101         if (__netdev_has_upper_dev(upper_dev, dev))
8102                 return -EBUSY;
8103
8104         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8105                 return -EMLINK;
8106
8107         if (!master) {
8108                 if (__netdev_has_upper_dev(dev, upper_dev))
8109                         return -EEXIST;
8110         } else {
8111                 master_dev = __netdev_master_upper_dev_get(dev);
8112                 if (master_dev)
8113                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8114         }
8115
8116         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8117                                             &changeupper_info.info);
8118         ret = notifier_to_errno(ret);
8119         if (ret)
8120                 return ret;
8121
8122         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8123                                                    master);
8124         if (ret)
8125                 return ret;
8126
8127         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8128                                             &changeupper_info.info);
8129         ret = notifier_to_errno(ret);
8130         if (ret)
8131                 goto rollback;
8132
8133         __netdev_update_upper_level(dev, NULL);
8134         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8135
8136         __netdev_update_lower_level(upper_dev, priv);
8137         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8138                                     priv);
8139
8140         return 0;
8141
8142 rollback:
8143         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8144
8145         return ret;
8146 }
8147
8148 /**
8149  * netdev_upper_dev_link - Add a link to the upper device
8150  * @dev: device
8151  * @upper_dev: new upper device
8152  * @extack: netlink extended ack
8153  *
8154  * Adds a link to device which is upper to this one. The caller must hold
8155  * the RTNL lock. On a failure a negative errno code is returned.
8156  * On success the reference counts are adjusted and the function
8157  * returns zero.
8158  */
8159 int netdev_upper_dev_link(struct net_device *dev,
8160                           struct net_device *upper_dev,
8161                           struct netlink_ext_ack *extack)
8162 {
8163         struct netdev_nested_priv priv = {
8164                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8165                 .data = NULL,
8166         };
8167
8168         return __netdev_upper_dev_link(dev, upper_dev, false,
8169                                        NULL, NULL, &priv, extack);
8170 }
8171 EXPORT_SYMBOL(netdev_upper_dev_link);
8172
8173 /**
8174  * netdev_master_upper_dev_link - Add a master link to the upper device
8175  * @dev: device
8176  * @upper_dev: new upper device
8177  * @upper_priv: upper device private
8178  * @upper_info: upper info to be passed down via notifier
8179  * @extack: netlink extended ack
8180  *
8181  * Adds a link to device which is upper to this one. In this case, only
8182  * one master upper device can be linked, although other non-master devices
8183  * might be linked as well. The caller must hold the RTNL lock.
8184  * On a failure a negative errno code is returned. On success the reference
8185  * counts are adjusted and the function returns zero.
8186  */
8187 int netdev_master_upper_dev_link(struct net_device *dev,
8188                                  struct net_device *upper_dev,
8189                                  void *upper_priv, void *upper_info,
8190                                  struct netlink_ext_ack *extack)
8191 {
8192         struct netdev_nested_priv priv = {
8193                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8194                 .data = NULL,
8195         };
8196
8197         return __netdev_upper_dev_link(dev, upper_dev, true,
8198                                        upper_priv, upper_info, &priv, extack);
8199 }
8200 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8201
8202 static void __netdev_upper_dev_unlink(struct net_device *dev,
8203                                       struct net_device *upper_dev,
8204                                       struct netdev_nested_priv *priv)
8205 {
8206         struct netdev_notifier_changeupper_info changeupper_info = {
8207                 .info = {
8208                         .dev = dev,
8209                 },
8210                 .upper_dev = upper_dev,
8211                 .linking = false,
8212         };
8213
8214         ASSERT_RTNL();
8215
8216         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8217
8218         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8219                                       &changeupper_info.info);
8220
8221         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8222
8223         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8224                                       &changeupper_info.info);
8225
8226         __netdev_update_upper_level(dev, NULL);
8227         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8228
8229         __netdev_update_lower_level(upper_dev, priv);
8230         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8231                                     priv);
8232 }
8233
8234 /**
8235  * netdev_upper_dev_unlink - Removes a link to upper device
8236  * @dev: device
8237  * @upper_dev: new upper device
8238  *
8239  * Removes a link to device which is upper to this one. The caller must hold
8240  * the RTNL lock.
8241  */
8242 void netdev_upper_dev_unlink(struct net_device *dev,
8243                              struct net_device *upper_dev)
8244 {
8245         struct netdev_nested_priv priv = {
8246                 .flags = NESTED_SYNC_TODO,
8247                 .data = NULL,
8248         };
8249
8250         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8251 }
8252 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8253
8254 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8255                                       struct net_device *lower_dev,
8256                                       bool val)
8257 {
8258         struct netdev_adjacent *adj;
8259
8260         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8261         if (adj)
8262                 adj->ignore = val;
8263
8264         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8265         if (adj)
8266                 adj->ignore = val;
8267 }
8268
8269 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8270                                         struct net_device *lower_dev)
8271 {
8272         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8273 }
8274
8275 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8276                                        struct net_device *lower_dev)
8277 {
8278         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8279 }
8280
8281 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8282                                    struct net_device *new_dev,
8283                                    struct net_device *dev,
8284                                    struct netlink_ext_ack *extack)
8285 {
8286         struct netdev_nested_priv priv = {
8287                 .flags = 0,
8288                 .data = NULL,
8289         };
8290         int err;
8291
8292         if (!new_dev)
8293                 return 0;
8294
8295         if (old_dev && new_dev != old_dev)
8296                 netdev_adjacent_dev_disable(dev, old_dev);
8297         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8298                                       extack);
8299         if (err) {
8300                 if (old_dev && new_dev != old_dev)
8301                         netdev_adjacent_dev_enable(dev, old_dev);
8302                 return err;
8303         }
8304
8305         return 0;
8306 }
8307 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8308
8309 void netdev_adjacent_change_commit(struct net_device *old_dev,
8310                                    struct net_device *new_dev,
8311                                    struct net_device *dev)
8312 {
8313         struct netdev_nested_priv priv = {
8314                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8315                 .data = NULL,
8316         };
8317
8318         if (!new_dev || !old_dev)
8319                 return;
8320
8321         if (new_dev == old_dev)
8322                 return;
8323
8324         netdev_adjacent_dev_enable(dev, old_dev);
8325         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8326 }
8327 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8328
8329 void netdev_adjacent_change_abort(struct net_device *old_dev,
8330                                   struct net_device *new_dev,
8331                                   struct net_device *dev)
8332 {
8333         struct netdev_nested_priv priv = {
8334                 .flags = 0,
8335                 .data = NULL,
8336         };
8337
8338         if (!new_dev)
8339                 return;
8340
8341         if (old_dev && new_dev != old_dev)
8342                 netdev_adjacent_dev_enable(dev, old_dev);
8343
8344         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8345 }
8346 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8347
8348 /**
8349  * netdev_bonding_info_change - Dispatch event about slave change
8350  * @dev: device
8351  * @bonding_info: info to dispatch
8352  *
8353  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8354  * The caller must hold the RTNL lock.
8355  */
8356 void netdev_bonding_info_change(struct net_device *dev,
8357                                 struct netdev_bonding_info *bonding_info)
8358 {
8359         struct netdev_notifier_bonding_info info = {
8360                 .info.dev = dev,
8361         };
8362
8363         memcpy(&info.bonding_info, bonding_info,
8364                sizeof(struct netdev_bonding_info));
8365         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8366                                       &info.info);
8367 }
8368 EXPORT_SYMBOL(netdev_bonding_info_change);
8369
8370 /**
8371  * netdev_get_xmit_slave - Get the xmit slave of master device
8372  * @dev: device
8373  * @skb: The packet
8374  * @all_slaves: assume all the slaves are active
8375  *
8376  * The reference counters are not incremented so the caller must be
8377  * careful with locks. The caller must hold RCU lock.
8378  * %NULL is returned if no slave is found.
8379  */
8380
8381 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8382                                          struct sk_buff *skb,
8383                                          bool all_slaves)
8384 {
8385         const struct net_device_ops *ops = dev->netdev_ops;
8386
8387         if (!ops->ndo_get_xmit_slave)
8388                 return NULL;
8389         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8390 }
8391 EXPORT_SYMBOL(netdev_get_xmit_slave);
8392
8393 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8394                                                   struct sock *sk)
8395 {
8396         const struct net_device_ops *ops = dev->netdev_ops;
8397
8398         if (!ops->ndo_sk_get_lower_dev)
8399                 return NULL;
8400         return ops->ndo_sk_get_lower_dev(dev, sk);
8401 }
8402
8403 /**
8404  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8405  * @dev: device
8406  * @sk: the socket
8407  *
8408  * %NULL is returned if no lower device is found.
8409  */
8410
8411 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8412                                             struct sock *sk)
8413 {
8414         struct net_device *lower;
8415
8416         lower = netdev_sk_get_lower_dev(dev, sk);
8417         while (lower) {
8418                 dev = lower;
8419                 lower = netdev_sk_get_lower_dev(dev, sk);
8420         }
8421
8422         return dev;
8423 }
8424 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8425
8426 static void netdev_adjacent_add_links(struct net_device *dev)
8427 {
8428         struct netdev_adjacent *iter;
8429
8430         struct net *net = dev_net(dev);
8431
8432         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8433                 if (!net_eq(net, dev_net(iter->dev)))
8434                         continue;
8435                 netdev_adjacent_sysfs_add(iter->dev, dev,
8436                                           &iter->dev->adj_list.lower);
8437                 netdev_adjacent_sysfs_add(dev, iter->dev,
8438                                           &dev->adj_list.upper);
8439         }
8440
8441         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8442                 if (!net_eq(net, dev_net(iter->dev)))
8443                         continue;
8444                 netdev_adjacent_sysfs_add(iter->dev, dev,
8445                                           &iter->dev->adj_list.upper);
8446                 netdev_adjacent_sysfs_add(dev, iter->dev,
8447                                           &dev->adj_list.lower);
8448         }
8449 }
8450
8451 static void netdev_adjacent_del_links(struct net_device *dev)
8452 {
8453         struct netdev_adjacent *iter;
8454
8455         struct net *net = dev_net(dev);
8456
8457         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8458                 if (!net_eq(net, dev_net(iter->dev)))
8459                         continue;
8460                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8461                                           &iter->dev->adj_list.lower);
8462                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8463                                           &dev->adj_list.upper);
8464         }
8465
8466         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8467                 if (!net_eq(net, dev_net(iter->dev)))
8468                         continue;
8469                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8470                                           &iter->dev->adj_list.upper);
8471                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8472                                           &dev->adj_list.lower);
8473         }
8474 }
8475
8476 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8477 {
8478         struct netdev_adjacent *iter;
8479
8480         struct net *net = dev_net(dev);
8481
8482         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8483                 if (!net_eq(net, dev_net(iter->dev)))
8484                         continue;
8485                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8486                                           &iter->dev->adj_list.lower);
8487                 netdev_adjacent_sysfs_add(iter->dev, dev,
8488                                           &iter->dev->adj_list.lower);
8489         }
8490
8491         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8492                 if (!net_eq(net, dev_net(iter->dev)))
8493                         continue;
8494                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8495                                           &iter->dev->adj_list.upper);
8496                 netdev_adjacent_sysfs_add(iter->dev, dev,
8497                                           &iter->dev->adj_list.upper);
8498         }
8499 }
8500
8501 void *netdev_lower_dev_get_private(struct net_device *dev,
8502                                    struct net_device *lower_dev)
8503 {
8504         struct netdev_adjacent *lower;
8505
8506         if (!lower_dev)
8507                 return NULL;
8508         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8509         if (!lower)
8510                 return NULL;
8511
8512         return lower->private;
8513 }
8514 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8515
8516
8517 /**
8518  * netdev_lower_state_changed - Dispatch event about lower device state change
8519  * @lower_dev: device
8520  * @lower_state_info: state to dispatch
8521  *
8522  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8523  * The caller must hold the RTNL lock.
8524  */
8525 void netdev_lower_state_changed(struct net_device *lower_dev,
8526                                 void *lower_state_info)
8527 {
8528         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8529                 .info.dev = lower_dev,
8530         };
8531
8532         ASSERT_RTNL();
8533         changelowerstate_info.lower_state_info = lower_state_info;
8534         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8535                                       &changelowerstate_info.info);
8536 }
8537 EXPORT_SYMBOL(netdev_lower_state_changed);
8538
8539 static void dev_change_rx_flags(struct net_device *dev, int flags)
8540 {
8541         const struct net_device_ops *ops = dev->netdev_ops;
8542
8543         if (ops->ndo_change_rx_flags)
8544                 ops->ndo_change_rx_flags(dev, flags);
8545 }
8546
8547 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8548 {
8549         unsigned int old_flags = dev->flags;
8550         kuid_t uid;
8551         kgid_t gid;
8552
8553         ASSERT_RTNL();
8554
8555         dev->flags |= IFF_PROMISC;
8556         dev->promiscuity += inc;
8557         if (dev->promiscuity == 0) {
8558                 /*
8559                  * Avoid overflow.
8560                  * If inc causes overflow, untouch promisc and return error.
8561                  */
8562                 if (inc < 0)
8563                         dev->flags &= ~IFF_PROMISC;
8564                 else {
8565                         dev->promiscuity -= inc;
8566                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8567                                 dev->name);
8568                         return -EOVERFLOW;
8569                 }
8570         }
8571         if (dev->flags != old_flags) {
8572                 pr_info("device %s %s promiscuous mode\n",
8573                         dev->name,
8574                         dev->flags & IFF_PROMISC ? "entered" : "left");
8575                 if (audit_enabled) {
8576                         current_uid_gid(&uid, &gid);
8577                         audit_log(audit_context(), GFP_ATOMIC,
8578                                   AUDIT_ANOM_PROMISCUOUS,
8579                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8580                                   dev->name, (dev->flags & IFF_PROMISC),
8581                                   (old_flags & IFF_PROMISC),
8582                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8583                                   from_kuid(&init_user_ns, uid),
8584                                   from_kgid(&init_user_ns, gid),
8585                                   audit_get_sessionid(current));
8586                 }
8587
8588                 dev_change_rx_flags(dev, IFF_PROMISC);
8589         }
8590         if (notify)
8591                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8592         return 0;
8593 }
8594
8595 /**
8596  *      dev_set_promiscuity     - update promiscuity count on a device
8597  *      @dev: device
8598  *      @inc: modifier
8599  *
8600  *      Add or remove promiscuity from a device. While the count in the device
8601  *      remains above zero the interface remains promiscuous. Once it hits zero
8602  *      the device reverts back to normal filtering operation. A negative inc
8603  *      value is used to drop promiscuity on the device.
8604  *      Return 0 if successful or a negative errno code on error.
8605  */
8606 int dev_set_promiscuity(struct net_device *dev, int inc)
8607 {
8608         unsigned int old_flags = dev->flags;
8609         int err;
8610
8611         err = __dev_set_promiscuity(dev, inc, true);
8612         if (err < 0)
8613                 return err;
8614         if (dev->flags != old_flags)
8615                 dev_set_rx_mode(dev);
8616         return err;
8617 }
8618 EXPORT_SYMBOL(dev_set_promiscuity);
8619
8620 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8621 {
8622         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8623
8624         ASSERT_RTNL();
8625
8626         dev->flags |= IFF_ALLMULTI;
8627         dev->allmulti += inc;
8628         if (dev->allmulti == 0) {
8629                 /*
8630                  * Avoid overflow.
8631                  * If inc causes overflow, untouch allmulti and return error.
8632                  */
8633                 if (inc < 0)
8634                         dev->flags &= ~IFF_ALLMULTI;
8635                 else {
8636                         dev->allmulti -= inc;
8637                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8638                                 dev->name);
8639                         return -EOVERFLOW;
8640                 }
8641         }
8642         if (dev->flags ^ old_flags) {
8643                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8644                 dev_set_rx_mode(dev);
8645                 if (notify)
8646                         __dev_notify_flags(dev, old_flags,
8647                                            dev->gflags ^ old_gflags);
8648         }
8649         return 0;
8650 }
8651
8652 /**
8653  *      dev_set_allmulti        - update allmulti count on a device
8654  *      @dev: device
8655  *      @inc: modifier
8656  *
8657  *      Add or remove reception of all multicast frames to a device. While the
8658  *      count in the device remains above zero the interface remains listening
8659  *      to all interfaces. Once it hits zero the device reverts back to normal
8660  *      filtering operation. A negative @inc value is used to drop the counter
8661  *      when releasing a resource needing all multicasts.
8662  *      Return 0 if successful or a negative errno code on error.
8663  */
8664
8665 int dev_set_allmulti(struct net_device *dev, int inc)
8666 {
8667         return __dev_set_allmulti(dev, inc, true);
8668 }
8669 EXPORT_SYMBOL(dev_set_allmulti);
8670
8671 /*
8672  *      Upload unicast and multicast address lists to device and
8673  *      configure RX filtering. When the device doesn't support unicast
8674  *      filtering it is put in promiscuous mode while unicast addresses
8675  *      are present.
8676  */
8677 void __dev_set_rx_mode(struct net_device *dev)
8678 {
8679         const struct net_device_ops *ops = dev->netdev_ops;
8680
8681         /* dev_open will call this function so the list will stay sane. */
8682         if (!(dev->flags&IFF_UP))
8683                 return;
8684
8685         if (!netif_device_present(dev))
8686                 return;
8687
8688         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8689                 /* Unicast addresses changes may only happen under the rtnl,
8690                  * therefore calling __dev_set_promiscuity here is safe.
8691                  */
8692                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8693                         __dev_set_promiscuity(dev, 1, false);
8694                         dev->uc_promisc = true;
8695                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8696                         __dev_set_promiscuity(dev, -1, false);
8697                         dev->uc_promisc = false;
8698                 }
8699         }
8700
8701         if (ops->ndo_set_rx_mode)
8702                 ops->ndo_set_rx_mode(dev);
8703 }
8704
8705 void dev_set_rx_mode(struct net_device *dev)
8706 {
8707         netif_addr_lock_bh(dev);
8708         __dev_set_rx_mode(dev);
8709         netif_addr_unlock_bh(dev);
8710 }
8711
8712 /**
8713  *      dev_get_flags - get flags reported to userspace
8714  *      @dev: device
8715  *
8716  *      Get the combination of flag bits exported through APIs to userspace.
8717  */
8718 unsigned int dev_get_flags(const struct net_device *dev)
8719 {
8720         unsigned int flags;
8721
8722         flags = (dev->flags & ~(IFF_PROMISC |
8723                                 IFF_ALLMULTI |
8724                                 IFF_RUNNING |
8725                                 IFF_LOWER_UP |
8726                                 IFF_DORMANT)) |
8727                 (dev->gflags & (IFF_PROMISC |
8728                                 IFF_ALLMULTI));
8729
8730         if (netif_running(dev)) {
8731                 if (netif_oper_up(dev))
8732                         flags |= IFF_RUNNING;
8733                 if (netif_carrier_ok(dev))
8734                         flags |= IFF_LOWER_UP;
8735                 if (netif_dormant(dev))
8736                         flags |= IFF_DORMANT;
8737         }
8738
8739         return flags;
8740 }
8741 EXPORT_SYMBOL(dev_get_flags);
8742
8743 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8744                        struct netlink_ext_ack *extack)
8745 {
8746         unsigned int old_flags = dev->flags;
8747         int ret;
8748
8749         ASSERT_RTNL();
8750
8751         /*
8752          *      Set the flags on our device.
8753          */
8754
8755         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8756                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8757                                IFF_AUTOMEDIA)) |
8758                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8759                                     IFF_ALLMULTI));
8760
8761         /*
8762          *      Load in the correct multicast list now the flags have changed.
8763          */
8764
8765         if ((old_flags ^ flags) & IFF_MULTICAST)
8766                 dev_change_rx_flags(dev, IFF_MULTICAST);
8767
8768         dev_set_rx_mode(dev);
8769
8770         /*
8771          *      Have we downed the interface. We handle IFF_UP ourselves
8772          *      according to user attempts to set it, rather than blindly
8773          *      setting it.
8774          */
8775
8776         ret = 0;
8777         if ((old_flags ^ flags) & IFF_UP) {
8778                 if (old_flags & IFF_UP)
8779                         __dev_close(dev);
8780                 else
8781                         ret = __dev_open(dev, extack);
8782         }
8783
8784         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8785                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8786                 unsigned int old_flags = dev->flags;
8787
8788                 dev->gflags ^= IFF_PROMISC;
8789
8790                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8791                         if (dev->flags != old_flags)
8792                                 dev_set_rx_mode(dev);
8793         }
8794
8795         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8796          * is important. Some (broken) drivers set IFF_PROMISC, when
8797          * IFF_ALLMULTI is requested not asking us and not reporting.
8798          */
8799         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8800                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8801
8802                 dev->gflags ^= IFF_ALLMULTI;
8803                 __dev_set_allmulti(dev, inc, false);
8804         }
8805
8806         return ret;
8807 }
8808
8809 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8810                         unsigned int gchanges)
8811 {
8812         unsigned int changes = dev->flags ^ old_flags;
8813
8814         if (gchanges)
8815                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8816
8817         if (changes & IFF_UP) {
8818                 if (dev->flags & IFF_UP)
8819                         call_netdevice_notifiers(NETDEV_UP, dev);
8820                 else
8821                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8822         }
8823
8824         if (dev->flags & IFF_UP &&
8825             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8826                 struct netdev_notifier_change_info change_info = {
8827                         .info = {
8828                                 .dev = dev,
8829                         },
8830                         .flags_changed = changes,
8831                 };
8832
8833                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8834         }
8835 }
8836
8837 /**
8838  *      dev_change_flags - change device settings
8839  *      @dev: device
8840  *      @flags: device state flags
8841  *      @extack: netlink extended ack
8842  *
8843  *      Change settings on device based state flags. The flags are
8844  *      in the userspace exported format.
8845  */
8846 int dev_change_flags(struct net_device *dev, unsigned int flags,
8847                      struct netlink_ext_ack *extack)
8848 {
8849         int ret;
8850         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8851
8852         ret = __dev_change_flags(dev, flags, extack);
8853         if (ret < 0)
8854                 return ret;
8855
8856         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8857         __dev_notify_flags(dev, old_flags, changes);
8858         return ret;
8859 }
8860 EXPORT_SYMBOL(dev_change_flags);
8861
8862 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8863 {
8864         const struct net_device_ops *ops = dev->netdev_ops;
8865
8866         if (ops->ndo_change_mtu)
8867                 return ops->ndo_change_mtu(dev, new_mtu);
8868
8869         /* Pairs with all the lockless reads of dev->mtu in the stack */
8870         WRITE_ONCE(dev->mtu, new_mtu);
8871         return 0;
8872 }
8873 EXPORT_SYMBOL(__dev_set_mtu);
8874
8875 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8876                      struct netlink_ext_ack *extack)
8877 {
8878         /* MTU must be positive, and in range */
8879         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8880                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8881                 return -EINVAL;
8882         }
8883
8884         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8885                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8886                 return -EINVAL;
8887         }
8888         return 0;
8889 }
8890
8891 /**
8892  *      dev_set_mtu_ext - Change maximum transfer unit
8893  *      @dev: device
8894  *      @new_mtu: new transfer unit
8895  *      @extack: netlink extended ack
8896  *
8897  *      Change the maximum transfer size of the network device.
8898  */
8899 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8900                     struct netlink_ext_ack *extack)
8901 {
8902         int err, orig_mtu;
8903
8904         if (new_mtu == dev->mtu)
8905                 return 0;
8906
8907         err = dev_validate_mtu(dev, new_mtu, extack);
8908         if (err)
8909                 return err;
8910
8911         if (!netif_device_present(dev))
8912                 return -ENODEV;
8913
8914         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8915         err = notifier_to_errno(err);
8916         if (err)
8917                 return err;
8918
8919         orig_mtu = dev->mtu;
8920         err = __dev_set_mtu(dev, new_mtu);
8921
8922         if (!err) {
8923                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8924                                                    orig_mtu);
8925                 err = notifier_to_errno(err);
8926                 if (err) {
8927                         /* setting mtu back and notifying everyone again,
8928                          * so that they have a chance to revert changes.
8929                          */
8930                         __dev_set_mtu(dev, orig_mtu);
8931                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8932                                                      new_mtu);
8933                 }
8934         }
8935         return err;
8936 }
8937
8938 int dev_set_mtu(struct net_device *dev, int new_mtu)
8939 {
8940         struct netlink_ext_ack extack;
8941         int err;
8942
8943         memset(&extack, 0, sizeof(extack));
8944         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8945         if (err && extack._msg)
8946                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8947         return err;
8948 }
8949 EXPORT_SYMBOL(dev_set_mtu);
8950
8951 /**
8952  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8953  *      @dev: device
8954  *      @new_len: new tx queue length
8955  */
8956 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8957 {
8958         unsigned int orig_len = dev->tx_queue_len;
8959         int res;
8960
8961         if (new_len != (unsigned int)new_len)
8962                 return -ERANGE;
8963
8964         if (new_len != orig_len) {
8965                 dev->tx_queue_len = new_len;
8966                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8967                 res = notifier_to_errno(res);
8968                 if (res)
8969                         goto err_rollback;
8970                 res = dev_qdisc_change_tx_queue_len(dev);
8971                 if (res)
8972                         goto err_rollback;
8973         }
8974
8975         return 0;
8976
8977 err_rollback:
8978         netdev_err(dev, "refused to change device tx_queue_len\n");
8979         dev->tx_queue_len = orig_len;
8980         return res;
8981 }
8982
8983 /**
8984  *      dev_set_group - Change group this device belongs to
8985  *      @dev: device
8986  *      @new_group: group this device should belong to
8987  */
8988 void dev_set_group(struct net_device *dev, int new_group)
8989 {
8990         dev->group = new_group;
8991 }
8992 EXPORT_SYMBOL(dev_set_group);
8993
8994 /**
8995  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8996  *      @dev: device
8997  *      @addr: new address
8998  *      @extack: netlink extended ack
8999  */
9000 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9001                               struct netlink_ext_ack *extack)
9002 {
9003         struct netdev_notifier_pre_changeaddr_info info = {
9004                 .info.dev = dev,
9005                 .info.extack = extack,
9006                 .dev_addr = addr,
9007         };
9008         int rc;
9009
9010         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9011         return notifier_to_errno(rc);
9012 }
9013 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9014
9015 /**
9016  *      dev_set_mac_address - Change Media Access Control Address
9017  *      @dev: device
9018  *      @sa: new address
9019  *      @extack: netlink extended ack
9020  *
9021  *      Change the hardware (MAC) address of the device
9022  */
9023 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9024                         struct netlink_ext_ack *extack)
9025 {
9026         const struct net_device_ops *ops = dev->netdev_ops;
9027         int err;
9028
9029         if (!ops->ndo_set_mac_address)
9030                 return -EOPNOTSUPP;
9031         if (sa->sa_family != dev->type)
9032                 return -EINVAL;
9033         if (!netif_device_present(dev))
9034                 return -ENODEV;
9035         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9036         if (err)
9037                 return err;
9038         err = ops->ndo_set_mac_address(dev, sa);
9039         if (err)
9040                 return err;
9041         dev->addr_assign_type = NET_ADDR_SET;
9042         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9043         add_device_randomness(dev->dev_addr, dev->addr_len);
9044         return 0;
9045 }
9046 EXPORT_SYMBOL(dev_set_mac_address);
9047
9048 static DECLARE_RWSEM(dev_addr_sem);
9049
9050 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9051                              struct netlink_ext_ack *extack)
9052 {
9053         int ret;
9054
9055         down_write(&dev_addr_sem);
9056         ret = dev_set_mac_address(dev, sa, extack);
9057         up_write(&dev_addr_sem);
9058         return ret;
9059 }
9060 EXPORT_SYMBOL(dev_set_mac_address_user);
9061
9062 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9063 {
9064         size_t size = sizeof(sa->sa_data);
9065         struct net_device *dev;
9066         int ret = 0;
9067
9068         down_read(&dev_addr_sem);
9069         rcu_read_lock();
9070
9071         dev = dev_get_by_name_rcu(net, dev_name);
9072         if (!dev) {
9073                 ret = -ENODEV;
9074                 goto unlock;
9075         }
9076         if (!dev->addr_len)
9077                 memset(sa->sa_data, 0, size);
9078         else
9079                 memcpy(sa->sa_data, dev->dev_addr,
9080                        min_t(size_t, size, dev->addr_len));
9081         sa->sa_family = dev->type;
9082
9083 unlock:
9084         rcu_read_unlock();
9085         up_read(&dev_addr_sem);
9086         return ret;
9087 }
9088 EXPORT_SYMBOL(dev_get_mac_address);
9089
9090 /**
9091  *      dev_change_carrier - Change device carrier
9092  *      @dev: device
9093  *      @new_carrier: new value
9094  *
9095  *      Change device carrier
9096  */
9097 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9098 {
9099         const struct net_device_ops *ops = dev->netdev_ops;
9100
9101         if (!ops->ndo_change_carrier)
9102                 return -EOPNOTSUPP;
9103         if (!netif_device_present(dev))
9104                 return -ENODEV;
9105         return ops->ndo_change_carrier(dev, new_carrier);
9106 }
9107 EXPORT_SYMBOL(dev_change_carrier);
9108
9109 /**
9110  *      dev_get_phys_port_id - Get device physical port ID
9111  *      @dev: device
9112  *      @ppid: port ID
9113  *
9114  *      Get device physical port ID
9115  */
9116 int dev_get_phys_port_id(struct net_device *dev,
9117                          struct netdev_phys_item_id *ppid)
9118 {
9119         const struct net_device_ops *ops = dev->netdev_ops;
9120
9121         if (!ops->ndo_get_phys_port_id)
9122                 return -EOPNOTSUPP;
9123         return ops->ndo_get_phys_port_id(dev, ppid);
9124 }
9125 EXPORT_SYMBOL(dev_get_phys_port_id);
9126
9127 /**
9128  *      dev_get_phys_port_name - Get device physical port name
9129  *      @dev: device
9130  *      @name: port name
9131  *      @len: limit of bytes to copy to name
9132  *
9133  *      Get device physical port name
9134  */
9135 int dev_get_phys_port_name(struct net_device *dev,
9136                            char *name, size_t len)
9137 {
9138         const struct net_device_ops *ops = dev->netdev_ops;
9139         int err;
9140
9141         if (ops->ndo_get_phys_port_name) {
9142                 err = ops->ndo_get_phys_port_name(dev, name, len);
9143                 if (err != -EOPNOTSUPP)
9144                         return err;
9145         }
9146         return devlink_compat_phys_port_name_get(dev, name, len);
9147 }
9148 EXPORT_SYMBOL(dev_get_phys_port_name);
9149
9150 /**
9151  *      dev_get_port_parent_id - Get the device's port parent identifier
9152  *      @dev: network device
9153  *      @ppid: pointer to a storage for the port's parent identifier
9154  *      @recurse: allow/disallow recursion to lower devices
9155  *
9156  *      Get the devices's port parent identifier
9157  */
9158 int dev_get_port_parent_id(struct net_device *dev,
9159                            struct netdev_phys_item_id *ppid,
9160                            bool recurse)
9161 {
9162         const struct net_device_ops *ops = dev->netdev_ops;
9163         struct netdev_phys_item_id first = { };
9164         struct net_device *lower_dev;
9165         struct list_head *iter;
9166         int err;
9167
9168         if (ops->ndo_get_port_parent_id) {
9169                 err = ops->ndo_get_port_parent_id(dev, ppid);
9170                 if (err != -EOPNOTSUPP)
9171                         return err;
9172         }
9173
9174         err = devlink_compat_switch_id_get(dev, ppid);
9175         if (!err || err != -EOPNOTSUPP)
9176                 return err;
9177
9178         if (!recurse)
9179                 return -EOPNOTSUPP;
9180
9181         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9182                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9183                 if (err)
9184                         break;
9185                 if (!first.id_len)
9186                         first = *ppid;
9187                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9188                         return -EOPNOTSUPP;
9189         }
9190
9191         return err;
9192 }
9193 EXPORT_SYMBOL(dev_get_port_parent_id);
9194
9195 /**
9196  *      netdev_port_same_parent_id - Indicate if two network devices have
9197  *      the same port parent identifier
9198  *      @a: first network device
9199  *      @b: second network device
9200  */
9201 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9202 {
9203         struct netdev_phys_item_id a_id = { };
9204         struct netdev_phys_item_id b_id = { };
9205
9206         if (dev_get_port_parent_id(a, &a_id, true) ||
9207             dev_get_port_parent_id(b, &b_id, true))
9208                 return false;
9209
9210         return netdev_phys_item_id_same(&a_id, &b_id);
9211 }
9212 EXPORT_SYMBOL(netdev_port_same_parent_id);
9213
9214 /**
9215  *      dev_change_proto_down - update protocol port state information
9216  *      @dev: device
9217  *      @proto_down: new value
9218  *
9219  *      This info can be used by switch drivers to set the phys state of the
9220  *      port.
9221  */
9222 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9223 {
9224         const struct net_device_ops *ops = dev->netdev_ops;
9225
9226         if (!ops->ndo_change_proto_down)
9227                 return -EOPNOTSUPP;
9228         if (!netif_device_present(dev))
9229                 return -ENODEV;
9230         return ops->ndo_change_proto_down(dev, proto_down);
9231 }
9232 EXPORT_SYMBOL(dev_change_proto_down);
9233
9234 /**
9235  *      dev_change_proto_down_generic - generic implementation for
9236  *      ndo_change_proto_down that sets carrier according to
9237  *      proto_down.
9238  *
9239  *      @dev: device
9240  *      @proto_down: new value
9241  */
9242 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9243 {
9244         if (proto_down)
9245                 netif_carrier_off(dev);
9246         else
9247                 netif_carrier_on(dev);
9248         dev->proto_down = proto_down;
9249         return 0;
9250 }
9251 EXPORT_SYMBOL(dev_change_proto_down_generic);
9252
9253 /**
9254  *      dev_change_proto_down_reason - proto down reason
9255  *
9256  *      @dev: device
9257  *      @mask: proto down mask
9258  *      @value: proto down value
9259  */
9260 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9261                                   u32 value)
9262 {
9263         int b;
9264
9265         if (!mask) {
9266                 dev->proto_down_reason = value;
9267         } else {
9268                 for_each_set_bit(b, &mask, 32) {
9269                         if (value & (1 << b))
9270                                 dev->proto_down_reason |= BIT(b);
9271                         else
9272                                 dev->proto_down_reason &= ~BIT(b);
9273                 }
9274         }
9275 }
9276 EXPORT_SYMBOL(dev_change_proto_down_reason);
9277
9278 struct bpf_xdp_link {
9279         struct bpf_link link;
9280         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9281         int flags;
9282 };
9283
9284 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9285 {
9286         if (flags & XDP_FLAGS_HW_MODE)
9287                 return XDP_MODE_HW;
9288         if (flags & XDP_FLAGS_DRV_MODE)
9289                 return XDP_MODE_DRV;
9290         if (flags & XDP_FLAGS_SKB_MODE)
9291                 return XDP_MODE_SKB;
9292         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9293 }
9294
9295 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9296 {
9297         switch (mode) {
9298         case XDP_MODE_SKB:
9299                 return generic_xdp_install;
9300         case XDP_MODE_DRV:
9301         case XDP_MODE_HW:
9302                 return dev->netdev_ops->ndo_bpf;
9303         default:
9304                 return NULL;
9305         }
9306 }
9307
9308 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9309                                          enum bpf_xdp_mode mode)
9310 {
9311         return dev->xdp_state[mode].link;
9312 }
9313
9314 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9315                                      enum bpf_xdp_mode mode)
9316 {
9317         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9318
9319         if (link)
9320                 return link->link.prog;
9321         return dev->xdp_state[mode].prog;
9322 }
9323
9324 u8 dev_xdp_prog_count(struct net_device *dev)
9325 {
9326         u8 count = 0;
9327         int i;
9328
9329         for (i = 0; i < __MAX_XDP_MODE; i++)
9330                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9331                         count++;
9332         return count;
9333 }
9334 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9335
9336 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9337 {
9338         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9339
9340         return prog ? prog->aux->id : 0;
9341 }
9342
9343 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9344                              struct bpf_xdp_link *link)
9345 {
9346         dev->xdp_state[mode].link = link;
9347         dev->xdp_state[mode].prog = NULL;
9348 }
9349
9350 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9351                              struct bpf_prog *prog)
9352 {
9353         dev->xdp_state[mode].link = NULL;
9354         dev->xdp_state[mode].prog = prog;
9355 }
9356
9357 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9358                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9359                            u32 flags, struct bpf_prog *prog)
9360 {
9361         struct netdev_bpf xdp;
9362         int err;
9363
9364         memset(&xdp, 0, sizeof(xdp));
9365         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9366         xdp.extack = extack;
9367         xdp.flags = flags;
9368         xdp.prog = prog;
9369
9370         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9371          * "moved" into driver), so they don't increment it on their own, but
9372          * they do decrement refcnt when program is detached or replaced.
9373          * Given net_device also owns link/prog, we need to bump refcnt here
9374          * to prevent drivers from underflowing it.
9375          */
9376         if (prog)
9377                 bpf_prog_inc(prog);
9378         err = bpf_op(dev, &xdp);
9379         if (err) {
9380                 if (prog)
9381                         bpf_prog_put(prog);
9382                 return err;
9383         }
9384
9385         if (mode != XDP_MODE_HW)
9386                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9387
9388         return 0;
9389 }
9390
9391 static void dev_xdp_uninstall(struct net_device *dev)
9392 {
9393         struct bpf_xdp_link *link;
9394         struct bpf_prog *prog;
9395         enum bpf_xdp_mode mode;
9396         bpf_op_t bpf_op;
9397
9398         ASSERT_RTNL();
9399
9400         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9401                 prog = dev_xdp_prog(dev, mode);
9402                 if (!prog)
9403                         continue;
9404
9405                 bpf_op = dev_xdp_bpf_op(dev, mode);
9406                 if (!bpf_op)
9407                         continue;
9408
9409                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9410
9411                 /* auto-detach link from net device */
9412                 link = dev_xdp_link(dev, mode);
9413                 if (link)
9414                         link->dev = NULL;
9415                 else
9416                         bpf_prog_put(prog);
9417
9418                 dev_xdp_set_link(dev, mode, NULL);
9419         }
9420 }
9421
9422 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9423                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9424                           struct bpf_prog *old_prog, u32 flags)
9425 {
9426         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9427         struct bpf_prog *cur_prog;
9428         struct net_device *upper;
9429         struct list_head *iter;
9430         enum bpf_xdp_mode mode;
9431         bpf_op_t bpf_op;
9432         int err;
9433
9434         ASSERT_RTNL();
9435
9436         /* either link or prog attachment, never both */
9437         if (link && (new_prog || old_prog))
9438                 return -EINVAL;
9439         /* link supports only XDP mode flags */
9440         if (link && (flags & ~XDP_FLAGS_MODES)) {
9441                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9442                 return -EINVAL;
9443         }
9444         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9445         if (num_modes > 1) {
9446                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9447                 return -EINVAL;
9448         }
9449         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9450         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9451                 NL_SET_ERR_MSG(extack,
9452                                "More than one program loaded, unset mode is ambiguous");
9453                 return -EINVAL;
9454         }
9455         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9456         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9457                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9458                 return -EINVAL;
9459         }
9460
9461         mode = dev_xdp_mode(dev, flags);
9462         /* can't replace attached link */
9463         if (dev_xdp_link(dev, mode)) {
9464                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9465                 return -EBUSY;
9466         }
9467
9468         /* don't allow if an upper device already has a program */
9469         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9470                 if (dev_xdp_prog_count(upper) > 0) {
9471                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9472                         return -EEXIST;
9473                 }
9474         }
9475
9476         cur_prog = dev_xdp_prog(dev, mode);
9477         /* can't replace attached prog with link */
9478         if (link && cur_prog) {
9479                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9480                 return -EBUSY;
9481         }
9482         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9483                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9484                 return -EEXIST;
9485         }
9486
9487         /* put effective new program into new_prog */
9488         if (link)
9489                 new_prog = link->link.prog;
9490
9491         if (new_prog) {
9492                 bool offload = mode == XDP_MODE_HW;
9493                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9494                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9495
9496                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9497                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9498                         return -EBUSY;
9499                 }
9500                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9501                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9502                         return -EEXIST;
9503                 }
9504                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9505                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9506                         return -EINVAL;
9507                 }
9508                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9509                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9510                         return -EINVAL;
9511                 }
9512                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9513                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9514                         return -EINVAL;
9515                 }
9516         }
9517
9518         /* don't call drivers if the effective program didn't change */
9519         if (new_prog != cur_prog) {
9520                 bpf_op = dev_xdp_bpf_op(dev, mode);
9521                 if (!bpf_op) {
9522                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9523                         return -EOPNOTSUPP;
9524                 }
9525
9526                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9527                 if (err)
9528                         return err;
9529         }
9530
9531         if (link)
9532                 dev_xdp_set_link(dev, mode, link);
9533         else
9534                 dev_xdp_set_prog(dev, mode, new_prog);
9535         if (cur_prog)
9536                 bpf_prog_put(cur_prog);
9537
9538         return 0;
9539 }
9540
9541 static int dev_xdp_attach_link(struct net_device *dev,
9542                                struct netlink_ext_ack *extack,
9543                                struct bpf_xdp_link *link)
9544 {
9545         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9546 }
9547
9548 static int dev_xdp_detach_link(struct net_device *dev,
9549                                struct netlink_ext_ack *extack,
9550                                struct bpf_xdp_link *link)
9551 {
9552         enum bpf_xdp_mode mode;
9553         bpf_op_t bpf_op;
9554
9555         ASSERT_RTNL();
9556
9557         mode = dev_xdp_mode(dev, link->flags);
9558         if (dev_xdp_link(dev, mode) != link)
9559                 return -EINVAL;
9560
9561         bpf_op = dev_xdp_bpf_op(dev, mode);
9562         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9563         dev_xdp_set_link(dev, mode, NULL);
9564         return 0;
9565 }
9566
9567 static void bpf_xdp_link_release(struct bpf_link *link)
9568 {
9569         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9570
9571         rtnl_lock();
9572
9573         /* if racing with net_device's tear down, xdp_link->dev might be
9574          * already NULL, in which case link was already auto-detached
9575          */
9576         if (xdp_link->dev) {
9577                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9578                 xdp_link->dev = NULL;
9579         }
9580
9581         rtnl_unlock();
9582 }
9583
9584 static int bpf_xdp_link_detach(struct bpf_link *link)
9585 {
9586         bpf_xdp_link_release(link);
9587         return 0;
9588 }
9589
9590 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9591 {
9592         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9593
9594         kfree(xdp_link);
9595 }
9596
9597 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9598                                      struct seq_file *seq)
9599 {
9600         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9601         u32 ifindex = 0;
9602
9603         rtnl_lock();
9604         if (xdp_link->dev)
9605                 ifindex = xdp_link->dev->ifindex;
9606         rtnl_unlock();
9607
9608         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9609 }
9610
9611 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9612                                        struct bpf_link_info *info)
9613 {
9614         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9615         u32 ifindex = 0;
9616
9617         rtnl_lock();
9618         if (xdp_link->dev)
9619                 ifindex = xdp_link->dev->ifindex;
9620         rtnl_unlock();
9621
9622         info->xdp.ifindex = ifindex;
9623         return 0;
9624 }
9625
9626 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9627                                struct bpf_prog *old_prog)
9628 {
9629         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9630         enum bpf_xdp_mode mode;
9631         bpf_op_t bpf_op;
9632         int err = 0;
9633
9634         rtnl_lock();
9635
9636         /* link might have been auto-released already, so fail */
9637         if (!xdp_link->dev) {
9638                 err = -ENOLINK;
9639                 goto out_unlock;
9640         }
9641
9642         if (old_prog && link->prog != old_prog) {
9643                 err = -EPERM;
9644                 goto out_unlock;
9645         }
9646         old_prog = link->prog;
9647         if (old_prog->type != new_prog->type ||
9648             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9649                 err = -EINVAL;
9650                 goto out_unlock;
9651         }
9652
9653         if (old_prog == new_prog) {
9654                 /* no-op, don't disturb drivers */
9655                 bpf_prog_put(new_prog);
9656                 goto out_unlock;
9657         }
9658
9659         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9660         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9661         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9662                               xdp_link->flags, new_prog);
9663         if (err)
9664                 goto out_unlock;
9665
9666         old_prog = xchg(&link->prog, new_prog);
9667         bpf_prog_put(old_prog);
9668
9669 out_unlock:
9670         rtnl_unlock();
9671         return err;
9672 }
9673
9674 static const struct bpf_link_ops bpf_xdp_link_lops = {
9675         .release = bpf_xdp_link_release,
9676         .dealloc = bpf_xdp_link_dealloc,
9677         .detach = bpf_xdp_link_detach,
9678         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9679         .fill_link_info = bpf_xdp_link_fill_link_info,
9680         .update_prog = bpf_xdp_link_update,
9681 };
9682
9683 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9684 {
9685         struct net *net = current->nsproxy->net_ns;
9686         struct bpf_link_primer link_primer;
9687         struct bpf_xdp_link *link;
9688         struct net_device *dev;
9689         int err, fd;
9690
9691         rtnl_lock();
9692         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9693         if (!dev) {
9694                 rtnl_unlock();
9695                 return -EINVAL;
9696         }
9697
9698         link = kzalloc(sizeof(*link), GFP_USER);
9699         if (!link) {
9700                 err = -ENOMEM;
9701                 goto unlock;
9702         }
9703
9704         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9705         link->dev = dev;
9706         link->flags = attr->link_create.flags;
9707
9708         err = bpf_link_prime(&link->link, &link_primer);
9709         if (err) {
9710                 kfree(link);
9711                 goto unlock;
9712         }
9713
9714         err = dev_xdp_attach_link(dev, NULL, link);
9715         rtnl_unlock();
9716
9717         if (err) {
9718                 link->dev = NULL;
9719                 bpf_link_cleanup(&link_primer);
9720                 goto out_put_dev;
9721         }
9722
9723         fd = bpf_link_settle(&link_primer);
9724         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9725         dev_put(dev);
9726         return fd;
9727
9728 unlock:
9729         rtnl_unlock();
9730
9731 out_put_dev:
9732         dev_put(dev);
9733         return err;
9734 }
9735
9736 /**
9737  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9738  *      @dev: device
9739  *      @extack: netlink extended ack
9740  *      @fd: new program fd or negative value to clear
9741  *      @expected_fd: old program fd that userspace expects to replace or clear
9742  *      @flags: xdp-related flags
9743  *
9744  *      Set or clear a bpf program for a device
9745  */
9746 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9747                       int fd, int expected_fd, u32 flags)
9748 {
9749         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9750         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9751         int err;
9752
9753         ASSERT_RTNL();
9754
9755         if (fd >= 0) {
9756                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9757                                                  mode != XDP_MODE_SKB);
9758                 if (IS_ERR(new_prog))
9759                         return PTR_ERR(new_prog);
9760         }
9761
9762         if (expected_fd >= 0) {
9763                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9764                                                  mode != XDP_MODE_SKB);
9765                 if (IS_ERR(old_prog)) {
9766                         err = PTR_ERR(old_prog);
9767                         old_prog = NULL;
9768                         goto err_out;
9769                 }
9770         }
9771
9772         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9773
9774 err_out:
9775         if (err && new_prog)
9776                 bpf_prog_put(new_prog);
9777         if (old_prog)
9778                 bpf_prog_put(old_prog);
9779         return err;
9780 }
9781
9782 /**
9783  *      dev_new_index   -       allocate an ifindex
9784  *      @net: the applicable net namespace
9785  *
9786  *      Returns a suitable unique value for a new device interface
9787  *      number.  The caller must hold the rtnl semaphore or the
9788  *      dev_base_lock to be sure it remains unique.
9789  */
9790 static int dev_new_index(struct net *net)
9791 {
9792         int ifindex = net->ifindex;
9793
9794         for (;;) {
9795                 if (++ifindex <= 0)
9796                         ifindex = 1;
9797                 if (!__dev_get_by_index(net, ifindex))
9798                         return net->ifindex = ifindex;
9799         }
9800 }
9801
9802 /* Delayed registration/unregisteration */
9803 static LIST_HEAD(net_todo_list);
9804 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9805
9806 static void net_set_todo(struct net_device *dev)
9807 {
9808         list_add_tail(&dev->todo_list, &net_todo_list);
9809         dev_net(dev)->dev_unreg_count++;
9810 }
9811
9812 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9813         struct net_device *upper, netdev_features_t features)
9814 {
9815         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9816         netdev_features_t feature;
9817         int feature_bit;
9818
9819         for_each_netdev_feature(upper_disables, feature_bit) {
9820                 feature = __NETIF_F_BIT(feature_bit);
9821                 if (!(upper->wanted_features & feature)
9822                     && (features & feature)) {
9823                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9824                                    &feature, upper->name);
9825                         features &= ~feature;
9826                 }
9827         }
9828
9829         return features;
9830 }
9831
9832 static void netdev_sync_lower_features(struct net_device *upper,
9833         struct net_device *lower, netdev_features_t features)
9834 {
9835         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9836         netdev_features_t feature;
9837         int feature_bit;
9838
9839         for_each_netdev_feature(upper_disables, feature_bit) {
9840                 feature = __NETIF_F_BIT(feature_bit);
9841                 if (!(features & feature) && (lower->features & feature)) {
9842                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9843                                    &feature, lower->name);
9844                         lower->wanted_features &= ~feature;
9845                         __netdev_update_features(lower);
9846
9847                         if (unlikely(lower->features & feature))
9848                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9849                                             &feature, lower->name);
9850                         else
9851                                 netdev_features_change(lower);
9852                 }
9853         }
9854 }
9855
9856 static netdev_features_t netdev_fix_features(struct net_device *dev,
9857         netdev_features_t features)
9858 {
9859         /* Fix illegal checksum combinations */
9860         if ((features & NETIF_F_HW_CSUM) &&
9861             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9862                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9863                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9864         }
9865
9866         /* TSO requires that SG is present as well. */
9867         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9868                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9869                 features &= ~NETIF_F_ALL_TSO;
9870         }
9871
9872         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9873                                         !(features & NETIF_F_IP_CSUM)) {
9874                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9875                 features &= ~NETIF_F_TSO;
9876                 features &= ~NETIF_F_TSO_ECN;
9877         }
9878
9879         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9880                                          !(features & NETIF_F_IPV6_CSUM)) {
9881                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9882                 features &= ~NETIF_F_TSO6;
9883         }
9884
9885         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9886         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9887                 features &= ~NETIF_F_TSO_MANGLEID;
9888
9889         /* TSO ECN requires that TSO is present as well. */
9890         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9891                 features &= ~NETIF_F_TSO_ECN;
9892
9893         /* Software GSO depends on SG. */
9894         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9895                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9896                 features &= ~NETIF_F_GSO;
9897         }
9898
9899         /* GSO partial features require GSO partial be set */
9900         if ((features & dev->gso_partial_features) &&
9901             !(features & NETIF_F_GSO_PARTIAL)) {
9902                 netdev_dbg(dev,
9903                            "Dropping partially supported GSO features since no GSO partial.\n");
9904                 features &= ~dev->gso_partial_features;
9905         }
9906
9907         if (!(features & NETIF_F_RXCSUM)) {
9908                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9909                  * successfully merged by hardware must also have the
9910                  * checksum verified by hardware.  If the user does not
9911                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9912                  */
9913                 if (features & NETIF_F_GRO_HW) {
9914                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9915                         features &= ~NETIF_F_GRO_HW;
9916                 }
9917         }
9918
9919         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9920         if (features & NETIF_F_RXFCS) {
9921                 if (features & NETIF_F_LRO) {
9922                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9923                         features &= ~NETIF_F_LRO;
9924                 }
9925
9926                 if (features & NETIF_F_GRO_HW) {
9927                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9928                         features &= ~NETIF_F_GRO_HW;
9929                 }
9930         }
9931
9932         if (features & NETIF_F_HW_TLS_TX) {
9933                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9934                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9935                 bool hw_csum = features & NETIF_F_HW_CSUM;
9936
9937                 if (!ip_csum && !hw_csum) {
9938                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9939                         features &= ~NETIF_F_HW_TLS_TX;
9940                 }
9941         }
9942
9943         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9944                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9945                 features &= ~NETIF_F_HW_TLS_RX;
9946         }
9947
9948         return features;
9949 }
9950
9951 int __netdev_update_features(struct net_device *dev)
9952 {
9953         struct net_device *upper, *lower;
9954         netdev_features_t features;
9955         struct list_head *iter;
9956         int err = -1;
9957
9958         ASSERT_RTNL();
9959
9960         features = netdev_get_wanted_features(dev);
9961
9962         if (dev->netdev_ops->ndo_fix_features)
9963                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9964
9965         /* driver might be less strict about feature dependencies */
9966         features = netdev_fix_features(dev, features);
9967
9968         /* some features can't be enabled if they're off on an upper device */
9969         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9970                 features = netdev_sync_upper_features(dev, upper, features);
9971
9972         if (dev->features == features)
9973                 goto sync_lower;
9974
9975         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9976                 &dev->features, &features);
9977
9978         if (dev->netdev_ops->ndo_set_features)
9979                 err = dev->netdev_ops->ndo_set_features(dev, features);
9980         else
9981                 err = 0;
9982
9983         if (unlikely(err < 0)) {
9984                 netdev_err(dev,
9985                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9986                         err, &features, &dev->features);
9987                 /* return non-0 since some features might have changed and
9988                  * it's better to fire a spurious notification than miss it
9989                  */
9990                 return -1;
9991         }
9992
9993 sync_lower:
9994         /* some features must be disabled on lower devices when disabled
9995          * on an upper device (think: bonding master or bridge)
9996          */
9997         netdev_for_each_lower_dev(dev, lower, iter)
9998                 netdev_sync_lower_features(dev, lower, features);
9999
10000         if (!err) {
10001                 netdev_features_t diff = features ^ dev->features;
10002
10003                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10004                         /* udp_tunnel_{get,drop}_rx_info both need
10005                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10006                          * device, or they won't do anything.
10007                          * Thus we need to update dev->features
10008                          * *before* calling udp_tunnel_get_rx_info,
10009                          * but *after* calling udp_tunnel_drop_rx_info.
10010                          */
10011                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10012                                 dev->features = features;
10013                                 udp_tunnel_get_rx_info(dev);
10014                         } else {
10015                                 udp_tunnel_drop_rx_info(dev);
10016                         }
10017                 }
10018
10019                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10020                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10021                                 dev->features = features;
10022                                 err |= vlan_get_rx_ctag_filter_info(dev);
10023                         } else {
10024                                 vlan_drop_rx_ctag_filter_info(dev);
10025                         }
10026                 }
10027
10028                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10029                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10030                                 dev->features = features;
10031                                 err |= vlan_get_rx_stag_filter_info(dev);
10032                         } else {
10033                                 vlan_drop_rx_stag_filter_info(dev);
10034                         }
10035                 }
10036
10037                 dev->features = features;
10038         }
10039
10040         return err < 0 ? 0 : 1;
10041 }
10042
10043 /**
10044  *      netdev_update_features - recalculate device features
10045  *      @dev: the device to check
10046  *
10047  *      Recalculate dev->features set and send notifications if it
10048  *      has changed. Should be called after driver or hardware dependent
10049  *      conditions might have changed that influence the features.
10050  */
10051 void netdev_update_features(struct net_device *dev)
10052 {
10053         if (__netdev_update_features(dev))
10054                 netdev_features_change(dev);
10055 }
10056 EXPORT_SYMBOL(netdev_update_features);
10057
10058 /**
10059  *      netdev_change_features - recalculate device features
10060  *      @dev: the device to check
10061  *
10062  *      Recalculate dev->features set and send notifications even
10063  *      if they have not changed. Should be called instead of
10064  *      netdev_update_features() if also dev->vlan_features might
10065  *      have changed to allow the changes to be propagated to stacked
10066  *      VLAN devices.
10067  */
10068 void netdev_change_features(struct net_device *dev)
10069 {
10070         __netdev_update_features(dev);
10071         netdev_features_change(dev);
10072 }
10073 EXPORT_SYMBOL(netdev_change_features);
10074
10075 /**
10076  *      netif_stacked_transfer_operstate -      transfer operstate
10077  *      @rootdev: the root or lower level device to transfer state from
10078  *      @dev: the device to transfer operstate to
10079  *
10080  *      Transfer operational state from root to device. This is normally
10081  *      called when a stacking relationship exists between the root
10082  *      device and the device(a leaf device).
10083  */
10084 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10085                                         struct net_device *dev)
10086 {
10087         if (rootdev->operstate == IF_OPER_DORMANT)
10088                 netif_dormant_on(dev);
10089         else
10090                 netif_dormant_off(dev);
10091
10092         if (rootdev->operstate == IF_OPER_TESTING)
10093                 netif_testing_on(dev);
10094         else
10095                 netif_testing_off(dev);
10096
10097         if (netif_carrier_ok(rootdev))
10098                 netif_carrier_on(dev);
10099         else
10100                 netif_carrier_off(dev);
10101 }
10102 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10103
10104 static int netif_alloc_rx_queues(struct net_device *dev)
10105 {
10106         unsigned int i, count = dev->num_rx_queues;
10107         struct netdev_rx_queue *rx;
10108         size_t sz = count * sizeof(*rx);
10109         int err = 0;
10110
10111         BUG_ON(count < 1);
10112
10113         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10114         if (!rx)
10115                 return -ENOMEM;
10116
10117         dev->_rx = rx;
10118
10119         for (i = 0; i < count; i++) {
10120                 rx[i].dev = dev;
10121
10122                 /* XDP RX-queue setup */
10123                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10124                 if (err < 0)
10125                         goto err_rxq_info;
10126         }
10127         return 0;
10128
10129 err_rxq_info:
10130         /* Rollback successful reg's and free other resources */
10131         while (i--)
10132                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10133         kvfree(dev->_rx);
10134         dev->_rx = NULL;
10135         return err;
10136 }
10137
10138 static void netif_free_rx_queues(struct net_device *dev)
10139 {
10140         unsigned int i, count = dev->num_rx_queues;
10141
10142         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10143         if (!dev->_rx)
10144                 return;
10145
10146         for (i = 0; i < count; i++)
10147                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10148
10149         kvfree(dev->_rx);
10150 }
10151
10152 static void netdev_init_one_queue(struct net_device *dev,
10153                                   struct netdev_queue *queue, void *_unused)
10154 {
10155         /* Initialize queue lock */
10156         spin_lock_init(&queue->_xmit_lock);
10157         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10158         queue->xmit_lock_owner = -1;
10159         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10160         queue->dev = dev;
10161 #ifdef CONFIG_BQL
10162         dql_init(&queue->dql, HZ);
10163 #endif
10164 }
10165
10166 static void netif_free_tx_queues(struct net_device *dev)
10167 {
10168         kvfree(dev->_tx);
10169 }
10170
10171 static int netif_alloc_netdev_queues(struct net_device *dev)
10172 {
10173         unsigned int count = dev->num_tx_queues;
10174         struct netdev_queue *tx;
10175         size_t sz = count * sizeof(*tx);
10176
10177         if (count < 1 || count > 0xffff)
10178                 return -EINVAL;
10179
10180         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10181         if (!tx)
10182                 return -ENOMEM;
10183
10184         dev->_tx = tx;
10185
10186         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10187         spin_lock_init(&dev->tx_global_lock);
10188
10189         return 0;
10190 }
10191
10192 void netif_tx_stop_all_queues(struct net_device *dev)
10193 {
10194         unsigned int i;
10195
10196         for (i = 0; i < dev->num_tx_queues; i++) {
10197                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10198
10199                 netif_tx_stop_queue(txq);
10200         }
10201 }
10202 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10203
10204 /**
10205  *      register_netdevice      - register a network device
10206  *      @dev: device to register
10207  *
10208  *      Take a completed network device structure and add it to the kernel
10209  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10210  *      chain. 0 is returned on success. A negative errno code is returned
10211  *      on a failure to set up the device, or if the name is a duplicate.
10212  *
10213  *      Callers must hold the rtnl semaphore. You may want
10214  *      register_netdev() instead of this.
10215  *
10216  *      BUGS:
10217  *      The locking appears insufficient to guarantee two parallel registers
10218  *      will not get the same name.
10219  */
10220
10221 int register_netdevice(struct net_device *dev)
10222 {
10223         int ret;
10224         struct net *net = dev_net(dev);
10225
10226         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10227                      NETDEV_FEATURE_COUNT);
10228         BUG_ON(dev_boot_phase);
10229         ASSERT_RTNL();
10230
10231         might_sleep();
10232
10233         /* When net_device's are persistent, this will be fatal. */
10234         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10235         BUG_ON(!net);
10236
10237         ret = ethtool_check_ops(dev->ethtool_ops);
10238         if (ret)
10239                 return ret;
10240
10241         spin_lock_init(&dev->addr_list_lock);
10242         netdev_set_addr_lockdep_class(dev);
10243
10244         ret = dev_get_valid_name(net, dev, dev->name);
10245         if (ret < 0)
10246                 goto out;
10247
10248         ret = -ENOMEM;
10249         dev->name_node = netdev_name_node_head_alloc(dev);
10250         if (!dev->name_node)
10251                 goto out;
10252
10253         /* Init, if this function is available */
10254         if (dev->netdev_ops->ndo_init) {
10255                 ret = dev->netdev_ops->ndo_init(dev);
10256                 if (ret) {
10257                         if (ret > 0)
10258                                 ret = -EIO;
10259                         goto err_free_name;
10260                 }
10261         }
10262
10263         if (((dev->hw_features | dev->features) &
10264              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10265             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10266              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10267                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10268                 ret = -EINVAL;
10269                 goto err_uninit;
10270         }
10271
10272         ret = -EBUSY;
10273         if (!dev->ifindex)
10274                 dev->ifindex = dev_new_index(net);
10275         else if (__dev_get_by_index(net, dev->ifindex))
10276                 goto err_uninit;
10277
10278         /* Transfer changeable features to wanted_features and enable
10279          * software offloads (GSO and GRO).
10280          */
10281         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10282         dev->features |= NETIF_F_SOFT_FEATURES;
10283
10284         if (dev->udp_tunnel_nic_info) {
10285                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10286                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10287         }
10288
10289         dev->wanted_features = dev->features & dev->hw_features;
10290
10291         if (!(dev->flags & IFF_LOOPBACK))
10292                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10293
10294         /* If IPv4 TCP segmentation offload is supported we should also
10295          * allow the device to enable segmenting the frame with the option
10296          * of ignoring a static IP ID value.  This doesn't enable the
10297          * feature itself but allows the user to enable it later.
10298          */
10299         if (dev->hw_features & NETIF_F_TSO)
10300                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10301         if (dev->vlan_features & NETIF_F_TSO)
10302                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10303         if (dev->mpls_features & NETIF_F_TSO)
10304                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10305         if (dev->hw_enc_features & NETIF_F_TSO)
10306                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10307
10308         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10309          */
10310         dev->vlan_features |= NETIF_F_HIGHDMA;
10311
10312         /* Make NETIF_F_SG inheritable to tunnel devices.
10313          */
10314         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10315
10316         /* Make NETIF_F_SG inheritable to MPLS.
10317          */
10318         dev->mpls_features |= NETIF_F_SG;
10319
10320         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10321         ret = notifier_to_errno(ret);
10322         if (ret)
10323                 goto err_uninit;
10324
10325         ret = netdev_register_kobject(dev);
10326         write_lock(&dev_base_lock);
10327         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10328         write_unlock(&dev_base_lock);
10329         if (ret)
10330                 goto err_uninit;
10331
10332         __netdev_update_features(dev);
10333
10334         /*
10335          *      Default initial state at registry is that the
10336          *      device is present.
10337          */
10338
10339         set_bit(__LINK_STATE_PRESENT, &dev->state);
10340
10341         linkwatch_init_dev(dev);
10342
10343         dev_init_scheduler(dev);
10344         dev_hold(dev);
10345         list_netdevice(dev);
10346         add_device_randomness(dev->dev_addr, dev->addr_len);
10347
10348         /* If the device has permanent device address, driver should
10349          * set dev_addr and also addr_assign_type should be set to
10350          * NET_ADDR_PERM (default value).
10351          */
10352         if (dev->addr_assign_type == NET_ADDR_PERM)
10353                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10354
10355         /* Notify protocols, that a new device appeared. */
10356         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10357         ret = notifier_to_errno(ret);
10358         if (ret) {
10359                 /* Expect explicit free_netdev() on failure */
10360                 dev->needs_free_netdev = false;
10361                 unregister_netdevice_queue(dev, NULL);
10362                 goto out;
10363         }
10364         /*
10365          *      Prevent userspace races by waiting until the network
10366          *      device is fully setup before sending notifications.
10367          */
10368         if (!dev->rtnl_link_ops ||
10369             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10370                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10371
10372 out:
10373         return ret;
10374
10375 err_uninit:
10376         if (dev->netdev_ops->ndo_uninit)
10377                 dev->netdev_ops->ndo_uninit(dev);
10378         if (dev->priv_destructor)
10379                 dev->priv_destructor(dev);
10380 err_free_name:
10381         netdev_name_node_free(dev->name_node);
10382         goto out;
10383 }
10384 EXPORT_SYMBOL(register_netdevice);
10385
10386 /**
10387  *      init_dummy_netdev       - init a dummy network device for NAPI
10388  *      @dev: device to init
10389  *
10390  *      This takes a network device structure and initialize the minimum
10391  *      amount of fields so it can be used to schedule NAPI polls without
10392  *      registering a full blown interface. This is to be used by drivers
10393  *      that need to tie several hardware interfaces to a single NAPI
10394  *      poll scheduler due to HW limitations.
10395  */
10396 int init_dummy_netdev(struct net_device *dev)
10397 {
10398         /* Clear everything. Note we don't initialize spinlocks
10399          * are they aren't supposed to be taken by any of the
10400          * NAPI code and this dummy netdev is supposed to be
10401          * only ever used for NAPI polls
10402          */
10403         memset(dev, 0, sizeof(struct net_device));
10404
10405         /* make sure we BUG if trying to hit standard
10406          * register/unregister code path
10407          */
10408         dev->reg_state = NETREG_DUMMY;
10409
10410         /* NAPI wants this */
10411         INIT_LIST_HEAD(&dev->napi_list);
10412
10413         /* a dummy interface is started by default */
10414         set_bit(__LINK_STATE_PRESENT, &dev->state);
10415         set_bit(__LINK_STATE_START, &dev->state);
10416
10417         /* napi_busy_loop stats accounting wants this */
10418         dev_net_set(dev, &init_net);
10419
10420         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10421          * because users of this 'device' dont need to change
10422          * its refcount.
10423          */
10424
10425         return 0;
10426 }
10427 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10428
10429
10430 /**
10431  *      register_netdev - register a network device
10432  *      @dev: device to register
10433  *
10434  *      Take a completed network device structure and add it to the kernel
10435  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10436  *      chain. 0 is returned on success. A negative errno code is returned
10437  *      on a failure to set up the device, or if the name is a duplicate.
10438  *
10439  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10440  *      and expands the device name if you passed a format string to
10441  *      alloc_netdev.
10442  */
10443 int register_netdev(struct net_device *dev)
10444 {
10445         int err;
10446
10447         if (rtnl_lock_killable())
10448                 return -EINTR;
10449         err = register_netdevice(dev);
10450         rtnl_unlock();
10451         return err;
10452 }
10453 EXPORT_SYMBOL(register_netdev);
10454
10455 int netdev_refcnt_read(const struct net_device *dev)
10456 {
10457 #ifdef CONFIG_PCPU_DEV_REFCNT
10458         int i, refcnt = 0;
10459
10460         for_each_possible_cpu(i)
10461                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10462         return refcnt;
10463 #else
10464         return refcount_read(&dev->dev_refcnt);
10465 #endif
10466 }
10467 EXPORT_SYMBOL(netdev_refcnt_read);
10468
10469 int netdev_unregister_timeout_secs __read_mostly = 10;
10470
10471 #define WAIT_REFS_MIN_MSECS 1
10472 #define WAIT_REFS_MAX_MSECS 250
10473 /**
10474  * netdev_wait_allrefs - wait until all references are gone.
10475  * @dev: target net_device
10476  *
10477  * This is called when unregistering network devices.
10478  *
10479  * Any protocol or device that holds a reference should register
10480  * for netdevice notification, and cleanup and put back the
10481  * reference if they receive an UNREGISTER event.
10482  * We can get stuck here if buggy protocols don't correctly
10483  * call dev_put.
10484  */
10485 static void netdev_wait_allrefs(struct net_device *dev)
10486 {
10487         unsigned long rebroadcast_time, warning_time;
10488         int wait = 0, refcnt;
10489
10490         rebroadcast_time = warning_time = jiffies;
10491         refcnt = netdev_refcnt_read(dev);
10492
10493         while (refcnt != 1) {
10494                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10495                         rtnl_lock();
10496
10497                         /* Rebroadcast unregister notification */
10498                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10499
10500                         __rtnl_unlock();
10501                         rcu_barrier();
10502                         rtnl_lock();
10503
10504                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10505                                      &dev->state)) {
10506                                 /* We must not have linkwatch events
10507                                  * pending on unregister. If this
10508                                  * happens, we simply run the queue
10509                                  * unscheduled, resulting in a noop
10510                                  * for this device.
10511                                  */
10512                                 linkwatch_run_queue();
10513                         }
10514
10515                         __rtnl_unlock();
10516
10517                         rebroadcast_time = jiffies;
10518                 }
10519
10520                 if (!wait) {
10521                         rcu_barrier();
10522                         wait = WAIT_REFS_MIN_MSECS;
10523                 } else {
10524                         msleep(wait);
10525                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10526                 }
10527
10528                 refcnt = netdev_refcnt_read(dev);
10529
10530                 if (refcnt != 1 &&
10531                     time_after(jiffies, warning_time +
10532                                netdev_unregister_timeout_secs * HZ)) {
10533                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10534                                  dev->name, refcnt);
10535                         warning_time = jiffies;
10536                 }
10537         }
10538 }
10539
10540 /* The sequence is:
10541  *
10542  *      rtnl_lock();
10543  *      ...
10544  *      register_netdevice(x1);
10545  *      register_netdevice(x2);
10546  *      ...
10547  *      unregister_netdevice(y1);
10548  *      unregister_netdevice(y2);
10549  *      ...
10550  *      rtnl_unlock();
10551  *      free_netdev(y1);
10552  *      free_netdev(y2);
10553  *
10554  * We are invoked by rtnl_unlock().
10555  * This allows us to deal with problems:
10556  * 1) We can delete sysfs objects which invoke hotplug
10557  *    without deadlocking with linkwatch via keventd.
10558  * 2) Since we run with the RTNL semaphore not held, we can sleep
10559  *    safely in order to wait for the netdev refcnt to drop to zero.
10560  *
10561  * We must not return until all unregister events added during
10562  * the interval the lock was held have been completed.
10563  */
10564 void netdev_run_todo(void)
10565 {
10566         struct list_head list;
10567 #ifdef CONFIG_LOCKDEP
10568         struct list_head unlink_list;
10569
10570         list_replace_init(&net_unlink_list, &unlink_list);
10571
10572         while (!list_empty(&unlink_list)) {
10573                 struct net_device *dev = list_first_entry(&unlink_list,
10574                                                           struct net_device,
10575                                                           unlink_list);
10576                 list_del_init(&dev->unlink_list);
10577                 dev->nested_level = dev->lower_level - 1;
10578         }
10579 #endif
10580
10581         /* Snapshot list, allow later requests */
10582         list_replace_init(&net_todo_list, &list);
10583
10584         __rtnl_unlock();
10585
10586
10587         /* Wait for rcu callbacks to finish before next phase */
10588         if (!list_empty(&list))
10589                 rcu_barrier();
10590
10591         while (!list_empty(&list)) {
10592                 struct net_device *dev
10593                         = list_first_entry(&list, struct net_device, todo_list);
10594                 list_del(&dev->todo_list);
10595
10596                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10597                         pr_err("network todo '%s' but state %d\n",
10598                                dev->name, dev->reg_state);
10599                         dump_stack();
10600                         continue;
10601                 }
10602
10603                 write_lock(&dev_base_lock);
10604                 dev->reg_state = NETREG_UNREGISTERED;
10605                 write_unlock(&dev_base_lock);
10606                 linkwatch_forget_dev(dev);
10607
10608                 netdev_wait_allrefs(dev);
10609
10610                 /* paranoia */
10611                 BUG_ON(netdev_refcnt_read(dev) != 1);
10612                 BUG_ON(!list_empty(&dev->ptype_all));
10613                 BUG_ON(!list_empty(&dev->ptype_specific));
10614                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10615                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10616 #if IS_ENABLED(CONFIG_DECNET)
10617                 WARN_ON(dev->dn_ptr);
10618 #endif
10619                 if (dev->priv_destructor)
10620                         dev->priv_destructor(dev);
10621                 if (dev->needs_free_netdev)
10622                         free_netdev(dev);
10623
10624                 /* Report a network device has been unregistered */
10625                 rtnl_lock();
10626                 dev_net(dev)->dev_unreg_count--;
10627                 __rtnl_unlock();
10628                 wake_up(&netdev_unregistering_wq);
10629
10630                 /* Free network device */
10631                 kobject_put(&dev->dev.kobj);
10632         }
10633 }
10634
10635 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10636  * all the same fields in the same order as net_device_stats, with only
10637  * the type differing, but rtnl_link_stats64 may have additional fields
10638  * at the end for newer counters.
10639  */
10640 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10641                              const struct net_device_stats *netdev_stats)
10642 {
10643 #if BITS_PER_LONG == 64
10644         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10645         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10646         /* zero out counters that only exist in rtnl_link_stats64 */
10647         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10648                sizeof(*stats64) - sizeof(*netdev_stats));
10649 #else
10650         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10651         const unsigned long *src = (const unsigned long *)netdev_stats;
10652         u64 *dst = (u64 *)stats64;
10653
10654         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10655         for (i = 0; i < n; i++)
10656                 dst[i] = src[i];
10657         /* zero out counters that only exist in rtnl_link_stats64 */
10658         memset((char *)stats64 + n * sizeof(u64), 0,
10659                sizeof(*stats64) - n * sizeof(u64));
10660 #endif
10661 }
10662 EXPORT_SYMBOL(netdev_stats_to_stats64);
10663
10664 /**
10665  *      dev_get_stats   - get network device statistics
10666  *      @dev: device to get statistics from
10667  *      @storage: place to store stats
10668  *
10669  *      Get network statistics from device. Return @storage.
10670  *      The device driver may provide its own method by setting
10671  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10672  *      otherwise the internal statistics structure is used.
10673  */
10674 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10675                                         struct rtnl_link_stats64 *storage)
10676 {
10677         const struct net_device_ops *ops = dev->netdev_ops;
10678
10679         if (ops->ndo_get_stats64) {
10680                 memset(storage, 0, sizeof(*storage));
10681                 ops->ndo_get_stats64(dev, storage);
10682         } else if (ops->ndo_get_stats) {
10683                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10684         } else {
10685                 netdev_stats_to_stats64(storage, &dev->stats);
10686         }
10687         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10688         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10689         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10690         return storage;
10691 }
10692 EXPORT_SYMBOL(dev_get_stats);
10693
10694 /**
10695  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10696  *      @s: place to store stats
10697  *      @netstats: per-cpu network stats to read from
10698  *
10699  *      Read per-cpu network statistics and populate the related fields in @s.
10700  */
10701 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10702                            const struct pcpu_sw_netstats __percpu *netstats)
10703 {
10704         int cpu;
10705
10706         for_each_possible_cpu(cpu) {
10707                 const struct pcpu_sw_netstats *stats;
10708                 struct pcpu_sw_netstats tmp;
10709                 unsigned int start;
10710
10711                 stats = per_cpu_ptr(netstats, cpu);
10712                 do {
10713                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10714                         tmp.rx_packets = stats->rx_packets;
10715                         tmp.rx_bytes   = stats->rx_bytes;
10716                         tmp.tx_packets = stats->tx_packets;
10717                         tmp.tx_bytes   = stats->tx_bytes;
10718                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10719
10720                 s->rx_packets += tmp.rx_packets;
10721                 s->rx_bytes   += tmp.rx_bytes;
10722                 s->tx_packets += tmp.tx_packets;
10723                 s->tx_bytes   += tmp.tx_bytes;
10724         }
10725 }
10726 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10727
10728 /**
10729  *      dev_get_tstats64 - ndo_get_stats64 implementation
10730  *      @dev: device to get statistics from
10731  *      @s: place to store stats
10732  *
10733  *      Populate @s from dev->stats and dev->tstats. Can be used as
10734  *      ndo_get_stats64() callback.
10735  */
10736 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10737 {
10738         netdev_stats_to_stats64(s, &dev->stats);
10739         dev_fetch_sw_netstats(s, dev->tstats);
10740 }
10741 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10742
10743 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10744 {
10745         struct netdev_queue *queue = dev_ingress_queue(dev);
10746
10747 #ifdef CONFIG_NET_CLS_ACT
10748         if (queue)
10749                 return queue;
10750         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10751         if (!queue)
10752                 return NULL;
10753         netdev_init_one_queue(dev, queue, NULL);
10754         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10755         queue->qdisc_sleeping = &noop_qdisc;
10756         rcu_assign_pointer(dev->ingress_queue, queue);
10757 #endif
10758         return queue;
10759 }
10760
10761 static const struct ethtool_ops default_ethtool_ops;
10762
10763 void netdev_set_default_ethtool_ops(struct net_device *dev,
10764                                     const struct ethtool_ops *ops)
10765 {
10766         if (dev->ethtool_ops == &default_ethtool_ops)
10767                 dev->ethtool_ops = ops;
10768 }
10769 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10770
10771 void netdev_freemem(struct net_device *dev)
10772 {
10773         char *addr = (char *)dev - dev->padded;
10774
10775         kvfree(addr);
10776 }
10777
10778 /**
10779  * alloc_netdev_mqs - allocate network device
10780  * @sizeof_priv: size of private data to allocate space for
10781  * @name: device name format string
10782  * @name_assign_type: origin of device name
10783  * @setup: callback to initialize device
10784  * @txqs: the number of TX subqueues to allocate
10785  * @rxqs: the number of RX subqueues to allocate
10786  *
10787  * Allocates a struct net_device with private data area for driver use
10788  * and performs basic initialization.  Also allocates subqueue structs
10789  * for each queue on the device.
10790  */
10791 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10792                 unsigned char name_assign_type,
10793                 void (*setup)(struct net_device *),
10794                 unsigned int txqs, unsigned int rxqs)
10795 {
10796         struct net_device *dev;
10797         unsigned int alloc_size;
10798         struct net_device *p;
10799
10800         BUG_ON(strlen(name) >= sizeof(dev->name));
10801
10802         if (txqs < 1) {
10803                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10804                 return NULL;
10805         }
10806
10807         if (rxqs < 1) {
10808                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10809                 return NULL;
10810         }
10811
10812         alloc_size = sizeof(struct net_device);
10813         if (sizeof_priv) {
10814                 /* ensure 32-byte alignment of private area */
10815                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10816                 alloc_size += sizeof_priv;
10817         }
10818         /* ensure 32-byte alignment of whole construct */
10819         alloc_size += NETDEV_ALIGN - 1;
10820
10821         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10822         if (!p)
10823                 return NULL;
10824
10825         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10826         dev->padded = (char *)dev - (char *)p;
10827
10828 #ifdef CONFIG_PCPU_DEV_REFCNT
10829         dev->pcpu_refcnt = alloc_percpu(int);
10830         if (!dev->pcpu_refcnt)
10831                 goto free_dev;
10832         dev_hold(dev);
10833 #else
10834         refcount_set(&dev->dev_refcnt, 1);
10835 #endif
10836
10837         if (dev_addr_init(dev))
10838                 goto free_pcpu;
10839
10840         dev_mc_init(dev);
10841         dev_uc_init(dev);
10842
10843         dev_net_set(dev, &init_net);
10844
10845         dev->gso_max_size = GSO_MAX_SIZE;
10846         dev->gso_max_segs = GSO_MAX_SEGS;
10847         dev->upper_level = 1;
10848         dev->lower_level = 1;
10849 #ifdef CONFIG_LOCKDEP
10850         dev->nested_level = 0;
10851         INIT_LIST_HEAD(&dev->unlink_list);
10852 #endif
10853
10854         INIT_LIST_HEAD(&dev->napi_list);
10855         INIT_LIST_HEAD(&dev->unreg_list);
10856         INIT_LIST_HEAD(&dev->close_list);
10857         INIT_LIST_HEAD(&dev->link_watch_list);
10858         INIT_LIST_HEAD(&dev->adj_list.upper);
10859         INIT_LIST_HEAD(&dev->adj_list.lower);
10860         INIT_LIST_HEAD(&dev->ptype_all);
10861         INIT_LIST_HEAD(&dev->ptype_specific);
10862         INIT_LIST_HEAD(&dev->net_notifier_list);
10863 #ifdef CONFIG_NET_SCHED
10864         hash_init(dev->qdisc_hash);
10865 #endif
10866         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10867         setup(dev);
10868
10869         if (!dev->tx_queue_len) {
10870                 dev->priv_flags |= IFF_NO_QUEUE;
10871                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10872         }
10873
10874         dev->num_tx_queues = txqs;
10875         dev->real_num_tx_queues = txqs;
10876         if (netif_alloc_netdev_queues(dev))
10877                 goto free_all;
10878
10879         dev->num_rx_queues = rxqs;
10880         dev->real_num_rx_queues = rxqs;
10881         if (netif_alloc_rx_queues(dev))
10882                 goto free_all;
10883
10884         strcpy(dev->name, name);
10885         dev->name_assign_type = name_assign_type;
10886         dev->group = INIT_NETDEV_GROUP;
10887         if (!dev->ethtool_ops)
10888                 dev->ethtool_ops = &default_ethtool_ops;
10889
10890         nf_hook_ingress_init(dev);
10891
10892         return dev;
10893
10894 free_all:
10895         free_netdev(dev);
10896         return NULL;
10897
10898 free_pcpu:
10899 #ifdef CONFIG_PCPU_DEV_REFCNT
10900         free_percpu(dev->pcpu_refcnt);
10901 free_dev:
10902 #endif
10903         netdev_freemem(dev);
10904         return NULL;
10905 }
10906 EXPORT_SYMBOL(alloc_netdev_mqs);
10907
10908 /**
10909  * free_netdev - free network device
10910  * @dev: device
10911  *
10912  * This function does the last stage of destroying an allocated device
10913  * interface. The reference to the device object is released. If this
10914  * is the last reference then it will be freed.Must be called in process
10915  * context.
10916  */
10917 void free_netdev(struct net_device *dev)
10918 {
10919         struct napi_struct *p, *n;
10920
10921         might_sleep();
10922
10923         /* When called immediately after register_netdevice() failed the unwind
10924          * handling may still be dismantling the device. Handle that case by
10925          * deferring the free.
10926          */
10927         if (dev->reg_state == NETREG_UNREGISTERING) {
10928                 ASSERT_RTNL();
10929                 dev->needs_free_netdev = true;
10930                 return;
10931         }
10932
10933         netif_free_tx_queues(dev);
10934         netif_free_rx_queues(dev);
10935
10936         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10937
10938         /* Flush device addresses */
10939         dev_addr_flush(dev);
10940
10941         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10942                 netif_napi_del(p);
10943
10944 #ifdef CONFIG_PCPU_DEV_REFCNT
10945         free_percpu(dev->pcpu_refcnt);
10946         dev->pcpu_refcnt = NULL;
10947 #endif
10948         free_percpu(dev->xdp_bulkq);
10949         dev->xdp_bulkq = NULL;
10950
10951         /*  Compatibility with error handling in drivers */
10952         if (dev->reg_state == NETREG_UNINITIALIZED) {
10953                 netdev_freemem(dev);
10954                 return;
10955         }
10956
10957         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10958         dev->reg_state = NETREG_RELEASED;
10959
10960         /* will free via device release */
10961         put_device(&dev->dev);
10962 }
10963 EXPORT_SYMBOL(free_netdev);
10964
10965 /**
10966  *      synchronize_net -  Synchronize with packet receive processing
10967  *
10968  *      Wait for packets currently being received to be done.
10969  *      Does not block later packets from starting.
10970  */
10971 void synchronize_net(void)
10972 {
10973         might_sleep();
10974         if (rtnl_is_locked())
10975                 synchronize_rcu_expedited();
10976         else
10977                 synchronize_rcu();
10978 }
10979 EXPORT_SYMBOL(synchronize_net);
10980
10981 /**
10982  *      unregister_netdevice_queue - remove device from the kernel
10983  *      @dev: device
10984  *      @head: list
10985  *
10986  *      This function shuts down a device interface and removes it
10987  *      from the kernel tables.
10988  *      If head not NULL, device is queued to be unregistered later.
10989  *
10990  *      Callers must hold the rtnl semaphore.  You may want
10991  *      unregister_netdev() instead of this.
10992  */
10993
10994 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10995 {
10996         ASSERT_RTNL();
10997
10998         if (head) {
10999                 list_move_tail(&dev->unreg_list, head);
11000         } else {
11001                 LIST_HEAD(single);
11002
11003                 list_add(&dev->unreg_list, &single);
11004                 unregister_netdevice_many(&single);
11005         }
11006 }
11007 EXPORT_SYMBOL(unregister_netdevice_queue);
11008
11009 /**
11010  *      unregister_netdevice_many - unregister many devices
11011  *      @head: list of devices
11012  *
11013  *  Note: As most callers use a stack allocated list_head,
11014  *  we force a list_del() to make sure stack wont be corrupted later.
11015  */
11016 void unregister_netdevice_many(struct list_head *head)
11017 {
11018         struct net_device *dev, *tmp;
11019         LIST_HEAD(close_head);
11020
11021         BUG_ON(dev_boot_phase);
11022         ASSERT_RTNL();
11023
11024         if (list_empty(head))
11025                 return;
11026
11027         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11028                 /* Some devices call without registering
11029                  * for initialization unwind. Remove those
11030                  * devices and proceed with the remaining.
11031                  */
11032                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11033                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11034                                  dev->name, dev);
11035
11036                         WARN_ON(1);
11037                         list_del(&dev->unreg_list);
11038                         continue;
11039                 }
11040                 dev->dismantle = true;
11041                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11042         }
11043
11044         /* If device is running, close it first. */
11045         list_for_each_entry(dev, head, unreg_list)
11046                 list_add_tail(&dev->close_list, &close_head);
11047         dev_close_many(&close_head, true);
11048
11049         list_for_each_entry(dev, head, unreg_list) {
11050                 /* And unlink it from device chain. */
11051                 write_lock(&dev_base_lock);
11052                 unlist_netdevice(dev, false);
11053                 dev->reg_state = NETREG_UNREGISTERING;
11054                 write_unlock(&dev_base_lock);
11055         }
11056         flush_all_backlogs();
11057
11058         synchronize_net();
11059
11060         list_for_each_entry(dev, head, unreg_list) {
11061                 struct sk_buff *skb = NULL;
11062
11063                 /* Shutdown queueing discipline. */
11064                 dev_shutdown(dev);
11065
11066                 dev_xdp_uninstall(dev);
11067
11068                 /* Notify protocols, that we are about to destroy
11069                  * this device. They should clean all the things.
11070                  */
11071                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11072
11073                 if (!dev->rtnl_link_ops ||
11074                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11075                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11076                                                      GFP_KERNEL, NULL, 0);
11077
11078                 /*
11079                  *      Flush the unicast and multicast chains
11080                  */
11081                 dev_uc_flush(dev);
11082                 dev_mc_flush(dev);
11083
11084                 netdev_name_node_alt_flush(dev);
11085                 netdev_name_node_free(dev->name_node);
11086
11087                 if (dev->netdev_ops->ndo_uninit)
11088                         dev->netdev_ops->ndo_uninit(dev);
11089
11090                 if (skb)
11091                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11092
11093                 /* Notifier chain MUST detach us all upper devices. */
11094                 WARN_ON(netdev_has_any_upper_dev(dev));
11095                 WARN_ON(netdev_has_any_lower_dev(dev));
11096
11097                 /* Remove entries from kobject tree */
11098                 netdev_unregister_kobject(dev);
11099 #ifdef CONFIG_XPS
11100                 /* Remove XPS queueing entries */
11101                 netif_reset_xps_queues_gt(dev, 0);
11102 #endif
11103         }
11104
11105         synchronize_net();
11106
11107         list_for_each_entry(dev, head, unreg_list) {
11108                 dev_put(dev);
11109                 net_set_todo(dev);
11110         }
11111
11112         list_del(head);
11113 }
11114 EXPORT_SYMBOL(unregister_netdevice_many);
11115
11116 /**
11117  *      unregister_netdev - remove device from the kernel
11118  *      @dev: device
11119  *
11120  *      This function shuts down a device interface and removes it
11121  *      from the kernel tables.
11122  *
11123  *      This is just a wrapper for unregister_netdevice that takes
11124  *      the rtnl semaphore.  In general you want to use this and not
11125  *      unregister_netdevice.
11126  */
11127 void unregister_netdev(struct net_device *dev)
11128 {
11129         rtnl_lock();
11130         unregister_netdevice(dev);
11131         rtnl_unlock();
11132 }
11133 EXPORT_SYMBOL(unregister_netdev);
11134
11135 /**
11136  *      __dev_change_net_namespace - move device to different nethost namespace
11137  *      @dev: device
11138  *      @net: network namespace
11139  *      @pat: If not NULL name pattern to try if the current device name
11140  *            is already taken in the destination network namespace.
11141  *      @new_ifindex: If not zero, specifies device index in the target
11142  *                    namespace.
11143  *
11144  *      This function shuts down a device interface and moves it
11145  *      to a new network namespace. On success 0 is returned, on
11146  *      a failure a netagive errno code is returned.
11147  *
11148  *      Callers must hold the rtnl semaphore.
11149  */
11150
11151 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11152                                const char *pat, int new_ifindex)
11153 {
11154         struct net *net_old = dev_net(dev);
11155         int err, new_nsid;
11156
11157         ASSERT_RTNL();
11158
11159         /* Don't allow namespace local devices to be moved. */
11160         err = -EINVAL;
11161         if (dev->features & NETIF_F_NETNS_LOCAL)
11162                 goto out;
11163
11164         /* Ensure the device has been registrered */
11165         if (dev->reg_state != NETREG_REGISTERED)
11166                 goto out;
11167
11168         /* Get out if there is nothing todo */
11169         err = 0;
11170         if (net_eq(net_old, net))
11171                 goto out;
11172
11173         /* Pick the destination device name, and ensure
11174          * we can use it in the destination network namespace.
11175          */
11176         err = -EEXIST;
11177         if (__dev_get_by_name(net, dev->name)) {
11178                 /* We get here if we can't use the current device name */
11179                 if (!pat)
11180                         goto out;
11181                 err = dev_get_valid_name(net, dev, pat);
11182                 if (err < 0)
11183                         goto out;
11184         }
11185
11186         /* Check that new_ifindex isn't used yet. */
11187         err = -EBUSY;
11188         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11189                 goto out;
11190
11191         /*
11192          * And now a mini version of register_netdevice unregister_netdevice.
11193          */
11194
11195         /* If device is running close it first. */
11196         dev_close(dev);
11197
11198         /* And unlink it from device chain */
11199         unlist_netdevice(dev, true);
11200
11201         synchronize_net();
11202
11203         /* Shutdown queueing discipline. */
11204         dev_shutdown(dev);
11205
11206         /* Notify protocols, that we are about to destroy
11207          * this device. They should clean all the things.
11208          *
11209          * Note that dev->reg_state stays at NETREG_REGISTERED.
11210          * This is wanted because this way 8021q and macvlan know
11211          * the device is just moving and can keep their slaves up.
11212          */
11213         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11214         rcu_barrier();
11215
11216         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11217         /* If there is an ifindex conflict assign a new one */
11218         if (!new_ifindex) {
11219                 if (__dev_get_by_index(net, dev->ifindex))
11220                         new_ifindex = dev_new_index(net);
11221                 else
11222                         new_ifindex = dev->ifindex;
11223         }
11224
11225         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11226                             new_ifindex);
11227
11228         /*
11229          *      Flush the unicast and multicast chains
11230          */
11231         dev_uc_flush(dev);
11232         dev_mc_flush(dev);
11233
11234         /* Send a netdev-removed uevent to the old namespace */
11235         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11236         netdev_adjacent_del_links(dev);
11237
11238         /* Move per-net netdevice notifiers that are following the netdevice */
11239         move_netdevice_notifiers_dev_net(dev, net);
11240
11241         /* Actually switch the network namespace */
11242         dev_net_set(dev, net);
11243         dev->ifindex = new_ifindex;
11244
11245         /* Send a netdev-add uevent to the new namespace */
11246         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11247         netdev_adjacent_add_links(dev);
11248
11249         /* Fixup kobjects */
11250         err = device_rename(&dev->dev, dev->name);
11251         WARN_ON(err);
11252
11253         /* Adapt owner in case owning user namespace of target network
11254          * namespace is different from the original one.
11255          */
11256         err = netdev_change_owner(dev, net_old, net);
11257         WARN_ON(err);
11258
11259         /* Add the device back in the hashes */
11260         list_netdevice(dev);
11261
11262         /* Notify protocols, that a new device appeared. */
11263         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11264
11265         /*
11266          *      Prevent userspace races by waiting until the network
11267          *      device is fully setup before sending notifications.
11268          */
11269         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11270
11271         synchronize_net();
11272         err = 0;
11273 out:
11274         return err;
11275 }
11276 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11277
11278 static int dev_cpu_dead(unsigned int oldcpu)
11279 {
11280         struct sk_buff **list_skb;
11281         struct sk_buff *skb;
11282         unsigned int cpu;
11283         struct softnet_data *sd, *oldsd, *remsd = NULL;
11284
11285         local_irq_disable();
11286         cpu = smp_processor_id();
11287         sd = &per_cpu(softnet_data, cpu);
11288         oldsd = &per_cpu(softnet_data, oldcpu);
11289
11290         /* Find end of our completion_queue. */
11291         list_skb = &sd->completion_queue;
11292         while (*list_skb)
11293                 list_skb = &(*list_skb)->next;
11294         /* Append completion queue from offline CPU. */
11295         *list_skb = oldsd->completion_queue;
11296         oldsd->completion_queue = NULL;
11297
11298         /* Append output queue from offline CPU. */
11299         if (oldsd->output_queue) {
11300                 *sd->output_queue_tailp = oldsd->output_queue;
11301                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11302                 oldsd->output_queue = NULL;
11303                 oldsd->output_queue_tailp = &oldsd->output_queue;
11304         }
11305         /* Append NAPI poll list from offline CPU, with one exception :
11306          * process_backlog() must be called by cpu owning percpu backlog.
11307          * We properly handle process_queue & input_pkt_queue later.
11308          */
11309         while (!list_empty(&oldsd->poll_list)) {
11310                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11311                                                             struct napi_struct,
11312                                                             poll_list);
11313
11314                 list_del_init(&napi->poll_list);
11315                 if (napi->poll == process_backlog)
11316                         napi->state = 0;
11317                 else
11318                         ____napi_schedule(sd, napi);
11319         }
11320
11321         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11322         local_irq_enable();
11323
11324 #ifdef CONFIG_RPS
11325         remsd = oldsd->rps_ipi_list;
11326         oldsd->rps_ipi_list = NULL;
11327 #endif
11328         /* send out pending IPI's on offline CPU */
11329         net_rps_send_ipi(remsd);
11330
11331         /* Process offline CPU's input_pkt_queue */
11332         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11333                 netif_rx_ni(skb);
11334                 input_queue_head_incr(oldsd);
11335         }
11336         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11337                 netif_rx_ni(skb);
11338                 input_queue_head_incr(oldsd);
11339         }
11340
11341         return 0;
11342 }
11343
11344 /**
11345  *      netdev_increment_features - increment feature set by one
11346  *      @all: current feature set
11347  *      @one: new feature set
11348  *      @mask: mask feature set
11349  *
11350  *      Computes a new feature set after adding a device with feature set
11351  *      @one to the master device with current feature set @all.  Will not
11352  *      enable anything that is off in @mask. Returns the new feature set.
11353  */
11354 netdev_features_t netdev_increment_features(netdev_features_t all,
11355         netdev_features_t one, netdev_features_t mask)
11356 {
11357         if (mask & NETIF_F_HW_CSUM)
11358                 mask |= NETIF_F_CSUM_MASK;
11359         mask |= NETIF_F_VLAN_CHALLENGED;
11360
11361         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11362         all &= one | ~NETIF_F_ALL_FOR_ALL;
11363
11364         /* If one device supports hw checksumming, set for all. */
11365         if (all & NETIF_F_HW_CSUM)
11366                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11367
11368         return all;
11369 }
11370 EXPORT_SYMBOL(netdev_increment_features);
11371
11372 static struct hlist_head * __net_init netdev_create_hash(void)
11373 {
11374         int i;
11375         struct hlist_head *hash;
11376
11377         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11378         if (hash != NULL)
11379                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11380                         INIT_HLIST_HEAD(&hash[i]);
11381
11382         return hash;
11383 }
11384
11385 /* Initialize per network namespace state */
11386 static int __net_init netdev_init(struct net *net)
11387 {
11388         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11389                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11390
11391         INIT_LIST_HEAD(&net->dev_base_head);
11392
11393         net->dev_name_head = netdev_create_hash();
11394         if (net->dev_name_head == NULL)
11395                 goto err_name;
11396
11397         net->dev_index_head = netdev_create_hash();
11398         if (net->dev_index_head == NULL)
11399                 goto err_idx;
11400
11401         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11402
11403         return 0;
11404
11405 err_idx:
11406         kfree(net->dev_name_head);
11407 err_name:
11408         return -ENOMEM;
11409 }
11410
11411 /**
11412  *      netdev_drivername - network driver for the device
11413  *      @dev: network device
11414  *
11415  *      Determine network driver for device.
11416  */
11417 const char *netdev_drivername(const struct net_device *dev)
11418 {
11419         const struct device_driver *driver;
11420         const struct device *parent;
11421         const char *empty = "";
11422
11423         parent = dev->dev.parent;
11424         if (!parent)
11425                 return empty;
11426
11427         driver = parent->driver;
11428         if (driver && driver->name)
11429                 return driver->name;
11430         return empty;
11431 }
11432
11433 static void __netdev_printk(const char *level, const struct net_device *dev,
11434                             struct va_format *vaf)
11435 {
11436         if (dev && dev->dev.parent) {
11437                 dev_printk_emit(level[1] - '0',
11438                                 dev->dev.parent,
11439                                 "%s %s %s%s: %pV",
11440                                 dev_driver_string(dev->dev.parent),
11441                                 dev_name(dev->dev.parent),
11442                                 netdev_name(dev), netdev_reg_state(dev),
11443                                 vaf);
11444         } else if (dev) {
11445                 printk("%s%s%s: %pV",
11446                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11447         } else {
11448                 printk("%s(NULL net_device): %pV", level, vaf);
11449         }
11450 }
11451
11452 void netdev_printk(const char *level, const struct net_device *dev,
11453                    const char *format, ...)
11454 {
11455         struct va_format vaf;
11456         va_list args;
11457
11458         va_start(args, format);
11459
11460         vaf.fmt = format;
11461         vaf.va = &args;
11462
11463         __netdev_printk(level, dev, &vaf);
11464
11465         va_end(args);
11466 }
11467 EXPORT_SYMBOL(netdev_printk);
11468
11469 #define define_netdev_printk_level(func, level)                 \
11470 void func(const struct net_device *dev, const char *fmt, ...)   \
11471 {                                                               \
11472         struct va_format vaf;                                   \
11473         va_list args;                                           \
11474                                                                 \
11475         va_start(args, fmt);                                    \
11476                                                                 \
11477         vaf.fmt = fmt;                                          \
11478         vaf.va = &args;                                         \
11479                                                                 \
11480         __netdev_printk(level, dev, &vaf);                      \
11481                                                                 \
11482         va_end(args);                                           \
11483 }                                                               \
11484 EXPORT_SYMBOL(func);
11485
11486 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11487 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11488 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11489 define_netdev_printk_level(netdev_err, KERN_ERR);
11490 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11491 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11492 define_netdev_printk_level(netdev_info, KERN_INFO);
11493
11494 static void __net_exit netdev_exit(struct net *net)
11495 {
11496         kfree(net->dev_name_head);
11497         kfree(net->dev_index_head);
11498         if (net != &init_net)
11499                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11500 }
11501
11502 static struct pernet_operations __net_initdata netdev_net_ops = {
11503         .init = netdev_init,
11504         .exit = netdev_exit,
11505 };
11506
11507 static void __net_exit default_device_exit(struct net *net)
11508 {
11509         struct net_device *dev, *aux;
11510         /*
11511          * Push all migratable network devices back to the
11512          * initial network namespace
11513          */
11514         rtnl_lock();
11515         for_each_netdev_safe(net, dev, aux) {
11516                 int err;
11517                 char fb_name[IFNAMSIZ];
11518
11519                 /* Ignore unmoveable devices (i.e. loopback) */
11520                 if (dev->features & NETIF_F_NETNS_LOCAL)
11521                         continue;
11522
11523                 /* Leave virtual devices for the generic cleanup */
11524                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11525                         continue;
11526
11527                 /* Push remaining network devices to init_net */
11528                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11529                 if (__dev_get_by_name(&init_net, fb_name))
11530                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11531                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11532                 if (err) {
11533                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11534                                  __func__, dev->name, err);
11535                         BUG();
11536                 }
11537         }
11538         rtnl_unlock();
11539 }
11540
11541 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11542 {
11543         /* Return with the rtnl_lock held when there are no network
11544          * devices unregistering in any network namespace in net_list.
11545          */
11546         struct net *net;
11547         bool unregistering;
11548         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11549
11550         add_wait_queue(&netdev_unregistering_wq, &wait);
11551         for (;;) {
11552                 unregistering = false;
11553                 rtnl_lock();
11554                 list_for_each_entry(net, net_list, exit_list) {
11555                         if (net->dev_unreg_count > 0) {
11556                                 unregistering = true;
11557                                 break;
11558                         }
11559                 }
11560                 if (!unregistering)
11561                         break;
11562                 __rtnl_unlock();
11563
11564                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11565         }
11566         remove_wait_queue(&netdev_unregistering_wq, &wait);
11567 }
11568
11569 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11570 {
11571         /* At exit all network devices most be removed from a network
11572          * namespace.  Do this in the reverse order of registration.
11573          * Do this across as many network namespaces as possible to
11574          * improve batching efficiency.
11575          */
11576         struct net_device *dev;
11577         struct net *net;
11578         LIST_HEAD(dev_kill_list);
11579
11580         /* To prevent network device cleanup code from dereferencing
11581          * loopback devices or network devices that have been freed
11582          * wait here for all pending unregistrations to complete,
11583          * before unregistring the loopback device and allowing the
11584          * network namespace be freed.
11585          *
11586          * The netdev todo list containing all network devices
11587          * unregistrations that happen in default_device_exit_batch
11588          * will run in the rtnl_unlock() at the end of
11589          * default_device_exit_batch.
11590          */
11591         rtnl_lock_unregistering(net_list);
11592         list_for_each_entry(net, net_list, exit_list) {
11593                 for_each_netdev_reverse(net, dev) {
11594                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11595                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11596                         else
11597                                 unregister_netdevice_queue(dev, &dev_kill_list);
11598                 }
11599         }
11600         unregister_netdevice_many(&dev_kill_list);
11601         rtnl_unlock();
11602 }
11603
11604 static struct pernet_operations __net_initdata default_device_ops = {
11605         .exit = default_device_exit,
11606         .exit_batch = default_device_exit_batch,
11607 };
11608
11609 /*
11610  *      Initialize the DEV module. At boot time this walks the device list and
11611  *      unhooks any devices that fail to initialise (normally hardware not
11612  *      present) and leaves us with a valid list of present and active devices.
11613  *
11614  */
11615
11616 /*
11617  *       This is called single threaded during boot, so no need
11618  *       to take the rtnl semaphore.
11619  */
11620 static int __init net_dev_init(void)
11621 {
11622         int i, rc = -ENOMEM;
11623
11624         BUG_ON(!dev_boot_phase);
11625
11626         if (dev_proc_init())
11627                 goto out;
11628
11629         if (netdev_kobject_init())
11630                 goto out;
11631
11632         INIT_LIST_HEAD(&ptype_all);
11633         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11634                 INIT_LIST_HEAD(&ptype_base[i]);
11635
11636         INIT_LIST_HEAD(&offload_base);
11637
11638         if (register_pernet_subsys(&netdev_net_ops))
11639                 goto out;
11640
11641         /*
11642          *      Initialise the packet receive queues.
11643          */
11644
11645         for_each_possible_cpu(i) {
11646                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11647                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11648
11649                 INIT_WORK(flush, flush_backlog);
11650
11651                 skb_queue_head_init(&sd->input_pkt_queue);
11652                 skb_queue_head_init(&sd->process_queue);
11653 #ifdef CONFIG_XFRM_OFFLOAD
11654                 skb_queue_head_init(&sd->xfrm_backlog);
11655 #endif
11656                 INIT_LIST_HEAD(&sd->poll_list);
11657                 sd->output_queue_tailp = &sd->output_queue;
11658 #ifdef CONFIG_RPS
11659                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11660                 sd->cpu = i;
11661 #endif
11662
11663                 init_gro_hash(&sd->backlog);
11664                 sd->backlog.poll = process_backlog;
11665                 sd->backlog.weight = weight_p;
11666         }
11667
11668         dev_boot_phase = 0;
11669
11670         /* The loopback device is special if any other network devices
11671          * is present in a network namespace the loopback device must
11672          * be present. Since we now dynamically allocate and free the
11673          * loopback device ensure this invariant is maintained by
11674          * keeping the loopback device as the first device on the
11675          * list of network devices.  Ensuring the loopback devices
11676          * is the first device that appears and the last network device
11677          * that disappears.
11678          */
11679         if (register_pernet_device(&loopback_net_ops))
11680                 goto out;
11681
11682         if (register_pernet_device(&default_device_ops))
11683                 goto out;
11684
11685         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11686         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11687
11688         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11689                                        NULL, dev_cpu_dead);
11690         WARN_ON(rc < 0);
11691         rc = 0;
11692 out:
11693         return rc;
11694 }
11695
11696 subsys_initcall(net_dev_init);