net: add gso_ipv4_max_size and gro_ipv4_max_size per device
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "dev.h"
155 #include "net-sysfs.h"
156
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         netdev_name_node_del(name_node);
349         kfree(name_node->name);
350         netdev_name_node_free(name_node);
351 }
352
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355         struct netdev_name_node *name_node;
356         struct net *net = dev_net(dev);
357
358         name_node = netdev_name_node_lookup(net, name);
359         if (!name_node)
360                 return -ENOENT;
361         /* lookup might have found our primary name or a name belonging
362          * to another device.
363          */
364         if (name_node == dev->name_node || name_node->dev != dev)
365                 return -EINVAL;
366
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct net *net = dev_net(dev);
384
385         ASSERT_RTNL();
386
387         write_lock(&dev_base_lock);
388         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389         netdev_name_node_add(net, dev->name_node);
390         hlist_add_head_rcu(&dev->index_hlist,
391                            dev_index_hash(net, dev->ifindex));
392         write_unlock(&dev_base_lock);
393
394         dev_base_seq_inc(net);
395 }
396
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402         ASSERT_RTNL();
403
404         /* Unlink dev from the device chain */
405         if (lock)
406                 write_lock(&dev_base_lock);
407         list_del_rcu(&dev->dev_list);
408         netdev_name_node_del(dev->name_node);
409         hlist_del_rcu(&dev->index_hlist);
410         if (lock)
411                 write_unlock(&dev_base_lock);
412
413         dev_base_seq_inc(dev_net(dev));
414 }
415
416 /*
417  *      Our notifier list
418  */
419
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421
422 /*
423  *      Device drivers call our routines to queue packets here. We empty the
424  *      queue in the local softnet handler.
425  */
426
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452 static const char *const netdev_lock_name[] = {
453         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474         int i;
475
476         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477                 if (netdev_lock_type[i] == dev_type)
478                         return i;
479         /* the last key is used by default */
480         return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484                                                  unsigned short dev_type)
485 {
486         int i;
487
488         i = netdev_lock_pos(dev_type);
489         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490                                    netdev_lock_name[i]);
491 }
492
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495         int i;
496
497         i = netdev_lock_pos(dev->type);
498         lockdep_set_class_and_name(&dev->addr_list_lock,
499                                    &netdev_addr_lock_key[i],
500                                    netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504                                                  unsigned short dev_type)
505 {
506 }
507
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512
513 /*******************************************************************************
514  *
515  *              Protocol management and registration routines
516  *
517  *******************************************************************************/
518
519
520 /*
521  *      Add a protocol ID to the list. Now that the input handler is
522  *      smarter we can dispense with all the messy stuff that used to be
523  *      here.
524  *
525  *      BEWARE!!! Protocol handlers, mangling input packets,
526  *      MUST BE last in hash buckets and checking protocol handlers
527  *      MUST start from promiscuous ptype_all chain in net_bh.
528  *      It is true now, do not change it.
529  *      Explanation follows: if protocol handler, mangling packet, will
530  *      be the first on list, it is not able to sense, that packet
531  *      is cloned and should be copied-on-write, so that it will
532  *      change it and subsequent readers will get broken packet.
533  *                                                      --ANK (980803)
534  */
535
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538         if (pt->type == htons(ETH_P_ALL))
539                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540         else
541                 return pt->dev ? &pt->dev->ptype_specific :
542                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544
545 /**
546  *      dev_add_pack - add packet handler
547  *      @pt: packet type declaration
548  *
549  *      Add a protocol handler to the networking stack. The passed &packet_type
550  *      is linked into kernel lists and may not be freed until it has been
551  *      removed from the kernel lists.
552  *
553  *      This call does not sleep therefore it can not
554  *      guarantee all CPU's that are in middle of receiving packets
555  *      will see the new packet type (until the next received packet).
556  */
557
558 void dev_add_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561
562         spin_lock(&ptype_lock);
563         list_add_rcu(&pt->list, head);
564         spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567
568 /**
569  *      __dev_remove_pack        - remove packet handler
570  *      @pt: packet type declaration
571  *
572  *      Remove a protocol handler that was previously added to the kernel
573  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *      from the kernel lists and can be freed or reused once this function
575  *      returns.
576  *
577  *      The packet type might still be in use by receivers
578  *      and must not be freed until after all the CPU's have gone
579  *      through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583         struct list_head *head = ptype_head(pt);
584         struct packet_type *pt1;
585
586         spin_lock(&ptype_lock);
587
588         list_for_each_entry(pt1, head, list) {
589                 if (pt == pt1) {
590                         list_del_rcu(&pt->list);
591                         goto out;
592                 }
593         }
594
595         pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597         spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600
601 /**
602  *      dev_remove_pack  - remove packet handler
603  *      @pt: packet type declaration
604  *
605  *      Remove a protocol handler that was previously added to the kernel
606  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *      from the kernel lists and can be freed or reused once this function
608  *      returns.
609  *
610  *      This call sleeps to guarantee that no CPU is looking at the packet
611  *      type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615         __dev_remove_pack(pt);
616
617         synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620
621
622 /*******************************************************************************
623  *
624  *                          Device Interface Subroutines
625  *
626  *******************************************************************************/
627
628 /**
629  *      dev_get_iflink  - get 'iflink' value of a interface
630  *      @dev: targeted interface
631  *
632  *      Indicates the ifindex the interface is linked to.
633  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635
636 int dev_get_iflink(const struct net_device *dev)
637 {
638         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639                 return dev->netdev_ops->ndo_get_iflink(dev);
640
641         return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644
645 /**
646  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *      @dev: targeted interface
648  *      @skb: The packet.
649  *
650  *      For better visibility of tunnel traffic OVS needs to retrieve
651  *      egress tunnel information for a packet. Following API allows
652  *      user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656         struct ip_tunnel_info *info;
657
658         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659                 return -EINVAL;
660
661         info = skb_tunnel_info_unclone(skb);
662         if (!info)
663                 return -ENOMEM;
664         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665                 return -EINVAL;
666
667         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673         int k = stack->num_paths++;
674
675         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676                 return NULL;
677
678         return &stack->path[k];
679 }
680
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682                           struct net_device_path_stack *stack)
683 {
684         const struct net_device *last_dev;
685         struct net_device_path_ctx ctx = {
686                 .dev    = dev,
687         };
688         struct net_device_path *path;
689         int ret = 0;
690
691         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692         stack->num_paths = 0;
693         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694                 last_dev = ctx.dev;
695                 path = dev_fwd_path(stack);
696                 if (!path)
697                         return -1;
698
699                 memset(path, 0, sizeof(struct net_device_path));
700                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701                 if (ret < 0)
702                         return -1;
703
704                 if (WARN_ON_ONCE(last_dev == ctx.dev))
705                         return -1;
706         }
707
708         if (!ctx.dev)
709                 return ret;
710
711         path = dev_fwd_path(stack);
712         if (!path)
713                 return -1;
714         path->type = DEV_PATH_ETHERNET;
715         path->dev = ctx.dev;
716
717         return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721 /**
722  *      __dev_get_by_name       - find a device by its name
723  *      @net: the applicable net namespace
724  *      @name: name to find
725  *
726  *      Find an interface by name. Must be called under RTNL semaphore
727  *      or @dev_base_lock. If the name is found a pointer to the device
728  *      is returned. If the name is not found then %NULL is returned. The
729  *      reference counters are not incremented so the caller must be
730  *      careful with locks.
731  */
732
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735         struct netdev_name_node *node_name;
736
737         node_name = netdev_name_node_lookup(net, name);
738         return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741
742 /**
743  * dev_get_by_name_rcu  - find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756         struct netdev_name_node *node_name;
757
758         node_name = netdev_name_node_lookup_rcu(net, name);
759         return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764  *      dev_get_by_name         - find a device by its name
765  *      @net: the applicable net namespace
766  *      @name: name to find
767  *
768  *      Find an interface by name. This can be called from any
769  *      context and does its own locking. The returned handle has
770  *      the usage count incremented and the caller must use dev_put() to
771  *      release it when it is no longer needed. %NULL is returned if no
772  *      matching device is found.
773  */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777         struct net_device *dev;
778
779         rcu_read_lock();
780         dev = dev_get_by_name_rcu(net, name);
781         dev_hold(dev);
782         rcu_read_unlock();
783         return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786
787 /**
788  *      __dev_get_by_index - find a device by its ifindex
789  *      @net: the applicable net namespace
790  *      @ifindex: index of device
791  *
792  *      Search for an interface by index. Returns %NULL if the device
793  *      is not found or a pointer to the device. The device has not
794  *      had its reference counter increased so the caller must be careful
795  *      about locking. The caller must hold either the RTNL semaphore
796  *      or @dev_base_lock.
797  */
798
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801         struct net_device *dev;
802         struct hlist_head *head = dev_index_hash(net, ifindex);
803
804         hlist_for_each_entry(dev, head, index_hlist)
805                 if (dev->ifindex == ifindex)
806                         return dev;
807
808         return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811
812 /**
813  *      dev_get_by_index_rcu - find a device by its ifindex
814  *      @net: the applicable net namespace
815  *      @ifindex: index of device
816  *
817  *      Search for an interface by index. Returns %NULL if the device
818  *      is not found or a pointer to the device. The device has not
819  *      had its reference counter increased so the caller must be careful
820  *      about locking. The caller must hold RCU lock.
821  */
822
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825         struct net_device *dev;
826         struct hlist_head *head = dev_index_hash(net, ifindex);
827
828         hlist_for_each_entry_rcu(dev, head, index_hlist)
829                 if (dev->ifindex == ifindex)
830                         return dev;
831
832         return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837 /**
838  *      dev_get_by_index - find a device by its ifindex
839  *      @net: the applicable net namespace
840  *      @ifindex: index of device
841  *
842  *      Search for an interface by index. Returns NULL if the device
843  *      is not found or a pointer to the device. The device returned has
844  *      had a reference added and the pointer is safe until the user calls
845  *      dev_put to indicate they have finished with it.
846  */
847
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850         struct net_device *dev;
851
852         rcu_read_lock();
853         dev = dev_get_by_index_rcu(net, ifindex);
854         dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      dev_get_by_napi_id - find a device by napi_id
862  *      @napi_id: ID of the NAPI struct
863  *
864  *      Search for an interface by NAPI ID. Returns %NULL if the device
865  *      is not found or a pointer to the device. The device has not had
866  *      its reference counter increased so the caller must be careful
867  *      about locking. The caller must hold RCU lock.
868  */
869
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872         struct napi_struct *napi;
873
874         WARN_ON_ONCE(!rcu_read_lock_held());
875
876         if (napi_id < MIN_NAPI_ID)
877                 return NULL;
878
879         napi = napi_by_id(napi_id);
880
881         return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884
885 /**
886  *      netdev_get_name - get a netdevice name, knowing its ifindex.
887  *      @net: network namespace
888  *      @name: a pointer to the buffer where the name will be stored.
889  *      @ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893         struct net_device *dev;
894         int ret;
895
896         down_read(&devnet_rename_sem);
897         rcu_read_lock();
898
899         dev = dev_get_by_index_rcu(net, ifindex);
900         if (!dev) {
901                 ret = -ENODEV;
902                 goto out;
903         }
904
905         strcpy(name, dev->name);
906
907         ret = 0;
908 out:
909         rcu_read_unlock();
910         up_read(&devnet_rename_sem);
911         return ret;
912 }
913
914 /**
915  *      dev_getbyhwaddr_rcu - find a device by its hardware address
916  *      @net: the applicable net namespace
917  *      @type: media type of device
918  *      @ha: hardware address
919  *
920  *      Search for an interface by MAC address. Returns NULL if the device
921  *      is not found or a pointer to the device.
922  *      The caller must hold RCU or RTNL.
923  *      The returned device has not had its ref count increased
924  *      and the caller must therefore be careful about locking
925  *
926  */
927
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929                                        const char *ha)
930 {
931         struct net_device *dev;
932
933         for_each_netdev_rcu(net, dev)
934                 if (dev->type == type &&
935                     !memcmp(dev->dev_addr, ha, dev->addr_len))
936                         return dev;
937
938         return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944         struct net_device *dev, *ret = NULL;
945
946         rcu_read_lock();
947         for_each_netdev_rcu(net, dev)
948                 if (dev->type == type) {
949                         dev_hold(dev);
950                         ret = dev;
951                         break;
952                 }
953         rcu_read_unlock();
954         return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958 /**
959  *      __dev_get_by_flags - find any device with given flags
960  *      @net: the applicable net namespace
961  *      @if_flags: IFF_* values
962  *      @mask: bitmask of bits in if_flags to check
963  *
964  *      Search for any interface with the given flags. Returns NULL if a device
965  *      is not found or a pointer to the device. Must be called inside
966  *      rtnl_lock(), and result refcount is unchanged.
967  */
968
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970                                       unsigned short mask)
971 {
972         struct net_device *dev, *ret;
973
974         ASSERT_RTNL();
975
976         ret = NULL;
977         for_each_netdev(net, dev) {
978                 if (((dev->flags ^ if_flags) & mask) == 0) {
979                         ret = dev;
980                         break;
981                 }
982         }
983         return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986
987 /**
988  *      dev_valid_name - check if name is okay for network device
989  *      @name: name string
990  *
991  *      Network device names need to be valid file names to
992  *      allow sysfs to work.  We also disallow any kind of
993  *      whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997         if (*name == '\0')
998                 return false;
999         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000                 return false;
1001         if (!strcmp(name, ".") || !strcmp(name, ".."))
1002                 return false;
1003
1004         while (*name) {
1005                 if (*name == '/' || *name == ':' || isspace(*name))
1006                         return false;
1007                 name++;
1008         }
1009         return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012
1013 /**
1014  *      __dev_alloc_name - allocate a name for a device
1015  *      @net: network namespace to allocate the device name in
1016  *      @name: name format string
1017  *      @buf:  scratch buffer and result name string
1018  *
1019  *      Passed a format string - eg "lt%d" it will try and find a suitable
1020  *      id. It scans list of devices to build up a free map, then chooses
1021  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *      while allocating the name and adding the device in order to avoid
1023  *      duplicates.
1024  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *      Returns the number of the unit assigned or a negative errno code.
1026  */
1027
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030         int i = 0;
1031         const char *p;
1032         const int max_netdevices = 8*PAGE_SIZE;
1033         unsigned long *inuse;
1034         struct net_device *d;
1035
1036         if (!dev_valid_name(name))
1037                 return -EINVAL;
1038
1039         p = strchr(name, '%');
1040         if (p) {
1041                 /*
1042                  * Verify the string as this thing may have come from
1043                  * the user.  There must be either one "%d" and no other "%"
1044                  * characters.
1045                  */
1046                 if (p[1] != 'd' || strchr(p + 2, '%'))
1047                         return -EINVAL;
1048
1049                 /* Use one page as a bit array of possible slots */
1050                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051                 if (!inuse)
1052                         return -ENOMEM;
1053
1054                 for_each_netdev(net, d) {
1055                         struct netdev_name_node *name_node;
1056                         list_for_each_entry(name_node, &d->name_node->list, list) {
1057                                 if (!sscanf(name_node->name, name, &i))
1058                                         continue;
1059                                 if (i < 0 || i >= max_netdevices)
1060                                         continue;
1061
1062                                 /*  avoid cases where sscanf is not exact inverse of printf */
1063                                 snprintf(buf, IFNAMSIZ, name, i);
1064                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065                                         __set_bit(i, inuse);
1066                         }
1067                         if (!sscanf(d->name, name, &i))
1068                                 continue;
1069                         if (i < 0 || i >= max_netdevices)
1070                                 continue;
1071
1072                         /*  avoid cases where sscanf is not exact inverse of printf */
1073                         snprintf(buf, IFNAMSIZ, name, i);
1074                         if (!strncmp(buf, d->name, IFNAMSIZ))
1075                                 __set_bit(i, inuse);
1076                 }
1077
1078                 i = find_first_zero_bit(inuse, max_netdevices);
1079                 free_page((unsigned long) inuse);
1080         }
1081
1082         snprintf(buf, IFNAMSIZ, name, i);
1083         if (!netdev_name_in_use(net, buf))
1084                 return i;
1085
1086         /* It is possible to run out of possible slots
1087          * when the name is long and there isn't enough space left
1088          * for the digits, or if all bits are used.
1089          */
1090         return -ENFILE;
1091 }
1092
1093 static int dev_alloc_name_ns(struct net *net,
1094                              struct net_device *dev,
1095                              const char *name)
1096 {
1097         char buf[IFNAMSIZ];
1098         int ret;
1099
1100         BUG_ON(!net);
1101         ret = __dev_alloc_name(net, name, buf);
1102         if (ret >= 0)
1103                 strscpy(dev->name, buf, IFNAMSIZ);
1104         return ret;
1105 }
1106
1107 /**
1108  *      dev_alloc_name - allocate a name for a device
1109  *      @dev: device
1110  *      @name: name format string
1111  *
1112  *      Passed a format string - eg "lt%d" it will try and find a suitable
1113  *      id. It scans list of devices to build up a free map, then chooses
1114  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *      while allocating the name and adding the device in order to avoid
1116  *      duplicates.
1117  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *      Returns the number of the unit assigned or a negative errno code.
1119  */
1120
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123         return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128                               const char *name)
1129 {
1130         BUG_ON(!net);
1131
1132         if (!dev_valid_name(name))
1133                 return -EINVAL;
1134
1135         if (strchr(name, '%'))
1136                 return dev_alloc_name_ns(net, dev, name);
1137         else if (netdev_name_in_use(net, name))
1138                 return -EEXIST;
1139         else if (dev->name != name)
1140                 strscpy(dev->name, name, IFNAMSIZ);
1141
1142         return 0;
1143 }
1144
1145 /**
1146  *      dev_change_name - change name of a device
1147  *      @dev: device
1148  *      @newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *      Change name of a device, can pass format strings "eth%d".
1151  *      for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155         unsigned char old_assign_type;
1156         char oldname[IFNAMSIZ];
1157         int err = 0;
1158         int ret;
1159         struct net *net;
1160
1161         ASSERT_RTNL();
1162         BUG_ON(!dev_net(dev));
1163
1164         net = dev_net(dev);
1165
1166         down_write(&devnet_rename_sem);
1167
1168         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1169                 up_write(&devnet_rename_sem);
1170                 return 0;
1171         }
1172
1173         memcpy(oldname, dev->name, IFNAMSIZ);
1174
1175         err = dev_get_valid_name(net, dev, newname);
1176         if (err < 0) {
1177                 up_write(&devnet_rename_sem);
1178                 return err;
1179         }
1180
1181         if (oldname[0] && !strchr(oldname, '%'))
1182                 netdev_info(dev, "renamed from %s%s\n", oldname,
1183                             dev->flags & IFF_UP ? " (while UP)" : "");
1184
1185         old_assign_type = dev->name_assign_type;
1186         dev->name_assign_type = NET_NAME_RENAMED;
1187
1188 rollback:
1189         ret = device_rename(&dev->dev, dev->name);
1190         if (ret) {
1191                 memcpy(dev->name, oldname, IFNAMSIZ);
1192                 dev->name_assign_type = old_assign_type;
1193                 up_write(&devnet_rename_sem);
1194                 return ret;
1195         }
1196
1197         up_write(&devnet_rename_sem);
1198
1199         netdev_adjacent_rename_links(dev, oldname);
1200
1201         write_lock(&dev_base_lock);
1202         netdev_name_node_del(dev->name_node);
1203         write_unlock(&dev_base_lock);
1204
1205         synchronize_rcu();
1206
1207         write_lock(&dev_base_lock);
1208         netdev_name_node_add(net, dev->name_node);
1209         write_unlock(&dev_base_lock);
1210
1211         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1212         ret = notifier_to_errno(ret);
1213
1214         if (ret) {
1215                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1216                 if (err >= 0) {
1217                         err = ret;
1218                         down_write(&devnet_rename_sem);
1219                         memcpy(dev->name, oldname, IFNAMSIZ);
1220                         memcpy(oldname, newname, IFNAMSIZ);
1221                         dev->name_assign_type = old_assign_type;
1222                         old_assign_type = NET_NAME_RENAMED;
1223                         goto rollback;
1224                 } else {
1225                         netdev_err(dev, "name change rollback failed: %d\n",
1226                                    ret);
1227                 }
1228         }
1229
1230         return err;
1231 }
1232
1233 /**
1234  *      dev_set_alias - change ifalias of a device
1235  *      @dev: device
1236  *      @alias: name up to IFALIASZ
1237  *      @len: limit of bytes to copy from info
1238  *
1239  *      Set ifalias for a device,
1240  */
1241 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1242 {
1243         struct dev_ifalias *new_alias = NULL;
1244
1245         if (len >= IFALIASZ)
1246                 return -EINVAL;
1247
1248         if (len) {
1249                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1250                 if (!new_alias)
1251                         return -ENOMEM;
1252
1253                 memcpy(new_alias->ifalias, alias, len);
1254                 new_alias->ifalias[len] = 0;
1255         }
1256
1257         mutex_lock(&ifalias_mutex);
1258         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1259                                         mutex_is_locked(&ifalias_mutex));
1260         mutex_unlock(&ifalias_mutex);
1261
1262         if (new_alias)
1263                 kfree_rcu(new_alias, rcuhead);
1264
1265         return len;
1266 }
1267 EXPORT_SYMBOL(dev_set_alias);
1268
1269 /**
1270  *      dev_get_alias - get ifalias of a device
1271  *      @dev: device
1272  *      @name: buffer to store name of ifalias
1273  *      @len: size of buffer
1274  *
1275  *      get ifalias for a device.  Caller must make sure dev cannot go
1276  *      away,  e.g. rcu read lock or own a reference count to device.
1277  */
1278 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1279 {
1280         const struct dev_ifalias *alias;
1281         int ret = 0;
1282
1283         rcu_read_lock();
1284         alias = rcu_dereference(dev->ifalias);
1285         if (alias)
1286                 ret = snprintf(name, len, "%s", alias->ifalias);
1287         rcu_read_unlock();
1288
1289         return ret;
1290 }
1291
1292 /**
1293  *      netdev_features_change - device changes features
1294  *      @dev: device to cause notification
1295  *
1296  *      Called to indicate a device has changed features.
1297  */
1298 void netdev_features_change(struct net_device *dev)
1299 {
1300         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301 }
1302 EXPORT_SYMBOL(netdev_features_change);
1303
1304 /**
1305  *      netdev_state_change - device changes state
1306  *      @dev: device to cause notification
1307  *
1308  *      Called to indicate a device has changed state. This function calls
1309  *      the notifier chains for netdev_chain and sends a NEWLINK message
1310  *      to the routing socket.
1311  */
1312 void netdev_state_change(struct net_device *dev)
1313 {
1314         if (dev->flags & IFF_UP) {
1315                 struct netdev_notifier_change_info change_info = {
1316                         .info.dev = dev,
1317                 };
1318
1319                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1320                                               &change_info.info);
1321                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1322         }
1323 }
1324 EXPORT_SYMBOL(netdev_state_change);
1325
1326 /**
1327  * __netdev_notify_peers - notify network peers about existence of @dev,
1328  * to be called when rtnl lock is already held.
1329  * @dev: network device
1330  *
1331  * Generate traffic such that interested network peers are aware of
1332  * @dev, such as by generating a gratuitous ARP. This may be used when
1333  * a device wants to inform the rest of the network about some sort of
1334  * reconfiguration such as a failover event or virtual machine
1335  * migration.
1336  */
1337 void __netdev_notify_peers(struct net_device *dev)
1338 {
1339         ASSERT_RTNL();
1340         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1341         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1342 }
1343 EXPORT_SYMBOL(__netdev_notify_peers);
1344
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357         rtnl_lock();
1358         __netdev_notify_peers(dev);
1359         rtnl_unlock();
1360 }
1361 EXPORT_SYMBOL(netdev_notify_peers);
1362
1363 static int napi_threaded_poll(void *data);
1364
1365 static int napi_kthread_create(struct napi_struct *n)
1366 {
1367         int err = 0;
1368
1369         /* Create and wake up the kthread once to put it in
1370          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1371          * warning and work with loadavg.
1372          */
1373         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1374                                 n->dev->name, n->napi_id);
1375         if (IS_ERR(n->thread)) {
1376                 err = PTR_ERR(n->thread);
1377                 pr_err("kthread_run failed with err %d\n", err);
1378                 n->thread = NULL;
1379         }
1380
1381         return err;
1382 }
1383
1384 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1385 {
1386         const struct net_device_ops *ops = dev->netdev_ops;
1387         int ret;
1388
1389         ASSERT_RTNL();
1390         dev_addr_check(dev);
1391
1392         if (!netif_device_present(dev)) {
1393                 /* may be detached because parent is runtime-suspended */
1394                 if (dev->dev.parent)
1395                         pm_runtime_resume(dev->dev.parent);
1396                 if (!netif_device_present(dev))
1397                         return -ENODEV;
1398         }
1399
1400         /* Block netpoll from trying to do any rx path servicing.
1401          * If we don't do this there is a chance ndo_poll_controller
1402          * or ndo_poll may be running while we open the device
1403          */
1404         netpoll_poll_disable(dev);
1405
1406         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1407         ret = notifier_to_errno(ret);
1408         if (ret)
1409                 return ret;
1410
1411         set_bit(__LINK_STATE_START, &dev->state);
1412
1413         if (ops->ndo_validate_addr)
1414                 ret = ops->ndo_validate_addr(dev);
1415
1416         if (!ret && ops->ndo_open)
1417                 ret = ops->ndo_open(dev);
1418
1419         netpoll_poll_enable(dev);
1420
1421         if (ret)
1422                 clear_bit(__LINK_STATE_START, &dev->state);
1423         else {
1424                 dev->flags |= IFF_UP;
1425                 dev_set_rx_mode(dev);
1426                 dev_activate(dev);
1427                 add_device_randomness(dev->dev_addr, dev->addr_len);
1428         }
1429
1430         return ret;
1431 }
1432
1433 /**
1434  *      dev_open        - prepare an interface for use.
1435  *      @dev: device to open
1436  *      @extack: netlink extended ack
1437  *
1438  *      Takes a device from down to up state. The device's private open
1439  *      function is invoked and then the multicast lists are loaded. Finally
1440  *      the device is moved into the up state and a %NETDEV_UP message is
1441  *      sent to the netdev notifier chain.
1442  *
1443  *      Calling this function on an active interface is a nop. On a failure
1444  *      a negative errno code is returned.
1445  */
1446 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1447 {
1448         int ret;
1449
1450         if (dev->flags & IFF_UP)
1451                 return 0;
1452
1453         ret = __dev_open(dev, extack);
1454         if (ret < 0)
1455                 return ret;
1456
1457         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1458         call_netdevice_notifiers(NETDEV_UP, dev);
1459
1460         return ret;
1461 }
1462 EXPORT_SYMBOL(dev_open);
1463
1464 static void __dev_close_many(struct list_head *head)
1465 {
1466         struct net_device *dev;
1467
1468         ASSERT_RTNL();
1469         might_sleep();
1470
1471         list_for_each_entry(dev, head, close_list) {
1472                 /* Temporarily disable netpoll until the interface is down */
1473                 netpoll_poll_disable(dev);
1474
1475                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1476
1477                 clear_bit(__LINK_STATE_START, &dev->state);
1478
1479                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1480                  * can be even on different cpu. So just clear netif_running().
1481                  *
1482                  * dev->stop() will invoke napi_disable() on all of it's
1483                  * napi_struct instances on this device.
1484                  */
1485                 smp_mb__after_atomic(); /* Commit netif_running(). */
1486         }
1487
1488         dev_deactivate_many(head);
1489
1490         list_for_each_entry(dev, head, close_list) {
1491                 const struct net_device_ops *ops = dev->netdev_ops;
1492
1493                 /*
1494                  *      Call the device specific close. This cannot fail.
1495                  *      Only if device is UP
1496                  *
1497                  *      We allow it to be called even after a DETACH hot-plug
1498                  *      event.
1499                  */
1500                 if (ops->ndo_stop)
1501                         ops->ndo_stop(dev);
1502
1503                 dev->flags &= ~IFF_UP;
1504                 netpoll_poll_enable(dev);
1505         }
1506 }
1507
1508 static void __dev_close(struct net_device *dev)
1509 {
1510         LIST_HEAD(single);
1511
1512         list_add(&dev->close_list, &single);
1513         __dev_close_many(&single);
1514         list_del(&single);
1515 }
1516
1517 void dev_close_many(struct list_head *head, bool unlink)
1518 {
1519         struct net_device *dev, *tmp;
1520
1521         /* Remove the devices that don't need to be closed */
1522         list_for_each_entry_safe(dev, tmp, head, close_list)
1523                 if (!(dev->flags & IFF_UP))
1524                         list_del_init(&dev->close_list);
1525
1526         __dev_close_many(head);
1527
1528         list_for_each_entry_safe(dev, tmp, head, close_list) {
1529                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1530                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1531                 if (unlink)
1532                         list_del_init(&dev->close_list);
1533         }
1534 }
1535 EXPORT_SYMBOL(dev_close_many);
1536
1537 /**
1538  *      dev_close - shutdown an interface.
1539  *      @dev: device to shutdown
1540  *
1541  *      This function moves an active device into down state. A
1542  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1543  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1544  *      chain.
1545  */
1546 void dev_close(struct net_device *dev)
1547 {
1548         if (dev->flags & IFF_UP) {
1549                 LIST_HEAD(single);
1550
1551                 list_add(&dev->close_list, &single);
1552                 dev_close_many(&single, true);
1553                 list_del(&single);
1554         }
1555 }
1556 EXPORT_SYMBOL(dev_close);
1557
1558
1559 /**
1560  *      dev_disable_lro - disable Large Receive Offload on a device
1561  *      @dev: device
1562  *
1563  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1564  *      called under RTNL.  This is needed if received packets may be
1565  *      forwarded to another interface.
1566  */
1567 void dev_disable_lro(struct net_device *dev)
1568 {
1569         struct net_device *lower_dev;
1570         struct list_head *iter;
1571
1572         dev->wanted_features &= ~NETIF_F_LRO;
1573         netdev_update_features(dev);
1574
1575         if (unlikely(dev->features & NETIF_F_LRO))
1576                 netdev_WARN(dev, "failed to disable LRO!\n");
1577
1578         netdev_for_each_lower_dev(dev, lower_dev, iter)
1579                 dev_disable_lro(lower_dev);
1580 }
1581 EXPORT_SYMBOL(dev_disable_lro);
1582
1583 /**
1584  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1585  *      @dev: device
1586  *
1587  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1588  *      called under RTNL.  This is needed if Generic XDP is installed on
1589  *      the device.
1590  */
1591 static void dev_disable_gro_hw(struct net_device *dev)
1592 {
1593         dev->wanted_features &= ~NETIF_F_GRO_HW;
1594         netdev_update_features(dev);
1595
1596         if (unlikely(dev->features & NETIF_F_GRO_HW))
1597                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1598 }
1599
1600 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1601 {
1602 #define N(val)                                          \
1603         case NETDEV_##val:                              \
1604                 return "NETDEV_" __stringify(val);
1605         switch (cmd) {
1606         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1607         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1608         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1609         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1610         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1611         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1612         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1613         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1614         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1615         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1616         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1617         }
1618 #undef N
1619         return "UNKNOWN_NETDEV_EVENT";
1620 }
1621 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1622
1623 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1624                                    struct net_device *dev)
1625 {
1626         struct netdev_notifier_info info = {
1627                 .dev = dev,
1628         };
1629
1630         return nb->notifier_call(nb, val, &info);
1631 }
1632
1633 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1634                                              struct net_device *dev)
1635 {
1636         int err;
1637
1638         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639         err = notifier_to_errno(err);
1640         if (err)
1641                 return err;
1642
1643         if (!(dev->flags & IFF_UP))
1644                 return 0;
1645
1646         call_netdevice_notifier(nb, NETDEV_UP, dev);
1647         return 0;
1648 }
1649
1650 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1651                                                 struct net_device *dev)
1652 {
1653         if (dev->flags & IFF_UP) {
1654                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1655                                         dev);
1656                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1657         }
1658         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1659 }
1660
1661 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1662                                                  struct net *net)
1663 {
1664         struct net_device *dev;
1665         int err;
1666
1667         for_each_netdev(net, dev) {
1668                 err = call_netdevice_register_notifiers(nb, dev);
1669                 if (err)
1670                         goto rollback;
1671         }
1672         return 0;
1673
1674 rollback:
1675         for_each_netdev_continue_reverse(net, dev)
1676                 call_netdevice_unregister_notifiers(nb, dev);
1677         return err;
1678 }
1679
1680 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1681                                                     struct net *net)
1682 {
1683         struct net_device *dev;
1684
1685         for_each_netdev(net, dev)
1686                 call_netdevice_unregister_notifiers(nb, dev);
1687 }
1688
1689 static int dev_boot_phase = 1;
1690
1691 /**
1692  * register_netdevice_notifier - register a network notifier block
1693  * @nb: notifier
1694  *
1695  * Register a notifier to be called when network device events occur.
1696  * The notifier passed is linked into the kernel structures and must
1697  * not be reused until it has been unregistered. A negative errno code
1698  * is returned on a failure.
1699  *
1700  * When registered all registration and up events are replayed
1701  * to the new notifier to allow device to have a race free
1702  * view of the network device list.
1703  */
1704
1705 int register_netdevice_notifier(struct notifier_block *nb)
1706 {
1707         struct net *net;
1708         int err;
1709
1710         /* Close race with setup_net() and cleanup_net() */
1711         down_write(&pernet_ops_rwsem);
1712         rtnl_lock();
1713         err = raw_notifier_chain_register(&netdev_chain, nb);
1714         if (err)
1715                 goto unlock;
1716         if (dev_boot_phase)
1717                 goto unlock;
1718         for_each_net(net) {
1719                 err = call_netdevice_register_net_notifiers(nb, net);
1720                 if (err)
1721                         goto rollback;
1722         }
1723
1724 unlock:
1725         rtnl_unlock();
1726         up_write(&pernet_ops_rwsem);
1727         return err;
1728
1729 rollback:
1730         for_each_net_continue_reverse(net)
1731                 call_netdevice_unregister_net_notifiers(nb, net);
1732
1733         raw_notifier_chain_unregister(&netdev_chain, nb);
1734         goto unlock;
1735 }
1736 EXPORT_SYMBOL(register_netdevice_notifier);
1737
1738 /**
1739  * unregister_netdevice_notifier - unregister a network notifier block
1740  * @nb: notifier
1741  *
1742  * Unregister a notifier previously registered by
1743  * register_netdevice_notifier(). The notifier is unlinked into the
1744  * kernel structures and may then be reused. A negative errno code
1745  * is returned on a failure.
1746  *
1747  * After unregistering unregister and down device events are synthesized
1748  * for all devices on the device list to the removed notifier to remove
1749  * the need for special case cleanup code.
1750  */
1751
1752 int unregister_netdevice_notifier(struct notifier_block *nb)
1753 {
1754         struct net *net;
1755         int err;
1756
1757         /* Close race with setup_net() and cleanup_net() */
1758         down_write(&pernet_ops_rwsem);
1759         rtnl_lock();
1760         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1761         if (err)
1762                 goto unlock;
1763
1764         for_each_net(net)
1765                 call_netdevice_unregister_net_notifiers(nb, net);
1766
1767 unlock:
1768         rtnl_unlock();
1769         up_write(&pernet_ops_rwsem);
1770         return err;
1771 }
1772 EXPORT_SYMBOL(unregister_netdevice_notifier);
1773
1774 static int __register_netdevice_notifier_net(struct net *net,
1775                                              struct notifier_block *nb,
1776                                              bool ignore_call_fail)
1777 {
1778         int err;
1779
1780         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1781         if (err)
1782                 return err;
1783         if (dev_boot_phase)
1784                 return 0;
1785
1786         err = call_netdevice_register_net_notifiers(nb, net);
1787         if (err && !ignore_call_fail)
1788                 goto chain_unregister;
1789
1790         return 0;
1791
1792 chain_unregister:
1793         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1794         return err;
1795 }
1796
1797 static int __unregister_netdevice_notifier_net(struct net *net,
1798                                                struct notifier_block *nb)
1799 {
1800         int err;
1801
1802         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1803         if (err)
1804                 return err;
1805
1806         call_netdevice_unregister_net_notifiers(nb, net);
1807         return 0;
1808 }
1809
1810 /**
1811  * register_netdevice_notifier_net - register a per-netns network notifier block
1812  * @net: network namespace
1813  * @nb: notifier
1814  *
1815  * Register a notifier to be called when network device events occur.
1816  * The notifier passed is linked into the kernel structures and must
1817  * not be reused until it has been unregistered. A negative errno code
1818  * is returned on a failure.
1819  *
1820  * When registered all registration and up events are replayed
1821  * to the new notifier to allow device to have a race free
1822  * view of the network device list.
1823  */
1824
1825 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1826 {
1827         int err;
1828
1829         rtnl_lock();
1830         err = __register_netdevice_notifier_net(net, nb, false);
1831         rtnl_unlock();
1832         return err;
1833 }
1834 EXPORT_SYMBOL(register_netdevice_notifier_net);
1835
1836 /**
1837  * unregister_netdevice_notifier_net - unregister a per-netns
1838  *                                     network notifier block
1839  * @net: network namespace
1840  * @nb: notifier
1841  *
1842  * Unregister a notifier previously registered by
1843  * register_netdevice_notifier_net(). The notifier is unlinked from the
1844  * kernel structures and may then be reused. A negative errno code
1845  * is returned on a failure.
1846  *
1847  * After unregistering unregister and down device events are synthesized
1848  * for all devices on the device list to the removed notifier to remove
1849  * the need for special case cleanup code.
1850  */
1851
1852 int unregister_netdevice_notifier_net(struct net *net,
1853                                       struct notifier_block *nb)
1854 {
1855         int err;
1856
1857         rtnl_lock();
1858         err = __unregister_netdevice_notifier_net(net, nb);
1859         rtnl_unlock();
1860         return err;
1861 }
1862 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1863
1864 static void __move_netdevice_notifier_net(struct net *src_net,
1865                                           struct net *dst_net,
1866                                           struct notifier_block *nb)
1867 {
1868         __unregister_netdevice_notifier_net(src_net, nb);
1869         __register_netdevice_notifier_net(dst_net, nb, true);
1870 }
1871
1872 void move_netdevice_notifier_net(struct net *src_net, struct net *dst_net,
1873                                  struct notifier_block *nb)
1874 {
1875         rtnl_lock();
1876         __move_netdevice_notifier_net(src_net, dst_net, nb);
1877         rtnl_unlock();
1878 }
1879
1880 int register_netdevice_notifier_dev_net(struct net_device *dev,
1881                                         struct notifier_block *nb,
1882                                         struct netdev_net_notifier *nn)
1883 {
1884         int err;
1885
1886         rtnl_lock();
1887         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1888         if (!err) {
1889                 nn->nb = nb;
1890                 list_add(&nn->list, &dev->net_notifier_list);
1891         }
1892         rtnl_unlock();
1893         return err;
1894 }
1895 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1896
1897 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1898                                           struct notifier_block *nb,
1899                                           struct netdev_net_notifier *nn)
1900 {
1901         int err;
1902
1903         rtnl_lock();
1904         list_del(&nn->list);
1905         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1906         rtnl_unlock();
1907         return err;
1908 }
1909 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1910
1911 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1912                                              struct net *net)
1913 {
1914         struct netdev_net_notifier *nn;
1915
1916         list_for_each_entry(nn, &dev->net_notifier_list, list)
1917                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1918 }
1919
1920 /**
1921  *      call_netdevice_notifiers_info - call all network notifier blocks
1922  *      @val: value passed unmodified to notifier function
1923  *      @info: notifier information data
1924  *
1925  *      Call all network notifier blocks.  Parameters and return value
1926  *      are as for raw_notifier_call_chain().
1927  */
1928
1929 static int call_netdevice_notifiers_info(unsigned long val,
1930                                          struct netdev_notifier_info *info)
1931 {
1932         struct net *net = dev_net(info->dev);
1933         int ret;
1934
1935         ASSERT_RTNL();
1936
1937         /* Run per-netns notifier block chain first, then run the global one.
1938          * Hopefully, one day, the global one is going to be removed after
1939          * all notifier block registrators get converted to be per-netns.
1940          */
1941         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1942         if (ret & NOTIFY_STOP_MASK)
1943                 return ret;
1944         return raw_notifier_call_chain(&netdev_chain, val, info);
1945 }
1946
1947 /**
1948  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1949  *                                             for and rollback on error
1950  *      @val_up: value passed unmodified to notifier function
1951  *      @val_down: value passed unmodified to the notifier function when
1952  *                 recovering from an error on @val_up
1953  *      @info: notifier information data
1954  *
1955  *      Call all per-netns network notifier blocks, but not notifier blocks on
1956  *      the global notifier chain. Parameters and return value are as for
1957  *      raw_notifier_call_chain_robust().
1958  */
1959
1960 static int
1961 call_netdevice_notifiers_info_robust(unsigned long val_up,
1962                                      unsigned long val_down,
1963                                      struct netdev_notifier_info *info)
1964 {
1965         struct net *net = dev_net(info->dev);
1966
1967         ASSERT_RTNL();
1968
1969         return raw_notifier_call_chain_robust(&net->netdev_chain,
1970                                               val_up, val_down, info);
1971 }
1972
1973 static int call_netdevice_notifiers_extack(unsigned long val,
1974                                            struct net_device *dev,
1975                                            struct netlink_ext_ack *extack)
1976 {
1977         struct netdev_notifier_info info = {
1978                 .dev = dev,
1979                 .extack = extack,
1980         };
1981
1982         return call_netdevice_notifiers_info(val, &info);
1983 }
1984
1985 /**
1986  *      call_netdevice_notifiers - call all network notifier blocks
1987  *      @val: value passed unmodified to notifier function
1988  *      @dev: net_device pointer passed unmodified to notifier function
1989  *
1990  *      Call all network notifier blocks.  Parameters and return value
1991  *      are as for raw_notifier_call_chain().
1992  */
1993
1994 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1995 {
1996         return call_netdevice_notifiers_extack(val, dev, NULL);
1997 }
1998 EXPORT_SYMBOL(call_netdevice_notifiers);
1999
2000 /**
2001  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2002  *      @val: value passed unmodified to notifier function
2003  *      @dev: net_device pointer passed unmodified to notifier function
2004  *      @arg: additional u32 argument passed to the notifier function
2005  *
2006  *      Call all network notifier blocks.  Parameters and return value
2007  *      are as for raw_notifier_call_chain().
2008  */
2009 static int call_netdevice_notifiers_mtu(unsigned long val,
2010                                         struct net_device *dev, u32 arg)
2011 {
2012         struct netdev_notifier_info_ext info = {
2013                 .info.dev = dev,
2014                 .ext.mtu = arg,
2015         };
2016
2017         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2018
2019         return call_netdevice_notifiers_info(val, &info.info);
2020 }
2021
2022 #ifdef CONFIG_NET_INGRESS
2023 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2024
2025 void net_inc_ingress_queue(void)
2026 {
2027         static_branch_inc(&ingress_needed_key);
2028 }
2029 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2030
2031 void net_dec_ingress_queue(void)
2032 {
2033         static_branch_dec(&ingress_needed_key);
2034 }
2035 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2036 #endif
2037
2038 #ifdef CONFIG_NET_EGRESS
2039 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2040
2041 void net_inc_egress_queue(void)
2042 {
2043         static_branch_inc(&egress_needed_key);
2044 }
2045 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2046
2047 void net_dec_egress_queue(void)
2048 {
2049         static_branch_dec(&egress_needed_key);
2050 }
2051 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2052 #endif
2053
2054 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2055 EXPORT_SYMBOL(netstamp_needed_key);
2056 #ifdef CONFIG_JUMP_LABEL
2057 static atomic_t netstamp_needed_deferred;
2058 static atomic_t netstamp_wanted;
2059 static void netstamp_clear(struct work_struct *work)
2060 {
2061         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2062         int wanted;
2063
2064         wanted = atomic_add_return(deferred, &netstamp_wanted);
2065         if (wanted > 0)
2066                 static_branch_enable(&netstamp_needed_key);
2067         else
2068                 static_branch_disable(&netstamp_needed_key);
2069 }
2070 static DECLARE_WORK(netstamp_work, netstamp_clear);
2071 #endif
2072
2073 void net_enable_timestamp(void)
2074 {
2075 #ifdef CONFIG_JUMP_LABEL
2076         int wanted = atomic_read(&netstamp_wanted);
2077
2078         while (wanted > 0) {
2079                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2080                         return;
2081         }
2082         atomic_inc(&netstamp_needed_deferred);
2083         schedule_work(&netstamp_work);
2084 #else
2085         static_branch_inc(&netstamp_needed_key);
2086 #endif
2087 }
2088 EXPORT_SYMBOL(net_enable_timestamp);
2089
2090 void net_disable_timestamp(void)
2091 {
2092 #ifdef CONFIG_JUMP_LABEL
2093         int wanted = atomic_read(&netstamp_wanted);
2094
2095         while (wanted > 1) {
2096                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2097                         return;
2098         }
2099         atomic_dec(&netstamp_needed_deferred);
2100         schedule_work(&netstamp_work);
2101 #else
2102         static_branch_dec(&netstamp_needed_key);
2103 #endif
2104 }
2105 EXPORT_SYMBOL(net_disable_timestamp);
2106
2107 static inline void net_timestamp_set(struct sk_buff *skb)
2108 {
2109         skb->tstamp = 0;
2110         skb->mono_delivery_time = 0;
2111         if (static_branch_unlikely(&netstamp_needed_key))
2112                 skb->tstamp = ktime_get_real();
2113 }
2114
2115 #define net_timestamp_check(COND, SKB)                          \
2116         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2117                 if ((COND) && !(SKB)->tstamp)                   \
2118                         (SKB)->tstamp = ktime_get_real();       \
2119         }                                                       \
2120
2121 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2122 {
2123         return __is_skb_forwardable(dev, skb, true);
2124 }
2125 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2126
2127 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2128                               bool check_mtu)
2129 {
2130         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2131
2132         if (likely(!ret)) {
2133                 skb->protocol = eth_type_trans(skb, dev);
2134                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2135         }
2136
2137         return ret;
2138 }
2139
2140 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2141 {
2142         return __dev_forward_skb2(dev, skb, true);
2143 }
2144 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2145
2146 /**
2147  * dev_forward_skb - loopback an skb to another netif
2148  *
2149  * @dev: destination network device
2150  * @skb: buffer to forward
2151  *
2152  * return values:
2153  *      NET_RX_SUCCESS  (no congestion)
2154  *      NET_RX_DROP     (packet was dropped, but freed)
2155  *
2156  * dev_forward_skb can be used for injecting an skb from the
2157  * start_xmit function of one device into the receive queue
2158  * of another device.
2159  *
2160  * The receiving device may be in another namespace, so
2161  * we have to clear all information in the skb that could
2162  * impact namespace isolation.
2163  */
2164 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2165 {
2166         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2167 }
2168 EXPORT_SYMBOL_GPL(dev_forward_skb);
2169
2170 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2171 {
2172         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2173 }
2174
2175 static inline int deliver_skb(struct sk_buff *skb,
2176                               struct packet_type *pt_prev,
2177                               struct net_device *orig_dev)
2178 {
2179         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2180                 return -ENOMEM;
2181         refcount_inc(&skb->users);
2182         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2183 }
2184
2185 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2186                                           struct packet_type **pt,
2187                                           struct net_device *orig_dev,
2188                                           __be16 type,
2189                                           struct list_head *ptype_list)
2190 {
2191         struct packet_type *ptype, *pt_prev = *pt;
2192
2193         list_for_each_entry_rcu(ptype, ptype_list, list) {
2194                 if (ptype->type != type)
2195                         continue;
2196                 if (pt_prev)
2197                         deliver_skb(skb, pt_prev, orig_dev);
2198                 pt_prev = ptype;
2199         }
2200         *pt = pt_prev;
2201 }
2202
2203 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2204 {
2205         if (!ptype->af_packet_priv || !skb->sk)
2206                 return false;
2207
2208         if (ptype->id_match)
2209                 return ptype->id_match(ptype, skb->sk);
2210         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2211                 return true;
2212
2213         return false;
2214 }
2215
2216 /**
2217  * dev_nit_active - return true if any network interface taps are in use
2218  *
2219  * @dev: network device to check for the presence of taps
2220  */
2221 bool dev_nit_active(struct net_device *dev)
2222 {
2223         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2224 }
2225 EXPORT_SYMBOL_GPL(dev_nit_active);
2226
2227 /*
2228  *      Support routine. Sends outgoing frames to any network
2229  *      taps currently in use.
2230  */
2231
2232 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2233 {
2234         struct packet_type *ptype;
2235         struct sk_buff *skb2 = NULL;
2236         struct packet_type *pt_prev = NULL;
2237         struct list_head *ptype_list = &ptype_all;
2238
2239         rcu_read_lock();
2240 again:
2241         list_for_each_entry_rcu(ptype, ptype_list, list) {
2242                 if (ptype->ignore_outgoing)
2243                         continue;
2244
2245                 /* Never send packets back to the socket
2246                  * they originated from - MvS (miquels@drinkel.ow.org)
2247                  */
2248                 if (skb_loop_sk(ptype, skb))
2249                         continue;
2250
2251                 if (pt_prev) {
2252                         deliver_skb(skb2, pt_prev, skb->dev);
2253                         pt_prev = ptype;
2254                         continue;
2255                 }
2256
2257                 /* need to clone skb, done only once */
2258                 skb2 = skb_clone(skb, GFP_ATOMIC);
2259                 if (!skb2)
2260                         goto out_unlock;
2261
2262                 net_timestamp_set(skb2);
2263
2264                 /* skb->nh should be correctly
2265                  * set by sender, so that the second statement is
2266                  * just protection against buggy protocols.
2267                  */
2268                 skb_reset_mac_header(skb2);
2269
2270                 if (skb_network_header(skb2) < skb2->data ||
2271                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2272                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2273                                              ntohs(skb2->protocol),
2274                                              dev->name);
2275                         skb_reset_network_header(skb2);
2276                 }
2277
2278                 skb2->transport_header = skb2->network_header;
2279                 skb2->pkt_type = PACKET_OUTGOING;
2280                 pt_prev = ptype;
2281         }
2282
2283         if (ptype_list == &ptype_all) {
2284                 ptype_list = &dev->ptype_all;
2285                 goto again;
2286         }
2287 out_unlock:
2288         if (pt_prev) {
2289                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2290                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2291                 else
2292                         kfree_skb(skb2);
2293         }
2294         rcu_read_unlock();
2295 }
2296 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2297
2298 /**
2299  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2300  * @dev: Network device
2301  * @txq: number of queues available
2302  *
2303  * If real_num_tx_queues is changed the tc mappings may no longer be
2304  * valid. To resolve this verify the tc mapping remains valid and if
2305  * not NULL the mapping. With no priorities mapping to this
2306  * offset/count pair it will no longer be used. In the worst case TC0
2307  * is invalid nothing can be done so disable priority mappings. If is
2308  * expected that drivers will fix this mapping if they can before
2309  * calling netif_set_real_num_tx_queues.
2310  */
2311 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2312 {
2313         int i;
2314         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2315
2316         /* If TC0 is invalidated disable TC mapping */
2317         if (tc->offset + tc->count > txq) {
2318                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2319                 dev->num_tc = 0;
2320                 return;
2321         }
2322
2323         /* Invalidated prio to tc mappings set to TC0 */
2324         for (i = 1; i < TC_BITMASK + 1; i++) {
2325                 int q = netdev_get_prio_tc_map(dev, i);
2326
2327                 tc = &dev->tc_to_txq[q];
2328                 if (tc->offset + tc->count > txq) {
2329                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2330                                     i, q);
2331                         netdev_set_prio_tc_map(dev, i, 0);
2332                 }
2333         }
2334 }
2335
2336 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2337 {
2338         if (dev->num_tc) {
2339                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2340                 int i;
2341
2342                 /* walk through the TCs and see if it falls into any of them */
2343                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2344                         if ((txq - tc->offset) < tc->count)
2345                                 return i;
2346                 }
2347
2348                 /* didn't find it, just return -1 to indicate no match */
2349                 return -1;
2350         }
2351
2352         return 0;
2353 }
2354 EXPORT_SYMBOL(netdev_txq_to_tc);
2355
2356 #ifdef CONFIG_XPS
2357 static struct static_key xps_needed __read_mostly;
2358 static struct static_key xps_rxqs_needed __read_mostly;
2359 static DEFINE_MUTEX(xps_map_mutex);
2360 #define xmap_dereference(P)             \
2361         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2362
2363 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2364                              struct xps_dev_maps *old_maps, int tci, u16 index)
2365 {
2366         struct xps_map *map = NULL;
2367         int pos;
2368
2369         if (dev_maps)
2370                 map = xmap_dereference(dev_maps->attr_map[tci]);
2371         if (!map)
2372                 return false;
2373
2374         for (pos = map->len; pos--;) {
2375                 if (map->queues[pos] != index)
2376                         continue;
2377
2378                 if (map->len > 1) {
2379                         map->queues[pos] = map->queues[--map->len];
2380                         break;
2381                 }
2382
2383                 if (old_maps)
2384                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2385                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2386                 kfree_rcu(map, rcu);
2387                 return false;
2388         }
2389
2390         return true;
2391 }
2392
2393 static bool remove_xps_queue_cpu(struct net_device *dev,
2394                                  struct xps_dev_maps *dev_maps,
2395                                  int cpu, u16 offset, u16 count)
2396 {
2397         int num_tc = dev_maps->num_tc;
2398         bool active = false;
2399         int tci;
2400
2401         for (tci = cpu * num_tc; num_tc--; tci++) {
2402                 int i, j;
2403
2404                 for (i = count, j = offset; i--; j++) {
2405                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2406                                 break;
2407                 }
2408
2409                 active |= i < 0;
2410         }
2411
2412         return active;
2413 }
2414
2415 static void reset_xps_maps(struct net_device *dev,
2416                            struct xps_dev_maps *dev_maps,
2417                            enum xps_map_type type)
2418 {
2419         static_key_slow_dec_cpuslocked(&xps_needed);
2420         if (type == XPS_RXQS)
2421                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2422
2423         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2424
2425         kfree_rcu(dev_maps, rcu);
2426 }
2427
2428 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2429                            u16 offset, u16 count)
2430 {
2431         struct xps_dev_maps *dev_maps;
2432         bool active = false;
2433         int i, j;
2434
2435         dev_maps = xmap_dereference(dev->xps_maps[type]);
2436         if (!dev_maps)
2437                 return;
2438
2439         for (j = 0; j < dev_maps->nr_ids; j++)
2440                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2441         if (!active)
2442                 reset_xps_maps(dev, dev_maps, type);
2443
2444         if (type == XPS_CPUS) {
2445                 for (i = offset + (count - 1); count--; i--)
2446                         netdev_queue_numa_node_write(
2447                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2448         }
2449 }
2450
2451 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2452                                    u16 count)
2453 {
2454         if (!static_key_false(&xps_needed))
2455                 return;
2456
2457         cpus_read_lock();
2458         mutex_lock(&xps_map_mutex);
2459
2460         if (static_key_false(&xps_rxqs_needed))
2461                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2462
2463         clean_xps_maps(dev, XPS_CPUS, offset, count);
2464
2465         mutex_unlock(&xps_map_mutex);
2466         cpus_read_unlock();
2467 }
2468
2469 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2470 {
2471         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2472 }
2473
2474 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2475                                       u16 index, bool is_rxqs_map)
2476 {
2477         struct xps_map *new_map;
2478         int alloc_len = XPS_MIN_MAP_ALLOC;
2479         int i, pos;
2480
2481         for (pos = 0; map && pos < map->len; pos++) {
2482                 if (map->queues[pos] != index)
2483                         continue;
2484                 return map;
2485         }
2486
2487         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2488         if (map) {
2489                 if (pos < map->alloc_len)
2490                         return map;
2491
2492                 alloc_len = map->alloc_len * 2;
2493         }
2494
2495         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2496          *  map
2497          */
2498         if (is_rxqs_map)
2499                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2500         else
2501                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2502                                        cpu_to_node(attr_index));
2503         if (!new_map)
2504                 return NULL;
2505
2506         for (i = 0; i < pos; i++)
2507                 new_map->queues[i] = map->queues[i];
2508         new_map->alloc_len = alloc_len;
2509         new_map->len = pos;
2510
2511         return new_map;
2512 }
2513
2514 /* Copy xps maps at a given index */
2515 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2516                               struct xps_dev_maps *new_dev_maps, int index,
2517                               int tc, bool skip_tc)
2518 {
2519         int i, tci = index * dev_maps->num_tc;
2520         struct xps_map *map;
2521
2522         /* copy maps belonging to foreign traffic classes */
2523         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2524                 if (i == tc && skip_tc)
2525                         continue;
2526
2527                 /* fill in the new device map from the old device map */
2528                 map = xmap_dereference(dev_maps->attr_map[tci]);
2529                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2530         }
2531 }
2532
2533 /* Must be called under cpus_read_lock */
2534 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2535                           u16 index, enum xps_map_type type)
2536 {
2537         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2538         const unsigned long *online_mask = NULL;
2539         bool active = false, copy = false;
2540         int i, j, tci, numa_node_id = -2;
2541         int maps_sz, num_tc = 1, tc = 0;
2542         struct xps_map *map, *new_map;
2543         unsigned int nr_ids;
2544
2545         if (dev->num_tc) {
2546                 /* Do not allow XPS on subordinate device directly */
2547                 num_tc = dev->num_tc;
2548                 if (num_tc < 0)
2549                         return -EINVAL;
2550
2551                 /* If queue belongs to subordinate dev use its map */
2552                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2553
2554                 tc = netdev_txq_to_tc(dev, index);
2555                 if (tc < 0)
2556                         return -EINVAL;
2557         }
2558
2559         mutex_lock(&xps_map_mutex);
2560
2561         dev_maps = xmap_dereference(dev->xps_maps[type]);
2562         if (type == XPS_RXQS) {
2563                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2564                 nr_ids = dev->num_rx_queues;
2565         } else {
2566                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2567                 if (num_possible_cpus() > 1)
2568                         online_mask = cpumask_bits(cpu_online_mask);
2569                 nr_ids = nr_cpu_ids;
2570         }
2571
2572         if (maps_sz < L1_CACHE_BYTES)
2573                 maps_sz = L1_CACHE_BYTES;
2574
2575         /* The old dev_maps could be larger or smaller than the one we're
2576          * setting up now, as dev->num_tc or nr_ids could have been updated in
2577          * between. We could try to be smart, but let's be safe instead and only
2578          * copy foreign traffic classes if the two map sizes match.
2579          */
2580         if (dev_maps &&
2581             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2582                 copy = true;
2583
2584         /* allocate memory for queue storage */
2585         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2586              j < nr_ids;) {
2587                 if (!new_dev_maps) {
2588                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2589                         if (!new_dev_maps) {
2590                                 mutex_unlock(&xps_map_mutex);
2591                                 return -ENOMEM;
2592                         }
2593
2594                         new_dev_maps->nr_ids = nr_ids;
2595                         new_dev_maps->num_tc = num_tc;
2596                 }
2597
2598                 tci = j * num_tc + tc;
2599                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2600
2601                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2602                 if (!map)
2603                         goto error;
2604
2605                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2606         }
2607
2608         if (!new_dev_maps)
2609                 goto out_no_new_maps;
2610
2611         if (!dev_maps) {
2612                 /* Increment static keys at most once per type */
2613                 static_key_slow_inc_cpuslocked(&xps_needed);
2614                 if (type == XPS_RXQS)
2615                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2616         }
2617
2618         for (j = 0; j < nr_ids; j++) {
2619                 bool skip_tc = false;
2620
2621                 tci = j * num_tc + tc;
2622                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2623                     netif_attr_test_online(j, online_mask, nr_ids)) {
2624                         /* add tx-queue to CPU/rx-queue maps */
2625                         int pos = 0;
2626
2627                         skip_tc = true;
2628
2629                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2630                         while ((pos < map->len) && (map->queues[pos] != index))
2631                                 pos++;
2632
2633                         if (pos == map->len)
2634                                 map->queues[map->len++] = index;
2635 #ifdef CONFIG_NUMA
2636                         if (type == XPS_CPUS) {
2637                                 if (numa_node_id == -2)
2638                                         numa_node_id = cpu_to_node(j);
2639                                 else if (numa_node_id != cpu_to_node(j))
2640                                         numa_node_id = -1;
2641                         }
2642 #endif
2643                 }
2644
2645                 if (copy)
2646                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2647                                           skip_tc);
2648         }
2649
2650         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2651
2652         /* Cleanup old maps */
2653         if (!dev_maps)
2654                 goto out_no_old_maps;
2655
2656         for (j = 0; j < dev_maps->nr_ids; j++) {
2657                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2658                         map = xmap_dereference(dev_maps->attr_map[tci]);
2659                         if (!map)
2660                                 continue;
2661
2662                         if (copy) {
2663                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2664                                 if (map == new_map)
2665                                         continue;
2666                         }
2667
2668                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2669                         kfree_rcu(map, rcu);
2670                 }
2671         }
2672
2673         old_dev_maps = dev_maps;
2674
2675 out_no_old_maps:
2676         dev_maps = new_dev_maps;
2677         active = true;
2678
2679 out_no_new_maps:
2680         if (type == XPS_CPUS)
2681                 /* update Tx queue numa node */
2682                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2683                                              (numa_node_id >= 0) ?
2684                                              numa_node_id : NUMA_NO_NODE);
2685
2686         if (!dev_maps)
2687                 goto out_no_maps;
2688
2689         /* removes tx-queue from unused CPUs/rx-queues */
2690         for (j = 0; j < dev_maps->nr_ids; j++) {
2691                 tci = j * dev_maps->num_tc;
2692
2693                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2694                         if (i == tc &&
2695                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2696                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2697                                 continue;
2698
2699                         active |= remove_xps_queue(dev_maps,
2700                                                    copy ? old_dev_maps : NULL,
2701                                                    tci, index);
2702                 }
2703         }
2704
2705         if (old_dev_maps)
2706                 kfree_rcu(old_dev_maps, rcu);
2707
2708         /* free map if not active */
2709         if (!active)
2710                 reset_xps_maps(dev, dev_maps, type);
2711
2712 out_no_maps:
2713         mutex_unlock(&xps_map_mutex);
2714
2715         return 0;
2716 error:
2717         /* remove any maps that we added */
2718         for (j = 0; j < nr_ids; j++) {
2719                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2720                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2721                         map = copy ?
2722                               xmap_dereference(dev_maps->attr_map[tci]) :
2723                               NULL;
2724                         if (new_map && new_map != map)
2725                                 kfree(new_map);
2726                 }
2727         }
2728
2729         mutex_unlock(&xps_map_mutex);
2730
2731         kfree(new_dev_maps);
2732         return -ENOMEM;
2733 }
2734 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2735
2736 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2737                         u16 index)
2738 {
2739         int ret;
2740
2741         cpus_read_lock();
2742         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2743         cpus_read_unlock();
2744
2745         return ret;
2746 }
2747 EXPORT_SYMBOL(netif_set_xps_queue);
2748
2749 #endif
2750 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2751 {
2752         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2753
2754         /* Unbind any subordinate channels */
2755         while (txq-- != &dev->_tx[0]) {
2756                 if (txq->sb_dev)
2757                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2758         }
2759 }
2760
2761 void netdev_reset_tc(struct net_device *dev)
2762 {
2763 #ifdef CONFIG_XPS
2764         netif_reset_xps_queues_gt(dev, 0);
2765 #endif
2766         netdev_unbind_all_sb_channels(dev);
2767
2768         /* Reset TC configuration of device */
2769         dev->num_tc = 0;
2770         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2771         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2772 }
2773 EXPORT_SYMBOL(netdev_reset_tc);
2774
2775 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2776 {
2777         if (tc >= dev->num_tc)
2778                 return -EINVAL;
2779
2780 #ifdef CONFIG_XPS
2781         netif_reset_xps_queues(dev, offset, count);
2782 #endif
2783         dev->tc_to_txq[tc].count = count;
2784         dev->tc_to_txq[tc].offset = offset;
2785         return 0;
2786 }
2787 EXPORT_SYMBOL(netdev_set_tc_queue);
2788
2789 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2790 {
2791         if (num_tc > TC_MAX_QUEUE)
2792                 return -EINVAL;
2793
2794 #ifdef CONFIG_XPS
2795         netif_reset_xps_queues_gt(dev, 0);
2796 #endif
2797         netdev_unbind_all_sb_channels(dev);
2798
2799         dev->num_tc = num_tc;
2800         return 0;
2801 }
2802 EXPORT_SYMBOL(netdev_set_num_tc);
2803
2804 void netdev_unbind_sb_channel(struct net_device *dev,
2805                               struct net_device *sb_dev)
2806 {
2807         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2808
2809 #ifdef CONFIG_XPS
2810         netif_reset_xps_queues_gt(sb_dev, 0);
2811 #endif
2812         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2813         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2814
2815         while (txq-- != &dev->_tx[0]) {
2816                 if (txq->sb_dev == sb_dev)
2817                         txq->sb_dev = NULL;
2818         }
2819 }
2820 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2821
2822 int netdev_bind_sb_channel_queue(struct net_device *dev,
2823                                  struct net_device *sb_dev,
2824                                  u8 tc, u16 count, u16 offset)
2825 {
2826         /* Make certain the sb_dev and dev are already configured */
2827         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2828                 return -EINVAL;
2829
2830         /* We cannot hand out queues we don't have */
2831         if ((offset + count) > dev->real_num_tx_queues)
2832                 return -EINVAL;
2833
2834         /* Record the mapping */
2835         sb_dev->tc_to_txq[tc].count = count;
2836         sb_dev->tc_to_txq[tc].offset = offset;
2837
2838         /* Provide a way for Tx queue to find the tc_to_txq map or
2839          * XPS map for itself.
2840          */
2841         while (count--)
2842                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2843
2844         return 0;
2845 }
2846 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2847
2848 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2849 {
2850         /* Do not use a multiqueue device to represent a subordinate channel */
2851         if (netif_is_multiqueue(dev))
2852                 return -ENODEV;
2853
2854         /* We allow channels 1 - 32767 to be used for subordinate channels.
2855          * Channel 0 is meant to be "native" mode and used only to represent
2856          * the main root device. We allow writing 0 to reset the device back
2857          * to normal mode after being used as a subordinate channel.
2858          */
2859         if (channel > S16_MAX)
2860                 return -EINVAL;
2861
2862         dev->num_tc = -channel;
2863
2864         return 0;
2865 }
2866 EXPORT_SYMBOL(netdev_set_sb_channel);
2867
2868 /*
2869  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2870  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2871  */
2872 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2873 {
2874         bool disabling;
2875         int rc;
2876
2877         disabling = txq < dev->real_num_tx_queues;
2878
2879         if (txq < 1 || txq > dev->num_tx_queues)
2880                 return -EINVAL;
2881
2882         if (dev->reg_state == NETREG_REGISTERED ||
2883             dev->reg_state == NETREG_UNREGISTERING) {
2884                 ASSERT_RTNL();
2885
2886                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2887                                                   txq);
2888                 if (rc)
2889                         return rc;
2890
2891                 if (dev->num_tc)
2892                         netif_setup_tc(dev, txq);
2893
2894                 dev_qdisc_change_real_num_tx(dev, txq);
2895
2896                 dev->real_num_tx_queues = txq;
2897
2898                 if (disabling) {
2899                         synchronize_net();
2900                         qdisc_reset_all_tx_gt(dev, txq);
2901 #ifdef CONFIG_XPS
2902                         netif_reset_xps_queues_gt(dev, txq);
2903 #endif
2904                 }
2905         } else {
2906                 dev->real_num_tx_queues = txq;
2907         }
2908
2909         return 0;
2910 }
2911 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2912
2913 #ifdef CONFIG_SYSFS
2914 /**
2915  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2916  *      @dev: Network device
2917  *      @rxq: Actual number of RX queues
2918  *
2919  *      This must be called either with the rtnl_lock held or before
2920  *      registration of the net device.  Returns 0 on success, or a
2921  *      negative error code.  If called before registration, it always
2922  *      succeeds.
2923  */
2924 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2925 {
2926         int rc;
2927
2928         if (rxq < 1 || rxq > dev->num_rx_queues)
2929                 return -EINVAL;
2930
2931         if (dev->reg_state == NETREG_REGISTERED) {
2932                 ASSERT_RTNL();
2933
2934                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2935                                                   rxq);
2936                 if (rc)
2937                         return rc;
2938         }
2939
2940         dev->real_num_rx_queues = rxq;
2941         return 0;
2942 }
2943 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2944 #endif
2945
2946 /**
2947  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2948  *      @dev: Network device
2949  *      @txq: Actual number of TX queues
2950  *      @rxq: Actual number of RX queues
2951  *
2952  *      Set the real number of both TX and RX queues.
2953  *      Does nothing if the number of queues is already correct.
2954  */
2955 int netif_set_real_num_queues(struct net_device *dev,
2956                               unsigned int txq, unsigned int rxq)
2957 {
2958         unsigned int old_rxq = dev->real_num_rx_queues;
2959         int err;
2960
2961         if (txq < 1 || txq > dev->num_tx_queues ||
2962             rxq < 1 || rxq > dev->num_rx_queues)
2963                 return -EINVAL;
2964
2965         /* Start from increases, so the error path only does decreases -
2966          * decreases can't fail.
2967          */
2968         if (rxq > dev->real_num_rx_queues) {
2969                 err = netif_set_real_num_rx_queues(dev, rxq);
2970                 if (err)
2971                         return err;
2972         }
2973         if (txq > dev->real_num_tx_queues) {
2974                 err = netif_set_real_num_tx_queues(dev, txq);
2975                 if (err)
2976                         goto undo_rx;
2977         }
2978         if (rxq < dev->real_num_rx_queues)
2979                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2980         if (txq < dev->real_num_tx_queues)
2981                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2982
2983         return 0;
2984 undo_rx:
2985         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2986         return err;
2987 }
2988 EXPORT_SYMBOL(netif_set_real_num_queues);
2989
2990 /**
2991  * netif_set_tso_max_size() - set the max size of TSO frames supported
2992  * @dev:        netdev to update
2993  * @size:       max skb->len of a TSO frame
2994  *
2995  * Set the limit on the size of TSO super-frames the device can handle.
2996  * Unless explicitly set the stack will assume the value of
2997  * %GSO_LEGACY_MAX_SIZE.
2998  */
2999 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3000 {
3001         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3002         if (size < READ_ONCE(dev->gso_max_size))
3003                 netif_set_gso_max_size(dev, size);
3004         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3005                 netif_set_gso_ipv4_max_size(dev, size);
3006 }
3007 EXPORT_SYMBOL(netif_set_tso_max_size);
3008
3009 /**
3010  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3011  * @dev:        netdev to update
3012  * @segs:       max number of TCP segments
3013  *
3014  * Set the limit on the number of TCP segments the device can generate from
3015  * a single TSO super-frame.
3016  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3017  */
3018 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3019 {
3020         dev->tso_max_segs = segs;
3021         if (segs < READ_ONCE(dev->gso_max_segs))
3022                 netif_set_gso_max_segs(dev, segs);
3023 }
3024 EXPORT_SYMBOL(netif_set_tso_max_segs);
3025
3026 /**
3027  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3028  * @to:         netdev to update
3029  * @from:       netdev from which to copy the limits
3030  */
3031 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3032 {
3033         netif_set_tso_max_size(to, from->tso_max_size);
3034         netif_set_tso_max_segs(to, from->tso_max_segs);
3035 }
3036 EXPORT_SYMBOL(netif_inherit_tso_max);
3037
3038 /**
3039  * netif_get_num_default_rss_queues - default number of RSS queues
3040  *
3041  * Default value is the number of physical cores if there are only 1 or 2, or
3042  * divided by 2 if there are more.
3043  */
3044 int netif_get_num_default_rss_queues(void)
3045 {
3046         cpumask_var_t cpus;
3047         int cpu, count = 0;
3048
3049         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3050                 return 1;
3051
3052         cpumask_copy(cpus, cpu_online_mask);
3053         for_each_cpu(cpu, cpus) {
3054                 ++count;
3055                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3056         }
3057         free_cpumask_var(cpus);
3058
3059         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3060 }
3061 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3062
3063 static void __netif_reschedule(struct Qdisc *q)
3064 {
3065         struct softnet_data *sd;
3066         unsigned long flags;
3067
3068         local_irq_save(flags);
3069         sd = this_cpu_ptr(&softnet_data);
3070         q->next_sched = NULL;
3071         *sd->output_queue_tailp = q;
3072         sd->output_queue_tailp = &q->next_sched;
3073         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3074         local_irq_restore(flags);
3075 }
3076
3077 void __netif_schedule(struct Qdisc *q)
3078 {
3079         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3080                 __netif_reschedule(q);
3081 }
3082 EXPORT_SYMBOL(__netif_schedule);
3083
3084 struct dev_kfree_skb_cb {
3085         enum skb_free_reason reason;
3086 };
3087
3088 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3089 {
3090         return (struct dev_kfree_skb_cb *)skb->cb;
3091 }
3092
3093 void netif_schedule_queue(struct netdev_queue *txq)
3094 {
3095         rcu_read_lock();
3096         if (!netif_xmit_stopped(txq)) {
3097                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3098
3099                 __netif_schedule(q);
3100         }
3101         rcu_read_unlock();
3102 }
3103 EXPORT_SYMBOL(netif_schedule_queue);
3104
3105 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3106 {
3107         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3108                 struct Qdisc *q;
3109
3110                 rcu_read_lock();
3111                 q = rcu_dereference(dev_queue->qdisc);
3112                 __netif_schedule(q);
3113                 rcu_read_unlock();
3114         }
3115 }
3116 EXPORT_SYMBOL(netif_tx_wake_queue);
3117
3118 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3119 {
3120         unsigned long flags;
3121
3122         if (unlikely(!skb))
3123                 return;
3124
3125         if (likely(refcount_read(&skb->users) == 1)) {
3126                 smp_rmb();
3127                 refcount_set(&skb->users, 0);
3128         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3129                 return;
3130         }
3131         get_kfree_skb_cb(skb)->reason = reason;
3132         local_irq_save(flags);
3133         skb->next = __this_cpu_read(softnet_data.completion_queue);
3134         __this_cpu_write(softnet_data.completion_queue, skb);
3135         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3136         local_irq_restore(flags);
3137 }
3138 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3139
3140 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3141 {
3142         if (in_hardirq() || irqs_disabled())
3143                 __dev_kfree_skb_irq(skb, reason);
3144         else
3145                 dev_kfree_skb(skb);
3146 }
3147 EXPORT_SYMBOL(__dev_kfree_skb_any);
3148
3149
3150 /**
3151  * netif_device_detach - mark device as removed
3152  * @dev: network device
3153  *
3154  * Mark device as removed from system and therefore no longer available.
3155  */
3156 void netif_device_detach(struct net_device *dev)
3157 {
3158         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3159             netif_running(dev)) {
3160                 netif_tx_stop_all_queues(dev);
3161         }
3162 }
3163 EXPORT_SYMBOL(netif_device_detach);
3164
3165 /**
3166  * netif_device_attach - mark device as attached
3167  * @dev: network device
3168  *
3169  * Mark device as attached from system and restart if needed.
3170  */
3171 void netif_device_attach(struct net_device *dev)
3172 {
3173         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3174             netif_running(dev)) {
3175                 netif_tx_wake_all_queues(dev);
3176                 __netdev_watchdog_up(dev);
3177         }
3178 }
3179 EXPORT_SYMBOL(netif_device_attach);
3180
3181 /*
3182  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3183  * to be used as a distribution range.
3184  */
3185 static u16 skb_tx_hash(const struct net_device *dev,
3186                        const struct net_device *sb_dev,
3187                        struct sk_buff *skb)
3188 {
3189         u32 hash;
3190         u16 qoffset = 0;
3191         u16 qcount = dev->real_num_tx_queues;
3192
3193         if (dev->num_tc) {
3194                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3195
3196                 qoffset = sb_dev->tc_to_txq[tc].offset;
3197                 qcount = sb_dev->tc_to_txq[tc].count;
3198                 if (unlikely(!qcount)) {
3199                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3200                                              sb_dev->name, qoffset, tc);
3201                         qoffset = 0;
3202                         qcount = dev->real_num_tx_queues;
3203                 }
3204         }
3205
3206         if (skb_rx_queue_recorded(skb)) {
3207                 hash = skb_get_rx_queue(skb);
3208                 if (hash >= qoffset)
3209                         hash -= qoffset;
3210                 while (unlikely(hash >= qcount))
3211                         hash -= qcount;
3212                 return hash + qoffset;
3213         }
3214
3215         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3216 }
3217
3218 static void skb_warn_bad_offload(const struct sk_buff *skb)
3219 {
3220         static const netdev_features_t null_features;
3221         struct net_device *dev = skb->dev;
3222         const char *name = "";
3223
3224         if (!net_ratelimit())
3225                 return;
3226
3227         if (dev) {
3228                 if (dev->dev.parent)
3229                         name = dev_driver_string(dev->dev.parent);
3230                 else
3231                         name = netdev_name(dev);
3232         }
3233         skb_dump(KERN_WARNING, skb, false);
3234         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3235              name, dev ? &dev->features : &null_features,
3236              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3237 }
3238
3239 /*
3240  * Invalidate hardware checksum when packet is to be mangled, and
3241  * complete checksum manually on outgoing path.
3242  */
3243 int skb_checksum_help(struct sk_buff *skb)
3244 {
3245         __wsum csum;
3246         int ret = 0, offset;
3247
3248         if (skb->ip_summed == CHECKSUM_COMPLETE)
3249                 goto out_set_summed;
3250
3251         if (unlikely(skb_is_gso(skb))) {
3252                 skb_warn_bad_offload(skb);
3253                 return -EINVAL;
3254         }
3255
3256         /* Before computing a checksum, we should make sure no frag could
3257          * be modified by an external entity : checksum could be wrong.
3258          */
3259         if (skb_has_shared_frag(skb)) {
3260                 ret = __skb_linearize(skb);
3261                 if (ret)
3262                         goto out;
3263         }
3264
3265         offset = skb_checksum_start_offset(skb);
3266         ret = -EINVAL;
3267         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3268                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3269                 goto out;
3270         }
3271         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3272
3273         offset += skb->csum_offset;
3274         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3275                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3276                 goto out;
3277         }
3278         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3279         if (ret)
3280                 goto out;
3281
3282         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3283 out_set_summed:
3284         skb->ip_summed = CHECKSUM_NONE;
3285 out:
3286         return ret;
3287 }
3288 EXPORT_SYMBOL(skb_checksum_help);
3289
3290 int skb_crc32c_csum_help(struct sk_buff *skb)
3291 {
3292         __le32 crc32c_csum;
3293         int ret = 0, offset, start;
3294
3295         if (skb->ip_summed != CHECKSUM_PARTIAL)
3296                 goto out;
3297
3298         if (unlikely(skb_is_gso(skb)))
3299                 goto out;
3300
3301         /* Before computing a checksum, we should make sure no frag could
3302          * be modified by an external entity : checksum could be wrong.
3303          */
3304         if (unlikely(skb_has_shared_frag(skb))) {
3305                 ret = __skb_linearize(skb);
3306                 if (ret)
3307                         goto out;
3308         }
3309         start = skb_checksum_start_offset(skb);
3310         offset = start + offsetof(struct sctphdr, checksum);
3311         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3312                 ret = -EINVAL;
3313                 goto out;
3314         }
3315
3316         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3317         if (ret)
3318                 goto out;
3319
3320         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3321                                                   skb->len - start, ~(__u32)0,
3322                                                   crc32c_csum_stub));
3323         *(__le32 *)(skb->data + offset) = crc32c_csum;
3324         skb->ip_summed = CHECKSUM_NONE;
3325         skb->csum_not_inet = 0;
3326 out:
3327         return ret;
3328 }
3329
3330 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3331 {
3332         __be16 type = skb->protocol;
3333
3334         /* Tunnel gso handlers can set protocol to ethernet. */
3335         if (type == htons(ETH_P_TEB)) {
3336                 struct ethhdr *eth;
3337
3338                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3339                         return 0;
3340
3341                 eth = (struct ethhdr *)skb->data;
3342                 type = eth->h_proto;
3343         }
3344
3345         return __vlan_get_protocol(skb, type, depth);
3346 }
3347
3348 /* openvswitch calls this on rx path, so we need a different check.
3349  */
3350 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3351 {
3352         if (tx_path)
3353                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3354                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3355
3356         return skb->ip_summed == CHECKSUM_NONE;
3357 }
3358
3359 /**
3360  *      __skb_gso_segment - Perform segmentation on skb.
3361  *      @skb: buffer to segment
3362  *      @features: features for the output path (see dev->features)
3363  *      @tx_path: whether it is called in TX path
3364  *
3365  *      This function segments the given skb and returns a list of segments.
3366  *
3367  *      It may return NULL if the skb requires no segmentation.  This is
3368  *      only possible when GSO is used for verifying header integrity.
3369  *
3370  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3371  */
3372 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3373                                   netdev_features_t features, bool tx_path)
3374 {
3375         struct sk_buff *segs;
3376
3377         if (unlikely(skb_needs_check(skb, tx_path))) {
3378                 int err;
3379
3380                 /* We're going to init ->check field in TCP or UDP header */
3381                 err = skb_cow_head(skb, 0);
3382                 if (err < 0)
3383                         return ERR_PTR(err);
3384         }
3385
3386         /* Only report GSO partial support if it will enable us to
3387          * support segmentation on this frame without needing additional
3388          * work.
3389          */
3390         if (features & NETIF_F_GSO_PARTIAL) {
3391                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3392                 struct net_device *dev = skb->dev;
3393
3394                 partial_features |= dev->features & dev->gso_partial_features;
3395                 if (!skb_gso_ok(skb, features | partial_features))
3396                         features &= ~NETIF_F_GSO_PARTIAL;
3397         }
3398
3399         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3400                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3401
3402         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3403         SKB_GSO_CB(skb)->encap_level = 0;
3404
3405         skb_reset_mac_header(skb);
3406         skb_reset_mac_len(skb);
3407
3408         segs = skb_mac_gso_segment(skb, features);
3409
3410         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3411                 skb_warn_bad_offload(skb);
3412
3413         return segs;
3414 }
3415 EXPORT_SYMBOL(__skb_gso_segment);
3416
3417 /* Take action when hardware reception checksum errors are detected. */
3418 #ifdef CONFIG_BUG
3419 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3420 {
3421         netdev_err(dev, "hw csum failure\n");
3422         skb_dump(KERN_ERR, skb, true);
3423         dump_stack();
3424 }
3425
3426 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3427 {
3428         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3429 }
3430 EXPORT_SYMBOL(netdev_rx_csum_fault);
3431 #endif
3432
3433 /* XXX: check that highmem exists at all on the given machine. */
3434 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3435 {
3436 #ifdef CONFIG_HIGHMEM
3437         int i;
3438
3439         if (!(dev->features & NETIF_F_HIGHDMA)) {
3440                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3441                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3442
3443                         if (PageHighMem(skb_frag_page(frag)))
3444                                 return 1;
3445                 }
3446         }
3447 #endif
3448         return 0;
3449 }
3450
3451 /* If MPLS offload request, verify we are testing hardware MPLS features
3452  * instead of standard features for the netdev.
3453  */
3454 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3455 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3456                                            netdev_features_t features,
3457                                            __be16 type)
3458 {
3459         if (eth_p_mpls(type))
3460                 features &= skb->dev->mpls_features;
3461
3462         return features;
3463 }
3464 #else
3465 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3466                                            netdev_features_t features,
3467                                            __be16 type)
3468 {
3469         return features;
3470 }
3471 #endif
3472
3473 static netdev_features_t harmonize_features(struct sk_buff *skb,
3474         netdev_features_t features)
3475 {
3476         __be16 type;
3477
3478         type = skb_network_protocol(skb, NULL);
3479         features = net_mpls_features(skb, features, type);
3480
3481         if (skb->ip_summed != CHECKSUM_NONE &&
3482             !can_checksum_protocol(features, type)) {
3483                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3484         }
3485         if (illegal_highdma(skb->dev, skb))
3486                 features &= ~NETIF_F_SG;
3487
3488         return features;
3489 }
3490
3491 netdev_features_t passthru_features_check(struct sk_buff *skb,
3492                                           struct net_device *dev,
3493                                           netdev_features_t features)
3494 {
3495         return features;
3496 }
3497 EXPORT_SYMBOL(passthru_features_check);
3498
3499 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3500                                              struct net_device *dev,
3501                                              netdev_features_t features)
3502 {
3503         return vlan_features_check(skb, features);
3504 }
3505
3506 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3507                                             struct net_device *dev,
3508                                             netdev_features_t features)
3509 {
3510         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3511
3512         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3513                 return features & ~NETIF_F_GSO_MASK;
3514
3515         if (!skb_shinfo(skb)->gso_type) {
3516                 skb_warn_bad_offload(skb);
3517                 return features & ~NETIF_F_GSO_MASK;
3518         }
3519
3520         /* Support for GSO partial features requires software
3521          * intervention before we can actually process the packets
3522          * so we need to strip support for any partial features now
3523          * and we can pull them back in after we have partially
3524          * segmented the frame.
3525          */
3526         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3527                 features &= ~dev->gso_partial_features;
3528
3529         /* Make sure to clear the IPv4 ID mangling feature if the
3530          * IPv4 header has the potential to be fragmented.
3531          */
3532         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3533                 struct iphdr *iph = skb->encapsulation ?
3534                                     inner_ip_hdr(skb) : ip_hdr(skb);
3535
3536                 if (!(iph->frag_off & htons(IP_DF)))
3537                         features &= ~NETIF_F_TSO_MANGLEID;
3538         }
3539
3540         return features;
3541 }
3542
3543 netdev_features_t netif_skb_features(struct sk_buff *skb)
3544 {
3545         struct net_device *dev = skb->dev;
3546         netdev_features_t features = dev->features;
3547
3548         if (skb_is_gso(skb))
3549                 features = gso_features_check(skb, dev, features);
3550
3551         /* If encapsulation offload request, verify we are testing
3552          * hardware encapsulation features instead of standard
3553          * features for the netdev
3554          */
3555         if (skb->encapsulation)
3556                 features &= dev->hw_enc_features;
3557
3558         if (skb_vlan_tagged(skb))
3559                 features = netdev_intersect_features(features,
3560                                                      dev->vlan_features |
3561                                                      NETIF_F_HW_VLAN_CTAG_TX |
3562                                                      NETIF_F_HW_VLAN_STAG_TX);
3563
3564         if (dev->netdev_ops->ndo_features_check)
3565                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3566                                                                 features);
3567         else
3568                 features &= dflt_features_check(skb, dev, features);
3569
3570         return harmonize_features(skb, features);
3571 }
3572 EXPORT_SYMBOL(netif_skb_features);
3573
3574 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3575                     struct netdev_queue *txq, bool more)
3576 {
3577         unsigned int len;
3578         int rc;
3579
3580         if (dev_nit_active(dev))
3581                 dev_queue_xmit_nit(skb, dev);
3582
3583         len = skb->len;
3584         trace_net_dev_start_xmit(skb, dev);
3585         rc = netdev_start_xmit(skb, dev, txq, more);
3586         trace_net_dev_xmit(skb, rc, dev, len);
3587
3588         return rc;
3589 }
3590
3591 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3592                                     struct netdev_queue *txq, int *ret)
3593 {
3594         struct sk_buff *skb = first;
3595         int rc = NETDEV_TX_OK;
3596
3597         while (skb) {
3598                 struct sk_buff *next = skb->next;
3599
3600                 skb_mark_not_on_list(skb);
3601                 rc = xmit_one(skb, dev, txq, next != NULL);
3602                 if (unlikely(!dev_xmit_complete(rc))) {
3603                         skb->next = next;
3604                         goto out;
3605                 }
3606
3607                 skb = next;
3608                 if (netif_tx_queue_stopped(txq) && skb) {
3609                         rc = NETDEV_TX_BUSY;
3610                         break;
3611                 }
3612         }
3613
3614 out:
3615         *ret = rc;
3616         return skb;
3617 }
3618
3619 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3620                                           netdev_features_t features)
3621 {
3622         if (skb_vlan_tag_present(skb) &&
3623             !vlan_hw_offload_capable(features, skb->vlan_proto))
3624                 skb = __vlan_hwaccel_push_inside(skb);
3625         return skb;
3626 }
3627
3628 int skb_csum_hwoffload_help(struct sk_buff *skb,
3629                             const netdev_features_t features)
3630 {
3631         if (unlikely(skb_csum_is_sctp(skb)))
3632                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3633                         skb_crc32c_csum_help(skb);
3634
3635         if (features & NETIF_F_HW_CSUM)
3636                 return 0;
3637
3638         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3639                 switch (skb->csum_offset) {
3640                 case offsetof(struct tcphdr, check):
3641                 case offsetof(struct udphdr, check):
3642                         return 0;
3643                 }
3644         }
3645
3646         return skb_checksum_help(skb);
3647 }
3648 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3649
3650 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3651 {
3652         netdev_features_t features;
3653
3654         features = netif_skb_features(skb);
3655         skb = validate_xmit_vlan(skb, features);
3656         if (unlikely(!skb))
3657                 goto out_null;
3658
3659         skb = sk_validate_xmit_skb(skb, dev);
3660         if (unlikely(!skb))
3661                 goto out_null;
3662
3663         if (netif_needs_gso(skb, features)) {
3664                 struct sk_buff *segs;
3665
3666                 segs = skb_gso_segment(skb, features);
3667                 if (IS_ERR(segs)) {
3668                         goto out_kfree_skb;
3669                 } else if (segs) {
3670                         consume_skb(skb);
3671                         skb = segs;
3672                 }
3673         } else {
3674                 if (skb_needs_linearize(skb, features) &&
3675                     __skb_linearize(skb))
3676                         goto out_kfree_skb;
3677
3678                 /* If packet is not checksummed and device does not
3679                  * support checksumming for this protocol, complete
3680                  * checksumming here.
3681                  */
3682                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3683                         if (skb->encapsulation)
3684                                 skb_set_inner_transport_header(skb,
3685                                                                skb_checksum_start_offset(skb));
3686                         else
3687                                 skb_set_transport_header(skb,
3688                                                          skb_checksum_start_offset(skb));
3689                         if (skb_csum_hwoffload_help(skb, features))
3690                                 goto out_kfree_skb;
3691                 }
3692         }
3693
3694         skb = validate_xmit_xfrm(skb, features, again);
3695
3696         return skb;
3697
3698 out_kfree_skb:
3699         kfree_skb(skb);
3700 out_null:
3701         dev_core_stats_tx_dropped_inc(dev);
3702         return NULL;
3703 }
3704
3705 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3706 {
3707         struct sk_buff *next, *head = NULL, *tail;
3708
3709         for (; skb != NULL; skb = next) {
3710                 next = skb->next;
3711                 skb_mark_not_on_list(skb);
3712
3713                 /* in case skb wont be segmented, point to itself */
3714                 skb->prev = skb;
3715
3716                 skb = validate_xmit_skb(skb, dev, again);
3717                 if (!skb)
3718                         continue;
3719
3720                 if (!head)
3721                         head = skb;
3722                 else
3723                         tail->next = skb;
3724                 /* If skb was segmented, skb->prev points to
3725                  * the last segment. If not, it still contains skb.
3726                  */
3727                 tail = skb->prev;
3728         }
3729         return head;
3730 }
3731 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3732
3733 static void qdisc_pkt_len_init(struct sk_buff *skb)
3734 {
3735         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3736
3737         qdisc_skb_cb(skb)->pkt_len = skb->len;
3738
3739         /* To get more precise estimation of bytes sent on wire,
3740          * we add to pkt_len the headers size of all segments
3741          */
3742         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3743                 unsigned int hdr_len;
3744                 u16 gso_segs = shinfo->gso_segs;
3745
3746                 /* mac layer + network layer */
3747                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3748
3749                 /* + transport layer */
3750                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3751                         const struct tcphdr *th;
3752                         struct tcphdr _tcphdr;
3753
3754                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3755                                                 sizeof(_tcphdr), &_tcphdr);
3756                         if (likely(th))
3757                                 hdr_len += __tcp_hdrlen(th);
3758                 } else {
3759                         struct udphdr _udphdr;
3760
3761                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3762                                                sizeof(_udphdr), &_udphdr))
3763                                 hdr_len += sizeof(struct udphdr);
3764                 }
3765
3766                 if (shinfo->gso_type & SKB_GSO_DODGY)
3767                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3768                                                 shinfo->gso_size);
3769
3770                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3771         }
3772 }
3773
3774 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3775                              struct sk_buff **to_free,
3776                              struct netdev_queue *txq)
3777 {
3778         int rc;
3779
3780         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3781         if (rc == NET_XMIT_SUCCESS)
3782                 trace_qdisc_enqueue(q, txq, skb);
3783         return rc;
3784 }
3785
3786 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3787                                  struct net_device *dev,
3788                                  struct netdev_queue *txq)
3789 {
3790         spinlock_t *root_lock = qdisc_lock(q);
3791         struct sk_buff *to_free = NULL;
3792         bool contended;
3793         int rc;
3794
3795         qdisc_calculate_pkt_len(skb, q);
3796
3797         if (q->flags & TCQ_F_NOLOCK) {
3798                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3799                     qdisc_run_begin(q)) {
3800                         /* Retest nolock_qdisc_is_empty() within the protection
3801                          * of q->seqlock to protect from racing with requeuing.
3802                          */
3803                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3804                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3805                                 __qdisc_run(q);
3806                                 qdisc_run_end(q);
3807
3808                                 goto no_lock_out;
3809                         }
3810
3811                         qdisc_bstats_cpu_update(q, skb);
3812                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3813                             !nolock_qdisc_is_empty(q))
3814                                 __qdisc_run(q);
3815
3816                         qdisc_run_end(q);
3817                         return NET_XMIT_SUCCESS;
3818                 }
3819
3820                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3821                 qdisc_run(q);
3822
3823 no_lock_out:
3824                 if (unlikely(to_free))
3825                         kfree_skb_list_reason(to_free,
3826                                               SKB_DROP_REASON_QDISC_DROP);
3827                 return rc;
3828         }
3829
3830         /*
3831          * Heuristic to force contended enqueues to serialize on a
3832          * separate lock before trying to get qdisc main lock.
3833          * This permits qdisc->running owner to get the lock more
3834          * often and dequeue packets faster.
3835          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3836          * and then other tasks will only enqueue packets. The packets will be
3837          * sent after the qdisc owner is scheduled again. To prevent this
3838          * scenario the task always serialize on the lock.
3839          */
3840         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3841         if (unlikely(contended))
3842                 spin_lock(&q->busylock);
3843
3844         spin_lock(root_lock);
3845         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3846                 __qdisc_drop(skb, &to_free);
3847                 rc = NET_XMIT_DROP;
3848         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3849                    qdisc_run_begin(q)) {
3850                 /*
3851                  * This is a work-conserving queue; there are no old skbs
3852                  * waiting to be sent out; and the qdisc is not running -
3853                  * xmit the skb directly.
3854                  */
3855
3856                 qdisc_bstats_update(q, skb);
3857
3858                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3859                         if (unlikely(contended)) {
3860                                 spin_unlock(&q->busylock);
3861                                 contended = false;
3862                         }
3863                         __qdisc_run(q);
3864                 }
3865
3866                 qdisc_run_end(q);
3867                 rc = NET_XMIT_SUCCESS;
3868         } else {
3869                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3870                 if (qdisc_run_begin(q)) {
3871                         if (unlikely(contended)) {
3872                                 spin_unlock(&q->busylock);
3873                                 contended = false;
3874                         }
3875                         __qdisc_run(q);
3876                         qdisc_run_end(q);
3877                 }
3878         }
3879         spin_unlock(root_lock);
3880         if (unlikely(to_free))
3881                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3882         if (unlikely(contended))
3883                 spin_unlock(&q->busylock);
3884         return rc;
3885 }
3886
3887 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3888 static void skb_update_prio(struct sk_buff *skb)
3889 {
3890         const struct netprio_map *map;
3891         const struct sock *sk;
3892         unsigned int prioidx;
3893
3894         if (skb->priority)
3895                 return;
3896         map = rcu_dereference_bh(skb->dev->priomap);
3897         if (!map)
3898                 return;
3899         sk = skb_to_full_sk(skb);
3900         if (!sk)
3901                 return;
3902
3903         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3904
3905         if (prioidx < map->priomap_len)
3906                 skb->priority = map->priomap[prioidx];
3907 }
3908 #else
3909 #define skb_update_prio(skb)
3910 #endif
3911
3912 /**
3913  *      dev_loopback_xmit - loop back @skb
3914  *      @net: network namespace this loopback is happening in
3915  *      @sk:  sk needed to be a netfilter okfn
3916  *      @skb: buffer to transmit
3917  */
3918 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3919 {
3920         skb_reset_mac_header(skb);
3921         __skb_pull(skb, skb_network_offset(skb));
3922         skb->pkt_type = PACKET_LOOPBACK;
3923         if (skb->ip_summed == CHECKSUM_NONE)
3924                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3925         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3926         skb_dst_force(skb);
3927         netif_rx(skb);
3928         return 0;
3929 }
3930 EXPORT_SYMBOL(dev_loopback_xmit);
3931
3932 #ifdef CONFIG_NET_EGRESS
3933 static struct sk_buff *
3934 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3935 {
3936 #ifdef CONFIG_NET_CLS_ACT
3937         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3938         struct tcf_result cl_res;
3939
3940         if (!miniq)
3941                 return skb;
3942
3943         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3944         tc_skb_cb(skb)->mru = 0;
3945         tc_skb_cb(skb)->post_ct = false;
3946         mini_qdisc_bstats_cpu_update(miniq, skb);
3947
3948         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3949         case TC_ACT_OK:
3950         case TC_ACT_RECLASSIFY:
3951                 skb->tc_index = TC_H_MIN(cl_res.classid);
3952                 break;
3953         case TC_ACT_SHOT:
3954                 mini_qdisc_qstats_cpu_drop(miniq);
3955                 *ret = NET_XMIT_DROP;
3956                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3957                 return NULL;
3958         case TC_ACT_STOLEN:
3959         case TC_ACT_QUEUED:
3960         case TC_ACT_TRAP:
3961                 *ret = NET_XMIT_SUCCESS;
3962                 consume_skb(skb);
3963                 return NULL;
3964         case TC_ACT_REDIRECT:
3965                 /* No need to push/pop skb's mac_header here on egress! */
3966                 skb_do_redirect(skb);
3967                 *ret = NET_XMIT_SUCCESS;
3968                 return NULL;
3969         default:
3970                 break;
3971         }
3972 #endif /* CONFIG_NET_CLS_ACT */
3973
3974         return skb;
3975 }
3976
3977 static struct netdev_queue *
3978 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3979 {
3980         int qm = skb_get_queue_mapping(skb);
3981
3982         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3983 }
3984
3985 static bool netdev_xmit_txqueue_skipped(void)
3986 {
3987         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3988 }
3989
3990 void netdev_xmit_skip_txqueue(bool skip)
3991 {
3992         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3993 }
3994 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3995 #endif /* CONFIG_NET_EGRESS */
3996
3997 #ifdef CONFIG_XPS
3998 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3999                                struct xps_dev_maps *dev_maps, unsigned int tci)
4000 {
4001         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4002         struct xps_map *map;
4003         int queue_index = -1;
4004
4005         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4006                 return queue_index;
4007
4008         tci *= dev_maps->num_tc;
4009         tci += tc;
4010
4011         map = rcu_dereference(dev_maps->attr_map[tci]);
4012         if (map) {
4013                 if (map->len == 1)
4014                         queue_index = map->queues[0];
4015                 else
4016                         queue_index = map->queues[reciprocal_scale(
4017                                                 skb_get_hash(skb), map->len)];
4018                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4019                         queue_index = -1;
4020         }
4021         return queue_index;
4022 }
4023 #endif
4024
4025 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4026                          struct sk_buff *skb)
4027 {
4028 #ifdef CONFIG_XPS
4029         struct xps_dev_maps *dev_maps;
4030         struct sock *sk = skb->sk;
4031         int queue_index = -1;
4032
4033         if (!static_key_false(&xps_needed))
4034                 return -1;
4035
4036         rcu_read_lock();
4037         if (!static_key_false(&xps_rxqs_needed))
4038                 goto get_cpus_map;
4039
4040         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4041         if (dev_maps) {
4042                 int tci = sk_rx_queue_get(sk);
4043
4044                 if (tci >= 0)
4045                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4046                                                           tci);
4047         }
4048
4049 get_cpus_map:
4050         if (queue_index < 0) {
4051                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4052                 if (dev_maps) {
4053                         unsigned int tci = skb->sender_cpu - 1;
4054
4055                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4056                                                           tci);
4057                 }
4058         }
4059         rcu_read_unlock();
4060
4061         return queue_index;
4062 #else
4063         return -1;
4064 #endif
4065 }
4066
4067 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4068                      struct net_device *sb_dev)
4069 {
4070         return 0;
4071 }
4072 EXPORT_SYMBOL(dev_pick_tx_zero);
4073
4074 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4075                        struct net_device *sb_dev)
4076 {
4077         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4078 }
4079 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4080
4081 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4082                      struct net_device *sb_dev)
4083 {
4084         struct sock *sk = skb->sk;
4085         int queue_index = sk_tx_queue_get(sk);
4086
4087         sb_dev = sb_dev ? : dev;
4088
4089         if (queue_index < 0 || skb->ooo_okay ||
4090             queue_index >= dev->real_num_tx_queues) {
4091                 int new_index = get_xps_queue(dev, sb_dev, skb);
4092
4093                 if (new_index < 0)
4094                         new_index = skb_tx_hash(dev, sb_dev, skb);
4095
4096                 if (queue_index != new_index && sk &&
4097                     sk_fullsock(sk) &&
4098                     rcu_access_pointer(sk->sk_dst_cache))
4099                         sk_tx_queue_set(sk, new_index);
4100
4101                 queue_index = new_index;
4102         }
4103
4104         return queue_index;
4105 }
4106 EXPORT_SYMBOL(netdev_pick_tx);
4107
4108 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4109                                          struct sk_buff *skb,
4110                                          struct net_device *sb_dev)
4111 {
4112         int queue_index = 0;
4113
4114 #ifdef CONFIG_XPS
4115         u32 sender_cpu = skb->sender_cpu - 1;
4116
4117         if (sender_cpu >= (u32)NR_CPUS)
4118                 skb->sender_cpu = raw_smp_processor_id() + 1;
4119 #endif
4120
4121         if (dev->real_num_tx_queues != 1) {
4122                 const struct net_device_ops *ops = dev->netdev_ops;
4123
4124                 if (ops->ndo_select_queue)
4125                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4126                 else
4127                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4128
4129                 queue_index = netdev_cap_txqueue(dev, queue_index);
4130         }
4131
4132         skb_set_queue_mapping(skb, queue_index);
4133         return netdev_get_tx_queue(dev, queue_index);
4134 }
4135
4136 /**
4137  * __dev_queue_xmit() - transmit a buffer
4138  * @skb:        buffer to transmit
4139  * @sb_dev:     suboordinate device used for L2 forwarding offload
4140  *
4141  * Queue a buffer for transmission to a network device. The caller must
4142  * have set the device and priority and built the buffer before calling
4143  * this function. The function can be called from an interrupt.
4144  *
4145  * When calling this method, interrupts MUST be enabled. This is because
4146  * the BH enable code must have IRQs enabled so that it will not deadlock.
4147  *
4148  * Regardless of the return value, the skb is consumed, so it is currently
4149  * difficult to retry a send to this method. (You can bump the ref count
4150  * before sending to hold a reference for retry if you are careful.)
4151  *
4152  * Return:
4153  * * 0                          - buffer successfully transmitted
4154  * * positive qdisc return code - NET_XMIT_DROP etc.
4155  * * negative errno             - other errors
4156  */
4157 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4158 {
4159         struct net_device *dev = skb->dev;
4160         struct netdev_queue *txq = NULL;
4161         struct Qdisc *q;
4162         int rc = -ENOMEM;
4163         bool again = false;
4164
4165         skb_reset_mac_header(skb);
4166         skb_assert_len(skb);
4167
4168         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4169                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4170
4171         /* Disable soft irqs for various locks below. Also
4172          * stops preemption for RCU.
4173          */
4174         rcu_read_lock_bh();
4175
4176         skb_update_prio(skb);
4177
4178         qdisc_pkt_len_init(skb);
4179 #ifdef CONFIG_NET_CLS_ACT
4180         skb->tc_at_ingress = 0;
4181 #endif
4182 #ifdef CONFIG_NET_EGRESS
4183         if (static_branch_unlikely(&egress_needed_key)) {
4184                 if (nf_hook_egress_active()) {
4185                         skb = nf_hook_egress(skb, &rc, dev);
4186                         if (!skb)
4187                                 goto out;
4188                 }
4189
4190                 netdev_xmit_skip_txqueue(false);
4191
4192                 nf_skip_egress(skb, true);
4193                 skb = sch_handle_egress(skb, &rc, dev);
4194                 if (!skb)
4195                         goto out;
4196                 nf_skip_egress(skb, false);
4197
4198                 if (netdev_xmit_txqueue_skipped())
4199                         txq = netdev_tx_queue_mapping(dev, skb);
4200         }
4201 #endif
4202         /* If device/qdisc don't need skb->dst, release it right now while
4203          * its hot in this cpu cache.
4204          */
4205         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4206                 skb_dst_drop(skb);
4207         else
4208                 skb_dst_force(skb);
4209
4210         if (!txq)
4211                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4212
4213         q = rcu_dereference_bh(txq->qdisc);
4214
4215         trace_net_dev_queue(skb);
4216         if (q->enqueue) {
4217                 rc = __dev_xmit_skb(skb, q, dev, txq);
4218                 goto out;
4219         }
4220
4221         /* The device has no queue. Common case for software devices:
4222          * loopback, all the sorts of tunnels...
4223
4224          * Really, it is unlikely that netif_tx_lock protection is necessary
4225          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4226          * counters.)
4227          * However, it is possible, that they rely on protection
4228          * made by us here.
4229
4230          * Check this and shot the lock. It is not prone from deadlocks.
4231          *Either shot noqueue qdisc, it is even simpler 8)
4232          */
4233         if (dev->flags & IFF_UP) {
4234                 int cpu = smp_processor_id(); /* ok because BHs are off */
4235
4236                 /* Other cpus might concurrently change txq->xmit_lock_owner
4237                  * to -1 or to their cpu id, but not to our id.
4238                  */
4239                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4240                         if (dev_xmit_recursion())
4241                                 goto recursion_alert;
4242
4243                         skb = validate_xmit_skb(skb, dev, &again);
4244                         if (!skb)
4245                                 goto out;
4246
4247                         HARD_TX_LOCK(dev, txq, cpu);
4248
4249                         if (!netif_xmit_stopped(txq)) {
4250                                 dev_xmit_recursion_inc();
4251                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4252                                 dev_xmit_recursion_dec();
4253                                 if (dev_xmit_complete(rc)) {
4254                                         HARD_TX_UNLOCK(dev, txq);
4255                                         goto out;
4256                                 }
4257                         }
4258                         HARD_TX_UNLOCK(dev, txq);
4259                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4260                                              dev->name);
4261                 } else {
4262                         /* Recursion is detected! It is possible,
4263                          * unfortunately
4264                          */
4265 recursion_alert:
4266                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4267                                              dev->name);
4268                 }
4269         }
4270
4271         rc = -ENETDOWN;
4272         rcu_read_unlock_bh();
4273
4274         dev_core_stats_tx_dropped_inc(dev);
4275         kfree_skb_list(skb);
4276         return rc;
4277 out:
4278         rcu_read_unlock_bh();
4279         return rc;
4280 }
4281 EXPORT_SYMBOL(__dev_queue_xmit);
4282
4283 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4284 {
4285         struct net_device *dev = skb->dev;
4286         struct sk_buff *orig_skb = skb;
4287         struct netdev_queue *txq;
4288         int ret = NETDEV_TX_BUSY;
4289         bool again = false;
4290
4291         if (unlikely(!netif_running(dev) ||
4292                      !netif_carrier_ok(dev)))
4293                 goto drop;
4294
4295         skb = validate_xmit_skb_list(skb, dev, &again);
4296         if (skb != orig_skb)
4297                 goto drop;
4298
4299         skb_set_queue_mapping(skb, queue_id);
4300         txq = skb_get_tx_queue(dev, skb);
4301
4302         local_bh_disable();
4303
4304         dev_xmit_recursion_inc();
4305         HARD_TX_LOCK(dev, txq, smp_processor_id());
4306         if (!netif_xmit_frozen_or_drv_stopped(txq))
4307                 ret = netdev_start_xmit(skb, dev, txq, false);
4308         HARD_TX_UNLOCK(dev, txq);
4309         dev_xmit_recursion_dec();
4310
4311         local_bh_enable();
4312         return ret;
4313 drop:
4314         dev_core_stats_tx_dropped_inc(dev);
4315         kfree_skb_list(skb);
4316         return NET_XMIT_DROP;
4317 }
4318 EXPORT_SYMBOL(__dev_direct_xmit);
4319
4320 /*************************************************************************
4321  *                      Receiver routines
4322  *************************************************************************/
4323
4324 int netdev_max_backlog __read_mostly = 1000;
4325 EXPORT_SYMBOL(netdev_max_backlog);
4326
4327 int netdev_tstamp_prequeue __read_mostly = 1;
4328 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4329 int netdev_budget __read_mostly = 300;
4330 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4331 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4332 int weight_p __read_mostly = 64;           /* old backlog weight */
4333 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4334 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4335 int dev_rx_weight __read_mostly = 64;
4336 int dev_tx_weight __read_mostly = 64;
4337
4338 /* Called with irq disabled */
4339 static inline void ____napi_schedule(struct softnet_data *sd,
4340                                      struct napi_struct *napi)
4341 {
4342         struct task_struct *thread;
4343
4344         lockdep_assert_irqs_disabled();
4345
4346         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4347                 /* Paired with smp_mb__before_atomic() in
4348                  * napi_enable()/dev_set_threaded().
4349                  * Use READ_ONCE() to guarantee a complete
4350                  * read on napi->thread. Only call
4351                  * wake_up_process() when it's not NULL.
4352                  */
4353                 thread = READ_ONCE(napi->thread);
4354                 if (thread) {
4355                         /* Avoid doing set_bit() if the thread is in
4356                          * INTERRUPTIBLE state, cause napi_thread_wait()
4357                          * makes sure to proceed with napi polling
4358                          * if the thread is explicitly woken from here.
4359                          */
4360                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4361                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4362                         wake_up_process(thread);
4363                         return;
4364                 }
4365         }
4366
4367         list_add_tail(&napi->poll_list, &sd->poll_list);
4368         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4369 }
4370
4371 #ifdef CONFIG_RPS
4372
4373 /* One global table that all flow-based protocols share. */
4374 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4375 EXPORT_SYMBOL(rps_sock_flow_table);
4376 u32 rps_cpu_mask __read_mostly;
4377 EXPORT_SYMBOL(rps_cpu_mask);
4378
4379 struct static_key_false rps_needed __read_mostly;
4380 EXPORT_SYMBOL(rps_needed);
4381 struct static_key_false rfs_needed __read_mostly;
4382 EXPORT_SYMBOL(rfs_needed);
4383
4384 static struct rps_dev_flow *
4385 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4386             struct rps_dev_flow *rflow, u16 next_cpu)
4387 {
4388         if (next_cpu < nr_cpu_ids) {
4389 #ifdef CONFIG_RFS_ACCEL
4390                 struct netdev_rx_queue *rxqueue;
4391                 struct rps_dev_flow_table *flow_table;
4392                 struct rps_dev_flow *old_rflow;
4393                 u32 flow_id;
4394                 u16 rxq_index;
4395                 int rc;
4396
4397                 /* Should we steer this flow to a different hardware queue? */
4398                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4399                     !(dev->features & NETIF_F_NTUPLE))
4400                         goto out;
4401                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4402                 if (rxq_index == skb_get_rx_queue(skb))
4403                         goto out;
4404
4405                 rxqueue = dev->_rx + rxq_index;
4406                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4407                 if (!flow_table)
4408                         goto out;
4409                 flow_id = skb_get_hash(skb) & flow_table->mask;
4410                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4411                                                         rxq_index, flow_id);
4412                 if (rc < 0)
4413                         goto out;
4414                 old_rflow = rflow;
4415                 rflow = &flow_table->flows[flow_id];
4416                 rflow->filter = rc;
4417                 if (old_rflow->filter == rflow->filter)
4418                         old_rflow->filter = RPS_NO_FILTER;
4419         out:
4420 #endif
4421                 rflow->last_qtail =
4422                         per_cpu(softnet_data, next_cpu).input_queue_head;
4423         }
4424
4425         rflow->cpu = next_cpu;
4426         return rflow;
4427 }
4428
4429 /*
4430  * get_rps_cpu is called from netif_receive_skb and returns the target
4431  * CPU from the RPS map of the receiving queue for a given skb.
4432  * rcu_read_lock must be held on entry.
4433  */
4434 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4435                        struct rps_dev_flow **rflowp)
4436 {
4437         const struct rps_sock_flow_table *sock_flow_table;
4438         struct netdev_rx_queue *rxqueue = dev->_rx;
4439         struct rps_dev_flow_table *flow_table;
4440         struct rps_map *map;
4441         int cpu = -1;
4442         u32 tcpu;
4443         u32 hash;
4444
4445         if (skb_rx_queue_recorded(skb)) {
4446                 u16 index = skb_get_rx_queue(skb);
4447
4448                 if (unlikely(index >= dev->real_num_rx_queues)) {
4449                         WARN_ONCE(dev->real_num_rx_queues > 1,
4450                                   "%s received packet on queue %u, but number "
4451                                   "of RX queues is %u\n",
4452                                   dev->name, index, dev->real_num_rx_queues);
4453                         goto done;
4454                 }
4455                 rxqueue += index;
4456         }
4457
4458         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4459
4460         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4461         map = rcu_dereference(rxqueue->rps_map);
4462         if (!flow_table && !map)
4463                 goto done;
4464
4465         skb_reset_network_header(skb);
4466         hash = skb_get_hash(skb);
4467         if (!hash)
4468                 goto done;
4469
4470         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4471         if (flow_table && sock_flow_table) {
4472                 struct rps_dev_flow *rflow;
4473                 u32 next_cpu;
4474                 u32 ident;
4475
4476                 /* First check into global flow table if there is a match */
4477                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4478                 if ((ident ^ hash) & ~rps_cpu_mask)
4479                         goto try_rps;
4480
4481                 next_cpu = ident & rps_cpu_mask;
4482
4483                 /* OK, now we know there is a match,
4484                  * we can look at the local (per receive queue) flow table
4485                  */
4486                 rflow = &flow_table->flows[hash & flow_table->mask];
4487                 tcpu = rflow->cpu;
4488
4489                 /*
4490                  * If the desired CPU (where last recvmsg was done) is
4491                  * different from current CPU (one in the rx-queue flow
4492                  * table entry), switch if one of the following holds:
4493                  *   - Current CPU is unset (>= nr_cpu_ids).
4494                  *   - Current CPU is offline.
4495                  *   - The current CPU's queue tail has advanced beyond the
4496                  *     last packet that was enqueued using this table entry.
4497                  *     This guarantees that all previous packets for the flow
4498                  *     have been dequeued, thus preserving in order delivery.
4499                  */
4500                 if (unlikely(tcpu != next_cpu) &&
4501                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4502                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4503                       rflow->last_qtail)) >= 0)) {
4504                         tcpu = next_cpu;
4505                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4506                 }
4507
4508                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4509                         *rflowp = rflow;
4510                         cpu = tcpu;
4511                         goto done;
4512                 }
4513         }
4514
4515 try_rps:
4516
4517         if (map) {
4518                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4519                 if (cpu_online(tcpu)) {
4520                         cpu = tcpu;
4521                         goto done;
4522                 }
4523         }
4524
4525 done:
4526         return cpu;
4527 }
4528
4529 #ifdef CONFIG_RFS_ACCEL
4530
4531 /**
4532  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4533  * @dev: Device on which the filter was set
4534  * @rxq_index: RX queue index
4535  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4536  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4537  *
4538  * Drivers that implement ndo_rx_flow_steer() should periodically call
4539  * this function for each installed filter and remove the filters for
4540  * which it returns %true.
4541  */
4542 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4543                          u32 flow_id, u16 filter_id)
4544 {
4545         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4546         struct rps_dev_flow_table *flow_table;
4547         struct rps_dev_flow *rflow;
4548         bool expire = true;
4549         unsigned int cpu;
4550
4551         rcu_read_lock();
4552         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4553         if (flow_table && flow_id <= flow_table->mask) {
4554                 rflow = &flow_table->flows[flow_id];
4555                 cpu = READ_ONCE(rflow->cpu);
4556                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4557                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4558                            rflow->last_qtail) <
4559                      (int)(10 * flow_table->mask)))
4560                         expire = false;
4561         }
4562         rcu_read_unlock();
4563         return expire;
4564 }
4565 EXPORT_SYMBOL(rps_may_expire_flow);
4566
4567 #endif /* CONFIG_RFS_ACCEL */
4568
4569 /* Called from hardirq (IPI) context */
4570 static void rps_trigger_softirq(void *data)
4571 {
4572         struct softnet_data *sd = data;
4573
4574         ____napi_schedule(sd, &sd->backlog);
4575         sd->received_rps++;
4576 }
4577
4578 #endif /* CONFIG_RPS */
4579
4580 /* Called from hardirq (IPI) context */
4581 static void trigger_rx_softirq(void *data)
4582 {
4583         struct softnet_data *sd = data;
4584
4585         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4586         smp_store_release(&sd->defer_ipi_scheduled, 0);
4587 }
4588
4589 /*
4590  * Check if this softnet_data structure is another cpu one
4591  * If yes, queue it to our IPI list and return 1
4592  * If no, return 0
4593  */
4594 static int napi_schedule_rps(struct softnet_data *sd)
4595 {
4596         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4597
4598 #ifdef CONFIG_RPS
4599         if (sd != mysd) {
4600                 sd->rps_ipi_next = mysd->rps_ipi_list;
4601                 mysd->rps_ipi_list = sd;
4602
4603                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4604                 return 1;
4605         }
4606 #endif /* CONFIG_RPS */
4607         __napi_schedule_irqoff(&mysd->backlog);
4608         return 0;
4609 }
4610
4611 #ifdef CONFIG_NET_FLOW_LIMIT
4612 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4613 #endif
4614
4615 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4616 {
4617 #ifdef CONFIG_NET_FLOW_LIMIT
4618         struct sd_flow_limit *fl;
4619         struct softnet_data *sd;
4620         unsigned int old_flow, new_flow;
4621
4622         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4623                 return false;
4624
4625         sd = this_cpu_ptr(&softnet_data);
4626
4627         rcu_read_lock();
4628         fl = rcu_dereference(sd->flow_limit);
4629         if (fl) {
4630                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4631                 old_flow = fl->history[fl->history_head];
4632                 fl->history[fl->history_head] = new_flow;
4633
4634                 fl->history_head++;
4635                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4636
4637                 if (likely(fl->buckets[old_flow]))
4638                         fl->buckets[old_flow]--;
4639
4640                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4641                         fl->count++;
4642                         rcu_read_unlock();
4643                         return true;
4644                 }
4645         }
4646         rcu_read_unlock();
4647 #endif
4648         return false;
4649 }
4650
4651 /*
4652  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4653  * queue (may be a remote CPU queue).
4654  */
4655 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4656                               unsigned int *qtail)
4657 {
4658         enum skb_drop_reason reason;
4659         struct softnet_data *sd;
4660         unsigned long flags;
4661         unsigned int qlen;
4662
4663         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4664         sd = &per_cpu(softnet_data, cpu);
4665
4666         rps_lock_irqsave(sd, &flags);
4667         if (!netif_running(skb->dev))
4668                 goto drop;
4669         qlen = skb_queue_len(&sd->input_pkt_queue);
4670         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4671                 if (qlen) {
4672 enqueue:
4673                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4674                         input_queue_tail_incr_save(sd, qtail);
4675                         rps_unlock_irq_restore(sd, &flags);
4676                         return NET_RX_SUCCESS;
4677                 }
4678
4679                 /* Schedule NAPI for backlog device
4680                  * We can use non atomic operation since we own the queue lock
4681                  */
4682                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4683                         napi_schedule_rps(sd);
4684                 goto enqueue;
4685         }
4686         reason = SKB_DROP_REASON_CPU_BACKLOG;
4687
4688 drop:
4689         sd->dropped++;
4690         rps_unlock_irq_restore(sd, &flags);
4691
4692         dev_core_stats_rx_dropped_inc(skb->dev);
4693         kfree_skb_reason(skb, reason);
4694         return NET_RX_DROP;
4695 }
4696
4697 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4698 {
4699         struct net_device *dev = skb->dev;
4700         struct netdev_rx_queue *rxqueue;
4701
4702         rxqueue = dev->_rx;
4703
4704         if (skb_rx_queue_recorded(skb)) {
4705                 u16 index = skb_get_rx_queue(skb);
4706
4707                 if (unlikely(index >= dev->real_num_rx_queues)) {
4708                         WARN_ONCE(dev->real_num_rx_queues > 1,
4709                                   "%s received packet on queue %u, but number "
4710                                   "of RX queues is %u\n",
4711                                   dev->name, index, dev->real_num_rx_queues);
4712
4713                         return rxqueue; /* Return first rxqueue */
4714                 }
4715                 rxqueue += index;
4716         }
4717         return rxqueue;
4718 }
4719
4720 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4721                              struct bpf_prog *xdp_prog)
4722 {
4723         void *orig_data, *orig_data_end, *hard_start;
4724         struct netdev_rx_queue *rxqueue;
4725         bool orig_bcast, orig_host;
4726         u32 mac_len, frame_sz;
4727         __be16 orig_eth_type;
4728         struct ethhdr *eth;
4729         u32 metalen, act;
4730         int off;
4731
4732         /* The XDP program wants to see the packet starting at the MAC
4733          * header.
4734          */
4735         mac_len = skb->data - skb_mac_header(skb);
4736         hard_start = skb->data - skb_headroom(skb);
4737
4738         /* SKB "head" area always have tailroom for skb_shared_info */
4739         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4740         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4741
4742         rxqueue = netif_get_rxqueue(skb);
4743         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4744         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4745                          skb_headlen(skb) + mac_len, true);
4746
4747         orig_data_end = xdp->data_end;
4748         orig_data = xdp->data;
4749         eth = (struct ethhdr *)xdp->data;
4750         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4751         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4752         orig_eth_type = eth->h_proto;
4753
4754         act = bpf_prog_run_xdp(xdp_prog, xdp);
4755
4756         /* check if bpf_xdp_adjust_head was used */
4757         off = xdp->data - orig_data;
4758         if (off) {
4759                 if (off > 0)
4760                         __skb_pull(skb, off);
4761                 else if (off < 0)
4762                         __skb_push(skb, -off);
4763
4764                 skb->mac_header += off;
4765                 skb_reset_network_header(skb);
4766         }
4767
4768         /* check if bpf_xdp_adjust_tail was used */
4769         off = xdp->data_end - orig_data_end;
4770         if (off != 0) {
4771                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4772                 skb->len += off; /* positive on grow, negative on shrink */
4773         }
4774
4775         /* check if XDP changed eth hdr such SKB needs update */
4776         eth = (struct ethhdr *)xdp->data;
4777         if ((orig_eth_type != eth->h_proto) ||
4778             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4779                                                   skb->dev->dev_addr)) ||
4780             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4781                 __skb_push(skb, ETH_HLEN);
4782                 skb->pkt_type = PACKET_HOST;
4783                 skb->protocol = eth_type_trans(skb, skb->dev);
4784         }
4785
4786         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4787          * before calling us again on redirect path. We do not call do_redirect
4788          * as we leave that up to the caller.
4789          *
4790          * Caller is responsible for managing lifetime of skb (i.e. calling
4791          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4792          */
4793         switch (act) {
4794         case XDP_REDIRECT:
4795         case XDP_TX:
4796                 __skb_push(skb, mac_len);
4797                 break;
4798         case XDP_PASS:
4799                 metalen = xdp->data - xdp->data_meta;
4800                 if (metalen)
4801                         skb_metadata_set(skb, metalen);
4802                 break;
4803         }
4804
4805         return act;
4806 }
4807
4808 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4809                                      struct xdp_buff *xdp,
4810                                      struct bpf_prog *xdp_prog)
4811 {
4812         u32 act = XDP_DROP;
4813
4814         /* Reinjected packets coming from act_mirred or similar should
4815          * not get XDP generic processing.
4816          */
4817         if (skb_is_redirected(skb))
4818                 return XDP_PASS;
4819
4820         /* XDP packets must be linear and must have sufficient headroom
4821          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4822          * native XDP provides, thus we need to do it here as well.
4823          */
4824         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4825             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4826                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4827                 int troom = skb->tail + skb->data_len - skb->end;
4828
4829                 /* In case we have to go down the path and also linearize,
4830                  * then lets do the pskb_expand_head() work just once here.
4831                  */
4832                 if (pskb_expand_head(skb,
4833                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4834                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4835                         goto do_drop;
4836                 if (skb_linearize(skb))
4837                         goto do_drop;
4838         }
4839
4840         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4841         switch (act) {
4842         case XDP_REDIRECT:
4843         case XDP_TX:
4844         case XDP_PASS:
4845                 break;
4846         default:
4847                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4848                 fallthrough;
4849         case XDP_ABORTED:
4850                 trace_xdp_exception(skb->dev, xdp_prog, act);
4851                 fallthrough;
4852         case XDP_DROP:
4853         do_drop:
4854                 kfree_skb(skb);
4855                 break;
4856         }
4857
4858         return act;
4859 }
4860
4861 /* When doing generic XDP we have to bypass the qdisc layer and the
4862  * network taps in order to match in-driver-XDP behavior. This also means
4863  * that XDP packets are able to starve other packets going through a qdisc,
4864  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4865  * queues, so they do not have this starvation issue.
4866  */
4867 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4868 {
4869         struct net_device *dev = skb->dev;
4870         struct netdev_queue *txq;
4871         bool free_skb = true;
4872         int cpu, rc;
4873
4874         txq = netdev_core_pick_tx(dev, skb, NULL);
4875         cpu = smp_processor_id();
4876         HARD_TX_LOCK(dev, txq, cpu);
4877         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4878                 rc = netdev_start_xmit(skb, dev, txq, 0);
4879                 if (dev_xmit_complete(rc))
4880                         free_skb = false;
4881         }
4882         HARD_TX_UNLOCK(dev, txq);
4883         if (free_skb) {
4884                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4885                 dev_core_stats_tx_dropped_inc(dev);
4886                 kfree_skb(skb);
4887         }
4888 }
4889
4890 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4891
4892 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4893 {
4894         if (xdp_prog) {
4895                 struct xdp_buff xdp;
4896                 u32 act;
4897                 int err;
4898
4899                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4900                 if (act != XDP_PASS) {
4901                         switch (act) {
4902                         case XDP_REDIRECT:
4903                                 err = xdp_do_generic_redirect(skb->dev, skb,
4904                                                               &xdp, xdp_prog);
4905                                 if (err)
4906                                         goto out_redir;
4907                                 break;
4908                         case XDP_TX:
4909                                 generic_xdp_tx(skb, xdp_prog);
4910                                 break;
4911                         }
4912                         return XDP_DROP;
4913                 }
4914         }
4915         return XDP_PASS;
4916 out_redir:
4917         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4918         return XDP_DROP;
4919 }
4920 EXPORT_SYMBOL_GPL(do_xdp_generic);
4921
4922 static int netif_rx_internal(struct sk_buff *skb)
4923 {
4924         int ret;
4925
4926         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4927
4928         trace_netif_rx(skb);
4929
4930 #ifdef CONFIG_RPS
4931         if (static_branch_unlikely(&rps_needed)) {
4932                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4933                 int cpu;
4934
4935                 rcu_read_lock();
4936
4937                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4938                 if (cpu < 0)
4939                         cpu = smp_processor_id();
4940
4941                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4942
4943                 rcu_read_unlock();
4944         } else
4945 #endif
4946         {
4947                 unsigned int qtail;
4948
4949                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4950         }
4951         return ret;
4952 }
4953
4954 /**
4955  *      __netif_rx      -       Slightly optimized version of netif_rx
4956  *      @skb: buffer to post
4957  *
4958  *      This behaves as netif_rx except that it does not disable bottom halves.
4959  *      As a result this function may only be invoked from the interrupt context
4960  *      (either hard or soft interrupt).
4961  */
4962 int __netif_rx(struct sk_buff *skb)
4963 {
4964         int ret;
4965
4966         lockdep_assert_once(hardirq_count() | softirq_count());
4967
4968         trace_netif_rx_entry(skb);
4969         ret = netif_rx_internal(skb);
4970         trace_netif_rx_exit(ret);
4971         return ret;
4972 }
4973 EXPORT_SYMBOL(__netif_rx);
4974
4975 /**
4976  *      netif_rx        -       post buffer to the network code
4977  *      @skb: buffer to post
4978  *
4979  *      This function receives a packet from a device driver and queues it for
4980  *      the upper (protocol) levels to process via the backlog NAPI device. It
4981  *      always succeeds. The buffer may be dropped during processing for
4982  *      congestion control or by the protocol layers.
4983  *      The network buffer is passed via the backlog NAPI device. Modern NIC
4984  *      driver should use NAPI and GRO.
4985  *      This function can used from interrupt and from process context. The
4986  *      caller from process context must not disable interrupts before invoking
4987  *      this function.
4988  *
4989  *      return values:
4990  *      NET_RX_SUCCESS  (no congestion)
4991  *      NET_RX_DROP     (packet was dropped)
4992  *
4993  */
4994 int netif_rx(struct sk_buff *skb)
4995 {
4996         bool need_bh_off = !(hardirq_count() | softirq_count());
4997         int ret;
4998
4999         if (need_bh_off)
5000                 local_bh_disable();
5001         trace_netif_rx_entry(skb);
5002         ret = netif_rx_internal(skb);
5003         trace_netif_rx_exit(ret);
5004         if (need_bh_off)
5005                 local_bh_enable();
5006         return ret;
5007 }
5008 EXPORT_SYMBOL(netif_rx);
5009
5010 static __latent_entropy void net_tx_action(struct softirq_action *h)
5011 {
5012         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5013
5014         if (sd->completion_queue) {
5015                 struct sk_buff *clist;
5016
5017                 local_irq_disable();
5018                 clist = sd->completion_queue;
5019                 sd->completion_queue = NULL;
5020                 local_irq_enable();
5021
5022                 while (clist) {
5023                         struct sk_buff *skb = clist;
5024
5025                         clist = clist->next;
5026
5027                         WARN_ON(refcount_read(&skb->users));
5028                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5029                                 trace_consume_skb(skb);
5030                         else
5031                                 trace_kfree_skb(skb, net_tx_action,
5032                                                 SKB_DROP_REASON_NOT_SPECIFIED);
5033
5034                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5035                                 __kfree_skb(skb);
5036                         else
5037                                 __kfree_skb_defer(skb);
5038                 }
5039         }
5040
5041         if (sd->output_queue) {
5042                 struct Qdisc *head;
5043
5044                 local_irq_disable();
5045                 head = sd->output_queue;
5046                 sd->output_queue = NULL;
5047                 sd->output_queue_tailp = &sd->output_queue;
5048                 local_irq_enable();
5049
5050                 rcu_read_lock();
5051
5052                 while (head) {
5053                         struct Qdisc *q = head;
5054                         spinlock_t *root_lock = NULL;
5055
5056                         head = head->next_sched;
5057
5058                         /* We need to make sure head->next_sched is read
5059                          * before clearing __QDISC_STATE_SCHED
5060                          */
5061                         smp_mb__before_atomic();
5062
5063                         if (!(q->flags & TCQ_F_NOLOCK)) {
5064                                 root_lock = qdisc_lock(q);
5065                                 spin_lock(root_lock);
5066                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5067                                                      &q->state))) {
5068                                 /* There is a synchronize_net() between
5069                                  * STATE_DEACTIVATED flag being set and
5070                                  * qdisc_reset()/some_qdisc_is_busy() in
5071                                  * dev_deactivate(), so we can safely bail out
5072                                  * early here to avoid data race between
5073                                  * qdisc_deactivate() and some_qdisc_is_busy()
5074                                  * for lockless qdisc.
5075                                  */
5076                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5077                                 continue;
5078                         }
5079
5080                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5081                         qdisc_run(q);
5082                         if (root_lock)
5083                                 spin_unlock(root_lock);
5084                 }
5085
5086                 rcu_read_unlock();
5087         }
5088
5089         xfrm_dev_backlog(sd);
5090 }
5091
5092 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5093 /* This hook is defined here for ATM LANE */
5094 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5095                              unsigned char *addr) __read_mostly;
5096 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5097 #endif
5098
5099 static inline struct sk_buff *
5100 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5101                    struct net_device *orig_dev, bool *another)
5102 {
5103 #ifdef CONFIG_NET_CLS_ACT
5104         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5105         struct tcf_result cl_res;
5106
5107         /* If there's at least one ingress present somewhere (so
5108          * we get here via enabled static key), remaining devices
5109          * that are not configured with an ingress qdisc will bail
5110          * out here.
5111          */
5112         if (!miniq)
5113                 return skb;
5114
5115         if (*pt_prev) {
5116                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5117                 *pt_prev = NULL;
5118         }
5119
5120         qdisc_skb_cb(skb)->pkt_len = skb->len;
5121         tc_skb_cb(skb)->mru = 0;
5122         tc_skb_cb(skb)->post_ct = false;
5123         skb->tc_at_ingress = 1;
5124         mini_qdisc_bstats_cpu_update(miniq, skb);
5125
5126         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5127         case TC_ACT_OK:
5128         case TC_ACT_RECLASSIFY:
5129                 skb->tc_index = TC_H_MIN(cl_res.classid);
5130                 break;
5131         case TC_ACT_SHOT:
5132                 mini_qdisc_qstats_cpu_drop(miniq);
5133                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5134                 *ret = NET_RX_DROP;
5135                 return NULL;
5136         case TC_ACT_STOLEN:
5137         case TC_ACT_QUEUED:
5138         case TC_ACT_TRAP:
5139                 consume_skb(skb);
5140                 *ret = NET_RX_SUCCESS;
5141                 return NULL;
5142         case TC_ACT_REDIRECT:
5143                 /* skb_mac_header check was done by cls/act_bpf, so
5144                  * we can safely push the L2 header back before
5145                  * redirecting to another netdev
5146                  */
5147                 __skb_push(skb, skb->mac_len);
5148                 if (skb_do_redirect(skb) == -EAGAIN) {
5149                         __skb_pull(skb, skb->mac_len);
5150                         *another = true;
5151                         break;
5152                 }
5153                 *ret = NET_RX_SUCCESS;
5154                 return NULL;
5155         case TC_ACT_CONSUMED:
5156                 *ret = NET_RX_SUCCESS;
5157                 return NULL;
5158         default:
5159                 break;
5160         }
5161 #endif /* CONFIG_NET_CLS_ACT */
5162         return skb;
5163 }
5164
5165 /**
5166  *      netdev_is_rx_handler_busy - check if receive handler is registered
5167  *      @dev: device to check
5168  *
5169  *      Check if a receive handler is already registered for a given device.
5170  *      Return true if there one.
5171  *
5172  *      The caller must hold the rtnl_mutex.
5173  */
5174 bool netdev_is_rx_handler_busy(struct net_device *dev)
5175 {
5176         ASSERT_RTNL();
5177         return dev && rtnl_dereference(dev->rx_handler);
5178 }
5179 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5180
5181 /**
5182  *      netdev_rx_handler_register - register receive handler
5183  *      @dev: device to register a handler for
5184  *      @rx_handler: receive handler to register
5185  *      @rx_handler_data: data pointer that is used by rx handler
5186  *
5187  *      Register a receive handler for a device. This handler will then be
5188  *      called from __netif_receive_skb. A negative errno code is returned
5189  *      on a failure.
5190  *
5191  *      The caller must hold the rtnl_mutex.
5192  *
5193  *      For a general description of rx_handler, see enum rx_handler_result.
5194  */
5195 int netdev_rx_handler_register(struct net_device *dev,
5196                                rx_handler_func_t *rx_handler,
5197                                void *rx_handler_data)
5198 {
5199         if (netdev_is_rx_handler_busy(dev))
5200                 return -EBUSY;
5201
5202         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5203                 return -EINVAL;
5204
5205         /* Note: rx_handler_data must be set before rx_handler */
5206         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5207         rcu_assign_pointer(dev->rx_handler, rx_handler);
5208
5209         return 0;
5210 }
5211 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5212
5213 /**
5214  *      netdev_rx_handler_unregister - unregister receive handler
5215  *      @dev: device to unregister a handler from
5216  *
5217  *      Unregister a receive handler from a device.
5218  *
5219  *      The caller must hold the rtnl_mutex.
5220  */
5221 void netdev_rx_handler_unregister(struct net_device *dev)
5222 {
5223
5224         ASSERT_RTNL();
5225         RCU_INIT_POINTER(dev->rx_handler, NULL);
5226         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5227          * section has a guarantee to see a non NULL rx_handler_data
5228          * as well.
5229          */
5230         synchronize_net();
5231         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5232 }
5233 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5234
5235 /*
5236  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5237  * the special handling of PFMEMALLOC skbs.
5238  */
5239 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5240 {
5241         switch (skb->protocol) {
5242         case htons(ETH_P_ARP):
5243         case htons(ETH_P_IP):
5244         case htons(ETH_P_IPV6):
5245         case htons(ETH_P_8021Q):
5246         case htons(ETH_P_8021AD):
5247                 return true;
5248         default:
5249                 return false;
5250         }
5251 }
5252
5253 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5254                              int *ret, struct net_device *orig_dev)
5255 {
5256         if (nf_hook_ingress_active(skb)) {
5257                 int ingress_retval;
5258
5259                 if (*pt_prev) {
5260                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5261                         *pt_prev = NULL;
5262                 }
5263
5264                 rcu_read_lock();
5265                 ingress_retval = nf_hook_ingress(skb);
5266                 rcu_read_unlock();
5267                 return ingress_retval;
5268         }
5269         return 0;
5270 }
5271
5272 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5273                                     struct packet_type **ppt_prev)
5274 {
5275         struct packet_type *ptype, *pt_prev;
5276         rx_handler_func_t *rx_handler;
5277         struct sk_buff *skb = *pskb;
5278         struct net_device *orig_dev;
5279         bool deliver_exact = false;
5280         int ret = NET_RX_DROP;
5281         __be16 type;
5282
5283         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5284
5285         trace_netif_receive_skb(skb);
5286
5287         orig_dev = skb->dev;
5288
5289         skb_reset_network_header(skb);
5290         if (!skb_transport_header_was_set(skb))
5291                 skb_reset_transport_header(skb);
5292         skb_reset_mac_len(skb);
5293
5294         pt_prev = NULL;
5295
5296 another_round:
5297         skb->skb_iif = skb->dev->ifindex;
5298
5299         __this_cpu_inc(softnet_data.processed);
5300
5301         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5302                 int ret2;
5303
5304                 migrate_disable();
5305                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5306                 migrate_enable();
5307
5308                 if (ret2 != XDP_PASS) {
5309                         ret = NET_RX_DROP;
5310                         goto out;
5311                 }
5312         }
5313
5314         if (eth_type_vlan(skb->protocol)) {
5315                 skb = skb_vlan_untag(skb);
5316                 if (unlikely(!skb))
5317                         goto out;
5318         }
5319
5320         if (skb_skip_tc_classify(skb))
5321                 goto skip_classify;
5322
5323         if (pfmemalloc)
5324                 goto skip_taps;
5325
5326         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5327                 if (pt_prev)
5328                         ret = deliver_skb(skb, pt_prev, orig_dev);
5329                 pt_prev = ptype;
5330         }
5331
5332         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5333                 if (pt_prev)
5334                         ret = deliver_skb(skb, pt_prev, orig_dev);
5335                 pt_prev = ptype;
5336         }
5337
5338 skip_taps:
5339 #ifdef CONFIG_NET_INGRESS
5340         if (static_branch_unlikely(&ingress_needed_key)) {
5341                 bool another = false;
5342
5343                 nf_skip_egress(skb, true);
5344                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5345                                          &another);
5346                 if (another)
5347                         goto another_round;
5348                 if (!skb)
5349                         goto out;
5350
5351                 nf_skip_egress(skb, false);
5352                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5353                         goto out;
5354         }
5355 #endif
5356         skb_reset_redirect(skb);
5357 skip_classify:
5358         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5359                 goto drop;
5360
5361         if (skb_vlan_tag_present(skb)) {
5362                 if (pt_prev) {
5363                         ret = deliver_skb(skb, pt_prev, orig_dev);
5364                         pt_prev = NULL;
5365                 }
5366                 if (vlan_do_receive(&skb))
5367                         goto another_round;
5368                 else if (unlikely(!skb))
5369                         goto out;
5370         }
5371
5372         rx_handler = rcu_dereference(skb->dev->rx_handler);
5373         if (rx_handler) {
5374                 if (pt_prev) {
5375                         ret = deliver_skb(skb, pt_prev, orig_dev);
5376                         pt_prev = NULL;
5377                 }
5378                 switch (rx_handler(&skb)) {
5379                 case RX_HANDLER_CONSUMED:
5380                         ret = NET_RX_SUCCESS;
5381                         goto out;
5382                 case RX_HANDLER_ANOTHER:
5383                         goto another_round;
5384                 case RX_HANDLER_EXACT:
5385                         deliver_exact = true;
5386                         break;
5387                 case RX_HANDLER_PASS:
5388                         break;
5389                 default:
5390                         BUG();
5391                 }
5392         }
5393
5394         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5395 check_vlan_id:
5396                 if (skb_vlan_tag_get_id(skb)) {
5397                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5398                          * find vlan device.
5399                          */
5400                         skb->pkt_type = PACKET_OTHERHOST;
5401                 } else if (eth_type_vlan(skb->protocol)) {
5402                         /* Outer header is 802.1P with vlan 0, inner header is
5403                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5404                          * not find vlan dev for vlan id 0.
5405                          */
5406                         __vlan_hwaccel_clear_tag(skb);
5407                         skb = skb_vlan_untag(skb);
5408                         if (unlikely(!skb))
5409                                 goto out;
5410                         if (vlan_do_receive(&skb))
5411                                 /* After stripping off 802.1P header with vlan 0
5412                                  * vlan dev is found for inner header.
5413                                  */
5414                                 goto another_round;
5415                         else if (unlikely(!skb))
5416                                 goto out;
5417                         else
5418                                 /* We have stripped outer 802.1P vlan 0 header.
5419                                  * But could not find vlan dev.
5420                                  * check again for vlan id to set OTHERHOST.
5421                                  */
5422                                 goto check_vlan_id;
5423                 }
5424                 /* Note: we might in the future use prio bits
5425                  * and set skb->priority like in vlan_do_receive()
5426                  * For the time being, just ignore Priority Code Point
5427                  */
5428                 __vlan_hwaccel_clear_tag(skb);
5429         }
5430
5431         type = skb->protocol;
5432
5433         /* deliver only exact match when indicated */
5434         if (likely(!deliver_exact)) {
5435                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5436                                        &ptype_base[ntohs(type) &
5437                                                    PTYPE_HASH_MASK]);
5438         }
5439
5440         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5441                                &orig_dev->ptype_specific);
5442
5443         if (unlikely(skb->dev != orig_dev)) {
5444                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5445                                        &skb->dev->ptype_specific);
5446         }
5447
5448         if (pt_prev) {
5449                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5450                         goto drop;
5451                 *ppt_prev = pt_prev;
5452         } else {
5453 drop:
5454                 if (!deliver_exact)
5455                         dev_core_stats_rx_dropped_inc(skb->dev);
5456                 else
5457                         dev_core_stats_rx_nohandler_inc(skb->dev);
5458                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5459                 /* Jamal, now you will not able to escape explaining
5460                  * me how you were going to use this. :-)
5461                  */
5462                 ret = NET_RX_DROP;
5463         }
5464
5465 out:
5466         /* The invariant here is that if *ppt_prev is not NULL
5467          * then skb should also be non-NULL.
5468          *
5469          * Apparently *ppt_prev assignment above holds this invariant due to
5470          * skb dereferencing near it.
5471          */
5472         *pskb = skb;
5473         return ret;
5474 }
5475
5476 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5477 {
5478         struct net_device *orig_dev = skb->dev;
5479         struct packet_type *pt_prev = NULL;
5480         int ret;
5481
5482         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5483         if (pt_prev)
5484                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5485                                          skb->dev, pt_prev, orig_dev);
5486         return ret;
5487 }
5488
5489 /**
5490  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5491  *      @skb: buffer to process
5492  *
5493  *      More direct receive version of netif_receive_skb().  It should
5494  *      only be used by callers that have a need to skip RPS and Generic XDP.
5495  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5496  *
5497  *      This function may only be called from softirq context and interrupts
5498  *      should be enabled.
5499  *
5500  *      Return values (usually ignored):
5501  *      NET_RX_SUCCESS: no congestion
5502  *      NET_RX_DROP: packet was dropped
5503  */
5504 int netif_receive_skb_core(struct sk_buff *skb)
5505 {
5506         int ret;
5507
5508         rcu_read_lock();
5509         ret = __netif_receive_skb_one_core(skb, false);
5510         rcu_read_unlock();
5511
5512         return ret;
5513 }
5514 EXPORT_SYMBOL(netif_receive_skb_core);
5515
5516 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5517                                                   struct packet_type *pt_prev,
5518                                                   struct net_device *orig_dev)
5519 {
5520         struct sk_buff *skb, *next;
5521
5522         if (!pt_prev)
5523                 return;
5524         if (list_empty(head))
5525                 return;
5526         if (pt_prev->list_func != NULL)
5527                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5528                                    ip_list_rcv, head, pt_prev, orig_dev);
5529         else
5530                 list_for_each_entry_safe(skb, next, head, list) {
5531                         skb_list_del_init(skb);
5532                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5533                 }
5534 }
5535
5536 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5537 {
5538         /* Fast-path assumptions:
5539          * - There is no RX handler.
5540          * - Only one packet_type matches.
5541          * If either of these fails, we will end up doing some per-packet
5542          * processing in-line, then handling the 'last ptype' for the whole
5543          * sublist.  This can't cause out-of-order delivery to any single ptype,
5544          * because the 'last ptype' must be constant across the sublist, and all
5545          * other ptypes are handled per-packet.
5546          */
5547         /* Current (common) ptype of sublist */
5548         struct packet_type *pt_curr = NULL;
5549         /* Current (common) orig_dev of sublist */
5550         struct net_device *od_curr = NULL;
5551         struct list_head sublist;
5552         struct sk_buff *skb, *next;
5553
5554         INIT_LIST_HEAD(&sublist);
5555         list_for_each_entry_safe(skb, next, head, list) {
5556                 struct net_device *orig_dev = skb->dev;
5557                 struct packet_type *pt_prev = NULL;
5558
5559                 skb_list_del_init(skb);
5560                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5561                 if (!pt_prev)
5562                         continue;
5563                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5564                         /* dispatch old sublist */
5565                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5566                         /* start new sublist */
5567                         INIT_LIST_HEAD(&sublist);
5568                         pt_curr = pt_prev;
5569                         od_curr = orig_dev;
5570                 }
5571                 list_add_tail(&skb->list, &sublist);
5572         }
5573
5574         /* dispatch final sublist */
5575         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5576 }
5577
5578 static int __netif_receive_skb(struct sk_buff *skb)
5579 {
5580         int ret;
5581
5582         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5583                 unsigned int noreclaim_flag;
5584
5585                 /*
5586                  * PFMEMALLOC skbs are special, they should
5587                  * - be delivered to SOCK_MEMALLOC sockets only
5588                  * - stay away from userspace
5589                  * - have bounded memory usage
5590                  *
5591                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5592                  * context down to all allocation sites.
5593                  */
5594                 noreclaim_flag = memalloc_noreclaim_save();
5595                 ret = __netif_receive_skb_one_core(skb, true);
5596                 memalloc_noreclaim_restore(noreclaim_flag);
5597         } else
5598                 ret = __netif_receive_skb_one_core(skb, false);
5599
5600         return ret;
5601 }
5602
5603 static void __netif_receive_skb_list(struct list_head *head)
5604 {
5605         unsigned long noreclaim_flag = 0;
5606         struct sk_buff *skb, *next;
5607         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5608
5609         list_for_each_entry_safe(skb, next, head, list) {
5610                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5611                         struct list_head sublist;
5612
5613                         /* Handle the previous sublist */
5614                         list_cut_before(&sublist, head, &skb->list);
5615                         if (!list_empty(&sublist))
5616                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5617                         pfmemalloc = !pfmemalloc;
5618                         /* See comments in __netif_receive_skb */
5619                         if (pfmemalloc)
5620                                 noreclaim_flag = memalloc_noreclaim_save();
5621                         else
5622                                 memalloc_noreclaim_restore(noreclaim_flag);
5623                 }
5624         }
5625         /* Handle the remaining sublist */
5626         if (!list_empty(head))
5627                 __netif_receive_skb_list_core(head, pfmemalloc);
5628         /* Restore pflags */
5629         if (pfmemalloc)
5630                 memalloc_noreclaim_restore(noreclaim_flag);
5631 }
5632
5633 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5634 {
5635         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5636         struct bpf_prog *new = xdp->prog;
5637         int ret = 0;
5638
5639         switch (xdp->command) {
5640         case XDP_SETUP_PROG:
5641                 rcu_assign_pointer(dev->xdp_prog, new);
5642                 if (old)
5643                         bpf_prog_put(old);
5644
5645                 if (old && !new) {
5646                         static_branch_dec(&generic_xdp_needed_key);
5647                 } else if (new && !old) {
5648                         static_branch_inc(&generic_xdp_needed_key);
5649                         dev_disable_lro(dev);
5650                         dev_disable_gro_hw(dev);
5651                 }
5652                 break;
5653
5654         default:
5655                 ret = -EINVAL;
5656                 break;
5657         }
5658
5659         return ret;
5660 }
5661
5662 static int netif_receive_skb_internal(struct sk_buff *skb)
5663 {
5664         int ret;
5665
5666         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5667
5668         if (skb_defer_rx_timestamp(skb))
5669                 return NET_RX_SUCCESS;
5670
5671         rcu_read_lock();
5672 #ifdef CONFIG_RPS
5673         if (static_branch_unlikely(&rps_needed)) {
5674                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5675                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5676
5677                 if (cpu >= 0) {
5678                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5679                         rcu_read_unlock();
5680                         return ret;
5681                 }
5682         }
5683 #endif
5684         ret = __netif_receive_skb(skb);
5685         rcu_read_unlock();
5686         return ret;
5687 }
5688
5689 void netif_receive_skb_list_internal(struct list_head *head)
5690 {
5691         struct sk_buff *skb, *next;
5692         struct list_head sublist;
5693
5694         INIT_LIST_HEAD(&sublist);
5695         list_for_each_entry_safe(skb, next, head, list) {
5696                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5697                 skb_list_del_init(skb);
5698                 if (!skb_defer_rx_timestamp(skb))
5699                         list_add_tail(&skb->list, &sublist);
5700         }
5701         list_splice_init(&sublist, head);
5702
5703         rcu_read_lock();
5704 #ifdef CONFIG_RPS
5705         if (static_branch_unlikely(&rps_needed)) {
5706                 list_for_each_entry_safe(skb, next, head, list) {
5707                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5708                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5709
5710                         if (cpu >= 0) {
5711                                 /* Will be handled, remove from list */
5712                                 skb_list_del_init(skb);
5713                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5714                         }
5715                 }
5716         }
5717 #endif
5718         __netif_receive_skb_list(head);
5719         rcu_read_unlock();
5720 }
5721
5722 /**
5723  *      netif_receive_skb - process receive buffer from network
5724  *      @skb: buffer to process
5725  *
5726  *      netif_receive_skb() is the main receive data processing function.
5727  *      It always succeeds. The buffer may be dropped during processing
5728  *      for congestion control or by the protocol layers.
5729  *
5730  *      This function may only be called from softirq context and interrupts
5731  *      should be enabled.
5732  *
5733  *      Return values (usually ignored):
5734  *      NET_RX_SUCCESS: no congestion
5735  *      NET_RX_DROP: packet was dropped
5736  */
5737 int netif_receive_skb(struct sk_buff *skb)
5738 {
5739         int ret;
5740
5741         trace_netif_receive_skb_entry(skb);
5742
5743         ret = netif_receive_skb_internal(skb);
5744         trace_netif_receive_skb_exit(ret);
5745
5746         return ret;
5747 }
5748 EXPORT_SYMBOL(netif_receive_skb);
5749
5750 /**
5751  *      netif_receive_skb_list - process many receive buffers from network
5752  *      @head: list of skbs to process.
5753  *
5754  *      Since return value of netif_receive_skb() is normally ignored, and
5755  *      wouldn't be meaningful for a list, this function returns void.
5756  *
5757  *      This function may only be called from softirq context and interrupts
5758  *      should be enabled.
5759  */
5760 void netif_receive_skb_list(struct list_head *head)
5761 {
5762         struct sk_buff *skb;
5763
5764         if (list_empty(head))
5765                 return;
5766         if (trace_netif_receive_skb_list_entry_enabled()) {
5767                 list_for_each_entry(skb, head, list)
5768                         trace_netif_receive_skb_list_entry(skb);
5769         }
5770         netif_receive_skb_list_internal(head);
5771         trace_netif_receive_skb_list_exit(0);
5772 }
5773 EXPORT_SYMBOL(netif_receive_skb_list);
5774
5775 static DEFINE_PER_CPU(struct work_struct, flush_works);
5776
5777 /* Network device is going away, flush any packets still pending */
5778 static void flush_backlog(struct work_struct *work)
5779 {
5780         struct sk_buff *skb, *tmp;
5781         struct softnet_data *sd;
5782
5783         local_bh_disable();
5784         sd = this_cpu_ptr(&softnet_data);
5785
5786         rps_lock_irq_disable(sd);
5787         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5788                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5789                         __skb_unlink(skb, &sd->input_pkt_queue);
5790                         dev_kfree_skb_irq(skb);
5791                         input_queue_head_incr(sd);
5792                 }
5793         }
5794         rps_unlock_irq_enable(sd);
5795
5796         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5797                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5798                         __skb_unlink(skb, &sd->process_queue);
5799                         kfree_skb(skb);
5800                         input_queue_head_incr(sd);
5801                 }
5802         }
5803         local_bh_enable();
5804 }
5805
5806 static bool flush_required(int cpu)
5807 {
5808 #if IS_ENABLED(CONFIG_RPS)
5809         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5810         bool do_flush;
5811
5812         rps_lock_irq_disable(sd);
5813
5814         /* as insertion into process_queue happens with the rps lock held,
5815          * process_queue access may race only with dequeue
5816          */
5817         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5818                    !skb_queue_empty_lockless(&sd->process_queue);
5819         rps_unlock_irq_enable(sd);
5820
5821         return do_flush;
5822 #endif
5823         /* without RPS we can't safely check input_pkt_queue: during a
5824          * concurrent remote skb_queue_splice() we can detect as empty both
5825          * input_pkt_queue and process_queue even if the latter could end-up
5826          * containing a lot of packets.
5827          */
5828         return true;
5829 }
5830
5831 static void flush_all_backlogs(void)
5832 {
5833         static cpumask_t flush_cpus;
5834         unsigned int cpu;
5835
5836         /* since we are under rtnl lock protection we can use static data
5837          * for the cpumask and avoid allocating on stack the possibly
5838          * large mask
5839          */
5840         ASSERT_RTNL();
5841
5842         cpus_read_lock();
5843
5844         cpumask_clear(&flush_cpus);
5845         for_each_online_cpu(cpu) {
5846                 if (flush_required(cpu)) {
5847                         queue_work_on(cpu, system_highpri_wq,
5848                                       per_cpu_ptr(&flush_works, cpu));
5849                         cpumask_set_cpu(cpu, &flush_cpus);
5850                 }
5851         }
5852
5853         /* we can have in flight packet[s] on the cpus we are not flushing,
5854          * synchronize_net() in unregister_netdevice_many() will take care of
5855          * them
5856          */
5857         for_each_cpu(cpu, &flush_cpus)
5858                 flush_work(per_cpu_ptr(&flush_works, cpu));
5859
5860         cpus_read_unlock();
5861 }
5862
5863 static void net_rps_send_ipi(struct softnet_data *remsd)
5864 {
5865 #ifdef CONFIG_RPS
5866         while (remsd) {
5867                 struct softnet_data *next = remsd->rps_ipi_next;
5868
5869                 if (cpu_online(remsd->cpu))
5870                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5871                 remsd = next;
5872         }
5873 #endif
5874 }
5875
5876 /*
5877  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5878  * Note: called with local irq disabled, but exits with local irq enabled.
5879  */
5880 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5881 {
5882 #ifdef CONFIG_RPS
5883         struct softnet_data *remsd = sd->rps_ipi_list;
5884
5885         if (remsd) {
5886                 sd->rps_ipi_list = NULL;
5887
5888                 local_irq_enable();
5889
5890                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5891                 net_rps_send_ipi(remsd);
5892         } else
5893 #endif
5894                 local_irq_enable();
5895 }
5896
5897 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5898 {
5899 #ifdef CONFIG_RPS
5900         return sd->rps_ipi_list != NULL;
5901 #else
5902         return false;
5903 #endif
5904 }
5905
5906 static int process_backlog(struct napi_struct *napi, int quota)
5907 {
5908         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5909         bool again = true;
5910         int work = 0;
5911
5912         /* Check if we have pending ipi, its better to send them now,
5913          * not waiting net_rx_action() end.
5914          */
5915         if (sd_has_rps_ipi_waiting(sd)) {
5916                 local_irq_disable();
5917                 net_rps_action_and_irq_enable(sd);
5918         }
5919
5920         napi->weight = READ_ONCE(dev_rx_weight);
5921         while (again) {
5922                 struct sk_buff *skb;
5923
5924                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5925                         rcu_read_lock();
5926                         __netif_receive_skb(skb);
5927                         rcu_read_unlock();
5928                         input_queue_head_incr(sd);
5929                         if (++work >= quota)
5930                                 return work;
5931
5932                 }
5933
5934                 rps_lock_irq_disable(sd);
5935                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5936                         /*
5937                          * Inline a custom version of __napi_complete().
5938                          * only current cpu owns and manipulates this napi,
5939                          * and NAPI_STATE_SCHED is the only possible flag set
5940                          * on backlog.
5941                          * We can use a plain write instead of clear_bit(),
5942                          * and we dont need an smp_mb() memory barrier.
5943                          */
5944                         napi->state = 0;
5945                         again = false;
5946                 } else {
5947                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5948                                                    &sd->process_queue);
5949                 }
5950                 rps_unlock_irq_enable(sd);
5951         }
5952
5953         return work;
5954 }
5955
5956 /**
5957  * __napi_schedule - schedule for receive
5958  * @n: entry to schedule
5959  *
5960  * The entry's receive function will be scheduled to run.
5961  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5962  */
5963 void __napi_schedule(struct napi_struct *n)
5964 {
5965         unsigned long flags;
5966
5967         local_irq_save(flags);
5968         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5969         local_irq_restore(flags);
5970 }
5971 EXPORT_SYMBOL(__napi_schedule);
5972
5973 /**
5974  *      napi_schedule_prep - check if napi can be scheduled
5975  *      @n: napi context
5976  *
5977  * Test if NAPI routine is already running, and if not mark
5978  * it as running.  This is used as a condition variable to
5979  * insure only one NAPI poll instance runs.  We also make
5980  * sure there is no pending NAPI disable.
5981  */
5982 bool napi_schedule_prep(struct napi_struct *n)
5983 {
5984         unsigned long new, val = READ_ONCE(n->state);
5985
5986         do {
5987                 if (unlikely(val & NAPIF_STATE_DISABLE))
5988                         return false;
5989                 new = val | NAPIF_STATE_SCHED;
5990
5991                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5992                  * This was suggested by Alexander Duyck, as compiler
5993                  * emits better code than :
5994                  * if (val & NAPIF_STATE_SCHED)
5995                  *     new |= NAPIF_STATE_MISSED;
5996                  */
5997                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5998                                                    NAPIF_STATE_MISSED;
5999         } while (!try_cmpxchg(&n->state, &val, new));
6000
6001         return !(val & NAPIF_STATE_SCHED);
6002 }
6003 EXPORT_SYMBOL(napi_schedule_prep);
6004
6005 /**
6006  * __napi_schedule_irqoff - schedule for receive
6007  * @n: entry to schedule
6008  *
6009  * Variant of __napi_schedule() assuming hard irqs are masked.
6010  *
6011  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6012  * because the interrupt disabled assumption might not be true
6013  * due to force-threaded interrupts and spinlock substitution.
6014  */
6015 void __napi_schedule_irqoff(struct napi_struct *n)
6016 {
6017         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6018                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6019         else
6020                 __napi_schedule(n);
6021 }
6022 EXPORT_SYMBOL(__napi_schedule_irqoff);
6023
6024 bool napi_complete_done(struct napi_struct *n, int work_done)
6025 {
6026         unsigned long flags, val, new, timeout = 0;
6027         bool ret = true;
6028
6029         /*
6030          * 1) Don't let napi dequeue from the cpu poll list
6031          *    just in case its running on a different cpu.
6032          * 2) If we are busy polling, do nothing here, we have
6033          *    the guarantee we will be called later.
6034          */
6035         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6036                                  NAPIF_STATE_IN_BUSY_POLL)))
6037                 return false;
6038
6039         if (work_done) {
6040                 if (n->gro_bitmask)
6041                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6042                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6043         }
6044         if (n->defer_hard_irqs_count > 0) {
6045                 n->defer_hard_irqs_count--;
6046                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6047                 if (timeout)
6048                         ret = false;
6049         }
6050         if (n->gro_bitmask) {
6051                 /* When the NAPI instance uses a timeout and keeps postponing
6052                  * it, we need to bound somehow the time packets are kept in
6053                  * the GRO layer
6054                  */
6055                 napi_gro_flush(n, !!timeout);
6056         }
6057
6058         gro_normal_list(n);
6059
6060         if (unlikely(!list_empty(&n->poll_list))) {
6061                 /* If n->poll_list is not empty, we need to mask irqs */
6062                 local_irq_save(flags);
6063                 list_del_init(&n->poll_list);
6064                 local_irq_restore(flags);
6065         }
6066
6067         val = READ_ONCE(n->state);
6068         do {
6069                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6070
6071                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6072                               NAPIF_STATE_SCHED_THREADED |
6073                               NAPIF_STATE_PREFER_BUSY_POLL);
6074
6075                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6076                  * because we will call napi->poll() one more time.
6077                  * This C code was suggested by Alexander Duyck to help gcc.
6078                  */
6079                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6080                                                     NAPIF_STATE_SCHED;
6081         } while (!try_cmpxchg(&n->state, &val, new));
6082
6083         if (unlikely(val & NAPIF_STATE_MISSED)) {
6084                 __napi_schedule(n);
6085                 return false;
6086         }
6087
6088         if (timeout)
6089                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6090                               HRTIMER_MODE_REL_PINNED);
6091         return ret;
6092 }
6093 EXPORT_SYMBOL(napi_complete_done);
6094
6095 /* must be called under rcu_read_lock(), as we dont take a reference */
6096 static struct napi_struct *napi_by_id(unsigned int napi_id)
6097 {
6098         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6099         struct napi_struct *napi;
6100
6101         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6102                 if (napi->napi_id == napi_id)
6103                         return napi;
6104
6105         return NULL;
6106 }
6107
6108 #if defined(CONFIG_NET_RX_BUSY_POLL)
6109
6110 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6111 {
6112         if (!skip_schedule) {
6113                 gro_normal_list(napi);
6114                 __napi_schedule(napi);
6115                 return;
6116         }
6117
6118         if (napi->gro_bitmask) {
6119                 /* flush too old packets
6120                  * If HZ < 1000, flush all packets.
6121                  */
6122                 napi_gro_flush(napi, HZ >= 1000);
6123         }
6124
6125         gro_normal_list(napi);
6126         clear_bit(NAPI_STATE_SCHED, &napi->state);
6127 }
6128
6129 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6130                            u16 budget)
6131 {
6132         bool skip_schedule = false;
6133         unsigned long timeout;
6134         int rc;
6135
6136         /* Busy polling means there is a high chance device driver hard irq
6137          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6138          * set in napi_schedule_prep().
6139          * Since we are about to call napi->poll() once more, we can safely
6140          * clear NAPI_STATE_MISSED.
6141          *
6142          * Note: x86 could use a single "lock and ..." instruction
6143          * to perform these two clear_bit()
6144          */
6145         clear_bit(NAPI_STATE_MISSED, &napi->state);
6146         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6147
6148         local_bh_disable();
6149
6150         if (prefer_busy_poll) {
6151                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6152                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6153                 if (napi->defer_hard_irqs_count && timeout) {
6154                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6155                         skip_schedule = true;
6156                 }
6157         }
6158
6159         /* All we really want here is to re-enable device interrupts.
6160          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6161          */
6162         rc = napi->poll(napi, budget);
6163         /* We can't gro_normal_list() here, because napi->poll() might have
6164          * rearmed the napi (napi_complete_done()) in which case it could
6165          * already be running on another CPU.
6166          */
6167         trace_napi_poll(napi, rc, budget);
6168         netpoll_poll_unlock(have_poll_lock);
6169         if (rc == budget)
6170                 __busy_poll_stop(napi, skip_schedule);
6171         local_bh_enable();
6172 }
6173
6174 void napi_busy_loop(unsigned int napi_id,
6175                     bool (*loop_end)(void *, unsigned long),
6176                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6177 {
6178         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6179         int (*napi_poll)(struct napi_struct *napi, int budget);
6180         void *have_poll_lock = NULL;
6181         struct napi_struct *napi;
6182
6183 restart:
6184         napi_poll = NULL;
6185
6186         rcu_read_lock();
6187
6188         napi = napi_by_id(napi_id);
6189         if (!napi)
6190                 goto out;
6191
6192         preempt_disable();
6193         for (;;) {
6194                 int work = 0;
6195
6196                 local_bh_disable();
6197                 if (!napi_poll) {
6198                         unsigned long val = READ_ONCE(napi->state);
6199
6200                         /* If multiple threads are competing for this napi,
6201                          * we avoid dirtying napi->state as much as we can.
6202                          */
6203                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6204                                    NAPIF_STATE_IN_BUSY_POLL)) {
6205                                 if (prefer_busy_poll)
6206                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6207                                 goto count;
6208                         }
6209                         if (cmpxchg(&napi->state, val,
6210                                     val | NAPIF_STATE_IN_BUSY_POLL |
6211                                           NAPIF_STATE_SCHED) != val) {
6212                                 if (prefer_busy_poll)
6213                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6214                                 goto count;
6215                         }
6216                         have_poll_lock = netpoll_poll_lock(napi);
6217                         napi_poll = napi->poll;
6218                 }
6219                 work = napi_poll(napi, budget);
6220                 trace_napi_poll(napi, work, budget);
6221                 gro_normal_list(napi);
6222 count:
6223                 if (work > 0)
6224                         __NET_ADD_STATS(dev_net(napi->dev),
6225                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6226                 local_bh_enable();
6227
6228                 if (!loop_end || loop_end(loop_end_arg, start_time))
6229                         break;
6230
6231                 if (unlikely(need_resched())) {
6232                         if (napi_poll)
6233                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6234                         preempt_enable();
6235                         rcu_read_unlock();
6236                         cond_resched();
6237                         if (loop_end(loop_end_arg, start_time))
6238                                 return;
6239                         goto restart;
6240                 }
6241                 cpu_relax();
6242         }
6243         if (napi_poll)
6244                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6245         preempt_enable();
6246 out:
6247         rcu_read_unlock();
6248 }
6249 EXPORT_SYMBOL(napi_busy_loop);
6250
6251 #endif /* CONFIG_NET_RX_BUSY_POLL */
6252
6253 static void napi_hash_add(struct napi_struct *napi)
6254 {
6255         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6256                 return;
6257
6258         spin_lock(&napi_hash_lock);
6259
6260         /* 0..NR_CPUS range is reserved for sender_cpu use */
6261         do {
6262                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6263                         napi_gen_id = MIN_NAPI_ID;
6264         } while (napi_by_id(napi_gen_id));
6265         napi->napi_id = napi_gen_id;
6266
6267         hlist_add_head_rcu(&napi->napi_hash_node,
6268                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6269
6270         spin_unlock(&napi_hash_lock);
6271 }
6272
6273 /* Warning : caller is responsible to make sure rcu grace period
6274  * is respected before freeing memory containing @napi
6275  */
6276 static void napi_hash_del(struct napi_struct *napi)
6277 {
6278         spin_lock(&napi_hash_lock);
6279
6280         hlist_del_init_rcu(&napi->napi_hash_node);
6281
6282         spin_unlock(&napi_hash_lock);
6283 }
6284
6285 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6286 {
6287         struct napi_struct *napi;
6288
6289         napi = container_of(timer, struct napi_struct, timer);
6290
6291         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6292          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6293          */
6294         if (!napi_disable_pending(napi) &&
6295             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6296                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6297                 __napi_schedule_irqoff(napi);
6298         }
6299
6300         return HRTIMER_NORESTART;
6301 }
6302
6303 static void init_gro_hash(struct napi_struct *napi)
6304 {
6305         int i;
6306
6307         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6308                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6309                 napi->gro_hash[i].count = 0;
6310         }
6311         napi->gro_bitmask = 0;
6312 }
6313
6314 int dev_set_threaded(struct net_device *dev, bool threaded)
6315 {
6316         struct napi_struct *napi;
6317         int err = 0;
6318
6319         if (dev->threaded == threaded)
6320                 return 0;
6321
6322         if (threaded) {
6323                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6324                         if (!napi->thread) {
6325                                 err = napi_kthread_create(napi);
6326                                 if (err) {
6327                                         threaded = false;
6328                                         break;
6329                                 }
6330                         }
6331                 }
6332         }
6333
6334         dev->threaded = threaded;
6335
6336         /* Make sure kthread is created before THREADED bit
6337          * is set.
6338          */
6339         smp_mb__before_atomic();
6340
6341         /* Setting/unsetting threaded mode on a napi might not immediately
6342          * take effect, if the current napi instance is actively being
6343          * polled. In this case, the switch between threaded mode and
6344          * softirq mode will happen in the next round of napi_schedule().
6345          * This should not cause hiccups/stalls to the live traffic.
6346          */
6347         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6348                 if (threaded)
6349                         set_bit(NAPI_STATE_THREADED, &napi->state);
6350                 else
6351                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6352         }
6353
6354         return err;
6355 }
6356 EXPORT_SYMBOL(dev_set_threaded);
6357
6358 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6359                            int (*poll)(struct napi_struct *, int), int weight)
6360 {
6361         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6362                 return;
6363
6364         INIT_LIST_HEAD(&napi->poll_list);
6365         INIT_HLIST_NODE(&napi->napi_hash_node);
6366         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6367         napi->timer.function = napi_watchdog;
6368         init_gro_hash(napi);
6369         napi->skb = NULL;
6370         INIT_LIST_HEAD(&napi->rx_list);
6371         napi->rx_count = 0;
6372         napi->poll = poll;
6373         if (weight > NAPI_POLL_WEIGHT)
6374                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6375                                 weight);
6376         napi->weight = weight;
6377         napi->dev = dev;
6378 #ifdef CONFIG_NETPOLL
6379         napi->poll_owner = -1;
6380 #endif
6381         set_bit(NAPI_STATE_SCHED, &napi->state);
6382         set_bit(NAPI_STATE_NPSVC, &napi->state);
6383         list_add_rcu(&napi->dev_list, &dev->napi_list);
6384         napi_hash_add(napi);
6385         napi_get_frags_check(napi);
6386         /* Create kthread for this napi if dev->threaded is set.
6387          * Clear dev->threaded if kthread creation failed so that
6388          * threaded mode will not be enabled in napi_enable().
6389          */
6390         if (dev->threaded && napi_kthread_create(napi))
6391                 dev->threaded = 0;
6392 }
6393 EXPORT_SYMBOL(netif_napi_add_weight);
6394
6395 void napi_disable(struct napi_struct *n)
6396 {
6397         unsigned long val, new;
6398
6399         might_sleep();
6400         set_bit(NAPI_STATE_DISABLE, &n->state);
6401
6402         val = READ_ONCE(n->state);
6403         do {
6404                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6405                         usleep_range(20, 200);
6406                         val = READ_ONCE(n->state);
6407                 }
6408
6409                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6410                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6411         } while (!try_cmpxchg(&n->state, &val, new));
6412
6413         hrtimer_cancel(&n->timer);
6414
6415         clear_bit(NAPI_STATE_DISABLE, &n->state);
6416 }
6417 EXPORT_SYMBOL(napi_disable);
6418
6419 /**
6420  *      napi_enable - enable NAPI scheduling
6421  *      @n: NAPI context
6422  *
6423  * Resume NAPI from being scheduled on this context.
6424  * Must be paired with napi_disable.
6425  */
6426 void napi_enable(struct napi_struct *n)
6427 {
6428         unsigned long new, val = READ_ONCE(n->state);
6429
6430         do {
6431                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6432
6433                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6434                 if (n->dev->threaded && n->thread)
6435                         new |= NAPIF_STATE_THREADED;
6436         } while (!try_cmpxchg(&n->state, &val, new));
6437 }
6438 EXPORT_SYMBOL(napi_enable);
6439
6440 static void flush_gro_hash(struct napi_struct *napi)
6441 {
6442         int i;
6443
6444         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6445                 struct sk_buff *skb, *n;
6446
6447                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6448                         kfree_skb(skb);
6449                 napi->gro_hash[i].count = 0;
6450         }
6451 }
6452
6453 /* Must be called in process context */
6454 void __netif_napi_del(struct napi_struct *napi)
6455 {
6456         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6457                 return;
6458
6459         napi_hash_del(napi);
6460         list_del_rcu(&napi->dev_list);
6461         napi_free_frags(napi);
6462
6463         flush_gro_hash(napi);
6464         napi->gro_bitmask = 0;
6465
6466         if (napi->thread) {
6467                 kthread_stop(napi->thread);
6468                 napi->thread = NULL;
6469         }
6470 }
6471 EXPORT_SYMBOL(__netif_napi_del);
6472
6473 static int __napi_poll(struct napi_struct *n, bool *repoll)
6474 {
6475         int work, weight;
6476
6477         weight = n->weight;
6478
6479         /* This NAPI_STATE_SCHED test is for avoiding a race
6480          * with netpoll's poll_napi().  Only the entity which
6481          * obtains the lock and sees NAPI_STATE_SCHED set will
6482          * actually make the ->poll() call.  Therefore we avoid
6483          * accidentally calling ->poll() when NAPI is not scheduled.
6484          */
6485         work = 0;
6486         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6487                 work = n->poll(n, weight);
6488                 trace_napi_poll(n, work, weight);
6489         }
6490
6491         if (unlikely(work > weight))
6492                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6493                                 n->poll, work, weight);
6494
6495         if (likely(work < weight))
6496                 return work;
6497
6498         /* Drivers must not modify the NAPI state if they
6499          * consume the entire weight.  In such cases this code
6500          * still "owns" the NAPI instance and therefore can
6501          * move the instance around on the list at-will.
6502          */
6503         if (unlikely(napi_disable_pending(n))) {
6504                 napi_complete(n);
6505                 return work;
6506         }
6507
6508         /* The NAPI context has more processing work, but busy-polling
6509          * is preferred. Exit early.
6510          */
6511         if (napi_prefer_busy_poll(n)) {
6512                 if (napi_complete_done(n, work)) {
6513                         /* If timeout is not set, we need to make sure
6514                          * that the NAPI is re-scheduled.
6515                          */
6516                         napi_schedule(n);
6517                 }
6518                 return work;
6519         }
6520
6521         if (n->gro_bitmask) {
6522                 /* flush too old packets
6523                  * If HZ < 1000, flush all packets.
6524                  */
6525                 napi_gro_flush(n, HZ >= 1000);
6526         }
6527
6528         gro_normal_list(n);
6529
6530         /* Some drivers may have called napi_schedule
6531          * prior to exhausting their budget.
6532          */
6533         if (unlikely(!list_empty(&n->poll_list))) {
6534                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6535                              n->dev ? n->dev->name : "backlog");
6536                 return work;
6537         }
6538
6539         *repoll = true;
6540
6541         return work;
6542 }
6543
6544 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6545 {
6546         bool do_repoll = false;
6547         void *have;
6548         int work;
6549
6550         list_del_init(&n->poll_list);
6551
6552         have = netpoll_poll_lock(n);
6553
6554         work = __napi_poll(n, &do_repoll);
6555
6556         if (do_repoll)
6557                 list_add_tail(&n->poll_list, repoll);
6558
6559         netpoll_poll_unlock(have);
6560
6561         return work;
6562 }
6563
6564 static int napi_thread_wait(struct napi_struct *napi)
6565 {
6566         bool woken = false;
6567
6568         set_current_state(TASK_INTERRUPTIBLE);
6569
6570         while (!kthread_should_stop()) {
6571                 /* Testing SCHED_THREADED bit here to make sure the current
6572                  * kthread owns this napi and could poll on this napi.
6573                  * Testing SCHED bit is not enough because SCHED bit might be
6574                  * set by some other busy poll thread or by napi_disable().
6575                  */
6576                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6577                         WARN_ON(!list_empty(&napi->poll_list));
6578                         __set_current_state(TASK_RUNNING);
6579                         return 0;
6580                 }
6581
6582                 schedule();
6583                 /* woken being true indicates this thread owns this napi. */
6584                 woken = true;
6585                 set_current_state(TASK_INTERRUPTIBLE);
6586         }
6587         __set_current_state(TASK_RUNNING);
6588
6589         return -1;
6590 }
6591
6592 static int napi_threaded_poll(void *data)
6593 {
6594         struct napi_struct *napi = data;
6595         void *have;
6596
6597         while (!napi_thread_wait(napi)) {
6598                 for (;;) {
6599                         bool repoll = false;
6600
6601                         local_bh_disable();
6602
6603                         have = netpoll_poll_lock(napi);
6604                         __napi_poll(napi, &repoll);
6605                         netpoll_poll_unlock(have);
6606
6607                         local_bh_enable();
6608
6609                         if (!repoll)
6610                                 break;
6611
6612                         cond_resched();
6613                 }
6614         }
6615         return 0;
6616 }
6617
6618 static void skb_defer_free_flush(struct softnet_data *sd)
6619 {
6620         struct sk_buff *skb, *next;
6621
6622         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6623         if (!READ_ONCE(sd->defer_list))
6624                 return;
6625
6626         spin_lock_irq(&sd->defer_lock);
6627         skb = sd->defer_list;
6628         sd->defer_list = NULL;
6629         sd->defer_count = 0;
6630         spin_unlock_irq(&sd->defer_lock);
6631
6632         while (skb != NULL) {
6633                 next = skb->next;
6634                 napi_consume_skb(skb, 1);
6635                 skb = next;
6636         }
6637 }
6638
6639 static __latent_entropy void net_rx_action(struct softirq_action *h)
6640 {
6641         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6642         unsigned long time_limit = jiffies +
6643                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6644         int budget = READ_ONCE(netdev_budget);
6645         LIST_HEAD(list);
6646         LIST_HEAD(repoll);
6647
6648         local_irq_disable();
6649         list_splice_init(&sd->poll_list, &list);
6650         local_irq_enable();
6651
6652         for (;;) {
6653                 struct napi_struct *n;
6654
6655                 skb_defer_free_flush(sd);
6656
6657                 if (list_empty(&list)) {
6658                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6659                                 goto end;
6660                         break;
6661                 }
6662
6663                 n = list_first_entry(&list, struct napi_struct, poll_list);
6664                 budget -= napi_poll(n, &repoll);
6665
6666                 /* If softirq window is exhausted then punt.
6667                  * Allow this to run for 2 jiffies since which will allow
6668                  * an average latency of 1.5/HZ.
6669                  */
6670                 if (unlikely(budget <= 0 ||
6671                              time_after_eq(jiffies, time_limit))) {
6672                         sd->time_squeeze++;
6673                         break;
6674                 }
6675         }
6676
6677         local_irq_disable();
6678
6679         list_splice_tail_init(&sd->poll_list, &list);
6680         list_splice_tail(&repoll, &list);
6681         list_splice(&list, &sd->poll_list);
6682         if (!list_empty(&sd->poll_list))
6683                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6684
6685         net_rps_action_and_irq_enable(sd);
6686 end:;
6687 }
6688
6689 struct netdev_adjacent {
6690         struct net_device *dev;
6691         netdevice_tracker dev_tracker;
6692
6693         /* upper master flag, there can only be one master device per list */
6694         bool master;
6695
6696         /* lookup ignore flag */
6697         bool ignore;
6698
6699         /* counter for the number of times this device was added to us */
6700         u16 ref_nr;
6701
6702         /* private field for the users */
6703         void *private;
6704
6705         struct list_head list;
6706         struct rcu_head rcu;
6707 };
6708
6709 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6710                                                  struct list_head *adj_list)
6711 {
6712         struct netdev_adjacent *adj;
6713
6714         list_for_each_entry(adj, adj_list, list) {
6715                 if (adj->dev == adj_dev)
6716                         return adj;
6717         }
6718         return NULL;
6719 }
6720
6721 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6722                                     struct netdev_nested_priv *priv)
6723 {
6724         struct net_device *dev = (struct net_device *)priv->data;
6725
6726         return upper_dev == dev;
6727 }
6728
6729 /**
6730  * netdev_has_upper_dev - Check if device is linked to an upper device
6731  * @dev: device
6732  * @upper_dev: upper device to check
6733  *
6734  * Find out if a device is linked to specified upper device and return true
6735  * in case it is. Note that this checks only immediate upper device,
6736  * not through a complete stack of devices. The caller must hold the RTNL lock.
6737  */
6738 bool netdev_has_upper_dev(struct net_device *dev,
6739                           struct net_device *upper_dev)
6740 {
6741         struct netdev_nested_priv priv = {
6742                 .data = (void *)upper_dev,
6743         };
6744
6745         ASSERT_RTNL();
6746
6747         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6748                                              &priv);
6749 }
6750 EXPORT_SYMBOL(netdev_has_upper_dev);
6751
6752 /**
6753  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6754  * @dev: device
6755  * @upper_dev: upper device to check
6756  *
6757  * Find out if a device is linked to specified upper device and return true
6758  * in case it is. Note that this checks the entire upper device chain.
6759  * The caller must hold rcu lock.
6760  */
6761
6762 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6763                                   struct net_device *upper_dev)
6764 {
6765         struct netdev_nested_priv priv = {
6766                 .data = (void *)upper_dev,
6767         };
6768
6769         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6770                                                &priv);
6771 }
6772 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6773
6774 /**
6775  * netdev_has_any_upper_dev - Check if device is linked to some device
6776  * @dev: device
6777  *
6778  * Find out if a device is linked to an upper device and return true in case
6779  * it is. The caller must hold the RTNL lock.
6780  */
6781 bool netdev_has_any_upper_dev(struct net_device *dev)
6782 {
6783         ASSERT_RTNL();
6784
6785         return !list_empty(&dev->adj_list.upper);
6786 }
6787 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6788
6789 /**
6790  * netdev_master_upper_dev_get - Get master upper device
6791  * @dev: device
6792  *
6793  * Find a master upper device and return pointer to it or NULL in case
6794  * it's not there. The caller must hold the RTNL lock.
6795  */
6796 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6797 {
6798         struct netdev_adjacent *upper;
6799
6800         ASSERT_RTNL();
6801
6802         if (list_empty(&dev->adj_list.upper))
6803                 return NULL;
6804
6805         upper = list_first_entry(&dev->adj_list.upper,
6806                                  struct netdev_adjacent, list);
6807         if (likely(upper->master))
6808                 return upper->dev;
6809         return NULL;
6810 }
6811 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6812
6813 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6814 {
6815         struct netdev_adjacent *upper;
6816
6817         ASSERT_RTNL();
6818
6819         if (list_empty(&dev->adj_list.upper))
6820                 return NULL;
6821
6822         upper = list_first_entry(&dev->adj_list.upper,
6823                                  struct netdev_adjacent, list);
6824         if (likely(upper->master) && !upper->ignore)
6825                 return upper->dev;
6826         return NULL;
6827 }
6828
6829 /**
6830  * netdev_has_any_lower_dev - Check if device is linked to some device
6831  * @dev: device
6832  *
6833  * Find out if a device is linked to a lower device and return true in case
6834  * it is. The caller must hold the RTNL lock.
6835  */
6836 static bool netdev_has_any_lower_dev(struct net_device *dev)
6837 {
6838         ASSERT_RTNL();
6839
6840         return !list_empty(&dev->adj_list.lower);
6841 }
6842
6843 void *netdev_adjacent_get_private(struct list_head *adj_list)
6844 {
6845         struct netdev_adjacent *adj;
6846
6847         adj = list_entry(adj_list, struct netdev_adjacent, list);
6848
6849         return adj->private;
6850 }
6851 EXPORT_SYMBOL(netdev_adjacent_get_private);
6852
6853 /**
6854  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6855  * @dev: device
6856  * @iter: list_head ** of the current position
6857  *
6858  * Gets the next device from the dev's upper list, starting from iter
6859  * position. The caller must hold RCU read lock.
6860  */
6861 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6862                                                  struct list_head **iter)
6863 {
6864         struct netdev_adjacent *upper;
6865
6866         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6867
6868         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6869
6870         if (&upper->list == &dev->adj_list.upper)
6871                 return NULL;
6872
6873         *iter = &upper->list;
6874
6875         return upper->dev;
6876 }
6877 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6878
6879 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6880                                                   struct list_head **iter,
6881                                                   bool *ignore)
6882 {
6883         struct netdev_adjacent *upper;
6884
6885         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6886
6887         if (&upper->list == &dev->adj_list.upper)
6888                 return NULL;
6889
6890         *iter = &upper->list;
6891         *ignore = upper->ignore;
6892
6893         return upper->dev;
6894 }
6895
6896 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6897                                                     struct list_head **iter)
6898 {
6899         struct netdev_adjacent *upper;
6900
6901         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6902
6903         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6904
6905         if (&upper->list == &dev->adj_list.upper)
6906                 return NULL;
6907
6908         *iter = &upper->list;
6909
6910         return upper->dev;
6911 }
6912
6913 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6914                                        int (*fn)(struct net_device *dev,
6915                                          struct netdev_nested_priv *priv),
6916                                        struct netdev_nested_priv *priv)
6917 {
6918         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6919         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6920         int ret, cur = 0;
6921         bool ignore;
6922
6923         now = dev;
6924         iter = &dev->adj_list.upper;
6925
6926         while (1) {
6927                 if (now != dev) {
6928                         ret = fn(now, priv);
6929                         if (ret)
6930                                 return ret;
6931                 }
6932
6933                 next = NULL;
6934                 while (1) {
6935                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6936                         if (!udev)
6937                                 break;
6938                         if (ignore)
6939                                 continue;
6940
6941                         next = udev;
6942                         niter = &udev->adj_list.upper;
6943                         dev_stack[cur] = now;
6944                         iter_stack[cur++] = iter;
6945                         break;
6946                 }
6947
6948                 if (!next) {
6949                         if (!cur)
6950                                 return 0;
6951                         next = dev_stack[--cur];
6952                         niter = iter_stack[cur];
6953                 }
6954
6955                 now = next;
6956                 iter = niter;
6957         }
6958
6959         return 0;
6960 }
6961
6962 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6963                                   int (*fn)(struct net_device *dev,
6964                                             struct netdev_nested_priv *priv),
6965                                   struct netdev_nested_priv *priv)
6966 {
6967         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6968         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6969         int ret, cur = 0;
6970
6971         now = dev;
6972         iter = &dev->adj_list.upper;
6973
6974         while (1) {
6975                 if (now != dev) {
6976                         ret = fn(now, priv);
6977                         if (ret)
6978                                 return ret;
6979                 }
6980
6981                 next = NULL;
6982                 while (1) {
6983                         udev = netdev_next_upper_dev_rcu(now, &iter);
6984                         if (!udev)
6985                                 break;
6986
6987                         next = udev;
6988                         niter = &udev->adj_list.upper;
6989                         dev_stack[cur] = now;
6990                         iter_stack[cur++] = iter;
6991                         break;
6992                 }
6993
6994                 if (!next) {
6995                         if (!cur)
6996                                 return 0;
6997                         next = dev_stack[--cur];
6998                         niter = iter_stack[cur];
6999                 }
7000
7001                 now = next;
7002                 iter = niter;
7003         }
7004
7005         return 0;
7006 }
7007 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7008
7009 static bool __netdev_has_upper_dev(struct net_device *dev,
7010                                    struct net_device *upper_dev)
7011 {
7012         struct netdev_nested_priv priv = {
7013                 .flags = 0,
7014                 .data = (void *)upper_dev,
7015         };
7016
7017         ASSERT_RTNL();
7018
7019         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7020                                            &priv);
7021 }
7022
7023 /**
7024  * netdev_lower_get_next_private - Get the next ->private from the
7025  *                                 lower neighbour list
7026  * @dev: device
7027  * @iter: list_head ** of the current position
7028  *
7029  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7030  * list, starting from iter position. The caller must hold either hold the
7031  * RTNL lock or its own locking that guarantees that the neighbour lower
7032  * list will remain unchanged.
7033  */
7034 void *netdev_lower_get_next_private(struct net_device *dev,
7035                                     struct list_head **iter)
7036 {
7037         struct netdev_adjacent *lower;
7038
7039         lower = list_entry(*iter, struct netdev_adjacent, list);
7040
7041         if (&lower->list == &dev->adj_list.lower)
7042                 return NULL;
7043
7044         *iter = lower->list.next;
7045
7046         return lower->private;
7047 }
7048 EXPORT_SYMBOL(netdev_lower_get_next_private);
7049
7050 /**
7051  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7052  *                                     lower neighbour list, RCU
7053  *                                     variant
7054  * @dev: device
7055  * @iter: list_head ** of the current position
7056  *
7057  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7058  * list, starting from iter position. The caller must hold RCU read lock.
7059  */
7060 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7061                                         struct list_head **iter)
7062 {
7063         struct netdev_adjacent *lower;
7064
7065         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7066
7067         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7068
7069         if (&lower->list == &dev->adj_list.lower)
7070                 return NULL;
7071
7072         *iter = &lower->list;
7073
7074         return lower->private;
7075 }
7076 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7077
7078 /**
7079  * netdev_lower_get_next - Get the next device from the lower neighbour
7080  *                         list
7081  * @dev: device
7082  * @iter: list_head ** of the current position
7083  *
7084  * Gets the next netdev_adjacent from the dev's lower neighbour
7085  * list, starting from iter position. The caller must hold RTNL lock or
7086  * its own locking that guarantees that the neighbour lower
7087  * list will remain unchanged.
7088  */
7089 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7090 {
7091         struct netdev_adjacent *lower;
7092
7093         lower = list_entry(*iter, struct netdev_adjacent, list);
7094
7095         if (&lower->list == &dev->adj_list.lower)
7096                 return NULL;
7097
7098         *iter = lower->list.next;
7099
7100         return lower->dev;
7101 }
7102 EXPORT_SYMBOL(netdev_lower_get_next);
7103
7104 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7105                                                 struct list_head **iter)
7106 {
7107         struct netdev_adjacent *lower;
7108
7109         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7110
7111         if (&lower->list == &dev->adj_list.lower)
7112                 return NULL;
7113
7114         *iter = &lower->list;
7115
7116         return lower->dev;
7117 }
7118
7119 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7120                                                   struct list_head **iter,
7121                                                   bool *ignore)
7122 {
7123         struct netdev_adjacent *lower;
7124
7125         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7126
7127         if (&lower->list == &dev->adj_list.lower)
7128                 return NULL;
7129
7130         *iter = &lower->list;
7131         *ignore = lower->ignore;
7132
7133         return lower->dev;
7134 }
7135
7136 int netdev_walk_all_lower_dev(struct net_device *dev,
7137                               int (*fn)(struct net_device *dev,
7138                                         struct netdev_nested_priv *priv),
7139                               struct netdev_nested_priv *priv)
7140 {
7141         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7142         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7143         int ret, cur = 0;
7144
7145         now = dev;
7146         iter = &dev->adj_list.lower;
7147
7148         while (1) {
7149                 if (now != dev) {
7150                         ret = fn(now, priv);
7151                         if (ret)
7152                                 return ret;
7153                 }
7154
7155                 next = NULL;
7156                 while (1) {
7157                         ldev = netdev_next_lower_dev(now, &iter);
7158                         if (!ldev)
7159                                 break;
7160
7161                         next = ldev;
7162                         niter = &ldev->adj_list.lower;
7163                         dev_stack[cur] = now;
7164                         iter_stack[cur++] = iter;
7165                         break;
7166                 }
7167
7168                 if (!next) {
7169                         if (!cur)
7170                                 return 0;
7171                         next = dev_stack[--cur];
7172                         niter = iter_stack[cur];
7173                 }
7174
7175                 now = next;
7176                 iter = niter;
7177         }
7178
7179         return 0;
7180 }
7181 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7182
7183 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7184                                        int (*fn)(struct net_device *dev,
7185                                          struct netdev_nested_priv *priv),
7186                                        struct netdev_nested_priv *priv)
7187 {
7188         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7189         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7190         int ret, cur = 0;
7191         bool ignore;
7192
7193         now = dev;
7194         iter = &dev->adj_list.lower;
7195
7196         while (1) {
7197                 if (now != dev) {
7198                         ret = fn(now, priv);
7199                         if (ret)
7200                                 return ret;
7201                 }
7202
7203                 next = NULL;
7204                 while (1) {
7205                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7206                         if (!ldev)
7207                                 break;
7208                         if (ignore)
7209                                 continue;
7210
7211                         next = ldev;
7212                         niter = &ldev->adj_list.lower;
7213                         dev_stack[cur] = now;
7214                         iter_stack[cur++] = iter;
7215                         break;
7216                 }
7217
7218                 if (!next) {
7219                         if (!cur)
7220                                 return 0;
7221                         next = dev_stack[--cur];
7222                         niter = iter_stack[cur];
7223                 }
7224
7225                 now = next;
7226                 iter = niter;
7227         }
7228
7229         return 0;
7230 }
7231
7232 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7233                                              struct list_head **iter)
7234 {
7235         struct netdev_adjacent *lower;
7236
7237         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7238         if (&lower->list == &dev->adj_list.lower)
7239                 return NULL;
7240
7241         *iter = &lower->list;
7242
7243         return lower->dev;
7244 }
7245 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7246
7247 static u8 __netdev_upper_depth(struct net_device *dev)
7248 {
7249         struct net_device *udev;
7250         struct list_head *iter;
7251         u8 max_depth = 0;
7252         bool ignore;
7253
7254         for (iter = &dev->adj_list.upper,
7255              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7256              udev;
7257              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7258                 if (ignore)
7259                         continue;
7260                 if (max_depth < udev->upper_level)
7261                         max_depth = udev->upper_level;
7262         }
7263
7264         return max_depth;
7265 }
7266
7267 static u8 __netdev_lower_depth(struct net_device *dev)
7268 {
7269         struct net_device *ldev;
7270         struct list_head *iter;
7271         u8 max_depth = 0;
7272         bool ignore;
7273
7274         for (iter = &dev->adj_list.lower,
7275              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7276              ldev;
7277              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7278                 if (ignore)
7279                         continue;
7280                 if (max_depth < ldev->lower_level)
7281                         max_depth = ldev->lower_level;
7282         }
7283
7284         return max_depth;
7285 }
7286
7287 static int __netdev_update_upper_level(struct net_device *dev,
7288                                        struct netdev_nested_priv *__unused)
7289 {
7290         dev->upper_level = __netdev_upper_depth(dev) + 1;
7291         return 0;
7292 }
7293
7294 #ifdef CONFIG_LOCKDEP
7295 static LIST_HEAD(net_unlink_list);
7296
7297 static void net_unlink_todo(struct net_device *dev)
7298 {
7299         if (list_empty(&dev->unlink_list))
7300                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7301 }
7302 #endif
7303
7304 static int __netdev_update_lower_level(struct net_device *dev,
7305                                        struct netdev_nested_priv *priv)
7306 {
7307         dev->lower_level = __netdev_lower_depth(dev) + 1;
7308
7309 #ifdef CONFIG_LOCKDEP
7310         if (!priv)
7311                 return 0;
7312
7313         if (priv->flags & NESTED_SYNC_IMM)
7314                 dev->nested_level = dev->lower_level - 1;
7315         if (priv->flags & NESTED_SYNC_TODO)
7316                 net_unlink_todo(dev);
7317 #endif
7318         return 0;
7319 }
7320
7321 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7322                                   int (*fn)(struct net_device *dev,
7323                                             struct netdev_nested_priv *priv),
7324                                   struct netdev_nested_priv *priv)
7325 {
7326         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7327         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7328         int ret, cur = 0;
7329
7330         now = dev;
7331         iter = &dev->adj_list.lower;
7332
7333         while (1) {
7334                 if (now != dev) {
7335                         ret = fn(now, priv);
7336                         if (ret)
7337                                 return ret;
7338                 }
7339
7340                 next = NULL;
7341                 while (1) {
7342                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7343                         if (!ldev)
7344                                 break;
7345
7346                         next = ldev;
7347                         niter = &ldev->adj_list.lower;
7348                         dev_stack[cur] = now;
7349                         iter_stack[cur++] = iter;
7350                         break;
7351                 }
7352
7353                 if (!next) {
7354                         if (!cur)
7355                                 return 0;
7356                         next = dev_stack[--cur];
7357                         niter = iter_stack[cur];
7358                 }
7359
7360                 now = next;
7361                 iter = niter;
7362         }
7363
7364         return 0;
7365 }
7366 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7367
7368 /**
7369  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7370  *                                     lower neighbour list, RCU
7371  *                                     variant
7372  * @dev: device
7373  *
7374  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7375  * list. The caller must hold RCU read lock.
7376  */
7377 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7378 {
7379         struct netdev_adjacent *lower;
7380
7381         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7382                         struct netdev_adjacent, list);
7383         if (lower)
7384                 return lower->private;
7385         return NULL;
7386 }
7387 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7388
7389 /**
7390  * netdev_master_upper_dev_get_rcu - Get master upper device
7391  * @dev: device
7392  *
7393  * Find a master upper device and return pointer to it or NULL in case
7394  * it's not there. The caller must hold the RCU read lock.
7395  */
7396 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7397 {
7398         struct netdev_adjacent *upper;
7399
7400         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7401                                        struct netdev_adjacent, list);
7402         if (upper && likely(upper->master))
7403                 return upper->dev;
7404         return NULL;
7405 }
7406 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7407
7408 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7409                               struct net_device *adj_dev,
7410                               struct list_head *dev_list)
7411 {
7412         char linkname[IFNAMSIZ+7];
7413
7414         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7415                 "upper_%s" : "lower_%s", adj_dev->name);
7416         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7417                                  linkname);
7418 }
7419 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7420                                char *name,
7421                                struct list_head *dev_list)
7422 {
7423         char linkname[IFNAMSIZ+7];
7424
7425         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7426                 "upper_%s" : "lower_%s", name);
7427         sysfs_remove_link(&(dev->dev.kobj), linkname);
7428 }
7429
7430 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7431                                                  struct net_device *adj_dev,
7432                                                  struct list_head *dev_list)
7433 {
7434         return (dev_list == &dev->adj_list.upper ||
7435                 dev_list == &dev->adj_list.lower) &&
7436                 net_eq(dev_net(dev), dev_net(adj_dev));
7437 }
7438
7439 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7440                                         struct net_device *adj_dev,
7441                                         struct list_head *dev_list,
7442                                         void *private, bool master)
7443 {
7444         struct netdev_adjacent *adj;
7445         int ret;
7446
7447         adj = __netdev_find_adj(adj_dev, dev_list);
7448
7449         if (adj) {
7450                 adj->ref_nr += 1;
7451                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7452                          dev->name, adj_dev->name, adj->ref_nr);
7453
7454                 return 0;
7455         }
7456
7457         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7458         if (!adj)
7459                 return -ENOMEM;
7460
7461         adj->dev = adj_dev;
7462         adj->master = master;
7463         adj->ref_nr = 1;
7464         adj->private = private;
7465         adj->ignore = false;
7466         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7467
7468         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7469                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7470
7471         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7472                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7473                 if (ret)
7474                         goto free_adj;
7475         }
7476
7477         /* Ensure that master link is always the first item in list. */
7478         if (master) {
7479                 ret = sysfs_create_link(&(dev->dev.kobj),
7480                                         &(adj_dev->dev.kobj), "master");
7481                 if (ret)
7482                         goto remove_symlinks;
7483
7484                 list_add_rcu(&adj->list, dev_list);
7485         } else {
7486                 list_add_tail_rcu(&adj->list, dev_list);
7487         }
7488
7489         return 0;
7490
7491 remove_symlinks:
7492         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7493                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7494 free_adj:
7495         netdev_put(adj_dev, &adj->dev_tracker);
7496         kfree(adj);
7497
7498         return ret;
7499 }
7500
7501 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7502                                          struct net_device *adj_dev,
7503                                          u16 ref_nr,
7504                                          struct list_head *dev_list)
7505 {
7506         struct netdev_adjacent *adj;
7507
7508         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7509                  dev->name, adj_dev->name, ref_nr);
7510
7511         adj = __netdev_find_adj(adj_dev, dev_list);
7512
7513         if (!adj) {
7514                 pr_err("Adjacency does not exist for device %s from %s\n",
7515                        dev->name, adj_dev->name);
7516                 WARN_ON(1);
7517                 return;
7518         }
7519
7520         if (adj->ref_nr > ref_nr) {
7521                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7522                          dev->name, adj_dev->name, ref_nr,
7523                          adj->ref_nr - ref_nr);
7524                 adj->ref_nr -= ref_nr;
7525                 return;
7526         }
7527
7528         if (adj->master)
7529                 sysfs_remove_link(&(dev->dev.kobj), "master");
7530
7531         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7532                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7533
7534         list_del_rcu(&adj->list);
7535         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7536                  adj_dev->name, dev->name, adj_dev->name);
7537         netdev_put(adj_dev, &adj->dev_tracker);
7538         kfree_rcu(adj, rcu);
7539 }
7540
7541 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7542                                             struct net_device *upper_dev,
7543                                             struct list_head *up_list,
7544                                             struct list_head *down_list,
7545                                             void *private, bool master)
7546 {
7547         int ret;
7548
7549         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7550                                            private, master);
7551         if (ret)
7552                 return ret;
7553
7554         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7555                                            private, false);
7556         if (ret) {
7557                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7558                 return ret;
7559         }
7560
7561         return 0;
7562 }
7563
7564 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7565                                                struct net_device *upper_dev,
7566                                                u16 ref_nr,
7567                                                struct list_head *up_list,
7568                                                struct list_head *down_list)
7569 {
7570         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7571         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7572 }
7573
7574 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7575                                                 struct net_device *upper_dev,
7576                                                 void *private, bool master)
7577 {
7578         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7579                                                 &dev->adj_list.upper,
7580                                                 &upper_dev->adj_list.lower,
7581                                                 private, master);
7582 }
7583
7584 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7585                                                    struct net_device *upper_dev)
7586 {
7587         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7588                                            &dev->adj_list.upper,
7589                                            &upper_dev->adj_list.lower);
7590 }
7591
7592 static int __netdev_upper_dev_link(struct net_device *dev,
7593                                    struct net_device *upper_dev, bool master,
7594                                    void *upper_priv, void *upper_info,
7595                                    struct netdev_nested_priv *priv,
7596                                    struct netlink_ext_ack *extack)
7597 {
7598         struct netdev_notifier_changeupper_info changeupper_info = {
7599                 .info = {
7600                         .dev = dev,
7601                         .extack = extack,
7602                 },
7603                 .upper_dev = upper_dev,
7604                 .master = master,
7605                 .linking = true,
7606                 .upper_info = upper_info,
7607         };
7608         struct net_device *master_dev;
7609         int ret = 0;
7610
7611         ASSERT_RTNL();
7612
7613         if (dev == upper_dev)
7614                 return -EBUSY;
7615
7616         /* To prevent loops, check if dev is not upper device to upper_dev. */
7617         if (__netdev_has_upper_dev(upper_dev, dev))
7618                 return -EBUSY;
7619
7620         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7621                 return -EMLINK;
7622
7623         if (!master) {
7624                 if (__netdev_has_upper_dev(dev, upper_dev))
7625                         return -EEXIST;
7626         } else {
7627                 master_dev = __netdev_master_upper_dev_get(dev);
7628                 if (master_dev)
7629                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7630         }
7631
7632         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7633                                             &changeupper_info.info);
7634         ret = notifier_to_errno(ret);
7635         if (ret)
7636                 return ret;
7637
7638         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7639                                                    master);
7640         if (ret)
7641                 return ret;
7642
7643         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7644                                             &changeupper_info.info);
7645         ret = notifier_to_errno(ret);
7646         if (ret)
7647                 goto rollback;
7648
7649         __netdev_update_upper_level(dev, NULL);
7650         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7651
7652         __netdev_update_lower_level(upper_dev, priv);
7653         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7654                                     priv);
7655
7656         return 0;
7657
7658 rollback:
7659         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7660
7661         return ret;
7662 }
7663
7664 /**
7665  * netdev_upper_dev_link - Add a link to the upper device
7666  * @dev: device
7667  * @upper_dev: new upper device
7668  * @extack: netlink extended ack
7669  *
7670  * Adds a link to device which is upper to this one. The caller must hold
7671  * the RTNL lock. On a failure a negative errno code is returned.
7672  * On success the reference counts are adjusted and the function
7673  * returns zero.
7674  */
7675 int netdev_upper_dev_link(struct net_device *dev,
7676                           struct net_device *upper_dev,
7677                           struct netlink_ext_ack *extack)
7678 {
7679         struct netdev_nested_priv priv = {
7680                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7681                 .data = NULL,
7682         };
7683
7684         return __netdev_upper_dev_link(dev, upper_dev, false,
7685                                        NULL, NULL, &priv, extack);
7686 }
7687 EXPORT_SYMBOL(netdev_upper_dev_link);
7688
7689 /**
7690  * netdev_master_upper_dev_link - Add a master link to the upper device
7691  * @dev: device
7692  * @upper_dev: new upper device
7693  * @upper_priv: upper device private
7694  * @upper_info: upper info to be passed down via notifier
7695  * @extack: netlink extended ack
7696  *
7697  * Adds a link to device which is upper to this one. In this case, only
7698  * one master upper device can be linked, although other non-master devices
7699  * might be linked as well. The caller must hold the RTNL lock.
7700  * On a failure a negative errno code is returned. On success the reference
7701  * counts are adjusted and the function returns zero.
7702  */
7703 int netdev_master_upper_dev_link(struct net_device *dev,
7704                                  struct net_device *upper_dev,
7705                                  void *upper_priv, void *upper_info,
7706                                  struct netlink_ext_ack *extack)
7707 {
7708         struct netdev_nested_priv priv = {
7709                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7710                 .data = NULL,
7711         };
7712
7713         return __netdev_upper_dev_link(dev, upper_dev, true,
7714                                        upper_priv, upper_info, &priv, extack);
7715 }
7716 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7717
7718 static void __netdev_upper_dev_unlink(struct net_device *dev,
7719                                       struct net_device *upper_dev,
7720                                       struct netdev_nested_priv *priv)
7721 {
7722         struct netdev_notifier_changeupper_info changeupper_info = {
7723                 .info = {
7724                         .dev = dev,
7725                 },
7726                 .upper_dev = upper_dev,
7727                 .linking = false,
7728         };
7729
7730         ASSERT_RTNL();
7731
7732         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7733
7734         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7735                                       &changeupper_info.info);
7736
7737         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7738
7739         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7740                                       &changeupper_info.info);
7741
7742         __netdev_update_upper_level(dev, NULL);
7743         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7744
7745         __netdev_update_lower_level(upper_dev, priv);
7746         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7747                                     priv);
7748 }
7749
7750 /**
7751  * netdev_upper_dev_unlink - Removes a link to upper device
7752  * @dev: device
7753  * @upper_dev: new upper device
7754  *
7755  * Removes a link to device which is upper to this one. The caller must hold
7756  * the RTNL lock.
7757  */
7758 void netdev_upper_dev_unlink(struct net_device *dev,
7759                              struct net_device *upper_dev)
7760 {
7761         struct netdev_nested_priv priv = {
7762                 .flags = NESTED_SYNC_TODO,
7763                 .data = NULL,
7764         };
7765
7766         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7767 }
7768 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7769
7770 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7771                                       struct net_device *lower_dev,
7772                                       bool val)
7773 {
7774         struct netdev_adjacent *adj;
7775
7776         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7777         if (adj)
7778                 adj->ignore = val;
7779
7780         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7781         if (adj)
7782                 adj->ignore = val;
7783 }
7784
7785 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7786                                         struct net_device *lower_dev)
7787 {
7788         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7789 }
7790
7791 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7792                                        struct net_device *lower_dev)
7793 {
7794         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7795 }
7796
7797 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7798                                    struct net_device *new_dev,
7799                                    struct net_device *dev,
7800                                    struct netlink_ext_ack *extack)
7801 {
7802         struct netdev_nested_priv priv = {
7803                 .flags = 0,
7804                 .data = NULL,
7805         };
7806         int err;
7807
7808         if (!new_dev)
7809                 return 0;
7810
7811         if (old_dev && new_dev != old_dev)
7812                 netdev_adjacent_dev_disable(dev, old_dev);
7813         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7814                                       extack);
7815         if (err) {
7816                 if (old_dev && new_dev != old_dev)
7817                         netdev_adjacent_dev_enable(dev, old_dev);
7818                 return err;
7819         }
7820
7821         return 0;
7822 }
7823 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7824
7825 void netdev_adjacent_change_commit(struct net_device *old_dev,
7826                                    struct net_device *new_dev,
7827                                    struct net_device *dev)
7828 {
7829         struct netdev_nested_priv priv = {
7830                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7831                 .data = NULL,
7832         };
7833
7834         if (!new_dev || !old_dev)
7835                 return;
7836
7837         if (new_dev == old_dev)
7838                 return;
7839
7840         netdev_adjacent_dev_enable(dev, old_dev);
7841         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7842 }
7843 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7844
7845 void netdev_adjacent_change_abort(struct net_device *old_dev,
7846                                   struct net_device *new_dev,
7847                                   struct net_device *dev)
7848 {
7849         struct netdev_nested_priv priv = {
7850                 .flags = 0,
7851                 .data = NULL,
7852         };
7853
7854         if (!new_dev)
7855                 return;
7856
7857         if (old_dev && new_dev != old_dev)
7858                 netdev_adjacent_dev_enable(dev, old_dev);
7859
7860         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7861 }
7862 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7863
7864 /**
7865  * netdev_bonding_info_change - Dispatch event about slave change
7866  * @dev: device
7867  * @bonding_info: info to dispatch
7868  *
7869  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7870  * The caller must hold the RTNL lock.
7871  */
7872 void netdev_bonding_info_change(struct net_device *dev,
7873                                 struct netdev_bonding_info *bonding_info)
7874 {
7875         struct netdev_notifier_bonding_info info = {
7876                 .info.dev = dev,
7877         };
7878
7879         memcpy(&info.bonding_info, bonding_info,
7880                sizeof(struct netdev_bonding_info));
7881         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7882                                       &info.info);
7883 }
7884 EXPORT_SYMBOL(netdev_bonding_info_change);
7885
7886 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7887                                            struct netlink_ext_ack *extack)
7888 {
7889         struct netdev_notifier_offload_xstats_info info = {
7890                 .info.dev = dev,
7891                 .info.extack = extack,
7892                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7893         };
7894         int err;
7895         int rc;
7896
7897         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7898                                          GFP_KERNEL);
7899         if (!dev->offload_xstats_l3)
7900                 return -ENOMEM;
7901
7902         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7903                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7904                                                   &info.info);
7905         err = notifier_to_errno(rc);
7906         if (err)
7907                 goto free_stats;
7908
7909         return 0;
7910
7911 free_stats:
7912         kfree(dev->offload_xstats_l3);
7913         dev->offload_xstats_l3 = NULL;
7914         return err;
7915 }
7916
7917 int netdev_offload_xstats_enable(struct net_device *dev,
7918                                  enum netdev_offload_xstats_type type,
7919                                  struct netlink_ext_ack *extack)
7920 {
7921         ASSERT_RTNL();
7922
7923         if (netdev_offload_xstats_enabled(dev, type))
7924                 return -EALREADY;
7925
7926         switch (type) {
7927         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7928                 return netdev_offload_xstats_enable_l3(dev, extack);
7929         }
7930
7931         WARN_ON(1);
7932         return -EINVAL;
7933 }
7934 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7935
7936 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7937 {
7938         struct netdev_notifier_offload_xstats_info info = {
7939                 .info.dev = dev,
7940                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7941         };
7942
7943         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7944                                       &info.info);
7945         kfree(dev->offload_xstats_l3);
7946         dev->offload_xstats_l3 = NULL;
7947 }
7948
7949 int netdev_offload_xstats_disable(struct net_device *dev,
7950                                   enum netdev_offload_xstats_type type)
7951 {
7952         ASSERT_RTNL();
7953
7954         if (!netdev_offload_xstats_enabled(dev, type))
7955                 return -EALREADY;
7956
7957         switch (type) {
7958         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7959                 netdev_offload_xstats_disable_l3(dev);
7960                 return 0;
7961         }
7962
7963         WARN_ON(1);
7964         return -EINVAL;
7965 }
7966 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7967
7968 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7969 {
7970         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7971 }
7972
7973 static struct rtnl_hw_stats64 *
7974 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7975                               enum netdev_offload_xstats_type type)
7976 {
7977         switch (type) {
7978         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7979                 return dev->offload_xstats_l3;
7980         }
7981
7982         WARN_ON(1);
7983         return NULL;
7984 }
7985
7986 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7987                                    enum netdev_offload_xstats_type type)
7988 {
7989         ASSERT_RTNL();
7990
7991         return netdev_offload_xstats_get_ptr(dev, type);
7992 }
7993 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7994
7995 struct netdev_notifier_offload_xstats_ru {
7996         bool used;
7997 };
7998
7999 struct netdev_notifier_offload_xstats_rd {
8000         struct rtnl_hw_stats64 stats;
8001         bool used;
8002 };
8003
8004 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8005                                   const struct rtnl_hw_stats64 *src)
8006 {
8007         dest->rx_packets          += src->rx_packets;
8008         dest->tx_packets          += src->tx_packets;
8009         dest->rx_bytes            += src->rx_bytes;
8010         dest->tx_bytes            += src->tx_bytes;
8011         dest->rx_errors           += src->rx_errors;
8012         dest->tx_errors           += src->tx_errors;
8013         dest->rx_dropped          += src->rx_dropped;
8014         dest->tx_dropped          += src->tx_dropped;
8015         dest->multicast           += src->multicast;
8016 }
8017
8018 static int netdev_offload_xstats_get_used(struct net_device *dev,
8019                                           enum netdev_offload_xstats_type type,
8020                                           bool *p_used,
8021                                           struct netlink_ext_ack *extack)
8022 {
8023         struct netdev_notifier_offload_xstats_ru report_used = {};
8024         struct netdev_notifier_offload_xstats_info info = {
8025                 .info.dev = dev,
8026                 .info.extack = extack,
8027                 .type = type,
8028                 .report_used = &report_used,
8029         };
8030         int rc;
8031
8032         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8033         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8034                                            &info.info);
8035         *p_used = report_used.used;
8036         return notifier_to_errno(rc);
8037 }
8038
8039 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8040                                            enum netdev_offload_xstats_type type,
8041                                            struct rtnl_hw_stats64 *p_stats,
8042                                            bool *p_used,
8043                                            struct netlink_ext_ack *extack)
8044 {
8045         struct netdev_notifier_offload_xstats_rd report_delta = {};
8046         struct netdev_notifier_offload_xstats_info info = {
8047                 .info.dev = dev,
8048                 .info.extack = extack,
8049                 .type = type,
8050                 .report_delta = &report_delta,
8051         };
8052         struct rtnl_hw_stats64 *stats;
8053         int rc;
8054
8055         stats = netdev_offload_xstats_get_ptr(dev, type);
8056         if (WARN_ON(!stats))
8057                 return -EINVAL;
8058
8059         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8060                                            &info.info);
8061
8062         /* Cache whatever we got, even if there was an error, otherwise the
8063          * successful stats retrievals would get lost.
8064          */
8065         netdev_hw_stats64_add(stats, &report_delta.stats);
8066
8067         if (p_stats)
8068                 *p_stats = *stats;
8069         *p_used = report_delta.used;
8070
8071         return notifier_to_errno(rc);
8072 }
8073
8074 int netdev_offload_xstats_get(struct net_device *dev,
8075                               enum netdev_offload_xstats_type type,
8076                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8077                               struct netlink_ext_ack *extack)
8078 {
8079         ASSERT_RTNL();
8080
8081         if (p_stats)
8082                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8083                                                        p_used, extack);
8084         else
8085                 return netdev_offload_xstats_get_used(dev, type, p_used,
8086                                                       extack);
8087 }
8088 EXPORT_SYMBOL(netdev_offload_xstats_get);
8089
8090 void
8091 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8092                                    const struct rtnl_hw_stats64 *stats)
8093 {
8094         report_delta->used = true;
8095         netdev_hw_stats64_add(&report_delta->stats, stats);
8096 }
8097 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8098
8099 void
8100 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8101 {
8102         report_used->used = true;
8103 }
8104 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8105
8106 void netdev_offload_xstats_push_delta(struct net_device *dev,
8107                                       enum netdev_offload_xstats_type type,
8108                                       const struct rtnl_hw_stats64 *p_stats)
8109 {
8110         struct rtnl_hw_stats64 *stats;
8111
8112         ASSERT_RTNL();
8113
8114         stats = netdev_offload_xstats_get_ptr(dev, type);
8115         if (WARN_ON(!stats))
8116                 return;
8117
8118         netdev_hw_stats64_add(stats, p_stats);
8119 }
8120 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8121
8122 /**
8123  * netdev_get_xmit_slave - Get the xmit slave of master device
8124  * @dev: device
8125  * @skb: The packet
8126  * @all_slaves: assume all the slaves are active
8127  *
8128  * The reference counters are not incremented so the caller must be
8129  * careful with locks. The caller must hold RCU lock.
8130  * %NULL is returned if no slave is found.
8131  */
8132
8133 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8134                                          struct sk_buff *skb,
8135                                          bool all_slaves)
8136 {
8137         const struct net_device_ops *ops = dev->netdev_ops;
8138
8139         if (!ops->ndo_get_xmit_slave)
8140                 return NULL;
8141         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8142 }
8143 EXPORT_SYMBOL(netdev_get_xmit_slave);
8144
8145 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8146                                                   struct sock *sk)
8147 {
8148         const struct net_device_ops *ops = dev->netdev_ops;
8149
8150         if (!ops->ndo_sk_get_lower_dev)
8151                 return NULL;
8152         return ops->ndo_sk_get_lower_dev(dev, sk);
8153 }
8154
8155 /**
8156  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8157  * @dev: device
8158  * @sk: the socket
8159  *
8160  * %NULL is returned if no lower device is found.
8161  */
8162
8163 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8164                                             struct sock *sk)
8165 {
8166         struct net_device *lower;
8167
8168         lower = netdev_sk_get_lower_dev(dev, sk);
8169         while (lower) {
8170                 dev = lower;
8171                 lower = netdev_sk_get_lower_dev(dev, sk);
8172         }
8173
8174         return dev;
8175 }
8176 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8177
8178 static void netdev_adjacent_add_links(struct net_device *dev)
8179 {
8180         struct netdev_adjacent *iter;
8181
8182         struct net *net = dev_net(dev);
8183
8184         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8185                 if (!net_eq(net, dev_net(iter->dev)))
8186                         continue;
8187                 netdev_adjacent_sysfs_add(iter->dev, dev,
8188                                           &iter->dev->adj_list.lower);
8189                 netdev_adjacent_sysfs_add(dev, iter->dev,
8190                                           &dev->adj_list.upper);
8191         }
8192
8193         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8194                 if (!net_eq(net, dev_net(iter->dev)))
8195                         continue;
8196                 netdev_adjacent_sysfs_add(iter->dev, dev,
8197                                           &iter->dev->adj_list.upper);
8198                 netdev_adjacent_sysfs_add(dev, iter->dev,
8199                                           &dev->adj_list.lower);
8200         }
8201 }
8202
8203 static void netdev_adjacent_del_links(struct net_device *dev)
8204 {
8205         struct netdev_adjacent *iter;
8206
8207         struct net *net = dev_net(dev);
8208
8209         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8210                 if (!net_eq(net, dev_net(iter->dev)))
8211                         continue;
8212                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8213                                           &iter->dev->adj_list.lower);
8214                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8215                                           &dev->adj_list.upper);
8216         }
8217
8218         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8219                 if (!net_eq(net, dev_net(iter->dev)))
8220                         continue;
8221                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8222                                           &iter->dev->adj_list.upper);
8223                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8224                                           &dev->adj_list.lower);
8225         }
8226 }
8227
8228 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8229 {
8230         struct netdev_adjacent *iter;
8231
8232         struct net *net = dev_net(dev);
8233
8234         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8235                 if (!net_eq(net, dev_net(iter->dev)))
8236                         continue;
8237                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8238                                           &iter->dev->adj_list.lower);
8239                 netdev_adjacent_sysfs_add(iter->dev, dev,
8240                                           &iter->dev->adj_list.lower);
8241         }
8242
8243         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8244                 if (!net_eq(net, dev_net(iter->dev)))
8245                         continue;
8246                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8247                                           &iter->dev->adj_list.upper);
8248                 netdev_adjacent_sysfs_add(iter->dev, dev,
8249                                           &iter->dev->adj_list.upper);
8250         }
8251 }
8252
8253 void *netdev_lower_dev_get_private(struct net_device *dev,
8254                                    struct net_device *lower_dev)
8255 {
8256         struct netdev_adjacent *lower;
8257
8258         if (!lower_dev)
8259                 return NULL;
8260         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8261         if (!lower)
8262                 return NULL;
8263
8264         return lower->private;
8265 }
8266 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8267
8268
8269 /**
8270  * netdev_lower_state_changed - Dispatch event about lower device state change
8271  * @lower_dev: device
8272  * @lower_state_info: state to dispatch
8273  *
8274  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8275  * The caller must hold the RTNL lock.
8276  */
8277 void netdev_lower_state_changed(struct net_device *lower_dev,
8278                                 void *lower_state_info)
8279 {
8280         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8281                 .info.dev = lower_dev,
8282         };
8283
8284         ASSERT_RTNL();
8285         changelowerstate_info.lower_state_info = lower_state_info;
8286         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8287                                       &changelowerstate_info.info);
8288 }
8289 EXPORT_SYMBOL(netdev_lower_state_changed);
8290
8291 static void dev_change_rx_flags(struct net_device *dev, int flags)
8292 {
8293         const struct net_device_ops *ops = dev->netdev_ops;
8294
8295         if (ops->ndo_change_rx_flags)
8296                 ops->ndo_change_rx_flags(dev, flags);
8297 }
8298
8299 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8300 {
8301         unsigned int old_flags = dev->flags;
8302         kuid_t uid;
8303         kgid_t gid;
8304
8305         ASSERT_RTNL();
8306
8307         dev->flags |= IFF_PROMISC;
8308         dev->promiscuity += inc;
8309         if (dev->promiscuity == 0) {
8310                 /*
8311                  * Avoid overflow.
8312                  * If inc causes overflow, untouch promisc and return error.
8313                  */
8314                 if (inc < 0)
8315                         dev->flags &= ~IFF_PROMISC;
8316                 else {
8317                         dev->promiscuity -= inc;
8318                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8319                         return -EOVERFLOW;
8320                 }
8321         }
8322         if (dev->flags != old_flags) {
8323                 pr_info("device %s %s promiscuous mode\n",
8324                         dev->name,
8325                         dev->flags & IFF_PROMISC ? "entered" : "left");
8326                 if (audit_enabled) {
8327                         current_uid_gid(&uid, &gid);
8328                         audit_log(audit_context(), GFP_ATOMIC,
8329                                   AUDIT_ANOM_PROMISCUOUS,
8330                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8331                                   dev->name, (dev->flags & IFF_PROMISC),
8332                                   (old_flags & IFF_PROMISC),
8333                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8334                                   from_kuid(&init_user_ns, uid),
8335                                   from_kgid(&init_user_ns, gid),
8336                                   audit_get_sessionid(current));
8337                 }
8338
8339                 dev_change_rx_flags(dev, IFF_PROMISC);
8340         }
8341         if (notify)
8342                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8343         return 0;
8344 }
8345
8346 /**
8347  *      dev_set_promiscuity     - update promiscuity count on a device
8348  *      @dev: device
8349  *      @inc: modifier
8350  *
8351  *      Add or remove promiscuity from a device. While the count in the device
8352  *      remains above zero the interface remains promiscuous. Once it hits zero
8353  *      the device reverts back to normal filtering operation. A negative inc
8354  *      value is used to drop promiscuity on the device.
8355  *      Return 0 if successful or a negative errno code on error.
8356  */
8357 int dev_set_promiscuity(struct net_device *dev, int inc)
8358 {
8359         unsigned int old_flags = dev->flags;
8360         int err;
8361
8362         err = __dev_set_promiscuity(dev, inc, true);
8363         if (err < 0)
8364                 return err;
8365         if (dev->flags != old_flags)
8366                 dev_set_rx_mode(dev);
8367         return err;
8368 }
8369 EXPORT_SYMBOL(dev_set_promiscuity);
8370
8371 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8372 {
8373         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8374
8375         ASSERT_RTNL();
8376
8377         dev->flags |= IFF_ALLMULTI;
8378         dev->allmulti += inc;
8379         if (dev->allmulti == 0) {
8380                 /*
8381                  * Avoid overflow.
8382                  * If inc causes overflow, untouch allmulti and return error.
8383                  */
8384                 if (inc < 0)
8385                         dev->flags &= ~IFF_ALLMULTI;
8386                 else {
8387                         dev->allmulti -= inc;
8388                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8389                         return -EOVERFLOW;
8390                 }
8391         }
8392         if (dev->flags ^ old_flags) {
8393                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8394                 dev_set_rx_mode(dev);
8395                 if (notify)
8396                         __dev_notify_flags(dev, old_flags,
8397                                            dev->gflags ^ old_gflags, 0, NULL);
8398         }
8399         return 0;
8400 }
8401
8402 /**
8403  *      dev_set_allmulti        - update allmulti count on a device
8404  *      @dev: device
8405  *      @inc: modifier
8406  *
8407  *      Add or remove reception of all multicast frames to a device. While the
8408  *      count in the device remains above zero the interface remains listening
8409  *      to all interfaces. Once it hits zero the device reverts back to normal
8410  *      filtering operation. A negative @inc value is used to drop the counter
8411  *      when releasing a resource needing all multicasts.
8412  *      Return 0 if successful or a negative errno code on error.
8413  */
8414
8415 int dev_set_allmulti(struct net_device *dev, int inc)
8416 {
8417         return __dev_set_allmulti(dev, inc, true);
8418 }
8419 EXPORT_SYMBOL(dev_set_allmulti);
8420
8421 /*
8422  *      Upload unicast and multicast address lists to device and
8423  *      configure RX filtering. When the device doesn't support unicast
8424  *      filtering it is put in promiscuous mode while unicast addresses
8425  *      are present.
8426  */
8427 void __dev_set_rx_mode(struct net_device *dev)
8428 {
8429         const struct net_device_ops *ops = dev->netdev_ops;
8430
8431         /* dev_open will call this function so the list will stay sane. */
8432         if (!(dev->flags&IFF_UP))
8433                 return;
8434
8435         if (!netif_device_present(dev))
8436                 return;
8437
8438         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8439                 /* Unicast addresses changes may only happen under the rtnl,
8440                  * therefore calling __dev_set_promiscuity here is safe.
8441                  */
8442                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8443                         __dev_set_promiscuity(dev, 1, false);
8444                         dev->uc_promisc = true;
8445                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8446                         __dev_set_promiscuity(dev, -1, false);
8447                         dev->uc_promisc = false;
8448                 }
8449         }
8450
8451         if (ops->ndo_set_rx_mode)
8452                 ops->ndo_set_rx_mode(dev);
8453 }
8454
8455 void dev_set_rx_mode(struct net_device *dev)
8456 {
8457         netif_addr_lock_bh(dev);
8458         __dev_set_rx_mode(dev);
8459         netif_addr_unlock_bh(dev);
8460 }
8461
8462 /**
8463  *      dev_get_flags - get flags reported to userspace
8464  *      @dev: device
8465  *
8466  *      Get the combination of flag bits exported through APIs to userspace.
8467  */
8468 unsigned int dev_get_flags(const struct net_device *dev)
8469 {
8470         unsigned int flags;
8471
8472         flags = (dev->flags & ~(IFF_PROMISC |
8473                                 IFF_ALLMULTI |
8474                                 IFF_RUNNING |
8475                                 IFF_LOWER_UP |
8476                                 IFF_DORMANT)) |
8477                 (dev->gflags & (IFF_PROMISC |
8478                                 IFF_ALLMULTI));
8479
8480         if (netif_running(dev)) {
8481                 if (netif_oper_up(dev))
8482                         flags |= IFF_RUNNING;
8483                 if (netif_carrier_ok(dev))
8484                         flags |= IFF_LOWER_UP;
8485                 if (netif_dormant(dev))
8486                         flags |= IFF_DORMANT;
8487         }
8488
8489         return flags;
8490 }
8491 EXPORT_SYMBOL(dev_get_flags);
8492
8493 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8494                        struct netlink_ext_ack *extack)
8495 {
8496         unsigned int old_flags = dev->flags;
8497         int ret;
8498
8499         ASSERT_RTNL();
8500
8501         /*
8502          *      Set the flags on our device.
8503          */
8504
8505         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8506                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8507                                IFF_AUTOMEDIA)) |
8508                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8509                                     IFF_ALLMULTI));
8510
8511         /*
8512          *      Load in the correct multicast list now the flags have changed.
8513          */
8514
8515         if ((old_flags ^ flags) & IFF_MULTICAST)
8516                 dev_change_rx_flags(dev, IFF_MULTICAST);
8517
8518         dev_set_rx_mode(dev);
8519
8520         /*
8521          *      Have we downed the interface. We handle IFF_UP ourselves
8522          *      according to user attempts to set it, rather than blindly
8523          *      setting it.
8524          */
8525
8526         ret = 0;
8527         if ((old_flags ^ flags) & IFF_UP) {
8528                 if (old_flags & IFF_UP)
8529                         __dev_close(dev);
8530                 else
8531                         ret = __dev_open(dev, extack);
8532         }
8533
8534         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8535                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8536                 unsigned int old_flags = dev->flags;
8537
8538                 dev->gflags ^= IFF_PROMISC;
8539
8540                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8541                         if (dev->flags != old_flags)
8542                                 dev_set_rx_mode(dev);
8543         }
8544
8545         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8546          * is important. Some (broken) drivers set IFF_PROMISC, when
8547          * IFF_ALLMULTI is requested not asking us and not reporting.
8548          */
8549         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8550                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8551
8552                 dev->gflags ^= IFF_ALLMULTI;
8553                 __dev_set_allmulti(dev, inc, false);
8554         }
8555
8556         return ret;
8557 }
8558
8559 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8560                         unsigned int gchanges, u32 portid,
8561                         const struct nlmsghdr *nlh)
8562 {
8563         unsigned int changes = dev->flags ^ old_flags;
8564
8565         if (gchanges)
8566                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8567
8568         if (changes & IFF_UP) {
8569                 if (dev->flags & IFF_UP)
8570                         call_netdevice_notifiers(NETDEV_UP, dev);
8571                 else
8572                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8573         }
8574
8575         if (dev->flags & IFF_UP &&
8576             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8577                 struct netdev_notifier_change_info change_info = {
8578                         .info = {
8579                                 .dev = dev,
8580                         },
8581                         .flags_changed = changes,
8582                 };
8583
8584                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8585         }
8586 }
8587
8588 /**
8589  *      dev_change_flags - change device settings
8590  *      @dev: device
8591  *      @flags: device state flags
8592  *      @extack: netlink extended ack
8593  *
8594  *      Change settings on device based state flags. The flags are
8595  *      in the userspace exported format.
8596  */
8597 int dev_change_flags(struct net_device *dev, unsigned int flags,
8598                      struct netlink_ext_ack *extack)
8599 {
8600         int ret;
8601         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8602
8603         ret = __dev_change_flags(dev, flags, extack);
8604         if (ret < 0)
8605                 return ret;
8606
8607         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8608         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8609         return ret;
8610 }
8611 EXPORT_SYMBOL(dev_change_flags);
8612
8613 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8614 {
8615         const struct net_device_ops *ops = dev->netdev_ops;
8616
8617         if (ops->ndo_change_mtu)
8618                 return ops->ndo_change_mtu(dev, new_mtu);
8619
8620         /* Pairs with all the lockless reads of dev->mtu in the stack */
8621         WRITE_ONCE(dev->mtu, new_mtu);
8622         return 0;
8623 }
8624 EXPORT_SYMBOL(__dev_set_mtu);
8625
8626 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8627                      struct netlink_ext_ack *extack)
8628 {
8629         /* MTU must be positive, and in range */
8630         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8631                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8632                 return -EINVAL;
8633         }
8634
8635         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8636                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8637                 return -EINVAL;
8638         }
8639         return 0;
8640 }
8641
8642 /**
8643  *      dev_set_mtu_ext - Change maximum transfer unit
8644  *      @dev: device
8645  *      @new_mtu: new transfer unit
8646  *      @extack: netlink extended ack
8647  *
8648  *      Change the maximum transfer size of the network device.
8649  */
8650 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8651                     struct netlink_ext_ack *extack)
8652 {
8653         int err, orig_mtu;
8654
8655         if (new_mtu == dev->mtu)
8656                 return 0;
8657
8658         err = dev_validate_mtu(dev, new_mtu, extack);
8659         if (err)
8660                 return err;
8661
8662         if (!netif_device_present(dev))
8663                 return -ENODEV;
8664
8665         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8666         err = notifier_to_errno(err);
8667         if (err)
8668                 return err;
8669
8670         orig_mtu = dev->mtu;
8671         err = __dev_set_mtu(dev, new_mtu);
8672
8673         if (!err) {
8674                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8675                                                    orig_mtu);
8676                 err = notifier_to_errno(err);
8677                 if (err) {
8678                         /* setting mtu back and notifying everyone again,
8679                          * so that they have a chance to revert changes.
8680                          */
8681                         __dev_set_mtu(dev, orig_mtu);
8682                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8683                                                      new_mtu);
8684                 }
8685         }
8686         return err;
8687 }
8688
8689 int dev_set_mtu(struct net_device *dev, int new_mtu)
8690 {
8691         struct netlink_ext_ack extack;
8692         int err;
8693
8694         memset(&extack, 0, sizeof(extack));
8695         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8696         if (err && extack._msg)
8697                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8698         return err;
8699 }
8700 EXPORT_SYMBOL(dev_set_mtu);
8701
8702 /**
8703  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8704  *      @dev: device
8705  *      @new_len: new tx queue length
8706  */
8707 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8708 {
8709         unsigned int orig_len = dev->tx_queue_len;
8710         int res;
8711
8712         if (new_len != (unsigned int)new_len)
8713                 return -ERANGE;
8714
8715         if (new_len != orig_len) {
8716                 dev->tx_queue_len = new_len;
8717                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8718                 res = notifier_to_errno(res);
8719                 if (res)
8720                         goto err_rollback;
8721                 res = dev_qdisc_change_tx_queue_len(dev);
8722                 if (res)
8723                         goto err_rollback;
8724         }
8725
8726         return 0;
8727
8728 err_rollback:
8729         netdev_err(dev, "refused to change device tx_queue_len\n");
8730         dev->tx_queue_len = orig_len;
8731         return res;
8732 }
8733
8734 /**
8735  *      dev_set_group - Change group this device belongs to
8736  *      @dev: device
8737  *      @new_group: group this device should belong to
8738  */
8739 void dev_set_group(struct net_device *dev, int new_group)
8740 {
8741         dev->group = new_group;
8742 }
8743
8744 /**
8745  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8746  *      @dev: device
8747  *      @addr: new address
8748  *      @extack: netlink extended ack
8749  */
8750 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8751                               struct netlink_ext_ack *extack)
8752 {
8753         struct netdev_notifier_pre_changeaddr_info info = {
8754                 .info.dev = dev,
8755                 .info.extack = extack,
8756                 .dev_addr = addr,
8757         };
8758         int rc;
8759
8760         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8761         return notifier_to_errno(rc);
8762 }
8763 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8764
8765 /**
8766  *      dev_set_mac_address - Change Media Access Control Address
8767  *      @dev: device
8768  *      @sa: new address
8769  *      @extack: netlink extended ack
8770  *
8771  *      Change the hardware (MAC) address of the device
8772  */
8773 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8774                         struct netlink_ext_ack *extack)
8775 {
8776         const struct net_device_ops *ops = dev->netdev_ops;
8777         int err;
8778
8779         if (!ops->ndo_set_mac_address)
8780                 return -EOPNOTSUPP;
8781         if (sa->sa_family != dev->type)
8782                 return -EINVAL;
8783         if (!netif_device_present(dev))
8784                 return -ENODEV;
8785         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8786         if (err)
8787                 return err;
8788         err = ops->ndo_set_mac_address(dev, sa);
8789         if (err)
8790                 return err;
8791         dev->addr_assign_type = NET_ADDR_SET;
8792         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8793         add_device_randomness(dev->dev_addr, dev->addr_len);
8794         return 0;
8795 }
8796 EXPORT_SYMBOL(dev_set_mac_address);
8797
8798 static DECLARE_RWSEM(dev_addr_sem);
8799
8800 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8801                              struct netlink_ext_ack *extack)
8802 {
8803         int ret;
8804
8805         down_write(&dev_addr_sem);
8806         ret = dev_set_mac_address(dev, sa, extack);
8807         up_write(&dev_addr_sem);
8808         return ret;
8809 }
8810 EXPORT_SYMBOL(dev_set_mac_address_user);
8811
8812 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8813 {
8814         size_t size = sizeof(sa->sa_data_min);
8815         struct net_device *dev;
8816         int ret = 0;
8817
8818         down_read(&dev_addr_sem);
8819         rcu_read_lock();
8820
8821         dev = dev_get_by_name_rcu(net, dev_name);
8822         if (!dev) {
8823                 ret = -ENODEV;
8824                 goto unlock;
8825         }
8826         if (!dev->addr_len)
8827                 memset(sa->sa_data, 0, size);
8828         else
8829                 memcpy(sa->sa_data, dev->dev_addr,
8830                        min_t(size_t, size, dev->addr_len));
8831         sa->sa_family = dev->type;
8832
8833 unlock:
8834         rcu_read_unlock();
8835         up_read(&dev_addr_sem);
8836         return ret;
8837 }
8838 EXPORT_SYMBOL(dev_get_mac_address);
8839
8840 /**
8841  *      dev_change_carrier - Change device carrier
8842  *      @dev: device
8843  *      @new_carrier: new value
8844  *
8845  *      Change device carrier
8846  */
8847 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8848 {
8849         const struct net_device_ops *ops = dev->netdev_ops;
8850
8851         if (!ops->ndo_change_carrier)
8852                 return -EOPNOTSUPP;
8853         if (!netif_device_present(dev))
8854                 return -ENODEV;
8855         return ops->ndo_change_carrier(dev, new_carrier);
8856 }
8857
8858 /**
8859  *      dev_get_phys_port_id - Get device physical port ID
8860  *      @dev: device
8861  *      @ppid: port ID
8862  *
8863  *      Get device physical port ID
8864  */
8865 int dev_get_phys_port_id(struct net_device *dev,
8866                          struct netdev_phys_item_id *ppid)
8867 {
8868         const struct net_device_ops *ops = dev->netdev_ops;
8869
8870         if (!ops->ndo_get_phys_port_id)
8871                 return -EOPNOTSUPP;
8872         return ops->ndo_get_phys_port_id(dev, ppid);
8873 }
8874
8875 /**
8876  *      dev_get_phys_port_name - Get device physical port name
8877  *      @dev: device
8878  *      @name: port name
8879  *      @len: limit of bytes to copy to name
8880  *
8881  *      Get device physical port name
8882  */
8883 int dev_get_phys_port_name(struct net_device *dev,
8884                            char *name, size_t len)
8885 {
8886         const struct net_device_ops *ops = dev->netdev_ops;
8887         int err;
8888
8889         if (ops->ndo_get_phys_port_name) {
8890                 err = ops->ndo_get_phys_port_name(dev, name, len);
8891                 if (err != -EOPNOTSUPP)
8892                         return err;
8893         }
8894         return devlink_compat_phys_port_name_get(dev, name, len);
8895 }
8896
8897 /**
8898  *      dev_get_port_parent_id - Get the device's port parent identifier
8899  *      @dev: network device
8900  *      @ppid: pointer to a storage for the port's parent identifier
8901  *      @recurse: allow/disallow recursion to lower devices
8902  *
8903  *      Get the devices's port parent identifier
8904  */
8905 int dev_get_port_parent_id(struct net_device *dev,
8906                            struct netdev_phys_item_id *ppid,
8907                            bool recurse)
8908 {
8909         const struct net_device_ops *ops = dev->netdev_ops;
8910         struct netdev_phys_item_id first = { };
8911         struct net_device *lower_dev;
8912         struct list_head *iter;
8913         int err;
8914
8915         if (ops->ndo_get_port_parent_id) {
8916                 err = ops->ndo_get_port_parent_id(dev, ppid);
8917                 if (err != -EOPNOTSUPP)
8918                         return err;
8919         }
8920
8921         err = devlink_compat_switch_id_get(dev, ppid);
8922         if (!recurse || err != -EOPNOTSUPP)
8923                 return err;
8924
8925         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8926                 err = dev_get_port_parent_id(lower_dev, ppid, true);
8927                 if (err)
8928                         break;
8929                 if (!first.id_len)
8930                         first = *ppid;
8931                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8932                         return -EOPNOTSUPP;
8933         }
8934
8935         return err;
8936 }
8937 EXPORT_SYMBOL(dev_get_port_parent_id);
8938
8939 /**
8940  *      netdev_port_same_parent_id - Indicate if two network devices have
8941  *      the same port parent identifier
8942  *      @a: first network device
8943  *      @b: second network device
8944  */
8945 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8946 {
8947         struct netdev_phys_item_id a_id = { };
8948         struct netdev_phys_item_id b_id = { };
8949
8950         if (dev_get_port_parent_id(a, &a_id, true) ||
8951             dev_get_port_parent_id(b, &b_id, true))
8952                 return false;
8953
8954         return netdev_phys_item_id_same(&a_id, &b_id);
8955 }
8956 EXPORT_SYMBOL(netdev_port_same_parent_id);
8957
8958 /**
8959  *      dev_change_proto_down - set carrier according to proto_down.
8960  *
8961  *      @dev: device
8962  *      @proto_down: new value
8963  */
8964 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8965 {
8966         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8967                 return -EOPNOTSUPP;
8968         if (!netif_device_present(dev))
8969                 return -ENODEV;
8970         if (proto_down)
8971                 netif_carrier_off(dev);
8972         else
8973                 netif_carrier_on(dev);
8974         dev->proto_down = proto_down;
8975         return 0;
8976 }
8977
8978 /**
8979  *      dev_change_proto_down_reason - proto down reason
8980  *
8981  *      @dev: device
8982  *      @mask: proto down mask
8983  *      @value: proto down value
8984  */
8985 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8986                                   u32 value)
8987 {
8988         int b;
8989
8990         if (!mask) {
8991                 dev->proto_down_reason = value;
8992         } else {
8993                 for_each_set_bit(b, &mask, 32) {
8994                         if (value & (1 << b))
8995                                 dev->proto_down_reason |= BIT(b);
8996                         else
8997                                 dev->proto_down_reason &= ~BIT(b);
8998                 }
8999         }
9000 }
9001
9002 struct bpf_xdp_link {
9003         struct bpf_link link;
9004         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9005         int flags;
9006 };
9007
9008 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9009 {
9010         if (flags & XDP_FLAGS_HW_MODE)
9011                 return XDP_MODE_HW;
9012         if (flags & XDP_FLAGS_DRV_MODE)
9013                 return XDP_MODE_DRV;
9014         if (flags & XDP_FLAGS_SKB_MODE)
9015                 return XDP_MODE_SKB;
9016         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9017 }
9018
9019 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9020 {
9021         switch (mode) {
9022         case XDP_MODE_SKB:
9023                 return generic_xdp_install;
9024         case XDP_MODE_DRV:
9025         case XDP_MODE_HW:
9026                 return dev->netdev_ops->ndo_bpf;
9027         default:
9028                 return NULL;
9029         }
9030 }
9031
9032 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9033                                          enum bpf_xdp_mode mode)
9034 {
9035         return dev->xdp_state[mode].link;
9036 }
9037
9038 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9039                                      enum bpf_xdp_mode mode)
9040 {
9041         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9042
9043         if (link)
9044                 return link->link.prog;
9045         return dev->xdp_state[mode].prog;
9046 }
9047
9048 u8 dev_xdp_prog_count(struct net_device *dev)
9049 {
9050         u8 count = 0;
9051         int i;
9052
9053         for (i = 0; i < __MAX_XDP_MODE; i++)
9054                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9055                         count++;
9056         return count;
9057 }
9058 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9059
9060 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9061 {
9062         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9063
9064         return prog ? prog->aux->id : 0;
9065 }
9066
9067 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9068                              struct bpf_xdp_link *link)
9069 {
9070         dev->xdp_state[mode].link = link;
9071         dev->xdp_state[mode].prog = NULL;
9072 }
9073
9074 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9075                              struct bpf_prog *prog)
9076 {
9077         dev->xdp_state[mode].link = NULL;
9078         dev->xdp_state[mode].prog = prog;
9079 }
9080
9081 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9082                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9083                            u32 flags, struct bpf_prog *prog)
9084 {
9085         struct netdev_bpf xdp;
9086         int err;
9087
9088         memset(&xdp, 0, sizeof(xdp));
9089         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9090         xdp.extack = extack;
9091         xdp.flags = flags;
9092         xdp.prog = prog;
9093
9094         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9095          * "moved" into driver), so they don't increment it on their own, but
9096          * they do decrement refcnt when program is detached or replaced.
9097          * Given net_device also owns link/prog, we need to bump refcnt here
9098          * to prevent drivers from underflowing it.
9099          */
9100         if (prog)
9101                 bpf_prog_inc(prog);
9102         err = bpf_op(dev, &xdp);
9103         if (err) {
9104                 if (prog)
9105                         bpf_prog_put(prog);
9106                 return err;
9107         }
9108
9109         if (mode != XDP_MODE_HW)
9110                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9111
9112         return 0;
9113 }
9114
9115 static void dev_xdp_uninstall(struct net_device *dev)
9116 {
9117         struct bpf_xdp_link *link;
9118         struct bpf_prog *prog;
9119         enum bpf_xdp_mode mode;
9120         bpf_op_t bpf_op;
9121
9122         ASSERT_RTNL();
9123
9124         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9125                 prog = dev_xdp_prog(dev, mode);
9126                 if (!prog)
9127                         continue;
9128
9129                 bpf_op = dev_xdp_bpf_op(dev, mode);
9130                 if (!bpf_op)
9131                         continue;
9132
9133                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9134
9135                 /* auto-detach link from net device */
9136                 link = dev_xdp_link(dev, mode);
9137                 if (link)
9138                         link->dev = NULL;
9139                 else
9140                         bpf_prog_put(prog);
9141
9142                 dev_xdp_set_link(dev, mode, NULL);
9143         }
9144 }
9145
9146 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9147                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9148                           struct bpf_prog *old_prog, u32 flags)
9149 {
9150         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9151         struct bpf_prog *cur_prog;
9152         struct net_device *upper;
9153         struct list_head *iter;
9154         enum bpf_xdp_mode mode;
9155         bpf_op_t bpf_op;
9156         int err;
9157
9158         ASSERT_RTNL();
9159
9160         /* either link or prog attachment, never both */
9161         if (link && (new_prog || old_prog))
9162                 return -EINVAL;
9163         /* link supports only XDP mode flags */
9164         if (link && (flags & ~XDP_FLAGS_MODES)) {
9165                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9166                 return -EINVAL;
9167         }
9168         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9169         if (num_modes > 1) {
9170                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9171                 return -EINVAL;
9172         }
9173         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9174         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9175                 NL_SET_ERR_MSG(extack,
9176                                "More than one program loaded, unset mode is ambiguous");
9177                 return -EINVAL;
9178         }
9179         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9180         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9181                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9182                 return -EINVAL;
9183         }
9184
9185         mode = dev_xdp_mode(dev, flags);
9186         /* can't replace attached link */
9187         if (dev_xdp_link(dev, mode)) {
9188                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9189                 return -EBUSY;
9190         }
9191
9192         /* don't allow if an upper device already has a program */
9193         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9194                 if (dev_xdp_prog_count(upper) > 0) {
9195                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9196                         return -EEXIST;
9197                 }
9198         }
9199
9200         cur_prog = dev_xdp_prog(dev, mode);
9201         /* can't replace attached prog with link */
9202         if (link && cur_prog) {
9203                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9204                 return -EBUSY;
9205         }
9206         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9207                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9208                 return -EEXIST;
9209         }
9210
9211         /* put effective new program into new_prog */
9212         if (link)
9213                 new_prog = link->link.prog;
9214
9215         if (new_prog) {
9216                 bool offload = mode == XDP_MODE_HW;
9217                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9218                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9219
9220                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9221                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9222                         return -EBUSY;
9223                 }
9224                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9225                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9226                         return -EEXIST;
9227                 }
9228                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9229                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9230                         return -EINVAL;
9231                 }
9232                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9233                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9234                         return -EINVAL;
9235                 }
9236                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9237                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9238                         return -EINVAL;
9239                 }
9240                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9241                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9242                         return -EINVAL;
9243                 }
9244         }
9245
9246         /* don't call drivers if the effective program didn't change */
9247         if (new_prog != cur_prog) {
9248                 bpf_op = dev_xdp_bpf_op(dev, mode);
9249                 if (!bpf_op) {
9250                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9251                         return -EOPNOTSUPP;
9252                 }
9253
9254                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9255                 if (err)
9256                         return err;
9257         }
9258
9259         if (link)
9260                 dev_xdp_set_link(dev, mode, link);
9261         else
9262                 dev_xdp_set_prog(dev, mode, new_prog);
9263         if (cur_prog)
9264                 bpf_prog_put(cur_prog);
9265
9266         return 0;
9267 }
9268
9269 static int dev_xdp_attach_link(struct net_device *dev,
9270                                struct netlink_ext_ack *extack,
9271                                struct bpf_xdp_link *link)
9272 {
9273         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9274 }
9275
9276 static int dev_xdp_detach_link(struct net_device *dev,
9277                                struct netlink_ext_ack *extack,
9278                                struct bpf_xdp_link *link)
9279 {
9280         enum bpf_xdp_mode mode;
9281         bpf_op_t bpf_op;
9282
9283         ASSERT_RTNL();
9284
9285         mode = dev_xdp_mode(dev, link->flags);
9286         if (dev_xdp_link(dev, mode) != link)
9287                 return -EINVAL;
9288
9289         bpf_op = dev_xdp_bpf_op(dev, mode);
9290         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9291         dev_xdp_set_link(dev, mode, NULL);
9292         return 0;
9293 }
9294
9295 static void bpf_xdp_link_release(struct bpf_link *link)
9296 {
9297         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9298
9299         rtnl_lock();
9300
9301         /* if racing with net_device's tear down, xdp_link->dev might be
9302          * already NULL, in which case link was already auto-detached
9303          */
9304         if (xdp_link->dev) {
9305                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9306                 xdp_link->dev = NULL;
9307         }
9308
9309         rtnl_unlock();
9310 }
9311
9312 static int bpf_xdp_link_detach(struct bpf_link *link)
9313 {
9314         bpf_xdp_link_release(link);
9315         return 0;
9316 }
9317
9318 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9319 {
9320         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9321
9322         kfree(xdp_link);
9323 }
9324
9325 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9326                                      struct seq_file *seq)
9327 {
9328         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9329         u32 ifindex = 0;
9330
9331         rtnl_lock();
9332         if (xdp_link->dev)
9333                 ifindex = xdp_link->dev->ifindex;
9334         rtnl_unlock();
9335
9336         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9337 }
9338
9339 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9340                                        struct bpf_link_info *info)
9341 {
9342         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9343         u32 ifindex = 0;
9344
9345         rtnl_lock();
9346         if (xdp_link->dev)
9347                 ifindex = xdp_link->dev->ifindex;
9348         rtnl_unlock();
9349
9350         info->xdp.ifindex = ifindex;
9351         return 0;
9352 }
9353
9354 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9355                                struct bpf_prog *old_prog)
9356 {
9357         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9358         enum bpf_xdp_mode mode;
9359         bpf_op_t bpf_op;
9360         int err = 0;
9361
9362         rtnl_lock();
9363
9364         /* link might have been auto-released already, so fail */
9365         if (!xdp_link->dev) {
9366                 err = -ENOLINK;
9367                 goto out_unlock;
9368         }
9369
9370         if (old_prog && link->prog != old_prog) {
9371                 err = -EPERM;
9372                 goto out_unlock;
9373         }
9374         old_prog = link->prog;
9375         if (old_prog->type != new_prog->type ||
9376             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9377                 err = -EINVAL;
9378                 goto out_unlock;
9379         }
9380
9381         if (old_prog == new_prog) {
9382                 /* no-op, don't disturb drivers */
9383                 bpf_prog_put(new_prog);
9384                 goto out_unlock;
9385         }
9386
9387         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9388         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9389         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9390                               xdp_link->flags, new_prog);
9391         if (err)
9392                 goto out_unlock;
9393
9394         old_prog = xchg(&link->prog, new_prog);
9395         bpf_prog_put(old_prog);
9396
9397 out_unlock:
9398         rtnl_unlock();
9399         return err;
9400 }
9401
9402 static const struct bpf_link_ops bpf_xdp_link_lops = {
9403         .release = bpf_xdp_link_release,
9404         .dealloc = bpf_xdp_link_dealloc,
9405         .detach = bpf_xdp_link_detach,
9406         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9407         .fill_link_info = bpf_xdp_link_fill_link_info,
9408         .update_prog = bpf_xdp_link_update,
9409 };
9410
9411 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9412 {
9413         struct net *net = current->nsproxy->net_ns;
9414         struct bpf_link_primer link_primer;
9415         struct bpf_xdp_link *link;
9416         struct net_device *dev;
9417         int err, fd;
9418
9419         rtnl_lock();
9420         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9421         if (!dev) {
9422                 rtnl_unlock();
9423                 return -EINVAL;
9424         }
9425
9426         link = kzalloc(sizeof(*link), GFP_USER);
9427         if (!link) {
9428                 err = -ENOMEM;
9429                 goto unlock;
9430         }
9431
9432         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9433         link->dev = dev;
9434         link->flags = attr->link_create.flags;
9435
9436         err = bpf_link_prime(&link->link, &link_primer);
9437         if (err) {
9438                 kfree(link);
9439                 goto unlock;
9440         }
9441
9442         err = dev_xdp_attach_link(dev, NULL, link);
9443         rtnl_unlock();
9444
9445         if (err) {
9446                 link->dev = NULL;
9447                 bpf_link_cleanup(&link_primer);
9448                 goto out_put_dev;
9449         }
9450
9451         fd = bpf_link_settle(&link_primer);
9452         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9453         dev_put(dev);
9454         return fd;
9455
9456 unlock:
9457         rtnl_unlock();
9458
9459 out_put_dev:
9460         dev_put(dev);
9461         return err;
9462 }
9463
9464 /**
9465  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9466  *      @dev: device
9467  *      @extack: netlink extended ack
9468  *      @fd: new program fd or negative value to clear
9469  *      @expected_fd: old program fd that userspace expects to replace or clear
9470  *      @flags: xdp-related flags
9471  *
9472  *      Set or clear a bpf program for a device
9473  */
9474 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9475                       int fd, int expected_fd, u32 flags)
9476 {
9477         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9478         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9479         int err;
9480
9481         ASSERT_RTNL();
9482
9483         if (fd >= 0) {
9484                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9485                                                  mode != XDP_MODE_SKB);
9486                 if (IS_ERR(new_prog))
9487                         return PTR_ERR(new_prog);
9488         }
9489
9490         if (expected_fd >= 0) {
9491                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9492                                                  mode != XDP_MODE_SKB);
9493                 if (IS_ERR(old_prog)) {
9494                         err = PTR_ERR(old_prog);
9495                         old_prog = NULL;
9496                         goto err_out;
9497                 }
9498         }
9499
9500         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9501
9502 err_out:
9503         if (err && new_prog)
9504                 bpf_prog_put(new_prog);
9505         if (old_prog)
9506                 bpf_prog_put(old_prog);
9507         return err;
9508 }
9509
9510 /**
9511  *      dev_new_index   -       allocate an ifindex
9512  *      @net: the applicable net namespace
9513  *
9514  *      Returns a suitable unique value for a new device interface
9515  *      number.  The caller must hold the rtnl semaphore or the
9516  *      dev_base_lock to be sure it remains unique.
9517  */
9518 static int dev_new_index(struct net *net)
9519 {
9520         int ifindex = net->ifindex;
9521
9522         for (;;) {
9523                 if (++ifindex <= 0)
9524                         ifindex = 1;
9525                 if (!__dev_get_by_index(net, ifindex))
9526                         return net->ifindex = ifindex;
9527         }
9528 }
9529
9530 /* Delayed registration/unregisteration */
9531 LIST_HEAD(net_todo_list);
9532 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9533
9534 static void net_set_todo(struct net_device *dev)
9535 {
9536         list_add_tail(&dev->todo_list, &net_todo_list);
9537         atomic_inc(&dev_net(dev)->dev_unreg_count);
9538 }
9539
9540 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9541         struct net_device *upper, netdev_features_t features)
9542 {
9543         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9544         netdev_features_t feature;
9545         int feature_bit;
9546
9547         for_each_netdev_feature(upper_disables, feature_bit) {
9548                 feature = __NETIF_F_BIT(feature_bit);
9549                 if (!(upper->wanted_features & feature)
9550                     && (features & feature)) {
9551                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9552                                    &feature, upper->name);
9553                         features &= ~feature;
9554                 }
9555         }
9556
9557         return features;
9558 }
9559
9560 static void netdev_sync_lower_features(struct net_device *upper,
9561         struct net_device *lower, netdev_features_t features)
9562 {
9563         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9564         netdev_features_t feature;
9565         int feature_bit;
9566
9567         for_each_netdev_feature(upper_disables, feature_bit) {
9568                 feature = __NETIF_F_BIT(feature_bit);
9569                 if (!(features & feature) && (lower->features & feature)) {
9570                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9571                                    &feature, lower->name);
9572                         lower->wanted_features &= ~feature;
9573                         __netdev_update_features(lower);
9574
9575                         if (unlikely(lower->features & feature))
9576                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9577                                             &feature, lower->name);
9578                         else
9579                                 netdev_features_change(lower);
9580                 }
9581         }
9582 }
9583
9584 static netdev_features_t netdev_fix_features(struct net_device *dev,
9585         netdev_features_t features)
9586 {
9587         /* Fix illegal checksum combinations */
9588         if ((features & NETIF_F_HW_CSUM) &&
9589             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9590                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9591                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9592         }
9593
9594         /* TSO requires that SG is present as well. */
9595         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9596                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9597                 features &= ~NETIF_F_ALL_TSO;
9598         }
9599
9600         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9601                                         !(features & NETIF_F_IP_CSUM)) {
9602                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9603                 features &= ~NETIF_F_TSO;
9604                 features &= ~NETIF_F_TSO_ECN;
9605         }
9606
9607         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9608                                          !(features & NETIF_F_IPV6_CSUM)) {
9609                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9610                 features &= ~NETIF_F_TSO6;
9611         }
9612
9613         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9614         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9615                 features &= ~NETIF_F_TSO_MANGLEID;
9616
9617         /* TSO ECN requires that TSO is present as well. */
9618         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9619                 features &= ~NETIF_F_TSO_ECN;
9620
9621         /* Software GSO depends on SG. */
9622         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9623                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9624                 features &= ~NETIF_F_GSO;
9625         }
9626
9627         /* GSO partial features require GSO partial be set */
9628         if ((features & dev->gso_partial_features) &&
9629             !(features & NETIF_F_GSO_PARTIAL)) {
9630                 netdev_dbg(dev,
9631                            "Dropping partially supported GSO features since no GSO partial.\n");
9632                 features &= ~dev->gso_partial_features;
9633         }
9634
9635         if (!(features & NETIF_F_RXCSUM)) {
9636                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9637                  * successfully merged by hardware must also have the
9638                  * checksum verified by hardware.  If the user does not
9639                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9640                  */
9641                 if (features & NETIF_F_GRO_HW) {
9642                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9643                         features &= ~NETIF_F_GRO_HW;
9644                 }
9645         }
9646
9647         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9648         if (features & NETIF_F_RXFCS) {
9649                 if (features & NETIF_F_LRO) {
9650                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9651                         features &= ~NETIF_F_LRO;
9652                 }
9653
9654                 if (features & NETIF_F_GRO_HW) {
9655                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9656                         features &= ~NETIF_F_GRO_HW;
9657                 }
9658         }
9659
9660         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9661                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9662                 features &= ~NETIF_F_LRO;
9663         }
9664
9665         if (features & NETIF_F_HW_TLS_TX) {
9666                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9667                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9668                 bool hw_csum = features & NETIF_F_HW_CSUM;
9669
9670                 if (!ip_csum && !hw_csum) {
9671                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9672                         features &= ~NETIF_F_HW_TLS_TX;
9673                 }
9674         }
9675
9676         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9677                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9678                 features &= ~NETIF_F_HW_TLS_RX;
9679         }
9680
9681         return features;
9682 }
9683
9684 int __netdev_update_features(struct net_device *dev)
9685 {
9686         struct net_device *upper, *lower;
9687         netdev_features_t features;
9688         struct list_head *iter;
9689         int err = -1;
9690
9691         ASSERT_RTNL();
9692
9693         features = netdev_get_wanted_features(dev);
9694
9695         if (dev->netdev_ops->ndo_fix_features)
9696                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9697
9698         /* driver might be less strict about feature dependencies */
9699         features = netdev_fix_features(dev, features);
9700
9701         /* some features can't be enabled if they're off on an upper device */
9702         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9703                 features = netdev_sync_upper_features(dev, upper, features);
9704
9705         if (dev->features == features)
9706                 goto sync_lower;
9707
9708         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9709                 &dev->features, &features);
9710
9711         if (dev->netdev_ops->ndo_set_features)
9712                 err = dev->netdev_ops->ndo_set_features(dev, features);
9713         else
9714                 err = 0;
9715
9716         if (unlikely(err < 0)) {
9717                 netdev_err(dev,
9718                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9719                         err, &features, &dev->features);
9720                 /* return non-0 since some features might have changed and
9721                  * it's better to fire a spurious notification than miss it
9722                  */
9723                 return -1;
9724         }
9725
9726 sync_lower:
9727         /* some features must be disabled on lower devices when disabled
9728          * on an upper device (think: bonding master or bridge)
9729          */
9730         netdev_for_each_lower_dev(dev, lower, iter)
9731                 netdev_sync_lower_features(dev, lower, features);
9732
9733         if (!err) {
9734                 netdev_features_t diff = features ^ dev->features;
9735
9736                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9737                         /* udp_tunnel_{get,drop}_rx_info both need
9738                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9739                          * device, or they won't do anything.
9740                          * Thus we need to update dev->features
9741                          * *before* calling udp_tunnel_get_rx_info,
9742                          * but *after* calling udp_tunnel_drop_rx_info.
9743                          */
9744                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9745                                 dev->features = features;
9746                                 udp_tunnel_get_rx_info(dev);
9747                         } else {
9748                                 udp_tunnel_drop_rx_info(dev);
9749                         }
9750                 }
9751
9752                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9753                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9754                                 dev->features = features;
9755                                 err |= vlan_get_rx_ctag_filter_info(dev);
9756                         } else {
9757                                 vlan_drop_rx_ctag_filter_info(dev);
9758                         }
9759                 }
9760
9761                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9762                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9763                                 dev->features = features;
9764                                 err |= vlan_get_rx_stag_filter_info(dev);
9765                         } else {
9766                                 vlan_drop_rx_stag_filter_info(dev);
9767                         }
9768                 }
9769
9770                 dev->features = features;
9771         }
9772
9773         return err < 0 ? 0 : 1;
9774 }
9775
9776 /**
9777  *      netdev_update_features - recalculate device features
9778  *      @dev: the device to check
9779  *
9780  *      Recalculate dev->features set and send notifications if it
9781  *      has changed. Should be called after driver or hardware dependent
9782  *      conditions might have changed that influence the features.
9783  */
9784 void netdev_update_features(struct net_device *dev)
9785 {
9786         if (__netdev_update_features(dev))
9787                 netdev_features_change(dev);
9788 }
9789 EXPORT_SYMBOL(netdev_update_features);
9790
9791 /**
9792  *      netdev_change_features - recalculate device features
9793  *      @dev: the device to check
9794  *
9795  *      Recalculate dev->features set and send notifications even
9796  *      if they have not changed. Should be called instead of
9797  *      netdev_update_features() if also dev->vlan_features might
9798  *      have changed to allow the changes to be propagated to stacked
9799  *      VLAN devices.
9800  */
9801 void netdev_change_features(struct net_device *dev)
9802 {
9803         __netdev_update_features(dev);
9804         netdev_features_change(dev);
9805 }
9806 EXPORT_SYMBOL(netdev_change_features);
9807
9808 /**
9809  *      netif_stacked_transfer_operstate -      transfer operstate
9810  *      @rootdev: the root or lower level device to transfer state from
9811  *      @dev: the device to transfer operstate to
9812  *
9813  *      Transfer operational state from root to device. This is normally
9814  *      called when a stacking relationship exists between the root
9815  *      device and the device(a leaf device).
9816  */
9817 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9818                                         struct net_device *dev)
9819 {
9820         if (rootdev->operstate == IF_OPER_DORMANT)
9821                 netif_dormant_on(dev);
9822         else
9823                 netif_dormant_off(dev);
9824
9825         if (rootdev->operstate == IF_OPER_TESTING)
9826                 netif_testing_on(dev);
9827         else
9828                 netif_testing_off(dev);
9829
9830         if (netif_carrier_ok(rootdev))
9831                 netif_carrier_on(dev);
9832         else
9833                 netif_carrier_off(dev);
9834 }
9835 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9836
9837 static int netif_alloc_rx_queues(struct net_device *dev)
9838 {
9839         unsigned int i, count = dev->num_rx_queues;
9840         struct netdev_rx_queue *rx;
9841         size_t sz = count * sizeof(*rx);
9842         int err = 0;
9843
9844         BUG_ON(count < 1);
9845
9846         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9847         if (!rx)
9848                 return -ENOMEM;
9849
9850         dev->_rx = rx;
9851
9852         for (i = 0; i < count; i++) {
9853                 rx[i].dev = dev;
9854
9855                 /* XDP RX-queue setup */
9856                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9857                 if (err < 0)
9858                         goto err_rxq_info;
9859         }
9860         return 0;
9861
9862 err_rxq_info:
9863         /* Rollback successful reg's and free other resources */
9864         while (i--)
9865                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9866         kvfree(dev->_rx);
9867         dev->_rx = NULL;
9868         return err;
9869 }
9870
9871 static void netif_free_rx_queues(struct net_device *dev)
9872 {
9873         unsigned int i, count = dev->num_rx_queues;
9874
9875         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9876         if (!dev->_rx)
9877                 return;
9878
9879         for (i = 0; i < count; i++)
9880                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9881
9882         kvfree(dev->_rx);
9883 }
9884
9885 static void netdev_init_one_queue(struct net_device *dev,
9886                                   struct netdev_queue *queue, void *_unused)
9887 {
9888         /* Initialize queue lock */
9889         spin_lock_init(&queue->_xmit_lock);
9890         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9891         queue->xmit_lock_owner = -1;
9892         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9893         queue->dev = dev;
9894 #ifdef CONFIG_BQL
9895         dql_init(&queue->dql, HZ);
9896 #endif
9897 }
9898
9899 static void netif_free_tx_queues(struct net_device *dev)
9900 {
9901         kvfree(dev->_tx);
9902 }
9903
9904 static int netif_alloc_netdev_queues(struct net_device *dev)
9905 {
9906         unsigned int count = dev->num_tx_queues;
9907         struct netdev_queue *tx;
9908         size_t sz = count * sizeof(*tx);
9909
9910         if (count < 1 || count > 0xffff)
9911                 return -EINVAL;
9912
9913         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9914         if (!tx)
9915                 return -ENOMEM;
9916
9917         dev->_tx = tx;
9918
9919         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9920         spin_lock_init(&dev->tx_global_lock);
9921
9922         return 0;
9923 }
9924
9925 void netif_tx_stop_all_queues(struct net_device *dev)
9926 {
9927         unsigned int i;
9928
9929         for (i = 0; i < dev->num_tx_queues; i++) {
9930                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9931
9932                 netif_tx_stop_queue(txq);
9933         }
9934 }
9935 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9936
9937 /**
9938  * register_netdevice() - register a network device
9939  * @dev: device to register
9940  *
9941  * Take a prepared network device structure and make it externally accessible.
9942  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9943  * Callers must hold the rtnl lock - you may want register_netdev()
9944  * instead of this.
9945  */
9946 int register_netdevice(struct net_device *dev)
9947 {
9948         int ret;
9949         struct net *net = dev_net(dev);
9950
9951         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9952                      NETDEV_FEATURE_COUNT);
9953         BUG_ON(dev_boot_phase);
9954         ASSERT_RTNL();
9955
9956         might_sleep();
9957
9958         /* When net_device's are persistent, this will be fatal. */
9959         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9960         BUG_ON(!net);
9961
9962         ret = ethtool_check_ops(dev->ethtool_ops);
9963         if (ret)
9964                 return ret;
9965
9966         spin_lock_init(&dev->addr_list_lock);
9967         netdev_set_addr_lockdep_class(dev);
9968
9969         ret = dev_get_valid_name(net, dev, dev->name);
9970         if (ret < 0)
9971                 goto out;
9972
9973         ret = -ENOMEM;
9974         dev->name_node = netdev_name_node_head_alloc(dev);
9975         if (!dev->name_node)
9976                 goto out;
9977
9978         /* Init, if this function is available */
9979         if (dev->netdev_ops->ndo_init) {
9980                 ret = dev->netdev_ops->ndo_init(dev);
9981                 if (ret) {
9982                         if (ret > 0)
9983                                 ret = -EIO;
9984                         goto err_free_name;
9985                 }
9986         }
9987
9988         if (((dev->hw_features | dev->features) &
9989              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9990             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9991              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9992                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9993                 ret = -EINVAL;
9994                 goto err_uninit;
9995         }
9996
9997         ret = -EBUSY;
9998         if (!dev->ifindex)
9999                 dev->ifindex = dev_new_index(net);
10000         else if (__dev_get_by_index(net, dev->ifindex))
10001                 goto err_uninit;
10002
10003         /* Transfer changeable features to wanted_features and enable
10004          * software offloads (GSO and GRO).
10005          */
10006         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10007         dev->features |= NETIF_F_SOFT_FEATURES;
10008
10009         if (dev->udp_tunnel_nic_info) {
10010                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10011                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10012         }
10013
10014         dev->wanted_features = dev->features & dev->hw_features;
10015
10016         if (!(dev->flags & IFF_LOOPBACK))
10017                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10018
10019         /* If IPv4 TCP segmentation offload is supported we should also
10020          * allow the device to enable segmenting the frame with the option
10021          * of ignoring a static IP ID value.  This doesn't enable the
10022          * feature itself but allows the user to enable it later.
10023          */
10024         if (dev->hw_features & NETIF_F_TSO)
10025                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10026         if (dev->vlan_features & NETIF_F_TSO)
10027                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10028         if (dev->mpls_features & NETIF_F_TSO)
10029                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10030         if (dev->hw_enc_features & NETIF_F_TSO)
10031                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10032
10033         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10034          */
10035         dev->vlan_features |= NETIF_F_HIGHDMA;
10036
10037         /* Make NETIF_F_SG inheritable to tunnel devices.
10038          */
10039         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10040
10041         /* Make NETIF_F_SG inheritable to MPLS.
10042          */
10043         dev->mpls_features |= NETIF_F_SG;
10044
10045         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10046         ret = notifier_to_errno(ret);
10047         if (ret)
10048                 goto err_uninit;
10049
10050         ret = netdev_register_kobject(dev);
10051         write_lock(&dev_base_lock);
10052         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10053         write_unlock(&dev_base_lock);
10054         if (ret)
10055                 goto err_uninit_notify;
10056
10057         __netdev_update_features(dev);
10058
10059         /*
10060          *      Default initial state at registry is that the
10061          *      device is present.
10062          */
10063
10064         set_bit(__LINK_STATE_PRESENT, &dev->state);
10065
10066         linkwatch_init_dev(dev);
10067
10068         dev_init_scheduler(dev);
10069
10070         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10071         list_netdevice(dev);
10072
10073         add_device_randomness(dev->dev_addr, dev->addr_len);
10074
10075         /* If the device has permanent device address, driver should
10076          * set dev_addr and also addr_assign_type should be set to
10077          * NET_ADDR_PERM (default value).
10078          */
10079         if (dev->addr_assign_type == NET_ADDR_PERM)
10080                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10081
10082         /* Notify protocols, that a new device appeared. */
10083         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10084         ret = notifier_to_errno(ret);
10085         if (ret) {
10086                 /* Expect explicit free_netdev() on failure */
10087                 dev->needs_free_netdev = false;
10088                 unregister_netdevice_queue(dev, NULL);
10089                 goto out;
10090         }
10091         /*
10092          *      Prevent userspace races by waiting until the network
10093          *      device is fully setup before sending notifications.
10094          */
10095         if (!dev->rtnl_link_ops ||
10096             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10097                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10098
10099 out:
10100         return ret;
10101
10102 err_uninit_notify:
10103         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10104 err_uninit:
10105         if (dev->netdev_ops->ndo_uninit)
10106                 dev->netdev_ops->ndo_uninit(dev);
10107         if (dev->priv_destructor)
10108                 dev->priv_destructor(dev);
10109 err_free_name:
10110         netdev_name_node_free(dev->name_node);
10111         goto out;
10112 }
10113 EXPORT_SYMBOL(register_netdevice);
10114
10115 /**
10116  *      init_dummy_netdev       - init a dummy network device for NAPI
10117  *      @dev: device to init
10118  *
10119  *      This takes a network device structure and initialize the minimum
10120  *      amount of fields so it can be used to schedule NAPI polls without
10121  *      registering a full blown interface. This is to be used by drivers
10122  *      that need to tie several hardware interfaces to a single NAPI
10123  *      poll scheduler due to HW limitations.
10124  */
10125 int init_dummy_netdev(struct net_device *dev)
10126 {
10127         /* Clear everything. Note we don't initialize spinlocks
10128          * are they aren't supposed to be taken by any of the
10129          * NAPI code and this dummy netdev is supposed to be
10130          * only ever used for NAPI polls
10131          */
10132         memset(dev, 0, sizeof(struct net_device));
10133
10134         /* make sure we BUG if trying to hit standard
10135          * register/unregister code path
10136          */
10137         dev->reg_state = NETREG_DUMMY;
10138
10139         /* NAPI wants this */
10140         INIT_LIST_HEAD(&dev->napi_list);
10141
10142         /* a dummy interface is started by default */
10143         set_bit(__LINK_STATE_PRESENT, &dev->state);
10144         set_bit(__LINK_STATE_START, &dev->state);
10145
10146         /* napi_busy_loop stats accounting wants this */
10147         dev_net_set(dev, &init_net);
10148
10149         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10150          * because users of this 'device' dont need to change
10151          * its refcount.
10152          */
10153
10154         return 0;
10155 }
10156 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10157
10158
10159 /**
10160  *      register_netdev - register a network device
10161  *      @dev: device to register
10162  *
10163  *      Take a completed network device structure and add it to the kernel
10164  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10165  *      chain. 0 is returned on success. A negative errno code is returned
10166  *      on a failure to set up the device, or if the name is a duplicate.
10167  *
10168  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10169  *      and expands the device name if you passed a format string to
10170  *      alloc_netdev.
10171  */
10172 int register_netdev(struct net_device *dev)
10173 {
10174         int err;
10175
10176         if (rtnl_lock_killable())
10177                 return -EINTR;
10178         err = register_netdevice(dev);
10179         rtnl_unlock();
10180         return err;
10181 }
10182 EXPORT_SYMBOL(register_netdev);
10183
10184 int netdev_refcnt_read(const struct net_device *dev)
10185 {
10186 #ifdef CONFIG_PCPU_DEV_REFCNT
10187         int i, refcnt = 0;
10188
10189         for_each_possible_cpu(i)
10190                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10191         return refcnt;
10192 #else
10193         return refcount_read(&dev->dev_refcnt);
10194 #endif
10195 }
10196 EXPORT_SYMBOL(netdev_refcnt_read);
10197
10198 int netdev_unregister_timeout_secs __read_mostly = 10;
10199
10200 #define WAIT_REFS_MIN_MSECS 1
10201 #define WAIT_REFS_MAX_MSECS 250
10202 /**
10203  * netdev_wait_allrefs_any - wait until all references are gone.
10204  * @list: list of net_devices to wait on
10205  *
10206  * This is called when unregistering network devices.
10207  *
10208  * Any protocol or device that holds a reference should register
10209  * for netdevice notification, and cleanup and put back the
10210  * reference if they receive an UNREGISTER event.
10211  * We can get stuck here if buggy protocols don't correctly
10212  * call dev_put.
10213  */
10214 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10215 {
10216         unsigned long rebroadcast_time, warning_time;
10217         struct net_device *dev;
10218         int wait = 0;
10219
10220         rebroadcast_time = warning_time = jiffies;
10221
10222         list_for_each_entry(dev, list, todo_list)
10223                 if (netdev_refcnt_read(dev) == 1)
10224                         return dev;
10225
10226         while (true) {
10227                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10228                         rtnl_lock();
10229
10230                         /* Rebroadcast unregister notification */
10231                         list_for_each_entry(dev, list, todo_list)
10232                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10233
10234                         __rtnl_unlock();
10235                         rcu_barrier();
10236                         rtnl_lock();
10237
10238                         list_for_each_entry(dev, list, todo_list)
10239                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10240                                              &dev->state)) {
10241                                         /* We must not have linkwatch events
10242                                          * pending on unregister. If this
10243                                          * happens, we simply run the queue
10244                                          * unscheduled, resulting in a noop
10245                                          * for this device.
10246                                          */
10247                                         linkwatch_run_queue();
10248                                         break;
10249                                 }
10250
10251                         __rtnl_unlock();
10252
10253                         rebroadcast_time = jiffies;
10254                 }
10255
10256                 if (!wait) {
10257                         rcu_barrier();
10258                         wait = WAIT_REFS_MIN_MSECS;
10259                 } else {
10260                         msleep(wait);
10261                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10262                 }
10263
10264                 list_for_each_entry(dev, list, todo_list)
10265                         if (netdev_refcnt_read(dev) == 1)
10266                                 return dev;
10267
10268                 if (time_after(jiffies, warning_time +
10269                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10270                         list_for_each_entry(dev, list, todo_list) {
10271                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10272                                          dev->name, netdev_refcnt_read(dev));
10273                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10274                         }
10275
10276                         warning_time = jiffies;
10277                 }
10278         }
10279 }
10280
10281 /* The sequence is:
10282  *
10283  *      rtnl_lock();
10284  *      ...
10285  *      register_netdevice(x1);
10286  *      register_netdevice(x2);
10287  *      ...
10288  *      unregister_netdevice(y1);
10289  *      unregister_netdevice(y2);
10290  *      ...
10291  *      rtnl_unlock();
10292  *      free_netdev(y1);
10293  *      free_netdev(y2);
10294  *
10295  * We are invoked by rtnl_unlock().
10296  * This allows us to deal with problems:
10297  * 1) We can delete sysfs objects which invoke hotplug
10298  *    without deadlocking with linkwatch via keventd.
10299  * 2) Since we run with the RTNL semaphore not held, we can sleep
10300  *    safely in order to wait for the netdev refcnt to drop to zero.
10301  *
10302  * We must not return until all unregister events added during
10303  * the interval the lock was held have been completed.
10304  */
10305 void netdev_run_todo(void)
10306 {
10307         struct net_device *dev, *tmp;
10308         struct list_head list;
10309 #ifdef CONFIG_LOCKDEP
10310         struct list_head unlink_list;
10311
10312         list_replace_init(&net_unlink_list, &unlink_list);
10313
10314         while (!list_empty(&unlink_list)) {
10315                 struct net_device *dev = list_first_entry(&unlink_list,
10316                                                           struct net_device,
10317                                                           unlink_list);
10318                 list_del_init(&dev->unlink_list);
10319                 dev->nested_level = dev->lower_level - 1;
10320         }
10321 #endif
10322
10323         /* Snapshot list, allow later requests */
10324         list_replace_init(&net_todo_list, &list);
10325
10326         __rtnl_unlock();
10327
10328         /* Wait for rcu callbacks to finish before next phase */
10329         if (!list_empty(&list))
10330                 rcu_barrier();
10331
10332         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10333                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10334                         netdev_WARN(dev, "run_todo but not unregistering\n");
10335                         list_del(&dev->todo_list);
10336                         continue;
10337                 }
10338
10339                 write_lock(&dev_base_lock);
10340                 dev->reg_state = NETREG_UNREGISTERED;
10341                 write_unlock(&dev_base_lock);
10342                 linkwatch_forget_dev(dev);
10343         }
10344
10345         while (!list_empty(&list)) {
10346                 dev = netdev_wait_allrefs_any(&list);
10347                 list_del(&dev->todo_list);
10348
10349                 /* paranoia */
10350                 BUG_ON(netdev_refcnt_read(dev) != 1);
10351                 BUG_ON(!list_empty(&dev->ptype_all));
10352                 BUG_ON(!list_empty(&dev->ptype_specific));
10353                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10354                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10355
10356                 if (dev->priv_destructor)
10357                         dev->priv_destructor(dev);
10358                 if (dev->needs_free_netdev)
10359                         free_netdev(dev);
10360
10361                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10362                         wake_up(&netdev_unregistering_wq);
10363
10364                 /* Free network device */
10365                 kobject_put(&dev->dev.kobj);
10366         }
10367 }
10368
10369 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10370  * all the same fields in the same order as net_device_stats, with only
10371  * the type differing, but rtnl_link_stats64 may have additional fields
10372  * at the end for newer counters.
10373  */
10374 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10375                              const struct net_device_stats *netdev_stats)
10376 {
10377         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10378         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10379         u64 *dst = (u64 *)stats64;
10380
10381         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10382         for (i = 0; i < n; i++)
10383                 dst[i] = atomic_long_read(&src[i]);
10384         /* zero out counters that only exist in rtnl_link_stats64 */
10385         memset((char *)stats64 + n * sizeof(u64), 0,
10386                sizeof(*stats64) - n * sizeof(u64));
10387 }
10388 EXPORT_SYMBOL(netdev_stats_to_stats64);
10389
10390 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10391 {
10392         struct net_device_core_stats __percpu *p;
10393
10394         p = alloc_percpu_gfp(struct net_device_core_stats,
10395                              GFP_ATOMIC | __GFP_NOWARN);
10396
10397         if (p && cmpxchg(&dev->core_stats, NULL, p))
10398                 free_percpu(p);
10399
10400         /* This READ_ONCE() pairs with the cmpxchg() above */
10401         return READ_ONCE(dev->core_stats);
10402 }
10403 EXPORT_SYMBOL(netdev_core_stats_alloc);
10404
10405 /**
10406  *      dev_get_stats   - get network device statistics
10407  *      @dev: device to get statistics from
10408  *      @storage: place to store stats
10409  *
10410  *      Get network statistics from device. Return @storage.
10411  *      The device driver may provide its own method by setting
10412  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10413  *      otherwise the internal statistics structure is used.
10414  */
10415 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10416                                         struct rtnl_link_stats64 *storage)
10417 {
10418         const struct net_device_ops *ops = dev->netdev_ops;
10419         const struct net_device_core_stats __percpu *p;
10420
10421         if (ops->ndo_get_stats64) {
10422                 memset(storage, 0, sizeof(*storage));
10423                 ops->ndo_get_stats64(dev, storage);
10424         } else if (ops->ndo_get_stats) {
10425                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10426         } else {
10427                 netdev_stats_to_stats64(storage, &dev->stats);
10428         }
10429
10430         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10431         p = READ_ONCE(dev->core_stats);
10432         if (p) {
10433                 const struct net_device_core_stats *core_stats;
10434                 int i;
10435
10436                 for_each_possible_cpu(i) {
10437                         core_stats = per_cpu_ptr(p, i);
10438                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10439                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10440                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10441                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10442                 }
10443         }
10444         return storage;
10445 }
10446 EXPORT_SYMBOL(dev_get_stats);
10447
10448 /**
10449  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10450  *      @s: place to store stats
10451  *      @netstats: per-cpu network stats to read from
10452  *
10453  *      Read per-cpu network statistics and populate the related fields in @s.
10454  */
10455 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10456                            const struct pcpu_sw_netstats __percpu *netstats)
10457 {
10458         int cpu;
10459
10460         for_each_possible_cpu(cpu) {
10461                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10462                 const struct pcpu_sw_netstats *stats;
10463                 unsigned int start;
10464
10465                 stats = per_cpu_ptr(netstats, cpu);
10466                 do {
10467                         start = u64_stats_fetch_begin(&stats->syncp);
10468                         rx_packets = u64_stats_read(&stats->rx_packets);
10469                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10470                         tx_packets = u64_stats_read(&stats->tx_packets);
10471                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10472                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10473
10474                 s->rx_packets += rx_packets;
10475                 s->rx_bytes   += rx_bytes;
10476                 s->tx_packets += tx_packets;
10477                 s->tx_bytes   += tx_bytes;
10478         }
10479 }
10480 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10481
10482 /**
10483  *      dev_get_tstats64 - ndo_get_stats64 implementation
10484  *      @dev: device to get statistics from
10485  *      @s: place to store stats
10486  *
10487  *      Populate @s from dev->stats and dev->tstats. Can be used as
10488  *      ndo_get_stats64() callback.
10489  */
10490 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10491 {
10492         netdev_stats_to_stats64(s, &dev->stats);
10493         dev_fetch_sw_netstats(s, dev->tstats);
10494 }
10495 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10496
10497 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10498 {
10499         struct netdev_queue *queue = dev_ingress_queue(dev);
10500
10501 #ifdef CONFIG_NET_CLS_ACT
10502         if (queue)
10503                 return queue;
10504         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10505         if (!queue)
10506                 return NULL;
10507         netdev_init_one_queue(dev, queue, NULL);
10508         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10509         queue->qdisc_sleeping = &noop_qdisc;
10510         rcu_assign_pointer(dev->ingress_queue, queue);
10511 #endif
10512         return queue;
10513 }
10514
10515 static const struct ethtool_ops default_ethtool_ops;
10516
10517 void netdev_set_default_ethtool_ops(struct net_device *dev,
10518                                     const struct ethtool_ops *ops)
10519 {
10520         if (dev->ethtool_ops == &default_ethtool_ops)
10521                 dev->ethtool_ops = ops;
10522 }
10523 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10524
10525 /**
10526  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10527  * @dev: netdev to enable the IRQ coalescing on
10528  *
10529  * Sets a conservative default for SW IRQ coalescing. Users can use
10530  * sysfs attributes to override the default values.
10531  */
10532 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10533 {
10534         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10535
10536         dev->gro_flush_timeout = 20000;
10537         dev->napi_defer_hard_irqs = 1;
10538 }
10539 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10540
10541 void netdev_freemem(struct net_device *dev)
10542 {
10543         char *addr = (char *)dev - dev->padded;
10544
10545         kvfree(addr);
10546 }
10547
10548 /**
10549  * alloc_netdev_mqs - allocate network device
10550  * @sizeof_priv: size of private data to allocate space for
10551  * @name: device name format string
10552  * @name_assign_type: origin of device name
10553  * @setup: callback to initialize device
10554  * @txqs: the number of TX subqueues to allocate
10555  * @rxqs: the number of RX subqueues to allocate
10556  *
10557  * Allocates a struct net_device with private data area for driver use
10558  * and performs basic initialization.  Also allocates subqueue structs
10559  * for each queue on the device.
10560  */
10561 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10562                 unsigned char name_assign_type,
10563                 void (*setup)(struct net_device *),
10564                 unsigned int txqs, unsigned int rxqs)
10565 {
10566         struct net_device *dev;
10567         unsigned int alloc_size;
10568         struct net_device *p;
10569
10570         BUG_ON(strlen(name) >= sizeof(dev->name));
10571
10572         if (txqs < 1) {
10573                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10574                 return NULL;
10575         }
10576
10577         if (rxqs < 1) {
10578                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10579                 return NULL;
10580         }
10581
10582         alloc_size = sizeof(struct net_device);
10583         if (sizeof_priv) {
10584                 /* ensure 32-byte alignment of private area */
10585                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10586                 alloc_size += sizeof_priv;
10587         }
10588         /* ensure 32-byte alignment of whole construct */
10589         alloc_size += NETDEV_ALIGN - 1;
10590
10591         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10592         if (!p)
10593                 return NULL;
10594
10595         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10596         dev->padded = (char *)dev - (char *)p;
10597
10598         ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10599 #ifdef CONFIG_PCPU_DEV_REFCNT
10600         dev->pcpu_refcnt = alloc_percpu(int);
10601         if (!dev->pcpu_refcnt)
10602                 goto free_dev;
10603         __dev_hold(dev);
10604 #else
10605         refcount_set(&dev->dev_refcnt, 1);
10606 #endif
10607
10608         if (dev_addr_init(dev))
10609                 goto free_pcpu;
10610
10611         dev_mc_init(dev);
10612         dev_uc_init(dev);
10613
10614         dev_net_set(dev, &init_net);
10615
10616         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10617         dev->gso_max_segs = GSO_MAX_SEGS;
10618         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10619         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10620         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10621         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10622         dev->tso_max_segs = TSO_MAX_SEGS;
10623         dev->upper_level = 1;
10624         dev->lower_level = 1;
10625 #ifdef CONFIG_LOCKDEP
10626         dev->nested_level = 0;
10627         INIT_LIST_HEAD(&dev->unlink_list);
10628 #endif
10629
10630         INIT_LIST_HEAD(&dev->napi_list);
10631         INIT_LIST_HEAD(&dev->unreg_list);
10632         INIT_LIST_HEAD(&dev->close_list);
10633         INIT_LIST_HEAD(&dev->link_watch_list);
10634         INIT_LIST_HEAD(&dev->adj_list.upper);
10635         INIT_LIST_HEAD(&dev->adj_list.lower);
10636         INIT_LIST_HEAD(&dev->ptype_all);
10637         INIT_LIST_HEAD(&dev->ptype_specific);
10638         INIT_LIST_HEAD(&dev->net_notifier_list);
10639 #ifdef CONFIG_NET_SCHED
10640         hash_init(dev->qdisc_hash);
10641 #endif
10642         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10643         setup(dev);
10644
10645         if (!dev->tx_queue_len) {
10646                 dev->priv_flags |= IFF_NO_QUEUE;
10647                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10648         }
10649
10650         dev->num_tx_queues = txqs;
10651         dev->real_num_tx_queues = txqs;
10652         if (netif_alloc_netdev_queues(dev))
10653                 goto free_all;
10654
10655         dev->num_rx_queues = rxqs;
10656         dev->real_num_rx_queues = rxqs;
10657         if (netif_alloc_rx_queues(dev))
10658                 goto free_all;
10659
10660         strcpy(dev->name, name);
10661         dev->name_assign_type = name_assign_type;
10662         dev->group = INIT_NETDEV_GROUP;
10663         if (!dev->ethtool_ops)
10664                 dev->ethtool_ops = &default_ethtool_ops;
10665
10666         nf_hook_netdev_init(dev);
10667
10668         return dev;
10669
10670 free_all:
10671         free_netdev(dev);
10672         return NULL;
10673
10674 free_pcpu:
10675 #ifdef CONFIG_PCPU_DEV_REFCNT
10676         free_percpu(dev->pcpu_refcnt);
10677 free_dev:
10678 #endif
10679         netdev_freemem(dev);
10680         return NULL;
10681 }
10682 EXPORT_SYMBOL(alloc_netdev_mqs);
10683
10684 /**
10685  * free_netdev - free network device
10686  * @dev: device
10687  *
10688  * This function does the last stage of destroying an allocated device
10689  * interface. The reference to the device object is released. If this
10690  * is the last reference then it will be freed.Must be called in process
10691  * context.
10692  */
10693 void free_netdev(struct net_device *dev)
10694 {
10695         struct napi_struct *p, *n;
10696
10697         might_sleep();
10698
10699         /* When called immediately after register_netdevice() failed the unwind
10700          * handling may still be dismantling the device. Handle that case by
10701          * deferring the free.
10702          */
10703         if (dev->reg_state == NETREG_UNREGISTERING) {
10704                 ASSERT_RTNL();
10705                 dev->needs_free_netdev = true;
10706                 return;
10707         }
10708
10709         netif_free_tx_queues(dev);
10710         netif_free_rx_queues(dev);
10711
10712         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10713
10714         /* Flush device addresses */
10715         dev_addr_flush(dev);
10716
10717         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10718                 netif_napi_del(p);
10719
10720         ref_tracker_dir_exit(&dev->refcnt_tracker);
10721 #ifdef CONFIG_PCPU_DEV_REFCNT
10722         free_percpu(dev->pcpu_refcnt);
10723         dev->pcpu_refcnt = NULL;
10724 #endif
10725         free_percpu(dev->core_stats);
10726         dev->core_stats = NULL;
10727         free_percpu(dev->xdp_bulkq);
10728         dev->xdp_bulkq = NULL;
10729
10730         /*  Compatibility with error handling in drivers */
10731         if (dev->reg_state == NETREG_UNINITIALIZED) {
10732                 netdev_freemem(dev);
10733                 return;
10734         }
10735
10736         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10737         dev->reg_state = NETREG_RELEASED;
10738
10739         /* will free via device release */
10740         put_device(&dev->dev);
10741 }
10742 EXPORT_SYMBOL(free_netdev);
10743
10744 /**
10745  *      synchronize_net -  Synchronize with packet receive processing
10746  *
10747  *      Wait for packets currently being received to be done.
10748  *      Does not block later packets from starting.
10749  */
10750 void synchronize_net(void)
10751 {
10752         might_sleep();
10753         if (rtnl_is_locked())
10754                 synchronize_rcu_expedited();
10755         else
10756                 synchronize_rcu();
10757 }
10758 EXPORT_SYMBOL(synchronize_net);
10759
10760 /**
10761  *      unregister_netdevice_queue - remove device from the kernel
10762  *      @dev: device
10763  *      @head: list
10764  *
10765  *      This function shuts down a device interface and removes it
10766  *      from the kernel tables.
10767  *      If head not NULL, device is queued to be unregistered later.
10768  *
10769  *      Callers must hold the rtnl semaphore.  You may want
10770  *      unregister_netdev() instead of this.
10771  */
10772
10773 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10774 {
10775         ASSERT_RTNL();
10776
10777         if (head) {
10778                 list_move_tail(&dev->unreg_list, head);
10779         } else {
10780                 LIST_HEAD(single);
10781
10782                 list_add(&dev->unreg_list, &single);
10783                 unregister_netdevice_many(&single);
10784         }
10785 }
10786 EXPORT_SYMBOL(unregister_netdevice_queue);
10787
10788 void unregister_netdevice_many_notify(struct list_head *head,
10789                                       u32 portid, const struct nlmsghdr *nlh)
10790 {
10791         struct net_device *dev, *tmp;
10792         LIST_HEAD(close_head);
10793
10794         BUG_ON(dev_boot_phase);
10795         ASSERT_RTNL();
10796
10797         if (list_empty(head))
10798                 return;
10799
10800         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10801                 /* Some devices call without registering
10802                  * for initialization unwind. Remove those
10803                  * devices and proceed with the remaining.
10804                  */
10805                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10806                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10807                                  dev->name, dev);
10808
10809                         WARN_ON(1);
10810                         list_del(&dev->unreg_list);
10811                         continue;
10812                 }
10813                 dev->dismantle = true;
10814                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10815         }
10816
10817         /* If device is running, close it first. */
10818         list_for_each_entry(dev, head, unreg_list)
10819                 list_add_tail(&dev->close_list, &close_head);
10820         dev_close_many(&close_head, true);
10821
10822         list_for_each_entry(dev, head, unreg_list) {
10823                 /* And unlink it from device chain. */
10824                 write_lock(&dev_base_lock);
10825                 unlist_netdevice(dev, false);
10826                 dev->reg_state = NETREG_UNREGISTERING;
10827                 write_unlock(&dev_base_lock);
10828         }
10829         flush_all_backlogs();
10830
10831         synchronize_net();
10832
10833         list_for_each_entry(dev, head, unreg_list) {
10834                 struct sk_buff *skb = NULL;
10835
10836                 /* Shutdown queueing discipline. */
10837                 dev_shutdown(dev);
10838
10839                 dev_xdp_uninstall(dev);
10840                 bpf_dev_bound_netdev_unregister(dev);
10841
10842                 netdev_offload_xstats_disable_all(dev);
10843
10844                 /* Notify protocols, that we are about to destroy
10845                  * this device. They should clean all the things.
10846                  */
10847                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10848
10849                 if (!dev->rtnl_link_ops ||
10850                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10851                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10852                                                      GFP_KERNEL, NULL, 0,
10853                                                      portid, nlmsg_seq(nlh));
10854
10855                 /*
10856                  *      Flush the unicast and multicast chains
10857                  */
10858                 dev_uc_flush(dev);
10859                 dev_mc_flush(dev);
10860
10861                 netdev_name_node_alt_flush(dev);
10862                 netdev_name_node_free(dev->name_node);
10863
10864                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10865
10866                 if (dev->netdev_ops->ndo_uninit)
10867                         dev->netdev_ops->ndo_uninit(dev);
10868
10869                 if (skb)
10870                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10871
10872                 /* Notifier chain MUST detach us all upper devices. */
10873                 WARN_ON(netdev_has_any_upper_dev(dev));
10874                 WARN_ON(netdev_has_any_lower_dev(dev));
10875
10876                 /* Remove entries from kobject tree */
10877                 netdev_unregister_kobject(dev);
10878 #ifdef CONFIG_XPS
10879                 /* Remove XPS queueing entries */
10880                 netif_reset_xps_queues_gt(dev, 0);
10881 #endif
10882         }
10883
10884         synchronize_net();
10885
10886         list_for_each_entry(dev, head, unreg_list) {
10887                 netdev_put(dev, &dev->dev_registered_tracker);
10888                 net_set_todo(dev);
10889         }
10890
10891         list_del(head);
10892 }
10893
10894 /**
10895  *      unregister_netdevice_many - unregister many devices
10896  *      @head: list of devices
10897  *
10898  *  Note: As most callers use a stack allocated list_head,
10899  *  we force a list_del() to make sure stack wont be corrupted later.
10900  */
10901 void unregister_netdevice_many(struct list_head *head)
10902 {
10903         unregister_netdevice_many_notify(head, 0, NULL);
10904 }
10905 EXPORT_SYMBOL(unregister_netdevice_many);
10906
10907 /**
10908  *      unregister_netdev - remove device from the kernel
10909  *      @dev: device
10910  *
10911  *      This function shuts down a device interface and removes it
10912  *      from the kernel tables.
10913  *
10914  *      This is just a wrapper for unregister_netdevice that takes
10915  *      the rtnl semaphore.  In general you want to use this and not
10916  *      unregister_netdevice.
10917  */
10918 void unregister_netdev(struct net_device *dev)
10919 {
10920         rtnl_lock();
10921         unregister_netdevice(dev);
10922         rtnl_unlock();
10923 }
10924 EXPORT_SYMBOL(unregister_netdev);
10925
10926 /**
10927  *      __dev_change_net_namespace - move device to different nethost namespace
10928  *      @dev: device
10929  *      @net: network namespace
10930  *      @pat: If not NULL name pattern to try if the current device name
10931  *            is already taken in the destination network namespace.
10932  *      @new_ifindex: If not zero, specifies device index in the target
10933  *                    namespace.
10934  *
10935  *      This function shuts down a device interface and moves it
10936  *      to a new network namespace. On success 0 is returned, on
10937  *      a failure a netagive errno code is returned.
10938  *
10939  *      Callers must hold the rtnl semaphore.
10940  */
10941
10942 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10943                                const char *pat, int new_ifindex)
10944 {
10945         struct net *net_old = dev_net(dev);
10946         int err, new_nsid;
10947
10948         ASSERT_RTNL();
10949
10950         /* Don't allow namespace local devices to be moved. */
10951         err = -EINVAL;
10952         if (dev->features & NETIF_F_NETNS_LOCAL)
10953                 goto out;
10954
10955         /* Ensure the device has been registrered */
10956         if (dev->reg_state != NETREG_REGISTERED)
10957                 goto out;
10958
10959         /* Get out if there is nothing todo */
10960         err = 0;
10961         if (net_eq(net_old, net))
10962                 goto out;
10963
10964         /* Pick the destination device name, and ensure
10965          * we can use it in the destination network namespace.
10966          */
10967         err = -EEXIST;
10968         if (netdev_name_in_use(net, dev->name)) {
10969                 /* We get here if we can't use the current device name */
10970                 if (!pat)
10971                         goto out;
10972                 err = dev_get_valid_name(net, dev, pat);
10973                 if (err < 0)
10974                         goto out;
10975         }
10976
10977         /* Check that new_ifindex isn't used yet. */
10978         err = -EBUSY;
10979         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10980                 goto out;
10981
10982         /*
10983          * And now a mini version of register_netdevice unregister_netdevice.
10984          */
10985
10986         /* If device is running close it first. */
10987         dev_close(dev);
10988
10989         /* And unlink it from device chain */
10990         unlist_netdevice(dev, true);
10991
10992         synchronize_net();
10993
10994         /* Shutdown queueing discipline. */
10995         dev_shutdown(dev);
10996
10997         /* Notify protocols, that we are about to destroy
10998          * this device. They should clean all the things.
10999          *
11000          * Note that dev->reg_state stays at NETREG_REGISTERED.
11001          * This is wanted because this way 8021q and macvlan know
11002          * the device is just moving and can keep their slaves up.
11003          */
11004         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11005         rcu_barrier();
11006
11007         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11008         /* If there is an ifindex conflict assign a new one */
11009         if (!new_ifindex) {
11010                 if (__dev_get_by_index(net, dev->ifindex))
11011                         new_ifindex = dev_new_index(net);
11012                 else
11013                         new_ifindex = dev->ifindex;
11014         }
11015
11016         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11017                             new_ifindex);
11018
11019         /*
11020          *      Flush the unicast and multicast chains
11021          */
11022         dev_uc_flush(dev);
11023         dev_mc_flush(dev);
11024
11025         /* Send a netdev-removed uevent to the old namespace */
11026         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11027         netdev_adjacent_del_links(dev);
11028
11029         /* Move per-net netdevice notifiers that are following the netdevice */
11030         move_netdevice_notifiers_dev_net(dev, net);
11031
11032         /* Actually switch the network namespace */
11033         dev_net_set(dev, net);
11034         dev->ifindex = new_ifindex;
11035
11036         /* Send a netdev-add uevent to the new namespace */
11037         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11038         netdev_adjacent_add_links(dev);
11039
11040         /* Fixup kobjects */
11041         err = device_rename(&dev->dev, dev->name);
11042         WARN_ON(err);
11043
11044         /* Adapt owner in case owning user namespace of target network
11045          * namespace is different from the original one.
11046          */
11047         err = netdev_change_owner(dev, net_old, net);
11048         WARN_ON(err);
11049
11050         /* Add the device back in the hashes */
11051         list_netdevice(dev);
11052
11053         /* Notify protocols, that a new device appeared. */
11054         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11055
11056         /*
11057          *      Prevent userspace races by waiting until the network
11058          *      device is fully setup before sending notifications.
11059          */
11060         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11061
11062         synchronize_net();
11063         err = 0;
11064 out:
11065         return err;
11066 }
11067 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11068
11069 static int dev_cpu_dead(unsigned int oldcpu)
11070 {
11071         struct sk_buff **list_skb;
11072         struct sk_buff *skb;
11073         unsigned int cpu;
11074         struct softnet_data *sd, *oldsd, *remsd = NULL;
11075
11076         local_irq_disable();
11077         cpu = smp_processor_id();
11078         sd = &per_cpu(softnet_data, cpu);
11079         oldsd = &per_cpu(softnet_data, oldcpu);
11080
11081         /* Find end of our completion_queue. */
11082         list_skb = &sd->completion_queue;
11083         while (*list_skb)
11084                 list_skb = &(*list_skb)->next;
11085         /* Append completion queue from offline CPU. */
11086         *list_skb = oldsd->completion_queue;
11087         oldsd->completion_queue = NULL;
11088
11089         /* Append output queue from offline CPU. */
11090         if (oldsd->output_queue) {
11091                 *sd->output_queue_tailp = oldsd->output_queue;
11092                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11093                 oldsd->output_queue = NULL;
11094                 oldsd->output_queue_tailp = &oldsd->output_queue;
11095         }
11096         /* Append NAPI poll list from offline CPU, with one exception :
11097          * process_backlog() must be called by cpu owning percpu backlog.
11098          * We properly handle process_queue & input_pkt_queue later.
11099          */
11100         while (!list_empty(&oldsd->poll_list)) {
11101                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11102                                                             struct napi_struct,
11103                                                             poll_list);
11104
11105                 list_del_init(&napi->poll_list);
11106                 if (napi->poll == process_backlog)
11107                         napi->state = 0;
11108                 else
11109                         ____napi_schedule(sd, napi);
11110         }
11111
11112         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11113         local_irq_enable();
11114
11115 #ifdef CONFIG_RPS
11116         remsd = oldsd->rps_ipi_list;
11117         oldsd->rps_ipi_list = NULL;
11118 #endif
11119         /* send out pending IPI's on offline CPU */
11120         net_rps_send_ipi(remsd);
11121
11122         /* Process offline CPU's input_pkt_queue */
11123         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11124                 netif_rx(skb);
11125                 input_queue_head_incr(oldsd);
11126         }
11127         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11128                 netif_rx(skb);
11129                 input_queue_head_incr(oldsd);
11130         }
11131
11132         return 0;
11133 }
11134
11135 /**
11136  *      netdev_increment_features - increment feature set by one
11137  *      @all: current feature set
11138  *      @one: new feature set
11139  *      @mask: mask feature set
11140  *
11141  *      Computes a new feature set after adding a device with feature set
11142  *      @one to the master device with current feature set @all.  Will not
11143  *      enable anything that is off in @mask. Returns the new feature set.
11144  */
11145 netdev_features_t netdev_increment_features(netdev_features_t all,
11146         netdev_features_t one, netdev_features_t mask)
11147 {
11148         if (mask & NETIF_F_HW_CSUM)
11149                 mask |= NETIF_F_CSUM_MASK;
11150         mask |= NETIF_F_VLAN_CHALLENGED;
11151
11152         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11153         all &= one | ~NETIF_F_ALL_FOR_ALL;
11154
11155         /* If one device supports hw checksumming, set for all. */
11156         if (all & NETIF_F_HW_CSUM)
11157                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11158
11159         return all;
11160 }
11161 EXPORT_SYMBOL(netdev_increment_features);
11162
11163 static struct hlist_head * __net_init netdev_create_hash(void)
11164 {
11165         int i;
11166         struct hlist_head *hash;
11167
11168         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11169         if (hash != NULL)
11170                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11171                         INIT_HLIST_HEAD(&hash[i]);
11172
11173         return hash;
11174 }
11175
11176 /* Initialize per network namespace state */
11177 static int __net_init netdev_init(struct net *net)
11178 {
11179         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11180                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11181
11182         INIT_LIST_HEAD(&net->dev_base_head);
11183
11184         net->dev_name_head = netdev_create_hash();
11185         if (net->dev_name_head == NULL)
11186                 goto err_name;
11187
11188         net->dev_index_head = netdev_create_hash();
11189         if (net->dev_index_head == NULL)
11190                 goto err_idx;
11191
11192         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11193
11194         return 0;
11195
11196 err_idx:
11197         kfree(net->dev_name_head);
11198 err_name:
11199         return -ENOMEM;
11200 }
11201
11202 /**
11203  *      netdev_drivername - network driver for the device
11204  *      @dev: network device
11205  *
11206  *      Determine network driver for device.
11207  */
11208 const char *netdev_drivername(const struct net_device *dev)
11209 {
11210         const struct device_driver *driver;
11211         const struct device *parent;
11212         const char *empty = "";
11213
11214         parent = dev->dev.parent;
11215         if (!parent)
11216                 return empty;
11217
11218         driver = parent->driver;
11219         if (driver && driver->name)
11220                 return driver->name;
11221         return empty;
11222 }
11223
11224 static void __netdev_printk(const char *level, const struct net_device *dev,
11225                             struct va_format *vaf)
11226 {
11227         if (dev && dev->dev.parent) {
11228                 dev_printk_emit(level[1] - '0',
11229                                 dev->dev.parent,
11230                                 "%s %s %s%s: %pV",
11231                                 dev_driver_string(dev->dev.parent),
11232                                 dev_name(dev->dev.parent),
11233                                 netdev_name(dev), netdev_reg_state(dev),
11234                                 vaf);
11235         } else if (dev) {
11236                 printk("%s%s%s: %pV",
11237                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11238         } else {
11239                 printk("%s(NULL net_device): %pV", level, vaf);
11240         }
11241 }
11242
11243 void netdev_printk(const char *level, const struct net_device *dev,
11244                    const char *format, ...)
11245 {
11246         struct va_format vaf;
11247         va_list args;
11248
11249         va_start(args, format);
11250
11251         vaf.fmt = format;
11252         vaf.va = &args;
11253
11254         __netdev_printk(level, dev, &vaf);
11255
11256         va_end(args);
11257 }
11258 EXPORT_SYMBOL(netdev_printk);
11259
11260 #define define_netdev_printk_level(func, level)                 \
11261 void func(const struct net_device *dev, const char *fmt, ...)   \
11262 {                                                               \
11263         struct va_format vaf;                                   \
11264         va_list args;                                           \
11265                                                                 \
11266         va_start(args, fmt);                                    \
11267                                                                 \
11268         vaf.fmt = fmt;                                          \
11269         vaf.va = &args;                                         \
11270                                                                 \
11271         __netdev_printk(level, dev, &vaf);                      \
11272                                                                 \
11273         va_end(args);                                           \
11274 }                                                               \
11275 EXPORT_SYMBOL(func);
11276
11277 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11278 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11279 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11280 define_netdev_printk_level(netdev_err, KERN_ERR);
11281 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11282 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11283 define_netdev_printk_level(netdev_info, KERN_INFO);
11284
11285 static void __net_exit netdev_exit(struct net *net)
11286 {
11287         kfree(net->dev_name_head);
11288         kfree(net->dev_index_head);
11289         if (net != &init_net)
11290                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11291 }
11292
11293 static struct pernet_operations __net_initdata netdev_net_ops = {
11294         .init = netdev_init,
11295         .exit = netdev_exit,
11296 };
11297
11298 static void __net_exit default_device_exit_net(struct net *net)
11299 {
11300         struct net_device *dev, *aux;
11301         /*
11302          * Push all migratable network devices back to the
11303          * initial network namespace
11304          */
11305         ASSERT_RTNL();
11306         for_each_netdev_safe(net, dev, aux) {
11307                 int err;
11308                 char fb_name[IFNAMSIZ];
11309
11310                 /* Ignore unmoveable devices (i.e. loopback) */
11311                 if (dev->features & NETIF_F_NETNS_LOCAL)
11312                         continue;
11313
11314                 /* Leave virtual devices for the generic cleanup */
11315                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11316                         continue;
11317
11318                 /* Push remaining network devices to init_net */
11319                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11320                 if (netdev_name_in_use(&init_net, fb_name))
11321                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11322                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11323                 if (err) {
11324                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11325                                  __func__, dev->name, err);
11326                         BUG();
11327                 }
11328         }
11329 }
11330
11331 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11332 {
11333         /* At exit all network devices most be removed from a network
11334          * namespace.  Do this in the reverse order of registration.
11335          * Do this across as many network namespaces as possible to
11336          * improve batching efficiency.
11337          */
11338         struct net_device *dev;
11339         struct net *net;
11340         LIST_HEAD(dev_kill_list);
11341
11342         rtnl_lock();
11343         list_for_each_entry(net, net_list, exit_list) {
11344                 default_device_exit_net(net);
11345                 cond_resched();
11346         }
11347
11348         list_for_each_entry(net, net_list, exit_list) {
11349                 for_each_netdev_reverse(net, dev) {
11350                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11351                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11352                         else
11353                                 unregister_netdevice_queue(dev, &dev_kill_list);
11354                 }
11355         }
11356         unregister_netdevice_many(&dev_kill_list);
11357         rtnl_unlock();
11358 }
11359
11360 static struct pernet_operations __net_initdata default_device_ops = {
11361         .exit_batch = default_device_exit_batch,
11362 };
11363
11364 /*
11365  *      Initialize the DEV module. At boot time this walks the device list and
11366  *      unhooks any devices that fail to initialise (normally hardware not
11367  *      present) and leaves us with a valid list of present and active devices.
11368  *
11369  */
11370
11371 /*
11372  *       This is called single threaded during boot, so no need
11373  *       to take the rtnl semaphore.
11374  */
11375 static int __init net_dev_init(void)
11376 {
11377         int i, rc = -ENOMEM;
11378
11379         BUG_ON(!dev_boot_phase);
11380
11381         if (dev_proc_init())
11382                 goto out;
11383
11384         if (netdev_kobject_init())
11385                 goto out;
11386
11387         INIT_LIST_HEAD(&ptype_all);
11388         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11389                 INIT_LIST_HEAD(&ptype_base[i]);
11390
11391         if (register_pernet_subsys(&netdev_net_ops))
11392                 goto out;
11393
11394         /*
11395          *      Initialise the packet receive queues.
11396          */
11397
11398         for_each_possible_cpu(i) {
11399                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11400                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11401
11402                 INIT_WORK(flush, flush_backlog);
11403
11404                 skb_queue_head_init(&sd->input_pkt_queue);
11405                 skb_queue_head_init(&sd->process_queue);
11406 #ifdef CONFIG_XFRM_OFFLOAD
11407                 skb_queue_head_init(&sd->xfrm_backlog);
11408 #endif
11409                 INIT_LIST_HEAD(&sd->poll_list);
11410                 sd->output_queue_tailp = &sd->output_queue;
11411 #ifdef CONFIG_RPS
11412                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11413                 sd->cpu = i;
11414 #endif
11415                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11416                 spin_lock_init(&sd->defer_lock);
11417
11418                 init_gro_hash(&sd->backlog);
11419                 sd->backlog.poll = process_backlog;
11420                 sd->backlog.weight = weight_p;
11421         }
11422
11423         dev_boot_phase = 0;
11424
11425         /* The loopback device is special if any other network devices
11426          * is present in a network namespace the loopback device must
11427          * be present. Since we now dynamically allocate and free the
11428          * loopback device ensure this invariant is maintained by
11429          * keeping the loopback device as the first device on the
11430          * list of network devices.  Ensuring the loopback devices
11431          * is the first device that appears and the last network device
11432          * that disappears.
11433          */
11434         if (register_pernet_device(&loopback_net_ops))
11435                 goto out;
11436
11437         if (register_pernet_device(&default_device_ops))
11438                 goto out;
11439
11440         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11441         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11442
11443         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11444                                        NULL, dev_cpu_dead);
11445         WARN_ON(rc < 0);
11446         rc = 0;
11447 out:
11448         return rc;
11449 }
11450
11451 subsys_initcall(net_dev_init);