netfilter: Introduce egress hook
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_netdev.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163                                            struct net_device *dev,
164                                            struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232                                                        const char *name)
233 {
234         struct netdev_name_node *name_node;
235
236         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237         if (!name_node)
238                 return NULL;
239         INIT_HLIST_NODE(&name_node->hlist);
240         name_node->dev = dev;
241         name_node->name = name;
242         return name_node;
243 }
244
245 static struct netdev_name_node *
246 netdev_name_node_head_alloc(struct net_device *dev)
247 {
248         struct netdev_name_node *name_node;
249
250         name_node = netdev_name_node_alloc(dev, dev->name);
251         if (!name_node)
252                 return NULL;
253         INIT_LIST_HEAD(&name_node->list);
254         return name_node;
255 }
256
257 static void netdev_name_node_free(struct netdev_name_node *name_node)
258 {
259         kfree(name_node);
260 }
261
262 static void netdev_name_node_add(struct net *net,
263                                  struct netdev_name_node *name_node)
264 {
265         hlist_add_head_rcu(&name_node->hlist,
266                            dev_name_hash(net, name_node->name));
267 }
268
269 static void netdev_name_node_del(struct netdev_name_node *name_node)
270 {
271         hlist_del_rcu(&name_node->hlist);
272 }
273
274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275                                                         const char *name)
276 {
277         struct hlist_head *head = dev_name_hash(net, name);
278         struct netdev_name_node *name_node;
279
280         hlist_for_each_entry(name_node, head, hlist)
281                 if (!strcmp(name_node->name, name))
282                         return name_node;
283         return NULL;
284 }
285
286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287                                                             const char *name)
288 {
289         struct hlist_head *head = dev_name_hash(net, name);
290         struct netdev_name_node *name_node;
291
292         hlist_for_each_entry_rcu(name_node, head, hlist)
293                 if (!strcmp(name_node->name, name))
294                         return name_node;
295         return NULL;
296 }
297
298 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299 {
300         struct netdev_name_node *name_node;
301         struct net *net = dev_net(dev);
302
303         name_node = netdev_name_node_lookup(net, name);
304         if (name_node)
305                 return -EEXIST;
306         name_node = netdev_name_node_alloc(dev, name);
307         if (!name_node)
308                 return -ENOMEM;
309         netdev_name_node_add(net, name_node);
310         /* The node that holds dev->name acts as a head of per-device list. */
311         list_add_tail(&name_node->list, &dev->name_node->list);
312
313         return 0;
314 }
315 EXPORT_SYMBOL(netdev_name_node_alt_create);
316
317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318 {
319         list_del(&name_node->list);
320         netdev_name_node_del(name_node);
321         kfree(name_node->name);
322         netdev_name_node_free(name_node);
323 }
324
325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326 {
327         struct netdev_name_node *name_node;
328         struct net *net = dev_net(dev);
329
330         name_node = netdev_name_node_lookup(net, name);
331         if (!name_node)
332                 return -ENOENT;
333         /* lookup might have found our primary name or a name belonging
334          * to another device.
335          */
336         if (name_node == dev->name_node || name_node->dev != dev)
337                 return -EINVAL;
338
339         __netdev_name_node_alt_destroy(name_node);
340
341         return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344
345 static void netdev_name_node_alt_flush(struct net_device *dev)
346 {
347         struct netdev_name_node *name_node, *tmp;
348
349         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350                 __netdev_name_node_alt_destroy(name_node);
351 }
352
353 /* Device list insertion */
354 static void list_netdevice(struct net_device *dev)
355 {
356         struct net *net = dev_net(dev);
357
358         ASSERT_RTNL();
359
360         write_lock_bh(&dev_base_lock);
361         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
362         netdev_name_node_add(net, dev->name_node);
363         hlist_add_head_rcu(&dev->index_hlist,
364                            dev_index_hash(net, dev->ifindex));
365         write_unlock_bh(&dev_base_lock);
366
367         dev_base_seq_inc(net);
368 }
369
370 /* Device list removal
371  * caller must respect a RCU grace period before freeing/reusing dev
372  */
373 static void unlist_netdevice(struct net_device *dev)
374 {
375         ASSERT_RTNL();
376
377         /* Unlink dev from the device chain */
378         write_lock_bh(&dev_base_lock);
379         list_del_rcu(&dev->dev_list);
380         netdev_name_node_del(dev->name_node);
381         hlist_del_rcu(&dev->index_hlist);
382         write_unlock_bh(&dev_base_lock);
383
384         dev_base_seq_inc(dev_net(dev));
385 }
386
387 /*
388  *      Our notifier list
389  */
390
391 static RAW_NOTIFIER_HEAD(netdev_chain);
392
393 /*
394  *      Device drivers call our routines to queue packets here. We empty the
395  *      queue in the local softnet handler.
396  */
397
398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
399 EXPORT_PER_CPU_SYMBOL(softnet_data);
400
401 /*******************************************************************************
402  *
403  *              Protocol management and registration routines
404  *
405  *******************************************************************************/
406
407
408 /*
409  *      Add a protocol ID to the list. Now that the input handler is
410  *      smarter we can dispense with all the messy stuff that used to be
411  *      here.
412  *
413  *      BEWARE!!! Protocol handlers, mangling input packets,
414  *      MUST BE last in hash buckets and checking protocol handlers
415  *      MUST start from promiscuous ptype_all chain in net_bh.
416  *      It is true now, do not change it.
417  *      Explanation follows: if protocol handler, mangling packet, will
418  *      be the first on list, it is not able to sense, that packet
419  *      is cloned and should be copied-on-write, so that it will
420  *      change it and subsequent readers will get broken packet.
421  *                                                      --ANK (980803)
422  */
423
424 static inline struct list_head *ptype_head(const struct packet_type *pt)
425 {
426         if (pt->type == htons(ETH_P_ALL))
427                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
428         else
429                 return pt->dev ? &pt->dev->ptype_specific :
430                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
431 }
432
433 /**
434  *      dev_add_pack - add packet handler
435  *      @pt: packet type declaration
436  *
437  *      Add a protocol handler to the networking stack. The passed &packet_type
438  *      is linked into kernel lists and may not be freed until it has been
439  *      removed from the kernel lists.
440  *
441  *      This call does not sleep therefore it can not
442  *      guarantee all CPU's that are in middle of receiving packets
443  *      will see the new packet type (until the next received packet).
444  */
445
446 void dev_add_pack(struct packet_type *pt)
447 {
448         struct list_head *head = ptype_head(pt);
449
450         spin_lock(&ptype_lock);
451         list_add_rcu(&pt->list, head);
452         spin_unlock(&ptype_lock);
453 }
454 EXPORT_SYMBOL(dev_add_pack);
455
456 /**
457  *      __dev_remove_pack        - remove packet handler
458  *      @pt: packet type declaration
459  *
460  *      Remove a protocol handler that was previously added to the kernel
461  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
462  *      from the kernel lists and can be freed or reused once this function
463  *      returns.
464  *
465  *      The packet type might still be in use by receivers
466  *      and must not be freed until after all the CPU's have gone
467  *      through a quiescent state.
468  */
469 void __dev_remove_pack(struct packet_type *pt)
470 {
471         struct list_head *head = ptype_head(pt);
472         struct packet_type *pt1;
473
474         spin_lock(&ptype_lock);
475
476         list_for_each_entry(pt1, head, list) {
477                 if (pt == pt1) {
478                         list_del_rcu(&pt->list);
479                         goto out;
480                 }
481         }
482
483         pr_warn("dev_remove_pack: %p not found\n", pt);
484 out:
485         spin_unlock(&ptype_lock);
486 }
487 EXPORT_SYMBOL(__dev_remove_pack);
488
489 /**
490  *      dev_remove_pack  - remove packet handler
491  *      @pt: packet type declaration
492  *
493  *      Remove a protocol handler that was previously added to the kernel
494  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
495  *      from the kernel lists and can be freed or reused once this function
496  *      returns.
497  *
498  *      This call sleeps to guarantee that no CPU is looking at the packet
499  *      type after return.
500  */
501 void dev_remove_pack(struct packet_type *pt)
502 {
503         __dev_remove_pack(pt);
504
505         synchronize_net();
506 }
507 EXPORT_SYMBOL(dev_remove_pack);
508
509
510 /**
511  *      dev_add_offload - register offload handlers
512  *      @po: protocol offload declaration
513  *
514  *      Add protocol offload handlers to the networking stack. The passed
515  *      &proto_offload is linked into kernel lists and may not be freed until
516  *      it has been removed from the kernel lists.
517  *
518  *      This call does not sleep therefore it can not
519  *      guarantee all CPU's that are in middle of receiving packets
520  *      will see the new offload handlers (until the next received packet).
521  */
522 void dev_add_offload(struct packet_offload *po)
523 {
524         struct packet_offload *elem;
525
526         spin_lock(&offload_lock);
527         list_for_each_entry(elem, &offload_base, list) {
528                 if (po->priority < elem->priority)
529                         break;
530         }
531         list_add_rcu(&po->list, elem->list.prev);
532         spin_unlock(&offload_lock);
533 }
534 EXPORT_SYMBOL(dev_add_offload);
535
536 /**
537  *      __dev_remove_offload     - remove offload handler
538  *      @po: packet offload declaration
539  *
540  *      Remove a protocol offload handler that was previously added to the
541  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
542  *      is removed from the kernel lists and can be freed or reused once this
543  *      function returns.
544  *
545  *      The packet type might still be in use by receivers
546  *      and must not be freed until after all the CPU's have gone
547  *      through a quiescent state.
548  */
549 static void __dev_remove_offload(struct packet_offload *po)
550 {
551         struct list_head *head = &offload_base;
552         struct packet_offload *po1;
553
554         spin_lock(&offload_lock);
555
556         list_for_each_entry(po1, head, list) {
557                 if (po == po1) {
558                         list_del_rcu(&po->list);
559                         goto out;
560                 }
561         }
562
563         pr_warn("dev_remove_offload: %p not found\n", po);
564 out:
565         spin_unlock(&offload_lock);
566 }
567
568 /**
569  *      dev_remove_offload       - remove packet offload handler
570  *      @po: packet offload declaration
571  *
572  *      Remove a packet offload handler that was previously added to the kernel
573  *      offload handlers by dev_add_offload(). The passed &offload_type is
574  *      removed from the kernel lists and can be freed or reused once this
575  *      function returns.
576  *
577  *      This call sleeps to guarantee that no CPU is looking at the packet
578  *      type after return.
579  */
580 void dev_remove_offload(struct packet_offload *po)
581 {
582         __dev_remove_offload(po);
583
584         synchronize_net();
585 }
586 EXPORT_SYMBOL(dev_remove_offload);
587
588 /******************************************************************************
589  *
590  *                    Device Boot-time Settings Routines
591  *
592  ******************************************************************************/
593
594 /* Boot time configuration table */
595 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
596
597 /**
598  *      netdev_boot_setup_add   - add new setup entry
599  *      @name: name of the device
600  *      @map: configured settings for the device
601  *
602  *      Adds new setup entry to the dev_boot_setup list.  The function
603  *      returns 0 on error and 1 on success.  This is a generic routine to
604  *      all netdevices.
605  */
606 static int netdev_boot_setup_add(char *name, struct ifmap *map)
607 {
608         struct netdev_boot_setup *s;
609         int i;
610
611         s = dev_boot_setup;
612         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
613                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
614                         memset(s[i].name, 0, sizeof(s[i].name));
615                         strlcpy(s[i].name, name, IFNAMSIZ);
616                         memcpy(&s[i].map, map, sizeof(s[i].map));
617                         break;
618                 }
619         }
620
621         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
622 }
623
624 /**
625  * netdev_boot_setup_check      - check boot time settings
626  * @dev: the netdevice
627  *
628  * Check boot time settings for the device.
629  * The found settings are set for the device to be used
630  * later in the device probing.
631  * Returns 0 if no settings found, 1 if they are.
632  */
633 int netdev_boot_setup_check(struct net_device *dev)
634 {
635         struct netdev_boot_setup *s = dev_boot_setup;
636         int i;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
639                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
640                     !strcmp(dev->name, s[i].name)) {
641                         dev->irq = s[i].map.irq;
642                         dev->base_addr = s[i].map.base_addr;
643                         dev->mem_start = s[i].map.mem_start;
644                         dev->mem_end = s[i].map.mem_end;
645                         return 1;
646                 }
647         }
648         return 0;
649 }
650 EXPORT_SYMBOL(netdev_boot_setup_check);
651
652
653 /**
654  * netdev_boot_base     - get address from boot time settings
655  * @prefix: prefix for network device
656  * @unit: id for network device
657  *
658  * Check boot time settings for the base address of device.
659  * The found settings are set for the device to be used
660  * later in the device probing.
661  * Returns 0 if no settings found.
662  */
663 unsigned long netdev_boot_base(const char *prefix, int unit)
664 {
665         const struct netdev_boot_setup *s = dev_boot_setup;
666         char name[IFNAMSIZ];
667         int i;
668
669         sprintf(name, "%s%d", prefix, unit);
670
671         /*
672          * If device already registered then return base of 1
673          * to indicate not to probe for this interface
674          */
675         if (__dev_get_by_name(&init_net, name))
676                 return 1;
677
678         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
679                 if (!strcmp(name, s[i].name))
680                         return s[i].map.base_addr;
681         return 0;
682 }
683
684 /*
685  * Saves at boot time configured settings for any netdevice.
686  */
687 int __init netdev_boot_setup(char *str)
688 {
689         int ints[5];
690         struct ifmap map;
691
692         str = get_options(str, ARRAY_SIZE(ints), ints);
693         if (!str || !*str)
694                 return 0;
695
696         /* Save settings */
697         memset(&map, 0, sizeof(map));
698         if (ints[0] > 0)
699                 map.irq = ints[1];
700         if (ints[0] > 1)
701                 map.base_addr = ints[2];
702         if (ints[0] > 2)
703                 map.mem_start = ints[3];
704         if (ints[0] > 3)
705                 map.mem_end = ints[4];
706
707         /* Add new entry to the list */
708         return netdev_boot_setup_add(str, &map);
709 }
710
711 __setup("netdev=", netdev_boot_setup);
712
713 /*******************************************************************************
714  *
715  *                          Device Interface Subroutines
716  *
717  *******************************************************************************/
718
719 /**
720  *      dev_get_iflink  - get 'iflink' value of a interface
721  *      @dev: targeted interface
722  *
723  *      Indicates the ifindex the interface is linked to.
724  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
725  */
726
727 int dev_get_iflink(const struct net_device *dev)
728 {
729         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
730                 return dev->netdev_ops->ndo_get_iflink(dev);
731
732         return dev->ifindex;
733 }
734 EXPORT_SYMBOL(dev_get_iflink);
735
736 /**
737  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
738  *      @dev: targeted interface
739  *      @skb: The packet.
740  *
741  *      For better visibility of tunnel traffic OVS needs to retrieve
742  *      egress tunnel information for a packet. Following API allows
743  *      user to get this info.
744  */
745 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
746 {
747         struct ip_tunnel_info *info;
748
749         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
750                 return -EINVAL;
751
752         info = skb_tunnel_info_unclone(skb);
753         if (!info)
754                 return -ENOMEM;
755         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
756                 return -EINVAL;
757
758         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
759 }
760 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
761
762 /**
763  *      __dev_get_by_name       - find a device by its name
764  *      @net: the applicable net namespace
765  *      @name: name to find
766  *
767  *      Find an interface by name. Must be called under RTNL semaphore
768  *      or @dev_base_lock. If the name is found a pointer to the device
769  *      is returned. If the name is not found then %NULL is returned. The
770  *      reference counters are not incremented so the caller must be
771  *      careful with locks.
772  */
773
774 struct net_device *__dev_get_by_name(struct net *net, const char *name)
775 {
776         struct netdev_name_node *node_name;
777
778         node_name = netdev_name_node_lookup(net, name);
779         return node_name ? node_name->dev : NULL;
780 }
781 EXPORT_SYMBOL(__dev_get_by_name);
782
783 /**
784  * dev_get_by_name_rcu  - find a device by its name
785  * @net: the applicable net namespace
786  * @name: name to find
787  *
788  * Find an interface by name.
789  * If the name is found a pointer to the device is returned.
790  * If the name is not found then %NULL is returned.
791  * The reference counters are not incremented so the caller must be
792  * careful with locks. The caller must hold RCU lock.
793  */
794
795 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
796 {
797         struct netdev_name_node *node_name;
798
799         node_name = netdev_name_node_lookup_rcu(net, name);
800         return node_name ? node_name->dev : NULL;
801 }
802 EXPORT_SYMBOL(dev_get_by_name_rcu);
803
804 /**
805  *      dev_get_by_name         - find a device by its name
806  *      @net: the applicable net namespace
807  *      @name: name to find
808  *
809  *      Find an interface by name. This can be called from any
810  *      context and does its own locking. The returned handle has
811  *      the usage count incremented and the caller must use dev_put() to
812  *      release it when it is no longer needed. %NULL is returned if no
813  *      matching device is found.
814  */
815
816 struct net_device *dev_get_by_name(struct net *net, const char *name)
817 {
818         struct net_device *dev;
819
820         rcu_read_lock();
821         dev = dev_get_by_name_rcu(net, name);
822         if (dev)
823                 dev_hold(dev);
824         rcu_read_unlock();
825         return dev;
826 }
827 EXPORT_SYMBOL(dev_get_by_name);
828
829 /**
830  *      __dev_get_by_index - find a device by its ifindex
831  *      @net: the applicable net namespace
832  *      @ifindex: index of device
833  *
834  *      Search for an interface by index. Returns %NULL if the device
835  *      is not found or a pointer to the device. The device has not
836  *      had its reference counter increased so the caller must be careful
837  *      about locking. The caller must hold either the RTNL semaphore
838  *      or @dev_base_lock.
839  */
840
841 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
842 {
843         struct net_device *dev;
844         struct hlist_head *head = dev_index_hash(net, ifindex);
845
846         hlist_for_each_entry(dev, head, index_hlist)
847                 if (dev->ifindex == ifindex)
848                         return dev;
849
850         return NULL;
851 }
852 EXPORT_SYMBOL(__dev_get_by_index);
853
854 /**
855  *      dev_get_by_index_rcu - find a device by its ifindex
856  *      @net: the applicable net namespace
857  *      @ifindex: index of device
858  *
859  *      Search for an interface by index. Returns %NULL if the device
860  *      is not found or a pointer to the device. The device has not
861  *      had its reference counter increased so the caller must be careful
862  *      about locking. The caller must hold RCU lock.
863  */
864
865 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
866 {
867         struct net_device *dev;
868         struct hlist_head *head = dev_index_hash(net, ifindex);
869
870         hlist_for_each_entry_rcu(dev, head, index_hlist)
871                 if (dev->ifindex == ifindex)
872                         return dev;
873
874         return NULL;
875 }
876 EXPORT_SYMBOL(dev_get_by_index_rcu);
877
878
879 /**
880  *      dev_get_by_index - find a device by its ifindex
881  *      @net: the applicable net namespace
882  *      @ifindex: index of device
883  *
884  *      Search for an interface by index. Returns NULL if the device
885  *      is not found or a pointer to the device. The device returned has
886  *      had a reference added and the pointer is safe until the user calls
887  *      dev_put to indicate they have finished with it.
888  */
889
890 struct net_device *dev_get_by_index(struct net *net, int ifindex)
891 {
892         struct net_device *dev;
893
894         rcu_read_lock();
895         dev = dev_get_by_index_rcu(net, ifindex);
896         if (dev)
897                 dev_hold(dev);
898         rcu_read_unlock();
899         return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_index);
902
903 /**
904  *      dev_get_by_napi_id - find a device by napi_id
905  *      @napi_id: ID of the NAPI struct
906  *
907  *      Search for an interface by NAPI ID. Returns %NULL if the device
908  *      is not found or a pointer to the device. The device has not had
909  *      its reference counter increased so the caller must be careful
910  *      about locking. The caller must hold RCU lock.
911  */
912
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915         struct napi_struct *napi;
916
917         WARN_ON_ONCE(!rcu_read_lock_held());
918
919         if (napi_id < MIN_NAPI_ID)
920                 return NULL;
921
922         napi = napi_by_id(napi_id);
923
924         return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927
928 /**
929  *      netdev_get_name - get a netdevice name, knowing its ifindex.
930  *      @net: network namespace
931  *      @name: a pointer to the buffer where the name will be stored.
932  *      @ifindex: the ifindex of the interface to get the name from.
933  *
934  *      The use of raw_seqcount_begin() and cond_resched() before
935  *      retrying is required as we want to give the writers a chance
936  *      to complete when CONFIG_PREEMPTION is not set.
937  */
938 int netdev_get_name(struct net *net, char *name, int ifindex)
939 {
940         struct net_device *dev;
941         unsigned int seq;
942
943 retry:
944         seq = raw_seqcount_begin(&devnet_rename_seq);
945         rcu_read_lock();
946         dev = dev_get_by_index_rcu(net, ifindex);
947         if (!dev) {
948                 rcu_read_unlock();
949                 return -ENODEV;
950         }
951
952         strcpy(name, dev->name);
953         rcu_read_unlock();
954         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
955                 cond_resched();
956                 goto retry;
957         }
958
959         return 0;
960 }
961
962 /**
963  *      dev_getbyhwaddr_rcu - find a device by its hardware address
964  *      @net: the applicable net namespace
965  *      @type: media type of device
966  *      @ha: hardware address
967  *
968  *      Search for an interface by MAC address. Returns NULL if the device
969  *      is not found or a pointer to the device.
970  *      The caller must hold RCU or RTNL.
971  *      The returned device has not had its ref count increased
972  *      and the caller must therefore be careful about locking
973  *
974  */
975
976 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
977                                        const char *ha)
978 {
979         struct net_device *dev;
980
981         for_each_netdev_rcu(net, dev)
982                 if (dev->type == type &&
983                     !memcmp(dev->dev_addr, ha, dev->addr_len))
984                         return dev;
985
986         return NULL;
987 }
988 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
989
990 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
991 {
992         struct net_device *dev;
993
994         ASSERT_RTNL();
995         for_each_netdev(net, dev)
996                 if (dev->type == type)
997                         return dev;
998
999         return NULL;
1000 }
1001 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1002
1003 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1004 {
1005         struct net_device *dev, *ret = NULL;
1006
1007         rcu_read_lock();
1008         for_each_netdev_rcu(net, dev)
1009                 if (dev->type == type) {
1010                         dev_hold(dev);
1011                         ret = dev;
1012                         break;
1013                 }
1014         rcu_read_unlock();
1015         return ret;
1016 }
1017 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1018
1019 /**
1020  *      __dev_get_by_flags - find any device with given flags
1021  *      @net: the applicable net namespace
1022  *      @if_flags: IFF_* values
1023  *      @mask: bitmask of bits in if_flags to check
1024  *
1025  *      Search for any interface with the given flags. Returns NULL if a device
1026  *      is not found or a pointer to the device. Must be called inside
1027  *      rtnl_lock(), and result refcount is unchanged.
1028  */
1029
1030 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1031                                       unsigned short mask)
1032 {
1033         struct net_device *dev, *ret;
1034
1035         ASSERT_RTNL();
1036
1037         ret = NULL;
1038         for_each_netdev(net, dev) {
1039                 if (((dev->flags ^ if_flags) & mask) == 0) {
1040                         ret = dev;
1041                         break;
1042                 }
1043         }
1044         return ret;
1045 }
1046 EXPORT_SYMBOL(__dev_get_by_flags);
1047
1048 /**
1049  *      dev_valid_name - check if name is okay for network device
1050  *      @name: name string
1051  *
1052  *      Network device names need to be valid file names to
1053  *      to allow sysfs to work.  We also disallow any kind of
1054  *      whitespace.
1055  */
1056 bool dev_valid_name(const char *name)
1057 {
1058         if (*name == '\0')
1059                 return false;
1060         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1061                 return false;
1062         if (!strcmp(name, ".") || !strcmp(name, ".."))
1063                 return false;
1064
1065         while (*name) {
1066                 if (*name == '/' || *name == ':' || isspace(*name))
1067                         return false;
1068                 name++;
1069         }
1070         return true;
1071 }
1072 EXPORT_SYMBOL(dev_valid_name);
1073
1074 /**
1075  *      __dev_alloc_name - allocate a name for a device
1076  *      @net: network namespace to allocate the device name in
1077  *      @name: name format string
1078  *      @buf:  scratch buffer and result name string
1079  *
1080  *      Passed a format string - eg "lt%d" it will try and find a suitable
1081  *      id. It scans list of devices to build up a free map, then chooses
1082  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *      while allocating the name and adding the device in order to avoid
1084  *      duplicates.
1085  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *      Returns the number of the unit assigned or a negative errno code.
1087  */
1088
1089 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1090 {
1091         int i = 0;
1092         const char *p;
1093         const int max_netdevices = 8*PAGE_SIZE;
1094         unsigned long *inuse;
1095         struct net_device *d;
1096
1097         if (!dev_valid_name(name))
1098                 return -EINVAL;
1099
1100         p = strchr(name, '%');
1101         if (p) {
1102                 /*
1103                  * Verify the string as this thing may have come from
1104                  * the user.  There must be either one "%d" and no other "%"
1105                  * characters.
1106                  */
1107                 if (p[1] != 'd' || strchr(p + 2, '%'))
1108                         return -EINVAL;
1109
1110                 /* Use one page as a bit array of possible slots */
1111                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1112                 if (!inuse)
1113                         return -ENOMEM;
1114
1115                 for_each_netdev(net, d) {
1116                         if (!sscanf(d->name, name, &i))
1117                                 continue;
1118                         if (i < 0 || i >= max_netdevices)
1119                                 continue;
1120
1121                         /*  avoid cases where sscanf is not exact inverse of printf */
1122                         snprintf(buf, IFNAMSIZ, name, i);
1123                         if (!strncmp(buf, d->name, IFNAMSIZ))
1124                                 set_bit(i, inuse);
1125                 }
1126
1127                 i = find_first_zero_bit(inuse, max_netdevices);
1128                 free_page((unsigned long) inuse);
1129         }
1130
1131         snprintf(buf, IFNAMSIZ, name, i);
1132         if (!__dev_get_by_name(net, buf))
1133                 return i;
1134
1135         /* It is possible to run out of possible slots
1136          * when the name is long and there isn't enough space left
1137          * for the digits, or if all bits are used.
1138          */
1139         return -ENFILE;
1140 }
1141
1142 static int dev_alloc_name_ns(struct net *net,
1143                              struct net_device *dev,
1144                              const char *name)
1145 {
1146         char buf[IFNAMSIZ];
1147         int ret;
1148
1149         BUG_ON(!net);
1150         ret = __dev_alloc_name(net, name, buf);
1151         if (ret >= 0)
1152                 strlcpy(dev->name, buf, IFNAMSIZ);
1153         return ret;
1154 }
1155
1156 /**
1157  *      dev_alloc_name - allocate a name for a device
1158  *      @dev: device
1159  *      @name: name format string
1160  *
1161  *      Passed a format string - eg "lt%d" it will try and find a suitable
1162  *      id. It scans list of devices to build up a free map, then chooses
1163  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1164  *      while allocating the name and adding the device in order to avoid
1165  *      duplicates.
1166  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167  *      Returns the number of the unit assigned or a negative errno code.
1168  */
1169
1170 int dev_alloc_name(struct net_device *dev, const char *name)
1171 {
1172         return dev_alloc_name_ns(dev_net(dev), dev, name);
1173 }
1174 EXPORT_SYMBOL(dev_alloc_name);
1175
1176 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1177                               const char *name)
1178 {
1179         BUG_ON(!net);
1180
1181         if (!dev_valid_name(name))
1182                 return -EINVAL;
1183
1184         if (strchr(name, '%'))
1185                 return dev_alloc_name_ns(net, dev, name);
1186         else if (__dev_get_by_name(net, name))
1187                 return -EEXIST;
1188         else if (dev->name != name)
1189                 strlcpy(dev->name, name, IFNAMSIZ);
1190
1191         return 0;
1192 }
1193
1194 /**
1195  *      dev_change_name - change name of a device
1196  *      @dev: device
1197  *      @newname: name (or format string) must be at least IFNAMSIZ
1198  *
1199  *      Change name of a device, can pass format strings "eth%d".
1200  *      for wildcarding.
1201  */
1202 int dev_change_name(struct net_device *dev, const char *newname)
1203 {
1204         unsigned char old_assign_type;
1205         char oldname[IFNAMSIZ];
1206         int err = 0;
1207         int ret;
1208         struct net *net;
1209
1210         ASSERT_RTNL();
1211         BUG_ON(!dev_net(dev));
1212
1213         net = dev_net(dev);
1214
1215         /* Some auto-enslaved devices e.g. failover slaves are
1216          * special, as userspace might rename the device after
1217          * the interface had been brought up and running since
1218          * the point kernel initiated auto-enslavement. Allow
1219          * live name change even when these slave devices are
1220          * up and running.
1221          *
1222          * Typically, users of these auto-enslaving devices
1223          * don't actually care about slave name change, as
1224          * they are supposed to operate on master interface
1225          * directly.
1226          */
1227         if (dev->flags & IFF_UP &&
1228             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1229                 return -EBUSY;
1230
1231         write_seqcount_begin(&devnet_rename_seq);
1232
1233         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1234                 write_seqcount_end(&devnet_rename_seq);
1235                 return 0;
1236         }
1237
1238         memcpy(oldname, dev->name, IFNAMSIZ);
1239
1240         err = dev_get_valid_name(net, dev, newname);
1241         if (err < 0) {
1242                 write_seqcount_end(&devnet_rename_seq);
1243                 return err;
1244         }
1245
1246         if (oldname[0] && !strchr(oldname, '%'))
1247                 netdev_info(dev, "renamed from %s\n", oldname);
1248
1249         old_assign_type = dev->name_assign_type;
1250         dev->name_assign_type = NET_NAME_RENAMED;
1251
1252 rollback:
1253         ret = device_rename(&dev->dev, dev->name);
1254         if (ret) {
1255                 memcpy(dev->name, oldname, IFNAMSIZ);
1256                 dev->name_assign_type = old_assign_type;
1257                 write_seqcount_end(&devnet_rename_seq);
1258                 return ret;
1259         }
1260
1261         write_seqcount_end(&devnet_rename_seq);
1262
1263         netdev_adjacent_rename_links(dev, oldname);
1264
1265         write_lock_bh(&dev_base_lock);
1266         netdev_name_node_del(dev->name_node);
1267         write_unlock_bh(&dev_base_lock);
1268
1269         synchronize_rcu();
1270
1271         write_lock_bh(&dev_base_lock);
1272         netdev_name_node_add(net, dev->name_node);
1273         write_unlock_bh(&dev_base_lock);
1274
1275         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1276         ret = notifier_to_errno(ret);
1277
1278         if (ret) {
1279                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1280                 if (err >= 0) {
1281                         err = ret;
1282                         write_seqcount_begin(&devnet_rename_seq);
1283                         memcpy(dev->name, oldname, IFNAMSIZ);
1284                         memcpy(oldname, newname, IFNAMSIZ);
1285                         dev->name_assign_type = old_assign_type;
1286                         old_assign_type = NET_NAME_RENAMED;
1287                         goto rollback;
1288                 } else {
1289                         pr_err("%s: name change rollback failed: %d\n",
1290                                dev->name, ret);
1291                 }
1292         }
1293
1294         return err;
1295 }
1296
1297 /**
1298  *      dev_set_alias - change ifalias of a device
1299  *      @dev: device
1300  *      @alias: name up to IFALIASZ
1301  *      @len: limit of bytes to copy from info
1302  *
1303  *      Set ifalias for a device,
1304  */
1305 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1306 {
1307         struct dev_ifalias *new_alias = NULL;
1308
1309         if (len >= IFALIASZ)
1310                 return -EINVAL;
1311
1312         if (len) {
1313                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1314                 if (!new_alias)
1315                         return -ENOMEM;
1316
1317                 memcpy(new_alias->ifalias, alias, len);
1318                 new_alias->ifalias[len] = 0;
1319         }
1320
1321         mutex_lock(&ifalias_mutex);
1322         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1323                                         mutex_is_locked(&ifalias_mutex));
1324         mutex_unlock(&ifalias_mutex);
1325
1326         if (new_alias)
1327                 kfree_rcu(new_alias, rcuhead);
1328
1329         return len;
1330 }
1331 EXPORT_SYMBOL(dev_set_alias);
1332
1333 /**
1334  *      dev_get_alias - get ifalias of a device
1335  *      @dev: device
1336  *      @name: buffer to store name of ifalias
1337  *      @len: size of buffer
1338  *
1339  *      get ifalias for a device.  Caller must make sure dev cannot go
1340  *      away,  e.g. rcu read lock or own a reference count to device.
1341  */
1342 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1343 {
1344         const struct dev_ifalias *alias;
1345         int ret = 0;
1346
1347         rcu_read_lock();
1348         alias = rcu_dereference(dev->ifalias);
1349         if (alias)
1350                 ret = snprintf(name, len, "%s", alias->ifalias);
1351         rcu_read_unlock();
1352
1353         return ret;
1354 }
1355
1356 /**
1357  *      netdev_features_change - device changes features
1358  *      @dev: device to cause notification
1359  *
1360  *      Called to indicate a device has changed features.
1361  */
1362 void netdev_features_change(struct net_device *dev)
1363 {
1364         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1365 }
1366 EXPORT_SYMBOL(netdev_features_change);
1367
1368 /**
1369  *      netdev_state_change - device changes state
1370  *      @dev: device to cause notification
1371  *
1372  *      Called to indicate a device has changed state. This function calls
1373  *      the notifier chains for netdev_chain and sends a NEWLINK message
1374  *      to the routing socket.
1375  */
1376 void netdev_state_change(struct net_device *dev)
1377 {
1378         if (dev->flags & IFF_UP) {
1379                 struct netdev_notifier_change_info change_info = {
1380                         .info.dev = dev,
1381                 };
1382
1383                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1384                                               &change_info.info);
1385                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1386         }
1387 }
1388 EXPORT_SYMBOL(netdev_state_change);
1389
1390 /**
1391  * netdev_notify_peers - notify network peers about existence of @dev
1392  * @dev: network device
1393  *
1394  * Generate traffic such that interested network peers are aware of
1395  * @dev, such as by generating a gratuitous ARP. This may be used when
1396  * a device wants to inform the rest of the network about some sort of
1397  * reconfiguration such as a failover event or virtual machine
1398  * migration.
1399  */
1400 void netdev_notify_peers(struct net_device *dev)
1401 {
1402         rtnl_lock();
1403         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1404         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1405         rtnl_unlock();
1406 }
1407 EXPORT_SYMBOL(netdev_notify_peers);
1408
1409 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1410 {
1411         const struct net_device_ops *ops = dev->netdev_ops;
1412         int ret;
1413
1414         ASSERT_RTNL();
1415
1416         if (!netif_device_present(dev))
1417                 return -ENODEV;
1418
1419         /* Block netpoll from trying to do any rx path servicing.
1420          * If we don't do this there is a chance ndo_poll_controller
1421          * or ndo_poll may be running while we open the device
1422          */
1423         netpoll_poll_disable(dev);
1424
1425         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1426         ret = notifier_to_errno(ret);
1427         if (ret)
1428                 return ret;
1429
1430         set_bit(__LINK_STATE_START, &dev->state);
1431
1432         if (ops->ndo_validate_addr)
1433                 ret = ops->ndo_validate_addr(dev);
1434
1435         if (!ret && ops->ndo_open)
1436                 ret = ops->ndo_open(dev);
1437
1438         netpoll_poll_enable(dev);
1439
1440         if (ret)
1441                 clear_bit(__LINK_STATE_START, &dev->state);
1442         else {
1443                 dev->flags |= IFF_UP;
1444                 dev_set_rx_mode(dev);
1445                 dev_activate(dev);
1446                 add_device_randomness(dev->dev_addr, dev->addr_len);
1447         }
1448
1449         return ret;
1450 }
1451
1452 /**
1453  *      dev_open        - prepare an interface for use.
1454  *      @dev: device to open
1455  *      @extack: netlink extended ack
1456  *
1457  *      Takes a device from down to up state. The device's private open
1458  *      function is invoked and then the multicast lists are loaded. Finally
1459  *      the device is moved into the up state and a %NETDEV_UP message is
1460  *      sent to the netdev notifier chain.
1461  *
1462  *      Calling this function on an active interface is a nop. On a failure
1463  *      a negative errno code is returned.
1464  */
1465 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1466 {
1467         int ret;
1468
1469         if (dev->flags & IFF_UP)
1470                 return 0;
1471
1472         ret = __dev_open(dev, extack);
1473         if (ret < 0)
1474                 return ret;
1475
1476         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1477         call_netdevice_notifiers(NETDEV_UP, dev);
1478
1479         return ret;
1480 }
1481 EXPORT_SYMBOL(dev_open);
1482
1483 static void __dev_close_many(struct list_head *head)
1484 {
1485         struct net_device *dev;
1486
1487         ASSERT_RTNL();
1488         might_sleep();
1489
1490         list_for_each_entry(dev, head, close_list) {
1491                 /* Temporarily disable netpoll until the interface is down */
1492                 netpoll_poll_disable(dev);
1493
1494                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1495
1496                 clear_bit(__LINK_STATE_START, &dev->state);
1497
1498                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1499                  * can be even on different cpu. So just clear netif_running().
1500                  *
1501                  * dev->stop() will invoke napi_disable() on all of it's
1502                  * napi_struct instances on this device.
1503                  */
1504                 smp_mb__after_atomic(); /* Commit netif_running(). */
1505         }
1506
1507         dev_deactivate_many(head);
1508
1509         list_for_each_entry(dev, head, close_list) {
1510                 const struct net_device_ops *ops = dev->netdev_ops;
1511
1512                 /*
1513                  *      Call the device specific close. This cannot fail.
1514                  *      Only if device is UP
1515                  *
1516                  *      We allow it to be called even after a DETACH hot-plug
1517                  *      event.
1518                  */
1519                 if (ops->ndo_stop)
1520                         ops->ndo_stop(dev);
1521
1522                 dev->flags &= ~IFF_UP;
1523                 netpoll_poll_enable(dev);
1524         }
1525 }
1526
1527 static void __dev_close(struct net_device *dev)
1528 {
1529         LIST_HEAD(single);
1530
1531         list_add(&dev->close_list, &single);
1532         __dev_close_many(&single);
1533         list_del(&single);
1534 }
1535
1536 void dev_close_many(struct list_head *head, bool unlink)
1537 {
1538         struct net_device *dev, *tmp;
1539
1540         /* Remove the devices that don't need to be closed */
1541         list_for_each_entry_safe(dev, tmp, head, close_list)
1542                 if (!(dev->flags & IFF_UP))
1543                         list_del_init(&dev->close_list);
1544
1545         __dev_close_many(head);
1546
1547         list_for_each_entry_safe(dev, tmp, head, close_list) {
1548                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1549                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1550                 if (unlink)
1551                         list_del_init(&dev->close_list);
1552         }
1553 }
1554 EXPORT_SYMBOL(dev_close_many);
1555
1556 /**
1557  *      dev_close - shutdown an interface.
1558  *      @dev: device to shutdown
1559  *
1560  *      This function moves an active device into down state. A
1561  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1562  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1563  *      chain.
1564  */
1565 void dev_close(struct net_device *dev)
1566 {
1567         if (dev->flags & IFF_UP) {
1568                 LIST_HEAD(single);
1569
1570                 list_add(&dev->close_list, &single);
1571                 dev_close_many(&single, true);
1572                 list_del(&single);
1573         }
1574 }
1575 EXPORT_SYMBOL(dev_close);
1576
1577
1578 /**
1579  *      dev_disable_lro - disable Large Receive Offload on a device
1580  *      @dev: device
1581  *
1582  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1583  *      called under RTNL.  This is needed if received packets may be
1584  *      forwarded to another interface.
1585  */
1586 void dev_disable_lro(struct net_device *dev)
1587 {
1588         struct net_device *lower_dev;
1589         struct list_head *iter;
1590
1591         dev->wanted_features &= ~NETIF_F_LRO;
1592         netdev_update_features(dev);
1593
1594         if (unlikely(dev->features & NETIF_F_LRO))
1595                 netdev_WARN(dev, "failed to disable LRO!\n");
1596
1597         netdev_for_each_lower_dev(dev, lower_dev, iter)
1598                 dev_disable_lro(lower_dev);
1599 }
1600 EXPORT_SYMBOL(dev_disable_lro);
1601
1602 /**
1603  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1604  *      @dev: device
1605  *
1606  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1607  *      called under RTNL.  This is needed if Generic XDP is installed on
1608  *      the device.
1609  */
1610 static void dev_disable_gro_hw(struct net_device *dev)
1611 {
1612         dev->wanted_features &= ~NETIF_F_GRO_HW;
1613         netdev_update_features(dev);
1614
1615         if (unlikely(dev->features & NETIF_F_GRO_HW))
1616                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1617 }
1618
1619 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1620 {
1621 #define N(val)                                          \
1622         case NETDEV_##val:                              \
1623                 return "NETDEV_" __stringify(val);
1624         switch (cmd) {
1625         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1626         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1627         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1628         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1629         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1630         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1631         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1632         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1633         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1634         N(PRE_CHANGEADDR)
1635         }
1636 #undef N
1637         return "UNKNOWN_NETDEV_EVENT";
1638 }
1639 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1640
1641 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1642                                    struct net_device *dev)
1643 {
1644         struct netdev_notifier_info info = {
1645                 .dev = dev,
1646         };
1647
1648         return nb->notifier_call(nb, val, &info);
1649 }
1650
1651 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1652                                              struct net_device *dev)
1653 {
1654         int err;
1655
1656         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1657         err = notifier_to_errno(err);
1658         if (err)
1659                 return err;
1660
1661         if (!(dev->flags & IFF_UP))
1662                 return 0;
1663
1664         call_netdevice_notifier(nb, NETDEV_UP, dev);
1665         return 0;
1666 }
1667
1668 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1669                                                 struct net_device *dev)
1670 {
1671         if (dev->flags & IFF_UP) {
1672                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1673                                         dev);
1674                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1675         }
1676         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1677 }
1678
1679 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1680                                                  struct net *net)
1681 {
1682         struct net_device *dev;
1683         int err;
1684
1685         for_each_netdev(net, dev) {
1686                 err = call_netdevice_register_notifiers(nb, dev);
1687                 if (err)
1688                         goto rollback;
1689         }
1690         return 0;
1691
1692 rollback:
1693         for_each_netdev_continue_reverse(net, dev)
1694                 call_netdevice_unregister_notifiers(nb, dev);
1695         return err;
1696 }
1697
1698 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1699                                                     struct net *net)
1700 {
1701         struct net_device *dev;
1702
1703         for_each_netdev(net, dev)
1704                 call_netdevice_unregister_notifiers(nb, dev);
1705 }
1706
1707 static int dev_boot_phase = 1;
1708
1709 /**
1710  * register_netdevice_notifier - register a network notifier block
1711  * @nb: notifier
1712  *
1713  * Register a notifier to be called when network device events occur.
1714  * The notifier passed is linked into the kernel structures and must
1715  * not be reused until it has been unregistered. A negative errno code
1716  * is returned on a failure.
1717  *
1718  * When registered all registration and up events are replayed
1719  * to the new notifier to allow device to have a race free
1720  * view of the network device list.
1721  */
1722
1723 int register_netdevice_notifier(struct notifier_block *nb)
1724 {
1725         struct net *net;
1726         int err;
1727
1728         /* Close race with setup_net() and cleanup_net() */
1729         down_write(&pernet_ops_rwsem);
1730         rtnl_lock();
1731         err = raw_notifier_chain_register(&netdev_chain, nb);
1732         if (err)
1733                 goto unlock;
1734         if (dev_boot_phase)
1735                 goto unlock;
1736         for_each_net(net) {
1737                 err = call_netdevice_register_net_notifiers(nb, net);
1738                 if (err)
1739                         goto rollback;
1740         }
1741
1742 unlock:
1743         rtnl_unlock();
1744         up_write(&pernet_ops_rwsem);
1745         return err;
1746
1747 rollback:
1748         for_each_net_continue_reverse(net)
1749                 call_netdevice_unregister_net_notifiers(nb, net);
1750
1751         raw_notifier_chain_unregister(&netdev_chain, nb);
1752         goto unlock;
1753 }
1754 EXPORT_SYMBOL(register_netdevice_notifier);
1755
1756 /**
1757  * unregister_netdevice_notifier - unregister a network notifier block
1758  * @nb: notifier
1759  *
1760  * Unregister a notifier previously registered by
1761  * register_netdevice_notifier(). The notifier is unlinked into the
1762  * kernel structures and may then be reused. A negative errno code
1763  * is returned on a failure.
1764  *
1765  * After unregistering unregister and down device events are synthesized
1766  * for all devices on the device list to the removed notifier to remove
1767  * the need for special case cleanup code.
1768  */
1769
1770 int unregister_netdevice_notifier(struct notifier_block *nb)
1771 {
1772         struct net *net;
1773         int err;
1774
1775         /* Close race with setup_net() and cleanup_net() */
1776         down_write(&pernet_ops_rwsem);
1777         rtnl_lock();
1778         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1779         if (err)
1780                 goto unlock;
1781
1782         for_each_net(net)
1783                 call_netdevice_unregister_net_notifiers(nb, net);
1784
1785 unlock:
1786         rtnl_unlock();
1787         up_write(&pernet_ops_rwsem);
1788         return err;
1789 }
1790 EXPORT_SYMBOL(unregister_netdevice_notifier);
1791
1792 static int __register_netdevice_notifier_net(struct net *net,
1793                                              struct notifier_block *nb,
1794                                              bool ignore_call_fail)
1795 {
1796         int err;
1797
1798         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1799         if (err)
1800                 return err;
1801         if (dev_boot_phase)
1802                 return 0;
1803
1804         err = call_netdevice_register_net_notifiers(nb, net);
1805         if (err && !ignore_call_fail)
1806                 goto chain_unregister;
1807
1808         return 0;
1809
1810 chain_unregister:
1811         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1812         return err;
1813 }
1814
1815 static int __unregister_netdevice_notifier_net(struct net *net,
1816                                                struct notifier_block *nb)
1817 {
1818         int err;
1819
1820         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1821         if (err)
1822                 return err;
1823
1824         call_netdevice_unregister_net_notifiers(nb, net);
1825         return 0;
1826 }
1827
1828 /**
1829  * register_netdevice_notifier_net - register a per-netns network notifier block
1830  * @net: network namespace
1831  * @nb: notifier
1832  *
1833  * Register a notifier to be called when network device events occur.
1834  * The notifier passed is linked into the kernel structures and must
1835  * not be reused until it has been unregistered. A negative errno code
1836  * is returned on a failure.
1837  *
1838  * When registered all registration and up events are replayed
1839  * to the new notifier to allow device to have a race free
1840  * view of the network device list.
1841  */
1842
1843 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1844 {
1845         int err;
1846
1847         rtnl_lock();
1848         err = __register_netdevice_notifier_net(net, nb, false);
1849         rtnl_unlock();
1850         return err;
1851 }
1852 EXPORT_SYMBOL(register_netdevice_notifier_net);
1853
1854 /**
1855  * unregister_netdevice_notifier_net - unregister a per-netns
1856  *                                     network notifier block
1857  * @net: network namespace
1858  * @nb: notifier
1859  *
1860  * Unregister a notifier previously registered by
1861  * register_netdevice_notifier(). The notifier is unlinked into the
1862  * kernel structures and may then be reused. A negative errno code
1863  * is returned on a failure.
1864  *
1865  * After unregistering unregister and down device events are synthesized
1866  * for all devices on the device list to the removed notifier to remove
1867  * the need for special case cleanup code.
1868  */
1869
1870 int unregister_netdevice_notifier_net(struct net *net,
1871                                       struct notifier_block *nb)
1872 {
1873         int err;
1874
1875         rtnl_lock();
1876         err = __unregister_netdevice_notifier_net(net, nb);
1877         rtnl_unlock();
1878         return err;
1879 }
1880 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1881
1882 int register_netdevice_notifier_dev_net(struct net_device *dev,
1883                                         struct notifier_block *nb,
1884                                         struct netdev_net_notifier *nn)
1885 {
1886         int err;
1887
1888         rtnl_lock();
1889         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1890         if (!err) {
1891                 nn->nb = nb;
1892                 list_add(&nn->list, &dev->net_notifier_list);
1893         }
1894         rtnl_unlock();
1895         return err;
1896 }
1897 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1898
1899 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1900                                           struct notifier_block *nb,
1901                                           struct netdev_net_notifier *nn)
1902 {
1903         int err;
1904
1905         rtnl_lock();
1906         list_del(&nn->list);
1907         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1908         rtnl_unlock();
1909         return err;
1910 }
1911 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1912
1913 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1914                                              struct net *net)
1915 {
1916         struct netdev_net_notifier *nn;
1917
1918         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1919                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1920                 __register_netdevice_notifier_net(net, nn->nb, true);
1921         }
1922 }
1923
1924 /**
1925  *      call_netdevice_notifiers_info - call all network notifier blocks
1926  *      @val: value passed unmodified to notifier function
1927  *      @info: notifier information data
1928  *
1929  *      Call all network notifier blocks.  Parameters and return value
1930  *      are as for raw_notifier_call_chain().
1931  */
1932
1933 static int call_netdevice_notifiers_info(unsigned long val,
1934                                          struct netdev_notifier_info *info)
1935 {
1936         struct net *net = dev_net(info->dev);
1937         int ret;
1938
1939         ASSERT_RTNL();
1940
1941         /* Run per-netns notifier block chain first, then run the global one.
1942          * Hopefully, one day, the global one is going to be removed after
1943          * all notifier block registrators get converted to be per-netns.
1944          */
1945         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1946         if (ret & NOTIFY_STOP_MASK)
1947                 return ret;
1948         return raw_notifier_call_chain(&netdev_chain, val, info);
1949 }
1950
1951 static int call_netdevice_notifiers_extack(unsigned long val,
1952                                            struct net_device *dev,
1953                                            struct netlink_ext_ack *extack)
1954 {
1955         struct netdev_notifier_info info = {
1956                 .dev = dev,
1957                 .extack = extack,
1958         };
1959
1960         return call_netdevice_notifiers_info(val, &info);
1961 }
1962
1963 /**
1964  *      call_netdevice_notifiers - call all network notifier blocks
1965  *      @val: value passed unmodified to notifier function
1966  *      @dev: net_device pointer passed unmodified to notifier function
1967  *
1968  *      Call all network notifier blocks.  Parameters and return value
1969  *      are as for raw_notifier_call_chain().
1970  */
1971
1972 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1973 {
1974         return call_netdevice_notifiers_extack(val, dev, NULL);
1975 }
1976 EXPORT_SYMBOL(call_netdevice_notifiers);
1977
1978 /**
1979  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1980  *      @val: value passed unmodified to notifier function
1981  *      @dev: net_device pointer passed unmodified to notifier function
1982  *      @arg: additional u32 argument passed to the notifier function
1983  *
1984  *      Call all network notifier blocks.  Parameters and return value
1985  *      are as for raw_notifier_call_chain().
1986  */
1987 static int call_netdevice_notifiers_mtu(unsigned long val,
1988                                         struct net_device *dev, u32 arg)
1989 {
1990         struct netdev_notifier_info_ext info = {
1991                 .info.dev = dev,
1992                 .ext.mtu = arg,
1993         };
1994
1995         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1996
1997         return call_netdevice_notifiers_info(val, &info.info);
1998 }
1999
2000 #ifdef CONFIG_NET_INGRESS
2001 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2002
2003 void net_inc_ingress_queue(void)
2004 {
2005         static_branch_inc(&ingress_needed_key);
2006 }
2007 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2008
2009 void net_dec_ingress_queue(void)
2010 {
2011         static_branch_dec(&ingress_needed_key);
2012 }
2013 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2014 #endif
2015
2016 #ifdef CONFIG_NET_EGRESS
2017 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2018
2019 void net_inc_egress_queue(void)
2020 {
2021         static_branch_inc(&egress_needed_key);
2022 }
2023 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2024
2025 void net_dec_egress_queue(void)
2026 {
2027         static_branch_dec(&egress_needed_key);
2028 }
2029 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2030 #endif
2031
2032 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2033 #ifdef CONFIG_JUMP_LABEL
2034 static atomic_t netstamp_needed_deferred;
2035 static atomic_t netstamp_wanted;
2036 static void netstamp_clear(struct work_struct *work)
2037 {
2038         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2039         int wanted;
2040
2041         wanted = atomic_add_return(deferred, &netstamp_wanted);
2042         if (wanted > 0)
2043                 static_branch_enable(&netstamp_needed_key);
2044         else
2045                 static_branch_disable(&netstamp_needed_key);
2046 }
2047 static DECLARE_WORK(netstamp_work, netstamp_clear);
2048 #endif
2049
2050 void net_enable_timestamp(void)
2051 {
2052 #ifdef CONFIG_JUMP_LABEL
2053         int wanted;
2054
2055         while (1) {
2056                 wanted = atomic_read(&netstamp_wanted);
2057                 if (wanted <= 0)
2058                         break;
2059                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2060                         return;
2061         }
2062         atomic_inc(&netstamp_needed_deferred);
2063         schedule_work(&netstamp_work);
2064 #else
2065         static_branch_inc(&netstamp_needed_key);
2066 #endif
2067 }
2068 EXPORT_SYMBOL(net_enable_timestamp);
2069
2070 void net_disable_timestamp(void)
2071 {
2072 #ifdef CONFIG_JUMP_LABEL
2073         int wanted;
2074
2075         while (1) {
2076                 wanted = atomic_read(&netstamp_wanted);
2077                 if (wanted <= 1)
2078                         break;
2079                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2080                         return;
2081         }
2082         atomic_dec(&netstamp_needed_deferred);
2083         schedule_work(&netstamp_work);
2084 #else
2085         static_branch_dec(&netstamp_needed_key);
2086 #endif
2087 }
2088 EXPORT_SYMBOL(net_disable_timestamp);
2089
2090 static inline void net_timestamp_set(struct sk_buff *skb)
2091 {
2092         skb->tstamp = 0;
2093         if (static_branch_unlikely(&netstamp_needed_key))
2094                 __net_timestamp(skb);
2095 }
2096
2097 #define net_timestamp_check(COND, SKB)                          \
2098         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2099                 if ((COND) && !(SKB)->tstamp)                   \
2100                         __net_timestamp(SKB);                   \
2101         }                                                       \
2102
2103 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2104 {
2105         unsigned int len;
2106
2107         if (!(dev->flags & IFF_UP))
2108                 return false;
2109
2110         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2111         if (skb->len <= len)
2112                 return true;
2113
2114         /* if TSO is enabled, we don't care about the length as the packet
2115          * could be forwarded without being segmented before
2116          */
2117         if (skb_is_gso(skb))
2118                 return true;
2119
2120         return false;
2121 }
2122 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2123
2124 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2125 {
2126         int ret = ____dev_forward_skb(dev, skb);
2127
2128         if (likely(!ret)) {
2129                 skb->protocol = eth_type_trans(skb, dev);
2130                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2131         }
2132
2133         return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136
2137 /**
2138  * dev_forward_skb - loopback an skb to another netif
2139  *
2140  * @dev: destination network device
2141  * @skb: buffer to forward
2142  *
2143  * return values:
2144  *      NET_RX_SUCCESS  (no congestion)
2145  *      NET_RX_DROP     (packet was dropped, but freed)
2146  *
2147  * dev_forward_skb can be used for injecting an skb from the
2148  * start_xmit function of one device into the receive queue
2149  * of another device.
2150  *
2151  * The receiving device may be in another namespace, so
2152  * we have to clear all information in the skb that could
2153  * impact namespace isolation.
2154  */
2155 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156 {
2157         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2158 }
2159 EXPORT_SYMBOL_GPL(dev_forward_skb);
2160
2161 static inline int deliver_skb(struct sk_buff *skb,
2162                               struct packet_type *pt_prev,
2163                               struct net_device *orig_dev)
2164 {
2165         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2166                 return -ENOMEM;
2167         refcount_inc(&skb->users);
2168         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2169 }
2170
2171 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2172                                           struct packet_type **pt,
2173                                           struct net_device *orig_dev,
2174                                           __be16 type,
2175                                           struct list_head *ptype_list)
2176 {
2177         struct packet_type *ptype, *pt_prev = *pt;
2178
2179         list_for_each_entry_rcu(ptype, ptype_list, list) {
2180                 if (ptype->type != type)
2181                         continue;
2182                 if (pt_prev)
2183                         deliver_skb(skb, pt_prev, orig_dev);
2184                 pt_prev = ptype;
2185         }
2186         *pt = pt_prev;
2187 }
2188
2189 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2190 {
2191         if (!ptype->af_packet_priv || !skb->sk)
2192                 return false;
2193
2194         if (ptype->id_match)
2195                 return ptype->id_match(ptype, skb->sk);
2196         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2197                 return true;
2198
2199         return false;
2200 }
2201
2202 /**
2203  * dev_nit_active - return true if any network interface taps are in use
2204  *
2205  * @dev: network device to check for the presence of taps
2206  */
2207 bool dev_nit_active(struct net_device *dev)
2208 {
2209         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2210 }
2211 EXPORT_SYMBOL_GPL(dev_nit_active);
2212
2213 /*
2214  *      Support routine. Sends outgoing frames to any network
2215  *      taps currently in use.
2216  */
2217
2218 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2219 {
2220         struct packet_type *ptype;
2221         struct sk_buff *skb2 = NULL;
2222         struct packet_type *pt_prev = NULL;
2223         struct list_head *ptype_list = &ptype_all;
2224
2225         rcu_read_lock();
2226 again:
2227         list_for_each_entry_rcu(ptype, ptype_list, list) {
2228                 if (ptype->ignore_outgoing)
2229                         continue;
2230
2231                 /* Never send packets back to the socket
2232                  * they originated from - MvS (miquels@drinkel.ow.org)
2233                  */
2234                 if (skb_loop_sk(ptype, skb))
2235                         continue;
2236
2237                 if (pt_prev) {
2238                         deliver_skb(skb2, pt_prev, skb->dev);
2239                         pt_prev = ptype;
2240                         continue;
2241                 }
2242
2243                 /* need to clone skb, done only once */
2244                 skb2 = skb_clone(skb, GFP_ATOMIC);
2245                 if (!skb2)
2246                         goto out_unlock;
2247
2248                 net_timestamp_set(skb2);
2249
2250                 /* skb->nh should be correctly
2251                  * set by sender, so that the second statement is
2252                  * just protection against buggy protocols.
2253                  */
2254                 skb_reset_mac_header(skb2);
2255
2256                 if (skb_network_header(skb2) < skb2->data ||
2257                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2258                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2259                                              ntohs(skb2->protocol),
2260                                              dev->name);
2261                         skb_reset_network_header(skb2);
2262                 }
2263
2264                 skb2->transport_header = skb2->network_header;
2265                 skb2->pkt_type = PACKET_OUTGOING;
2266                 pt_prev = ptype;
2267         }
2268
2269         if (ptype_list == &ptype_all) {
2270                 ptype_list = &dev->ptype_all;
2271                 goto again;
2272         }
2273 out_unlock:
2274         if (pt_prev) {
2275                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2276                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2277                 else
2278                         kfree_skb(skb2);
2279         }
2280         rcu_read_unlock();
2281 }
2282 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2283
2284 /**
2285  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2286  * @dev: Network device
2287  * @txq: number of queues available
2288  *
2289  * If real_num_tx_queues is changed the tc mappings may no longer be
2290  * valid. To resolve this verify the tc mapping remains valid and if
2291  * not NULL the mapping. With no priorities mapping to this
2292  * offset/count pair it will no longer be used. In the worst case TC0
2293  * is invalid nothing can be done so disable priority mappings. If is
2294  * expected that drivers will fix this mapping if they can before
2295  * calling netif_set_real_num_tx_queues.
2296  */
2297 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2298 {
2299         int i;
2300         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2301
2302         /* If TC0 is invalidated disable TC mapping */
2303         if (tc->offset + tc->count > txq) {
2304                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2305                 dev->num_tc = 0;
2306                 return;
2307         }
2308
2309         /* Invalidated prio to tc mappings set to TC0 */
2310         for (i = 1; i < TC_BITMASK + 1; i++) {
2311                 int q = netdev_get_prio_tc_map(dev, i);
2312
2313                 tc = &dev->tc_to_txq[q];
2314                 if (tc->offset + tc->count > txq) {
2315                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2316                                 i, q);
2317                         netdev_set_prio_tc_map(dev, i, 0);
2318                 }
2319         }
2320 }
2321
2322 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2323 {
2324         if (dev->num_tc) {
2325                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2326                 int i;
2327
2328                 /* walk through the TCs and see if it falls into any of them */
2329                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2330                         if ((txq - tc->offset) < tc->count)
2331                                 return i;
2332                 }
2333
2334                 /* didn't find it, just return -1 to indicate no match */
2335                 return -1;
2336         }
2337
2338         return 0;
2339 }
2340 EXPORT_SYMBOL(netdev_txq_to_tc);
2341
2342 #ifdef CONFIG_XPS
2343 struct static_key xps_needed __read_mostly;
2344 EXPORT_SYMBOL(xps_needed);
2345 struct static_key xps_rxqs_needed __read_mostly;
2346 EXPORT_SYMBOL(xps_rxqs_needed);
2347 static DEFINE_MUTEX(xps_map_mutex);
2348 #define xmap_dereference(P)             \
2349         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2350
2351 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2352                              int tci, u16 index)
2353 {
2354         struct xps_map *map = NULL;
2355         int pos;
2356
2357         if (dev_maps)
2358                 map = xmap_dereference(dev_maps->attr_map[tci]);
2359         if (!map)
2360                 return false;
2361
2362         for (pos = map->len; pos--;) {
2363                 if (map->queues[pos] != index)
2364                         continue;
2365
2366                 if (map->len > 1) {
2367                         map->queues[pos] = map->queues[--map->len];
2368                         break;
2369                 }
2370
2371                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2372                 kfree_rcu(map, rcu);
2373                 return false;
2374         }
2375
2376         return true;
2377 }
2378
2379 static bool remove_xps_queue_cpu(struct net_device *dev,
2380                                  struct xps_dev_maps *dev_maps,
2381                                  int cpu, u16 offset, u16 count)
2382 {
2383         int num_tc = dev->num_tc ? : 1;
2384         bool active = false;
2385         int tci;
2386
2387         for (tci = cpu * num_tc; num_tc--; tci++) {
2388                 int i, j;
2389
2390                 for (i = count, j = offset; i--; j++) {
2391                         if (!remove_xps_queue(dev_maps, tci, j))
2392                                 break;
2393                 }
2394
2395                 active |= i < 0;
2396         }
2397
2398         return active;
2399 }
2400
2401 static void reset_xps_maps(struct net_device *dev,
2402                            struct xps_dev_maps *dev_maps,
2403                            bool is_rxqs_map)
2404 {
2405         if (is_rxqs_map) {
2406                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2407                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2408         } else {
2409                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2410         }
2411         static_key_slow_dec_cpuslocked(&xps_needed);
2412         kfree_rcu(dev_maps, rcu);
2413 }
2414
2415 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2416                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2417                            u16 offset, u16 count, bool is_rxqs_map)
2418 {
2419         bool active = false;
2420         int i, j;
2421
2422         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2423              j < nr_ids;)
2424                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2425                                                count);
2426         if (!active)
2427                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2428
2429         if (!is_rxqs_map) {
2430                 for (i = offset + (count - 1); count--; i--) {
2431                         netdev_queue_numa_node_write(
2432                                 netdev_get_tx_queue(dev, i),
2433                                 NUMA_NO_NODE);
2434                 }
2435         }
2436 }
2437
2438 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2439                                    u16 count)
2440 {
2441         const unsigned long *possible_mask = NULL;
2442         struct xps_dev_maps *dev_maps;
2443         unsigned int nr_ids;
2444
2445         if (!static_key_false(&xps_needed))
2446                 return;
2447
2448         cpus_read_lock();
2449         mutex_lock(&xps_map_mutex);
2450
2451         if (static_key_false(&xps_rxqs_needed)) {
2452                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2453                 if (dev_maps) {
2454                         nr_ids = dev->num_rx_queues;
2455                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2456                                        offset, count, true);
2457                 }
2458         }
2459
2460         dev_maps = xmap_dereference(dev->xps_cpus_map);
2461         if (!dev_maps)
2462                 goto out_no_maps;
2463
2464         if (num_possible_cpus() > 1)
2465                 possible_mask = cpumask_bits(cpu_possible_mask);
2466         nr_ids = nr_cpu_ids;
2467         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2468                        false);
2469
2470 out_no_maps:
2471         mutex_unlock(&xps_map_mutex);
2472         cpus_read_unlock();
2473 }
2474
2475 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2476 {
2477         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2478 }
2479
2480 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2481                                       u16 index, bool is_rxqs_map)
2482 {
2483         struct xps_map *new_map;
2484         int alloc_len = XPS_MIN_MAP_ALLOC;
2485         int i, pos;
2486
2487         for (pos = 0; map && pos < map->len; pos++) {
2488                 if (map->queues[pos] != index)
2489                         continue;
2490                 return map;
2491         }
2492
2493         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2494         if (map) {
2495                 if (pos < map->alloc_len)
2496                         return map;
2497
2498                 alloc_len = map->alloc_len * 2;
2499         }
2500
2501         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2502          *  map
2503          */
2504         if (is_rxqs_map)
2505                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2506         else
2507                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2508                                        cpu_to_node(attr_index));
2509         if (!new_map)
2510                 return NULL;
2511
2512         for (i = 0; i < pos; i++)
2513                 new_map->queues[i] = map->queues[i];
2514         new_map->alloc_len = alloc_len;
2515         new_map->len = pos;
2516
2517         return new_map;
2518 }
2519
2520 /* Must be called under cpus_read_lock */
2521 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2522                           u16 index, bool is_rxqs_map)
2523 {
2524         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2525         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2526         int i, j, tci, numa_node_id = -2;
2527         int maps_sz, num_tc = 1, tc = 0;
2528         struct xps_map *map, *new_map;
2529         bool active = false;
2530         unsigned int nr_ids;
2531
2532         if (dev->num_tc) {
2533                 /* Do not allow XPS on subordinate device directly */
2534                 num_tc = dev->num_tc;
2535                 if (num_tc < 0)
2536                         return -EINVAL;
2537
2538                 /* If queue belongs to subordinate dev use its map */
2539                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2540
2541                 tc = netdev_txq_to_tc(dev, index);
2542                 if (tc < 0)
2543                         return -EINVAL;
2544         }
2545
2546         mutex_lock(&xps_map_mutex);
2547         if (is_rxqs_map) {
2548                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2549                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2550                 nr_ids = dev->num_rx_queues;
2551         } else {
2552                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2553                 if (num_possible_cpus() > 1) {
2554                         online_mask = cpumask_bits(cpu_online_mask);
2555                         possible_mask = cpumask_bits(cpu_possible_mask);
2556                 }
2557                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2558                 nr_ids = nr_cpu_ids;
2559         }
2560
2561         if (maps_sz < L1_CACHE_BYTES)
2562                 maps_sz = L1_CACHE_BYTES;
2563
2564         /* allocate memory for queue storage */
2565         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2566              j < nr_ids;) {
2567                 if (!new_dev_maps)
2568                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2569                 if (!new_dev_maps) {
2570                         mutex_unlock(&xps_map_mutex);
2571                         return -ENOMEM;
2572                 }
2573
2574                 tci = j * num_tc + tc;
2575                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2576                                  NULL;
2577
2578                 map = expand_xps_map(map, j, index, is_rxqs_map);
2579                 if (!map)
2580                         goto error;
2581
2582                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2583         }
2584
2585         if (!new_dev_maps)
2586                 goto out_no_new_maps;
2587
2588         if (!dev_maps) {
2589                 /* Increment static keys at most once per type */
2590                 static_key_slow_inc_cpuslocked(&xps_needed);
2591                 if (is_rxqs_map)
2592                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2593         }
2594
2595         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2596              j < nr_ids;) {
2597                 /* copy maps belonging to foreign traffic classes */
2598                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2599                         /* fill in the new device map from the old device map */
2600                         map = xmap_dereference(dev_maps->attr_map[tci]);
2601                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2602                 }
2603
2604                 /* We need to explicitly update tci as prevous loop
2605                  * could break out early if dev_maps is NULL.
2606                  */
2607                 tci = j * num_tc + tc;
2608
2609                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2610                     netif_attr_test_online(j, online_mask, nr_ids)) {
2611                         /* add tx-queue to CPU/rx-queue maps */
2612                         int pos = 0;
2613
2614                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2615                         while ((pos < map->len) && (map->queues[pos] != index))
2616                                 pos++;
2617
2618                         if (pos == map->len)
2619                                 map->queues[map->len++] = index;
2620 #ifdef CONFIG_NUMA
2621                         if (!is_rxqs_map) {
2622                                 if (numa_node_id == -2)
2623                                         numa_node_id = cpu_to_node(j);
2624                                 else if (numa_node_id != cpu_to_node(j))
2625                                         numa_node_id = -1;
2626                         }
2627 #endif
2628                 } else if (dev_maps) {
2629                         /* fill in the new device map from the old device map */
2630                         map = xmap_dereference(dev_maps->attr_map[tci]);
2631                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2632                 }
2633
2634                 /* copy maps belonging to foreign traffic classes */
2635                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2636                         /* fill in the new device map from the old device map */
2637                         map = xmap_dereference(dev_maps->attr_map[tci]);
2638                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2639                 }
2640         }
2641
2642         if (is_rxqs_map)
2643                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2644         else
2645                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2646
2647         /* Cleanup old maps */
2648         if (!dev_maps)
2649                 goto out_no_old_maps;
2650
2651         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2652              j < nr_ids;) {
2653                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2654                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2655                         map = xmap_dereference(dev_maps->attr_map[tci]);
2656                         if (map && map != new_map)
2657                                 kfree_rcu(map, rcu);
2658                 }
2659         }
2660
2661         kfree_rcu(dev_maps, rcu);
2662
2663 out_no_old_maps:
2664         dev_maps = new_dev_maps;
2665         active = true;
2666
2667 out_no_new_maps:
2668         if (!is_rxqs_map) {
2669                 /* update Tx queue numa node */
2670                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2671                                              (numa_node_id >= 0) ?
2672                                              numa_node_id : NUMA_NO_NODE);
2673         }
2674
2675         if (!dev_maps)
2676                 goto out_no_maps;
2677
2678         /* removes tx-queue from unused CPUs/rx-queues */
2679         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2680              j < nr_ids;) {
2681                 for (i = tc, tci = j * num_tc; i--; tci++)
2682                         active |= remove_xps_queue(dev_maps, tci, index);
2683                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2684                     !netif_attr_test_online(j, online_mask, nr_ids))
2685                         active |= remove_xps_queue(dev_maps, tci, index);
2686                 for (i = num_tc - tc, tci++; --i; tci++)
2687                         active |= remove_xps_queue(dev_maps, tci, index);
2688         }
2689
2690         /* free map if not active */
2691         if (!active)
2692                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2693
2694 out_no_maps:
2695         mutex_unlock(&xps_map_mutex);
2696
2697         return 0;
2698 error:
2699         /* remove any maps that we added */
2700         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2701              j < nr_ids;) {
2702                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2703                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2704                         map = dev_maps ?
2705                               xmap_dereference(dev_maps->attr_map[tci]) :
2706                               NULL;
2707                         if (new_map && new_map != map)
2708                                 kfree(new_map);
2709                 }
2710         }
2711
2712         mutex_unlock(&xps_map_mutex);
2713
2714         kfree(new_dev_maps);
2715         return -ENOMEM;
2716 }
2717 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2718
2719 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2720                         u16 index)
2721 {
2722         int ret;
2723
2724         cpus_read_lock();
2725         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2726         cpus_read_unlock();
2727
2728         return ret;
2729 }
2730 EXPORT_SYMBOL(netif_set_xps_queue);
2731
2732 #endif
2733 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2734 {
2735         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736
2737         /* Unbind any subordinate channels */
2738         while (txq-- != &dev->_tx[0]) {
2739                 if (txq->sb_dev)
2740                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2741         }
2742 }
2743
2744 void netdev_reset_tc(struct net_device *dev)
2745 {
2746 #ifdef CONFIG_XPS
2747         netif_reset_xps_queues_gt(dev, 0);
2748 #endif
2749         netdev_unbind_all_sb_channels(dev);
2750
2751         /* Reset TC configuration of device */
2752         dev->num_tc = 0;
2753         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2754         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2755 }
2756 EXPORT_SYMBOL(netdev_reset_tc);
2757
2758 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2759 {
2760         if (tc >= dev->num_tc)
2761                 return -EINVAL;
2762
2763 #ifdef CONFIG_XPS
2764         netif_reset_xps_queues(dev, offset, count);
2765 #endif
2766         dev->tc_to_txq[tc].count = count;
2767         dev->tc_to_txq[tc].offset = offset;
2768         return 0;
2769 }
2770 EXPORT_SYMBOL(netdev_set_tc_queue);
2771
2772 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2773 {
2774         if (num_tc > TC_MAX_QUEUE)
2775                 return -EINVAL;
2776
2777 #ifdef CONFIG_XPS
2778         netif_reset_xps_queues_gt(dev, 0);
2779 #endif
2780         netdev_unbind_all_sb_channels(dev);
2781
2782         dev->num_tc = num_tc;
2783         return 0;
2784 }
2785 EXPORT_SYMBOL(netdev_set_num_tc);
2786
2787 void netdev_unbind_sb_channel(struct net_device *dev,
2788                               struct net_device *sb_dev)
2789 {
2790         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2791
2792 #ifdef CONFIG_XPS
2793         netif_reset_xps_queues_gt(sb_dev, 0);
2794 #endif
2795         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2796         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2797
2798         while (txq-- != &dev->_tx[0]) {
2799                 if (txq->sb_dev == sb_dev)
2800                         txq->sb_dev = NULL;
2801         }
2802 }
2803 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2804
2805 int netdev_bind_sb_channel_queue(struct net_device *dev,
2806                                  struct net_device *sb_dev,
2807                                  u8 tc, u16 count, u16 offset)
2808 {
2809         /* Make certain the sb_dev and dev are already configured */
2810         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2811                 return -EINVAL;
2812
2813         /* We cannot hand out queues we don't have */
2814         if ((offset + count) > dev->real_num_tx_queues)
2815                 return -EINVAL;
2816
2817         /* Record the mapping */
2818         sb_dev->tc_to_txq[tc].count = count;
2819         sb_dev->tc_to_txq[tc].offset = offset;
2820
2821         /* Provide a way for Tx queue to find the tc_to_txq map or
2822          * XPS map for itself.
2823          */
2824         while (count--)
2825                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2826
2827         return 0;
2828 }
2829 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2830
2831 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2832 {
2833         /* Do not use a multiqueue device to represent a subordinate channel */
2834         if (netif_is_multiqueue(dev))
2835                 return -ENODEV;
2836
2837         /* We allow channels 1 - 32767 to be used for subordinate channels.
2838          * Channel 0 is meant to be "native" mode and used only to represent
2839          * the main root device. We allow writing 0 to reset the device back
2840          * to normal mode after being used as a subordinate channel.
2841          */
2842         if (channel > S16_MAX)
2843                 return -EINVAL;
2844
2845         dev->num_tc = -channel;
2846
2847         return 0;
2848 }
2849 EXPORT_SYMBOL(netdev_set_sb_channel);
2850
2851 /*
2852  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2853  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2854  */
2855 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2856 {
2857         bool disabling;
2858         int rc;
2859
2860         disabling = txq < dev->real_num_tx_queues;
2861
2862         if (txq < 1 || txq > dev->num_tx_queues)
2863                 return -EINVAL;
2864
2865         if (dev->reg_state == NETREG_REGISTERED ||
2866             dev->reg_state == NETREG_UNREGISTERING) {
2867                 ASSERT_RTNL();
2868
2869                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2870                                                   txq);
2871                 if (rc)
2872                         return rc;
2873
2874                 if (dev->num_tc)
2875                         netif_setup_tc(dev, txq);
2876
2877                 dev->real_num_tx_queues = txq;
2878
2879                 if (disabling) {
2880                         synchronize_net();
2881                         qdisc_reset_all_tx_gt(dev, txq);
2882 #ifdef CONFIG_XPS
2883                         netif_reset_xps_queues_gt(dev, txq);
2884 #endif
2885                 }
2886         } else {
2887                 dev->real_num_tx_queues = txq;
2888         }
2889
2890         return 0;
2891 }
2892 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2893
2894 #ifdef CONFIG_SYSFS
2895 /**
2896  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2897  *      @dev: Network device
2898  *      @rxq: Actual number of RX queues
2899  *
2900  *      This must be called either with the rtnl_lock held or before
2901  *      registration of the net device.  Returns 0 on success, or a
2902  *      negative error code.  If called before registration, it always
2903  *      succeeds.
2904  */
2905 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2906 {
2907         int rc;
2908
2909         if (rxq < 1 || rxq > dev->num_rx_queues)
2910                 return -EINVAL;
2911
2912         if (dev->reg_state == NETREG_REGISTERED) {
2913                 ASSERT_RTNL();
2914
2915                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2916                                                   rxq);
2917                 if (rc)
2918                         return rc;
2919         }
2920
2921         dev->real_num_rx_queues = rxq;
2922         return 0;
2923 }
2924 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2925 #endif
2926
2927 /**
2928  * netif_get_num_default_rss_queues - default number of RSS queues
2929  *
2930  * This routine should set an upper limit on the number of RSS queues
2931  * used by default by multiqueue devices.
2932  */
2933 int netif_get_num_default_rss_queues(void)
2934 {
2935         return is_kdump_kernel() ?
2936                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2937 }
2938 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2939
2940 static void __netif_reschedule(struct Qdisc *q)
2941 {
2942         struct softnet_data *sd;
2943         unsigned long flags;
2944
2945         local_irq_save(flags);
2946         sd = this_cpu_ptr(&softnet_data);
2947         q->next_sched = NULL;
2948         *sd->output_queue_tailp = q;
2949         sd->output_queue_tailp = &q->next_sched;
2950         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2951         local_irq_restore(flags);
2952 }
2953
2954 void __netif_schedule(struct Qdisc *q)
2955 {
2956         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2957                 __netif_reschedule(q);
2958 }
2959 EXPORT_SYMBOL(__netif_schedule);
2960
2961 struct dev_kfree_skb_cb {
2962         enum skb_free_reason reason;
2963 };
2964
2965 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2966 {
2967         return (struct dev_kfree_skb_cb *)skb->cb;
2968 }
2969
2970 void netif_schedule_queue(struct netdev_queue *txq)
2971 {
2972         rcu_read_lock();
2973         if (!netif_xmit_stopped(txq)) {
2974                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2975
2976                 __netif_schedule(q);
2977         }
2978         rcu_read_unlock();
2979 }
2980 EXPORT_SYMBOL(netif_schedule_queue);
2981
2982 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2983 {
2984         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2985                 struct Qdisc *q;
2986
2987                 rcu_read_lock();
2988                 q = rcu_dereference(dev_queue->qdisc);
2989                 __netif_schedule(q);
2990                 rcu_read_unlock();
2991         }
2992 }
2993 EXPORT_SYMBOL(netif_tx_wake_queue);
2994
2995 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2996 {
2997         unsigned long flags;
2998
2999         if (unlikely(!skb))
3000                 return;
3001
3002         if (likely(refcount_read(&skb->users) == 1)) {
3003                 smp_rmb();
3004                 refcount_set(&skb->users, 0);
3005         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3006                 return;
3007         }
3008         get_kfree_skb_cb(skb)->reason = reason;
3009         local_irq_save(flags);
3010         skb->next = __this_cpu_read(softnet_data.completion_queue);
3011         __this_cpu_write(softnet_data.completion_queue, skb);
3012         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3013         local_irq_restore(flags);
3014 }
3015 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3016
3017 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3018 {
3019         if (in_irq() || irqs_disabled())
3020                 __dev_kfree_skb_irq(skb, reason);
3021         else
3022                 dev_kfree_skb(skb);
3023 }
3024 EXPORT_SYMBOL(__dev_kfree_skb_any);
3025
3026
3027 /**
3028  * netif_device_detach - mark device as removed
3029  * @dev: network device
3030  *
3031  * Mark device as removed from system and therefore no longer available.
3032  */
3033 void netif_device_detach(struct net_device *dev)
3034 {
3035         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3036             netif_running(dev)) {
3037                 netif_tx_stop_all_queues(dev);
3038         }
3039 }
3040 EXPORT_SYMBOL(netif_device_detach);
3041
3042 /**
3043  * netif_device_attach - mark device as attached
3044  * @dev: network device
3045  *
3046  * Mark device as attached from system and restart if needed.
3047  */
3048 void netif_device_attach(struct net_device *dev)
3049 {
3050         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3051             netif_running(dev)) {
3052                 netif_tx_wake_all_queues(dev);
3053                 __netdev_watchdog_up(dev);
3054         }
3055 }
3056 EXPORT_SYMBOL(netif_device_attach);
3057
3058 /*
3059  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3060  * to be used as a distribution range.
3061  */
3062 static u16 skb_tx_hash(const struct net_device *dev,
3063                        const struct net_device *sb_dev,
3064                        struct sk_buff *skb)
3065 {
3066         u32 hash;
3067         u16 qoffset = 0;
3068         u16 qcount = dev->real_num_tx_queues;
3069
3070         if (dev->num_tc) {
3071                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3072
3073                 qoffset = sb_dev->tc_to_txq[tc].offset;
3074                 qcount = sb_dev->tc_to_txq[tc].count;
3075         }
3076
3077         if (skb_rx_queue_recorded(skb)) {
3078                 hash = skb_get_rx_queue(skb);
3079                 if (hash >= qoffset)
3080                         hash -= qoffset;
3081                 while (unlikely(hash >= qcount))
3082                         hash -= qcount;
3083                 return hash + qoffset;
3084         }
3085
3086         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3087 }
3088
3089 static void skb_warn_bad_offload(const struct sk_buff *skb)
3090 {
3091         static const netdev_features_t null_features;
3092         struct net_device *dev = skb->dev;
3093         const char *name = "";
3094
3095         if (!net_ratelimit())
3096                 return;
3097
3098         if (dev) {
3099                 if (dev->dev.parent)
3100                         name = dev_driver_string(dev->dev.parent);
3101                 else
3102                         name = netdev_name(dev);
3103         }
3104         skb_dump(KERN_WARNING, skb, false);
3105         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3106              name, dev ? &dev->features : &null_features,
3107              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3108 }
3109
3110 /*
3111  * Invalidate hardware checksum when packet is to be mangled, and
3112  * complete checksum manually on outgoing path.
3113  */
3114 int skb_checksum_help(struct sk_buff *skb)
3115 {
3116         __wsum csum;
3117         int ret = 0, offset;
3118
3119         if (skb->ip_summed == CHECKSUM_COMPLETE)
3120                 goto out_set_summed;
3121
3122         if (unlikely(skb_shinfo(skb)->gso_size)) {
3123                 skb_warn_bad_offload(skb);
3124                 return -EINVAL;
3125         }
3126
3127         /* Before computing a checksum, we should make sure no frag could
3128          * be modified by an external entity : checksum could be wrong.
3129          */
3130         if (skb_has_shared_frag(skb)) {
3131                 ret = __skb_linearize(skb);
3132                 if (ret)
3133                         goto out;
3134         }
3135
3136         offset = skb_checksum_start_offset(skb);
3137         BUG_ON(offset >= skb_headlen(skb));
3138         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3139
3140         offset += skb->csum_offset;
3141         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3142
3143         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3144         if (ret)
3145                 goto out;
3146
3147         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3148 out_set_summed:
3149         skb->ip_summed = CHECKSUM_NONE;
3150 out:
3151         return ret;
3152 }
3153 EXPORT_SYMBOL(skb_checksum_help);
3154
3155 int skb_crc32c_csum_help(struct sk_buff *skb)
3156 {
3157         __le32 crc32c_csum;
3158         int ret = 0, offset, start;
3159
3160         if (skb->ip_summed != CHECKSUM_PARTIAL)
3161                 goto out;
3162
3163         if (unlikely(skb_is_gso(skb)))
3164                 goto out;
3165
3166         /* Before computing a checksum, we should make sure no frag could
3167          * be modified by an external entity : checksum could be wrong.
3168          */
3169         if (unlikely(skb_has_shared_frag(skb))) {
3170                 ret = __skb_linearize(skb);
3171                 if (ret)
3172                         goto out;
3173         }
3174         start = skb_checksum_start_offset(skb);
3175         offset = start + offsetof(struct sctphdr, checksum);
3176         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3177                 ret = -EINVAL;
3178                 goto out;
3179         }
3180
3181         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3182         if (ret)
3183                 goto out;
3184
3185         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3186                                                   skb->len - start, ~(__u32)0,
3187                                                   crc32c_csum_stub));
3188         *(__le32 *)(skb->data + offset) = crc32c_csum;
3189         skb->ip_summed = CHECKSUM_NONE;
3190         skb->csum_not_inet = 0;
3191 out:
3192         return ret;
3193 }
3194
3195 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3196 {
3197         __be16 type = skb->protocol;
3198
3199         /* Tunnel gso handlers can set protocol to ethernet. */
3200         if (type == htons(ETH_P_TEB)) {
3201                 struct ethhdr *eth;
3202
3203                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3204                         return 0;
3205
3206                 eth = (struct ethhdr *)skb->data;
3207                 type = eth->h_proto;
3208         }
3209
3210         return __vlan_get_protocol(skb, type, depth);
3211 }
3212
3213 /**
3214  *      skb_mac_gso_segment - mac layer segmentation handler.
3215  *      @skb: buffer to segment
3216  *      @features: features for the output path (see dev->features)
3217  */
3218 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3219                                     netdev_features_t features)
3220 {
3221         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3222         struct packet_offload *ptype;
3223         int vlan_depth = skb->mac_len;
3224         __be16 type = skb_network_protocol(skb, &vlan_depth);
3225
3226         if (unlikely(!type))
3227                 return ERR_PTR(-EINVAL);
3228
3229         __skb_pull(skb, vlan_depth);
3230
3231         rcu_read_lock();
3232         list_for_each_entry_rcu(ptype, &offload_base, list) {
3233                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3234                         segs = ptype->callbacks.gso_segment(skb, features);
3235                         break;
3236                 }
3237         }
3238         rcu_read_unlock();
3239
3240         __skb_push(skb, skb->data - skb_mac_header(skb));
3241
3242         return segs;
3243 }
3244 EXPORT_SYMBOL(skb_mac_gso_segment);
3245
3246
3247 /* openvswitch calls this on rx path, so we need a different check.
3248  */
3249 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3250 {
3251         if (tx_path)
3252                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3253                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3254
3255         return skb->ip_summed == CHECKSUM_NONE;
3256 }
3257
3258 /**
3259  *      __skb_gso_segment - Perform segmentation on skb.
3260  *      @skb: buffer to segment
3261  *      @features: features for the output path (see dev->features)
3262  *      @tx_path: whether it is called in TX path
3263  *
3264  *      This function segments the given skb and returns a list of segments.
3265  *
3266  *      It may return NULL if the skb requires no segmentation.  This is
3267  *      only possible when GSO is used for verifying header integrity.
3268  *
3269  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3270  */
3271 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3272                                   netdev_features_t features, bool tx_path)
3273 {
3274         struct sk_buff *segs;
3275
3276         if (unlikely(skb_needs_check(skb, tx_path))) {
3277                 int err;
3278
3279                 /* We're going to init ->check field in TCP or UDP header */
3280                 err = skb_cow_head(skb, 0);
3281                 if (err < 0)
3282                         return ERR_PTR(err);
3283         }
3284
3285         /* Only report GSO partial support if it will enable us to
3286          * support segmentation on this frame without needing additional
3287          * work.
3288          */
3289         if (features & NETIF_F_GSO_PARTIAL) {
3290                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3291                 struct net_device *dev = skb->dev;
3292
3293                 partial_features |= dev->features & dev->gso_partial_features;
3294                 if (!skb_gso_ok(skb, features | partial_features))
3295                         features &= ~NETIF_F_GSO_PARTIAL;
3296         }
3297
3298         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3299                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3300
3301         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3302         SKB_GSO_CB(skb)->encap_level = 0;
3303
3304         skb_reset_mac_header(skb);
3305         skb_reset_mac_len(skb);
3306
3307         segs = skb_mac_gso_segment(skb, features);
3308
3309         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3310                 skb_warn_bad_offload(skb);
3311
3312         return segs;
3313 }
3314 EXPORT_SYMBOL(__skb_gso_segment);
3315
3316 /* Take action when hardware reception checksum errors are detected. */
3317 #ifdef CONFIG_BUG
3318 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3319 {
3320         if (net_ratelimit()) {
3321                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3322                 skb_dump(KERN_ERR, skb, true);
3323                 dump_stack();
3324         }
3325 }
3326 EXPORT_SYMBOL(netdev_rx_csum_fault);
3327 #endif
3328
3329 /* XXX: check that highmem exists at all on the given machine. */
3330 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3331 {
3332 #ifdef CONFIG_HIGHMEM
3333         int i;
3334
3335         if (!(dev->features & NETIF_F_HIGHDMA)) {
3336                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3337                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3338
3339                         if (PageHighMem(skb_frag_page(frag)))
3340                                 return 1;
3341                 }
3342         }
3343 #endif
3344         return 0;
3345 }
3346
3347 /* If MPLS offload request, verify we are testing hardware MPLS features
3348  * instead of standard features for the netdev.
3349  */
3350 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3351 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3352                                            netdev_features_t features,
3353                                            __be16 type)
3354 {
3355         if (eth_p_mpls(type))
3356                 features &= skb->dev->mpls_features;
3357
3358         return features;
3359 }
3360 #else
3361 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3362                                            netdev_features_t features,
3363                                            __be16 type)
3364 {
3365         return features;
3366 }
3367 #endif
3368
3369 static netdev_features_t harmonize_features(struct sk_buff *skb,
3370         netdev_features_t features)
3371 {
3372         int tmp;
3373         __be16 type;
3374
3375         type = skb_network_protocol(skb, &tmp);
3376         features = net_mpls_features(skb, features, type);
3377
3378         if (skb->ip_summed != CHECKSUM_NONE &&
3379             !can_checksum_protocol(features, type)) {
3380                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3381         }
3382         if (illegal_highdma(skb->dev, skb))
3383                 features &= ~NETIF_F_SG;
3384
3385         return features;
3386 }
3387
3388 netdev_features_t passthru_features_check(struct sk_buff *skb,
3389                                           struct net_device *dev,
3390                                           netdev_features_t features)
3391 {
3392         return features;
3393 }
3394 EXPORT_SYMBOL(passthru_features_check);
3395
3396 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3397                                              struct net_device *dev,
3398                                              netdev_features_t features)
3399 {
3400         return vlan_features_check(skb, features);
3401 }
3402
3403 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3404                                             struct net_device *dev,
3405                                             netdev_features_t features)
3406 {
3407         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3408
3409         if (gso_segs > dev->gso_max_segs)
3410                 return features & ~NETIF_F_GSO_MASK;
3411
3412         /* Support for GSO partial features requires software
3413          * intervention before we can actually process the packets
3414          * so we need to strip support for any partial features now
3415          * and we can pull them back in after we have partially
3416          * segmented the frame.
3417          */
3418         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3419                 features &= ~dev->gso_partial_features;
3420
3421         /* Make sure to clear the IPv4 ID mangling feature if the
3422          * IPv4 header has the potential to be fragmented.
3423          */
3424         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3425                 struct iphdr *iph = skb->encapsulation ?
3426                                     inner_ip_hdr(skb) : ip_hdr(skb);
3427
3428                 if (!(iph->frag_off & htons(IP_DF)))
3429                         features &= ~NETIF_F_TSO_MANGLEID;
3430         }
3431
3432         return features;
3433 }
3434
3435 netdev_features_t netif_skb_features(struct sk_buff *skb)
3436 {
3437         struct net_device *dev = skb->dev;
3438         netdev_features_t features = dev->features;
3439
3440         if (skb_is_gso(skb))
3441                 features = gso_features_check(skb, dev, features);
3442
3443         /* If encapsulation offload request, verify we are testing
3444          * hardware encapsulation features instead of standard
3445          * features for the netdev
3446          */
3447         if (skb->encapsulation)
3448                 features &= dev->hw_enc_features;
3449
3450         if (skb_vlan_tagged(skb))
3451                 features = netdev_intersect_features(features,
3452                                                      dev->vlan_features |
3453                                                      NETIF_F_HW_VLAN_CTAG_TX |
3454                                                      NETIF_F_HW_VLAN_STAG_TX);
3455
3456         if (dev->netdev_ops->ndo_features_check)
3457                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3458                                                                 features);
3459         else
3460                 features &= dflt_features_check(skb, dev, features);
3461
3462         return harmonize_features(skb, features);
3463 }
3464 EXPORT_SYMBOL(netif_skb_features);
3465
3466 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3467                     struct netdev_queue *txq, bool more)
3468 {
3469         unsigned int len;
3470         int rc;
3471
3472         if (dev_nit_active(dev))
3473                 dev_queue_xmit_nit(skb, dev);
3474
3475         len = skb->len;
3476         trace_net_dev_start_xmit(skb, dev);
3477         rc = netdev_start_xmit(skb, dev, txq, more);
3478         trace_net_dev_xmit(skb, rc, dev, len);
3479
3480         return rc;
3481 }
3482
3483 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3484                                     struct netdev_queue *txq, int *ret)
3485 {
3486         struct sk_buff *skb = first;
3487         int rc = NETDEV_TX_OK;
3488
3489         while (skb) {
3490                 struct sk_buff *next = skb->next;
3491
3492                 skb_mark_not_on_list(skb);
3493                 rc = xmit_one(skb, dev, txq, next != NULL);
3494                 if (unlikely(!dev_xmit_complete(rc))) {
3495                         skb->next = next;
3496                         goto out;
3497                 }
3498
3499                 skb = next;
3500                 if (netif_tx_queue_stopped(txq) && skb) {
3501                         rc = NETDEV_TX_BUSY;
3502                         break;
3503                 }
3504         }
3505
3506 out:
3507         *ret = rc;
3508         return skb;
3509 }
3510
3511 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3512                                           netdev_features_t features)
3513 {
3514         if (skb_vlan_tag_present(skb) &&
3515             !vlan_hw_offload_capable(features, skb->vlan_proto))
3516                 skb = __vlan_hwaccel_push_inside(skb);
3517         return skb;
3518 }
3519
3520 int skb_csum_hwoffload_help(struct sk_buff *skb,
3521                             const netdev_features_t features)
3522 {
3523         if (unlikely(skb->csum_not_inet))
3524                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3525                         skb_crc32c_csum_help(skb);
3526
3527         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3528 }
3529 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3530
3531 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3532 {
3533         netdev_features_t features;
3534
3535         features = netif_skb_features(skb);
3536         skb = validate_xmit_vlan(skb, features);
3537         if (unlikely(!skb))
3538                 goto out_null;
3539
3540         skb = sk_validate_xmit_skb(skb, dev);
3541         if (unlikely(!skb))
3542                 goto out_null;
3543
3544         if (netif_needs_gso(skb, features)) {
3545                 struct sk_buff *segs;
3546
3547                 segs = skb_gso_segment(skb, features);
3548                 if (IS_ERR(segs)) {
3549                         goto out_kfree_skb;
3550                 } else if (segs) {
3551                         consume_skb(skb);
3552                         skb = segs;
3553                 }
3554         } else {
3555                 if (skb_needs_linearize(skb, features) &&
3556                     __skb_linearize(skb))
3557                         goto out_kfree_skb;
3558
3559                 /* If packet is not checksummed and device does not
3560                  * support checksumming for this protocol, complete
3561                  * checksumming here.
3562                  */
3563                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3564                         if (skb->encapsulation)
3565                                 skb_set_inner_transport_header(skb,
3566                                                                skb_checksum_start_offset(skb));
3567                         else
3568                                 skb_set_transport_header(skb,
3569                                                          skb_checksum_start_offset(skb));
3570                         if (skb_csum_hwoffload_help(skb, features))
3571                                 goto out_kfree_skb;
3572                 }
3573         }
3574
3575         skb = validate_xmit_xfrm(skb, features, again);
3576
3577         return skb;
3578
3579 out_kfree_skb:
3580         kfree_skb(skb);
3581 out_null:
3582         atomic_long_inc(&dev->tx_dropped);
3583         return NULL;
3584 }
3585
3586 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3587 {
3588         struct sk_buff *next, *head = NULL, *tail;
3589
3590         for (; skb != NULL; skb = next) {
3591                 next = skb->next;
3592                 skb_mark_not_on_list(skb);
3593
3594                 /* in case skb wont be segmented, point to itself */
3595                 skb->prev = skb;
3596
3597                 skb = validate_xmit_skb(skb, dev, again);
3598                 if (!skb)
3599                         continue;
3600
3601                 if (!head)
3602                         head = skb;
3603                 else
3604                         tail->next = skb;
3605                 /* If skb was segmented, skb->prev points to
3606                  * the last segment. If not, it still contains skb.
3607                  */
3608                 tail = skb->prev;
3609         }
3610         return head;
3611 }
3612 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3613
3614 static void qdisc_pkt_len_init(struct sk_buff *skb)
3615 {
3616         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3617
3618         qdisc_skb_cb(skb)->pkt_len = skb->len;
3619
3620         /* To get more precise estimation of bytes sent on wire,
3621          * we add to pkt_len the headers size of all segments
3622          */
3623         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3624                 unsigned int hdr_len;
3625                 u16 gso_segs = shinfo->gso_segs;
3626
3627                 /* mac layer + network layer */
3628                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3629
3630                 /* + transport layer */
3631                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3632                         const struct tcphdr *th;
3633                         struct tcphdr _tcphdr;
3634
3635                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3636                                                 sizeof(_tcphdr), &_tcphdr);
3637                         if (likely(th))
3638                                 hdr_len += __tcp_hdrlen(th);
3639                 } else {
3640                         struct udphdr _udphdr;
3641
3642                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3643                                                sizeof(_udphdr), &_udphdr))
3644                                 hdr_len += sizeof(struct udphdr);
3645                 }
3646
3647                 if (shinfo->gso_type & SKB_GSO_DODGY)
3648                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3649                                                 shinfo->gso_size);
3650
3651                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3652         }
3653 }
3654
3655 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3656                                  struct net_device *dev,
3657                                  struct netdev_queue *txq)
3658 {
3659         spinlock_t *root_lock = qdisc_lock(q);
3660         struct sk_buff *to_free = NULL;
3661         bool contended;
3662         int rc;
3663
3664         qdisc_calculate_pkt_len(skb, q);
3665
3666         if (q->flags & TCQ_F_NOLOCK) {
3667                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3668                 qdisc_run(q);
3669
3670                 if (unlikely(to_free))
3671                         kfree_skb_list(to_free);
3672                 return rc;
3673         }
3674
3675         /*
3676          * Heuristic to force contended enqueues to serialize on a
3677          * separate lock before trying to get qdisc main lock.
3678          * This permits qdisc->running owner to get the lock more
3679          * often and dequeue packets faster.
3680          */
3681         contended = qdisc_is_running(q);
3682         if (unlikely(contended))
3683                 spin_lock(&q->busylock);
3684
3685         spin_lock(root_lock);
3686         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3687                 __qdisc_drop(skb, &to_free);
3688                 rc = NET_XMIT_DROP;
3689         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3690                    qdisc_run_begin(q)) {
3691                 /*
3692                  * This is a work-conserving queue; there are no old skbs
3693                  * waiting to be sent out; and the qdisc is not running -
3694                  * xmit the skb directly.
3695                  */
3696
3697                 qdisc_bstats_update(q, skb);
3698
3699                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3700                         if (unlikely(contended)) {
3701                                 spin_unlock(&q->busylock);
3702                                 contended = false;
3703                         }
3704                         __qdisc_run(q);
3705                 }
3706
3707                 qdisc_run_end(q);
3708                 rc = NET_XMIT_SUCCESS;
3709         } else {
3710                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3711                 if (qdisc_run_begin(q)) {
3712                         if (unlikely(contended)) {
3713                                 spin_unlock(&q->busylock);
3714                                 contended = false;
3715                         }
3716                         __qdisc_run(q);
3717                         qdisc_run_end(q);
3718                 }
3719         }
3720         spin_unlock(root_lock);
3721         if (unlikely(to_free))
3722                 kfree_skb_list(to_free);
3723         if (unlikely(contended))
3724                 spin_unlock(&q->busylock);
3725         return rc;
3726 }
3727
3728 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3729 static void skb_update_prio(struct sk_buff *skb)
3730 {
3731         const struct netprio_map *map;
3732         const struct sock *sk;
3733         unsigned int prioidx;
3734
3735         if (skb->priority)
3736                 return;
3737         map = rcu_dereference_bh(skb->dev->priomap);
3738         if (!map)
3739                 return;
3740         sk = skb_to_full_sk(skb);
3741         if (!sk)
3742                 return;
3743
3744         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3745
3746         if (prioidx < map->priomap_len)
3747                 skb->priority = map->priomap[prioidx];
3748 }
3749 #else
3750 #define skb_update_prio(skb)
3751 #endif
3752
3753 /**
3754  *      dev_loopback_xmit - loop back @skb
3755  *      @net: network namespace this loopback is happening in
3756  *      @sk:  sk needed to be a netfilter okfn
3757  *      @skb: buffer to transmit
3758  */
3759 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3760 {
3761         skb_reset_mac_header(skb);
3762         __skb_pull(skb, skb_network_offset(skb));
3763         skb->pkt_type = PACKET_LOOPBACK;
3764         skb->ip_summed = CHECKSUM_UNNECESSARY;
3765         WARN_ON(!skb_dst(skb));
3766         skb_dst_force(skb);
3767         netif_rx_ni(skb);
3768         return 0;
3769 }
3770 EXPORT_SYMBOL(dev_loopback_xmit);
3771
3772 #ifdef CONFIG_NET_EGRESS
3773 static struct sk_buff *
3774 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3775 {
3776 #ifdef CONFIG_NET_CLS_ACT
3777         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3778         struct tcf_result cl_res;
3779
3780         if (!miniq)
3781                 return skb;
3782
3783         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3784         mini_qdisc_bstats_cpu_update(miniq, skb);
3785
3786         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3787         case TC_ACT_OK:
3788         case TC_ACT_RECLASSIFY:
3789                 skb->tc_index = TC_H_MIN(cl_res.classid);
3790                 break;
3791         case TC_ACT_SHOT:
3792                 mini_qdisc_qstats_cpu_drop(miniq);
3793                 *ret = NET_XMIT_DROP;
3794                 kfree_skb(skb);
3795                 return NULL;
3796         case TC_ACT_STOLEN:
3797         case TC_ACT_QUEUED:
3798         case TC_ACT_TRAP:
3799                 *ret = NET_XMIT_SUCCESS;
3800                 consume_skb(skb);
3801                 return NULL;
3802         case TC_ACT_REDIRECT:
3803                 /* No need to push/pop skb's mac_header here on egress! */
3804                 skb_do_redirect(skb);
3805                 *ret = NET_XMIT_SUCCESS;
3806                 return NULL;
3807         default:
3808                 break;
3809         }
3810 #endif /* CONFIG_NET_CLS_ACT */
3811         return skb;
3812 }
3813 #endif /* CONFIG_NET_EGRESS */
3814
3815 static inline int nf_egress(struct sk_buff *skb)
3816 {
3817         if (nf_hook_egress_active(skb)) {
3818                 int ret;
3819
3820                 rcu_read_lock();
3821                 ret = nf_hook_egress(skb);
3822                 rcu_read_unlock();
3823                 return ret;
3824         }
3825         return 0;
3826 }
3827
3828 #ifdef CONFIG_XPS
3829 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3830                                struct xps_dev_maps *dev_maps, unsigned int tci)
3831 {
3832         struct xps_map *map;
3833         int queue_index = -1;
3834
3835         if (dev->num_tc) {
3836                 tci *= dev->num_tc;
3837                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3838         }
3839
3840         map = rcu_dereference(dev_maps->attr_map[tci]);
3841         if (map) {
3842                 if (map->len == 1)
3843                         queue_index = map->queues[0];
3844                 else
3845                         queue_index = map->queues[reciprocal_scale(
3846                                                 skb_get_hash(skb), map->len)];
3847                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3848                         queue_index = -1;
3849         }
3850         return queue_index;
3851 }
3852 #endif
3853
3854 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3855                          struct sk_buff *skb)
3856 {
3857 #ifdef CONFIG_XPS
3858         struct xps_dev_maps *dev_maps;
3859         struct sock *sk = skb->sk;
3860         int queue_index = -1;
3861
3862         if (!static_key_false(&xps_needed))
3863                 return -1;
3864
3865         rcu_read_lock();
3866         if (!static_key_false(&xps_rxqs_needed))
3867                 goto get_cpus_map;
3868
3869         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3870         if (dev_maps) {
3871                 int tci = sk_rx_queue_get(sk);
3872
3873                 if (tci >= 0 && tci < dev->num_rx_queues)
3874                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3875                                                           tci);
3876         }
3877
3878 get_cpus_map:
3879         if (queue_index < 0) {
3880                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3881                 if (dev_maps) {
3882                         unsigned int tci = skb->sender_cpu - 1;
3883
3884                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3885                                                           tci);
3886                 }
3887         }
3888         rcu_read_unlock();
3889
3890         return queue_index;
3891 #else
3892         return -1;
3893 #endif
3894 }
3895
3896 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3897                      struct net_device *sb_dev)
3898 {
3899         return 0;
3900 }
3901 EXPORT_SYMBOL(dev_pick_tx_zero);
3902
3903 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3904                        struct net_device *sb_dev)
3905 {
3906         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3907 }
3908 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3909
3910 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3911                      struct net_device *sb_dev)
3912 {
3913         struct sock *sk = skb->sk;
3914         int queue_index = sk_tx_queue_get(sk);
3915
3916         sb_dev = sb_dev ? : dev;
3917
3918         if (queue_index < 0 || skb->ooo_okay ||
3919             queue_index >= dev->real_num_tx_queues) {
3920                 int new_index = get_xps_queue(dev, sb_dev, skb);
3921
3922                 if (new_index < 0)
3923                         new_index = skb_tx_hash(dev, sb_dev, skb);
3924
3925                 if (queue_index != new_index && sk &&
3926                     sk_fullsock(sk) &&
3927                     rcu_access_pointer(sk->sk_dst_cache))
3928                         sk_tx_queue_set(sk, new_index);
3929
3930                 queue_index = new_index;
3931         }
3932
3933         return queue_index;
3934 }
3935 EXPORT_SYMBOL(netdev_pick_tx);
3936
3937 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3938                                          struct sk_buff *skb,
3939                                          struct net_device *sb_dev)
3940 {
3941         int queue_index = 0;
3942
3943 #ifdef CONFIG_XPS
3944         u32 sender_cpu = skb->sender_cpu - 1;
3945
3946         if (sender_cpu >= (u32)NR_CPUS)
3947                 skb->sender_cpu = raw_smp_processor_id() + 1;
3948 #endif
3949
3950         if (dev->real_num_tx_queues != 1) {
3951                 const struct net_device_ops *ops = dev->netdev_ops;
3952
3953                 if (ops->ndo_select_queue)
3954                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3955                 else
3956                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3957
3958                 queue_index = netdev_cap_txqueue(dev, queue_index);
3959         }
3960
3961         skb_set_queue_mapping(skb, queue_index);
3962         return netdev_get_tx_queue(dev, queue_index);
3963 }
3964
3965 /**
3966  *      __dev_queue_xmit - transmit a buffer
3967  *      @skb: buffer to transmit
3968  *      @sb_dev: suboordinate device used for L2 forwarding offload
3969  *
3970  *      Queue a buffer for transmission to a network device. The caller must
3971  *      have set the device and priority and built the buffer before calling
3972  *      this function. The function can be called from an interrupt.
3973  *
3974  *      A negative errno code is returned on a failure. A success does not
3975  *      guarantee the frame will be transmitted as it may be dropped due
3976  *      to congestion or traffic shaping.
3977  *
3978  * -----------------------------------------------------------------------------------
3979  *      I notice this method can also return errors from the queue disciplines,
3980  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3981  *      be positive.
3982  *
3983  *      Regardless of the return value, the skb is consumed, so it is currently
3984  *      difficult to retry a send to this method.  (You can bump the ref count
3985  *      before sending to hold a reference for retry if you are careful.)
3986  *
3987  *      When calling this method, interrupts MUST be enabled.  This is because
3988  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3989  *          --BLG
3990  */
3991 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3992 {
3993         struct net_device *dev = skb->dev;
3994         struct netdev_queue *txq;
3995         struct Qdisc *q;
3996         int rc = -ENOMEM;
3997         bool again = false;
3998
3999         skb_reset_mac_header(skb);
4000
4001         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4002                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4003
4004         /* Disable soft irqs for various locks below. Also
4005          * stops preemption for RCU.
4006          */
4007         rcu_read_lock_bh();
4008
4009         skb_update_prio(skb);
4010
4011         qdisc_pkt_len_init(skb);
4012 #ifdef CONFIG_NET_CLS_ACT
4013         skb->tc_at_ingress = 0;
4014 #endif
4015 #ifdef CONFIG_NET_EGRESS
4016         if (static_branch_unlikely(&egress_needed_key)) {
4017                 if (nf_egress(skb) < 0)
4018                         goto out;
4019
4020                 skb = sch_handle_egress(skb, &rc, dev);
4021                 if (!skb)
4022                         goto out;
4023         }
4024 #endif
4025         /* If device/qdisc don't need skb->dst, release it right now while
4026          * its hot in this cpu cache.
4027          */
4028         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4029                 skb_dst_drop(skb);
4030         else
4031                 skb_dst_force(skb);
4032
4033         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4034         q = rcu_dereference_bh(txq->qdisc);
4035
4036         trace_net_dev_queue(skb);
4037         if (q->enqueue) {
4038                 rc = __dev_xmit_skb(skb, q, dev, txq);
4039                 goto out;
4040         }
4041
4042         /* The device has no queue. Common case for software devices:
4043          * loopback, all the sorts of tunnels...
4044
4045          * Really, it is unlikely that netif_tx_lock protection is necessary
4046          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4047          * counters.)
4048          * However, it is possible, that they rely on protection
4049          * made by us here.
4050
4051          * Check this and shot the lock. It is not prone from deadlocks.
4052          *Either shot noqueue qdisc, it is even simpler 8)
4053          */
4054         if (dev->flags & IFF_UP) {
4055                 int cpu = smp_processor_id(); /* ok because BHs are off */
4056
4057                 if (txq->xmit_lock_owner != cpu) {
4058                         if (dev_xmit_recursion())
4059                                 goto recursion_alert;
4060
4061                         skb = validate_xmit_skb(skb, dev, &again);
4062                         if (!skb)
4063                                 goto out;
4064
4065                         HARD_TX_LOCK(dev, txq, cpu);
4066
4067                         if (!netif_xmit_stopped(txq)) {
4068                                 dev_xmit_recursion_inc();
4069                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4070                                 dev_xmit_recursion_dec();
4071                                 if (dev_xmit_complete(rc)) {
4072                                         HARD_TX_UNLOCK(dev, txq);
4073                                         goto out;
4074                                 }
4075                         }
4076                         HARD_TX_UNLOCK(dev, txq);
4077                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4078                                              dev->name);
4079                 } else {
4080                         /* Recursion is detected! It is possible,
4081                          * unfortunately
4082                          */
4083 recursion_alert:
4084                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4085                                              dev->name);
4086                 }
4087         }
4088
4089         rc = -ENETDOWN;
4090         rcu_read_unlock_bh();
4091
4092         atomic_long_inc(&dev->tx_dropped);
4093         kfree_skb_list(skb);
4094         return rc;
4095 out:
4096         rcu_read_unlock_bh();
4097         return rc;
4098 }
4099
4100 int dev_queue_xmit(struct sk_buff *skb)
4101 {
4102         return __dev_queue_xmit(skb, NULL);
4103 }
4104 EXPORT_SYMBOL(dev_queue_xmit);
4105
4106 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4107 {
4108         return __dev_queue_xmit(skb, sb_dev);
4109 }
4110 EXPORT_SYMBOL(dev_queue_xmit_accel);
4111
4112 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4113 {
4114         struct net_device *dev = skb->dev;
4115         struct sk_buff *orig_skb = skb;
4116         struct netdev_queue *txq;
4117         int ret = NETDEV_TX_BUSY;
4118         bool again = false;
4119
4120         if (unlikely(!netif_running(dev) ||
4121                      !netif_carrier_ok(dev)))
4122                 goto drop;
4123
4124         skb = validate_xmit_skb_list(skb, dev, &again);
4125         if (skb != orig_skb)
4126                 goto drop;
4127
4128         skb_set_queue_mapping(skb, queue_id);
4129         txq = skb_get_tx_queue(dev, skb);
4130
4131         local_bh_disable();
4132
4133         HARD_TX_LOCK(dev, txq, smp_processor_id());
4134         if (!netif_xmit_frozen_or_drv_stopped(txq))
4135                 ret = netdev_start_xmit(skb, dev, txq, false);
4136         HARD_TX_UNLOCK(dev, txq);
4137
4138         local_bh_enable();
4139
4140         if (!dev_xmit_complete(ret))
4141                 kfree_skb(skb);
4142
4143         return ret;
4144 drop:
4145         atomic_long_inc(&dev->tx_dropped);
4146         kfree_skb_list(skb);
4147         return NET_XMIT_DROP;
4148 }
4149 EXPORT_SYMBOL(dev_direct_xmit);
4150
4151 /*************************************************************************
4152  *                      Receiver routines
4153  *************************************************************************/
4154
4155 int netdev_max_backlog __read_mostly = 1000;
4156 EXPORT_SYMBOL(netdev_max_backlog);
4157
4158 int netdev_tstamp_prequeue __read_mostly = 1;
4159 int netdev_budget __read_mostly = 300;
4160 unsigned int __read_mostly netdev_budget_usecs = 2000;
4161 int weight_p __read_mostly = 64;           /* old backlog weight */
4162 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4163 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4164 int dev_rx_weight __read_mostly = 64;
4165 int dev_tx_weight __read_mostly = 64;
4166 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4167 int gro_normal_batch __read_mostly = 8;
4168
4169 /* Called with irq disabled */
4170 static inline void ____napi_schedule(struct softnet_data *sd,
4171                                      struct napi_struct *napi)
4172 {
4173         list_add_tail(&napi->poll_list, &sd->poll_list);
4174         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4175 }
4176
4177 #ifdef CONFIG_RPS
4178
4179 /* One global table that all flow-based protocols share. */
4180 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4181 EXPORT_SYMBOL(rps_sock_flow_table);
4182 u32 rps_cpu_mask __read_mostly;
4183 EXPORT_SYMBOL(rps_cpu_mask);
4184
4185 struct static_key_false rps_needed __read_mostly;
4186 EXPORT_SYMBOL(rps_needed);
4187 struct static_key_false rfs_needed __read_mostly;
4188 EXPORT_SYMBOL(rfs_needed);
4189
4190 static struct rps_dev_flow *
4191 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4192             struct rps_dev_flow *rflow, u16 next_cpu)
4193 {
4194         if (next_cpu < nr_cpu_ids) {
4195 #ifdef CONFIG_RFS_ACCEL
4196                 struct netdev_rx_queue *rxqueue;
4197                 struct rps_dev_flow_table *flow_table;
4198                 struct rps_dev_flow *old_rflow;
4199                 u32 flow_id;
4200                 u16 rxq_index;
4201                 int rc;
4202
4203                 /* Should we steer this flow to a different hardware queue? */
4204                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4205                     !(dev->features & NETIF_F_NTUPLE))
4206                         goto out;
4207                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4208                 if (rxq_index == skb_get_rx_queue(skb))
4209                         goto out;
4210
4211                 rxqueue = dev->_rx + rxq_index;
4212                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4213                 if (!flow_table)
4214                         goto out;
4215                 flow_id = skb_get_hash(skb) & flow_table->mask;
4216                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4217                                                         rxq_index, flow_id);
4218                 if (rc < 0)
4219                         goto out;
4220                 old_rflow = rflow;
4221                 rflow = &flow_table->flows[flow_id];
4222                 rflow->filter = rc;
4223                 if (old_rflow->filter == rflow->filter)
4224                         old_rflow->filter = RPS_NO_FILTER;
4225         out:
4226 #endif
4227                 rflow->last_qtail =
4228                         per_cpu(softnet_data, next_cpu).input_queue_head;
4229         }
4230
4231         rflow->cpu = next_cpu;
4232         return rflow;
4233 }
4234
4235 /*
4236  * get_rps_cpu is called from netif_receive_skb and returns the target
4237  * CPU from the RPS map of the receiving queue for a given skb.
4238  * rcu_read_lock must be held on entry.
4239  */
4240 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4241                        struct rps_dev_flow **rflowp)
4242 {
4243         const struct rps_sock_flow_table *sock_flow_table;
4244         struct netdev_rx_queue *rxqueue = dev->_rx;
4245         struct rps_dev_flow_table *flow_table;
4246         struct rps_map *map;
4247         int cpu = -1;
4248         u32 tcpu;
4249         u32 hash;
4250
4251         if (skb_rx_queue_recorded(skb)) {
4252                 u16 index = skb_get_rx_queue(skb);
4253
4254                 if (unlikely(index >= dev->real_num_rx_queues)) {
4255                         WARN_ONCE(dev->real_num_rx_queues > 1,
4256                                   "%s received packet on queue %u, but number "
4257                                   "of RX queues is %u\n",
4258                                   dev->name, index, dev->real_num_rx_queues);
4259                         goto done;
4260                 }
4261                 rxqueue += index;
4262         }
4263
4264         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4265
4266         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4267         map = rcu_dereference(rxqueue->rps_map);
4268         if (!flow_table && !map)
4269                 goto done;
4270
4271         skb_reset_network_header(skb);
4272         hash = skb_get_hash(skb);
4273         if (!hash)
4274                 goto done;
4275
4276         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4277         if (flow_table && sock_flow_table) {
4278                 struct rps_dev_flow *rflow;
4279                 u32 next_cpu;
4280                 u32 ident;
4281
4282                 /* First check into global flow table if there is a match */
4283                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4284                 if ((ident ^ hash) & ~rps_cpu_mask)
4285                         goto try_rps;
4286
4287                 next_cpu = ident & rps_cpu_mask;
4288
4289                 /* OK, now we know there is a match,
4290                  * we can look at the local (per receive queue) flow table
4291                  */
4292                 rflow = &flow_table->flows[hash & flow_table->mask];
4293                 tcpu = rflow->cpu;
4294
4295                 /*
4296                  * If the desired CPU (where last recvmsg was done) is
4297                  * different from current CPU (one in the rx-queue flow
4298                  * table entry), switch if one of the following holds:
4299                  *   - Current CPU is unset (>= nr_cpu_ids).
4300                  *   - Current CPU is offline.
4301                  *   - The current CPU's queue tail has advanced beyond the
4302                  *     last packet that was enqueued using this table entry.
4303                  *     This guarantees that all previous packets for the flow
4304                  *     have been dequeued, thus preserving in order delivery.
4305                  */
4306                 if (unlikely(tcpu != next_cpu) &&
4307                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4308                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4309                       rflow->last_qtail)) >= 0)) {
4310                         tcpu = next_cpu;
4311                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4312                 }
4313
4314                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4315                         *rflowp = rflow;
4316                         cpu = tcpu;
4317                         goto done;
4318                 }
4319         }
4320
4321 try_rps:
4322
4323         if (map) {
4324                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4325                 if (cpu_online(tcpu)) {
4326                         cpu = tcpu;
4327                         goto done;
4328                 }
4329         }
4330
4331 done:
4332         return cpu;
4333 }
4334
4335 #ifdef CONFIG_RFS_ACCEL
4336
4337 /**
4338  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4339  * @dev: Device on which the filter was set
4340  * @rxq_index: RX queue index
4341  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4342  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4343  *
4344  * Drivers that implement ndo_rx_flow_steer() should periodically call
4345  * this function for each installed filter and remove the filters for
4346  * which it returns %true.
4347  */
4348 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4349                          u32 flow_id, u16 filter_id)
4350 {
4351         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4352         struct rps_dev_flow_table *flow_table;
4353         struct rps_dev_flow *rflow;
4354         bool expire = true;
4355         unsigned int cpu;
4356
4357         rcu_read_lock();
4358         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4359         if (flow_table && flow_id <= flow_table->mask) {
4360                 rflow = &flow_table->flows[flow_id];
4361                 cpu = READ_ONCE(rflow->cpu);
4362                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4363                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4364                            rflow->last_qtail) <
4365                      (int)(10 * flow_table->mask)))
4366                         expire = false;
4367         }
4368         rcu_read_unlock();
4369         return expire;
4370 }
4371 EXPORT_SYMBOL(rps_may_expire_flow);
4372
4373 #endif /* CONFIG_RFS_ACCEL */
4374
4375 /* Called from hardirq (IPI) context */
4376 static void rps_trigger_softirq(void *data)
4377 {
4378         struct softnet_data *sd = data;
4379
4380         ____napi_schedule(sd, &sd->backlog);
4381         sd->received_rps++;
4382 }
4383
4384 #endif /* CONFIG_RPS */
4385
4386 /*
4387  * Check if this softnet_data structure is another cpu one
4388  * If yes, queue it to our IPI list and return 1
4389  * If no, return 0
4390  */
4391 static int rps_ipi_queued(struct softnet_data *sd)
4392 {
4393 #ifdef CONFIG_RPS
4394         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4395
4396         if (sd != mysd) {
4397                 sd->rps_ipi_next = mysd->rps_ipi_list;
4398                 mysd->rps_ipi_list = sd;
4399
4400                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4401                 return 1;
4402         }
4403 #endif /* CONFIG_RPS */
4404         return 0;
4405 }
4406
4407 #ifdef CONFIG_NET_FLOW_LIMIT
4408 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4409 #endif
4410
4411 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4412 {
4413 #ifdef CONFIG_NET_FLOW_LIMIT
4414         struct sd_flow_limit *fl;
4415         struct softnet_data *sd;
4416         unsigned int old_flow, new_flow;
4417
4418         if (qlen < (netdev_max_backlog >> 1))
4419                 return false;
4420
4421         sd = this_cpu_ptr(&softnet_data);
4422
4423         rcu_read_lock();
4424         fl = rcu_dereference(sd->flow_limit);
4425         if (fl) {
4426                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4427                 old_flow = fl->history[fl->history_head];
4428                 fl->history[fl->history_head] = new_flow;
4429
4430                 fl->history_head++;
4431                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4432
4433                 if (likely(fl->buckets[old_flow]))
4434                         fl->buckets[old_flow]--;
4435
4436                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4437                         fl->count++;
4438                         rcu_read_unlock();
4439                         return true;
4440                 }
4441         }
4442         rcu_read_unlock();
4443 #endif
4444         return false;
4445 }
4446
4447 /*
4448  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4449  * queue (may be a remote CPU queue).
4450  */
4451 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4452                               unsigned int *qtail)
4453 {
4454         struct softnet_data *sd;
4455         unsigned long flags;
4456         unsigned int qlen;
4457
4458         sd = &per_cpu(softnet_data, cpu);
4459
4460         local_irq_save(flags);
4461
4462         rps_lock(sd);
4463         if (!netif_running(skb->dev))
4464                 goto drop;
4465         qlen = skb_queue_len(&sd->input_pkt_queue);
4466         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4467                 if (qlen) {
4468 enqueue:
4469                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4470                         input_queue_tail_incr_save(sd, qtail);
4471                         rps_unlock(sd);
4472                         local_irq_restore(flags);
4473                         return NET_RX_SUCCESS;
4474                 }
4475
4476                 /* Schedule NAPI for backlog device
4477                  * We can use non atomic operation since we own the queue lock
4478                  */
4479                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4480                         if (!rps_ipi_queued(sd))
4481                                 ____napi_schedule(sd, &sd->backlog);
4482                 }
4483                 goto enqueue;
4484         }
4485
4486 drop:
4487         sd->dropped++;
4488         rps_unlock(sd);
4489
4490         local_irq_restore(flags);
4491
4492         atomic_long_inc(&skb->dev->rx_dropped);
4493         kfree_skb(skb);
4494         return NET_RX_DROP;
4495 }
4496
4497 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4498 {
4499         struct net_device *dev = skb->dev;
4500         struct netdev_rx_queue *rxqueue;
4501
4502         rxqueue = dev->_rx;
4503
4504         if (skb_rx_queue_recorded(skb)) {
4505                 u16 index = skb_get_rx_queue(skb);
4506
4507                 if (unlikely(index >= dev->real_num_rx_queues)) {
4508                         WARN_ONCE(dev->real_num_rx_queues > 1,
4509                                   "%s received packet on queue %u, but number "
4510                                   "of RX queues is %u\n",
4511                                   dev->name, index, dev->real_num_rx_queues);
4512
4513                         return rxqueue; /* Return first rxqueue */
4514                 }
4515                 rxqueue += index;
4516         }
4517         return rxqueue;
4518 }
4519
4520 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4521                                      struct xdp_buff *xdp,
4522                                      struct bpf_prog *xdp_prog)
4523 {
4524         struct netdev_rx_queue *rxqueue;
4525         void *orig_data, *orig_data_end;
4526         u32 metalen, act = XDP_DROP;
4527         __be16 orig_eth_type;
4528         struct ethhdr *eth;
4529         bool orig_bcast;
4530         int hlen, off;
4531         u32 mac_len;
4532
4533         /* Reinjected packets coming from act_mirred or similar should
4534          * not get XDP generic processing.
4535          */
4536         if (skb_is_tc_redirected(skb))
4537                 return XDP_PASS;
4538
4539         /* XDP packets must be linear and must have sufficient headroom
4540          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4541          * native XDP provides, thus we need to do it here as well.
4542          */
4543         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4544             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4545                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4546                 int troom = skb->tail + skb->data_len - skb->end;
4547
4548                 /* In case we have to go down the path and also linearize,
4549                  * then lets do the pskb_expand_head() work just once here.
4550                  */
4551                 if (pskb_expand_head(skb,
4552                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4553                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4554                         goto do_drop;
4555                 if (skb_linearize(skb))
4556                         goto do_drop;
4557         }
4558
4559         /* The XDP program wants to see the packet starting at the MAC
4560          * header.
4561          */
4562         mac_len = skb->data - skb_mac_header(skb);
4563         hlen = skb_headlen(skb) + mac_len;
4564         xdp->data = skb->data - mac_len;
4565         xdp->data_meta = xdp->data;
4566         xdp->data_end = xdp->data + hlen;
4567         xdp->data_hard_start = skb->data - skb_headroom(skb);
4568         orig_data_end = xdp->data_end;
4569         orig_data = xdp->data;
4570         eth = (struct ethhdr *)xdp->data;
4571         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4572         orig_eth_type = eth->h_proto;
4573
4574         rxqueue = netif_get_rxqueue(skb);
4575         xdp->rxq = &rxqueue->xdp_rxq;
4576
4577         act = bpf_prog_run_xdp(xdp_prog, xdp);
4578
4579         /* check if bpf_xdp_adjust_head was used */
4580         off = xdp->data - orig_data;
4581         if (off) {
4582                 if (off > 0)
4583                         __skb_pull(skb, off);
4584                 else if (off < 0)
4585                         __skb_push(skb, -off);
4586
4587                 skb->mac_header += off;
4588                 skb_reset_network_header(skb);
4589         }
4590
4591         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4592          * pckt.
4593          */
4594         off = orig_data_end - xdp->data_end;
4595         if (off != 0) {
4596                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4597                 skb->len -= off;
4598
4599         }
4600
4601         /* check if XDP changed eth hdr such SKB needs update */
4602         eth = (struct ethhdr *)xdp->data;
4603         if ((orig_eth_type != eth->h_proto) ||
4604             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4605                 __skb_push(skb, ETH_HLEN);
4606                 skb->protocol = eth_type_trans(skb, skb->dev);
4607         }
4608
4609         switch (act) {
4610         case XDP_REDIRECT:
4611         case XDP_TX:
4612                 __skb_push(skb, mac_len);
4613                 break;
4614         case XDP_PASS:
4615                 metalen = xdp->data - xdp->data_meta;
4616                 if (metalen)
4617                         skb_metadata_set(skb, metalen);
4618                 break;
4619         default:
4620                 bpf_warn_invalid_xdp_action(act);
4621                 /* fall through */
4622         case XDP_ABORTED:
4623                 trace_xdp_exception(skb->dev, xdp_prog, act);
4624                 /* fall through */
4625         case XDP_DROP:
4626         do_drop:
4627                 kfree_skb(skb);
4628                 break;
4629         }
4630
4631         return act;
4632 }
4633
4634 /* When doing generic XDP we have to bypass the qdisc layer and the
4635  * network taps in order to match in-driver-XDP behavior.
4636  */
4637 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4638 {
4639         struct net_device *dev = skb->dev;
4640         struct netdev_queue *txq;
4641         bool free_skb = true;
4642         int cpu, rc;
4643
4644         txq = netdev_core_pick_tx(dev, skb, NULL);
4645         cpu = smp_processor_id();
4646         HARD_TX_LOCK(dev, txq, cpu);
4647         if (!netif_xmit_stopped(txq)) {
4648                 rc = netdev_start_xmit(skb, dev, txq, 0);
4649                 if (dev_xmit_complete(rc))
4650                         free_skb = false;
4651         }
4652         HARD_TX_UNLOCK(dev, txq);
4653         if (free_skb) {
4654                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4655                 kfree_skb(skb);
4656         }
4657 }
4658
4659 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4660
4661 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4662 {
4663         if (xdp_prog) {
4664                 struct xdp_buff xdp;
4665                 u32 act;
4666                 int err;
4667
4668                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4669                 if (act != XDP_PASS) {
4670                         switch (act) {
4671                         case XDP_REDIRECT:
4672                                 err = xdp_do_generic_redirect(skb->dev, skb,
4673                                                               &xdp, xdp_prog);
4674                                 if (err)
4675                                         goto out_redir;
4676                                 break;
4677                         case XDP_TX:
4678                                 generic_xdp_tx(skb, xdp_prog);
4679                                 break;
4680                         }
4681                         return XDP_DROP;
4682                 }
4683         }
4684         return XDP_PASS;
4685 out_redir:
4686         kfree_skb(skb);
4687         return XDP_DROP;
4688 }
4689 EXPORT_SYMBOL_GPL(do_xdp_generic);
4690
4691 static int netif_rx_internal(struct sk_buff *skb)
4692 {
4693         int ret;
4694
4695         net_timestamp_check(netdev_tstamp_prequeue, skb);
4696
4697         trace_netif_rx(skb);
4698
4699 #ifdef CONFIG_RPS
4700         if (static_branch_unlikely(&rps_needed)) {
4701                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4702                 int cpu;
4703
4704                 preempt_disable();
4705                 rcu_read_lock();
4706
4707                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4708                 if (cpu < 0)
4709                         cpu = smp_processor_id();
4710
4711                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4712
4713                 rcu_read_unlock();
4714                 preempt_enable();
4715         } else
4716 #endif
4717         {
4718                 unsigned int qtail;
4719
4720                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4721                 put_cpu();
4722         }
4723         return ret;
4724 }
4725
4726 /**
4727  *      netif_rx        -       post buffer to the network code
4728  *      @skb: buffer to post
4729  *
4730  *      This function receives a packet from a device driver and queues it for
4731  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4732  *      may be dropped during processing for congestion control or by the
4733  *      protocol layers.
4734  *
4735  *      return values:
4736  *      NET_RX_SUCCESS  (no congestion)
4737  *      NET_RX_DROP     (packet was dropped)
4738  *
4739  */
4740
4741 int netif_rx(struct sk_buff *skb)
4742 {
4743         int ret;
4744
4745         trace_netif_rx_entry(skb);
4746
4747         ret = netif_rx_internal(skb);
4748         trace_netif_rx_exit(ret);
4749
4750         return ret;
4751 }
4752 EXPORT_SYMBOL(netif_rx);
4753
4754 int netif_rx_ni(struct sk_buff *skb)
4755 {
4756         int err;
4757
4758         trace_netif_rx_ni_entry(skb);
4759
4760         preempt_disable();
4761         err = netif_rx_internal(skb);
4762         if (local_softirq_pending())
4763                 do_softirq();
4764         preempt_enable();
4765         trace_netif_rx_ni_exit(err);
4766
4767         return err;
4768 }
4769 EXPORT_SYMBOL(netif_rx_ni);
4770
4771 static __latent_entropy void net_tx_action(struct softirq_action *h)
4772 {
4773         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4774
4775         if (sd->completion_queue) {
4776                 struct sk_buff *clist;
4777
4778                 local_irq_disable();
4779                 clist = sd->completion_queue;
4780                 sd->completion_queue = NULL;
4781                 local_irq_enable();
4782
4783                 while (clist) {
4784                         struct sk_buff *skb = clist;
4785
4786                         clist = clist->next;
4787
4788                         WARN_ON(refcount_read(&skb->users));
4789                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4790                                 trace_consume_skb(skb);
4791                         else
4792                                 trace_kfree_skb(skb, net_tx_action);
4793
4794                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4795                                 __kfree_skb(skb);
4796                         else
4797                                 __kfree_skb_defer(skb);
4798                 }
4799
4800                 __kfree_skb_flush();
4801         }
4802
4803         if (sd->output_queue) {
4804                 struct Qdisc *head;
4805
4806                 local_irq_disable();
4807                 head = sd->output_queue;
4808                 sd->output_queue = NULL;
4809                 sd->output_queue_tailp = &sd->output_queue;
4810                 local_irq_enable();
4811
4812                 while (head) {
4813                         struct Qdisc *q = head;
4814                         spinlock_t *root_lock = NULL;
4815
4816                         head = head->next_sched;
4817
4818                         if (!(q->flags & TCQ_F_NOLOCK)) {
4819                                 root_lock = qdisc_lock(q);
4820                                 spin_lock(root_lock);
4821                         }
4822                         /* We need to make sure head->next_sched is read
4823                          * before clearing __QDISC_STATE_SCHED
4824                          */
4825                         smp_mb__before_atomic();
4826                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4827                         qdisc_run(q);
4828                         if (root_lock)
4829                                 spin_unlock(root_lock);
4830                 }
4831         }
4832
4833         xfrm_dev_backlog(sd);
4834 }
4835
4836 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4837 /* This hook is defined here for ATM LANE */
4838 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4839                              unsigned char *addr) __read_mostly;
4840 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4841 #endif
4842
4843 static inline struct sk_buff *
4844 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4845                    struct net_device *orig_dev)
4846 {
4847 #ifdef CONFIG_NET_CLS_ACT
4848         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4849         struct tcf_result cl_res;
4850
4851         /* If there's at least one ingress present somewhere (so
4852          * we get here via enabled static key), remaining devices
4853          * that are not configured with an ingress qdisc will bail
4854          * out here.
4855          */
4856         if (!miniq)
4857                 return skb;
4858
4859         if (*pt_prev) {
4860                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4861                 *pt_prev = NULL;
4862         }
4863
4864         qdisc_skb_cb(skb)->pkt_len = skb->len;
4865         skb->tc_at_ingress = 1;
4866         mini_qdisc_bstats_cpu_update(miniq, skb);
4867
4868         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4869                                      &cl_res, false)) {
4870         case TC_ACT_OK:
4871         case TC_ACT_RECLASSIFY:
4872                 skb->tc_index = TC_H_MIN(cl_res.classid);
4873                 break;
4874         case TC_ACT_SHOT:
4875                 mini_qdisc_qstats_cpu_drop(miniq);
4876                 kfree_skb(skb);
4877                 return NULL;
4878         case TC_ACT_STOLEN:
4879         case TC_ACT_QUEUED:
4880         case TC_ACT_TRAP:
4881                 consume_skb(skb);
4882                 return NULL;
4883         case TC_ACT_REDIRECT:
4884                 /* skb_mac_header check was done by cls/act_bpf, so
4885                  * we can safely push the L2 header back before
4886                  * redirecting to another netdev
4887                  */
4888                 __skb_push(skb, skb->mac_len);
4889                 skb_do_redirect(skb);
4890                 return NULL;
4891         case TC_ACT_CONSUMED:
4892                 return NULL;
4893         default:
4894                 break;
4895         }
4896 #endif /* CONFIG_NET_CLS_ACT */
4897         return skb;
4898 }
4899
4900 /**
4901  *      netdev_is_rx_handler_busy - check if receive handler is registered
4902  *      @dev: device to check
4903  *
4904  *      Check if a receive handler is already registered for a given device.
4905  *      Return true if there one.
4906  *
4907  *      The caller must hold the rtnl_mutex.
4908  */
4909 bool netdev_is_rx_handler_busy(struct net_device *dev)
4910 {
4911         ASSERT_RTNL();
4912         return dev && rtnl_dereference(dev->rx_handler);
4913 }
4914 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4915
4916 /**
4917  *      netdev_rx_handler_register - register receive handler
4918  *      @dev: device to register a handler for
4919  *      @rx_handler: receive handler to register
4920  *      @rx_handler_data: data pointer that is used by rx handler
4921  *
4922  *      Register a receive handler for a device. This handler will then be
4923  *      called from __netif_receive_skb. A negative errno code is returned
4924  *      on a failure.
4925  *
4926  *      The caller must hold the rtnl_mutex.
4927  *
4928  *      For a general description of rx_handler, see enum rx_handler_result.
4929  */
4930 int netdev_rx_handler_register(struct net_device *dev,
4931                                rx_handler_func_t *rx_handler,
4932                                void *rx_handler_data)
4933 {
4934         if (netdev_is_rx_handler_busy(dev))
4935                 return -EBUSY;
4936
4937         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4938                 return -EINVAL;
4939
4940         /* Note: rx_handler_data must be set before rx_handler */
4941         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4942         rcu_assign_pointer(dev->rx_handler, rx_handler);
4943
4944         return 0;
4945 }
4946 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4947
4948 /**
4949  *      netdev_rx_handler_unregister - unregister receive handler
4950  *      @dev: device to unregister a handler from
4951  *
4952  *      Unregister a receive handler from a device.
4953  *
4954  *      The caller must hold the rtnl_mutex.
4955  */
4956 void netdev_rx_handler_unregister(struct net_device *dev)
4957 {
4958
4959         ASSERT_RTNL();
4960         RCU_INIT_POINTER(dev->rx_handler, NULL);
4961         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4962          * section has a guarantee to see a non NULL rx_handler_data
4963          * as well.
4964          */
4965         synchronize_net();
4966         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4967 }
4968 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4969
4970 /*
4971  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4972  * the special handling of PFMEMALLOC skbs.
4973  */
4974 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4975 {
4976         switch (skb->protocol) {
4977         case htons(ETH_P_ARP):
4978         case htons(ETH_P_IP):
4979         case htons(ETH_P_IPV6):
4980         case htons(ETH_P_8021Q):
4981         case htons(ETH_P_8021AD):
4982                 return true;
4983         default:
4984                 return false;
4985         }
4986 }
4987
4988 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4989                              int *ret, struct net_device *orig_dev)
4990 {
4991         if (nf_hook_ingress_active(skb)) {
4992                 int ingress_retval;
4993
4994                 if (*pt_prev) {
4995                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4996                         *pt_prev = NULL;
4997                 }
4998
4999                 rcu_read_lock();
5000                 ingress_retval = nf_hook_ingress(skb);
5001                 rcu_read_unlock();
5002                 return ingress_retval;
5003         }
5004         return 0;
5005 }
5006
5007 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
5008                                     struct packet_type **ppt_prev)
5009 {
5010         struct packet_type *ptype, *pt_prev;
5011         rx_handler_func_t *rx_handler;
5012         struct net_device *orig_dev;
5013         bool deliver_exact = false;
5014         int ret = NET_RX_DROP;
5015         __be16 type;
5016
5017         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5018
5019         trace_netif_receive_skb(skb);
5020
5021         orig_dev = skb->dev;
5022
5023         skb_reset_network_header(skb);
5024         if (!skb_transport_header_was_set(skb))
5025                 skb_reset_transport_header(skb);
5026         skb_reset_mac_len(skb);
5027
5028         pt_prev = NULL;
5029
5030 another_round:
5031         skb->skb_iif = skb->dev->ifindex;
5032
5033         __this_cpu_inc(softnet_data.processed);
5034
5035         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5036                 int ret2;
5037
5038                 preempt_disable();
5039                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5040                 preempt_enable();
5041
5042                 if (ret2 != XDP_PASS)
5043                         return NET_RX_DROP;
5044                 skb_reset_mac_len(skb);
5045         }
5046
5047         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5048             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5049                 skb = skb_vlan_untag(skb);
5050                 if (unlikely(!skb))
5051                         goto out;
5052         }
5053
5054         if (skb_skip_tc_classify(skb))
5055                 goto skip_classify;
5056
5057         if (pfmemalloc)
5058                 goto skip_taps;
5059
5060         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5061                 if (pt_prev)
5062                         ret = deliver_skb(skb, pt_prev, orig_dev);
5063                 pt_prev = ptype;
5064         }
5065
5066         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5067                 if (pt_prev)
5068                         ret = deliver_skb(skb, pt_prev, orig_dev);
5069                 pt_prev = ptype;
5070         }
5071
5072 skip_taps:
5073 #ifdef CONFIG_NET_INGRESS
5074         if (static_branch_unlikely(&ingress_needed_key)) {
5075                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5076                 if (!skb)
5077                         goto out;
5078
5079                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5080                         goto out;
5081         }
5082 #endif
5083         skb_reset_tc(skb);
5084 skip_classify:
5085         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5086                 goto drop;
5087
5088         if (skb_vlan_tag_present(skb)) {
5089                 if (pt_prev) {
5090                         ret = deliver_skb(skb, pt_prev, orig_dev);
5091                         pt_prev = NULL;
5092                 }
5093                 if (vlan_do_receive(&skb))
5094                         goto another_round;
5095                 else if (unlikely(!skb))
5096                         goto out;
5097         }
5098
5099         rx_handler = rcu_dereference(skb->dev->rx_handler);
5100         if (rx_handler) {
5101                 if (pt_prev) {
5102                         ret = deliver_skb(skb, pt_prev, orig_dev);
5103                         pt_prev = NULL;
5104                 }
5105                 switch (rx_handler(&skb)) {
5106                 case RX_HANDLER_CONSUMED:
5107                         ret = NET_RX_SUCCESS;
5108                         goto out;
5109                 case RX_HANDLER_ANOTHER:
5110                         goto another_round;
5111                 case RX_HANDLER_EXACT:
5112                         deliver_exact = true;
5113                 case RX_HANDLER_PASS:
5114                         break;
5115                 default:
5116                         BUG();
5117                 }
5118         }
5119
5120         if (unlikely(skb_vlan_tag_present(skb))) {
5121 check_vlan_id:
5122                 if (skb_vlan_tag_get_id(skb)) {
5123                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5124                          * find vlan device.
5125                          */
5126                         skb->pkt_type = PACKET_OTHERHOST;
5127                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5128                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5129                         /* Outer header is 802.1P with vlan 0, inner header is
5130                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5131                          * not find vlan dev for vlan id 0.
5132                          */
5133                         __vlan_hwaccel_clear_tag(skb);
5134                         skb = skb_vlan_untag(skb);
5135                         if (unlikely(!skb))
5136                                 goto out;
5137                         if (vlan_do_receive(&skb))
5138                                 /* After stripping off 802.1P header with vlan 0
5139                                  * vlan dev is found for inner header.
5140                                  */
5141                                 goto another_round;
5142                         else if (unlikely(!skb))
5143                                 goto out;
5144                         else
5145                                 /* We have stripped outer 802.1P vlan 0 header.
5146                                  * But could not find vlan dev.
5147                                  * check again for vlan id to set OTHERHOST.
5148                                  */
5149                                 goto check_vlan_id;
5150                 }
5151                 /* Note: we might in the future use prio bits
5152                  * and set skb->priority like in vlan_do_receive()
5153                  * For the time being, just ignore Priority Code Point
5154                  */
5155                 __vlan_hwaccel_clear_tag(skb);
5156         }
5157
5158         type = skb->protocol;
5159
5160         /* deliver only exact match when indicated */
5161         if (likely(!deliver_exact)) {
5162                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5163                                        &ptype_base[ntohs(type) &
5164                                                    PTYPE_HASH_MASK]);
5165         }
5166
5167         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5168                                &orig_dev->ptype_specific);
5169
5170         if (unlikely(skb->dev != orig_dev)) {
5171                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5172                                        &skb->dev->ptype_specific);
5173         }
5174
5175         if (pt_prev) {
5176                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5177                         goto drop;
5178                 *ppt_prev = pt_prev;
5179         } else {
5180 drop:
5181                 if (!deliver_exact)
5182                         atomic_long_inc(&skb->dev->rx_dropped);
5183                 else
5184                         atomic_long_inc(&skb->dev->rx_nohandler);
5185                 kfree_skb(skb);
5186                 /* Jamal, now you will not able to escape explaining
5187                  * me how you were going to use this. :-)
5188                  */
5189                 ret = NET_RX_DROP;
5190         }
5191
5192 out:
5193         return ret;
5194 }
5195
5196 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5197 {
5198         struct net_device *orig_dev = skb->dev;
5199         struct packet_type *pt_prev = NULL;
5200         int ret;
5201
5202         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5203         if (pt_prev)
5204                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5205                                          skb->dev, pt_prev, orig_dev);
5206         return ret;
5207 }
5208
5209 /**
5210  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5211  *      @skb: buffer to process
5212  *
5213  *      More direct receive version of netif_receive_skb().  It should
5214  *      only be used by callers that have a need to skip RPS and Generic XDP.
5215  *      Caller must also take care of handling if (page_is_)pfmemalloc.
5216  *
5217  *      This function may only be called from softirq context and interrupts
5218  *      should be enabled.
5219  *
5220  *      Return values (usually ignored):
5221  *      NET_RX_SUCCESS: no congestion
5222  *      NET_RX_DROP: packet was dropped
5223  */
5224 int netif_receive_skb_core(struct sk_buff *skb)
5225 {
5226         int ret;
5227
5228         rcu_read_lock();
5229         ret = __netif_receive_skb_one_core(skb, false);
5230         rcu_read_unlock();
5231
5232         return ret;
5233 }
5234 EXPORT_SYMBOL(netif_receive_skb_core);
5235
5236 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5237                                                   struct packet_type *pt_prev,
5238                                                   struct net_device *orig_dev)
5239 {
5240         struct sk_buff *skb, *next;
5241
5242         if (!pt_prev)
5243                 return;
5244         if (list_empty(head))
5245                 return;
5246         if (pt_prev->list_func != NULL)
5247                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5248                                    ip_list_rcv, head, pt_prev, orig_dev);
5249         else
5250                 list_for_each_entry_safe(skb, next, head, list) {
5251                         skb_list_del_init(skb);
5252                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5253                 }
5254 }
5255
5256 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5257 {
5258         /* Fast-path assumptions:
5259          * - There is no RX handler.
5260          * - Only one packet_type matches.
5261          * If either of these fails, we will end up doing some per-packet
5262          * processing in-line, then handling the 'last ptype' for the whole
5263          * sublist.  This can't cause out-of-order delivery to any single ptype,
5264          * because the 'last ptype' must be constant across the sublist, and all
5265          * other ptypes are handled per-packet.
5266          */
5267         /* Current (common) ptype of sublist */
5268         struct packet_type *pt_curr = NULL;
5269         /* Current (common) orig_dev of sublist */
5270         struct net_device *od_curr = NULL;
5271         struct list_head sublist;
5272         struct sk_buff *skb, *next;
5273
5274         INIT_LIST_HEAD(&sublist);
5275         list_for_each_entry_safe(skb, next, head, list) {
5276                 struct net_device *orig_dev = skb->dev;
5277                 struct packet_type *pt_prev = NULL;
5278
5279                 skb_list_del_init(skb);
5280                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5281                 if (!pt_prev)
5282                         continue;
5283                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5284                         /* dispatch old sublist */
5285                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5286                         /* start new sublist */
5287                         INIT_LIST_HEAD(&sublist);
5288                         pt_curr = pt_prev;
5289                         od_curr = orig_dev;
5290                 }
5291                 list_add_tail(&skb->list, &sublist);
5292         }
5293
5294         /* dispatch final sublist */
5295         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5296 }
5297
5298 static int __netif_receive_skb(struct sk_buff *skb)
5299 {
5300         int ret;
5301
5302         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5303                 unsigned int noreclaim_flag;
5304
5305                 /*
5306                  * PFMEMALLOC skbs are special, they should
5307                  * - be delivered to SOCK_MEMALLOC sockets only
5308                  * - stay away from userspace
5309                  * - have bounded memory usage
5310                  *
5311                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5312                  * context down to all allocation sites.
5313                  */
5314                 noreclaim_flag = memalloc_noreclaim_save();
5315                 ret = __netif_receive_skb_one_core(skb, true);
5316                 memalloc_noreclaim_restore(noreclaim_flag);
5317         } else
5318                 ret = __netif_receive_skb_one_core(skb, false);
5319
5320         return ret;
5321 }
5322
5323 static void __netif_receive_skb_list(struct list_head *head)
5324 {
5325         unsigned long noreclaim_flag = 0;
5326         struct sk_buff *skb, *next;
5327         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5328
5329         list_for_each_entry_safe(skb, next, head, list) {
5330                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5331                         struct list_head sublist;
5332
5333                         /* Handle the previous sublist */
5334                         list_cut_before(&sublist, head, &skb->list);
5335                         if (!list_empty(&sublist))
5336                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5337                         pfmemalloc = !pfmemalloc;
5338                         /* See comments in __netif_receive_skb */
5339                         if (pfmemalloc)
5340                                 noreclaim_flag = memalloc_noreclaim_save();
5341                         else
5342                                 memalloc_noreclaim_restore(noreclaim_flag);
5343                 }
5344         }
5345         /* Handle the remaining sublist */
5346         if (!list_empty(head))
5347                 __netif_receive_skb_list_core(head, pfmemalloc);
5348         /* Restore pflags */
5349         if (pfmemalloc)
5350                 memalloc_noreclaim_restore(noreclaim_flag);
5351 }
5352
5353 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5354 {
5355         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5356         struct bpf_prog *new = xdp->prog;
5357         int ret = 0;
5358
5359         switch (xdp->command) {
5360         case XDP_SETUP_PROG:
5361                 rcu_assign_pointer(dev->xdp_prog, new);
5362                 if (old)
5363                         bpf_prog_put(old);
5364
5365                 if (old && !new) {
5366                         static_branch_dec(&generic_xdp_needed_key);
5367                 } else if (new && !old) {
5368                         static_branch_inc(&generic_xdp_needed_key);
5369                         dev_disable_lro(dev);
5370                         dev_disable_gro_hw(dev);
5371                 }
5372                 break;
5373
5374         case XDP_QUERY_PROG:
5375                 xdp->prog_id = old ? old->aux->id : 0;
5376                 break;
5377
5378         default:
5379                 ret = -EINVAL;
5380                 break;
5381         }
5382
5383         return ret;
5384 }
5385
5386 static int netif_receive_skb_internal(struct sk_buff *skb)
5387 {
5388         int ret;
5389
5390         net_timestamp_check(netdev_tstamp_prequeue, skb);
5391
5392         if (skb_defer_rx_timestamp(skb))
5393                 return NET_RX_SUCCESS;
5394
5395         rcu_read_lock();
5396 #ifdef CONFIG_RPS
5397         if (static_branch_unlikely(&rps_needed)) {
5398                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5399                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5400
5401                 if (cpu >= 0) {
5402                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5403                         rcu_read_unlock();
5404                         return ret;
5405                 }
5406         }
5407 #endif
5408         ret = __netif_receive_skb(skb);
5409         rcu_read_unlock();
5410         return ret;
5411 }
5412
5413 static void netif_receive_skb_list_internal(struct list_head *head)
5414 {
5415         struct sk_buff *skb, *next;
5416         struct list_head sublist;
5417
5418         INIT_LIST_HEAD(&sublist);
5419         list_for_each_entry_safe(skb, next, head, list) {
5420                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5421                 skb_list_del_init(skb);
5422                 if (!skb_defer_rx_timestamp(skb))
5423                         list_add_tail(&skb->list, &sublist);
5424         }
5425         list_splice_init(&sublist, head);
5426
5427         rcu_read_lock();
5428 #ifdef CONFIG_RPS
5429         if (static_branch_unlikely(&rps_needed)) {
5430                 list_for_each_entry_safe(skb, next, head, list) {
5431                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5432                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5433
5434                         if (cpu >= 0) {
5435                                 /* Will be handled, remove from list */
5436                                 skb_list_del_init(skb);
5437                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5438                         }
5439                 }
5440         }
5441 #endif
5442         __netif_receive_skb_list(head);
5443         rcu_read_unlock();
5444 }
5445
5446 /**
5447  *      netif_receive_skb - process receive buffer from network
5448  *      @skb: buffer to process
5449  *
5450  *      netif_receive_skb() is the main receive data processing function.
5451  *      It always succeeds. The buffer may be dropped during processing
5452  *      for congestion control or by the protocol layers.
5453  *
5454  *      This function may only be called from softirq context and interrupts
5455  *      should be enabled.
5456  *
5457  *      Return values (usually ignored):
5458  *      NET_RX_SUCCESS: no congestion
5459  *      NET_RX_DROP: packet was dropped
5460  */
5461 int netif_receive_skb(struct sk_buff *skb)
5462 {
5463         int ret;
5464
5465         trace_netif_receive_skb_entry(skb);
5466
5467         ret = netif_receive_skb_internal(skb);
5468         trace_netif_receive_skb_exit(ret);
5469
5470         return ret;
5471 }
5472 EXPORT_SYMBOL(netif_receive_skb);
5473
5474 /**
5475  *      netif_receive_skb_list - process many receive buffers from network
5476  *      @head: list of skbs to process.
5477  *
5478  *      Since return value of netif_receive_skb() is normally ignored, and
5479  *      wouldn't be meaningful for a list, this function returns void.
5480  *
5481  *      This function may only be called from softirq context and interrupts
5482  *      should be enabled.
5483  */
5484 void netif_receive_skb_list(struct list_head *head)
5485 {
5486         struct sk_buff *skb;
5487
5488         if (list_empty(head))
5489                 return;
5490         if (trace_netif_receive_skb_list_entry_enabled()) {
5491                 list_for_each_entry(skb, head, list)
5492                         trace_netif_receive_skb_list_entry(skb);
5493         }
5494         netif_receive_skb_list_internal(head);
5495         trace_netif_receive_skb_list_exit(0);
5496 }
5497 EXPORT_SYMBOL(netif_receive_skb_list);
5498
5499 DEFINE_PER_CPU(struct work_struct, flush_works);
5500
5501 /* Network device is going away, flush any packets still pending */
5502 static void flush_backlog(struct work_struct *work)
5503 {
5504         struct sk_buff *skb, *tmp;
5505         struct softnet_data *sd;
5506
5507         local_bh_disable();
5508         sd = this_cpu_ptr(&softnet_data);
5509
5510         local_irq_disable();
5511         rps_lock(sd);
5512         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5513                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5514                         __skb_unlink(skb, &sd->input_pkt_queue);
5515                         kfree_skb(skb);
5516                         input_queue_head_incr(sd);
5517                 }
5518         }
5519         rps_unlock(sd);
5520         local_irq_enable();
5521
5522         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5523                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5524                         __skb_unlink(skb, &sd->process_queue);
5525                         kfree_skb(skb);
5526                         input_queue_head_incr(sd);
5527                 }
5528         }
5529         local_bh_enable();
5530 }
5531
5532 static void flush_all_backlogs(void)
5533 {
5534         unsigned int cpu;
5535
5536         get_online_cpus();
5537
5538         for_each_online_cpu(cpu)
5539                 queue_work_on(cpu, system_highpri_wq,
5540                               per_cpu_ptr(&flush_works, cpu));
5541
5542         for_each_online_cpu(cpu)
5543                 flush_work(per_cpu_ptr(&flush_works, cpu));
5544
5545         put_online_cpus();
5546 }
5547
5548 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5549 static void gro_normal_list(struct napi_struct *napi)
5550 {
5551         if (!napi->rx_count)
5552                 return;
5553         netif_receive_skb_list_internal(&napi->rx_list);
5554         INIT_LIST_HEAD(&napi->rx_list);
5555         napi->rx_count = 0;
5556 }
5557
5558 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5559  * pass the whole batch up to the stack.
5560  */
5561 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5562 {
5563         list_add_tail(&skb->list, &napi->rx_list);
5564         if (++napi->rx_count >= gro_normal_batch)
5565                 gro_normal_list(napi);
5566 }
5567
5568 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5569 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5570 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5571 {
5572         struct packet_offload *ptype;
5573         __be16 type = skb->protocol;
5574         struct list_head *head = &offload_base;
5575         int err = -ENOENT;
5576
5577         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5578
5579         if (NAPI_GRO_CB(skb)->count == 1) {
5580                 skb_shinfo(skb)->gso_size = 0;
5581                 goto out;
5582         }
5583
5584         rcu_read_lock();
5585         list_for_each_entry_rcu(ptype, head, list) {
5586                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5587                         continue;
5588
5589                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5590                                          ipv6_gro_complete, inet_gro_complete,
5591                                          skb, 0);
5592                 break;
5593         }
5594         rcu_read_unlock();
5595
5596         if (err) {
5597                 WARN_ON(&ptype->list == head);
5598                 kfree_skb(skb);
5599                 return NET_RX_SUCCESS;
5600         }
5601
5602 out:
5603         gro_normal_one(napi, skb);
5604         return NET_RX_SUCCESS;
5605 }
5606
5607 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5608                                    bool flush_old)
5609 {
5610         struct list_head *head = &napi->gro_hash[index].list;
5611         struct sk_buff *skb, *p;
5612
5613         list_for_each_entry_safe_reverse(skb, p, head, list) {
5614                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5615                         return;
5616                 skb_list_del_init(skb);
5617                 napi_gro_complete(napi, skb);
5618                 napi->gro_hash[index].count--;
5619         }
5620
5621         if (!napi->gro_hash[index].count)
5622                 __clear_bit(index, &napi->gro_bitmask);
5623 }
5624
5625 /* napi->gro_hash[].list contains packets ordered by age.
5626  * youngest packets at the head of it.
5627  * Complete skbs in reverse order to reduce latencies.
5628  */
5629 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5630 {
5631         unsigned long bitmask = napi->gro_bitmask;
5632         unsigned int i, base = ~0U;
5633
5634         while ((i = ffs(bitmask)) != 0) {
5635                 bitmask >>= i;
5636                 base += i;
5637                 __napi_gro_flush_chain(napi, base, flush_old);
5638         }
5639 }
5640 EXPORT_SYMBOL(napi_gro_flush);
5641
5642 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5643                                           struct sk_buff *skb)
5644 {
5645         unsigned int maclen = skb->dev->hard_header_len;
5646         u32 hash = skb_get_hash_raw(skb);
5647         struct list_head *head;
5648         struct sk_buff *p;
5649
5650         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5651         list_for_each_entry(p, head, list) {
5652                 unsigned long diffs;
5653
5654                 NAPI_GRO_CB(p)->flush = 0;
5655
5656                 if (hash != skb_get_hash_raw(p)) {
5657                         NAPI_GRO_CB(p)->same_flow = 0;
5658                         continue;
5659                 }
5660
5661                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5662                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5663                 if (skb_vlan_tag_present(p))
5664                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5665                 diffs |= skb_metadata_dst_cmp(p, skb);
5666                 diffs |= skb_metadata_differs(p, skb);
5667                 if (maclen == ETH_HLEN)
5668                         diffs |= compare_ether_header(skb_mac_header(p),
5669                                                       skb_mac_header(skb));
5670                 else if (!diffs)
5671                         diffs = memcmp(skb_mac_header(p),
5672                                        skb_mac_header(skb),
5673                                        maclen);
5674                 NAPI_GRO_CB(p)->same_flow = !diffs;
5675         }
5676
5677         return head;
5678 }
5679
5680 static void skb_gro_reset_offset(struct sk_buff *skb)
5681 {
5682         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5683         const skb_frag_t *frag0 = &pinfo->frags[0];
5684
5685         NAPI_GRO_CB(skb)->data_offset = 0;
5686         NAPI_GRO_CB(skb)->frag0 = NULL;
5687         NAPI_GRO_CB(skb)->frag0_len = 0;
5688
5689         if (!skb_headlen(skb) && pinfo->nr_frags &&
5690             !PageHighMem(skb_frag_page(frag0))) {
5691                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5692                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5693                                                     skb_frag_size(frag0),
5694                                                     skb->end - skb->tail);
5695         }
5696 }
5697
5698 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5699 {
5700         struct skb_shared_info *pinfo = skb_shinfo(skb);
5701
5702         BUG_ON(skb->end - skb->tail < grow);
5703
5704         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5705
5706         skb->data_len -= grow;
5707         skb->tail += grow;
5708
5709         skb_frag_off_add(&pinfo->frags[0], grow);
5710         skb_frag_size_sub(&pinfo->frags[0], grow);
5711
5712         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5713                 skb_frag_unref(skb, 0);
5714                 memmove(pinfo->frags, pinfo->frags + 1,
5715                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5716         }
5717 }
5718
5719 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5720 {
5721         struct sk_buff *oldest;
5722
5723         oldest = list_last_entry(head, struct sk_buff, list);
5724
5725         /* We are called with head length >= MAX_GRO_SKBS, so this is
5726          * impossible.
5727          */
5728         if (WARN_ON_ONCE(!oldest))
5729                 return;
5730
5731         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5732          * SKB to the chain.
5733          */
5734         skb_list_del_init(oldest);
5735         napi_gro_complete(napi, oldest);
5736 }
5737
5738 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5739                                                            struct sk_buff *));
5740 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5741                                                            struct sk_buff *));
5742 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5743 {
5744         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5745         struct list_head *head = &offload_base;
5746         struct packet_offload *ptype;
5747         __be16 type = skb->protocol;
5748         struct list_head *gro_head;
5749         struct sk_buff *pp = NULL;
5750         enum gro_result ret;
5751         int same_flow;
5752         int grow;
5753
5754         if (netif_elide_gro(skb->dev))
5755                 goto normal;
5756
5757         gro_head = gro_list_prepare(napi, skb);
5758
5759         rcu_read_lock();
5760         list_for_each_entry_rcu(ptype, head, list) {
5761                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5762                         continue;
5763
5764                 skb_set_network_header(skb, skb_gro_offset(skb));
5765                 skb_reset_mac_len(skb);
5766                 NAPI_GRO_CB(skb)->same_flow = 0;
5767                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5768                 NAPI_GRO_CB(skb)->free = 0;
5769                 NAPI_GRO_CB(skb)->encap_mark = 0;
5770                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5771                 NAPI_GRO_CB(skb)->is_fou = 0;
5772                 NAPI_GRO_CB(skb)->is_atomic = 1;
5773                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5774
5775                 /* Setup for GRO checksum validation */
5776                 switch (skb->ip_summed) {
5777                 case CHECKSUM_COMPLETE:
5778                         NAPI_GRO_CB(skb)->csum = skb->csum;
5779                         NAPI_GRO_CB(skb)->csum_valid = 1;
5780                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5781                         break;
5782                 case CHECKSUM_UNNECESSARY:
5783                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5784                         NAPI_GRO_CB(skb)->csum_valid = 0;
5785                         break;
5786                 default:
5787                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5788                         NAPI_GRO_CB(skb)->csum_valid = 0;
5789                 }
5790
5791                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5792                                         ipv6_gro_receive, inet_gro_receive,
5793                                         gro_head, skb);
5794                 break;
5795         }
5796         rcu_read_unlock();
5797
5798         if (&ptype->list == head)
5799                 goto normal;
5800
5801         if (PTR_ERR(pp) == -EINPROGRESS) {
5802                 ret = GRO_CONSUMED;
5803                 goto ok;
5804         }
5805
5806         same_flow = NAPI_GRO_CB(skb)->same_flow;
5807         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5808
5809         if (pp) {
5810                 skb_list_del_init(pp);
5811                 napi_gro_complete(napi, pp);
5812                 napi->gro_hash[hash].count--;
5813         }
5814
5815         if (same_flow)
5816                 goto ok;
5817
5818         if (NAPI_GRO_CB(skb)->flush)
5819                 goto normal;
5820
5821         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5822                 gro_flush_oldest(napi, gro_head);
5823         } else {
5824                 napi->gro_hash[hash].count++;
5825         }
5826         NAPI_GRO_CB(skb)->count = 1;
5827         NAPI_GRO_CB(skb)->age = jiffies;
5828         NAPI_GRO_CB(skb)->last = skb;
5829         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5830         list_add(&skb->list, gro_head);
5831         ret = GRO_HELD;
5832
5833 pull:
5834         grow = skb_gro_offset(skb) - skb_headlen(skb);
5835         if (grow > 0)
5836                 gro_pull_from_frag0(skb, grow);
5837 ok:
5838         if (napi->gro_hash[hash].count) {
5839                 if (!test_bit(hash, &napi->gro_bitmask))
5840                         __set_bit(hash, &napi->gro_bitmask);
5841         } else if (test_bit(hash, &napi->gro_bitmask)) {
5842                 __clear_bit(hash, &napi->gro_bitmask);
5843         }
5844
5845         return ret;
5846
5847 normal:
5848         ret = GRO_NORMAL;
5849         goto pull;
5850 }
5851
5852 struct packet_offload *gro_find_receive_by_type(__be16 type)
5853 {
5854         struct list_head *offload_head = &offload_base;
5855         struct packet_offload *ptype;
5856
5857         list_for_each_entry_rcu(ptype, offload_head, list) {
5858                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5859                         continue;
5860                 return ptype;
5861         }
5862         return NULL;
5863 }
5864 EXPORT_SYMBOL(gro_find_receive_by_type);
5865
5866 struct packet_offload *gro_find_complete_by_type(__be16 type)
5867 {
5868         struct list_head *offload_head = &offload_base;
5869         struct packet_offload *ptype;
5870
5871         list_for_each_entry_rcu(ptype, offload_head, list) {
5872                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5873                         continue;
5874                 return ptype;
5875         }
5876         return NULL;
5877 }
5878 EXPORT_SYMBOL(gro_find_complete_by_type);
5879
5880 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5881 {
5882         skb_dst_drop(skb);
5883         skb_ext_put(skb);
5884         kmem_cache_free(skbuff_head_cache, skb);
5885 }
5886
5887 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5888                                     struct sk_buff *skb,
5889                                     gro_result_t ret)
5890 {
5891         switch (ret) {
5892         case GRO_NORMAL:
5893                 gro_normal_one(napi, skb);
5894                 break;
5895
5896         case GRO_DROP:
5897                 kfree_skb(skb);
5898                 break;
5899
5900         case GRO_MERGED_FREE:
5901                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5902                         napi_skb_free_stolen_head(skb);
5903                 else
5904                         __kfree_skb(skb);
5905                 break;
5906
5907         case GRO_HELD:
5908         case GRO_MERGED:
5909         case GRO_CONSUMED:
5910                 break;
5911         }
5912
5913         return ret;
5914 }
5915
5916 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5917 {
5918         gro_result_t ret;
5919
5920         skb_mark_napi_id(skb, napi);
5921         trace_napi_gro_receive_entry(skb);
5922
5923         skb_gro_reset_offset(skb);
5924
5925         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5926         trace_napi_gro_receive_exit(ret);
5927
5928         return ret;
5929 }
5930 EXPORT_SYMBOL(napi_gro_receive);
5931
5932 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5933 {
5934         if (unlikely(skb->pfmemalloc)) {
5935                 consume_skb(skb);
5936                 return;
5937         }
5938         __skb_pull(skb, skb_headlen(skb));
5939         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5940         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5941         __vlan_hwaccel_clear_tag(skb);
5942         skb->dev = napi->dev;
5943         skb->skb_iif = 0;
5944
5945         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5946         skb->pkt_type = PACKET_HOST;
5947
5948         skb->encapsulation = 0;
5949         skb_shinfo(skb)->gso_type = 0;
5950         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5951         skb_ext_reset(skb);
5952
5953         napi->skb = skb;
5954 }
5955
5956 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5957 {
5958         struct sk_buff *skb = napi->skb;
5959
5960         if (!skb) {
5961                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5962                 if (skb) {
5963                         napi->skb = skb;
5964                         skb_mark_napi_id(skb, napi);
5965                 }
5966         }
5967         return skb;
5968 }
5969 EXPORT_SYMBOL(napi_get_frags);
5970
5971 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5972                                       struct sk_buff *skb,
5973                                       gro_result_t ret)
5974 {
5975         switch (ret) {
5976         case GRO_NORMAL:
5977         case GRO_HELD:
5978                 __skb_push(skb, ETH_HLEN);
5979                 skb->protocol = eth_type_trans(skb, skb->dev);
5980                 if (ret == GRO_NORMAL)
5981                         gro_normal_one(napi, skb);
5982                 break;
5983
5984         case GRO_DROP:
5985                 napi_reuse_skb(napi, skb);
5986                 break;
5987
5988         case GRO_MERGED_FREE:
5989                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5990                         napi_skb_free_stolen_head(skb);
5991                 else
5992                         napi_reuse_skb(napi, skb);
5993                 break;
5994
5995         case GRO_MERGED:
5996         case GRO_CONSUMED:
5997                 break;
5998         }
5999
6000         return ret;
6001 }
6002
6003 /* Upper GRO stack assumes network header starts at gro_offset=0
6004  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6005  * We copy ethernet header into skb->data to have a common layout.
6006  */
6007 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6008 {
6009         struct sk_buff *skb = napi->skb;
6010         const struct ethhdr *eth;
6011         unsigned int hlen = sizeof(*eth);
6012
6013         napi->skb = NULL;
6014
6015         skb_reset_mac_header(skb);
6016         skb_gro_reset_offset(skb);
6017
6018         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6019                 eth = skb_gro_header_slow(skb, hlen, 0);
6020                 if (unlikely(!eth)) {
6021                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6022                                              __func__, napi->dev->name);
6023                         napi_reuse_skb(napi, skb);
6024                         return NULL;
6025                 }
6026         } else {
6027                 eth = (const struct ethhdr *)skb->data;
6028                 gro_pull_from_frag0(skb, hlen);
6029                 NAPI_GRO_CB(skb)->frag0 += hlen;
6030                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6031         }
6032         __skb_pull(skb, hlen);
6033
6034         /*
6035          * This works because the only protocols we care about don't require
6036          * special handling.
6037          * We'll fix it up properly in napi_frags_finish()
6038          */
6039         skb->protocol = eth->h_proto;
6040
6041         return skb;
6042 }
6043
6044 gro_result_t napi_gro_frags(struct napi_struct *napi)
6045 {
6046         gro_result_t ret;
6047         struct sk_buff *skb = napi_frags_skb(napi);
6048
6049         if (!skb)
6050                 return GRO_DROP;
6051
6052         trace_napi_gro_frags_entry(skb);
6053
6054         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6055         trace_napi_gro_frags_exit(ret);
6056
6057         return ret;
6058 }
6059 EXPORT_SYMBOL(napi_gro_frags);
6060
6061 /* Compute the checksum from gro_offset and return the folded value
6062  * after adding in any pseudo checksum.
6063  */
6064 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6065 {
6066         __wsum wsum;
6067         __sum16 sum;
6068
6069         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6070
6071         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6072         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6073         /* See comments in __skb_checksum_complete(). */
6074         if (likely(!sum)) {
6075                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6076                     !skb->csum_complete_sw)
6077                         netdev_rx_csum_fault(skb->dev, skb);
6078         }
6079
6080         NAPI_GRO_CB(skb)->csum = wsum;
6081         NAPI_GRO_CB(skb)->csum_valid = 1;
6082
6083         return sum;
6084 }
6085 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6086
6087 static void net_rps_send_ipi(struct softnet_data *remsd)
6088 {
6089 #ifdef CONFIG_RPS
6090         while (remsd) {
6091                 struct softnet_data *next = remsd->rps_ipi_next;
6092
6093                 if (cpu_online(remsd->cpu))
6094                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6095                 remsd = next;
6096         }
6097 #endif
6098 }
6099
6100 /*
6101  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6102  * Note: called with local irq disabled, but exits with local irq enabled.
6103  */
6104 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6105 {
6106 #ifdef CONFIG_RPS
6107         struct softnet_data *remsd = sd->rps_ipi_list;
6108
6109         if (remsd) {
6110                 sd->rps_ipi_list = NULL;
6111
6112                 local_irq_enable();
6113
6114                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6115                 net_rps_send_ipi(remsd);
6116         } else
6117 #endif
6118                 local_irq_enable();
6119 }
6120
6121 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6122 {
6123 #ifdef CONFIG_RPS
6124         return sd->rps_ipi_list != NULL;
6125 #else
6126         return false;
6127 #endif
6128 }
6129
6130 static int process_backlog(struct napi_struct *napi, int quota)
6131 {
6132         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6133         bool again = true;
6134         int work = 0;
6135
6136         /* Check if we have pending ipi, its better to send them now,
6137          * not waiting net_rx_action() end.
6138          */
6139         if (sd_has_rps_ipi_waiting(sd)) {
6140                 local_irq_disable();
6141                 net_rps_action_and_irq_enable(sd);
6142         }
6143
6144         napi->weight = dev_rx_weight;
6145         while (again) {
6146                 struct sk_buff *skb;
6147
6148                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6149                         rcu_read_lock();
6150                         __netif_receive_skb(skb);
6151                         rcu_read_unlock();
6152                         input_queue_head_incr(sd);
6153                         if (++work >= quota)
6154                                 return work;
6155
6156                 }
6157
6158                 local_irq_disable();
6159                 rps_lock(sd);
6160                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6161                         /*
6162                          * Inline a custom version of __napi_complete().
6163                          * only current cpu owns and manipulates this napi,
6164                          * and NAPI_STATE_SCHED is the only possible flag set
6165                          * on backlog.
6166                          * We can use a plain write instead of clear_bit(),
6167                          * and we dont need an smp_mb() memory barrier.
6168                          */
6169                         napi->state = 0;
6170                         again = false;
6171                 } else {
6172                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6173                                                    &sd->process_queue);
6174                 }
6175                 rps_unlock(sd);
6176                 local_irq_enable();
6177         }
6178
6179         return work;
6180 }
6181
6182 /**
6183  * __napi_schedule - schedule for receive
6184  * @n: entry to schedule
6185  *
6186  * The entry's receive function will be scheduled to run.
6187  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6188  */
6189 void __napi_schedule(struct napi_struct *n)
6190 {
6191         unsigned long flags;
6192
6193         local_irq_save(flags);
6194         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6195         local_irq_restore(flags);
6196 }
6197 EXPORT_SYMBOL(__napi_schedule);
6198
6199 /**
6200  *      napi_schedule_prep - check if napi can be scheduled
6201  *      @n: napi context
6202  *
6203  * Test if NAPI routine is already running, and if not mark
6204  * it as running.  This is used as a condition variable
6205  * insure only one NAPI poll instance runs.  We also make
6206  * sure there is no pending NAPI disable.
6207  */
6208 bool napi_schedule_prep(struct napi_struct *n)
6209 {
6210         unsigned long val, new;
6211
6212         do {
6213                 val = READ_ONCE(n->state);
6214                 if (unlikely(val & NAPIF_STATE_DISABLE))
6215                         return false;
6216                 new = val | NAPIF_STATE_SCHED;
6217
6218                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6219                  * This was suggested by Alexander Duyck, as compiler
6220                  * emits better code than :
6221                  * if (val & NAPIF_STATE_SCHED)
6222                  *     new |= NAPIF_STATE_MISSED;
6223                  */
6224                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6225                                                    NAPIF_STATE_MISSED;
6226         } while (cmpxchg(&n->state, val, new) != val);
6227
6228         return !(val & NAPIF_STATE_SCHED);
6229 }
6230 EXPORT_SYMBOL(napi_schedule_prep);
6231
6232 /**
6233  * __napi_schedule_irqoff - schedule for receive
6234  * @n: entry to schedule
6235  *
6236  * Variant of __napi_schedule() assuming hard irqs are masked
6237  */
6238 void __napi_schedule_irqoff(struct napi_struct *n)
6239 {
6240         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6241 }
6242 EXPORT_SYMBOL(__napi_schedule_irqoff);
6243
6244 bool napi_complete_done(struct napi_struct *n, int work_done)
6245 {
6246         unsigned long flags, val, new;
6247
6248         /*
6249          * 1) Don't let napi dequeue from the cpu poll list
6250          *    just in case its running on a different cpu.
6251          * 2) If we are busy polling, do nothing here, we have
6252          *    the guarantee we will be called later.
6253          */
6254         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6255                                  NAPIF_STATE_IN_BUSY_POLL)))
6256                 return false;
6257
6258         if (n->gro_bitmask) {
6259                 unsigned long timeout = 0;
6260
6261                 if (work_done)
6262                         timeout = n->dev->gro_flush_timeout;
6263
6264                 /* When the NAPI instance uses a timeout and keeps postponing
6265                  * it, we need to bound somehow the time packets are kept in
6266                  * the GRO layer
6267                  */
6268                 napi_gro_flush(n, !!timeout);
6269                 if (timeout)
6270                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6271                                       HRTIMER_MODE_REL_PINNED);
6272         }
6273
6274         gro_normal_list(n);
6275
6276         if (unlikely(!list_empty(&n->poll_list))) {
6277                 /* If n->poll_list is not empty, we need to mask irqs */
6278                 local_irq_save(flags);
6279                 list_del_init(&n->poll_list);
6280                 local_irq_restore(flags);
6281         }
6282
6283         do {
6284                 val = READ_ONCE(n->state);
6285
6286                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6287
6288                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6289
6290                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6291                  * because we will call napi->poll() one more time.
6292                  * This C code was suggested by Alexander Duyck to help gcc.
6293                  */
6294                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6295                                                     NAPIF_STATE_SCHED;
6296         } while (cmpxchg(&n->state, val, new) != val);
6297
6298         if (unlikely(val & NAPIF_STATE_MISSED)) {
6299                 __napi_schedule(n);
6300                 return false;
6301         }
6302
6303         return true;
6304 }
6305 EXPORT_SYMBOL(napi_complete_done);
6306
6307 /* must be called under rcu_read_lock(), as we dont take a reference */
6308 static struct napi_struct *napi_by_id(unsigned int napi_id)
6309 {
6310         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6311         struct napi_struct *napi;
6312
6313         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6314                 if (napi->napi_id == napi_id)
6315                         return napi;
6316
6317         return NULL;
6318 }
6319
6320 #if defined(CONFIG_NET_RX_BUSY_POLL)
6321
6322 #define BUSY_POLL_BUDGET 8
6323
6324 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6325 {
6326         int rc;
6327
6328         /* Busy polling means there is a high chance device driver hard irq
6329          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6330          * set in napi_schedule_prep().
6331          * Since we are about to call napi->poll() once more, we can safely
6332          * clear NAPI_STATE_MISSED.
6333          *
6334          * Note: x86 could use a single "lock and ..." instruction
6335          * to perform these two clear_bit()
6336          */
6337         clear_bit(NAPI_STATE_MISSED, &napi->state);
6338         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6339
6340         local_bh_disable();
6341
6342         /* All we really want here is to re-enable device interrupts.
6343          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6344          */
6345         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6346         /* We can't gro_normal_list() here, because napi->poll() might have
6347          * rearmed the napi (napi_complete_done()) in which case it could
6348          * already be running on another CPU.
6349          */
6350         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6351         netpoll_poll_unlock(have_poll_lock);
6352         if (rc == BUSY_POLL_BUDGET) {
6353                 /* As the whole budget was spent, we still own the napi so can
6354                  * safely handle the rx_list.
6355                  */
6356                 gro_normal_list(napi);
6357                 __napi_schedule(napi);
6358         }
6359         local_bh_enable();
6360 }
6361
6362 void napi_busy_loop(unsigned int napi_id,
6363                     bool (*loop_end)(void *, unsigned long),
6364                     void *loop_end_arg)
6365 {
6366         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6367         int (*napi_poll)(struct napi_struct *napi, int budget);
6368         void *have_poll_lock = NULL;
6369         struct napi_struct *napi;
6370
6371 restart:
6372         napi_poll = NULL;
6373
6374         rcu_read_lock();
6375
6376         napi = napi_by_id(napi_id);
6377         if (!napi)
6378                 goto out;
6379
6380         preempt_disable();
6381         for (;;) {
6382                 int work = 0;
6383
6384                 local_bh_disable();
6385                 if (!napi_poll) {
6386                         unsigned long val = READ_ONCE(napi->state);
6387
6388                         /* If multiple threads are competing for this napi,
6389                          * we avoid dirtying napi->state as much as we can.
6390                          */
6391                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6392                                    NAPIF_STATE_IN_BUSY_POLL))
6393                                 goto count;
6394                         if (cmpxchg(&napi->state, val,
6395                                     val | NAPIF_STATE_IN_BUSY_POLL |
6396                                           NAPIF_STATE_SCHED) != val)
6397                                 goto count;
6398                         have_poll_lock = netpoll_poll_lock(napi);
6399                         napi_poll = napi->poll;
6400                 }
6401                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6402                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6403                 gro_normal_list(napi);
6404 count:
6405                 if (work > 0)
6406                         __NET_ADD_STATS(dev_net(napi->dev),
6407                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6408                 local_bh_enable();
6409
6410                 if (!loop_end || loop_end(loop_end_arg, start_time))
6411                         break;
6412
6413                 if (unlikely(need_resched())) {
6414                         if (napi_poll)
6415                                 busy_poll_stop(napi, have_poll_lock);
6416                         preempt_enable();
6417                         rcu_read_unlock();
6418                         cond_resched();
6419                         if (loop_end(loop_end_arg, start_time))
6420                                 return;
6421                         goto restart;
6422                 }
6423                 cpu_relax();
6424         }
6425         if (napi_poll)
6426                 busy_poll_stop(napi, have_poll_lock);
6427         preempt_enable();
6428 out:
6429         rcu_read_unlock();
6430 }
6431 EXPORT_SYMBOL(napi_busy_loop);
6432
6433 #endif /* CONFIG_NET_RX_BUSY_POLL */
6434
6435 static void napi_hash_add(struct napi_struct *napi)
6436 {
6437         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6438             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6439                 return;
6440
6441         spin_lock(&napi_hash_lock);
6442
6443         /* 0..NR_CPUS range is reserved for sender_cpu use */
6444         do {
6445                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6446                         napi_gen_id = MIN_NAPI_ID;
6447         } while (napi_by_id(napi_gen_id));
6448         napi->napi_id = napi_gen_id;
6449
6450         hlist_add_head_rcu(&napi->napi_hash_node,
6451                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6452
6453         spin_unlock(&napi_hash_lock);
6454 }
6455
6456 /* Warning : caller is responsible to make sure rcu grace period
6457  * is respected before freeing memory containing @napi
6458  */
6459 bool napi_hash_del(struct napi_struct *napi)
6460 {
6461         bool rcu_sync_needed = false;
6462
6463         spin_lock(&napi_hash_lock);
6464
6465         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6466                 rcu_sync_needed = true;
6467                 hlist_del_rcu(&napi->napi_hash_node);
6468         }
6469         spin_unlock(&napi_hash_lock);
6470         return rcu_sync_needed;
6471 }
6472 EXPORT_SYMBOL_GPL(napi_hash_del);
6473
6474 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6475 {
6476         struct napi_struct *napi;
6477
6478         napi = container_of(timer, struct napi_struct, timer);
6479
6480         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6481          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6482          */
6483         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6484             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6485                 __napi_schedule_irqoff(napi);
6486
6487         return HRTIMER_NORESTART;
6488 }
6489
6490 static void init_gro_hash(struct napi_struct *napi)
6491 {
6492         int i;
6493
6494         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6495                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6496                 napi->gro_hash[i].count = 0;
6497         }
6498         napi->gro_bitmask = 0;
6499 }
6500
6501 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6502                     int (*poll)(struct napi_struct *, int), int weight)
6503 {
6504         INIT_LIST_HEAD(&napi->poll_list);
6505         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6506         napi->timer.function = napi_watchdog;
6507         init_gro_hash(napi);
6508         napi->skb = NULL;
6509         INIT_LIST_HEAD(&napi->rx_list);
6510         napi->rx_count = 0;
6511         napi->poll = poll;
6512         if (weight > NAPI_POLL_WEIGHT)
6513                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6514                                 weight);
6515         napi->weight = weight;
6516         list_add(&napi->dev_list, &dev->napi_list);
6517         napi->dev = dev;
6518 #ifdef CONFIG_NETPOLL
6519         napi->poll_owner = -1;
6520 #endif
6521         set_bit(NAPI_STATE_SCHED, &napi->state);
6522         napi_hash_add(napi);
6523 }
6524 EXPORT_SYMBOL(netif_napi_add);
6525
6526 void napi_disable(struct napi_struct *n)
6527 {
6528         might_sleep();
6529         set_bit(NAPI_STATE_DISABLE, &n->state);
6530
6531         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6532                 msleep(1);
6533         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6534                 msleep(1);
6535
6536         hrtimer_cancel(&n->timer);
6537
6538         clear_bit(NAPI_STATE_DISABLE, &n->state);
6539 }
6540 EXPORT_SYMBOL(napi_disable);
6541
6542 static void flush_gro_hash(struct napi_struct *napi)
6543 {
6544         int i;
6545
6546         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6547                 struct sk_buff *skb, *n;
6548
6549                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6550                         kfree_skb(skb);
6551                 napi->gro_hash[i].count = 0;
6552         }
6553 }
6554
6555 /* Must be called in process context */
6556 void netif_napi_del(struct napi_struct *napi)
6557 {
6558         might_sleep();
6559         if (napi_hash_del(napi))
6560                 synchronize_net();
6561         list_del_init(&napi->dev_list);
6562         napi_free_frags(napi);
6563
6564         flush_gro_hash(napi);
6565         napi->gro_bitmask = 0;
6566 }
6567 EXPORT_SYMBOL(netif_napi_del);
6568
6569 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6570 {
6571         void *have;
6572         int work, weight;
6573
6574         list_del_init(&n->poll_list);
6575
6576         have = netpoll_poll_lock(n);
6577
6578         weight = n->weight;
6579
6580         /* This NAPI_STATE_SCHED test is for avoiding a race
6581          * with netpoll's poll_napi().  Only the entity which
6582          * obtains the lock and sees NAPI_STATE_SCHED set will
6583          * actually make the ->poll() call.  Therefore we avoid
6584          * accidentally calling ->poll() when NAPI is not scheduled.
6585          */
6586         work = 0;
6587         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6588                 work = n->poll(n, weight);
6589                 trace_napi_poll(n, work, weight);
6590         }
6591
6592         WARN_ON_ONCE(work > weight);
6593
6594         if (likely(work < weight))
6595                 goto out_unlock;
6596
6597         /* Drivers must not modify the NAPI state if they
6598          * consume the entire weight.  In such cases this code
6599          * still "owns" the NAPI instance and therefore can
6600          * move the instance around on the list at-will.
6601          */
6602         if (unlikely(napi_disable_pending(n))) {
6603                 napi_complete(n);
6604                 goto out_unlock;
6605         }
6606
6607         if (n->gro_bitmask) {
6608                 /* flush too old packets
6609                  * If HZ < 1000, flush all packets.
6610                  */
6611                 napi_gro_flush(n, HZ >= 1000);
6612         }
6613
6614         gro_normal_list(n);
6615
6616         /* Some drivers may have called napi_schedule
6617          * prior to exhausting their budget.
6618          */
6619         if (unlikely(!list_empty(&n->poll_list))) {
6620                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6621                              n->dev ? n->dev->name : "backlog");
6622                 goto out_unlock;
6623         }
6624
6625         list_add_tail(&n->poll_list, repoll);
6626
6627 out_unlock:
6628         netpoll_poll_unlock(have);
6629
6630         return work;
6631 }
6632
6633 static __latent_entropy void net_rx_action(struct softirq_action *h)
6634 {
6635         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6636         unsigned long time_limit = jiffies +
6637                 usecs_to_jiffies(netdev_budget_usecs);
6638         int budget = netdev_budget;
6639         LIST_HEAD(list);
6640         LIST_HEAD(repoll);
6641
6642         local_irq_disable();
6643         list_splice_init(&sd->poll_list, &list);
6644         local_irq_enable();
6645
6646         for (;;) {
6647                 struct napi_struct *n;
6648
6649                 if (list_empty(&list)) {
6650                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6651                                 goto out;
6652                         break;
6653                 }
6654
6655                 n = list_first_entry(&list, struct napi_struct, poll_list);
6656                 budget -= napi_poll(n, &repoll);
6657
6658                 /* If softirq window is exhausted then punt.
6659                  * Allow this to run for 2 jiffies since which will allow
6660                  * an average latency of 1.5/HZ.
6661                  */
6662                 if (unlikely(budget <= 0 ||
6663                              time_after_eq(jiffies, time_limit))) {
6664                         sd->time_squeeze++;
6665                         break;
6666                 }
6667         }
6668
6669         local_irq_disable();
6670
6671         list_splice_tail_init(&sd->poll_list, &list);
6672         list_splice_tail(&repoll, &list);
6673         list_splice(&list, &sd->poll_list);
6674         if (!list_empty(&sd->poll_list))
6675                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6676
6677         net_rps_action_and_irq_enable(sd);
6678 out:
6679         __kfree_skb_flush();
6680 }
6681
6682 struct netdev_adjacent {
6683         struct net_device *dev;
6684
6685         /* upper master flag, there can only be one master device per list */
6686         bool master;
6687
6688         /* lookup ignore flag */
6689         bool ignore;
6690
6691         /* counter for the number of times this device was added to us */
6692         u16 ref_nr;
6693
6694         /* private field for the users */
6695         void *private;
6696
6697         struct list_head list;
6698         struct rcu_head rcu;
6699 };
6700
6701 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6702                                                  struct list_head *adj_list)
6703 {
6704         struct netdev_adjacent *adj;
6705
6706         list_for_each_entry(adj, adj_list, list) {
6707                 if (adj->dev == adj_dev)
6708                         return adj;
6709         }
6710         return NULL;
6711 }
6712
6713 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6714 {
6715         struct net_device *dev = data;
6716
6717         return upper_dev == dev;
6718 }
6719
6720 /**
6721  * netdev_has_upper_dev - Check if device is linked to an upper device
6722  * @dev: device
6723  * @upper_dev: upper device to check
6724  *
6725  * Find out if a device is linked to specified upper device and return true
6726  * in case it is. Note that this checks only immediate upper device,
6727  * not through a complete stack of devices. The caller must hold the RTNL lock.
6728  */
6729 bool netdev_has_upper_dev(struct net_device *dev,
6730                           struct net_device *upper_dev)
6731 {
6732         ASSERT_RTNL();
6733
6734         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6735                                              upper_dev);
6736 }
6737 EXPORT_SYMBOL(netdev_has_upper_dev);
6738
6739 /**
6740  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6741  * @dev: device
6742  * @upper_dev: upper device to check
6743  *
6744  * Find out if a device is linked to specified upper device and return true
6745  * in case it is. Note that this checks the entire upper device chain.
6746  * The caller must hold rcu lock.
6747  */
6748
6749 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6750                                   struct net_device *upper_dev)
6751 {
6752         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6753                                                upper_dev);
6754 }
6755 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6756
6757 /**
6758  * netdev_has_any_upper_dev - Check if device is linked to some device
6759  * @dev: device
6760  *
6761  * Find out if a device is linked to an upper device and return true in case
6762  * it is. The caller must hold the RTNL lock.
6763  */
6764 bool netdev_has_any_upper_dev(struct net_device *dev)
6765 {
6766         ASSERT_RTNL();
6767
6768         return !list_empty(&dev->adj_list.upper);
6769 }
6770 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6771
6772 /**
6773  * netdev_master_upper_dev_get - Get master upper device
6774  * @dev: device
6775  *
6776  * Find a master upper device and return pointer to it or NULL in case
6777  * it's not there. The caller must hold the RTNL lock.
6778  */
6779 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6780 {
6781         struct netdev_adjacent *upper;
6782
6783         ASSERT_RTNL();
6784
6785         if (list_empty(&dev->adj_list.upper))
6786                 return NULL;
6787
6788         upper = list_first_entry(&dev->adj_list.upper,
6789                                  struct netdev_adjacent, list);
6790         if (likely(upper->master))
6791                 return upper->dev;
6792         return NULL;
6793 }
6794 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6795
6796 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6797 {
6798         struct netdev_adjacent *upper;
6799
6800         ASSERT_RTNL();
6801
6802         if (list_empty(&dev->adj_list.upper))
6803                 return NULL;
6804
6805         upper = list_first_entry(&dev->adj_list.upper,
6806                                  struct netdev_adjacent, list);
6807         if (likely(upper->master) && !upper->ignore)
6808                 return upper->dev;
6809         return NULL;
6810 }
6811
6812 /**
6813  * netdev_has_any_lower_dev - Check if device is linked to some device
6814  * @dev: device
6815  *
6816  * Find out if a device is linked to a lower device and return true in case
6817  * it is. The caller must hold the RTNL lock.
6818  */
6819 static bool netdev_has_any_lower_dev(struct net_device *dev)
6820 {
6821         ASSERT_RTNL();
6822
6823         return !list_empty(&dev->adj_list.lower);
6824 }
6825
6826 void *netdev_adjacent_get_private(struct list_head *adj_list)
6827 {
6828         struct netdev_adjacent *adj;
6829
6830         adj = list_entry(adj_list, struct netdev_adjacent, list);
6831
6832         return adj->private;
6833 }
6834 EXPORT_SYMBOL(netdev_adjacent_get_private);
6835
6836 /**
6837  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6838  * @dev: device
6839  * @iter: list_head ** of the current position
6840  *
6841  * Gets the next device from the dev's upper list, starting from iter
6842  * position. The caller must hold RCU read lock.
6843  */
6844 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6845                                                  struct list_head **iter)
6846 {
6847         struct netdev_adjacent *upper;
6848
6849         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6850
6851         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6852
6853         if (&upper->list == &dev->adj_list.upper)
6854                 return NULL;
6855
6856         *iter = &upper->list;
6857
6858         return upper->dev;
6859 }
6860 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6861
6862 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6863                                                   struct list_head **iter,
6864                                                   bool *ignore)
6865 {
6866         struct netdev_adjacent *upper;
6867
6868         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6869
6870         if (&upper->list == &dev->adj_list.upper)
6871                 return NULL;
6872
6873         *iter = &upper->list;
6874         *ignore = upper->ignore;
6875
6876         return upper->dev;
6877 }
6878
6879 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6880                                                     struct list_head **iter)
6881 {
6882         struct netdev_adjacent *upper;
6883
6884         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6885
6886         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6887
6888         if (&upper->list == &dev->adj_list.upper)
6889                 return NULL;
6890
6891         *iter = &upper->list;
6892
6893         return upper->dev;
6894 }
6895
6896 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6897                                        int (*fn)(struct net_device *dev,
6898                                                  void *data),
6899                                        void *data)
6900 {
6901         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6902         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6903         int ret, cur = 0;
6904         bool ignore;
6905
6906         now = dev;
6907         iter = &dev->adj_list.upper;
6908
6909         while (1) {
6910                 if (now != dev) {
6911                         ret = fn(now, data);
6912                         if (ret)
6913                                 return ret;
6914                 }
6915
6916                 next = NULL;
6917                 while (1) {
6918                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6919                         if (!udev)
6920                                 break;
6921                         if (ignore)
6922                                 continue;
6923
6924                         next = udev;
6925                         niter = &udev->adj_list.upper;
6926                         dev_stack[cur] = now;
6927                         iter_stack[cur++] = iter;
6928                         break;
6929                 }
6930
6931                 if (!next) {
6932                         if (!cur)
6933                                 return 0;
6934                         next = dev_stack[--cur];
6935                         niter = iter_stack[cur];
6936                 }
6937
6938                 now = next;
6939                 iter = niter;
6940         }
6941
6942         return 0;
6943 }
6944
6945 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6946                                   int (*fn)(struct net_device *dev,
6947                                             void *data),
6948                                   void *data)
6949 {
6950         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6951         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6952         int ret, cur = 0;
6953
6954         now = dev;
6955         iter = &dev->adj_list.upper;
6956
6957         while (1) {
6958                 if (now != dev) {
6959                         ret = fn(now, data);
6960                         if (ret)
6961                                 return ret;
6962                 }
6963
6964                 next = NULL;
6965                 while (1) {
6966                         udev = netdev_next_upper_dev_rcu(now, &iter);
6967                         if (!udev)
6968                                 break;
6969
6970                         next = udev;
6971                         niter = &udev->adj_list.upper;
6972                         dev_stack[cur] = now;
6973                         iter_stack[cur++] = iter;
6974                         break;
6975                 }
6976
6977                 if (!next) {
6978                         if (!cur)
6979                                 return 0;
6980                         next = dev_stack[--cur];
6981                         niter = iter_stack[cur];
6982                 }
6983
6984                 now = next;
6985                 iter = niter;
6986         }
6987
6988         return 0;
6989 }
6990 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6991
6992 static bool __netdev_has_upper_dev(struct net_device *dev,
6993                                    struct net_device *upper_dev)
6994 {
6995         ASSERT_RTNL();
6996
6997         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6998                                            upper_dev);
6999 }
7000
7001 /**
7002  * netdev_lower_get_next_private - Get the next ->private from the
7003  *                                 lower neighbour list
7004  * @dev: device
7005  * @iter: list_head ** of the current position
7006  *
7007  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7008  * list, starting from iter position. The caller must hold either hold the
7009  * RTNL lock or its own locking that guarantees that the neighbour lower
7010  * list will remain unchanged.
7011  */
7012 void *netdev_lower_get_next_private(struct net_device *dev,
7013                                     struct list_head **iter)
7014 {
7015         struct netdev_adjacent *lower;
7016
7017         lower = list_entry(*iter, struct netdev_adjacent, list);
7018
7019         if (&lower->list == &dev->adj_list.lower)
7020                 return NULL;
7021
7022         *iter = lower->list.next;
7023
7024         return lower->private;
7025 }
7026 EXPORT_SYMBOL(netdev_lower_get_next_private);
7027
7028 /**
7029  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7030  *                                     lower neighbour list, RCU
7031  *                                     variant
7032  * @dev: device
7033  * @iter: list_head ** of the current position
7034  *
7035  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7036  * list, starting from iter position. The caller must hold RCU read lock.
7037  */
7038 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7039                                         struct list_head **iter)
7040 {
7041         struct netdev_adjacent *lower;
7042
7043         WARN_ON_ONCE(!rcu_read_lock_held());
7044
7045         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7046
7047         if (&lower->list == &dev->adj_list.lower)
7048                 return NULL;
7049
7050         *iter = &lower->list;
7051
7052         return lower->private;
7053 }
7054 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7055
7056 /**
7057  * netdev_lower_get_next - Get the next device from the lower neighbour
7058  *                         list
7059  * @dev: device
7060  * @iter: list_head ** of the current position
7061  *
7062  * Gets the next netdev_adjacent from the dev's lower neighbour
7063  * list, starting from iter position. The caller must hold RTNL lock or
7064  * its own locking that guarantees that the neighbour lower
7065  * list will remain unchanged.
7066  */
7067 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7068 {
7069         struct netdev_adjacent *lower;
7070
7071         lower = list_entry(*iter, struct netdev_adjacent, list);
7072
7073         if (&lower->list == &dev->adj_list.lower)
7074                 return NULL;
7075
7076         *iter = lower->list.next;
7077
7078         return lower->dev;
7079 }
7080 EXPORT_SYMBOL(netdev_lower_get_next);
7081
7082 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7083                                                 struct list_head **iter)
7084 {
7085         struct netdev_adjacent *lower;
7086
7087         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7088
7089         if (&lower->list == &dev->adj_list.lower)
7090                 return NULL;
7091
7092         *iter = &lower->list;
7093
7094         return lower->dev;
7095 }
7096
7097 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7098                                                   struct list_head **iter,
7099                                                   bool *ignore)
7100 {
7101         struct netdev_adjacent *lower;
7102
7103         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7104
7105         if (&lower->list == &dev->adj_list.lower)
7106                 return NULL;
7107
7108         *iter = &lower->list;
7109         *ignore = lower->ignore;
7110
7111         return lower->dev;
7112 }
7113
7114 int netdev_walk_all_lower_dev(struct net_device *dev,
7115                               int (*fn)(struct net_device *dev,
7116                                         void *data),
7117                               void *data)
7118 {
7119         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7120         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7121         int ret, cur = 0;
7122
7123         now = dev;
7124         iter = &dev->adj_list.lower;
7125
7126         while (1) {
7127                 if (now != dev) {
7128                         ret = fn(now, data);
7129                         if (ret)
7130                                 return ret;
7131                 }
7132
7133                 next = NULL;
7134                 while (1) {
7135                         ldev = netdev_next_lower_dev(now, &iter);
7136                         if (!ldev)
7137                                 break;
7138
7139                         next = ldev;
7140                         niter = &ldev->adj_list.lower;
7141                         dev_stack[cur] = now;
7142                         iter_stack[cur++] = iter;
7143                         break;
7144                 }
7145
7146                 if (!next) {
7147                         if (!cur)
7148                                 return 0;
7149                         next = dev_stack[--cur];
7150                         niter = iter_stack[cur];
7151                 }
7152
7153                 now = next;
7154                 iter = niter;
7155         }
7156
7157         return 0;
7158 }
7159 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7160
7161 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7162                                        int (*fn)(struct net_device *dev,
7163                                                  void *data),
7164                                        void *data)
7165 {
7166         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7167         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7168         int ret, cur = 0;
7169         bool ignore;
7170
7171         now = dev;
7172         iter = &dev->adj_list.lower;
7173
7174         while (1) {
7175                 if (now != dev) {
7176                         ret = fn(now, data);
7177                         if (ret)
7178                                 return ret;
7179                 }
7180
7181                 next = NULL;
7182                 while (1) {
7183                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7184                         if (!ldev)
7185                                 break;
7186                         if (ignore)
7187                                 continue;
7188
7189                         next = ldev;
7190                         niter = &ldev->adj_list.lower;
7191                         dev_stack[cur] = now;
7192                         iter_stack[cur++] = iter;
7193                         break;
7194                 }
7195
7196                 if (!next) {
7197                         if (!cur)
7198                                 return 0;
7199                         next = dev_stack[--cur];
7200                         niter = iter_stack[cur];
7201                 }
7202
7203                 now = next;
7204                 iter = niter;
7205         }
7206
7207         return 0;
7208 }
7209
7210 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7211                                              struct list_head **iter)
7212 {
7213         struct netdev_adjacent *lower;
7214
7215         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7216         if (&lower->list == &dev->adj_list.lower)
7217                 return NULL;
7218
7219         *iter = &lower->list;
7220
7221         return lower->dev;
7222 }
7223 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7224
7225 static u8 __netdev_upper_depth(struct net_device *dev)
7226 {
7227         struct net_device *udev;
7228         struct list_head *iter;
7229         u8 max_depth = 0;
7230         bool ignore;
7231
7232         for (iter = &dev->adj_list.upper,
7233              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7234              udev;
7235              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7236                 if (ignore)
7237                         continue;
7238                 if (max_depth < udev->upper_level)
7239                         max_depth = udev->upper_level;
7240         }
7241
7242         return max_depth;
7243 }
7244
7245 static u8 __netdev_lower_depth(struct net_device *dev)
7246 {
7247         struct net_device *ldev;
7248         struct list_head *iter;
7249         u8 max_depth = 0;
7250         bool ignore;
7251
7252         for (iter = &dev->adj_list.lower,
7253              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7254              ldev;
7255              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7256                 if (ignore)
7257                         continue;
7258                 if (max_depth < ldev->lower_level)
7259                         max_depth = ldev->lower_level;
7260         }
7261
7262         return max_depth;
7263 }
7264
7265 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7266 {
7267         dev->upper_level = __netdev_upper_depth(dev) + 1;
7268         return 0;
7269 }
7270
7271 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7272 {
7273         dev->lower_level = __netdev_lower_depth(dev) + 1;
7274         return 0;
7275 }
7276
7277 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7278                                   int (*fn)(struct net_device *dev,
7279                                             void *data),
7280                                   void *data)
7281 {
7282         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7283         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7284         int ret, cur = 0;
7285
7286         now = dev;
7287         iter = &dev->adj_list.lower;
7288
7289         while (1) {
7290                 if (now != dev) {
7291                         ret = fn(now, data);
7292                         if (ret)
7293                                 return ret;
7294                 }
7295
7296                 next = NULL;
7297                 while (1) {
7298                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7299                         if (!ldev)
7300                                 break;
7301
7302                         next = ldev;
7303                         niter = &ldev->adj_list.lower;
7304                         dev_stack[cur] = now;
7305                         iter_stack[cur++] = iter;
7306                         break;
7307                 }
7308
7309                 if (!next) {
7310                         if (!cur)
7311                                 return 0;
7312                         next = dev_stack[--cur];
7313                         niter = iter_stack[cur];
7314                 }
7315
7316                 now = next;
7317                 iter = niter;
7318         }
7319
7320         return 0;
7321 }
7322 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7323
7324 /**
7325  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7326  *                                     lower neighbour list, RCU
7327  *                                     variant
7328  * @dev: device
7329  *
7330  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7331  * list. The caller must hold RCU read lock.
7332  */
7333 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7334 {
7335         struct netdev_adjacent *lower;
7336
7337         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7338                         struct netdev_adjacent, list);
7339         if (lower)
7340                 return lower->private;
7341         return NULL;
7342 }
7343 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7344
7345 /**
7346  * netdev_master_upper_dev_get_rcu - Get master upper device
7347  * @dev: device
7348  *
7349  * Find a master upper device and return pointer to it or NULL in case
7350  * it's not there. The caller must hold the RCU read lock.
7351  */
7352 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7353 {
7354         struct netdev_adjacent *upper;
7355
7356         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7357                                        struct netdev_adjacent, list);
7358         if (upper && likely(upper->master))
7359                 return upper->dev;
7360         return NULL;
7361 }
7362 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7363
7364 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7365                               struct net_device *adj_dev,
7366                               struct list_head *dev_list)
7367 {
7368         char linkname[IFNAMSIZ+7];
7369
7370         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7371                 "upper_%s" : "lower_%s", adj_dev->name);
7372         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7373                                  linkname);
7374 }
7375 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7376                                char *name,
7377                                struct list_head *dev_list)
7378 {
7379         char linkname[IFNAMSIZ+7];
7380
7381         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7382                 "upper_%s" : "lower_%s", name);
7383         sysfs_remove_link(&(dev->dev.kobj), linkname);
7384 }
7385
7386 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7387                                                  struct net_device *adj_dev,
7388                                                  struct list_head *dev_list)
7389 {
7390         return (dev_list == &dev->adj_list.upper ||
7391                 dev_list == &dev->adj_list.lower) &&
7392                 net_eq(dev_net(dev), dev_net(adj_dev));
7393 }
7394
7395 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7396                                         struct net_device *adj_dev,
7397                                         struct list_head *dev_list,
7398                                         void *private, bool master)
7399 {
7400         struct netdev_adjacent *adj;
7401         int ret;
7402
7403         adj = __netdev_find_adj(adj_dev, dev_list);
7404
7405         if (adj) {
7406                 adj->ref_nr += 1;
7407                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7408                          dev->name, adj_dev->name, adj->ref_nr);
7409
7410                 return 0;
7411         }
7412
7413         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7414         if (!adj)
7415                 return -ENOMEM;
7416
7417         adj->dev = adj_dev;
7418         adj->master = master;
7419         adj->ref_nr = 1;
7420         adj->private = private;
7421         adj->ignore = false;
7422         dev_hold(adj_dev);
7423
7424         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7425                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7426
7427         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7428                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7429                 if (ret)
7430                         goto free_adj;
7431         }
7432
7433         /* Ensure that master link is always the first item in list. */
7434         if (master) {
7435                 ret = sysfs_create_link(&(dev->dev.kobj),
7436                                         &(adj_dev->dev.kobj), "master");
7437                 if (ret)
7438                         goto remove_symlinks;
7439
7440                 list_add_rcu(&adj->list, dev_list);
7441         } else {
7442                 list_add_tail_rcu(&adj->list, dev_list);
7443         }
7444
7445         return 0;
7446
7447 remove_symlinks:
7448         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7449                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7450 free_adj:
7451         kfree(adj);
7452         dev_put(adj_dev);
7453
7454         return ret;
7455 }
7456
7457 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7458                                          struct net_device *adj_dev,
7459                                          u16 ref_nr,
7460                                          struct list_head *dev_list)
7461 {
7462         struct netdev_adjacent *adj;
7463
7464         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7465                  dev->name, adj_dev->name, ref_nr);
7466
7467         adj = __netdev_find_adj(adj_dev, dev_list);
7468
7469         if (!adj) {
7470                 pr_err("Adjacency does not exist for device %s from %s\n",
7471                        dev->name, adj_dev->name);
7472                 WARN_ON(1);
7473                 return;
7474         }
7475
7476         if (adj->ref_nr > ref_nr) {
7477                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7478                          dev->name, adj_dev->name, ref_nr,
7479                          adj->ref_nr - ref_nr);
7480                 adj->ref_nr -= ref_nr;
7481                 return;
7482         }
7483
7484         if (adj->master)
7485                 sysfs_remove_link(&(dev->dev.kobj), "master");
7486
7487         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7488                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7489
7490         list_del_rcu(&adj->list);
7491         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7492                  adj_dev->name, dev->name, adj_dev->name);
7493         dev_put(adj_dev);
7494         kfree_rcu(adj, rcu);
7495 }
7496
7497 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7498                                             struct net_device *upper_dev,
7499                                             struct list_head *up_list,
7500                                             struct list_head *down_list,
7501                                             void *private, bool master)
7502 {
7503         int ret;
7504
7505         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7506                                            private, master);
7507         if (ret)
7508                 return ret;
7509
7510         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7511                                            private, false);
7512         if (ret) {
7513                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7514                 return ret;
7515         }
7516
7517         return 0;
7518 }
7519
7520 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7521                                                struct net_device *upper_dev,
7522                                                u16 ref_nr,
7523                                                struct list_head *up_list,
7524                                                struct list_head *down_list)
7525 {
7526         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7527         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7528 }
7529
7530 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7531                                                 struct net_device *upper_dev,
7532                                                 void *private, bool master)
7533 {
7534         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7535                                                 &dev->adj_list.upper,
7536                                                 &upper_dev->adj_list.lower,
7537                                                 private, master);
7538 }
7539
7540 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7541                                                    struct net_device *upper_dev)
7542 {
7543         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7544                                            &dev->adj_list.upper,
7545                                            &upper_dev->adj_list.lower);
7546 }
7547
7548 static int __netdev_upper_dev_link(struct net_device *dev,
7549                                    struct net_device *upper_dev, bool master,
7550                                    void *upper_priv, void *upper_info,
7551                                    struct netlink_ext_ack *extack)
7552 {
7553         struct netdev_notifier_changeupper_info changeupper_info = {
7554                 .info = {
7555                         .dev = dev,
7556                         .extack = extack,
7557                 },
7558                 .upper_dev = upper_dev,
7559                 .master = master,
7560                 .linking = true,
7561                 .upper_info = upper_info,
7562         };
7563         struct net_device *master_dev;
7564         int ret = 0;
7565
7566         ASSERT_RTNL();
7567
7568         if (dev == upper_dev)
7569                 return -EBUSY;
7570
7571         /* To prevent loops, check if dev is not upper device to upper_dev. */
7572         if (__netdev_has_upper_dev(upper_dev, dev))
7573                 return -EBUSY;
7574
7575         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7576                 return -EMLINK;
7577
7578         if (!master) {
7579                 if (__netdev_has_upper_dev(dev, upper_dev))
7580                         return -EEXIST;
7581         } else {
7582                 master_dev = __netdev_master_upper_dev_get(dev);
7583                 if (master_dev)
7584                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7585         }
7586
7587         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7588                                             &changeupper_info.info);
7589         ret = notifier_to_errno(ret);
7590         if (ret)
7591                 return ret;
7592
7593         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7594                                                    master);
7595         if (ret)
7596                 return ret;
7597
7598         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7599                                             &changeupper_info.info);
7600         ret = notifier_to_errno(ret);
7601         if (ret)
7602                 goto rollback;
7603
7604         __netdev_update_upper_level(dev, NULL);
7605         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7606
7607         __netdev_update_lower_level(upper_dev, NULL);
7608         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7609                                     NULL);
7610
7611         return 0;
7612
7613 rollback:
7614         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7615
7616         return ret;
7617 }
7618
7619 /**
7620  * netdev_upper_dev_link - Add a link to the upper device
7621  * @dev: device
7622  * @upper_dev: new upper device
7623  * @extack: netlink extended ack
7624  *
7625  * Adds a link to device which is upper to this one. The caller must hold
7626  * the RTNL lock. On a failure a negative errno code is returned.
7627  * On success the reference counts are adjusted and the function
7628  * returns zero.
7629  */
7630 int netdev_upper_dev_link(struct net_device *dev,
7631                           struct net_device *upper_dev,
7632                           struct netlink_ext_ack *extack)
7633 {
7634         return __netdev_upper_dev_link(dev, upper_dev, false,
7635                                        NULL, NULL, extack);
7636 }
7637 EXPORT_SYMBOL(netdev_upper_dev_link);
7638
7639 /**
7640  * netdev_master_upper_dev_link - Add a master link to the upper device
7641  * @dev: device
7642  * @upper_dev: new upper device
7643  * @upper_priv: upper device private
7644  * @upper_info: upper info to be passed down via notifier
7645  * @extack: netlink extended ack
7646  *
7647  * Adds a link to device which is upper to this one. In this case, only
7648  * one master upper device can be linked, although other non-master devices
7649  * might be linked as well. The caller must hold the RTNL lock.
7650  * On a failure a negative errno code is returned. On success the reference
7651  * counts are adjusted and the function returns zero.
7652  */
7653 int netdev_master_upper_dev_link(struct net_device *dev,
7654                                  struct net_device *upper_dev,
7655                                  void *upper_priv, void *upper_info,
7656                                  struct netlink_ext_ack *extack)
7657 {
7658         return __netdev_upper_dev_link(dev, upper_dev, true,
7659                                        upper_priv, upper_info, extack);
7660 }
7661 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7662
7663 /**
7664  * netdev_upper_dev_unlink - Removes a link to upper device
7665  * @dev: device
7666  * @upper_dev: new upper device
7667  *
7668  * Removes a link to device which is upper to this one. The caller must hold
7669  * the RTNL lock.
7670  */
7671 void netdev_upper_dev_unlink(struct net_device *dev,
7672                              struct net_device *upper_dev)
7673 {
7674         struct netdev_notifier_changeupper_info changeupper_info = {
7675                 .info = {
7676                         .dev = dev,
7677                 },
7678                 .upper_dev = upper_dev,
7679                 .linking = false,
7680         };
7681
7682         ASSERT_RTNL();
7683
7684         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7685
7686         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7687                                       &changeupper_info.info);
7688
7689         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7690
7691         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7692                                       &changeupper_info.info);
7693
7694         __netdev_update_upper_level(dev, NULL);
7695         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7696
7697         __netdev_update_lower_level(upper_dev, NULL);
7698         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7699                                     NULL);
7700 }
7701 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7702
7703 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7704                                       struct net_device *lower_dev,
7705                                       bool val)
7706 {
7707         struct netdev_adjacent *adj;
7708
7709         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7710         if (adj)
7711                 adj->ignore = val;
7712
7713         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7714         if (adj)
7715                 adj->ignore = val;
7716 }
7717
7718 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7719                                         struct net_device *lower_dev)
7720 {
7721         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7722 }
7723
7724 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7725                                        struct net_device *lower_dev)
7726 {
7727         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7728 }
7729
7730 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7731                                    struct net_device *new_dev,
7732                                    struct net_device *dev,
7733                                    struct netlink_ext_ack *extack)
7734 {
7735         int err;
7736
7737         if (!new_dev)
7738                 return 0;
7739
7740         if (old_dev && new_dev != old_dev)
7741                 netdev_adjacent_dev_disable(dev, old_dev);
7742
7743         err = netdev_upper_dev_link(new_dev, dev, extack);
7744         if (err) {
7745                 if (old_dev && new_dev != old_dev)
7746                         netdev_adjacent_dev_enable(dev, old_dev);
7747                 return err;
7748         }
7749
7750         return 0;
7751 }
7752 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7753
7754 void netdev_adjacent_change_commit(struct net_device *old_dev,
7755                                    struct net_device *new_dev,
7756                                    struct net_device *dev)
7757 {
7758         if (!new_dev || !old_dev)
7759                 return;
7760
7761         if (new_dev == old_dev)
7762                 return;
7763
7764         netdev_adjacent_dev_enable(dev, old_dev);
7765         netdev_upper_dev_unlink(old_dev, dev);
7766 }
7767 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7768
7769 void netdev_adjacent_change_abort(struct net_device *old_dev,
7770                                   struct net_device *new_dev,
7771                                   struct net_device *dev)
7772 {
7773         if (!new_dev)
7774                 return;
7775
7776         if (old_dev && new_dev != old_dev)
7777                 netdev_adjacent_dev_enable(dev, old_dev);
7778
7779         netdev_upper_dev_unlink(new_dev, dev);
7780 }
7781 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7782
7783 /**
7784  * netdev_bonding_info_change - Dispatch event about slave change
7785  * @dev: device
7786  * @bonding_info: info to dispatch
7787  *
7788  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7789  * The caller must hold the RTNL lock.
7790  */
7791 void netdev_bonding_info_change(struct net_device *dev,
7792                                 struct netdev_bonding_info *bonding_info)
7793 {
7794         struct netdev_notifier_bonding_info info = {
7795                 .info.dev = dev,
7796         };
7797
7798         memcpy(&info.bonding_info, bonding_info,
7799                sizeof(struct netdev_bonding_info));
7800         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7801                                       &info.info);
7802 }
7803 EXPORT_SYMBOL(netdev_bonding_info_change);
7804
7805 static void netdev_adjacent_add_links(struct net_device *dev)
7806 {
7807         struct netdev_adjacent *iter;
7808
7809         struct net *net = dev_net(dev);
7810
7811         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7812                 if (!net_eq(net, dev_net(iter->dev)))
7813                         continue;
7814                 netdev_adjacent_sysfs_add(iter->dev, dev,
7815                                           &iter->dev->adj_list.lower);
7816                 netdev_adjacent_sysfs_add(dev, iter->dev,
7817                                           &dev->adj_list.upper);
7818         }
7819
7820         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7821                 if (!net_eq(net, dev_net(iter->dev)))
7822                         continue;
7823                 netdev_adjacent_sysfs_add(iter->dev, dev,
7824                                           &iter->dev->adj_list.upper);
7825                 netdev_adjacent_sysfs_add(dev, iter->dev,
7826                                           &dev->adj_list.lower);
7827         }
7828 }
7829
7830 static void netdev_adjacent_del_links(struct net_device *dev)
7831 {
7832         struct netdev_adjacent *iter;
7833
7834         struct net *net = dev_net(dev);
7835
7836         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7837                 if (!net_eq(net, dev_net(iter->dev)))
7838                         continue;
7839                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7840                                           &iter->dev->adj_list.lower);
7841                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7842                                           &dev->adj_list.upper);
7843         }
7844
7845         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7846                 if (!net_eq(net, dev_net(iter->dev)))
7847                         continue;
7848                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7849                                           &iter->dev->adj_list.upper);
7850                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7851                                           &dev->adj_list.lower);
7852         }
7853 }
7854
7855 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7856 {
7857         struct netdev_adjacent *iter;
7858
7859         struct net *net = dev_net(dev);
7860
7861         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7862                 if (!net_eq(net, dev_net(iter->dev)))
7863                         continue;
7864                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7865                                           &iter->dev->adj_list.lower);
7866                 netdev_adjacent_sysfs_add(iter->dev, dev,
7867                                           &iter->dev->adj_list.lower);
7868         }
7869
7870         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7871                 if (!net_eq(net, dev_net(iter->dev)))
7872                         continue;
7873                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7874                                           &iter->dev->adj_list.upper);
7875                 netdev_adjacent_sysfs_add(iter->dev, dev,
7876                                           &iter->dev->adj_list.upper);
7877         }
7878 }
7879
7880 void *netdev_lower_dev_get_private(struct net_device *dev,
7881                                    struct net_device *lower_dev)
7882 {
7883         struct netdev_adjacent *lower;
7884
7885         if (!lower_dev)
7886                 return NULL;
7887         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7888         if (!lower)
7889                 return NULL;
7890
7891         return lower->private;
7892 }
7893 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7894
7895
7896 /**
7897  * netdev_lower_change - Dispatch event about lower device state change
7898  * @lower_dev: device
7899  * @lower_state_info: state to dispatch
7900  *
7901  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7902  * The caller must hold the RTNL lock.
7903  */
7904 void netdev_lower_state_changed(struct net_device *lower_dev,
7905                                 void *lower_state_info)
7906 {
7907         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7908                 .info.dev = lower_dev,
7909         };
7910
7911         ASSERT_RTNL();
7912         changelowerstate_info.lower_state_info = lower_state_info;
7913         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7914                                       &changelowerstate_info.info);
7915 }
7916 EXPORT_SYMBOL(netdev_lower_state_changed);
7917
7918 static void dev_change_rx_flags(struct net_device *dev, int flags)
7919 {
7920         const struct net_device_ops *ops = dev->netdev_ops;
7921
7922         if (ops->ndo_change_rx_flags)
7923                 ops->ndo_change_rx_flags(dev, flags);
7924 }
7925
7926 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7927 {
7928         unsigned int old_flags = dev->flags;
7929         kuid_t uid;
7930         kgid_t gid;
7931
7932         ASSERT_RTNL();
7933
7934         dev->flags |= IFF_PROMISC;
7935         dev->promiscuity += inc;
7936         if (dev->promiscuity == 0) {
7937                 /*
7938                  * Avoid overflow.
7939                  * If inc causes overflow, untouch promisc and return error.
7940                  */
7941                 if (inc < 0)
7942                         dev->flags &= ~IFF_PROMISC;
7943                 else {
7944                         dev->promiscuity -= inc;
7945                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7946                                 dev->name);
7947                         return -EOVERFLOW;
7948                 }
7949         }
7950         if (dev->flags != old_flags) {
7951                 pr_info("device %s %s promiscuous mode\n",
7952                         dev->name,
7953                         dev->flags & IFF_PROMISC ? "entered" : "left");
7954                 if (audit_enabled) {
7955                         current_uid_gid(&uid, &gid);
7956                         audit_log(audit_context(), GFP_ATOMIC,
7957                                   AUDIT_ANOM_PROMISCUOUS,
7958                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7959                                   dev->name, (dev->flags & IFF_PROMISC),
7960                                   (old_flags & IFF_PROMISC),
7961                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7962                                   from_kuid(&init_user_ns, uid),
7963                                   from_kgid(&init_user_ns, gid),
7964                                   audit_get_sessionid(current));
7965                 }
7966
7967                 dev_change_rx_flags(dev, IFF_PROMISC);
7968         }
7969         if (notify)
7970                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7971         return 0;
7972 }
7973
7974 /**
7975  *      dev_set_promiscuity     - update promiscuity count on a device
7976  *      @dev: device
7977  *      @inc: modifier
7978  *
7979  *      Add or remove promiscuity from a device. While the count in the device
7980  *      remains above zero the interface remains promiscuous. Once it hits zero
7981  *      the device reverts back to normal filtering operation. A negative inc
7982  *      value is used to drop promiscuity on the device.
7983  *      Return 0 if successful or a negative errno code on error.
7984  */
7985 int dev_set_promiscuity(struct net_device *dev, int inc)
7986 {
7987         unsigned int old_flags = dev->flags;
7988         int err;
7989
7990         err = __dev_set_promiscuity(dev, inc, true);
7991         if (err < 0)
7992                 return err;
7993         if (dev->flags != old_flags)
7994                 dev_set_rx_mode(dev);
7995         return err;
7996 }
7997 EXPORT_SYMBOL(dev_set_promiscuity);
7998
7999 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8000 {
8001         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8002
8003         ASSERT_RTNL();
8004
8005         dev->flags |= IFF_ALLMULTI;
8006         dev->allmulti += inc;
8007         if (dev->allmulti == 0) {
8008                 /*
8009                  * Avoid overflow.
8010                  * If inc causes overflow, untouch allmulti and return error.
8011                  */
8012                 if (inc < 0)
8013                         dev->flags &= ~IFF_ALLMULTI;
8014                 else {
8015                         dev->allmulti -= inc;
8016                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8017                                 dev->name);
8018                         return -EOVERFLOW;
8019                 }
8020         }
8021         if (dev->flags ^ old_flags) {
8022                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8023                 dev_set_rx_mode(dev);
8024                 if (notify)
8025                         __dev_notify_flags(dev, old_flags,
8026                                            dev->gflags ^ old_gflags);
8027         }
8028         return 0;
8029 }
8030
8031 /**
8032  *      dev_set_allmulti        - update allmulti count on a device
8033  *      @dev: device
8034  *      @inc: modifier
8035  *
8036  *      Add or remove reception of all multicast frames to a device. While the
8037  *      count in the device remains above zero the interface remains listening
8038  *      to all interfaces. Once it hits zero the device reverts back to normal
8039  *      filtering operation. A negative @inc value is used to drop the counter
8040  *      when releasing a resource needing all multicasts.
8041  *      Return 0 if successful or a negative errno code on error.
8042  */
8043
8044 int dev_set_allmulti(struct net_device *dev, int inc)
8045 {
8046         return __dev_set_allmulti(dev, inc, true);
8047 }
8048 EXPORT_SYMBOL(dev_set_allmulti);
8049
8050 /*
8051  *      Upload unicast and multicast address lists to device and
8052  *      configure RX filtering. When the device doesn't support unicast
8053  *      filtering it is put in promiscuous mode while unicast addresses
8054  *      are present.
8055  */
8056 void __dev_set_rx_mode(struct net_device *dev)
8057 {
8058         const struct net_device_ops *ops = dev->netdev_ops;
8059
8060         /* dev_open will call this function so the list will stay sane. */
8061         if (!(dev->flags&IFF_UP))
8062                 return;
8063
8064         if (!netif_device_present(dev))
8065                 return;
8066
8067         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8068                 /* Unicast addresses changes may only happen under the rtnl,
8069                  * therefore calling __dev_set_promiscuity here is safe.
8070                  */
8071                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8072                         __dev_set_promiscuity(dev, 1, false);
8073                         dev->uc_promisc = true;
8074                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8075                         __dev_set_promiscuity(dev, -1, false);
8076                         dev->uc_promisc = false;
8077                 }
8078         }
8079
8080         if (ops->ndo_set_rx_mode)
8081                 ops->ndo_set_rx_mode(dev);
8082 }
8083
8084 void dev_set_rx_mode(struct net_device *dev)
8085 {
8086         netif_addr_lock_bh(dev);
8087         __dev_set_rx_mode(dev);
8088         netif_addr_unlock_bh(dev);
8089 }
8090
8091 /**
8092  *      dev_get_flags - get flags reported to userspace
8093  *      @dev: device
8094  *
8095  *      Get the combination of flag bits exported through APIs to userspace.
8096  */
8097 unsigned int dev_get_flags(const struct net_device *dev)
8098 {
8099         unsigned int flags;
8100
8101         flags = (dev->flags & ~(IFF_PROMISC |
8102                                 IFF_ALLMULTI |
8103                                 IFF_RUNNING |
8104                                 IFF_LOWER_UP |
8105                                 IFF_DORMANT)) |
8106                 (dev->gflags & (IFF_PROMISC |
8107                                 IFF_ALLMULTI));
8108
8109         if (netif_running(dev)) {
8110                 if (netif_oper_up(dev))
8111                         flags |= IFF_RUNNING;
8112                 if (netif_carrier_ok(dev))
8113                         flags |= IFF_LOWER_UP;
8114                 if (netif_dormant(dev))
8115                         flags |= IFF_DORMANT;
8116         }
8117
8118         return flags;
8119 }
8120 EXPORT_SYMBOL(dev_get_flags);
8121
8122 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8123                        struct netlink_ext_ack *extack)
8124 {
8125         unsigned int old_flags = dev->flags;
8126         int ret;
8127
8128         ASSERT_RTNL();
8129
8130         /*
8131          *      Set the flags on our device.
8132          */
8133
8134         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8135                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8136                                IFF_AUTOMEDIA)) |
8137                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8138                                     IFF_ALLMULTI));
8139
8140         /*
8141          *      Load in the correct multicast list now the flags have changed.
8142          */
8143
8144         if ((old_flags ^ flags) & IFF_MULTICAST)
8145                 dev_change_rx_flags(dev, IFF_MULTICAST);
8146
8147         dev_set_rx_mode(dev);
8148
8149         /*
8150          *      Have we downed the interface. We handle IFF_UP ourselves
8151          *      according to user attempts to set it, rather than blindly
8152          *      setting it.
8153          */
8154
8155         ret = 0;
8156         if ((old_flags ^ flags) & IFF_UP) {
8157                 if (old_flags & IFF_UP)
8158                         __dev_close(dev);
8159                 else
8160                         ret = __dev_open(dev, extack);
8161         }
8162
8163         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8164                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8165                 unsigned int old_flags = dev->flags;
8166
8167                 dev->gflags ^= IFF_PROMISC;
8168
8169                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8170                         if (dev->flags != old_flags)
8171                                 dev_set_rx_mode(dev);
8172         }
8173
8174         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8175          * is important. Some (broken) drivers set IFF_PROMISC, when
8176          * IFF_ALLMULTI is requested not asking us and not reporting.
8177          */
8178         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8179                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8180
8181                 dev->gflags ^= IFF_ALLMULTI;
8182                 __dev_set_allmulti(dev, inc, false);
8183         }
8184
8185         return ret;
8186 }
8187
8188 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8189                         unsigned int gchanges)
8190 {
8191         unsigned int changes = dev->flags ^ old_flags;
8192
8193         if (gchanges)
8194                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8195
8196         if (changes & IFF_UP) {
8197                 if (dev->flags & IFF_UP)
8198                         call_netdevice_notifiers(NETDEV_UP, dev);
8199                 else
8200                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8201         }
8202
8203         if (dev->flags & IFF_UP &&
8204             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8205                 struct netdev_notifier_change_info change_info = {
8206                         .info = {
8207                                 .dev = dev,
8208                         },
8209                         .flags_changed = changes,
8210                 };
8211
8212                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8213         }
8214 }
8215
8216 /**
8217  *      dev_change_flags - change device settings
8218  *      @dev: device
8219  *      @flags: device state flags
8220  *      @extack: netlink extended ack
8221  *
8222  *      Change settings on device based state flags. The flags are
8223  *      in the userspace exported format.
8224  */
8225 int dev_change_flags(struct net_device *dev, unsigned int flags,
8226                      struct netlink_ext_ack *extack)
8227 {
8228         int ret;
8229         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8230
8231         ret = __dev_change_flags(dev, flags, extack);
8232         if (ret < 0)
8233                 return ret;
8234
8235         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8236         __dev_notify_flags(dev, old_flags, changes);
8237         return ret;
8238 }
8239 EXPORT_SYMBOL(dev_change_flags);
8240
8241 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8242 {
8243         const struct net_device_ops *ops = dev->netdev_ops;
8244
8245         if (ops->ndo_change_mtu)
8246                 return ops->ndo_change_mtu(dev, new_mtu);
8247
8248         /* Pairs with all the lockless reads of dev->mtu in the stack */
8249         WRITE_ONCE(dev->mtu, new_mtu);
8250         return 0;
8251 }
8252 EXPORT_SYMBOL(__dev_set_mtu);
8253
8254 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8255                      struct netlink_ext_ack *extack)
8256 {
8257         /* MTU must be positive, and in range */
8258         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8259                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8260                 return -EINVAL;
8261         }
8262
8263         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8264                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8265                 return -EINVAL;
8266         }
8267         return 0;
8268 }
8269
8270 /**
8271  *      dev_set_mtu_ext - Change maximum transfer unit
8272  *      @dev: device
8273  *      @new_mtu: new transfer unit
8274  *      @extack: netlink extended ack
8275  *
8276  *      Change the maximum transfer size of the network device.
8277  */
8278 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8279                     struct netlink_ext_ack *extack)
8280 {
8281         int err, orig_mtu;
8282
8283         if (new_mtu == dev->mtu)
8284                 return 0;
8285
8286         err = dev_validate_mtu(dev, new_mtu, extack);
8287         if (err)
8288                 return err;
8289
8290         if (!netif_device_present(dev))
8291                 return -ENODEV;
8292
8293         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8294         err = notifier_to_errno(err);
8295         if (err)
8296                 return err;
8297
8298         orig_mtu = dev->mtu;
8299         err = __dev_set_mtu(dev, new_mtu);
8300
8301         if (!err) {
8302                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8303                                                    orig_mtu);
8304                 err = notifier_to_errno(err);
8305                 if (err) {
8306                         /* setting mtu back and notifying everyone again,
8307                          * so that they have a chance to revert changes.
8308                          */
8309                         __dev_set_mtu(dev, orig_mtu);
8310                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8311                                                      new_mtu);
8312                 }
8313         }
8314         return err;
8315 }
8316
8317 int dev_set_mtu(struct net_device *dev, int new_mtu)
8318 {
8319         struct netlink_ext_ack extack;
8320         int err;
8321
8322         memset(&extack, 0, sizeof(extack));
8323         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8324         if (err && extack._msg)
8325                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8326         return err;
8327 }
8328 EXPORT_SYMBOL(dev_set_mtu);
8329
8330 /**
8331  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8332  *      @dev: device
8333  *      @new_len: new tx queue length
8334  */
8335 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8336 {
8337         unsigned int orig_len = dev->tx_queue_len;
8338         int res;
8339
8340         if (new_len != (unsigned int)new_len)
8341                 return -ERANGE;
8342
8343         if (new_len != orig_len) {
8344                 dev->tx_queue_len = new_len;
8345                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8346                 res = notifier_to_errno(res);
8347                 if (res)
8348                         goto err_rollback;
8349                 res = dev_qdisc_change_tx_queue_len(dev);
8350                 if (res)
8351                         goto err_rollback;
8352         }
8353
8354         return 0;
8355
8356 err_rollback:
8357         netdev_err(dev, "refused to change device tx_queue_len\n");
8358         dev->tx_queue_len = orig_len;
8359         return res;
8360 }
8361
8362 /**
8363  *      dev_set_group - Change group this device belongs to
8364  *      @dev: device
8365  *      @new_group: group this device should belong to
8366  */
8367 void dev_set_group(struct net_device *dev, int new_group)
8368 {
8369         dev->group = new_group;
8370 }
8371 EXPORT_SYMBOL(dev_set_group);
8372
8373 /**
8374  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8375  *      @dev: device
8376  *      @addr: new address
8377  *      @extack: netlink extended ack
8378  */
8379 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8380                               struct netlink_ext_ack *extack)
8381 {
8382         struct netdev_notifier_pre_changeaddr_info info = {
8383                 .info.dev = dev,
8384                 .info.extack = extack,
8385                 .dev_addr = addr,
8386         };
8387         int rc;
8388
8389         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8390         return notifier_to_errno(rc);
8391 }
8392 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8393
8394 /**
8395  *      dev_set_mac_address - Change Media Access Control Address
8396  *      @dev: device
8397  *      @sa: new address
8398  *      @extack: netlink extended ack
8399  *
8400  *      Change the hardware (MAC) address of the device
8401  */
8402 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8403                         struct netlink_ext_ack *extack)
8404 {
8405         const struct net_device_ops *ops = dev->netdev_ops;
8406         int err;
8407
8408         if (!ops->ndo_set_mac_address)
8409                 return -EOPNOTSUPP;
8410         if (sa->sa_family != dev->type)
8411                 return -EINVAL;
8412         if (!netif_device_present(dev))
8413                 return -ENODEV;
8414         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8415         if (err)
8416                 return err;
8417         err = ops->ndo_set_mac_address(dev, sa);
8418         if (err)
8419                 return err;
8420         dev->addr_assign_type = NET_ADDR_SET;
8421         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8422         add_device_randomness(dev->dev_addr, dev->addr_len);
8423         return 0;
8424 }
8425 EXPORT_SYMBOL(dev_set_mac_address);
8426
8427 /**
8428  *      dev_change_carrier - Change device carrier
8429  *      @dev: device
8430  *      @new_carrier: new value
8431  *
8432  *      Change device carrier
8433  */
8434 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8435 {
8436         const struct net_device_ops *ops = dev->netdev_ops;
8437
8438         if (!ops->ndo_change_carrier)
8439                 return -EOPNOTSUPP;
8440         if (!netif_device_present(dev))
8441                 return -ENODEV;
8442         return ops->ndo_change_carrier(dev, new_carrier);
8443 }
8444 EXPORT_SYMBOL(dev_change_carrier);
8445
8446 /**
8447  *      dev_get_phys_port_id - Get device physical port ID
8448  *      @dev: device
8449  *      @ppid: port ID
8450  *
8451  *      Get device physical port ID
8452  */
8453 int dev_get_phys_port_id(struct net_device *dev,
8454                          struct netdev_phys_item_id *ppid)
8455 {
8456         const struct net_device_ops *ops = dev->netdev_ops;
8457
8458         if (!ops->ndo_get_phys_port_id)
8459                 return -EOPNOTSUPP;
8460         return ops->ndo_get_phys_port_id(dev, ppid);
8461 }
8462 EXPORT_SYMBOL(dev_get_phys_port_id);
8463
8464 /**
8465  *      dev_get_phys_port_name - Get device physical port name
8466  *      @dev: device
8467  *      @name: port name
8468  *      @len: limit of bytes to copy to name
8469  *
8470  *      Get device physical port name
8471  */
8472 int dev_get_phys_port_name(struct net_device *dev,
8473                            char *name, size_t len)
8474 {
8475         const struct net_device_ops *ops = dev->netdev_ops;
8476         int err;
8477
8478         if (ops->ndo_get_phys_port_name) {
8479                 err = ops->ndo_get_phys_port_name(dev, name, len);
8480                 if (err != -EOPNOTSUPP)
8481                         return err;
8482         }
8483         return devlink_compat_phys_port_name_get(dev, name, len);
8484 }
8485 EXPORT_SYMBOL(dev_get_phys_port_name);
8486
8487 /**
8488  *      dev_get_port_parent_id - Get the device's port parent identifier
8489  *      @dev: network device
8490  *      @ppid: pointer to a storage for the port's parent identifier
8491  *      @recurse: allow/disallow recursion to lower devices
8492  *
8493  *      Get the devices's port parent identifier
8494  */
8495 int dev_get_port_parent_id(struct net_device *dev,
8496                            struct netdev_phys_item_id *ppid,
8497                            bool recurse)
8498 {
8499         const struct net_device_ops *ops = dev->netdev_ops;
8500         struct netdev_phys_item_id first = { };
8501         struct net_device *lower_dev;
8502         struct list_head *iter;
8503         int err;
8504
8505         if (ops->ndo_get_port_parent_id) {
8506                 err = ops->ndo_get_port_parent_id(dev, ppid);
8507                 if (err != -EOPNOTSUPP)
8508                         return err;
8509         }
8510
8511         err = devlink_compat_switch_id_get(dev, ppid);
8512         if (!err || err != -EOPNOTSUPP)
8513                 return err;
8514
8515         if (!recurse)
8516                 return -EOPNOTSUPP;
8517
8518         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8519                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8520                 if (err)
8521                         break;
8522                 if (!first.id_len)
8523                         first = *ppid;
8524                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8525                         return -ENODATA;
8526         }
8527
8528         return err;
8529 }
8530 EXPORT_SYMBOL(dev_get_port_parent_id);
8531
8532 /**
8533  *      netdev_port_same_parent_id - Indicate if two network devices have
8534  *      the same port parent identifier
8535  *      @a: first network device
8536  *      @b: second network device
8537  */
8538 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8539 {
8540         struct netdev_phys_item_id a_id = { };
8541         struct netdev_phys_item_id b_id = { };
8542
8543         if (dev_get_port_parent_id(a, &a_id, true) ||
8544             dev_get_port_parent_id(b, &b_id, true))
8545                 return false;
8546
8547         return netdev_phys_item_id_same(&a_id, &b_id);
8548 }
8549 EXPORT_SYMBOL(netdev_port_same_parent_id);
8550
8551 /**
8552  *      dev_change_proto_down - update protocol port state information
8553  *      @dev: device
8554  *      @proto_down: new value
8555  *
8556  *      This info can be used by switch drivers to set the phys state of the
8557  *      port.
8558  */
8559 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8560 {
8561         const struct net_device_ops *ops = dev->netdev_ops;
8562
8563         if (!ops->ndo_change_proto_down)
8564                 return -EOPNOTSUPP;
8565         if (!netif_device_present(dev))
8566                 return -ENODEV;
8567         return ops->ndo_change_proto_down(dev, proto_down);
8568 }
8569 EXPORT_SYMBOL(dev_change_proto_down);
8570
8571 /**
8572  *      dev_change_proto_down_generic - generic implementation for
8573  *      ndo_change_proto_down that sets carrier according to
8574  *      proto_down.
8575  *
8576  *      @dev: device
8577  *      @proto_down: new value
8578  */
8579 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8580 {
8581         if (proto_down)
8582                 netif_carrier_off(dev);
8583         else
8584                 netif_carrier_on(dev);
8585         dev->proto_down = proto_down;
8586         return 0;
8587 }
8588 EXPORT_SYMBOL(dev_change_proto_down_generic);
8589
8590 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8591                     enum bpf_netdev_command cmd)
8592 {
8593         struct netdev_bpf xdp;
8594
8595         if (!bpf_op)
8596                 return 0;
8597
8598         memset(&xdp, 0, sizeof(xdp));
8599         xdp.command = cmd;
8600
8601         /* Query must always succeed. */
8602         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8603
8604         return xdp.prog_id;
8605 }
8606
8607 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8608                            struct netlink_ext_ack *extack, u32 flags,
8609                            struct bpf_prog *prog)
8610 {
8611         bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8612         struct bpf_prog *prev_prog = NULL;
8613         struct netdev_bpf xdp;
8614         int err;
8615
8616         if (non_hw) {
8617                 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8618                                                            XDP_QUERY_PROG));
8619                 if (IS_ERR(prev_prog))
8620                         prev_prog = NULL;
8621         }
8622
8623         memset(&xdp, 0, sizeof(xdp));
8624         if (flags & XDP_FLAGS_HW_MODE)
8625                 xdp.command = XDP_SETUP_PROG_HW;
8626         else
8627                 xdp.command = XDP_SETUP_PROG;
8628         xdp.extack = extack;
8629         xdp.flags = flags;
8630         xdp.prog = prog;
8631
8632         err = bpf_op(dev, &xdp);
8633         if (!err && non_hw)
8634                 bpf_prog_change_xdp(prev_prog, prog);
8635
8636         if (prev_prog)
8637                 bpf_prog_put(prev_prog);
8638
8639         return err;
8640 }
8641
8642 static void dev_xdp_uninstall(struct net_device *dev)
8643 {
8644         struct netdev_bpf xdp;
8645         bpf_op_t ndo_bpf;
8646
8647         /* Remove generic XDP */
8648         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8649
8650         /* Remove from the driver */
8651         ndo_bpf = dev->netdev_ops->ndo_bpf;
8652         if (!ndo_bpf)
8653                 return;
8654
8655         memset(&xdp, 0, sizeof(xdp));
8656         xdp.command = XDP_QUERY_PROG;
8657         WARN_ON(ndo_bpf(dev, &xdp));
8658         if (xdp.prog_id)
8659                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8660                                         NULL));
8661
8662         /* Remove HW offload */
8663         memset(&xdp, 0, sizeof(xdp));
8664         xdp.command = XDP_QUERY_PROG_HW;
8665         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8666                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8667                                         NULL));
8668 }
8669
8670 /**
8671  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8672  *      @dev: device
8673  *      @extack: netlink extended ack
8674  *      @fd: new program fd or negative value to clear
8675  *      @flags: xdp-related flags
8676  *
8677  *      Set or clear a bpf program for a device
8678  */
8679 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8680                       int fd, u32 flags)
8681 {
8682         const struct net_device_ops *ops = dev->netdev_ops;
8683         enum bpf_netdev_command query;
8684         struct bpf_prog *prog = NULL;
8685         bpf_op_t bpf_op, bpf_chk;
8686         bool offload;
8687         int err;
8688
8689         ASSERT_RTNL();
8690
8691         offload = flags & XDP_FLAGS_HW_MODE;
8692         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8693
8694         bpf_op = bpf_chk = ops->ndo_bpf;
8695         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8696                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8697                 return -EOPNOTSUPP;
8698         }
8699         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8700                 bpf_op = generic_xdp_install;
8701         if (bpf_op == bpf_chk)
8702                 bpf_chk = generic_xdp_install;
8703
8704         if (fd >= 0) {
8705                 u32 prog_id;
8706
8707                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8708                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8709                         return -EEXIST;
8710                 }
8711
8712                 prog_id = __dev_xdp_query(dev, bpf_op, query);
8713                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8714                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8715                         return -EBUSY;
8716                 }
8717
8718                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8719                                              bpf_op == ops->ndo_bpf);
8720                 if (IS_ERR(prog))
8721                         return PTR_ERR(prog);
8722
8723                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8724                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8725                         bpf_prog_put(prog);
8726                         return -EINVAL;
8727                 }
8728
8729                 /* prog->aux->id may be 0 for orphaned device-bound progs */
8730                 if (prog->aux->id && prog->aux->id == prog_id) {
8731                         bpf_prog_put(prog);
8732                         return 0;
8733                 }
8734         } else {
8735                 if (!__dev_xdp_query(dev, bpf_op, query))
8736                         return 0;
8737         }
8738
8739         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8740         if (err < 0 && prog)
8741                 bpf_prog_put(prog);
8742
8743         return err;
8744 }
8745
8746 /**
8747  *      dev_new_index   -       allocate an ifindex
8748  *      @net: the applicable net namespace
8749  *
8750  *      Returns a suitable unique value for a new device interface
8751  *      number.  The caller must hold the rtnl semaphore or the
8752  *      dev_base_lock to be sure it remains unique.
8753  */
8754 static int dev_new_index(struct net *net)
8755 {
8756         int ifindex = net->ifindex;
8757
8758         for (;;) {
8759                 if (++ifindex <= 0)
8760                         ifindex = 1;
8761                 if (!__dev_get_by_index(net, ifindex))
8762                         return net->ifindex = ifindex;
8763         }
8764 }
8765
8766 /* Delayed registration/unregisteration */
8767 static LIST_HEAD(net_todo_list);
8768 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8769
8770 static void net_set_todo(struct net_device *dev)
8771 {
8772         list_add_tail(&dev->todo_list, &net_todo_list);
8773         dev_net(dev)->dev_unreg_count++;
8774 }
8775
8776 static void rollback_registered_many(struct list_head *head)
8777 {
8778         struct net_device *dev, *tmp;
8779         LIST_HEAD(close_head);
8780
8781         BUG_ON(dev_boot_phase);
8782         ASSERT_RTNL();
8783
8784         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8785                 /* Some devices call without registering
8786                  * for initialization unwind. Remove those
8787                  * devices and proceed with the remaining.
8788                  */
8789                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8790                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8791                                  dev->name, dev);
8792
8793                         WARN_ON(1);
8794                         list_del(&dev->unreg_list);
8795                         continue;
8796                 }
8797                 dev->dismantle = true;
8798                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8799         }
8800
8801         /* If device is running, close it first. */
8802         list_for_each_entry(dev, head, unreg_list)
8803                 list_add_tail(&dev->close_list, &close_head);
8804         dev_close_many(&close_head, true);
8805
8806         list_for_each_entry(dev, head, unreg_list) {
8807                 /* And unlink it from device chain. */
8808                 unlist_netdevice(dev);
8809
8810                 dev->reg_state = NETREG_UNREGISTERING;
8811         }
8812         flush_all_backlogs();
8813
8814         synchronize_net();
8815
8816         list_for_each_entry(dev, head, unreg_list) {
8817                 struct sk_buff *skb = NULL;
8818
8819                 /* Shutdown queueing discipline. */
8820                 dev_shutdown(dev);
8821
8822                 dev_xdp_uninstall(dev);
8823
8824                 /* Notify protocols, that we are about to destroy
8825                  * this device. They should clean all the things.
8826                  */
8827                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8828
8829                 if (!dev->rtnl_link_ops ||
8830                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8831                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8832                                                      GFP_KERNEL, NULL, 0);
8833
8834                 /*
8835                  *      Flush the unicast and multicast chains
8836                  */
8837                 dev_uc_flush(dev);
8838                 dev_mc_flush(dev);
8839
8840                 netdev_name_node_alt_flush(dev);
8841                 netdev_name_node_free(dev->name_node);
8842
8843                 if (dev->netdev_ops->ndo_uninit)
8844                         dev->netdev_ops->ndo_uninit(dev);
8845
8846                 if (skb)
8847                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8848
8849                 /* Notifier chain MUST detach us all upper devices. */
8850                 WARN_ON(netdev_has_any_upper_dev(dev));
8851                 WARN_ON(netdev_has_any_lower_dev(dev));
8852
8853                 /* Remove entries from kobject tree */
8854                 netdev_unregister_kobject(dev);
8855 #ifdef CONFIG_XPS
8856                 /* Remove XPS queueing entries */
8857                 netif_reset_xps_queues_gt(dev, 0);
8858 #endif
8859         }
8860
8861         synchronize_net();
8862
8863         list_for_each_entry(dev, head, unreg_list)
8864                 dev_put(dev);
8865 }
8866
8867 static void rollback_registered(struct net_device *dev)
8868 {
8869         LIST_HEAD(single);
8870
8871         list_add(&dev->unreg_list, &single);
8872         rollback_registered_many(&single);
8873         list_del(&single);
8874 }
8875
8876 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8877         struct net_device *upper, netdev_features_t features)
8878 {
8879         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8880         netdev_features_t feature;
8881         int feature_bit;
8882
8883         for_each_netdev_feature(upper_disables, feature_bit) {
8884                 feature = __NETIF_F_BIT(feature_bit);
8885                 if (!(upper->wanted_features & feature)
8886                     && (features & feature)) {
8887                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8888                                    &feature, upper->name);
8889                         features &= ~feature;
8890                 }
8891         }
8892
8893         return features;
8894 }
8895
8896 static void netdev_sync_lower_features(struct net_device *upper,
8897         struct net_device *lower, netdev_features_t features)
8898 {
8899         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8900         netdev_features_t feature;
8901         int feature_bit;
8902
8903         for_each_netdev_feature(upper_disables, feature_bit) {
8904                 feature = __NETIF_F_BIT(feature_bit);
8905                 if (!(features & feature) && (lower->features & feature)) {
8906                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8907                                    &feature, lower->name);
8908                         lower->wanted_features &= ~feature;
8909                         netdev_update_features(lower);
8910
8911                         if (unlikely(lower->features & feature))
8912                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8913                                             &feature, lower->name);
8914                 }
8915         }
8916 }
8917
8918 static netdev_features_t netdev_fix_features(struct net_device *dev,
8919         netdev_features_t features)
8920 {
8921         /* Fix illegal checksum combinations */
8922         if ((features & NETIF_F_HW_CSUM) &&
8923             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8924                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8925                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8926         }
8927
8928         /* TSO requires that SG is present as well. */
8929         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8930                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8931                 features &= ~NETIF_F_ALL_TSO;
8932         }
8933
8934         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8935                                         !(features & NETIF_F_IP_CSUM)) {
8936                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8937                 features &= ~NETIF_F_TSO;
8938                 features &= ~NETIF_F_TSO_ECN;
8939         }
8940
8941         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8942                                          !(features & NETIF_F_IPV6_CSUM)) {
8943                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8944                 features &= ~NETIF_F_TSO6;
8945         }
8946
8947         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8948         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8949                 features &= ~NETIF_F_TSO_MANGLEID;
8950
8951         /* TSO ECN requires that TSO is present as well. */
8952         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8953                 features &= ~NETIF_F_TSO_ECN;
8954
8955         /* Software GSO depends on SG. */
8956         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8957                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8958                 features &= ~NETIF_F_GSO;
8959         }
8960
8961         /* GSO partial features require GSO partial be set */
8962         if ((features & dev->gso_partial_features) &&
8963             !(features & NETIF_F_GSO_PARTIAL)) {
8964                 netdev_dbg(dev,
8965                            "Dropping partially supported GSO features since no GSO partial.\n");
8966                 features &= ~dev->gso_partial_features;
8967         }
8968
8969         if (!(features & NETIF_F_RXCSUM)) {
8970                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8971                  * successfully merged by hardware must also have the
8972                  * checksum verified by hardware.  If the user does not
8973                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8974                  */
8975                 if (features & NETIF_F_GRO_HW) {
8976                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8977                         features &= ~NETIF_F_GRO_HW;
8978                 }
8979         }
8980
8981         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8982         if (features & NETIF_F_RXFCS) {
8983                 if (features & NETIF_F_LRO) {
8984                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8985                         features &= ~NETIF_F_LRO;
8986                 }
8987
8988                 if (features & NETIF_F_GRO_HW) {
8989                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8990                         features &= ~NETIF_F_GRO_HW;
8991                 }
8992         }
8993
8994         return features;
8995 }
8996
8997 int __netdev_update_features(struct net_device *dev)
8998 {
8999         struct net_device *upper, *lower;
9000         netdev_features_t features;
9001         struct list_head *iter;
9002         int err = -1;
9003
9004         ASSERT_RTNL();
9005
9006         features = netdev_get_wanted_features(dev);
9007
9008         if (dev->netdev_ops->ndo_fix_features)
9009                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9010
9011         /* driver might be less strict about feature dependencies */
9012         features = netdev_fix_features(dev, features);
9013
9014         /* some features can't be enabled if they're off an an upper device */
9015         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9016                 features = netdev_sync_upper_features(dev, upper, features);
9017
9018         if (dev->features == features)
9019                 goto sync_lower;
9020
9021         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9022                 &dev->features, &features);
9023
9024         if (dev->netdev_ops->ndo_set_features)
9025                 err = dev->netdev_ops->ndo_set_features(dev, features);
9026         else
9027                 err = 0;
9028
9029         if (unlikely(err < 0)) {
9030                 netdev_err(dev,
9031                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9032                         err, &features, &dev->features);
9033                 /* return non-0 since some features might have changed and
9034                  * it's better to fire a spurious notification than miss it
9035                  */
9036                 return -1;
9037         }
9038
9039 sync_lower:
9040         /* some features must be disabled on lower devices when disabled
9041          * on an upper device (think: bonding master or bridge)
9042          */
9043         netdev_for_each_lower_dev(dev, lower, iter)
9044                 netdev_sync_lower_features(dev, lower, features);
9045
9046         if (!err) {
9047                 netdev_features_t diff = features ^ dev->features;
9048
9049                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9050                         /* udp_tunnel_{get,drop}_rx_info both need
9051                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9052                          * device, or they won't do anything.
9053                          * Thus we need to update dev->features
9054                          * *before* calling udp_tunnel_get_rx_info,
9055                          * but *after* calling udp_tunnel_drop_rx_info.
9056                          */
9057                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9058                                 dev->features = features;
9059                                 udp_tunnel_get_rx_info(dev);
9060                         } else {
9061                                 udp_tunnel_drop_rx_info(dev);
9062                         }
9063                 }
9064
9065                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9066                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9067                                 dev->features = features;
9068                                 err |= vlan_get_rx_ctag_filter_info(dev);
9069                         } else {
9070                                 vlan_drop_rx_ctag_filter_info(dev);
9071                         }
9072                 }
9073
9074                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9075                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9076                                 dev->features = features;
9077                                 err |= vlan_get_rx_stag_filter_info(dev);
9078                         } else {
9079                                 vlan_drop_rx_stag_filter_info(dev);
9080                         }
9081                 }
9082
9083                 dev->features = features;
9084         }
9085
9086         return err < 0 ? 0 : 1;
9087 }
9088
9089 /**
9090  *      netdev_update_features - recalculate device features
9091  *      @dev: the device to check
9092  *
9093  *      Recalculate dev->features set and send notifications if it
9094  *      has changed. Should be called after driver or hardware dependent
9095  *      conditions might have changed that influence the features.
9096  */
9097 void netdev_update_features(struct net_device *dev)
9098 {
9099         if (__netdev_update_features(dev))
9100                 netdev_features_change(dev);
9101 }
9102 EXPORT_SYMBOL(netdev_update_features);
9103
9104 /**
9105  *      netdev_change_features - recalculate device features
9106  *      @dev: the device to check
9107  *
9108  *      Recalculate dev->features set and send notifications even
9109  *      if they have not changed. Should be called instead of
9110  *      netdev_update_features() if also dev->vlan_features might
9111  *      have changed to allow the changes to be propagated to stacked
9112  *      VLAN devices.
9113  */
9114 void netdev_change_features(struct net_device *dev)
9115 {
9116         __netdev_update_features(dev);
9117         netdev_features_change(dev);
9118 }
9119 EXPORT_SYMBOL(netdev_change_features);
9120
9121 /**
9122  *      netif_stacked_transfer_operstate -      transfer operstate
9123  *      @rootdev: the root or lower level device to transfer state from
9124  *      @dev: the device to transfer operstate to
9125  *
9126  *      Transfer operational state from root to device. This is normally
9127  *      called when a stacking relationship exists between the root
9128  *      device and the device(a leaf device).
9129  */
9130 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9131                                         struct net_device *dev)
9132 {
9133         if (rootdev->operstate == IF_OPER_DORMANT)
9134                 netif_dormant_on(dev);
9135         else
9136                 netif_dormant_off(dev);
9137
9138         if (netif_carrier_ok(rootdev))
9139                 netif_carrier_on(dev);
9140         else
9141                 netif_carrier_off(dev);
9142 }
9143 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9144
9145 static int netif_alloc_rx_queues(struct net_device *dev)
9146 {
9147         unsigned int i, count = dev->num_rx_queues;
9148         struct netdev_rx_queue *rx;
9149         size_t sz = count * sizeof(*rx);
9150         int err = 0;
9151
9152         BUG_ON(count < 1);
9153
9154         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9155         if (!rx)
9156                 return -ENOMEM;
9157
9158         dev->_rx = rx;
9159
9160         for (i = 0; i < count; i++) {
9161                 rx[i].dev = dev;
9162
9163                 /* XDP RX-queue setup */
9164                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9165                 if (err < 0)
9166                         goto err_rxq_info;
9167         }
9168         return 0;
9169
9170 err_rxq_info:
9171         /* Rollback successful reg's and free other resources */
9172         while (i--)
9173                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9174         kvfree(dev->_rx);
9175         dev->_rx = NULL;
9176         return err;
9177 }
9178
9179 static void netif_free_rx_queues(struct net_device *dev)
9180 {
9181         unsigned int i, count = dev->num_rx_queues;
9182
9183         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9184         if (!dev->_rx)
9185                 return;
9186
9187         for (i = 0; i < count; i++)
9188                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9189
9190         kvfree(dev->_rx);
9191 }
9192
9193 static void netdev_init_one_queue(struct net_device *dev,
9194                                   struct netdev_queue *queue, void *_unused)
9195 {
9196         /* Initialize queue lock */
9197         spin_lock_init(&queue->_xmit_lock);
9198         lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9199         queue->xmit_lock_owner = -1;
9200         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9201         queue->dev = dev;
9202 #ifdef CONFIG_BQL
9203         dql_init(&queue->dql, HZ);
9204 #endif
9205 }
9206
9207 static void netif_free_tx_queues(struct net_device *dev)
9208 {
9209         kvfree(dev->_tx);
9210 }
9211
9212 static int netif_alloc_netdev_queues(struct net_device *dev)
9213 {
9214         unsigned int count = dev->num_tx_queues;
9215         struct netdev_queue *tx;
9216         size_t sz = count * sizeof(*tx);
9217
9218         if (count < 1 || count > 0xffff)
9219                 return -EINVAL;
9220
9221         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9222         if (!tx)
9223                 return -ENOMEM;
9224
9225         dev->_tx = tx;
9226
9227         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9228         spin_lock_init(&dev->tx_global_lock);
9229
9230         return 0;
9231 }
9232
9233 void netif_tx_stop_all_queues(struct net_device *dev)
9234 {
9235         unsigned int i;
9236
9237         for (i = 0; i < dev->num_tx_queues; i++) {
9238                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9239
9240                 netif_tx_stop_queue(txq);
9241         }
9242 }
9243 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9244
9245 static void netdev_register_lockdep_key(struct net_device *dev)
9246 {
9247         lockdep_register_key(&dev->qdisc_tx_busylock_key);
9248         lockdep_register_key(&dev->qdisc_running_key);
9249         lockdep_register_key(&dev->qdisc_xmit_lock_key);
9250         lockdep_register_key(&dev->addr_list_lock_key);
9251 }
9252
9253 static void netdev_unregister_lockdep_key(struct net_device *dev)
9254 {
9255         lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9256         lockdep_unregister_key(&dev->qdisc_running_key);
9257         lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9258         lockdep_unregister_key(&dev->addr_list_lock_key);
9259 }
9260
9261 void netdev_update_lockdep_key(struct net_device *dev)
9262 {
9263         lockdep_unregister_key(&dev->addr_list_lock_key);
9264         lockdep_register_key(&dev->addr_list_lock_key);
9265
9266         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9267 }
9268 EXPORT_SYMBOL(netdev_update_lockdep_key);
9269
9270 /**
9271  *      register_netdevice      - register a network device
9272  *      @dev: device to register
9273  *
9274  *      Take a completed network device structure and add it to the kernel
9275  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9276  *      chain. 0 is returned on success. A negative errno code is returned
9277  *      on a failure to set up the device, or if the name is a duplicate.
9278  *
9279  *      Callers must hold the rtnl semaphore. You may want
9280  *      register_netdev() instead of this.
9281  *
9282  *      BUGS:
9283  *      The locking appears insufficient to guarantee two parallel registers
9284  *      will not get the same name.
9285  */
9286
9287 int register_netdevice(struct net_device *dev)
9288 {
9289         int ret;
9290         struct net *net = dev_net(dev);
9291
9292         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9293                      NETDEV_FEATURE_COUNT);
9294         BUG_ON(dev_boot_phase);
9295         ASSERT_RTNL();
9296
9297         might_sleep();
9298
9299         /* When net_device's are persistent, this will be fatal. */
9300         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9301         BUG_ON(!net);
9302
9303         spin_lock_init(&dev->addr_list_lock);
9304         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9305
9306         ret = dev_get_valid_name(net, dev, dev->name);
9307         if (ret < 0)
9308                 goto out;
9309
9310         ret = -ENOMEM;
9311         dev->name_node = netdev_name_node_head_alloc(dev);
9312         if (!dev->name_node)
9313                 goto out;
9314
9315         /* Init, if this function is available */
9316         if (dev->netdev_ops->ndo_init) {
9317                 ret = dev->netdev_ops->ndo_init(dev);
9318                 if (ret) {
9319                         if (ret > 0)
9320                                 ret = -EIO;
9321                         goto err_free_name;
9322                 }
9323         }
9324
9325         if (((dev->hw_features | dev->features) &
9326              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9327             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9328              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9329                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9330                 ret = -EINVAL;
9331                 goto err_uninit;
9332         }
9333
9334         ret = -EBUSY;
9335         if (!dev->ifindex)
9336                 dev->ifindex = dev_new_index(net);
9337         else if (__dev_get_by_index(net, dev->ifindex))
9338                 goto err_uninit;
9339
9340         /* Transfer changeable features to wanted_features and enable
9341          * software offloads (GSO and GRO).
9342          */
9343         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9344         dev->features |= NETIF_F_SOFT_FEATURES;
9345
9346         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9347                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9348                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9349         }
9350
9351         dev->wanted_features = dev->features & dev->hw_features;
9352
9353         if (!(dev->flags & IFF_LOOPBACK))
9354                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9355
9356         /* If IPv4 TCP segmentation offload is supported we should also
9357          * allow the device to enable segmenting the frame with the option
9358          * of ignoring a static IP ID value.  This doesn't enable the
9359          * feature itself but allows the user to enable it later.
9360          */
9361         if (dev->hw_features & NETIF_F_TSO)
9362                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9363         if (dev->vlan_features & NETIF_F_TSO)
9364                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9365         if (dev->mpls_features & NETIF_F_TSO)
9366                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9367         if (dev->hw_enc_features & NETIF_F_TSO)
9368                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9369
9370         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9371          */
9372         dev->vlan_features |= NETIF_F_HIGHDMA;
9373
9374         /* Make NETIF_F_SG inheritable to tunnel devices.
9375          */
9376         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9377
9378         /* Make NETIF_F_SG inheritable to MPLS.
9379          */
9380         dev->mpls_features |= NETIF_F_SG;
9381
9382         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9383         ret = notifier_to_errno(ret);
9384         if (ret)
9385                 goto err_uninit;
9386
9387         ret = netdev_register_kobject(dev);
9388         if (ret) {
9389                 dev->reg_state = NETREG_UNREGISTERED;
9390                 goto err_uninit;
9391         }
9392         dev->reg_state = NETREG_REGISTERED;
9393
9394         __netdev_update_features(dev);
9395
9396         /*
9397          *      Default initial state at registry is that the
9398          *      device is present.
9399          */
9400
9401         set_bit(__LINK_STATE_PRESENT, &dev->state);
9402
9403         linkwatch_init_dev(dev);
9404
9405         dev_init_scheduler(dev);
9406         dev_hold(dev);
9407         list_netdevice(dev);
9408         add_device_randomness(dev->dev_addr, dev->addr_len);
9409
9410         /* If the device has permanent device address, driver should
9411          * set dev_addr and also addr_assign_type should be set to
9412          * NET_ADDR_PERM (default value).
9413          */
9414         if (dev->addr_assign_type == NET_ADDR_PERM)
9415                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9416
9417         /* Notify protocols, that a new device appeared. */
9418         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9419         ret = notifier_to_errno(ret);
9420         if (ret) {
9421                 rollback_registered(dev);
9422                 rcu_barrier();
9423
9424                 dev->reg_state = NETREG_UNREGISTERED;
9425         }
9426         /*
9427          *      Prevent userspace races by waiting until the network
9428          *      device is fully setup before sending notifications.
9429          */
9430         if (!dev->rtnl_link_ops ||
9431             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9432                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9433
9434 out:
9435         return ret;
9436
9437 err_uninit:
9438         if (dev->netdev_ops->ndo_uninit)
9439                 dev->netdev_ops->ndo_uninit(dev);
9440         if (dev->priv_destructor)
9441                 dev->priv_destructor(dev);
9442 err_free_name:
9443         netdev_name_node_free(dev->name_node);
9444         goto out;
9445 }
9446 EXPORT_SYMBOL(register_netdevice);
9447
9448 /**
9449  *      init_dummy_netdev       - init a dummy network device for NAPI
9450  *      @dev: device to init
9451  *
9452  *      This takes a network device structure and initialize the minimum
9453  *      amount of fields so it can be used to schedule NAPI polls without
9454  *      registering a full blown interface. This is to be used by drivers
9455  *      that need to tie several hardware interfaces to a single NAPI
9456  *      poll scheduler due to HW limitations.
9457  */
9458 int init_dummy_netdev(struct net_device *dev)
9459 {
9460         /* Clear everything. Note we don't initialize spinlocks
9461          * are they aren't supposed to be taken by any of the
9462          * NAPI code and this dummy netdev is supposed to be
9463          * only ever used for NAPI polls
9464          */
9465         memset(dev, 0, sizeof(struct net_device));
9466
9467         /* make sure we BUG if trying to hit standard
9468          * register/unregister code path
9469          */
9470         dev->reg_state = NETREG_DUMMY;
9471
9472         /* NAPI wants this */
9473         INIT_LIST_HEAD(&dev->napi_list);
9474
9475         /* a dummy interface is started by default */
9476         set_bit(__LINK_STATE_PRESENT, &dev->state);
9477         set_bit(__LINK_STATE_START, &dev->state);
9478
9479         /* napi_busy_loop stats accounting wants this */
9480         dev_net_set(dev, &init_net);
9481
9482         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9483          * because users of this 'device' dont need to change
9484          * its refcount.
9485          */
9486
9487         return 0;
9488 }
9489 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9490
9491
9492 /**
9493  *      register_netdev - register a network device
9494  *      @dev: device to register
9495  *
9496  *      Take a completed network device structure and add it to the kernel
9497  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9498  *      chain. 0 is returned on success. A negative errno code is returned
9499  *      on a failure to set up the device, or if the name is a duplicate.
9500  *
9501  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9502  *      and expands the device name if you passed a format string to
9503  *      alloc_netdev.
9504  */
9505 int register_netdev(struct net_device *dev)
9506 {
9507         int err;
9508
9509         if (rtnl_lock_killable())
9510                 return -EINTR;
9511         err = register_netdevice(dev);
9512         rtnl_unlock();
9513         return err;
9514 }
9515 EXPORT_SYMBOL(register_netdev);
9516
9517 int netdev_refcnt_read(const struct net_device *dev)
9518 {
9519         int i, refcnt = 0;
9520
9521         for_each_possible_cpu(i)
9522                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9523         return refcnt;
9524 }
9525 EXPORT_SYMBOL(netdev_refcnt_read);
9526
9527 /**
9528  * netdev_wait_allrefs - wait until all references are gone.
9529  * @dev: target net_device
9530  *
9531  * This is called when unregistering network devices.
9532  *
9533  * Any protocol or device that holds a reference should register
9534  * for netdevice notification, and cleanup and put back the
9535  * reference if they receive an UNREGISTER event.
9536  * We can get stuck here if buggy protocols don't correctly
9537  * call dev_put.
9538  */
9539 static void netdev_wait_allrefs(struct net_device *dev)
9540 {
9541         unsigned long rebroadcast_time, warning_time;
9542         int refcnt;
9543
9544         linkwatch_forget_dev(dev);
9545
9546         rebroadcast_time = warning_time = jiffies;
9547         refcnt = netdev_refcnt_read(dev);
9548
9549         while (refcnt != 0) {
9550                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9551                         rtnl_lock();
9552
9553                         /* Rebroadcast unregister notification */
9554                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9555
9556                         __rtnl_unlock();
9557                         rcu_barrier();
9558                         rtnl_lock();
9559
9560                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9561                                      &dev->state)) {
9562                                 /* We must not have linkwatch events
9563                                  * pending on unregister. If this
9564                                  * happens, we simply run the queue
9565                                  * unscheduled, resulting in a noop
9566                                  * for this device.
9567                                  */
9568                                 linkwatch_run_queue();
9569                         }
9570
9571                         __rtnl_unlock();
9572
9573                         rebroadcast_time = jiffies;
9574                 }
9575
9576                 msleep(250);
9577
9578                 refcnt = netdev_refcnt_read(dev);
9579
9580                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9581                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9582                                  dev->name, refcnt);
9583                         warning_time = jiffies;
9584                 }
9585         }
9586 }
9587
9588 /* The sequence is:
9589  *
9590  *      rtnl_lock();
9591  *      ...
9592  *      register_netdevice(x1);
9593  *      register_netdevice(x2);
9594  *      ...
9595  *      unregister_netdevice(y1);
9596  *      unregister_netdevice(y2);
9597  *      ...
9598  *      rtnl_unlock();
9599  *      free_netdev(y1);
9600  *      free_netdev(y2);
9601  *
9602  * We are invoked by rtnl_unlock().
9603  * This allows us to deal with problems:
9604  * 1) We can delete sysfs objects which invoke hotplug
9605  *    without deadlocking with linkwatch via keventd.
9606  * 2) Since we run with the RTNL semaphore not held, we can sleep
9607  *    safely in order to wait for the netdev refcnt to drop to zero.
9608  *
9609  * We must not return until all unregister events added during
9610  * the interval the lock was held have been completed.
9611  */
9612 void netdev_run_todo(void)
9613 {
9614         struct list_head list;
9615
9616         /* Snapshot list, allow later requests */
9617         list_replace_init(&net_todo_list, &list);
9618
9619         __rtnl_unlock();
9620
9621
9622         /* Wait for rcu callbacks to finish before next phase */
9623         if (!list_empty(&list))
9624                 rcu_barrier();
9625
9626         while (!list_empty(&list)) {
9627                 struct net_device *dev
9628                         = list_first_entry(&list, struct net_device, todo_list);
9629                 list_del(&dev->todo_list);
9630
9631                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9632                         pr_err("network todo '%s' but state %d\n",
9633                                dev->name, dev->reg_state);
9634                         dump_stack();
9635                         continue;
9636                 }
9637
9638                 dev->reg_state = NETREG_UNREGISTERED;
9639
9640                 netdev_wait_allrefs(dev);
9641
9642                 /* paranoia */
9643                 BUG_ON(netdev_refcnt_read(dev));
9644                 BUG_ON(!list_empty(&dev->ptype_all));
9645                 BUG_ON(!list_empty(&dev->ptype_specific));
9646                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9647                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9648 #if IS_ENABLED(CONFIG_DECNET)
9649                 WARN_ON(dev->dn_ptr);
9650 #endif
9651                 if (dev->priv_destructor)
9652                         dev->priv_destructor(dev);
9653                 if (dev->needs_free_netdev)
9654                         free_netdev(dev);
9655
9656                 /* Report a network device has been unregistered */
9657                 rtnl_lock();
9658                 dev_net(dev)->dev_unreg_count--;
9659                 __rtnl_unlock();
9660                 wake_up(&netdev_unregistering_wq);
9661
9662                 /* Free network device */
9663                 kobject_put(&dev->dev.kobj);
9664         }
9665 }
9666
9667 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9668  * all the same fields in the same order as net_device_stats, with only
9669  * the type differing, but rtnl_link_stats64 may have additional fields
9670  * at the end for newer counters.
9671  */
9672 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9673                              const struct net_device_stats *netdev_stats)
9674 {
9675 #if BITS_PER_LONG == 64
9676         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9677         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9678         /* zero out counters that only exist in rtnl_link_stats64 */
9679         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9680                sizeof(*stats64) - sizeof(*netdev_stats));
9681 #else
9682         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9683         const unsigned long *src = (const unsigned long *)netdev_stats;
9684         u64 *dst = (u64 *)stats64;
9685
9686         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9687         for (i = 0; i < n; i++)
9688                 dst[i] = src[i];
9689         /* zero out counters that only exist in rtnl_link_stats64 */
9690         memset((char *)stats64 + n * sizeof(u64), 0,
9691                sizeof(*stats64) - n * sizeof(u64));
9692 #endif
9693 }
9694 EXPORT_SYMBOL(netdev_stats_to_stats64);
9695
9696 /**
9697  *      dev_get_stats   - get network device statistics
9698  *      @dev: device to get statistics from
9699  *      @storage: place to store stats
9700  *
9701  *      Get network statistics from device. Return @storage.
9702  *      The device driver may provide its own method by setting
9703  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9704  *      otherwise the internal statistics structure is used.
9705  */
9706 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9707                                         struct rtnl_link_stats64 *storage)
9708 {
9709         const struct net_device_ops *ops = dev->netdev_ops;
9710
9711         if (ops->ndo_get_stats64) {
9712                 memset(storage, 0, sizeof(*storage));
9713                 ops->ndo_get_stats64(dev, storage);
9714         } else if (ops->ndo_get_stats) {
9715                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9716         } else {
9717                 netdev_stats_to_stats64(storage, &dev->stats);
9718         }
9719         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9720         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9721         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9722         return storage;
9723 }
9724 EXPORT_SYMBOL(dev_get_stats);
9725
9726 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9727 {
9728         struct netdev_queue *queue = dev_ingress_queue(dev);
9729
9730 #ifdef CONFIG_NET_CLS_ACT
9731         if (queue)
9732                 return queue;
9733         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9734         if (!queue)
9735                 return NULL;
9736         netdev_init_one_queue(dev, queue, NULL);
9737         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9738         queue->qdisc_sleeping = &noop_qdisc;
9739         rcu_assign_pointer(dev->ingress_queue, queue);
9740 #endif
9741         return queue;
9742 }
9743
9744 static const struct ethtool_ops default_ethtool_ops;
9745
9746 void netdev_set_default_ethtool_ops(struct net_device *dev,
9747                                     const struct ethtool_ops *ops)
9748 {
9749         if (dev->ethtool_ops == &default_ethtool_ops)
9750                 dev->ethtool_ops = ops;
9751 }
9752 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9753
9754 void netdev_freemem(struct net_device *dev)
9755 {
9756         char *addr = (char *)dev - dev->padded;
9757
9758         kvfree(addr);
9759 }
9760
9761 /**
9762  * alloc_netdev_mqs - allocate network device
9763  * @sizeof_priv: size of private data to allocate space for
9764  * @name: device name format string
9765  * @name_assign_type: origin of device name
9766  * @setup: callback to initialize device
9767  * @txqs: the number of TX subqueues to allocate
9768  * @rxqs: the number of RX subqueues to allocate
9769  *
9770  * Allocates a struct net_device with private data area for driver use
9771  * and performs basic initialization.  Also allocates subqueue structs
9772  * for each queue on the device.
9773  */
9774 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9775                 unsigned char name_assign_type,
9776                 void (*setup)(struct net_device *),
9777                 unsigned int txqs, unsigned int rxqs)
9778 {
9779         struct net_device *dev;
9780         unsigned int alloc_size;
9781         struct net_device *p;
9782
9783         BUG_ON(strlen(name) >= sizeof(dev->name));
9784
9785         if (txqs < 1) {
9786                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9787                 return NULL;
9788         }
9789
9790         if (rxqs < 1) {
9791                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9792                 return NULL;
9793         }
9794
9795         alloc_size = sizeof(struct net_device);
9796         if (sizeof_priv) {
9797                 /* ensure 32-byte alignment of private area */
9798                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9799                 alloc_size += sizeof_priv;
9800         }
9801         /* ensure 32-byte alignment of whole construct */
9802         alloc_size += NETDEV_ALIGN - 1;
9803
9804         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9805         if (!p)
9806                 return NULL;
9807
9808         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9809         dev->padded = (char *)dev - (char *)p;
9810
9811         dev->pcpu_refcnt = alloc_percpu(int);
9812         if (!dev->pcpu_refcnt)
9813                 goto free_dev;
9814
9815         if (dev_addr_init(dev))
9816                 goto free_pcpu;
9817
9818         dev_mc_init(dev);
9819         dev_uc_init(dev);
9820
9821         dev_net_set(dev, &init_net);
9822
9823         netdev_register_lockdep_key(dev);
9824
9825         dev->gso_max_size = GSO_MAX_SIZE;
9826         dev->gso_max_segs = GSO_MAX_SEGS;
9827         dev->upper_level = 1;
9828         dev->lower_level = 1;
9829
9830         INIT_LIST_HEAD(&dev->napi_list);
9831         INIT_LIST_HEAD(&dev->unreg_list);
9832         INIT_LIST_HEAD(&dev->close_list);
9833         INIT_LIST_HEAD(&dev->link_watch_list);
9834         INIT_LIST_HEAD(&dev->adj_list.upper);
9835         INIT_LIST_HEAD(&dev->adj_list.lower);
9836         INIT_LIST_HEAD(&dev->ptype_all);
9837         INIT_LIST_HEAD(&dev->ptype_specific);
9838         INIT_LIST_HEAD(&dev->net_notifier_list);
9839 #ifdef CONFIG_NET_SCHED
9840         hash_init(dev->qdisc_hash);
9841 #endif
9842         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9843         setup(dev);
9844
9845         if (!dev->tx_queue_len) {
9846                 dev->priv_flags |= IFF_NO_QUEUE;
9847                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9848         }
9849
9850         dev->num_tx_queues = txqs;
9851         dev->real_num_tx_queues = txqs;
9852         if (netif_alloc_netdev_queues(dev))
9853                 goto free_all;
9854
9855         dev->num_rx_queues = rxqs;
9856         dev->real_num_rx_queues = rxqs;
9857         if (netif_alloc_rx_queues(dev))
9858                 goto free_all;
9859
9860         strcpy(dev->name, name);
9861         dev->name_assign_type = name_assign_type;
9862         dev->group = INIT_NETDEV_GROUP;
9863         if (!dev->ethtool_ops)
9864                 dev->ethtool_ops = &default_ethtool_ops;
9865
9866         nf_hook_netdev_init(dev);
9867
9868         return dev;
9869
9870 free_all:
9871         free_netdev(dev);
9872         return NULL;
9873
9874 free_pcpu:
9875         free_percpu(dev->pcpu_refcnt);
9876 free_dev:
9877         netdev_freemem(dev);
9878         return NULL;
9879 }
9880 EXPORT_SYMBOL(alloc_netdev_mqs);
9881
9882 /**
9883  * free_netdev - free network device
9884  * @dev: device
9885  *
9886  * This function does the last stage of destroying an allocated device
9887  * interface. The reference to the device object is released. If this
9888  * is the last reference then it will be freed.Must be called in process
9889  * context.
9890  */
9891 void free_netdev(struct net_device *dev)
9892 {
9893         struct napi_struct *p, *n;
9894
9895         might_sleep();
9896         netif_free_tx_queues(dev);
9897         netif_free_rx_queues(dev);
9898
9899         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9900
9901         /* Flush device addresses */
9902         dev_addr_flush(dev);
9903
9904         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9905                 netif_napi_del(p);
9906
9907         free_percpu(dev->pcpu_refcnt);
9908         dev->pcpu_refcnt = NULL;
9909         free_percpu(dev->xdp_bulkq);
9910         dev->xdp_bulkq = NULL;
9911
9912         netdev_unregister_lockdep_key(dev);
9913
9914         /*  Compatibility with error handling in drivers */
9915         if (dev->reg_state == NETREG_UNINITIALIZED) {
9916                 netdev_freemem(dev);
9917                 return;
9918         }
9919
9920         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9921         dev->reg_state = NETREG_RELEASED;
9922
9923         /* will free via device release */
9924         put_device(&dev->dev);
9925 }
9926 EXPORT_SYMBOL(free_netdev);
9927
9928 /**
9929  *      synchronize_net -  Synchronize with packet receive processing
9930  *
9931  *      Wait for packets currently being received to be done.
9932  *      Does not block later packets from starting.
9933  */
9934 void synchronize_net(void)
9935 {
9936         might_sleep();
9937         if (rtnl_is_locked())
9938                 synchronize_rcu_expedited();
9939         else
9940                 synchronize_rcu();
9941 }
9942 EXPORT_SYMBOL(synchronize_net);
9943
9944 /**
9945  *      unregister_netdevice_queue - remove device from the kernel
9946  *      @dev: device
9947  *      @head: list
9948  *
9949  *      This function shuts down a device interface and removes it
9950  *      from the kernel tables.
9951  *      If head not NULL, device is queued to be unregistered later.
9952  *
9953  *      Callers must hold the rtnl semaphore.  You may want
9954  *      unregister_netdev() instead of this.
9955  */
9956
9957 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9958 {
9959         ASSERT_RTNL();
9960
9961         if (head) {
9962                 list_move_tail(&dev->unreg_list, head);
9963         } else {
9964                 rollback_registered(dev);
9965                 /* Finish processing unregister after unlock */
9966                 net_set_todo(dev);
9967         }
9968 }
9969 EXPORT_SYMBOL(unregister_netdevice_queue);
9970
9971 /**
9972  *      unregister_netdevice_many - unregister many devices
9973  *      @head: list of devices
9974  *
9975  *  Note: As most callers use a stack allocated list_head,
9976  *  we force a list_del() to make sure stack wont be corrupted later.
9977  */
9978 void unregister_netdevice_many(struct list_head *head)
9979 {
9980         struct net_device *dev;
9981
9982         if (!list_empty(head)) {
9983                 rollback_registered_many(head);
9984                 list_for_each_entry(dev, head, unreg_list)
9985                         net_set_todo(dev);
9986                 list_del(head);
9987         }
9988 }
9989 EXPORT_SYMBOL(unregister_netdevice_many);
9990
9991 /**
9992  *      unregister_netdev - remove device from the kernel
9993  *      @dev: device
9994  *
9995  *      This function shuts down a device interface and removes it
9996  *      from the kernel tables.
9997  *
9998  *      This is just a wrapper for unregister_netdevice that takes
9999  *      the rtnl semaphore.  In general you want to use this and not
10000  *      unregister_netdevice.
10001  */
10002 void unregister_netdev(struct net_device *dev)
10003 {
10004         rtnl_lock();
10005         unregister_netdevice(dev);
10006         rtnl_unlock();
10007 }
10008 EXPORT_SYMBOL(unregister_netdev);
10009
10010 /**
10011  *      dev_change_net_namespace - move device to different nethost namespace
10012  *      @dev: device
10013  *      @net: network namespace
10014  *      @pat: If not NULL name pattern to try if the current device name
10015  *            is already taken in the destination network namespace.
10016  *
10017  *      This function shuts down a device interface and moves it
10018  *      to a new network namespace. On success 0 is returned, on
10019  *      a failure a netagive errno code is returned.
10020  *
10021  *      Callers must hold the rtnl semaphore.
10022  */
10023
10024 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10025 {
10026         struct net *net_old = dev_net(dev);
10027         int err, new_nsid, new_ifindex;
10028
10029         ASSERT_RTNL();
10030
10031         /* Don't allow namespace local devices to be moved. */
10032         err = -EINVAL;
10033         if (dev->features & NETIF_F_NETNS_LOCAL)
10034                 goto out;
10035
10036         /* Ensure the device has been registrered */
10037         if (dev->reg_state != NETREG_REGISTERED)
10038                 goto out;
10039
10040         /* Get out if there is nothing todo */
10041         err = 0;
10042         if (net_eq(net_old, net))
10043                 goto out;
10044
10045         /* Pick the destination device name, and ensure
10046          * we can use it in the destination network namespace.
10047          */
10048         err = -EEXIST;
10049         if (__dev_get_by_name(net, dev->name)) {
10050                 /* We get here if we can't use the current device name */
10051                 if (!pat)
10052                         goto out;
10053                 err = dev_get_valid_name(net, dev, pat);
10054                 if (err < 0)
10055                         goto out;
10056         }
10057
10058         /*
10059          * And now a mini version of register_netdevice unregister_netdevice.
10060          */
10061
10062         /* If device is running close it first. */
10063         dev_close(dev);
10064
10065         /* And unlink it from device chain */
10066         unlist_netdevice(dev);
10067
10068         synchronize_net();
10069
10070         /* Shutdown queueing discipline. */
10071         dev_shutdown(dev);
10072
10073         /* Notify protocols, that we are about to destroy
10074          * this device. They should clean all the things.
10075          *
10076          * Note that dev->reg_state stays at NETREG_REGISTERED.
10077          * This is wanted because this way 8021q and macvlan know
10078          * the device is just moving and can keep their slaves up.
10079          */
10080         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10081         rcu_barrier();
10082
10083         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10084         /* If there is an ifindex conflict assign a new one */
10085         if (__dev_get_by_index(net, dev->ifindex))
10086                 new_ifindex = dev_new_index(net);
10087         else
10088                 new_ifindex = dev->ifindex;
10089
10090         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10091                             new_ifindex);
10092
10093         /*
10094          *      Flush the unicast and multicast chains
10095          */
10096         dev_uc_flush(dev);
10097         dev_mc_flush(dev);
10098
10099         /* Send a netdev-removed uevent to the old namespace */
10100         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10101         netdev_adjacent_del_links(dev);
10102
10103         /* Move per-net netdevice notifiers that are following the netdevice */
10104         move_netdevice_notifiers_dev_net(dev, net);
10105
10106         /* Actually switch the network namespace */
10107         dev_net_set(dev, net);
10108         dev->ifindex = new_ifindex;
10109
10110         /* Send a netdev-add uevent to the new namespace */
10111         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10112         netdev_adjacent_add_links(dev);
10113
10114         /* Fixup kobjects */
10115         err = device_rename(&dev->dev, dev->name);
10116         WARN_ON(err);
10117
10118         /* Adapt owner in case owning user namespace of target network
10119          * namespace is different from the original one.
10120          */
10121         err = netdev_change_owner(dev, net_old, net);
10122         WARN_ON(err);
10123
10124         /* Add the device back in the hashes */
10125         list_netdevice(dev);
10126
10127         /* Notify protocols, that a new device appeared. */
10128         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10129
10130         /*
10131          *      Prevent userspace races by waiting until the network
10132          *      device is fully setup before sending notifications.
10133          */
10134         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10135
10136         synchronize_net();
10137         err = 0;
10138 out:
10139         return err;
10140 }
10141 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10142
10143 static int dev_cpu_dead(unsigned int oldcpu)
10144 {
10145         struct sk_buff **list_skb;
10146         struct sk_buff *skb;
10147         unsigned int cpu;
10148         struct softnet_data *sd, *oldsd, *remsd = NULL;
10149
10150         local_irq_disable();
10151         cpu = smp_processor_id();
10152         sd = &per_cpu(softnet_data, cpu);
10153         oldsd = &per_cpu(softnet_data, oldcpu);
10154
10155         /* Find end of our completion_queue. */
10156         list_skb = &sd->completion_queue;
10157         while (*list_skb)
10158                 list_skb = &(*list_skb)->next;
10159         /* Append completion queue from offline CPU. */
10160         *list_skb = oldsd->completion_queue;
10161         oldsd->completion_queue = NULL;
10162
10163         /* Append output queue from offline CPU. */
10164         if (oldsd->output_queue) {
10165                 *sd->output_queue_tailp = oldsd->output_queue;
10166                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10167                 oldsd->output_queue = NULL;
10168                 oldsd->output_queue_tailp = &oldsd->output_queue;
10169         }
10170         /* Append NAPI poll list from offline CPU, with one exception :
10171          * process_backlog() must be called by cpu owning percpu backlog.
10172          * We properly handle process_queue & input_pkt_queue later.
10173          */
10174         while (!list_empty(&oldsd->poll_list)) {
10175                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10176                                                             struct napi_struct,
10177                                                             poll_list);
10178
10179                 list_del_init(&napi->poll_list);
10180                 if (napi->poll == process_backlog)
10181                         napi->state = 0;
10182                 else
10183                         ____napi_schedule(sd, napi);
10184         }
10185
10186         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10187         local_irq_enable();
10188
10189 #ifdef CONFIG_RPS
10190         remsd = oldsd->rps_ipi_list;
10191         oldsd->rps_ipi_list = NULL;
10192 #endif
10193         /* send out pending IPI's on offline CPU */
10194         net_rps_send_ipi(remsd);
10195
10196         /* Process offline CPU's input_pkt_queue */
10197         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10198                 netif_rx_ni(skb);
10199                 input_queue_head_incr(oldsd);
10200         }
10201         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10202                 netif_rx_ni(skb);
10203                 input_queue_head_incr(oldsd);
10204         }
10205
10206         return 0;
10207 }
10208
10209 /**
10210  *      netdev_increment_features - increment feature set by one
10211  *      @all: current feature set
10212  *      @one: new feature set
10213  *      @mask: mask feature set
10214  *
10215  *      Computes a new feature set after adding a device with feature set
10216  *      @one to the master device with current feature set @all.  Will not
10217  *      enable anything that is off in @mask. Returns the new feature set.
10218  */
10219 netdev_features_t netdev_increment_features(netdev_features_t all,
10220         netdev_features_t one, netdev_features_t mask)
10221 {
10222         if (mask & NETIF_F_HW_CSUM)
10223                 mask |= NETIF_F_CSUM_MASK;
10224         mask |= NETIF_F_VLAN_CHALLENGED;
10225
10226         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10227         all &= one | ~NETIF_F_ALL_FOR_ALL;
10228
10229         /* If one device supports hw checksumming, set for all. */
10230         if (all & NETIF_F_HW_CSUM)
10231                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10232
10233         return all;
10234 }
10235 EXPORT_SYMBOL(netdev_increment_features);
10236
10237 static struct hlist_head * __net_init netdev_create_hash(void)
10238 {
10239         int i;
10240         struct hlist_head *hash;
10241
10242         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10243         if (hash != NULL)
10244                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10245                         INIT_HLIST_HEAD(&hash[i]);
10246
10247         return hash;
10248 }
10249
10250 /* Initialize per network namespace state */
10251 static int __net_init netdev_init(struct net *net)
10252 {
10253         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10254                      8 * sizeof_field(struct napi_struct, gro_bitmask));
10255
10256         if (net != &init_net)
10257                 INIT_LIST_HEAD(&net->dev_base_head);
10258
10259         net->dev_name_head = netdev_create_hash();
10260         if (net->dev_name_head == NULL)
10261                 goto err_name;
10262
10263         net->dev_index_head = netdev_create_hash();
10264         if (net->dev_index_head == NULL)
10265                 goto err_idx;
10266
10267         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10268
10269         return 0;
10270
10271 err_idx:
10272         kfree(net->dev_name_head);
10273 err_name:
10274         return -ENOMEM;
10275 }
10276
10277 /**
10278  *      netdev_drivername - network driver for the device
10279  *      @dev: network device
10280  *
10281  *      Determine network driver for device.
10282  */
10283 const char *netdev_drivername(const struct net_device *dev)
10284 {
10285         const struct device_driver *driver;
10286         const struct device *parent;
10287         const char *empty = "";
10288
10289         parent = dev->dev.parent;
10290         if (!parent)
10291                 return empty;
10292
10293         driver = parent->driver;
10294         if (driver && driver->name)
10295                 return driver->name;
10296         return empty;
10297 }
10298
10299 static void __netdev_printk(const char *level, const struct net_device *dev,
10300                             struct va_format *vaf)
10301 {
10302         if (dev && dev->dev.parent) {
10303                 dev_printk_emit(level[1] - '0',
10304                                 dev->dev.parent,
10305                                 "%s %s %s%s: %pV",
10306                                 dev_driver_string(dev->dev.parent),
10307                                 dev_name(dev->dev.parent),
10308                                 netdev_name(dev), netdev_reg_state(dev),
10309                                 vaf);
10310         } else if (dev) {
10311                 printk("%s%s%s: %pV",
10312                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
10313         } else {
10314                 printk("%s(NULL net_device): %pV", level, vaf);
10315         }
10316 }
10317
10318 void netdev_printk(const char *level, const struct net_device *dev,
10319                    const char *format, ...)
10320 {
10321         struct va_format vaf;
10322         va_list args;
10323
10324         va_start(args, format);
10325
10326         vaf.fmt = format;
10327         vaf.va = &args;
10328
10329         __netdev_printk(level, dev, &vaf);
10330
10331         va_end(args);
10332 }
10333 EXPORT_SYMBOL(netdev_printk);
10334
10335 #define define_netdev_printk_level(func, level)                 \
10336 void func(const struct net_device *dev, const char *fmt, ...)   \
10337 {                                                               \
10338         struct va_format vaf;                                   \
10339         va_list args;                                           \
10340                                                                 \
10341         va_start(args, fmt);                                    \
10342                                                                 \
10343         vaf.fmt = fmt;                                          \
10344         vaf.va = &args;                                         \
10345                                                                 \
10346         __netdev_printk(level, dev, &vaf);                      \
10347                                                                 \
10348         va_end(args);                                           \
10349 }                                                               \
10350 EXPORT_SYMBOL(func);
10351
10352 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10353 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10354 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10355 define_netdev_printk_level(netdev_err, KERN_ERR);
10356 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10357 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10358 define_netdev_printk_level(netdev_info, KERN_INFO);
10359
10360 static void __net_exit netdev_exit(struct net *net)
10361 {
10362         kfree(net->dev_name_head);
10363         kfree(net->dev_index_head);
10364         if (net != &init_net)
10365                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10366 }
10367
10368 static struct pernet_operations __net_initdata netdev_net_ops = {
10369         .init = netdev_init,
10370         .exit = netdev_exit,
10371 };
10372
10373 static void __net_exit default_device_exit(struct net *net)
10374 {
10375         struct net_device *dev, *aux;
10376         /*
10377          * Push all migratable network devices back to the
10378          * initial network namespace
10379          */
10380         rtnl_lock();
10381         for_each_netdev_safe(net, dev, aux) {
10382                 int err;
10383                 char fb_name[IFNAMSIZ];
10384
10385                 /* Ignore unmoveable devices (i.e. loopback) */
10386                 if (dev->features & NETIF_F_NETNS_LOCAL)
10387                         continue;
10388
10389                 /* Leave virtual devices for the generic cleanup */
10390                 if (dev->rtnl_link_ops)
10391                         continue;
10392
10393                 /* Push remaining network devices to init_net */
10394                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10395                 if (__dev_get_by_name(&init_net, fb_name))
10396                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10397                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10398                 if (err) {
10399                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10400                                  __func__, dev->name, err);
10401                         BUG();
10402                 }
10403         }
10404         rtnl_unlock();
10405 }
10406
10407 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10408 {
10409         /* Return with the rtnl_lock held when there are no network
10410          * devices unregistering in any network namespace in net_list.
10411          */
10412         struct net *net;
10413         bool unregistering;
10414         DEFINE_WAIT_FUNC(wait, woken_wake_function);
10415
10416         add_wait_queue(&netdev_unregistering_wq, &wait);
10417         for (;;) {
10418                 unregistering = false;
10419                 rtnl_lock();
10420                 list_for_each_entry(net, net_list, exit_list) {
10421                         if (net->dev_unreg_count > 0) {
10422                                 unregistering = true;
10423                                 break;
10424                         }
10425                 }
10426                 if (!unregistering)
10427                         break;
10428                 __rtnl_unlock();
10429
10430                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10431         }
10432         remove_wait_queue(&netdev_unregistering_wq, &wait);
10433 }
10434
10435 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10436 {
10437         /* At exit all network devices most be removed from a network
10438          * namespace.  Do this in the reverse order of registration.
10439          * Do this across as many network namespaces as possible to
10440          * improve batching efficiency.
10441          */
10442         struct net_device *dev;
10443         struct net *net;
10444         LIST_HEAD(dev_kill_list);
10445
10446         /* To prevent network device cleanup code from dereferencing
10447          * loopback devices or network devices that have been freed
10448          * wait here for all pending unregistrations to complete,
10449          * before unregistring the loopback device and allowing the
10450          * network namespace be freed.
10451          *
10452          * The netdev todo list containing all network devices
10453          * unregistrations that happen in default_device_exit_batch
10454          * will run in the rtnl_unlock() at the end of
10455          * default_device_exit_batch.
10456          */
10457         rtnl_lock_unregistering(net_list);
10458         list_for_each_entry(net, net_list, exit_list) {
10459                 for_each_netdev_reverse(net, dev) {
10460                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10461                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10462                         else
10463                                 unregister_netdevice_queue(dev, &dev_kill_list);
10464                 }
10465         }
10466         unregister_netdevice_many(&dev_kill_list);
10467         rtnl_unlock();
10468 }
10469
10470 static struct pernet_operations __net_initdata default_device_ops = {
10471         .exit = default_device_exit,
10472         .exit_batch = default_device_exit_batch,
10473 };
10474
10475 /*
10476  *      Initialize the DEV module. At boot time this walks the device list and
10477  *      unhooks any devices that fail to initialise (normally hardware not
10478  *      present) and leaves us with a valid list of present and active devices.
10479  *
10480  */
10481
10482 /*
10483  *       This is called single threaded during boot, so no need
10484  *       to take the rtnl semaphore.
10485  */
10486 static int __init net_dev_init(void)
10487 {
10488         int i, rc = -ENOMEM;
10489
10490         BUG_ON(!dev_boot_phase);
10491
10492         if (dev_proc_init())
10493                 goto out;
10494
10495         if (netdev_kobject_init())
10496                 goto out;
10497
10498         INIT_LIST_HEAD(&ptype_all);
10499         for (i = 0; i < PTYPE_HASH_SIZE; i++)
10500                 INIT_LIST_HEAD(&ptype_base[i]);
10501
10502         INIT_LIST_HEAD(&offload_base);
10503
10504         if (register_pernet_subsys(&netdev_net_ops))
10505                 goto out;
10506
10507         /*
10508          *      Initialise the packet receive queues.
10509          */
10510
10511         for_each_possible_cpu(i) {
10512                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10513                 struct softnet_data *sd = &per_cpu(softnet_data, i);
10514
10515                 INIT_WORK(flush, flush_backlog);
10516
10517                 skb_queue_head_init(&sd->input_pkt_queue);
10518                 skb_queue_head_init(&sd->process_queue);
10519 #ifdef CONFIG_XFRM_OFFLOAD
10520                 skb_queue_head_init(&sd->xfrm_backlog);
10521 #endif
10522                 INIT_LIST_HEAD(&sd->poll_list);
10523                 sd->output_queue_tailp = &sd->output_queue;
10524 #ifdef CONFIG_RPS
10525                 sd->csd.func = rps_trigger_softirq;
10526                 sd->csd.info = sd;
10527                 sd->cpu = i;
10528 #endif
10529
10530                 init_gro_hash(&sd->backlog);
10531                 sd->backlog.poll = process_backlog;
10532                 sd->backlog.weight = weight_p;
10533         }
10534
10535         dev_boot_phase = 0;
10536
10537         /* The loopback device is special if any other network devices
10538          * is present in a network namespace the loopback device must
10539          * be present. Since we now dynamically allocate and free the
10540          * loopback device ensure this invariant is maintained by
10541          * keeping the loopback device as the first device on the
10542          * list of network devices.  Ensuring the loopback devices
10543          * is the first device that appears and the last network device
10544          * that disappears.
10545          */
10546         if (register_pernet_device(&loopback_net_ops))
10547                 goto out;
10548
10549         if (register_pernet_device(&default_device_ops))
10550                 goto out;
10551
10552         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10553         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10554
10555         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10556                                        NULL, dev_cpu_dead);
10557         WARN_ON(rc < 0);
10558         rc = 0;
10559 out:
10560         return rc;
10561 }
10562
10563 subsys_initcall(net_dev_init);