tcp: fix skb_copy_ubufs() vs BIG TCP
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "dev.h"
155 #include "net-sysfs.h"
156
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         netdev_name_node_del(name_node);
349         kfree(name_node->name);
350         netdev_name_node_free(name_node);
351 }
352
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355         struct netdev_name_node *name_node;
356         struct net *net = dev_net(dev);
357
358         name_node = netdev_name_node_lookup(net, name);
359         if (!name_node)
360                 return -ENOENT;
361         /* lookup might have found our primary name or a name belonging
362          * to another device.
363          */
364         if (name_node == dev->name_node || name_node->dev != dev)
365                 return -EINVAL;
366
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct net *net = dev_net(dev);
384
385         ASSERT_RTNL();
386
387         write_lock(&dev_base_lock);
388         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389         netdev_name_node_add(net, dev->name_node);
390         hlist_add_head_rcu(&dev->index_hlist,
391                            dev_index_hash(net, dev->ifindex));
392         write_unlock(&dev_base_lock);
393
394         dev_base_seq_inc(net);
395 }
396
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402         ASSERT_RTNL();
403
404         /* Unlink dev from the device chain */
405         if (lock)
406                 write_lock(&dev_base_lock);
407         list_del_rcu(&dev->dev_list);
408         netdev_name_node_del(dev->name_node);
409         hlist_del_rcu(&dev->index_hlist);
410         if (lock)
411                 write_unlock(&dev_base_lock);
412
413         dev_base_seq_inc(dev_net(dev));
414 }
415
416 /*
417  *      Our notifier list
418  */
419
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421
422 /*
423  *      Device drivers call our routines to queue packets here. We empty the
424  *      queue in the local softnet handler.
425  */
426
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452 static const char *const netdev_lock_name[] = {
453         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474         int i;
475
476         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477                 if (netdev_lock_type[i] == dev_type)
478                         return i;
479         /* the last key is used by default */
480         return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484                                                  unsigned short dev_type)
485 {
486         int i;
487
488         i = netdev_lock_pos(dev_type);
489         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490                                    netdev_lock_name[i]);
491 }
492
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495         int i;
496
497         i = netdev_lock_pos(dev->type);
498         lockdep_set_class_and_name(&dev->addr_list_lock,
499                                    &netdev_addr_lock_key[i],
500                                    netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504                                                  unsigned short dev_type)
505 {
506 }
507
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512
513 /*******************************************************************************
514  *
515  *              Protocol management and registration routines
516  *
517  *******************************************************************************/
518
519
520 /*
521  *      Add a protocol ID to the list. Now that the input handler is
522  *      smarter we can dispense with all the messy stuff that used to be
523  *      here.
524  *
525  *      BEWARE!!! Protocol handlers, mangling input packets,
526  *      MUST BE last in hash buckets and checking protocol handlers
527  *      MUST start from promiscuous ptype_all chain in net_bh.
528  *      It is true now, do not change it.
529  *      Explanation follows: if protocol handler, mangling packet, will
530  *      be the first on list, it is not able to sense, that packet
531  *      is cloned and should be copied-on-write, so that it will
532  *      change it and subsequent readers will get broken packet.
533  *                                                      --ANK (980803)
534  */
535
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538         if (pt->type == htons(ETH_P_ALL))
539                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540         else
541                 return pt->dev ? &pt->dev->ptype_specific :
542                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544
545 /**
546  *      dev_add_pack - add packet handler
547  *      @pt: packet type declaration
548  *
549  *      Add a protocol handler to the networking stack. The passed &packet_type
550  *      is linked into kernel lists and may not be freed until it has been
551  *      removed from the kernel lists.
552  *
553  *      This call does not sleep therefore it can not
554  *      guarantee all CPU's that are in middle of receiving packets
555  *      will see the new packet type (until the next received packet).
556  */
557
558 void dev_add_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561
562         spin_lock(&ptype_lock);
563         list_add_rcu(&pt->list, head);
564         spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567
568 /**
569  *      __dev_remove_pack        - remove packet handler
570  *      @pt: packet type declaration
571  *
572  *      Remove a protocol handler that was previously added to the kernel
573  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *      from the kernel lists and can be freed or reused once this function
575  *      returns.
576  *
577  *      The packet type might still be in use by receivers
578  *      and must not be freed until after all the CPU's have gone
579  *      through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583         struct list_head *head = ptype_head(pt);
584         struct packet_type *pt1;
585
586         spin_lock(&ptype_lock);
587
588         list_for_each_entry(pt1, head, list) {
589                 if (pt == pt1) {
590                         list_del_rcu(&pt->list);
591                         goto out;
592                 }
593         }
594
595         pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597         spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600
601 /**
602  *      dev_remove_pack  - remove packet handler
603  *      @pt: packet type declaration
604  *
605  *      Remove a protocol handler that was previously added to the kernel
606  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *      from the kernel lists and can be freed or reused once this function
608  *      returns.
609  *
610  *      This call sleeps to guarantee that no CPU is looking at the packet
611  *      type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615         __dev_remove_pack(pt);
616
617         synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620
621
622 /*******************************************************************************
623  *
624  *                          Device Interface Subroutines
625  *
626  *******************************************************************************/
627
628 /**
629  *      dev_get_iflink  - get 'iflink' value of a interface
630  *      @dev: targeted interface
631  *
632  *      Indicates the ifindex the interface is linked to.
633  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635
636 int dev_get_iflink(const struct net_device *dev)
637 {
638         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639                 return dev->netdev_ops->ndo_get_iflink(dev);
640
641         return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644
645 /**
646  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *      @dev: targeted interface
648  *      @skb: The packet.
649  *
650  *      For better visibility of tunnel traffic OVS needs to retrieve
651  *      egress tunnel information for a packet. Following API allows
652  *      user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656         struct ip_tunnel_info *info;
657
658         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659                 return -EINVAL;
660
661         info = skb_tunnel_info_unclone(skb);
662         if (!info)
663                 return -ENOMEM;
664         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665                 return -EINVAL;
666
667         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673         int k = stack->num_paths++;
674
675         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676                 return NULL;
677
678         return &stack->path[k];
679 }
680
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682                           struct net_device_path_stack *stack)
683 {
684         const struct net_device *last_dev;
685         struct net_device_path_ctx ctx = {
686                 .dev    = dev,
687         };
688         struct net_device_path *path;
689         int ret = 0;
690
691         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692         stack->num_paths = 0;
693         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694                 last_dev = ctx.dev;
695                 path = dev_fwd_path(stack);
696                 if (!path)
697                         return -1;
698
699                 memset(path, 0, sizeof(struct net_device_path));
700                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701                 if (ret < 0)
702                         return -1;
703
704                 if (WARN_ON_ONCE(last_dev == ctx.dev))
705                         return -1;
706         }
707
708         if (!ctx.dev)
709                 return ret;
710
711         path = dev_fwd_path(stack);
712         if (!path)
713                 return -1;
714         path->type = DEV_PATH_ETHERNET;
715         path->dev = ctx.dev;
716
717         return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721 /**
722  *      __dev_get_by_name       - find a device by its name
723  *      @net: the applicable net namespace
724  *      @name: name to find
725  *
726  *      Find an interface by name. Must be called under RTNL semaphore
727  *      or @dev_base_lock. If the name is found a pointer to the device
728  *      is returned. If the name is not found then %NULL is returned. The
729  *      reference counters are not incremented so the caller must be
730  *      careful with locks.
731  */
732
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735         struct netdev_name_node *node_name;
736
737         node_name = netdev_name_node_lookup(net, name);
738         return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741
742 /**
743  * dev_get_by_name_rcu  - find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756         struct netdev_name_node *node_name;
757
758         node_name = netdev_name_node_lookup_rcu(net, name);
759         return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764  *      dev_get_by_name         - find a device by its name
765  *      @net: the applicable net namespace
766  *      @name: name to find
767  *
768  *      Find an interface by name. This can be called from any
769  *      context and does its own locking. The returned handle has
770  *      the usage count incremented and the caller must use dev_put() to
771  *      release it when it is no longer needed. %NULL is returned if no
772  *      matching device is found.
773  */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777         struct net_device *dev;
778
779         rcu_read_lock();
780         dev = dev_get_by_name_rcu(net, name);
781         dev_hold(dev);
782         rcu_read_unlock();
783         return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786
787 /**
788  *      __dev_get_by_index - find a device by its ifindex
789  *      @net: the applicable net namespace
790  *      @ifindex: index of device
791  *
792  *      Search for an interface by index. Returns %NULL if the device
793  *      is not found or a pointer to the device. The device has not
794  *      had its reference counter increased so the caller must be careful
795  *      about locking. The caller must hold either the RTNL semaphore
796  *      or @dev_base_lock.
797  */
798
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801         struct net_device *dev;
802         struct hlist_head *head = dev_index_hash(net, ifindex);
803
804         hlist_for_each_entry(dev, head, index_hlist)
805                 if (dev->ifindex == ifindex)
806                         return dev;
807
808         return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811
812 /**
813  *      dev_get_by_index_rcu - find a device by its ifindex
814  *      @net: the applicable net namespace
815  *      @ifindex: index of device
816  *
817  *      Search for an interface by index. Returns %NULL if the device
818  *      is not found or a pointer to the device. The device has not
819  *      had its reference counter increased so the caller must be careful
820  *      about locking. The caller must hold RCU lock.
821  */
822
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825         struct net_device *dev;
826         struct hlist_head *head = dev_index_hash(net, ifindex);
827
828         hlist_for_each_entry_rcu(dev, head, index_hlist)
829                 if (dev->ifindex == ifindex)
830                         return dev;
831
832         return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837 /**
838  *      dev_get_by_index - find a device by its ifindex
839  *      @net: the applicable net namespace
840  *      @ifindex: index of device
841  *
842  *      Search for an interface by index. Returns NULL if the device
843  *      is not found or a pointer to the device. The device returned has
844  *      had a reference added and the pointer is safe until the user calls
845  *      dev_put to indicate they have finished with it.
846  */
847
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850         struct net_device *dev;
851
852         rcu_read_lock();
853         dev = dev_get_by_index_rcu(net, ifindex);
854         dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      dev_get_by_napi_id - find a device by napi_id
862  *      @napi_id: ID of the NAPI struct
863  *
864  *      Search for an interface by NAPI ID. Returns %NULL if the device
865  *      is not found or a pointer to the device. The device has not had
866  *      its reference counter increased so the caller must be careful
867  *      about locking. The caller must hold RCU lock.
868  */
869
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872         struct napi_struct *napi;
873
874         WARN_ON_ONCE(!rcu_read_lock_held());
875
876         if (napi_id < MIN_NAPI_ID)
877                 return NULL;
878
879         napi = napi_by_id(napi_id);
880
881         return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884
885 /**
886  *      netdev_get_name - get a netdevice name, knowing its ifindex.
887  *      @net: network namespace
888  *      @name: a pointer to the buffer where the name will be stored.
889  *      @ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893         struct net_device *dev;
894         int ret;
895
896         down_read(&devnet_rename_sem);
897         rcu_read_lock();
898
899         dev = dev_get_by_index_rcu(net, ifindex);
900         if (!dev) {
901                 ret = -ENODEV;
902                 goto out;
903         }
904
905         strcpy(name, dev->name);
906
907         ret = 0;
908 out:
909         rcu_read_unlock();
910         up_read(&devnet_rename_sem);
911         return ret;
912 }
913
914 /**
915  *      dev_getbyhwaddr_rcu - find a device by its hardware address
916  *      @net: the applicable net namespace
917  *      @type: media type of device
918  *      @ha: hardware address
919  *
920  *      Search for an interface by MAC address. Returns NULL if the device
921  *      is not found or a pointer to the device.
922  *      The caller must hold RCU or RTNL.
923  *      The returned device has not had its ref count increased
924  *      and the caller must therefore be careful about locking
925  *
926  */
927
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929                                        const char *ha)
930 {
931         struct net_device *dev;
932
933         for_each_netdev_rcu(net, dev)
934                 if (dev->type == type &&
935                     !memcmp(dev->dev_addr, ha, dev->addr_len))
936                         return dev;
937
938         return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944         struct net_device *dev, *ret = NULL;
945
946         rcu_read_lock();
947         for_each_netdev_rcu(net, dev)
948                 if (dev->type == type) {
949                         dev_hold(dev);
950                         ret = dev;
951                         break;
952                 }
953         rcu_read_unlock();
954         return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958 /**
959  *      __dev_get_by_flags - find any device with given flags
960  *      @net: the applicable net namespace
961  *      @if_flags: IFF_* values
962  *      @mask: bitmask of bits in if_flags to check
963  *
964  *      Search for any interface with the given flags. Returns NULL if a device
965  *      is not found or a pointer to the device. Must be called inside
966  *      rtnl_lock(), and result refcount is unchanged.
967  */
968
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970                                       unsigned short mask)
971 {
972         struct net_device *dev, *ret;
973
974         ASSERT_RTNL();
975
976         ret = NULL;
977         for_each_netdev(net, dev) {
978                 if (((dev->flags ^ if_flags) & mask) == 0) {
979                         ret = dev;
980                         break;
981                 }
982         }
983         return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986
987 /**
988  *      dev_valid_name - check if name is okay for network device
989  *      @name: name string
990  *
991  *      Network device names need to be valid file names to
992  *      allow sysfs to work.  We also disallow any kind of
993  *      whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997         if (*name == '\0')
998                 return false;
999         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000                 return false;
1001         if (!strcmp(name, ".") || !strcmp(name, ".."))
1002                 return false;
1003
1004         while (*name) {
1005                 if (*name == '/' || *name == ':' || isspace(*name))
1006                         return false;
1007                 name++;
1008         }
1009         return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012
1013 /**
1014  *      __dev_alloc_name - allocate a name for a device
1015  *      @net: network namespace to allocate the device name in
1016  *      @name: name format string
1017  *      @buf:  scratch buffer and result name string
1018  *
1019  *      Passed a format string - eg "lt%d" it will try and find a suitable
1020  *      id. It scans list of devices to build up a free map, then chooses
1021  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *      while allocating the name and adding the device in order to avoid
1023  *      duplicates.
1024  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *      Returns the number of the unit assigned or a negative errno code.
1026  */
1027
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030         int i = 0;
1031         const char *p;
1032         const int max_netdevices = 8*PAGE_SIZE;
1033         unsigned long *inuse;
1034         struct net_device *d;
1035
1036         if (!dev_valid_name(name))
1037                 return -EINVAL;
1038
1039         p = strchr(name, '%');
1040         if (p) {
1041                 /*
1042                  * Verify the string as this thing may have come from
1043                  * the user.  There must be either one "%d" and no other "%"
1044                  * characters.
1045                  */
1046                 if (p[1] != 'd' || strchr(p + 2, '%'))
1047                         return -EINVAL;
1048
1049                 /* Use one page as a bit array of possible slots */
1050                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051                 if (!inuse)
1052                         return -ENOMEM;
1053
1054                 for_each_netdev(net, d) {
1055                         struct netdev_name_node *name_node;
1056                         list_for_each_entry(name_node, &d->name_node->list, list) {
1057                                 if (!sscanf(name_node->name, name, &i))
1058                                         continue;
1059                                 if (i < 0 || i >= max_netdevices)
1060                                         continue;
1061
1062                                 /*  avoid cases where sscanf is not exact inverse of printf */
1063                                 snprintf(buf, IFNAMSIZ, name, i);
1064                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065                                         __set_bit(i, inuse);
1066                         }
1067                         if (!sscanf(d->name, name, &i))
1068                                 continue;
1069                         if (i < 0 || i >= max_netdevices)
1070                                 continue;
1071
1072                         /*  avoid cases where sscanf is not exact inverse of printf */
1073                         snprintf(buf, IFNAMSIZ, name, i);
1074                         if (!strncmp(buf, d->name, IFNAMSIZ))
1075                                 __set_bit(i, inuse);
1076                 }
1077
1078                 i = find_first_zero_bit(inuse, max_netdevices);
1079                 free_page((unsigned long) inuse);
1080         }
1081
1082         snprintf(buf, IFNAMSIZ, name, i);
1083         if (!netdev_name_in_use(net, buf))
1084                 return i;
1085
1086         /* It is possible to run out of possible slots
1087          * when the name is long and there isn't enough space left
1088          * for the digits, or if all bits are used.
1089          */
1090         return -ENFILE;
1091 }
1092
1093 static int dev_alloc_name_ns(struct net *net,
1094                              struct net_device *dev,
1095                              const char *name)
1096 {
1097         char buf[IFNAMSIZ];
1098         int ret;
1099
1100         BUG_ON(!net);
1101         ret = __dev_alloc_name(net, name, buf);
1102         if (ret >= 0)
1103                 strscpy(dev->name, buf, IFNAMSIZ);
1104         return ret;
1105 }
1106
1107 /**
1108  *      dev_alloc_name - allocate a name for a device
1109  *      @dev: device
1110  *      @name: name format string
1111  *
1112  *      Passed a format string - eg "lt%d" it will try and find a suitable
1113  *      id. It scans list of devices to build up a free map, then chooses
1114  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *      while allocating the name and adding the device in order to avoid
1116  *      duplicates.
1117  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *      Returns the number of the unit assigned or a negative errno code.
1119  */
1120
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123         return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128                               const char *name)
1129 {
1130         BUG_ON(!net);
1131
1132         if (!dev_valid_name(name))
1133                 return -EINVAL;
1134
1135         if (strchr(name, '%'))
1136                 return dev_alloc_name_ns(net, dev, name);
1137         else if (netdev_name_in_use(net, name))
1138                 return -EEXIST;
1139         else if (dev->name != name)
1140                 strscpy(dev->name, name, IFNAMSIZ);
1141
1142         return 0;
1143 }
1144
1145 /**
1146  *      dev_change_name - change name of a device
1147  *      @dev: device
1148  *      @newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *      Change name of a device, can pass format strings "eth%d".
1151  *      for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155         unsigned char old_assign_type;
1156         char oldname[IFNAMSIZ];
1157         int err = 0;
1158         int ret;
1159         struct net *net;
1160
1161         ASSERT_RTNL();
1162         BUG_ON(!dev_net(dev));
1163
1164         net = dev_net(dev);
1165
1166         /* Some auto-enslaved devices e.g. failover slaves are
1167          * special, as userspace might rename the device after
1168          * the interface had been brought up and running since
1169          * the point kernel initiated auto-enslavement. Allow
1170          * live name change even when these slave devices are
1171          * up and running.
1172          *
1173          * Typically, users of these auto-enslaving devices
1174          * don't actually care about slave name change, as
1175          * they are supposed to operate on master interface
1176          * directly.
1177          */
1178         if (dev->flags & IFF_UP &&
1179             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1180                 return -EBUSY;
1181
1182         down_write(&devnet_rename_sem);
1183
1184         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1185                 up_write(&devnet_rename_sem);
1186                 return 0;
1187         }
1188
1189         memcpy(oldname, dev->name, IFNAMSIZ);
1190
1191         err = dev_get_valid_name(net, dev, newname);
1192         if (err < 0) {
1193                 up_write(&devnet_rename_sem);
1194                 return err;
1195         }
1196
1197         if (oldname[0] && !strchr(oldname, '%'))
1198                 netdev_info(dev, "renamed from %s\n", oldname);
1199
1200         old_assign_type = dev->name_assign_type;
1201         dev->name_assign_type = NET_NAME_RENAMED;
1202
1203 rollback:
1204         ret = device_rename(&dev->dev, dev->name);
1205         if (ret) {
1206                 memcpy(dev->name, oldname, IFNAMSIZ);
1207                 dev->name_assign_type = old_assign_type;
1208                 up_write(&devnet_rename_sem);
1209                 return ret;
1210         }
1211
1212         up_write(&devnet_rename_sem);
1213
1214         netdev_adjacent_rename_links(dev, oldname);
1215
1216         write_lock(&dev_base_lock);
1217         netdev_name_node_del(dev->name_node);
1218         write_unlock(&dev_base_lock);
1219
1220         synchronize_rcu();
1221
1222         write_lock(&dev_base_lock);
1223         netdev_name_node_add(net, dev->name_node);
1224         write_unlock(&dev_base_lock);
1225
1226         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1227         ret = notifier_to_errno(ret);
1228
1229         if (ret) {
1230                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1231                 if (err >= 0) {
1232                         err = ret;
1233                         down_write(&devnet_rename_sem);
1234                         memcpy(dev->name, oldname, IFNAMSIZ);
1235                         memcpy(oldname, newname, IFNAMSIZ);
1236                         dev->name_assign_type = old_assign_type;
1237                         old_assign_type = NET_NAME_RENAMED;
1238                         goto rollback;
1239                 } else {
1240                         netdev_err(dev, "name change rollback failed: %d\n",
1241                                    ret);
1242                 }
1243         }
1244
1245         return err;
1246 }
1247
1248 /**
1249  *      dev_set_alias - change ifalias of a device
1250  *      @dev: device
1251  *      @alias: name up to IFALIASZ
1252  *      @len: limit of bytes to copy from info
1253  *
1254  *      Set ifalias for a device,
1255  */
1256 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1257 {
1258         struct dev_ifalias *new_alias = NULL;
1259
1260         if (len >= IFALIASZ)
1261                 return -EINVAL;
1262
1263         if (len) {
1264                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1265                 if (!new_alias)
1266                         return -ENOMEM;
1267
1268                 memcpy(new_alias->ifalias, alias, len);
1269                 new_alias->ifalias[len] = 0;
1270         }
1271
1272         mutex_lock(&ifalias_mutex);
1273         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1274                                         mutex_is_locked(&ifalias_mutex));
1275         mutex_unlock(&ifalias_mutex);
1276
1277         if (new_alias)
1278                 kfree_rcu(new_alias, rcuhead);
1279
1280         return len;
1281 }
1282 EXPORT_SYMBOL(dev_set_alias);
1283
1284 /**
1285  *      dev_get_alias - get ifalias of a device
1286  *      @dev: device
1287  *      @name: buffer to store name of ifalias
1288  *      @len: size of buffer
1289  *
1290  *      get ifalias for a device.  Caller must make sure dev cannot go
1291  *      away,  e.g. rcu read lock or own a reference count to device.
1292  */
1293 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1294 {
1295         const struct dev_ifalias *alias;
1296         int ret = 0;
1297
1298         rcu_read_lock();
1299         alias = rcu_dereference(dev->ifalias);
1300         if (alias)
1301                 ret = snprintf(name, len, "%s", alias->ifalias);
1302         rcu_read_unlock();
1303
1304         return ret;
1305 }
1306
1307 /**
1308  *      netdev_features_change - device changes features
1309  *      @dev: device to cause notification
1310  *
1311  *      Called to indicate a device has changed features.
1312  */
1313 void netdev_features_change(struct net_device *dev)
1314 {
1315         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1316 }
1317 EXPORT_SYMBOL(netdev_features_change);
1318
1319 /**
1320  *      netdev_state_change - device changes state
1321  *      @dev: device to cause notification
1322  *
1323  *      Called to indicate a device has changed state. This function calls
1324  *      the notifier chains for netdev_chain and sends a NEWLINK message
1325  *      to the routing socket.
1326  */
1327 void netdev_state_change(struct net_device *dev)
1328 {
1329         if (dev->flags & IFF_UP) {
1330                 struct netdev_notifier_change_info change_info = {
1331                         .info.dev = dev,
1332                 };
1333
1334                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1335                                               &change_info.info);
1336                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1337         }
1338 }
1339 EXPORT_SYMBOL(netdev_state_change);
1340
1341 /**
1342  * __netdev_notify_peers - notify network peers about existence of @dev,
1343  * to be called when rtnl lock is already held.
1344  * @dev: network device
1345  *
1346  * Generate traffic such that interested network peers are aware of
1347  * @dev, such as by generating a gratuitous ARP. This may be used when
1348  * a device wants to inform the rest of the network about some sort of
1349  * reconfiguration such as a failover event or virtual machine
1350  * migration.
1351  */
1352 void __netdev_notify_peers(struct net_device *dev)
1353 {
1354         ASSERT_RTNL();
1355         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1356         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1357 }
1358 EXPORT_SYMBOL(__netdev_notify_peers);
1359
1360 /**
1361  * netdev_notify_peers - notify network peers about existence of @dev
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void netdev_notify_peers(struct net_device *dev)
1371 {
1372         rtnl_lock();
1373         __netdev_notify_peers(dev);
1374         rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377
1378 static int napi_threaded_poll(void *data);
1379
1380 static int napi_kthread_create(struct napi_struct *n)
1381 {
1382         int err = 0;
1383
1384         /* Create and wake up the kthread once to put it in
1385          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1386          * warning and work with loadavg.
1387          */
1388         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1389                                 n->dev->name, n->napi_id);
1390         if (IS_ERR(n->thread)) {
1391                 err = PTR_ERR(n->thread);
1392                 pr_err("kthread_run failed with err %d\n", err);
1393                 n->thread = NULL;
1394         }
1395
1396         return err;
1397 }
1398
1399 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1400 {
1401         const struct net_device_ops *ops = dev->netdev_ops;
1402         int ret;
1403
1404         ASSERT_RTNL();
1405         dev_addr_check(dev);
1406
1407         if (!netif_device_present(dev)) {
1408                 /* may be detached because parent is runtime-suspended */
1409                 if (dev->dev.parent)
1410                         pm_runtime_resume(dev->dev.parent);
1411                 if (!netif_device_present(dev))
1412                         return -ENODEV;
1413         }
1414
1415         /* Block netpoll from trying to do any rx path servicing.
1416          * If we don't do this there is a chance ndo_poll_controller
1417          * or ndo_poll may be running while we open the device
1418          */
1419         netpoll_poll_disable(dev);
1420
1421         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1422         ret = notifier_to_errno(ret);
1423         if (ret)
1424                 return ret;
1425
1426         set_bit(__LINK_STATE_START, &dev->state);
1427
1428         if (ops->ndo_validate_addr)
1429                 ret = ops->ndo_validate_addr(dev);
1430
1431         if (!ret && ops->ndo_open)
1432                 ret = ops->ndo_open(dev);
1433
1434         netpoll_poll_enable(dev);
1435
1436         if (ret)
1437                 clear_bit(__LINK_STATE_START, &dev->state);
1438         else {
1439                 dev->flags |= IFF_UP;
1440                 dev_set_rx_mode(dev);
1441                 dev_activate(dev);
1442                 add_device_randomness(dev->dev_addr, dev->addr_len);
1443         }
1444
1445         return ret;
1446 }
1447
1448 /**
1449  *      dev_open        - prepare an interface for use.
1450  *      @dev: device to open
1451  *      @extack: netlink extended ack
1452  *
1453  *      Takes a device from down to up state. The device's private open
1454  *      function is invoked and then the multicast lists are loaded. Finally
1455  *      the device is moved into the up state and a %NETDEV_UP message is
1456  *      sent to the netdev notifier chain.
1457  *
1458  *      Calling this function on an active interface is a nop. On a failure
1459  *      a negative errno code is returned.
1460  */
1461 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1462 {
1463         int ret;
1464
1465         if (dev->flags & IFF_UP)
1466                 return 0;
1467
1468         ret = __dev_open(dev, extack);
1469         if (ret < 0)
1470                 return ret;
1471
1472         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1473         call_netdevice_notifiers(NETDEV_UP, dev);
1474
1475         return ret;
1476 }
1477 EXPORT_SYMBOL(dev_open);
1478
1479 static void __dev_close_many(struct list_head *head)
1480 {
1481         struct net_device *dev;
1482
1483         ASSERT_RTNL();
1484         might_sleep();
1485
1486         list_for_each_entry(dev, head, close_list) {
1487                 /* Temporarily disable netpoll until the interface is down */
1488                 netpoll_poll_disable(dev);
1489
1490                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1491
1492                 clear_bit(__LINK_STATE_START, &dev->state);
1493
1494                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1495                  * can be even on different cpu. So just clear netif_running().
1496                  *
1497                  * dev->stop() will invoke napi_disable() on all of it's
1498                  * napi_struct instances on this device.
1499                  */
1500                 smp_mb__after_atomic(); /* Commit netif_running(). */
1501         }
1502
1503         dev_deactivate_many(head);
1504
1505         list_for_each_entry(dev, head, close_list) {
1506                 const struct net_device_ops *ops = dev->netdev_ops;
1507
1508                 /*
1509                  *      Call the device specific close. This cannot fail.
1510                  *      Only if device is UP
1511                  *
1512                  *      We allow it to be called even after a DETACH hot-plug
1513                  *      event.
1514                  */
1515                 if (ops->ndo_stop)
1516                         ops->ndo_stop(dev);
1517
1518                 dev->flags &= ~IFF_UP;
1519                 netpoll_poll_enable(dev);
1520         }
1521 }
1522
1523 static void __dev_close(struct net_device *dev)
1524 {
1525         LIST_HEAD(single);
1526
1527         list_add(&dev->close_list, &single);
1528         __dev_close_many(&single);
1529         list_del(&single);
1530 }
1531
1532 void dev_close_many(struct list_head *head, bool unlink)
1533 {
1534         struct net_device *dev, *tmp;
1535
1536         /* Remove the devices that don't need to be closed */
1537         list_for_each_entry_safe(dev, tmp, head, close_list)
1538                 if (!(dev->flags & IFF_UP))
1539                         list_del_init(&dev->close_list);
1540
1541         __dev_close_many(head);
1542
1543         list_for_each_entry_safe(dev, tmp, head, close_list) {
1544                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1546                 if (unlink)
1547                         list_del_init(&dev->close_list);
1548         }
1549 }
1550 EXPORT_SYMBOL(dev_close_many);
1551
1552 /**
1553  *      dev_close - shutdown an interface.
1554  *      @dev: device to shutdown
1555  *
1556  *      This function moves an active device into down state. A
1557  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1558  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1559  *      chain.
1560  */
1561 void dev_close(struct net_device *dev)
1562 {
1563         if (dev->flags & IFF_UP) {
1564                 LIST_HEAD(single);
1565
1566                 list_add(&dev->close_list, &single);
1567                 dev_close_many(&single, true);
1568                 list_del(&single);
1569         }
1570 }
1571 EXPORT_SYMBOL(dev_close);
1572
1573
1574 /**
1575  *      dev_disable_lro - disable Large Receive Offload on a device
1576  *      @dev: device
1577  *
1578  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1579  *      called under RTNL.  This is needed if received packets may be
1580  *      forwarded to another interface.
1581  */
1582 void dev_disable_lro(struct net_device *dev)
1583 {
1584         struct net_device *lower_dev;
1585         struct list_head *iter;
1586
1587         dev->wanted_features &= ~NETIF_F_LRO;
1588         netdev_update_features(dev);
1589
1590         if (unlikely(dev->features & NETIF_F_LRO))
1591                 netdev_WARN(dev, "failed to disable LRO!\n");
1592
1593         netdev_for_each_lower_dev(dev, lower_dev, iter)
1594                 dev_disable_lro(lower_dev);
1595 }
1596 EXPORT_SYMBOL(dev_disable_lro);
1597
1598 /**
1599  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1600  *      @dev: device
1601  *
1602  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1603  *      called under RTNL.  This is needed if Generic XDP is installed on
1604  *      the device.
1605  */
1606 static void dev_disable_gro_hw(struct net_device *dev)
1607 {
1608         dev->wanted_features &= ~NETIF_F_GRO_HW;
1609         netdev_update_features(dev);
1610
1611         if (unlikely(dev->features & NETIF_F_GRO_HW))
1612                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1613 }
1614
1615 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1616 {
1617 #define N(val)                                          \
1618         case NETDEV_##val:                              \
1619                 return "NETDEV_" __stringify(val);
1620         switch (cmd) {
1621         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1622         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1623         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1624         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1625         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1626         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1627         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1628         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1629         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1630         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1631         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1632         }
1633 #undef N
1634         return "UNKNOWN_NETDEV_EVENT";
1635 }
1636 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1637
1638 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1639                                    struct net_device *dev)
1640 {
1641         struct netdev_notifier_info info = {
1642                 .dev = dev,
1643         };
1644
1645         return nb->notifier_call(nb, val, &info);
1646 }
1647
1648 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1649                                              struct net_device *dev)
1650 {
1651         int err;
1652
1653         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654         err = notifier_to_errno(err);
1655         if (err)
1656                 return err;
1657
1658         if (!(dev->flags & IFF_UP))
1659                 return 0;
1660
1661         call_netdevice_notifier(nb, NETDEV_UP, dev);
1662         return 0;
1663 }
1664
1665 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1666                                                 struct net_device *dev)
1667 {
1668         if (dev->flags & IFF_UP) {
1669                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670                                         dev);
1671                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1672         }
1673         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674 }
1675
1676 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1677                                                  struct net *net)
1678 {
1679         struct net_device *dev;
1680         int err;
1681
1682         for_each_netdev(net, dev) {
1683                 err = call_netdevice_register_notifiers(nb, dev);
1684                 if (err)
1685                         goto rollback;
1686         }
1687         return 0;
1688
1689 rollback:
1690         for_each_netdev_continue_reverse(net, dev)
1691                 call_netdevice_unregister_notifiers(nb, dev);
1692         return err;
1693 }
1694
1695 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1696                                                     struct net *net)
1697 {
1698         struct net_device *dev;
1699
1700         for_each_netdev(net, dev)
1701                 call_netdevice_unregister_notifiers(nb, dev);
1702 }
1703
1704 static int dev_boot_phase = 1;
1705
1706 /**
1707  * register_netdevice_notifier - register a network notifier block
1708  * @nb: notifier
1709  *
1710  * Register a notifier to be called when network device events occur.
1711  * The notifier passed is linked into the kernel structures and must
1712  * not be reused until it has been unregistered. A negative errno code
1713  * is returned on a failure.
1714  *
1715  * When registered all registration and up events are replayed
1716  * to the new notifier to allow device to have a race free
1717  * view of the network device list.
1718  */
1719
1720 int register_netdevice_notifier(struct notifier_block *nb)
1721 {
1722         struct net *net;
1723         int err;
1724
1725         /* Close race with setup_net() and cleanup_net() */
1726         down_write(&pernet_ops_rwsem);
1727         rtnl_lock();
1728         err = raw_notifier_chain_register(&netdev_chain, nb);
1729         if (err)
1730                 goto unlock;
1731         if (dev_boot_phase)
1732                 goto unlock;
1733         for_each_net(net) {
1734                 err = call_netdevice_register_net_notifiers(nb, net);
1735                 if (err)
1736                         goto rollback;
1737         }
1738
1739 unlock:
1740         rtnl_unlock();
1741         up_write(&pernet_ops_rwsem);
1742         return err;
1743
1744 rollback:
1745         for_each_net_continue_reverse(net)
1746                 call_netdevice_unregister_net_notifiers(nb, net);
1747
1748         raw_notifier_chain_unregister(&netdev_chain, nb);
1749         goto unlock;
1750 }
1751 EXPORT_SYMBOL(register_netdevice_notifier);
1752
1753 /**
1754  * unregister_netdevice_notifier - unregister a network notifier block
1755  * @nb: notifier
1756  *
1757  * Unregister a notifier previously registered by
1758  * register_netdevice_notifier(). The notifier is unlinked into the
1759  * kernel structures and may then be reused. A negative errno code
1760  * is returned on a failure.
1761  *
1762  * After unregistering unregister and down device events are synthesized
1763  * for all devices on the device list to the removed notifier to remove
1764  * the need for special case cleanup code.
1765  */
1766
1767 int unregister_netdevice_notifier(struct notifier_block *nb)
1768 {
1769         struct net *net;
1770         int err;
1771
1772         /* Close race with setup_net() and cleanup_net() */
1773         down_write(&pernet_ops_rwsem);
1774         rtnl_lock();
1775         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1776         if (err)
1777                 goto unlock;
1778
1779         for_each_net(net)
1780                 call_netdevice_unregister_net_notifiers(nb, net);
1781
1782 unlock:
1783         rtnl_unlock();
1784         up_write(&pernet_ops_rwsem);
1785         return err;
1786 }
1787 EXPORT_SYMBOL(unregister_netdevice_notifier);
1788
1789 static int __register_netdevice_notifier_net(struct net *net,
1790                                              struct notifier_block *nb,
1791                                              bool ignore_call_fail)
1792 {
1793         int err;
1794
1795         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1796         if (err)
1797                 return err;
1798         if (dev_boot_phase)
1799                 return 0;
1800
1801         err = call_netdevice_register_net_notifiers(nb, net);
1802         if (err && !ignore_call_fail)
1803                 goto chain_unregister;
1804
1805         return 0;
1806
1807 chain_unregister:
1808         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1809         return err;
1810 }
1811
1812 static int __unregister_netdevice_notifier_net(struct net *net,
1813                                                struct notifier_block *nb)
1814 {
1815         int err;
1816
1817         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1818         if (err)
1819                 return err;
1820
1821         call_netdevice_unregister_net_notifiers(nb, net);
1822         return 0;
1823 }
1824
1825 /**
1826  * register_netdevice_notifier_net - register a per-netns network notifier block
1827  * @net: network namespace
1828  * @nb: notifier
1829  *
1830  * Register a notifier to be called when network device events occur.
1831  * The notifier passed is linked into the kernel structures and must
1832  * not be reused until it has been unregistered. A negative errno code
1833  * is returned on a failure.
1834  *
1835  * When registered all registration and up events are replayed
1836  * to the new notifier to allow device to have a race free
1837  * view of the network device list.
1838  */
1839
1840 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1841 {
1842         int err;
1843
1844         rtnl_lock();
1845         err = __register_netdevice_notifier_net(net, nb, false);
1846         rtnl_unlock();
1847         return err;
1848 }
1849 EXPORT_SYMBOL(register_netdevice_notifier_net);
1850
1851 /**
1852  * unregister_netdevice_notifier_net - unregister a per-netns
1853  *                                     network notifier block
1854  * @net: network namespace
1855  * @nb: notifier
1856  *
1857  * Unregister a notifier previously registered by
1858  * register_netdevice_notifier(). The notifier is unlinked into the
1859  * kernel structures and may then be reused. A negative errno code
1860  * is returned on a failure.
1861  *
1862  * After unregistering unregister and down device events are synthesized
1863  * for all devices on the device list to the removed notifier to remove
1864  * the need for special case cleanup code.
1865  */
1866
1867 int unregister_netdevice_notifier_net(struct net *net,
1868                                       struct notifier_block *nb)
1869 {
1870         int err;
1871
1872         rtnl_lock();
1873         err = __unregister_netdevice_notifier_net(net, nb);
1874         rtnl_unlock();
1875         return err;
1876 }
1877 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1878
1879 int register_netdevice_notifier_dev_net(struct net_device *dev,
1880                                         struct notifier_block *nb,
1881                                         struct netdev_net_notifier *nn)
1882 {
1883         int err;
1884
1885         rtnl_lock();
1886         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1887         if (!err) {
1888                 nn->nb = nb;
1889                 list_add(&nn->list, &dev->net_notifier_list);
1890         }
1891         rtnl_unlock();
1892         return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1895
1896 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1897                                           struct notifier_block *nb,
1898                                           struct netdev_net_notifier *nn)
1899 {
1900         int err;
1901
1902         rtnl_lock();
1903         list_del(&nn->list);
1904         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1905         rtnl_unlock();
1906         return err;
1907 }
1908 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1909
1910 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1911                                              struct net *net)
1912 {
1913         struct netdev_net_notifier *nn;
1914
1915         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1916                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1917                 __register_netdevice_notifier_net(net, nn->nb, true);
1918         }
1919 }
1920
1921 /**
1922  *      call_netdevice_notifiers_info - call all network notifier blocks
1923  *      @val: value passed unmodified to notifier function
1924  *      @info: notifier information data
1925  *
1926  *      Call all network notifier blocks.  Parameters and return value
1927  *      are as for raw_notifier_call_chain().
1928  */
1929
1930 static int call_netdevice_notifiers_info(unsigned long val,
1931                                          struct netdev_notifier_info *info)
1932 {
1933         struct net *net = dev_net(info->dev);
1934         int ret;
1935
1936         ASSERT_RTNL();
1937
1938         /* Run per-netns notifier block chain first, then run the global one.
1939          * Hopefully, one day, the global one is going to be removed after
1940          * all notifier block registrators get converted to be per-netns.
1941          */
1942         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1943         if (ret & NOTIFY_STOP_MASK)
1944                 return ret;
1945         return raw_notifier_call_chain(&netdev_chain, val, info);
1946 }
1947
1948 /**
1949  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1950  *                                             for and rollback on error
1951  *      @val_up: value passed unmodified to notifier function
1952  *      @val_down: value passed unmodified to the notifier function when
1953  *                 recovering from an error on @val_up
1954  *      @info: notifier information data
1955  *
1956  *      Call all per-netns network notifier blocks, but not notifier blocks on
1957  *      the global notifier chain. Parameters and return value are as for
1958  *      raw_notifier_call_chain_robust().
1959  */
1960
1961 static int
1962 call_netdevice_notifiers_info_robust(unsigned long val_up,
1963                                      unsigned long val_down,
1964                                      struct netdev_notifier_info *info)
1965 {
1966         struct net *net = dev_net(info->dev);
1967
1968         ASSERT_RTNL();
1969
1970         return raw_notifier_call_chain_robust(&net->netdev_chain,
1971                                               val_up, val_down, info);
1972 }
1973
1974 static int call_netdevice_notifiers_extack(unsigned long val,
1975                                            struct net_device *dev,
1976                                            struct netlink_ext_ack *extack)
1977 {
1978         struct netdev_notifier_info info = {
1979                 .dev = dev,
1980                 .extack = extack,
1981         };
1982
1983         return call_netdevice_notifiers_info(val, &info);
1984 }
1985
1986 /**
1987  *      call_netdevice_notifiers - call all network notifier blocks
1988  *      @val: value passed unmodified to notifier function
1989  *      @dev: net_device pointer passed unmodified to notifier function
1990  *
1991  *      Call all network notifier blocks.  Parameters and return value
1992  *      are as for raw_notifier_call_chain().
1993  */
1994
1995 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1996 {
1997         return call_netdevice_notifiers_extack(val, dev, NULL);
1998 }
1999 EXPORT_SYMBOL(call_netdevice_notifiers);
2000
2001 /**
2002  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2003  *      @val: value passed unmodified to notifier function
2004  *      @dev: net_device pointer passed unmodified to notifier function
2005  *      @arg: additional u32 argument passed to the notifier function
2006  *
2007  *      Call all network notifier blocks.  Parameters and return value
2008  *      are as for raw_notifier_call_chain().
2009  */
2010 static int call_netdevice_notifiers_mtu(unsigned long val,
2011                                         struct net_device *dev, u32 arg)
2012 {
2013         struct netdev_notifier_info_ext info = {
2014                 .info.dev = dev,
2015                 .ext.mtu = arg,
2016         };
2017
2018         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2019
2020         return call_netdevice_notifiers_info(val, &info.info);
2021 }
2022
2023 #ifdef CONFIG_NET_INGRESS
2024 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2025
2026 void net_inc_ingress_queue(void)
2027 {
2028         static_branch_inc(&ingress_needed_key);
2029 }
2030 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2031
2032 void net_dec_ingress_queue(void)
2033 {
2034         static_branch_dec(&ingress_needed_key);
2035 }
2036 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2037 #endif
2038
2039 #ifdef CONFIG_NET_EGRESS
2040 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2041
2042 void net_inc_egress_queue(void)
2043 {
2044         static_branch_inc(&egress_needed_key);
2045 }
2046 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2047
2048 void net_dec_egress_queue(void)
2049 {
2050         static_branch_dec(&egress_needed_key);
2051 }
2052 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2053 #endif
2054
2055 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2056 EXPORT_SYMBOL(netstamp_needed_key);
2057 #ifdef CONFIG_JUMP_LABEL
2058 static atomic_t netstamp_needed_deferred;
2059 static atomic_t netstamp_wanted;
2060 static void netstamp_clear(struct work_struct *work)
2061 {
2062         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2063         int wanted;
2064
2065         wanted = atomic_add_return(deferred, &netstamp_wanted);
2066         if (wanted > 0)
2067                 static_branch_enable(&netstamp_needed_key);
2068         else
2069                 static_branch_disable(&netstamp_needed_key);
2070 }
2071 static DECLARE_WORK(netstamp_work, netstamp_clear);
2072 #endif
2073
2074 void net_enable_timestamp(void)
2075 {
2076 #ifdef CONFIG_JUMP_LABEL
2077         int wanted;
2078
2079         while (1) {
2080                 wanted = atomic_read(&netstamp_wanted);
2081                 if (wanted <= 0)
2082                         break;
2083                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2084                         return;
2085         }
2086         atomic_inc(&netstamp_needed_deferred);
2087         schedule_work(&netstamp_work);
2088 #else
2089         static_branch_inc(&netstamp_needed_key);
2090 #endif
2091 }
2092 EXPORT_SYMBOL(net_enable_timestamp);
2093
2094 void net_disable_timestamp(void)
2095 {
2096 #ifdef CONFIG_JUMP_LABEL
2097         int wanted;
2098
2099         while (1) {
2100                 wanted = atomic_read(&netstamp_wanted);
2101                 if (wanted <= 1)
2102                         break;
2103                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2104                         return;
2105         }
2106         atomic_dec(&netstamp_needed_deferred);
2107         schedule_work(&netstamp_work);
2108 #else
2109         static_branch_dec(&netstamp_needed_key);
2110 #endif
2111 }
2112 EXPORT_SYMBOL(net_disable_timestamp);
2113
2114 static inline void net_timestamp_set(struct sk_buff *skb)
2115 {
2116         skb->tstamp = 0;
2117         skb->mono_delivery_time = 0;
2118         if (static_branch_unlikely(&netstamp_needed_key))
2119                 skb->tstamp = ktime_get_real();
2120 }
2121
2122 #define net_timestamp_check(COND, SKB)                          \
2123         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2124                 if ((COND) && !(SKB)->tstamp)                   \
2125                         (SKB)->tstamp = ktime_get_real();       \
2126         }                                                       \
2127
2128 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2129 {
2130         return __is_skb_forwardable(dev, skb, true);
2131 }
2132 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2133
2134 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2135                               bool check_mtu)
2136 {
2137         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2138
2139         if (likely(!ret)) {
2140                 skb->protocol = eth_type_trans(skb, dev);
2141                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2142         }
2143
2144         return ret;
2145 }
2146
2147 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2148 {
2149         return __dev_forward_skb2(dev, skb, true);
2150 }
2151 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2152
2153 /**
2154  * dev_forward_skb - loopback an skb to another netif
2155  *
2156  * @dev: destination network device
2157  * @skb: buffer to forward
2158  *
2159  * return values:
2160  *      NET_RX_SUCCESS  (no congestion)
2161  *      NET_RX_DROP     (packet was dropped, but freed)
2162  *
2163  * dev_forward_skb can be used for injecting an skb from the
2164  * start_xmit function of one device into the receive queue
2165  * of another device.
2166  *
2167  * The receiving device may be in another namespace, so
2168  * we have to clear all information in the skb that could
2169  * impact namespace isolation.
2170  */
2171 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2172 {
2173         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2174 }
2175 EXPORT_SYMBOL_GPL(dev_forward_skb);
2176
2177 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2178 {
2179         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2180 }
2181
2182 static inline int deliver_skb(struct sk_buff *skb,
2183                               struct packet_type *pt_prev,
2184                               struct net_device *orig_dev)
2185 {
2186         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2187                 return -ENOMEM;
2188         refcount_inc(&skb->users);
2189         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2190 }
2191
2192 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2193                                           struct packet_type **pt,
2194                                           struct net_device *orig_dev,
2195                                           __be16 type,
2196                                           struct list_head *ptype_list)
2197 {
2198         struct packet_type *ptype, *pt_prev = *pt;
2199
2200         list_for_each_entry_rcu(ptype, ptype_list, list) {
2201                 if (ptype->type != type)
2202                         continue;
2203                 if (pt_prev)
2204                         deliver_skb(skb, pt_prev, orig_dev);
2205                 pt_prev = ptype;
2206         }
2207         *pt = pt_prev;
2208 }
2209
2210 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2211 {
2212         if (!ptype->af_packet_priv || !skb->sk)
2213                 return false;
2214
2215         if (ptype->id_match)
2216                 return ptype->id_match(ptype, skb->sk);
2217         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2218                 return true;
2219
2220         return false;
2221 }
2222
2223 /**
2224  * dev_nit_active - return true if any network interface taps are in use
2225  *
2226  * @dev: network device to check for the presence of taps
2227  */
2228 bool dev_nit_active(struct net_device *dev)
2229 {
2230         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2231 }
2232 EXPORT_SYMBOL_GPL(dev_nit_active);
2233
2234 /*
2235  *      Support routine. Sends outgoing frames to any network
2236  *      taps currently in use.
2237  */
2238
2239 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240 {
2241         struct packet_type *ptype;
2242         struct sk_buff *skb2 = NULL;
2243         struct packet_type *pt_prev = NULL;
2244         struct list_head *ptype_list = &ptype_all;
2245
2246         rcu_read_lock();
2247 again:
2248         list_for_each_entry_rcu(ptype, ptype_list, list) {
2249                 if (ptype->ignore_outgoing)
2250                         continue;
2251
2252                 /* Never send packets back to the socket
2253                  * they originated from - MvS (miquels@drinkel.ow.org)
2254                  */
2255                 if (skb_loop_sk(ptype, skb))
2256                         continue;
2257
2258                 if (pt_prev) {
2259                         deliver_skb(skb2, pt_prev, skb->dev);
2260                         pt_prev = ptype;
2261                         continue;
2262                 }
2263
2264                 /* need to clone skb, done only once */
2265                 skb2 = skb_clone(skb, GFP_ATOMIC);
2266                 if (!skb2)
2267                         goto out_unlock;
2268
2269                 net_timestamp_set(skb2);
2270
2271                 /* skb->nh should be correctly
2272                  * set by sender, so that the second statement is
2273                  * just protection against buggy protocols.
2274                  */
2275                 skb_reset_mac_header(skb2);
2276
2277                 if (skb_network_header(skb2) < skb2->data ||
2278                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2279                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2280                                              ntohs(skb2->protocol),
2281                                              dev->name);
2282                         skb_reset_network_header(skb2);
2283                 }
2284
2285                 skb2->transport_header = skb2->network_header;
2286                 skb2->pkt_type = PACKET_OUTGOING;
2287                 pt_prev = ptype;
2288         }
2289
2290         if (ptype_list == &ptype_all) {
2291                 ptype_list = &dev->ptype_all;
2292                 goto again;
2293         }
2294 out_unlock:
2295         if (pt_prev) {
2296                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2297                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2298                 else
2299                         kfree_skb(skb2);
2300         }
2301         rcu_read_unlock();
2302 }
2303 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2304
2305 /**
2306  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2307  * @dev: Network device
2308  * @txq: number of queues available
2309  *
2310  * If real_num_tx_queues is changed the tc mappings may no longer be
2311  * valid. To resolve this verify the tc mapping remains valid and if
2312  * not NULL the mapping. With no priorities mapping to this
2313  * offset/count pair it will no longer be used. In the worst case TC0
2314  * is invalid nothing can be done so disable priority mappings. If is
2315  * expected that drivers will fix this mapping if they can before
2316  * calling netif_set_real_num_tx_queues.
2317  */
2318 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2319 {
2320         int i;
2321         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2322
2323         /* If TC0 is invalidated disable TC mapping */
2324         if (tc->offset + tc->count > txq) {
2325                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2326                 dev->num_tc = 0;
2327                 return;
2328         }
2329
2330         /* Invalidated prio to tc mappings set to TC0 */
2331         for (i = 1; i < TC_BITMASK + 1; i++) {
2332                 int q = netdev_get_prio_tc_map(dev, i);
2333
2334                 tc = &dev->tc_to_txq[q];
2335                 if (tc->offset + tc->count > txq) {
2336                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2337                                     i, q);
2338                         netdev_set_prio_tc_map(dev, i, 0);
2339                 }
2340         }
2341 }
2342
2343 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2344 {
2345         if (dev->num_tc) {
2346                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347                 int i;
2348
2349                 /* walk through the TCs and see if it falls into any of them */
2350                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2351                         if ((txq - tc->offset) < tc->count)
2352                                 return i;
2353                 }
2354
2355                 /* didn't find it, just return -1 to indicate no match */
2356                 return -1;
2357         }
2358
2359         return 0;
2360 }
2361 EXPORT_SYMBOL(netdev_txq_to_tc);
2362
2363 #ifdef CONFIG_XPS
2364 static struct static_key xps_needed __read_mostly;
2365 static struct static_key xps_rxqs_needed __read_mostly;
2366 static DEFINE_MUTEX(xps_map_mutex);
2367 #define xmap_dereference(P)             \
2368         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2369
2370 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2371                              struct xps_dev_maps *old_maps, int tci, u16 index)
2372 {
2373         struct xps_map *map = NULL;
2374         int pos;
2375
2376         if (dev_maps)
2377                 map = xmap_dereference(dev_maps->attr_map[tci]);
2378         if (!map)
2379                 return false;
2380
2381         for (pos = map->len; pos--;) {
2382                 if (map->queues[pos] != index)
2383                         continue;
2384
2385                 if (map->len > 1) {
2386                         map->queues[pos] = map->queues[--map->len];
2387                         break;
2388                 }
2389
2390                 if (old_maps)
2391                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2392                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2393                 kfree_rcu(map, rcu);
2394                 return false;
2395         }
2396
2397         return true;
2398 }
2399
2400 static bool remove_xps_queue_cpu(struct net_device *dev,
2401                                  struct xps_dev_maps *dev_maps,
2402                                  int cpu, u16 offset, u16 count)
2403 {
2404         int num_tc = dev_maps->num_tc;
2405         bool active = false;
2406         int tci;
2407
2408         for (tci = cpu * num_tc; num_tc--; tci++) {
2409                 int i, j;
2410
2411                 for (i = count, j = offset; i--; j++) {
2412                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2413                                 break;
2414                 }
2415
2416                 active |= i < 0;
2417         }
2418
2419         return active;
2420 }
2421
2422 static void reset_xps_maps(struct net_device *dev,
2423                            struct xps_dev_maps *dev_maps,
2424                            enum xps_map_type type)
2425 {
2426         static_key_slow_dec_cpuslocked(&xps_needed);
2427         if (type == XPS_RXQS)
2428                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2429
2430         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2431
2432         kfree_rcu(dev_maps, rcu);
2433 }
2434
2435 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2436                            u16 offset, u16 count)
2437 {
2438         struct xps_dev_maps *dev_maps;
2439         bool active = false;
2440         int i, j;
2441
2442         dev_maps = xmap_dereference(dev->xps_maps[type]);
2443         if (!dev_maps)
2444                 return;
2445
2446         for (j = 0; j < dev_maps->nr_ids; j++)
2447                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2448         if (!active)
2449                 reset_xps_maps(dev, dev_maps, type);
2450
2451         if (type == XPS_CPUS) {
2452                 for (i = offset + (count - 1); count--; i--)
2453                         netdev_queue_numa_node_write(
2454                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2455         }
2456 }
2457
2458 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2459                                    u16 count)
2460 {
2461         if (!static_key_false(&xps_needed))
2462                 return;
2463
2464         cpus_read_lock();
2465         mutex_lock(&xps_map_mutex);
2466
2467         if (static_key_false(&xps_rxqs_needed))
2468                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2469
2470         clean_xps_maps(dev, XPS_CPUS, offset, count);
2471
2472         mutex_unlock(&xps_map_mutex);
2473         cpus_read_unlock();
2474 }
2475
2476 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2477 {
2478         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2479 }
2480
2481 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2482                                       u16 index, bool is_rxqs_map)
2483 {
2484         struct xps_map *new_map;
2485         int alloc_len = XPS_MIN_MAP_ALLOC;
2486         int i, pos;
2487
2488         for (pos = 0; map && pos < map->len; pos++) {
2489                 if (map->queues[pos] != index)
2490                         continue;
2491                 return map;
2492         }
2493
2494         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2495         if (map) {
2496                 if (pos < map->alloc_len)
2497                         return map;
2498
2499                 alloc_len = map->alloc_len * 2;
2500         }
2501
2502         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2503          *  map
2504          */
2505         if (is_rxqs_map)
2506                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2507         else
2508                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2509                                        cpu_to_node(attr_index));
2510         if (!new_map)
2511                 return NULL;
2512
2513         for (i = 0; i < pos; i++)
2514                 new_map->queues[i] = map->queues[i];
2515         new_map->alloc_len = alloc_len;
2516         new_map->len = pos;
2517
2518         return new_map;
2519 }
2520
2521 /* Copy xps maps at a given index */
2522 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2523                               struct xps_dev_maps *new_dev_maps, int index,
2524                               int tc, bool skip_tc)
2525 {
2526         int i, tci = index * dev_maps->num_tc;
2527         struct xps_map *map;
2528
2529         /* copy maps belonging to foreign traffic classes */
2530         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2531                 if (i == tc && skip_tc)
2532                         continue;
2533
2534                 /* fill in the new device map from the old device map */
2535                 map = xmap_dereference(dev_maps->attr_map[tci]);
2536                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2537         }
2538 }
2539
2540 /* Must be called under cpus_read_lock */
2541 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2542                           u16 index, enum xps_map_type type)
2543 {
2544         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2545         const unsigned long *online_mask = NULL;
2546         bool active = false, copy = false;
2547         int i, j, tci, numa_node_id = -2;
2548         int maps_sz, num_tc = 1, tc = 0;
2549         struct xps_map *map, *new_map;
2550         unsigned int nr_ids;
2551
2552         if (dev->num_tc) {
2553                 /* Do not allow XPS on subordinate device directly */
2554                 num_tc = dev->num_tc;
2555                 if (num_tc < 0)
2556                         return -EINVAL;
2557
2558                 /* If queue belongs to subordinate dev use its map */
2559                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560
2561                 tc = netdev_txq_to_tc(dev, index);
2562                 if (tc < 0)
2563                         return -EINVAL;
2564         }
2565
2566         mutex_lock(&xps_map_mutex);
2567
2568         dev_maps = xmap_dereference(dev->xps_maps[type]);
2569         if (type == XPS_RXQS) {
2570                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571                 nr_ids = dev->num_rx_queues;
2572         } else {
2573                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574                 if (num_possible_cpus() > 1)
2575                         online_mask = cpumask_bits(cpu_online_mask);
2576                 nr_ids = nr_cpu_ids;
2577         }
2578
2579         if (maps_sz < L1_CACHE_BYTES)
2580                 maps_sz = L1_CACHE_BYTES;
2581
2582         /* The old dev_maps could be larger or smaller than the one we're
2583          * setting up now, as dev->num_tc or nr_ids could have been updated in
2584          * between. We could try to be smart, but let's be safe instead and only
2585          * copy foreign traffic classes if the two map sizes match.
2586          */
2587         if (dev_maps &&
2588             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589                 copy = true;
2590
2591         /* allocate memory for queue storage */
2592         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593              j < nr_ids;) {
2594                 if (!new_dev_maps) {
2595                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596                         if (!new_dev_maps) {
2597                                 mutex_unlock(&xps_map_mutex);
2598                                 return -ENOMEM;
2599                         }
2600
2601                         new_dev_maps->nr_ids = nr_ids;
2602                         new_dev_maps->num_tc = num_tc;
2603                 }
2604
2605                 tci = j * num_tc + tc;
2606                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607
2608                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609                 if (!map)
2610                         goto error;
2611
2612                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613         }
2614
2615         if (!new_dev_maps)
2616                 goto out_no_new_maps;
2617
2618         if (!dev_maps) {
2619                 /* Increment static keys at most once per type */
2620                 static_key_slow_inc_cpuslocked(&xps_needed);
2621                 if (type == XPS_RXQS)
2622                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623         }
2624
2625         for (j = 0; j < nr_ids; j++) {
2626                 bool skip_tc = false;
2627
2628                 tci = j * num_tc + tc;
2629                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2630                     netif_attr_test_online(j, online_mask, nr_ids)) {
2631                         /* add tx-queue to CPU/rx-queue maps */
2632                         int pos = 0;
2633
2634                         skip_tc = true;
2635
2636                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637                         while ((pos < map->len) && (map->queues[pos] != index))
2638                                 pos++;
2639
2640                         if (pos == map->len)
2641                                 map->queues[map->len++] = index;
2642 #ifdef CONFIG_NUMA
2643                         if (type == XPS_CPUS) {
2644                                 if (numa_node_id == -2)
2645                                         numa_node_id = cpu_to_node(j);
2646                                 else if (numa_node_id != cpu_to_node(j))
2647                                         numa_node_id = -1;
2648                         }
2649 #endif
2650                 }
2651
2652                 if (copy)
2653                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654                                           skip_tc);
2655         }
2656
2657         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658
2659         /* Cleanup old maps */
2660         if (!dev_maps)
2661                 goto out_no_old_maps;
2662
2663         for (j = 0; j < dev_maps->nr_ids; j++) {
2664                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665                         map = xmap_dereference(dev_maps->attr_map[tci]);
2666                         if (!map)
2667                                 continue;
2668
2669                         if (copy) {
2670                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671                                 if (map == new_map)
2672                                         continue;
2673                         }
2674
2675                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676                         kfree_rcu(map, rcu);
2677                 }
2678         }
2679
2680         old_dev_maps = dev_maps;
2681
2682 out_no_old_maps:
2683         dev_maps = new_dev_maps;
2684         active = true;
2685
2686 out_no_new_maps:
2687         if (type == XPS_CPUS)
2688                 /* update Tx queue numa node */
2689                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690                                              (numa_node_id >= 0) ?
2691                                              numa_node_id : NUMA_NO_NODE);
2692
2693         if (!dev_maps)
2694                 goto out_no_maps;
2695
2696         /* removes tx-queue from unused CPUs/rx-queues */
2697         for (j = 0; j < dev_maps->nr_ids; j++) {
2698                 tci = j * dev_maps->num_tc;
2699
2700                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701                         if (i == tc &&
2702                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704                                 continue;
2705
2706                         active |= remove_xps_queue(dev_maps,
2707                                                    copy ? old_dev_maps : NULL,
2708                                                    tci, index);
2709                 }
2710         }
2711
2712         if (old_dev_maps)
2713                 kfree_rcu(old_dev_maps, rcu);
2714
2715         /* free map if not active */
2716         if (!active)
2717                 reset_xps_maps(dev, dev_maps, type);
2718
2719 out_no_maps:
2720         mutex_unlock(&xps_map_mutex);
2721
2722         return 0;
2723 error:
2724         /* remove any maps that we added */
2725         for (j = 0; j < nr_ids; j++) {
2726                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728                         map = copy ?
2729                               xmap_dereference(dev_maps->attr_map[tci]) :
2730                               NULL;
2731                         if (new_map && new_map != map)
2732                                 kfree(new_map);
2733                 }
2734         }
2735
2736         mutex_unlock(&xps_map_mutex);
2737
2738         kfree(new_dev_maps);
2739         return -ENOMEM;
2740 }
2741 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742
2743 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744                         u16 index)
2745 {
2746         int ret;
2747
2748         cpus_read_lock();
2749         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750         cpus_read_unlock();
2751
2752         return ret;
2753 }
2754 EXPORT_SYMBOL(netif_set_xps_queue);
2755
2756 #endif
2757 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758 {
2759         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760
2761         /* Unbind any subordinate channels */
2762         while (txq-- != &dev->_tx[0]) {
2763                 if (txq->sb_dev)
2764                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2765         }
2766 }
2767
2768 void netdev_reset_tc(struct net_device *dev)
2769 {
2770 #ifdef CONFIG_XPS
2771         netif_reset_xps_queues_gt(dev, 0);
2772 #endif
2773         netdev_unbind_all_sb_channels(dev);
2774
2775         /* Reset TC configuration of device */
2776         dev->num_tc = 0;
2777         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779 }
2780 EXPORT_SYMBOL(netdev_reset_tc);
2781
2782 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783 {
2784         if (tc >= dev->num_tc)
2785                 return -EINVAL;
2786
2787 #ifdef CONFIG_XPS
2788         netif_reset_xps_queues(dev, offset, count);
2789 #endif
2790         dev->tc_to_txq[tc].count = count;
2791         dev->tc_to_txq[tc].offset = offset;
2792         return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_tc_queue);
2795
2796 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797 {
2798         if (num_tc > TC_MAX_QUEUE)
2799                 return -EINVAL;
2800
2801 #ifdef CONFIG_XPS
2802         netif_reset_xps_queues_gt(dev, 0);
2803 #endif
2804         netdev_unbind_all_sb_channels(dev);
2805
2806         dev->num_tc = num_tc;
2807         return 0;
2808 }
2809 EXPORT_SYMBOL(netdev_set_num_tc);
2810
2811 void netdev_unbind_sb_channel(struct net_device *dev,
2812                               struct net_device *sb_dev)
2813 {
2814         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815
2816 #ifdef CONFIG_XPS
2817         netif_reset_xps_queues_gt(sb_dev, 0);
2818 #endif
2819         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821
2822         while (txq-- != &dev->_tx[0]) {
2823                 if (txq->sb_dev == sb_dev)
2824                         txq->sb_dev = NULL;
2825         }
2826 }
2827 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828
2829 int netdev_bind_sb_channel_queue(struct net_device *dev,
2830                                  struct net_device *sb_dev,
2831                                  u8 tc, u16 count, u16 offset)
2832 {
2833         /* Make certain the sb_dev and dev are already configured */
2834         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835                 return -EINVAL;
2836
2837         /* We cannot hand out queues we don't have */
2838         if ((offset + count) > dev->real_num_tx_queues)
2839                 return -EINVAL;
2840
2841         /* Record the mapping */
2842         sb_dev->tc_to_txq[tc].count = count;
2843         sb_dev->tc_to_txq[tc].offset = offset;
2844
2845         /* Provide a way for Tx queue to find the tc_to_txq map or
2846          * XPS map for itself.
2847          */
2848         while (count--)
2849                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850
2851         return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854
2855 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856 {
2857         /* Do not use a multiqueue device to represent a subordinate channel */
2858         if (netif_is_multiqueue(dev))
2859                 return -ENODEV;
2860
2861         /* We allow channels 1 - 32767 to be used for subordinate channels.
2862          * Channel 0 is meant to be "native" mode and used only to represent
2863          * the main root device. We allow writing 0 to reset the device back
2864          * to normal mode after being used as a subordinate channel.
2865          */
2866         if (channel > S16_MAX)
2867                 return -EINVAL;
2868
2869         dev->num_tc = -channel;
2870
2871         return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_set_sb_channel);
2874
2875 /*
2876  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878  */
2879 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880 {
2881         bool disabling;
2882         int rc;
2883
2884         disabling = txq < dev->real_num_tx_queues;
2885
2886         if (txq < 1 || txq > dev->num_tx_queues)
2887                 return -EINVAL;
2888
2889         if (dev->reg_state == NETREG_REGISTERED ||
2890             dev->reg_state == NETREG_UNREGISTERING) {
2891                 ASSERT_RTNL();
2892
2893                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894                                                   txq);
2895                 if (rc)
2896                         return rc;
2897
2898                 if (dev->num_tc)
2899                         netif_setup_tc(dev, txq);
2900
2901                 dev_qdisc_change_real_num_tx(dev, txq);
2902
2903                 dev->real_num_tx_queues = txq;
2904
2905                 if (disabling) {
2906                         synchronize_net();
2907                         qdisc_reset_all_tx_gt(dev, txq);
2908 #ifdef CONFIG_XPS
2909                         netif_reset_xps_queues_gt(dev, txq);
2910 #endif
2911                 }
2912         } else {
2913                 dev->real_num_tx_queues = txq;
2914         }
2915
2916         return 0;
2917 }
2918 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919
2920 #ifdef CONFIG_SYSFS
2921 /**
2922  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2923  *      @dev: Network device
2924  *      @rxq: Actual number of RX queues
2925  *
2926  *      This must be called either with the rtnl_lock held or before
2927  *      registration of the net device.  Returns 0 on success, or a
2928  *      negative error code.  If called before registration, it always
2929  *      succeeds.
2930  */
2931 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932 {
2933         int rc;
2934
2935         if (rxq < 1 || rxq > dev->num_rx_queues)
2936                 return -EINVAL;
2937
2938         if (dev->reg_state == NETREG_REGISTERED) {
2939                 ASSERT_RTNL();
2940
2941                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942                                                   rxq);
2943                 if (rc)
2944                         return rc;
2945         }
2946
2947         dev->real_num_rx_queues = rxq;
2948         return 0;
2949 }
2950 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951 #endif
2952
2953 /**
2954  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2955  *      @dev: Network device
2956  *      @txq: Actual number of TX queues
2957  *      @rxq: Actual number of RX queues
2958  *
2959  *      Set the real number of both TX and RX queues.
2960  *      Does nothing if the number of queues is already correct.
2961  */
2962 int netif_set_real_num_queues(struct net_device *dev,
2963                               unsigned int txq, unsigned int rxq)
2964 {
2965         unsigned int old_rxq = dev->real_num_rx_queues;
2966         int err;
2967
2968         if (txq < 1 || txq > dev->num_tx_queues ||
2969             rxq < 1 || rxq > dev->num_rx_queues)
2970                 return -EINVAL;
2971
2972         /* Start from increases, so the error path only does decreases -
2973          * decreases can't fail.
2974          */
2975         if (rxq > dev->real_num_rx_queues) {
2976                 err = netif_set_real_num_rx_queues(dev, rxq);
2977                 if (err)
2978                         return err;
2979         }
2980         if (txq > dev->real_num_tx_queues) {
2981                 err = netif_set_real_num_tx_queues(dev, txq);
2982                 if (err)
2983                         goto undo_rx;
2984         }
2985         if (rxq < dev->real_num_rx_queues)
2986                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987         if (txq < dev->real_num_tx_queues)
2988                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989
2990         return 0;
2991 undo_rx:
2992         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993         return err;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_queues);
2996
2997 /**
2998  * netif_set_tso_max_size() - set the max size of TSO frames supported
2999  * @dev:        netdev to update
3000  * @size:       max skb->len of a TSO frame
3001  *
3002  * Set the limit on the size of TSO super-frames the device can handle.
3003  * Unless explicitly set the stack will assume the value of
3004  * %GSO_LEGACY_MAX_SIZE.
3005  */
3006 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007 {
3008         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009         if (size < READ_ONCE(dev->gso_max_size))
3010                 netif_set_gso_max_size(dev, size);
3011 }
3012 EXPORT_SYMBOL(netif_set_tso_max_size);
3013
3014 /**
3015  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3016  * @dev:        netdev to update
3017  * @segs:       max number of TCP segments
3018  *
3019  * Set the limit on the number of TCP segments the device can generate from
3020  * a single TSO super-frame.
3021  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3022  */
3023 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3024 {
3025         dev->tso_max_segs = segs;
3026         if (segs < READ_ONCE(dev->gso_max_segs))
3027                 netif_set_gso_max_segs(dev, segs);
3028 }
3029 EXPORT_SYMBOL(netif_set_tso_max_segs);
3030
3031 /**
3032  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3033  * @to:         netdev to update
3034  * @from:       netdev from which to copy the limits
3035  */
3036 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3037 {
3038         netif_set_tso_max_size(to, from->tso_max_size);
3039         netif_set_tso_max_segs(to, from->tso_max_segs);
3040 }
3041 EXPORT_SYMBOL(netif_inherit_tso_max);
3042
3043 /**
3044  * netif_get_num_default_rss_queues - default number of RSS queues
3045  *
3046  * Default value is the number of physical cores if there are only 1 or 2, or
3047  * divided by 2 if there are more.
3048  */
3049 int netif_get_num_default_rss_queues(void)
3050 {
3051         cpumask_var_t cpus;
3052         int cpu, count = 0;
3053
3054         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3055                 return 1;
3056
3057         cpumask_copy(cpus, cpu_online_mask);
3058         for_each_cpu(cpu, cpus) {
3059                 ++count;
3060                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3061         }
3062         free_cpumask_var(cpus);
3063
3064         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3065 }
3066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3067
3068 static void __netif_reschedule(struct Qdisc *q)
3069 {
3070         struct softnet_data *sd;
3071         unsigned long flags;
3072
3073         local_irq_save(flags);
3074         sd = this_cpu_ptr(&softnet_data);
3075         q->next_sched = NULL;
3076         *sd->output_queue_tailp = q;
3077         sd->output_queue_tailp = &q->next_sched;
3078         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3079         local_irq_restore(flags);
3080 }
3081
3082 void __netif_schedule(struct Qdisc *q)
3083 {
3084         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3085                 __netif_reschedule(q);
3086 }
3087 EXPORT_SYMBOL(__netif_schedule);
3088
3089 struct dev_kfree_skb_cb {
3090         enum skb_free_reason reason;
3091 };
3092
3093 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3094 {
3095         return (struct dev_kfree_skb_cb *)skb->cb;
3096 }
3097
3098 void netif_schedule_queue(struct netdev_queue *txq)
3099 {
3100         rcu_read_lock();
3101         if (!netif_xmit_stopped(txq)) {
3102                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3103
3104                 __netif_schedule(q);
3105         }
3106         rcu_read_unlock();
3107 }
3108 EXPORT_SYMBOL(netif_schedule_queue);
3109
3110 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3111 {
3112         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3113                 struct Qdisc *q;
3114
3115                 rcu_read_lock();
3116                 q = rcu_dereference(dev_queue->qdisc);
3117                 __netif_schedule(q);
3118                 rcu_read_unlock();
3119         }
3120 }
3121 EXPORT_SYMBOL(netif_tx_wake_queue);
3122
3123 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3124 {
3125         unsigned long flags;
3126
3127         if (unlikely(!skb))
3128                 return;
3129
3130         if (likely(refcount_read(&skb->users) == 1)) {
3131                 smp_rmb();
3132                 refcount_set(&skb->users, 0);
3133         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3134                 return;
3135         }
3136         get_kfree_skb_cb(skb)->reason = reason;
3137         local_irq_save(flags);
3138         skb->next = __this_cpu_read(softnet_data.completion_queue);
3139         __this_cpu_write(softnet_data.completion_queue, skb);
3140         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3141         local_irq_restore(flags);
3142 }
3143 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3144
3145 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3146 {
3147         if (in_hardirq() || irqs_disabled())
3148                 __dev_kfree_skb_irq(skb, reason);
3149         else if (unlikely(reason == SKB_REASON_DROPPED))
3150                 kfree_skb(skb);
3151         else
3152                 consume_skb(skb);
3153 }
3154 EXPORT_SYMBOL(__dev_kfree_skb_any);
3155
3156
3157 /**
3158  * netif_device_detach - mark device as removed
3159  * @dev: network device
3160  *
3161  * Mark device as removed from system and therefore no longer available.
3162  */
3163 void netif_device_detach(struct net_device *dev)
3164 {
3165         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3166             netif_running(dev)) {
3167                 netif_tx_stop_all_queues(dev);
3168         }
3169 }
3170 EXPORT_SYMBOL(netif_device_detach);
3171
3172 /**
3173  * netif_device_attach - mark device as attached
3174  * @dev: network device
3175  *
3176  * Mark device as attached from system and restart if needed.
3177  */
3178 void netif_device_attach(struct net_device *dev)
3179 {
3180         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3181             netif_running(dev)) {
3182                 netif_tx_wake_all_queues(dev);
3183                 __netdev_watchdog_up(dev);
3184         }
3185 }
3186 EXPORT_SYMBOL(netif_device_attach);
3187
3188 /*
3189  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3190  * to be used as a distribution range.
3191  */
3192 static u16 skb_tx_hash(const struct net_device *dev,
3193                        const struct net_device *sb_dev,
3194                        struct sk_buff *skb)
3195 {
3196         u32 hash;
3197         u16 qoffset = 0;
3198         u16 qcount = dev->real_num_tx_queues;
3199
3200         if (dev->num_tc) {
3201                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3202
3203                 qoffset = sb_dev->tc_to_txq[tc].offset;
3204                 qcount = sb_dev->tc_to_txq[tc].count;
3205                 if (unlikely(!qcount)) {
3206                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3207                                              sb_dev->name, qoffset, tc);
3208                         qoffset = 0;
3209                         qcount = dev->real_num_tx_queues;
3210                 }
3211         }
3212
3213         if (skb_rx_queue_recorded(skb)) {
3214                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3215                 hash = skb_get_rx_queue(skb);
3216                 if (hash >= qoffset)
3217                         hash -= qoffset;
3218                 while (unlikely(hash >= qcount))
3219                         hash -= qcount;
3220                 return hash + qoffset;
3221         }
3222
3223         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3224 }
3225
3226 static void skb_warn_bad_offload(const struct sk_buff *skb)
3227 {
3228         static const netdev_features_t null_features;
3229         struct net_device *dev = skb->dev;
3230         const char *name = "";
3231
3232         if (!net_ratelimit())
3233                 return;
3234
3235         if (dev) {
3236                 if (dev->dev.parent)
3237                         name = dev_driver_string(dev->dev.parent);
3238                 else
3239                         name = netdev_name(dev);
3240         }
3241         skb_dump(KERN_WARNING, skb, false);
3242         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3243              name, dev ? &dev->features : &null_features,
3244              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3245 }
3246
3247 /*
3248  * Invalidate hardware checksum when packet is to be mangled, and
3249  * complete checksum manually on outgoing path.
3250  */
3251 int skb_checksum_help(struct sk_buff *skb)
3252 {
3253         __wsum csum;
3254         int ret = 0, offset;
3255
3256         if (skb->ip_summed == CHECKSUM_COMPLETE)
3257                 goto out_set_summed;
3258
3259         if (unlikely(skb_is_gso(skb))) {
3260                 skb_warn_bad_offload(skb);
3261                 return -EINVAL;
3262         }
3263
3264         /* Before computing a checksum, we should make sure no frag could
3265          * be modified by an external entity : checksum could be wrong.
3266          */
3267         if (skb_has_shared_frag(skb)) {
3268                 ret = __skb_linearize(skb);
3269                 if (ret)
3270                         goto out;
3271         }
3272
3273         offset = skb_checksum_start_offset(skb);
3274         ret = -EINVAL;
3275         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3276                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3277                 goto out;
3278         }
3279         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3280
3281         offset += skb->csum_offset;
3282         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3283                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3284                 goto out;
3285         }
3286         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3287         if (ret)
3288                 goto out;
3289
3290         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3291 out_set_summed:
3292         skb->ip_summed = CHECKSUM_NONE;
3293 out:
3294         return ret;
3295 }
3296 EXPORT_SYMBOL(skb_checksum_help);
3297
3298 int skb_crc32c_csum_help(struct sk_buff *skb)
3299 {
3300         __le32 crc32c_csum;
3301         int ret = 0, offset, start;
3302
3303         if (skb->ip_summed != CHECKSUM_PARTIAL)
3304                 goto out;
3305
3306         if (unlikely(skb_is_gso(skb)))
3307                 goto out;
3308
3309         /* Before computing a checksum, we should make sure no frag could
3310          * be modified by an external entity : checksum could be wrong.
3311          */
3312         if (unlikely(skb_has_shared_frag(skb))) {
3313                 ret = __skb_linearize(skb);
3314                 if (ret)
3315                         goto out;
3316         }
3317         start = skb_checksum_start_offset(skb);
3318         offset = start + offsetof(struct sctphdr, checksum);
3319         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3320                 ret = -EINVAL;
3321                 goto out;
3322         }
3323
3324         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3325         if (ret)
3326                 goto out;
3327
3328         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3329                                                   skb->len - start, ~(__u32)0,
3330                                                   crc32c_csum_stub));
3331         *(__le32 *)(skb->data + offset) = crc32c_csum;
3332         skb->ip_summed = CHECKSUM_NONE;
3333         skb->csum_not_inet = 0;
3334 out:
3335         return ret;
3336 }
3337
3338 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3339 {
3340         __be16 type = skb->protocol;
3341
3342         /* Tunnel gso handlers can set protocol to ethernet. */
3343         if (type == htons(ETH_P_TEB)) {
3344                 struct ethhdr *eth;
3345
3346                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3347                         return 0;
3348
3349                 eth = (struct ethhdr *)skb->data;
3350                 type = eth->h_proto;
3351         }
3352
3353         return __vlan_get_protocol(skb, type, depth);
3354 }
3355
3356 /* openvswitch calls this on rx path, so we need a different check.
3357  */
3358 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3359 {
3360         if (tx_path)
3361                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3362                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3363
3364         return skb->ip_summed == CHECKSUM_NONE;
3365 }
3366
3367 /**
3368  *      __skb_gso_segment - Perform segmentation on skb.
3369  *      @skb: buffer to segment
3370  *      @features: features for the output path (see dev->features)
3371  *      @tx_path: whether it is called in TX path
3372  *
3373  *      This function segments the given skb and returns a list of segments.
3374  *
3375  *      It may return NULL if the skb requires no segmentation.  This is
3376  *      only possible when GSO is used for verifying header integrity.
3377  *
3378  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3379  */
3380 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3381                                   netdev_features_t features, bool tx_path)
3382 {
3383         struct sk_buff *segs;
3384
3385         if (unlikely(skb_needs_check(skb, tx_path))) {
3386                 int err;
3387
3388                 /* We're going to init ->check field in TCP or UDP header */
3389                 err = skb_cow_head(skb, 0);
3390                 if (err < 0)
3391                         return ERR_PTR(err);
3392         }
3393
3394         /* Only report GSO partial support if it will enable us to
3395          * support segmentation on this frame without needing additional
3396          * work.
3397          */
3398         if (features & NETIF_F_GSO_PARTIAL) {
3399                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3400                 struct net_device *dev = skb->dev;
3401
3402                 partial_features |= dev->features & dev->gso_partial_features;
3403                 if (!skb_gso_ok(skb, features | partial_features))
3404                         features &= ~NETIF_F_GSO_PARTIAL;
3405         }
3406
3407         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3408                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3409
3410         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3411         SKB_GSO_CB(skb)->encap_level = 0;
3412
3413         skb_reset_mac_header(skb);
3414         skb_reset_mac_len(skb);
3415
3416         segs = skb_mac_gso_segment(skb, features);
3417
3418         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3419                 skb_warn_bad_offload(skb);
3420
3421         return segs;
3422 }
3423 EXPORT_SYMBOL(__skb_gso_segment);
3424
3425 /* Take action when hardware reception checksum errors are detected. */
3426 #ifdef CONFIG_BUG
3427 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3428 {
3429         netdev_err(dev, "hw csum failure\n");
3430         skb_dump(KERN_ERR, skb, true);
3431         dump_stack();
3432 }
3433
3434 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3435 {
3436         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3437 }
3438 EXPORT_SYMBOL(netdev_rx_csum_fault);
3439 #endif
3440
3441 /* XXX: check that highmem exists at all on the given machine. */
3442 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3443 {
3444 #ifdef CONFIG_HIGHMEM
3445         int i;
3446
3447         if (!(dev->features & NETIF_F_HIGHDMA)) {
3448                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3449                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3450
3451                         if (PageHighMem(skb_frag_page(frag)))
3452                                 return 1;
3453                 }
3454         }
3455 #endif
3456         return 0;
3457 }
3458
3459 /* If MPLS offload request, verify we are testing hardware MPLS features
3460  * instead of standard features for the netdev.
3461  */
3462 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3463 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3464                                            netdev_features_t features,
3465                                            __be16 type)
3466 {
3467         if (eth_p_mpls(type))
3468                 features &= skb->dev->mpls_features;
3469
3470         return features;
3471 }
3472 #else
3473 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3474                                            netdev_features_t features,
3475                                            __be16 type)
3476 {
3477         return features;
3478 }
3479 #endif
3480
3481 static netdev_features_t harmonize_features(struct sk_buff *skb,
3482         netdev_features_t features)
3483 {
3484         __be16 type;
3485
3486         type = skb_network_protocol(skb, NULL);
3487         features = net_mpls_features(skb, features, type);
3488
3489         if (skb->ip_summed != CHECKSUM_NONE &&
3490             !can_checksum_protocol(features, type)) {
3491                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3492         }
3493         if (illegal_highdma(skb->dev, skb))
3494                 features &= ~NETIF_F_SG;
3495
3496         return features;
3497 }
3498
3499 netdev_features_t passthru_features_check(struct sk_buff *skb,
3500                                           struct net_device *dev,
3501                                           netdev_features_t features)
3502 {
3503         return features;
3504 }
3505 EXPORT_SYMBOL(passthru_features_check);
3506
3507 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3508                                              struct net_device *dev,
3509                                              netdev_features_t features)
3510 {
3511         return vlan_features_check(skb, features);
3512 }
3513
3514 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3515                                             struct net_device *dev,
3516                                             netdev_features_t features)
3517 {
3518         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3519
3520         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3521                 return features & ~NETIF_F_GSO_MASK;
3522
3523         if (!skb_shinfo(skb)->gso_type) {
3524                 skb_warn_bad_offload(skb);
3525                 return features & ~NETIF_F_GSO_MASK;
3526         }
3527
3528         /* Support for GSO partial features requires software
3529          * intervention before we can actually process the packets
3530          * so we need to strip support for any partial features now
3531          * and we can pull them back in after we have partially
3532          * segmented the frame.
3533          */
3534         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3535                 features &= ~dev->gso_partial_features;
3536
3537         /* Make sure to clear the IPv4 ID mangling feature if the
3538          * IPv4 header has the potential to be fragmented.
3539          */
3540         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3541                 struct iphdr *iph = skb->encapsulation ?
3542                                     inner_ip_hdr(skb) : ip_hdr(skb);
3543
3544                 if (!(iph->frag_off & htons(IP_DF)))
3545                         features &= ~NETIF_F_TSO_MANGLEID;
3546         }
3547
3548         return features;
3549 }
3550
3551 netdev_features_t netif_skb_features(struct sk_buff *skb)
3552 {
3553         struct net_device *dev = skb->dev;
3554         netdev_features_t features = dev->features;
3555
3556         if (skb_is_gso(skb))
3557                 features = gso_features_check(skb, dev, features);
3558
3559         /* If encapsulation offload request, verify we are testing
3560          * hardware encapsulation features instead of standard
3561          * features for the netdev
3562          */
3563         if (skb->encapsulation)
3564                 features &= dev->hw_enc_features;
3565
3566         if (skb_vlan_tagged(skb))
3567                 features = netdev_intersect_features(features,
3568                                                      dev->vlan_features |
3569                                                      NETIF_F_HW_VLAN_CTAG_TX |
3570                                                      NETIF_F_HW_VLAN_STAG_TX);
3571
3572         if (dev->netdev_ops->ndo_features_check)
3573                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3574                                                                 features);
3575         else
3576                 features &= dflt_features_check(skb, dev, features);
3577
3578         return harmonize_features(skb, features);
3579 }
3580 EXPORT_SYMBOL(netif_skb_features);
3581
3582 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3583                     struct netdev_queue *txq, bool more)
3584 {
3585         unsigned int len;
3586         int rc;
3587
3588         if (dev_nit_active(dev))
3589                 dev_queue_xmit_nit(skb, dev);
3590
3591         len = skb->len;
3592         trace_net_dev_start_xmit(skb, dev);
3593         rc = netdev_start_xmit(skb, dev, txq, more);
3594         trace_net_dev_xmit(skb, rc, dev, len);
3595
3596         return rc;
3597 }
3598
3599 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3600                                     struct netdev_queue *txq, int *ret)
3601 {
3602         struct sk_buff *skb = first;
3603         int rc = NETDEV_TX_OK;
3604
3605         while (skb) {
3606                 struct sk_buff *next = skb->next;
3607
3608                 skb_mark_not_on_list(skb);
3609                 rc = xmit_one(skb, dev, txq, next != NULL);
3610                 if (unlikely(!dev_xmit_complete(rc))) {
3611                         skb->next = next;
3612                         goto out;
3613                 }
3614
3615                 skb = next;
3616                 if (netif_tx_queue_stopped(txq) && skb) {
3617                         rc = NETDEV_TX_BUSY;
3618                         break;
3619                 }
3620         }
3621
3622 out:
3623         *ret = rc;
3624         return skb;
3625 }
3626
3627 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3628                                           netdev_features_t features)
3629 {
3630         if (skb_vlan_tag_present(skb) &&
3631             !vlan_hw_offload_capable(features, skb->vlan_proto))
3632                 skb = __vlan_hwaccel_push_inside(skb);
3633         return skb;
3634 }
3635
3636 int skb_csum_hwoffload_help(struct sk_buff *skb,
3637                             const netdev_features_t features)
3638 {
3639         if (unlikely(skb_csum_is_sctp(skb)))
3640                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3641                         skb_crc32c_csum_help(skb);
3642
3643         if (features & NETIF_F_HW_CSUM)
3644                 return 0;
3645
3646         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3647                 switch (skb->csum_offset) {
3648                 case offsetof(struct tcphdr, check):
3649                 case offsetof(struct udphdr, check):
3650                         return 0;
3651                 }
3652         }
3653
3654         return skb_checksum_help(skb);
3655 }
3656 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3657
3658 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3659 {
3660         netdev_features_t features;
3661
3662         features = netif_skb_features(skb);
3663         skb = validate_xmit_vlan(skb, features);
3664         if (unlikely(!skb))
3665                 goto out_null;
3666
3667         skb = sk_validate_xmit_skb(skb, dev);
3668         if (unlikely(!skb))
3669                 goto out_null;
3670
3671         if (netif_needs_gso(skb, features)) {
3672                 struct sk_buff *segs;
3673
3674                 segs = skb_gso_segment(skb, features);
3675                 if (IS_ERR(segs)) {
3676                         goto out_kfree_skb;
3677                 } else if (segs) {
3678                         consume_skb(skb);
3679                         skb = segs;
3680                 }
3681         } else {
3682                 if (skb_needs_linearize(skb, features) &&
3683                     __skb_linearize(skb))
3684                         goto out_kfree_skb;
3685
3686                 /* If packet is not checksummed and device does not
3687                  * support checksumming for this protocol, complete
3688                  * checksumming here.
3689                  */
3690                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3691                         if (skb->encapsulation)
3692                                 skb_set_inner_transport_header(skb,
3693                                                                skb_checksum_start_offset(skb));
3694                         else
3695                                 skb_set_transport_header(skb,
3696                                                          skb_checksum_start_offset(skb));
3697                         if (skb_csum_hwoffload_help(skb, features))
3698                                 goto out_kfree_skb;
3699                 }
3700         }
3701
3702         skb = validate_xmit_xfrm(skb, features, again);
3703
3704         return skb;
3705
3706 out_kfree_skb:
3707         kfree_skb(skb);
3708 out_null:
3709         dev_core_stats_tx_dropped_inc(dev);
3710         return NULL;
3711 }
3712
3713 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3714 {
3715         struct sk_buff *next, *head = NULL, *tail;
3716
3717         for (; skb != NULL; skb = next) {
3718                 next = skb->next;
3719                 skb_mark_not_on_list(skb);
3720
3721                 /* in case skb wont be segmented, point to itself */
3722                 skb->prev = skb;
3723
3724                 skb = validate_xmit_skb(skb, dev, again);
3725                 if (!skb)
3726                         continue;
3727
3728                 if (!head)
3729                         head = skb;
3730                 else
3731                         tail->next = skb;
3732                 /* If skb was segmented, skb->prev points to
3733                  * the last segment. If not, it still contains skb.
3734                  */
3735                 tail = skb->prev;
3736         }
3737         return head;
3738 }
3739 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3740
3741 static void qdisc_pkt_len_init(struct sk_buff *skb)
3742 {
3743         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3744
3745         qdisc_skb_cb(skb)->pkt_len = skb->len;
3746
3747         /* To get more precise estimation of bytes sent on wire,
3748          * we add to pkt_len the headers size of all segments
3749          */
3750         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3751                 unsigned int hdr_len;
3752                 u16 gso_segs = shinfo->gso_segs;
3753
3754                 /* mac layer + network layer */
3755                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3756
3757                 /* + transport layer */
3758                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3759                         const struct tcphdr *th;
3760                         struct tcphdr _tcphdr;
3761
3762                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3763                                                 sizeof(_tcphdr), &_tcphdr);
3764                         if (likely(th))
3765                                 hdr_len += __tcp_hdrlen(th);
3766                 } else {
3767                         struct udphdr _udphdr;
3768
3769                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3770                                                sizeof(_udphdr), &_udphdr))
3771                                 hdr_len += sizeof(struct udphdr);
3772                 }
3773
3774                 if (shinfo->gso_type & SKB_GSO_DODGY)
3775                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3776                                                 shinfo->gso_size);
3777
3778                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3779         }
3780 }
3781
3782 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3783                              struct sk_buff **to_free,
3784                              struct netdev_queue *txq)
3785 {
3786         int rc;
3787
3788         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3789         if (rc == NET_XMIT_SUCCESS)
3790                 trace_qdisc_enqueue(q, txq, skb);
3791         return rc;
3792 }
3793
3794 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3795                                  struct net_device *dev,
3796                                  struct netdev_queue *txq)
3797 {
3798         spinlock_t *root_lock = qdisc_lock(q);
3799         struct sk_buff *to_free = NULL;
3800         bool contended;
3801         int rc;
3802
3803         qdisc_calculate_pkt_len(skb, q);
3804
3805         if (q->flags & TCQ_F_NOLOCK) {
3806                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3807                     qdisc_run_begin(q)) {
3808                         /* Retest nolock_qdisc_is_empty() within the protection
3809                          * of q->seqlock to protect from racing with requeuing.
3810                          */
3811                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3812                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3813                                 __qdisc_run(q);
3814                                 qdisc_run_end(q);
3815
3816                                 goto no_lock_out;
3817                         }
3818
3819                         qdisc_bstats_cpu_update(q, skb);
3820                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3821                             !nolock_qdisc_is_empty(q))
3822                                 __qdisc_run(q);
3823
3824                         qdisc_run_end(q);
3825                         return NET_XMIT_SUCCESS;
3826                 }
3827
3828                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3829                 qdisc_run(q);
3830
3831 no_lock_out:
3832                 if (unlikely(to_free))
3833                         kfree_skb_list_reason(to_free,
3834                                               SKB_DROP_REASON_QDISC_DROP);
3835                 return rc;
3836         }
3837
3838         /*
3839          * Heuristic to force contended enqueues to serialize on a
3840          * separate lock before trying to get qdisc main lock.
3841          * This permits qdisc->running owner to get the lock more
3842          * often and dequeue packets faster.
3843          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3844          * and then other tasks will only enqueue packets. The packets will be
3845          * sent after the qdisc owner is scheduled again. To prevent this
3846          * scenario the task always serialize on the lock.
3847          */
3848         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3849         if (unlikely(contended))
3850                 spin_lock(&q->busylock);
3851
3852         spin_lock(root_lock);
3853         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3854                 __qdisc_drop(skb, &to_free);
3855                 rc = NET_XMIT_DROP;
3856         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3857                    qdisc_run_begin(q)) {
3858                 /*
3859                  * This is a work-conserving queue; there are no old skbs
3860                  * waiting to be sent out; and the qdisc is not running -
3861                  * xmit the skb directly.
3862                  */
3863
3864                 qdisc_bstats_update(q, skb);
3865
3866                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3867                         if (unlikely(contended)) {
3868                                 spin_unlock(&q->busylock);
3869                                 contended = false;
3870                         }
3871                         __qdisc_run(q);
3872                 }
3873
3874                 qdisc_run_end(q);
3875                 rc = NET_XMIT_SUCCESS;
3876         } else {
3877                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3878                 if (qdisc_run_begin(q)) {
3879                         if (unlikely(contended)) {
3880                                 spin_unlock(&q->busylock);
3881                                 contended = false;
3882                         }
3883                         __qdisc_run(q);
3884                         qdisc_run_end(q);
3885                 }
3886         }
3887         spin_unlock(root_lock);
3888         if (unlikely(to_free))
3889                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3890         if (unlikely(contended))
3891                 spin_unlock(&q->busylock);
3892         return rc;
3893 }
3894
3895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3896 static void skb_update_prio(struct sk_buff *skb)
3897 {
3898         const struct netprio_map *map;
3899         const struct sock *sk;
3900         unsigned int prioidx;
3901
3902         if (skb->priority)
3903                 return;
3904         map = rcu_dereference_bh(skb->dev->priomap);
3905         if (!map)
3906                 return;
3907         sk = skb_to_full_sk(skb);
3908         if (!sk)
3909                 return;
3910
3911         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3912
3913         if (prioidx < map->priomap_len)
3914                 skb->priority = map->priomap[prioidx];
3915 }
3916 #else
3917 #define skb_update_prio(skb)
3918 #endif
3919
3920 /**
3921  *      dev_loopback_xmit - loop back @skb
3922  *      @net: network namespace this loopback is happening in
3923  *      @sk:  sk needed to be a netfilter okfn
3924  *      @skb: buffer to transmit
3925  */
3926 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3927 {
3928         skb_reset_mac_header(skb);
3929         __skb_pull(skb, skb_network_offset(skb));
3930         skb->pkt_type = PACKET_LOOPBACK;
3931         if (skb->ip_summed == CHECKSUM_NONE)
3932                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3933         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3934         skb_dst_force(skb);
3935         netif_rx(skb);
3936         return 0;
3937 }
3938 EXPORT_SYMBOL(dev_loopback_xmit);
3939
3940 #ifdef CONFIG_NET_EGRESS
3941 static struct sk_buff *
3942 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3943 {
3944 #ifdef CONFIG_NET_CLS_ACT
3945         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3946         struct tcf_result cl_res;
3947
3948         if (!miniq)
3949                 return skb;
3950
3951         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3952         tc_skb_cb(skb)->mru = 0;
3953         tc_skb_cb(skb)->post_ct = false;
3954         mini_qdisc_bstats_cpu_update(miniq, skb);
3955
3956         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3957         case TC_ACT_OK:
3958         case TC_ACT_RECLASSIFY:
3959                 skb->tc_index = TC_H_MIN(cl_res.classid);
3960                 break;
3961         case TC_ACT_SHOT:
3962                 mini_qdisc_qstats_cpu_drop(miniq);
3963                 *ret = NET_XMIT_DROP;
3964                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3965                 return NULL;
3966         case TC_ACT_STOLEN:
3967         case TC_ACT_QUEUED:
3968         case TC_ACT_TRAP:
3969                 *ret = NET_XMIT_SUCCESS;
3970                 consume_skb(skb);
3971                 return NULL;
3972         case TC_ACT_REDIRECT:
3973                 /* No need to push/pop skb's mac_header here on egress! */
3974                 skb_do_redirect(skb);
3975                 *ret = NET_XMIT_SUCCESS;
3976                 return NULL;
3977         default:
3978                 break;
3979         }
3980 #endif /* CONFIG_NET_CLS_ACT */
3981
3982         return skb;
3983 }
3984
3985 static struct netdev_queue *
3986 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3987 {
3988         int qm = skb_get_queue_mapping(skb);
3989
3990         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3991 }
3992
3993 static bool netdev_xmit_txqueue_skipped(void)
3994 {
3995         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3996 }
3997
3998 void netdev_xmit_skip_txqueue(bool skip)
3999 {
4000         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4001 }
4002 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4003 #endif /* CONFIG_NET_EGRESS */
4004
4005 #ifdef CONFIG_XPS
4006 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4007                                struct xps_dev_maps *dev_maps, unsigned int tci)
4008 {
4009         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4010         struct xps_map *map;
4011         int queue_index = -1;
4012
4013         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4014                 return queue_index;
4015
4016         tci *= dev_maps->num_tc;
4017         tci += tc;
4018
4019         map = rcu_dereference(dev_maps->attr_map[tci]);
4020         if (map) {
4021                 if (map->len == 1)
4022                         queue_index = map->queues[0];
4023                 else
4024                         queue_index = map->queues[reciprocal_scale(
4025                                                 skb_get_hash(skb), map->len)];
4026                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4027                         queue_index = -1;
4028         }
4029         return queue_index;
4030 }
4031 #endif
4032
4033 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4034                          struct sk_buff *skb)
4035 {
4036 #ifdef CONFIG_XPS
4037         struct xps_dev_maps *dev_maps;
4038         struct sock *sk = skb->sk;
4039         int queue_index = -1;
4040
4041         if (!static_key_false(&xps_needed))
4042                 return -1;
4043
4044         rcu_read_lock();
4045         if (!static_key_false(&xps_rxqs_needed))
4046                 goto get_cpus_map;
4047
4048         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4049         if (dev_maps) {
4050                 int tci = sk_rx_queue_get(sk);
4051
4052                 if (tci >= 0)
4053                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4054                                                           tci);
4055         }
4056
4057 get_cpus_map:
4058         if (queue_index < 0) {
4059                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4060                 if (dev_maps) {
4061                         unsigned int tci = skb->sender_cpu - 1;
4062
4063                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4064                                                           tci);
4065                 }
4066         }
4067         rcu_read_unlock();
4068
4069         return queue_index;
4070 #else
4071         return -1;
4072 #endif
4073 }
4074
4075 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4076                      struct net_device *sb_dev)
4077 {
4078         return 0;
4079 }
4080 EXPORT_SYMBOL(dev_pick_tx_zero);
4081
4082 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4083                        struct net_device *sb_dev)
4084 {
4085         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4086 }
4087 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4088
4089 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4090                      struct net_device *sb_dev)
4091 {
4092         struct sock *sk = skb->sk;
4093         int queue_index = sk_tx_queue_get(sk);
4094
4095         sb_dev = sb_dev ? : dev;
4096
4097         if (queue_index < 0 || skb->ooo_okay ||
4098             queue_index >= dev->real_num_tx_queues) {
4099                 int new_index = get_xps_queue(dev, sb_dev, skb);
4100
4101                 if (new_index < 0)
4102                         new_index = skb_tx_hash(dev, sb_dev, skb);
4103
4104                 if (queue_index != new_index && sk &&
4105                     sk_fullsock(sk) &&
4106                     rcu_access_pointer(sk->sk_dst_cache))
4107                         sk_tx_queue_set(sk, new_index);
4108
4109                 queue_index = new_index;
4110         }
4111
4112         return queue_index;
4113 }
4114 EXPORT_SYMBOL(netdev_pick_tx);
4115
4116 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4117                                          struct sk_buff *skb,
4118                                          struct net_device *sb_dev)
4119 {
4120         int queue_index = 0;
4121
4122 #ifdef CONFIG_XPS
4123         u32 sender_cpu = skb->sender_cpu - 1;
4124
4125         if (sender_cpu >= (u32)NR_CPUS)
4126                 skb->sender_cpu = raw_smp_processor_id() + 1;
4127 #endif
4128
4129         if (dev->real_num_tx_queues != 1) {
4130                 const struct net_device_ops *ops = dev->netdev_ops;
4131
4132                 if (ops->ndo_select_queue)
4133                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4134                 else
4135                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4136
4137                 queue_index = netdev_cap_txqueue(dev, queue_index);
4138         }
4139
4140         skb_set_queue_mapping(skb, queue_index);
4141         return netdev_get_tx_queue(dev, queue_index);
4142 }
4143
4144 /**
4145  * __dev_queue_xmit() - transmit a buffer
4146  * @skb:        buffer to transmit
4147  * @sb_dev:     suboordinate device used for L2 forwarding offload
4148  *
4149  * Queue a buffer for transmission to a network device. The caller must
4150  * have set the device and priority and built the buffer before calling
4151  * this function. The function can be called from an interrupt.
4152  *
4153  * When calling this method, interrupts MUST be enabled. This is because
4154  * the BH enable code must have IRQs enabled so that it will not deadlock.
4155  *
4156  * Regardless of the return value, the skb is consumed, so it is currently
4157  * difficult to retry a send to this method. (You can bump the ref count
4158  * before sending to hold a reference for retry if you are careful.)
4159  *
4160  * Return:
4161  * * 0                          - buffer successfully transmitted
4162  * * positive qdisc return code - NET_XMIT_DROP etc.
4163  * * negative errno             - other errors
4164  */
4165 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4166 {
4167         struct net_device *dev = skb->dev;
4168         struct netdev_queue *txq = NULL;
4169         struct Qdisc *q;
4170         int rc = -ENOMEM;
4171         bool again = false;
4172
4173         skb_reset_mac_header(skb);
4174         skb_assert_len(skb);
4175
4176         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4177                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4178
4179         /* Disable soft irqs for various locks below. Also
4180          * stops preemption for RCU.
4181          */
4182         rcu_read_lock_bh();
4183
4184         skb_update_prio(skb);
4185
4186         qdisc_pkt_len_init(skb);
4187 #ifdef CONFIG_NET_CLS_ACT
4188         skb->tc_at_ingress = 0;
4189 #endif
4190 #ifdef CONFIG_NET_EGRESS
4191         if (static_branch_unlikely(&egress_needed_key)) {
4192                 if (nf_hook_egress_active()) {
4193                         skb = nf_hook_egress(skb, &rc, dev);
4194                         if (!skb)
4195                                 goto out;
4196                 }
4197
4198                 netdev_xmit_skip_txqueue(false);
4199
4200                 nf_skip_egress(skb, true);
4201                 skb = sch_handle_egress(skb, &rc, dev);
4202                 if (!skb)
4203                         goto out;
4204                 nf_skip_egress(skb, false);
4205
4206                 if (netdev_xmit_txqueue_skipped())
4207                         txq = netdev_tx_queue_mapping(dev, skb);
4208         }
4209 #endif
4210         /* If device/qdisc don't need skb->dst, release it right now while
4211          * its hot in this cpu cache.
4212          */
4213         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4214                 skb_dst_drop(skb);
4215         else
4216                 skb_dst_force(skb);
4217
4218         if (!txq)
4219                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4220
4221         q = rcu_dereference_bh(txq->qdisc);
4222
4223         trace_net_dev_queue(skb);
4224         if (q->enqueue) {
4225                 rc = __dev_xmit_skb(skb, q, dev, txq);
4226                 goto out;
4227         }
4228
4229         /* The device has no queue. Common case for software devices:
4230          * loopback, all the sorts of tunnels...
4231
4232          * Really, it is unlikely that netif_tx_lock protection is necessary
4233          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4234          * counters.)
4235          * However, it is possible, that they rely on protection
4236          * made by us here.
4237
4238          * Check this and shot the lock. It is not prone from deadlocks.
4239          *Either shot noqueue qdisc, it is even simpler 8)
4240          */
4241         if (dev->flags & IFF_UP) {
4242                 int cpu = smp_processor_id(); /* ok because BHs are off */
4243
4244                 /* Other cpus might concurrently change txq->xmit_lock_owner
4245                  * to -1 or to their cpu id, but not to our id.
4246                  */
4247                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4248                         if (dev_xmit_recursion())
4249                                 goto recursion_alert;
4250
4251                         skb = validate_xmit_skb(skb, dev, &again);
4252                         if (!skb)
4253                                 goto out;
4254
4255                         HARD_TX_LOCK(dev, txq, cpu);
4256
4257                         if (!netif_xmit_stopped(txq)) {
4258                                 dev_xmit_recursion_inc();
4259                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4260                                 dev_xmit_recursion_dec();
4261                                 if (dev_xmit_complete(rc)) {
4262                                         HARD_TX_UNLOCK(dev, txq);
4263                                         goto out;
4264                                 }
4265                         }
4266                         HARD_TX_UNLOCK(dev, txq);
4267                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4268                                              dev->name);
4269                 } else {
4270                         /* Recursion is detected! It is possible,
4271                          * unfortunately
4272                          */
4273 recursion_alert:
4274                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4275                                              dev->name);
4276                 }
4277         }
4278
4279         rc = -ENETDOWN;
4280         rcu_read_unlock_bh();
4281
4282         dev_core_stats_tx_dropped_inc(dev);
4283         kfree_skb_list(skb);
4284         return rc;
4285 out:
4286         rcu_read_unlock_bh();
4287         return rc;
4288 }
4289 EXPORT_SYMBOL(__dev_queue_xmit);
4290
4291 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4292 {
4293         struct net_device *dev = skb->dev;
4294         struct sk_buff *orig_skb = skb;
4295         struct netdev_queue *txq;
4296         int ret = NETDEV_TX_BUSY;
4297         bool again = false;
4298
4299         if (unlikely(!netif_running(dev) ||
4300                      !netif_carrier_ok(dev)))
4301                 goto drop;
4302
4303         skb = validate_xmit_skb_list(skb, dev, &again);
4304         if (skb != orig_skb)
4305                 goto drop;
4306
4307         skb_set_queue_mapping(skb, queue_id);
4308         txq = skb_get_tx_queue(dev, skb);
4309
4310         local_bh_disable();
4311
4312         dev_xmit_recursion_inc();
4313         HARD_TX_LOCK(dev, txq, smp_processor_id());
4314         if (!netif_xmit_frozen_or_drv_stopped(txq))
4315                 ret = netdev_start_xmit(skb, dev, txq, false);
4316         HARD_TX_UNLOCK(dev, txq);
4317         dev_xmit_recursion_dec();
4318
4319         local_bh_enable();
4320         return ret;
4321 drop:
4322         dev_core_stats_tx_dropped_inc(dev);
4323         kfree_skb_list(skb);
4324         return NET_XMIT_DROP;
4325 }
4326 EXPORT_SYMBOL(__dev_direct_xmit);
4327
4328 /*************************************************************************
4329  *                      Receiver routines
4330  *************************************************************************/
4331
4332 int netdev_max_backlog __read_mostly = 1000;
4333 EXPORT_SYMBOL(netdev_max_backlog);
4334
4335 int netdev_tstamp_prequeue __read_mostly = 1;
4336 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4337 int netdev_budget __read_mostly = 300;
4338 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4339 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4340 int weight_p __read_mostly = 64;           /* old backlog weight */
4341 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4342 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4343 int dev_rx_weight __read_mostly = 64;
4344 int dev_tx_weight __read_mostly = 64;
4345
4346 /* Called with irq disabled */
4347 static inline void ____napi_schedule(struct softnet_data *sd,
4348                                      struct napi_struct *napi)
4349 {
4350         struct task_struct *thread;
4351
4352         lockdep_assert_irqs_disabled();
4353
4354         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4355                 /* Paired with smp_mb__before_atomic() in
4356                  * napi_enable()/dev_set_threaded().
4357                  * Use READ_ONCE() to guarantee a complete
4358                  * read on napi->thread. Only call
4359                  * wake_up_process() when it's not NULL.
4360                  */
4361                 thread = READ_ONCE(napi->thread);
4362                 if (thread) {
4363                         /* Avoid doing set_bit() if the thread is in
4364                          * INTERRUPTIBLE state, cause napi_thread_wait()
4365                          * makes sure to proceed with napi polling
4366                          * if the thread is explicitly woken from here.
4367                          */
4368                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4369                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4370                         wake_up_process(thread);
4371                         return;
4372                 }
4373         }
4374
4375         list_add_tail(&napi->poll_list, &sd->poll_list);
4376         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4377 }
4378
4379 #ifdef CONFIG_RPS
4380
4381 /* One global table that all flow-based protocols share. */
4382 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4383 EXPORT_SYMBOL(rps_sock_flow_table);
4384 u32 rps_cpu_mask __read_mostly;
4385 EXPORT_SYMBOL(rps_cpu_mask);
4386
4387 struct static_key_false rps_needed __read_mostly;
4388 EXPORT_SYMBOL(rps_needed);
4389 struct static_key_false rfs_needed __read_mostly;
4390 EXPORT_SYMBOL(rfs_needed);
4391
4392 static struct rps_dev_flow *
4393 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4394             struct rps_dev_flow *rflow, u16 next_cpu)
4395 {
4396         if (next_cpu < nr_cpu_ids) {
4397 #ifdef CONFIG_RFS_ACCEL
4398                 struct netdev_rx_queue *rxqueue;
4399                 struct rps_dev_flow_table *flow_table;
4400                 struct rps_dev_flow *old_rflow;
4401                 u32 flow_id;
4402                 u16 rxq_index;
4403                 int rc;
4404
4405                 /* Should we steer this flow to a different hardware queue? */
4406                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4407                     !(dev->features & NETIF_F_NTUPLE))
4408                         goto out;
4409                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4410                 if (rxq_index == skb_get_rx_queue(skb))
4411                         goto out;
4412
4413                 rxqueue = dev->_rx + rxq_index;
4414                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4415                 if (!flow_table)
4416                         goto out;
4417                 flow_id = skb_get_hash(skb) & flow_table->mask;
4418                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4419                                                         rxq_index, flow_id);
4420                 if (rc < 0)
4421                         goto out;
4422                 old_rflow = rflow;
4423                 rflow = &flow_table->flows[flow_id];
4424                 rflow->filter = rc;
4425                 if (old_rflow->filter == rflow->filter)
4426                         old_rflow->filter = RPS_NO_FILTER;
4427         out:
4428 #endif
4429                 rflow->last_qtail =
4430                         per_cpu(softnet_data, next_cpu).input_queue_head;
4431         }
4432
4433         rflow->cpu = next_cpu;
4434         return rflow;
4435 }
4436
4437 /*
4438  * get_rps_cpu is called from netif_receive_skb and returns the target
4439  * CPU from the RPS map of the receiving queue for a given skb.
4440  * rcu_read_lock must be held on entry.
4441  */
4442 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4443                        struct rps_dev_flow **rflowp)
4444 {
4445         const struct rps_sock_flow_table *sock_flow_table;
4446         struct netdev_rx_queue *rxqueue = dev->_rx;
4447         struct rps_dev_flow_table *flow_table;
4448         struct rps_map *map;
4449         int cpu = -1;
4450         u32 tcpu;
4451         u32 hash;
4452
4453         if (skb_rx_queue_recorded(skb)) {
4454                 u16 index = skb_get_rx_queue(skb);
4455
4456                 if (unlikely(index >= dev->real_num_rx_queues)) {
4457                         WARN_ONCE(dev->real_num_rx_queues > 1,
4458                                   "%s received packet on queue %u, but number "
4459                                   "of RX queues is %u\n",
4460                                   dev->name, index, dev->real_num_rx_queues);
4461                         goto done;
4462                 }
4463                 rxqueue += index;
4464         }
4465
4466         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4467
4468         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4469         map = rcu_dereference(rxqueue->rps_map);
4470         if (!flow_table && !map)
4471                 goto done;
4472
4473         skb_reset_network_header(skb);
4474         hash = skb_get_hash(skb);
4475         if (!hash)
4476                 goto done;
4477
4478         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4479         if (flow_table && sock_flow_table) {
4480                 struct rps_dev_flow *rflow;
4481                 u32 next_cpu;
4482                 u32 ident;
4483
4484                 /* First check into global flow table if there is a match */
4485                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4486                 if ((ident ^ hash) & ~rps_cpu_mask)
4487                         goto try_rps;
4488
4489                 next_cpu = ident & rps_cpu_mask;
4490
4491                 /* OK, now we know there is a match,
4492                  * we can look at the local (per receive queue) flow table
4493                  */
4494                 rflow = &flow_table->flows[hash & flow_table->mask];
4495                 tcpu = rflow->cpu;
4496
4497                 /*
4498                  * If the desired CPU (where last recvmsg was done) is
4499                  * different from current CPU (one in the rx-queue flow
4500                  * table entry), switch if one of the following holds:
4501                  *   - Current CPU is unset (>= nr_cpu_ids).
4502                  *   - Current CPU is offline.
4503                  *   - The current CPU's queue tail has advanced beyond the
4504                  *     last packet that was enqueued using this table entry.
4505                  *     This guarantees that all previous packets for the flow
4506                  *     have been dequeued, thus preserving in order delivery.
4507                  */
4508                 if (unlikely(tcpu != next_cpu) &&
4509                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4510                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4511                       rflow->last_qtail)) >= 0)) {
4512                         tcpu = next_cpu;
4513                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4514                 }
4515
4516                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4517                         *rflowp = rflow;
4518                         cpu = tcpu;
4519                         goto done;
4520                 }
4521         }
4522
4523 try_rps:
4524
4525         if (map) {
4526                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4527                 if (cpu_online(tcpu)) {
4528                         cpu = tcpu;
4529                         goto done;
4530                 }
4531         }
4532
4533 done:
4534         return cpu;
4535 }
4536
4537 #ifdef CONFIG_RFS_ACCEL
4538
4539 /**
4540  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4541  * @dev: Device on which the filter was set
4542  * @rxq_index: RX queue index
4543  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4544  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4545  *
4546  * Drivers that implement ndo_rx_flow_steer() should periodically call
4547  * this function for each installed filter and remove the filters for
4548  * which it returns %true.
4549  */
4550 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4551                          u32 flow_id, u16 filter_id)
4552 {
4553         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4554         struct rps_dev_flow_table *flow_table;
4555         struct rps_dev_flow *rflow;
4556         bool expire = true;
4557         unsigned int cpu;
4558
4559         rcu_read_lock();
4560         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4561         if (flow_table && flow_id <= flow_table->mask) {
4562                 rflow = &flow_table->flows[flow_id];
4563                 cpu = READ_ONCE(rflow->cpu);
4564                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4565                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4566                            rflow->last_qtail) <
4567                      (int)(10 * flow_table->mask)))
4568                         expire = false;
4569         }
4570         rcu_read_unlock();
4571         return expire;
4572 }
4573 EXPORT_SYMBOL(rps_may_expire_flow);
4574
4575 #endif /* CONFIG_RFS_ACCEL */
4576
4577 /* Called from hardirq (IPI) context */
4578 static void rps_trigger_softirq(void *data)
4579 {
4580         struct softnet_data *sd = data;
4581
4582         ____napi_schedule(sd, &sd->backlog);
4583         sd->received_rps++;
4584 }
4585
4586 #endif /* CONFIG_RPS */
4587
4588 /* Called from hardirq (IPI) context */
4589 static void trigger_rx_softirq(void *data)
4590 {
4591         struct softnet_data *sd = data;
4592
4593         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4594         smp_store_release(&sd->defer_ipi_scheduled, 0);
4595 }
4596
4597 /*
4598  * Check if this softnet_data structure is another cpu one
4599  * If yes, queue it to our IPI list and return 1
4600  * If no, return 0
4601  */
4602 static int napi_schedule_rps(struct softnet_data *sd)
4603 {
4604         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4605
4606 #ifdef CONFIG_RPS
4607         if (sd != mysd) {
4608                 sd->rps_ipi_next = mysd->rps_ipi_list;
4609                 mysd->rps_ipi_list = sd;
4610
4611                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4612                 return 1;
4613         }
4614 #endif /* CONFIG_RPS */
4615         __napi_schedule_irqoff(&mysd->backlog);
4616         return 0;
4617 }
4618
4619 #ifdef CONFIG_NET_FLOW_LIMIT
4620 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4621 #endif
4622
4623 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4624 {
4625 #ifdef CONFIG_NET_FLOW_LIMIT
4626         struct sd_flow_limit *fl;
4627         struct softnet_data *sd;
4628         unsigned int old_flow, new_flow;
4629
4630         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4631                 return false;
4632
4633         sd = this_cpu_ptr(&softnet_data);
4634
4635         rcu_read_lock();
4636         fl = rcu_dereference(sd->flow_limit);
4637         if (fl) {
4638                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4639                 old_flow = fl->history[fl->history_head];
4640                 fl->history[fl->history_head] = new_flow;
4641
4642                 fl->history_head++;
4643                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4644
4645                 if (likely(fl->buckets[old_flow]))
4646                         fl->buckets[old_flow]--;
4647
4648                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4649                         fl->count++;
4650                         rcu_read_unlock();
4651                         return true;
4652                 }
4653         }
4654         rcu_read_unlock();
4655 #endif
4656         return false;
4657 }
4658
4659 /*
4660  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4661  * queue (may be a remote CPU queue).
4662  */
4663 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4664                               unsigned int *qtail)
4665 {
4666         enum skb_drop_reason reason;
4667         struct softnet_data *sd;
4668         unsigned long flags;
4669         unsigned int qlen;
4670
4671         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4672         sd = &per_cpu(softnet_data, cpu);
4673
4674         rps_lock_irqsave(sd, &flags);
4675         if (!netif_running(skb->dev))
4676                 goto drop;
4677         qlen = skb_queue_len(&sd->input_pkt_queue);
4678         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4679                 if (qlen) {
4680 enqueue:
4681                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4682                         input_queue_tail_incr_save(sd, qtail);
4683                         rps_unlock_irq_restore(sd, &flags);
4684                         return NET_RX_SUCCESS;
4685                 }
4686
4687                 /* Schedule NAPI for backlog device
4688                  * We can use non atomic operation since we own the queue lock
4689                  */
4690                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4691                         napi_schedule_rps(sd);
4692                 goto enqueue;
4693         }
4694         reason = SKB_DROP_REASON_CPU_BACKLOG;
4695
4696 drop:
4697         sd->dropped++;
4698         rps_unlock_irq_restore(sd, &flags);
4699
4700         dev_core_stats_rx_dropped_inc(skb->dev);
4701         kfree_skb_reason(skb, reason);
4702         return NET_RX_DROP;
4703 }
4704
4705 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4706 {
4707         struct net_device *dev = skb->dev;
4708         struct netdev_rx_queue *rxqueue;
4709
4710         rxqueue = dev->_rx;
4711
4712         if (skb_rx_queue_recorded(skb)) {
4713                 u16 index = skb_get_rx_queue(skb);
4714
4715                 if (unlikely(index >= dev->real_num_rx_queues)) {
4716                         WARN_ONCE(dev->real_num_rx_queues > 1,
4717                                   "%s received packet on queue %u, but number "
4718                                   "of RX queues is %u\n",
4719                                   dev->name, index, dev->real_num_rx_queues);
4720
4721                         return rxqueue; /* Return first rxqueue */
4722                 }
4723                 rxqueue += index;
4724         }
4725         return rxqueue;
4726 }
4727
4728 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4729                              struct bpf_prog *xdp_prog)
4730 {
4731         void *orig_data, *orig_data_end, *hard_start;
4732         struct netdev_rx_queue *rxqueue;
4733         bool orig_bcast, orig_host;
4734         u32 mac_len, frame_sz;
4735         __be16 orig_eth_type;
4736         struct ethhdr *eth;
4737         u32 metalen, act;
4738         int off;
4739
4740         /* The XDP program wants to see the packet starting at the MAC
4741          * header.
4742          */
4743         mac_len = skb->data - skb_mac_header(skb);
4744         hard_start = skb->data - skb_headroom(skb);
4745
4746         /* SKB "head" area always have tailroom for skb_shared_info */
4747         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4748         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4749
4750         rxqueue = netif_get_rxqueue(skb);
4751         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4752         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4753                          skb_headlen(skb) + mac_len, true);
4754
4755         orig_data_end = xdp->data_end;
4756         orig_data = xdp->data;
4757         eth = (struct ethhdr *)xdp->data;
4758         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4759         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4760         orig_eth_type = eth->h_proto;
4761
4762         act = bpf_prog_run_xdp(xdp_prog, xdp);
4763
4764         /* check if bpf_xdp_adjust_head was used */
4765         off = xdp->data - orig_data;
4766         if (off) {
4767                 if (off > 0)
4768                         __skb_pull(skb, off);
4769                 else if (off < 0)
4770                         __skb_push(skb, -off);
4771
4772                 skb->mac_header += off;
4773                 skb_reset_network_header(skb);
4774         }
4775
4776         /* check if bpf_xdp_adjust_tail was used */
4777         off = xdp->data_end - orig_data_end;
4778         if (off != 0) {
4779                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4780                 skb->len += off; /* positive on grow, negative on shrink */
4781         }
4782
4783         /* check if XDP changed eth hdr such SKB needs update */
4784         eth = (struct ethhdr *)xdp->data;
4785         if ((orig_eth_type != eth->h_proto) ||
4786             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4787                                                   skb->dev->dev_addr)) ||
4788             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4789                 __skb_push(skb, ETH_HLEN);
4790                 skb->pkt_type = PACKET_HOST;
4791                 skb->protocol = eth_type_trans(skb, skb->dev);
4792         }
4793
4794         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4795          * before calling us again on redirect path. We do not call do_redirect
4796          * as we leave that up to the caller.
4797          *
4798          * Caller is responsible for managing lifetime of skb (i.e. calling
4799          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4800          */
4801         switch (act) {
4802         case XDP_REDIRECT:
4803         case XDP_TX:
4804                 __skb_push(skb, mac_len);
4805                 break;
4806         case XDP_PASS:
4807                 metalen = xdp->data - xdp->data_meta;
4808                 if (metalen)
4809                         skb_metadata_set(skb, metalen);
4810                 break;
4811         }
4812
4813         return act;
4814 }
4815
4816 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4817                                      struct xdp_buff *xdp,
4818                                      struct bpf_prog *xdp_prog)
4819 {
4820         u32 act = XDP_DROP;
4821
4822         /* Reinjected packets coming from act_mirred or similar should
4823          * not get XDP generic processing.
4824          */
4825         if (skb_is_redirected(skb))
4826                 return XDP_PASS;
4827
4828         /* XDP packets must be linear and must have sufficient headroom
4829          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4830          * native XDP provides, thus we need to do it here as well.
4831          */
4832         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4833             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4834                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4835                 int troom = skb->tail + skb->data_len - skb->end;
4836
4837                 /* In case we have to go down the path and also linearize,
4838                  * then lets do the pskb_expand_head() work just once here.
4839                  */
4840                 if (pskb_expand_head(skb,
4841                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4842                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4843                         goto do_drop;
4844                 if (skb_linearize(skb))
4845                         goto do_drop;
4846         }
4847
4848         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4849         switch (act) {
4850         case XDP_REDIRECT:
4851         case XDP_TX:
4852         case XDP_PASS:
4853                 break;
4854         default:
4855                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4856                 fallthrough;
4857         case XDP_ABORTED:
4858                 trace_xdp_exception(skb->dev, xdp_prog, act);
4859                 fallthrough;
4860         case XDP_DROP:
4861         do_drop:
4862                 kfree_skb(skb);
4863                 break;
4864         }
4865
4866         return act;
4867 }
4868
4869 /* When doing generic XDP we have to bypass the qdisc layer and the
4870  * network taps in order to match in-driver-XDP behavior. This also means
4871  * that XDP packets are able to starve other packets going through a qdisc,
4872  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4873  * queues, so they do not have this starvation issue.
4874  */
4875 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4876 {
4877         struct net_device *dev = skb->dev;
4878         struct netdev_queue *txq;
4879         bool free_skb = true;
4880         int cpu, rc;
4881
4882         txq = netdev_core_pick_tx(dev, skb, NULL);
4883         cpu = smp_processor_id();
4884         HARD_TX_LOCK(dev, txq, cpu);
4885         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4886                 rc = netdev_start_xmit(skb, dev, txq, 0);
4887                 if (dev_xmit_complete(rc))
4888                         free_skb = false;
4889         }
4890         HARD_TX_UNLOCK(dev, txq);
4891         if (free_skb) {
4892                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4893                 dev_core_stats_tx_dropped_inc(dev);
4894                 kfree_skb(skb);
4895         }
4896 }
4897
4898 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4899
4900 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4901 {
4902         if (xdp_prog) {
4903                 struct xdp_buff xdp;
4904                 u32 act;
4905                 int err;
4906
4907                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4908                 if (act != XDP_PASS) {
4909                         switch (act) {
4910                         case XDP_REDIRECT:
4911                                 err = xdp_do_generic_redirect(skb->dev, skb,
4912                                                               &xdp, xdp_prog);
4913                                 if (err)
4914                                         goto out_redir;
4915                                 break;
4916                         case XDP_TX:
4917                                 generic_xdp_tx(skb, xdp_prog);
4918                                 break;
4919                         }
4920                         return XDP_DROP;
4921                 }
4922         }
4923         return XDP_PASS;
4924 out_redir:
4925         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4926         return XDP_DROP;
4927 }
4928 EXPORT_SYMBOL_GPL(do_xdp_generic);
4929
4930 static int netif_rx_internal(struct sk_buff *skb)
4931 {
4932         int ret;
4933
4934         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4935
4936         trace_netif_rx(skb);
4937
4938 #ifdef CONFIG_RPS
4939         if (static_branch_unlikely(&rps_needed)) {
4940                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4941                 int cpu;
4942
4943                 rcu_read_lock();
4944
4945                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4946                 if (cpu < 0)
4947                         cpu = smp_processor_id();
4948
4949                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4950
4951                 rcu_read_unlock();
4952         } else
4953 #endif
4954         {
4955                 unsigned int qtail;
4956
4957                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4958         }
4959         return ret;
4960 }
4961
4962 /**
4963  *      __netif_rx      -       Slightly optimized version of netif_rx
4964  *      @skb: buffer to post
4965  *
4966  *      This behaves as netif_rx except that it does not disable bottom halves.
4967  *      As a result this function may only be invoked from the interrupt context
4968  *      (either hard or soft interrupt).
4969  */
4970 int __netif_rx(struct sk_buff *skb)
4971 {
4972         int ret;
4973
4974         lockdep_assert_once(hardirq_count() | softirq_count());
4975
4976         trace_netif_rx_entry(skb);
4977         ret = netif_rx_internal(skb);
4978         trace_netif_rx_exit(ret);
4979         return ret;
4980 }
4981 EXPORT_SYMBOL(__netif_rx);
4982
4983 /**
4984  *      netif_rx        -       post buffer to the network code
4985  *      @skb: buffer to post
4986  *
4987  *      This function receives a packet from a device driver and queues it for
4988  *      the upper (protocol) levels to process via the backlog NAPI device. It
4989  *      always succeeds. The buffer may be dropped during processing for
4990  *      congestion control or by the protocol layers.
4991  *      The network buffer is passed via the backlog NAPI device. Modern NIC
4992  *      driver should use NAPI and GRO.
4993  *      This function can used from interrupt and from process context. The
4994  *      caller from process context must not disable interrupts before invoking
4995  *      this function.
4996  *
4997  *      return values:
4998  *      NET_RX_SUCCESS  (no congestion)
4999  *      NET_RX_DROP     (packet was dropped)
5000  *
5001  */
5002 int netif_rx(struct sk_buff *skb)
5003 {
5004         bool need_bh_off = !(hardirq_count() | softirq_count());
5005         int ret;
5006
5007         if (need_bh_off)
5008                 local_bh_disable();
5009         trace_netif_rx_entry(skb);
5010         ret = netif_rx_internal(skb);
5011         trace_netif_rx_exit(ret);
5012         if (need_bh_off)
5013                 local_bh_enable();
5014         return ret;
5015 }
5016 EXPORT_SYMBOL(netif_rx);
5017
5018 static __latent_entropy void net_tx_action(struct softirq_action *h)
5019 {
5020         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5021
5022         if (sd->completion_queue) {
5023                 struct sk_buff *clist;
5024
5025                 local_irq_disable();
5026                 clist = sd->completion_queue;
5027                 sd->completion_queue = NULL;
5028                 local_irq_enable();
5029
5030                 while (clist) {
5031                         struct sk_buff *skb = clist;
5032
5033                         clist = clist->next;
5034
5035                         WARN_ON(refcount_read(&skb->users));
5036                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5037                                 trace_consume_skb(skb);
5038                         else
5039                                 trace_kfree_skb(skb, net_tx_action,
5040                                                 SKB_DROP_REASON_NOT_SPECIFIED);
5041
5042                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5043                                 __kfree_skb(skb);
5044                         else
5045                                 __kfree_skb_defer(skb);
5046                 }
5047         }
5048
5049         if (sd->output_queue) {
5050                 struct Qdisc *head;
5051
5052                 local_irq_disable();
5053                 head = sd->output_queue;
5054                 sd->output_queue = NULL;
5055                 sd->output_queue_tailp = &sd->output_queue;
5056                 local_irq_enable();
5057
5058                 rcu_read_lock();
5059
5060                 while (head) {
5061                         struct Qdisc *q = head;
5062                         spinlock_t *root_lock = NULL;
5063
5064                         head = head->next_sched;
5065
5066                         /* We need to make sure head->next_sched is read
5067                          * before clearing __QDISC_STATE_SCHED
5068                          */
5069                         smp_mb__before_atomic();
5070
5071                         if (!(q->flags & TCQ_F_NOLOCK)) {
5072                                 root_lock = qdisc_lock(q);
5073                                 spin_lock(root_lock);
5074                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5075                                                      &q->state))) {
5076                                 /* There is a synchronize_net() between
5077                                  * STATE_DEACTIVATED flag being set and
5078                                  * qdisc_reset()/some_qdisc_is_busy() in
5079                                  * dev_deactivate(), so we can safely bail out
5080                                  * early here to avoid data race between
5081                                  * qdisc_deactivate() and some_qdisc_is_busy()
5082                                  * for lockless qdisc.
5083                                  */
5084                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5085                                 continue;
5086                         }
5087
5088                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5089                         qdisc_run(q);
5090                         if (root_lock)
5091                                 spin_unlock(root_lock);
5092                 }
5093
5094                 rcu_read_unlock();
5095         }
5096
5097         xfrm_dev_backlog(sd);
5098 }
5099
5100 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5101 /* This hook is defined here for ATM LANE */
5102 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5103                              unsigned char *addr) __read_mostly;
5104 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5105 #endif
5106
5107 static inline struct sk_buff *
5108 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5109                    struct net_device *orig_dev, bool *another)
5110 {
5111 #ifdef CONFIG_NET_CLS_ACT
5112         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5113         struct tcf_result cl_res;
5114
5115         /* If there's at least one ingress present somewhere (so
5116          * we get here via enabled static key), remaining devices
5117          * that are not configured with an ingress qdisc will bail
5118          * out here.
5119          */
5120         if (!miniq)
5121                 return skb;
5122
5123         if (*pt_prev) {
5124                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5125                 *pt_prev = NULL;
5126         }
5127
5128         qdisc_skb_cb(skb)->pkt_len = skb->len;
5129         tc_skb_cb(skb)->mru = 0;
5130         tc_skb_cb(skb)->post_ct = false;
5131         skb->tc_at_ingress = 1;
5132         mini_qdisc_bstats_cpu_update(miniq, skb);
5133
5134         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5135         case TC_ACT_OK:
5136         case TC_ACT_RECLASSIFY:
5137                 skb->tc_index = TC_H_MIN(cl_res.classid);
5138                 break;
5139         case TC_ACT_SHOT:
5140                 mini_qdisc_qstats_cpu_drop(miniq);
5141                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5142                 *ret = NET_RX_DROP;
5143                 return NULL;
5144         case TC_ACT_STOLEN:
5145         case TC_ACT_QUEUED:
5146         case TC_ACT_TRAP:
5147                 consume_skb(skb);
5148                 *ret = NET_RX_SUCCESS;
5149                 return NULL;
5150         case TC_ACT_REDIRECT:
5151                 /* skb_mac_header check was done by cls/act_bpf, so
5152                  * we can safely push the L2 header back before
5153                  * redirecting to another netdev
5154                  */
5155                 __skb_push(skb, skb->mac_len);
5156                 if (skb_do_redirect(skb) == -EAGAIN) {
5157                         __skb_pull(skb, skb->mac_len);
5158                         *another = true;
5159                         break;
5160                 }
5161                 *ret = NET_RX_SUCCESS;
5162                 return NULL;
5163         case TC_ACT_CONSUMED:
5164                 *ret = NET_RX_SUCCESS;
5165                 return NULL;
5166         default:
5167                 break;
5168         }
5169 #endif /* CONFIG_NET_CLS_ACT */
5170         return skb;
5171 }
5172
5173 /**
5174  *      netdev_is_rx_handler_busy - check if receive handler is registered
5175  *      @dev: device to check
5176  *
5177  *      Check if a receive handler is already registered for a given device.
5178  *      Return true if there one.
5179  *
5180  *      The caller must hold the rtnl_mutex.
5181  */
5182 bool netdev_is_rx_handler_busy(struct net_device *dev)
5183 {
5184         ASSERT_RTNL();
5185         return dev && rtnl_dereference(dev->rx_handler);
5186 }
5187 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5188
5189 /**
5190  *      netdev_rx_handler_register - register receive handler
5191  *      @dev: device to register a handler for
5192  *      @rx_handler: receive handler to register
5193  *      @rx_handler_data: data pointer that is used by rx handler
5194  *
5195  *      Register a receive handler for a device. This handler will then be
5196  *      called from __netif_receive_skb. A negative errno code is returned
5197  *      on a failure.
5198  *
5199  *      The caller must hold the rtnl_mutex.
5200  *
5201  *      For a general description of rx_handler, see enum rx_handler_result.
5202  */
5203 int netdev_rx_handler_register(struct net_device *dev,
5204                                rx_handler_func_t *rx_handler,
5205                                void *rx_handler_data)
5206 {
5207         if (netdev_is_rx_handler_busy(dev))
5208                 return -EBUSY;
5209
5210         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5211                 return -EINVAL;
5212
5213         /* Note: rx_handler_data must be set before rx_handler */
5214         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5215         rcu_assign_pointer(dev->rx_handler, rx_handler);
5216
5217         return 0;
5218 }
5219 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5220
5221 /**
5222  *      netdev_rx_handler_unregister - unregister receive handler
5223  *      @dev: device to unregister a handler from
5224  *
5225  *      Unregister a receive handler from a device.
5226  *
5227  *      The caller must hold the rtnl_mutex.
5228  */
5229 void netdev_rx_handler_unregister(struct net_device *dev)
5230 {
5231
5232         ASSERT_RTNL();
5233         RCU_INIT_POINTER(dev->rx_handler, NULL);
5234         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5235          * section has a guarantee to see a non NULL rx_handler_data
5236          * as well.
5237          */
5238         synchronize_net();
5239         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5240 }
5241 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5242
5243 /*
5244  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5245  * the special handling of PFMEMALLOC skbs.
5246  */
5247 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5248 {
5249         switch (skb->protocol) {
5250         case htons(ETH_P_ARP):
5251         case htons(ETH_P_IP):
5252         case htons(ETH_P_IPV6):
5253         case htons(ETH_P_8021Q):
5254         case htons(ETH_P_8021AD):
5255                 return true;
5256         default:
5257                 return false;
5258         }
5259 }
5260
5261 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5262                              int *ret, struct net_device *orig_dev)
5263 {
5264         if (nf_hook_ingress_active(skb)) {
5265                 int ingress_retval;
5266
5267                 if (*pt_prev) {
5268                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5269                         *pt_prev = NULL;
5270                 }
5271
5272                 rcu_read_lock();
5273                 ingress_retval = nf_hook_ingress(skb);
5274                 rcu_read_unlock();
5275                 return ingress_retval;
5276         }
5277         return 0;
5278 }
5279
5280 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5281                                     struct packet_type **ppt_prev)
5282 {
5283         struct packet_type *ptype, *pt_prev;
5284         rx_handler_func_t *rx_handler;
5285         struct sk_buff *skb = *pskb;
5286         struct net_device *orig_dev;
5287         bool deliver_exact = false;
5288         int ret = NET_RX_DROP;
5289         __be16 type;
5290
5291         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5292
5293         trace_netif_receive_skb(skb);
5294
5295         orig_dev = skb->dev;
5296
5297         skb_reset_network_header(skb);
5298         if (!skb_transport_header_was_set(skb))
5299                 skb_reset_transport_header(skb);
5300         skb_reset_mac_len(skb);
5301
5302         pt_prev = NULL;
5303
5304 another_round:
5305         skb->skb_iif = skb->dev->ifindex;
5306
5307         __this_cpu_inc(softnet_data.processed);
5308
5309         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5310                 int ret2;
5311
5312                 migrate_disable();
5313                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5314                 migrate_enable();
5315
5316                 if (ret2 != XDP_PASS) {
5317                         ret = NET_RX_DROP;
5318                         goto out;
5319                 }
5320         }
5321
5322         if (eth_type_vlan(skb->protocol)) {
5323                 skb = skb_vlan_untag(skb);
5324                 if (unlikely(!skb))
5325                         goto out;
5326         }
5327
5328         if (skb_skip_tc_classify(skb))
5329                 goto skip_classify;
5330
5331         if (pfmemalloc)
5332                 goto skip_taps;
5333
5334         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5335                 if (pt_prev)
5336                         ret = deliver_skb(skb, pt_prev, orig_dev);
5337                 pt_prev = ptype;
5338         }
5339
5340         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5341                 if (pt_prev)
5342                         ret = deliver_skb(skb, pt_prev, orig_dev);
5343                 pt_prev = ptype;
5344         }
5345
5346 skip_taps:
5347 #ifdef CONFIG_NET_INGRESS
5348         if (static_branch_unlikely(&ingress_needed_key)) {
5349                 bool another = false;
5350
5351                 nf_skip_egress(skb, true);
5352                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5353                                          &another);
5354                 if (another)
5355                         goto another_round;
5356                 if (!skb)
5357                         goto out;
5358
5359                 nf_skip_egress(skb, false);
5360                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5361                         goto out;
5362         }
5363 #endif
5364         skb_reset_redirect(skb);
5365 skip_classify:
5366         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5367                 goto drop;
5368
5369         if (skb_vlan_tag_present(skb)) {
5370                 if (pt_prev) {
5371                         ret = deliver_skb(skb, pt_prev, orig_dev);
5372                         pt_prev = NULL;
5373                 }
5374                 if (vlan_do_receive(&skb))
5375                         goto another_round;
5376                 else if (unlikely(!skb))
5377                         goto out;
5378         }
5379
5380         rx_handler = rcu_dereference(skb->dev->rx_handler);
5381         if (rx_handler) {
5382                 if (pt_prev) {
5383                         ret = deliver_skb(skb, pt_prev, orig_dev);
5384                         pt_prev = NULL;
5385                 }
5386                 switch (rx_handler(&skb)) {
5387                 case RX_HANDLER_CONSUMED:
5388                         ret = NET_RX_SUCCESS;
5389                         goto out;
5390                 case RX_HANDLER_ANOTHER:
5391                         goto another_round;
5392                 case RX_HANDLER_EXACT:
5393                         deliver_exact = true;
5394                         break;
5395                 case RX_HANDLER_PASS:
5396                         break;
5397                 default:
5398                         BUG();
5399                 }
5400         }
5401
5402         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5403 check_vlan_id:
5404                 if (skb_vlan_tag_get_id(skb)) {
5405                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5406                          * find vlan device.
5407                          */
5408                         skb->pkt_type = PACKET_OTHERHOST;
5409                 } else if (eth_type_vlan(skb->protocol)) {
5410                         /* Outer header is 802.1P with vlan 0, inner header is
5411                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5412                          * not find vlan dev for vlan id 0.
5413                          */
5414                         __vlan_hwaccel_clear_tag(skb);
5415                         skb = skb_vlan_untag(skb);
5416                         if (unlikely(!skb))
5417                                 goto out;
5418                         if (vlan_do_receive(&skb))
5419                                 /* After stripping off 802.1P header with vlan 0
5420                                  * vlan dev is found for inner header.
5421                                  */
5422                                 goto another_round;
5423                         else if (unlikely(!skb))
5424                                 goto out;
5425                         else
5426                                 /* We have stripped outer 802.1P vlan 0 header.
5427                                  * But could not find vlan dev.
5428                                  * check again for vlan id to set OTHERHOST.
5429                                  */
5430                                 goto check_vlan_id;
5431                 }
5432                 /* Note: we might in the future use prio bits
5433                  * and set skb->priority like in vlan_do_receive()
5434                  * For the time being, just ignore Priority Code Point
5435                  */
5436                 __vlan_hwaccel_clear_tag(skb);
5437         }
5438
5439         type = skb->protocol;
5440
5441         /* deliver only exact match when indicated */
5442         if (likely(!deliver_exact)) {
5443                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5444                                        &ptype_base[ntohs(type) &
5445                                                    PTYPE_HASH_MASK]);
5446         }
5447
5448         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5449                                &orig_dev->ptype_specific);
5450
5451         if (unlikely(skb->dev != orig_dev)) {
5452                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5453                                        &skb->dev->ptype_specific);
5454         }
5455
5456         if (pt_prev) {
5457                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5458                         goto drop;
5459                 *ppt_prev = pt_prev;
5460         } else {
5461 drop:
5462                 if (!deliver_exact)
5463                         dev_core_stats_rx_dropped_inc(skb->dev);
5464                 else
5465                         dev_core_stats_rx_nohandler_inc(skb->dev);
5466                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5467                 /* Jamal, now you will not able to escape explaining
5468                  * me how you were going to use this. :-)
5469                  */
5470                 ret = NET_RX_DROP;
5471         }
5472
5473 out:
5474         /* The invariant here is that if *ppt_prev is not NULL
5475          * then skb should also be non-NULL.
5476          *
5477          * Apparently *ppt_prev assignment above holds this invariant due to
5478          * skb dereferencing near it.
5479          */
5480         *pskb = skb;
5481         return ret;
5482 }
5483
5484 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5485 {
5486         struct net_device *orig_dev = skb->dev;
5487         struct packet_type *pt_prev = NULL;
5488         int ret;
5489
5490         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5491         if (pt_prev)
5492                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5493                                          skb->dev, pt_prev, orig_dev);
5494         return ret;
5495 }
5496
5497 /**
5498  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5499  *      @skb: buffer to process
5500  *
5501  *      More direct receive version of netif_receive_skb().  It should
5502  *      only be used by callers that have a need to skip RPS and Generic XDP.
5503  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5504  *
5505  *      This function may only be called from softirq context and interrupts
5506  *      should be enabled.
5507  *
5508  *      Return values (usually ignored):
5509  *      NET_RX_SUCCESS: no congestion
5510  *      NET_RX_DROP: packet was dropped
5511  */
5512 int netif_receive_skb_core(struct sk_buff *skb)
5513 {
5514         int ret;
5515
5516         rcu_read_lock();
5517         ret = __netif_receive_skb_one_core(skb, false);
5518         rcu_read_unlock();
5519
5520         return ret;
5521 }
5522 EXPORT_SYMBOL(netif_receive_skb_core);
5523
5524 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5525                                                   struct packet_type *pt_prev,
5526                                                   struct net_device *orig_dev)
5527 {
5528         struct sk_buff *skb, *next;
5529
5530         if (!pt_prev)
5531                 return;
5532         if (list_empty(head))
5533                 return;
5534         if (pt_prev->list_func != NULL)
5535                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5536                                    ip_list_rcv, head, pt_prev, orig_dev);
5537         else
5538                 list_for_each_entry_safe(skb, next, head, list) {
5539                         skb_list_del_init(skb);
5540                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5541                 }
5542 }
5543
5544 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5545 {
5546         /* Fast-path assumptions:
5547          * - There is no RX handler.
5548          * - Only one packet_type matches.
5549          * If either of these fails, we will end up doing some per-packet
5550          * processing in-line, then handling the 'last ptype' for the whole
5551          * sublist.  This can't cause out-of-order delivery to any single ptype,
5552          * because the 'last ptype' must be constant across the sublist, and all
5553          * other ptypes are handled per-packet.
5554          */
5555         /* Current (common) ptype of sublist */
5556         struct packet_type *pt_curr = NULL;
5557         /* Current (common) orig_dev of sublist */
5558         struct net_device *od_curr = NULL;
5559         struct list_head sublist;
5560         struct sk_buff *skb, *next;
5561
5562         INIT_LIST_HEAD(&sublist);
5563         list_for_each_entry_safe(skb, next, head, list) {
5564                 struct net_device *orig_dev = skb->dev;
5565                 struct packet_type *pt_prev = NULL;
5566
5567                 skb_list_del_init(skb);
5568                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5569                 if (!pt_prev)
5570                         continue;
5571                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5572                         /* dispatch old sublist */
5573                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5574                         /* start new sublist */
5575                         INIT_LIST_HEAD(&sublist);
5576                         pt_curr = pt_prev;
5577                         od_curr = orig_dev;
5578                 }
5579                 list_add_tail(&skb->list, &sublist);
5580         }
5581
5582         /* dispatch final sublist */
5583         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5584 }
5585
5586 static int __netif_receive_skb(struct sk_buff *skb)
5587 {
5588         int ret;
5589
5590         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5591                 unsigned int noreclaim_flag;
5592
5593                 /*
5594                  * PFMEMALLOC skbs are special, they should
5595                  * - be delivered to SOCK_MEMALLOC sockets only
5596                  * - stay away from userspace
5597                  * - have bounded memory usage
5598                  *
5599                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5600                  * context down to all allocation sites.
5601                  */
5602                 noreclaim_flag = memalloc_noreclaim_save();
5603                 ret = __netif_receive_skb_one_core(skb, true);
5604                 memalloc_noreclaim_restore(noreclaim_flag);
5605         } else
5606                 ret = __netif_receive_skb_one_core(skb, false);
5607
5608         return ret;
5609 }
5610
5611 static void __netif_receive_skb_list(struct list_head *head)
5612 {
5613         unsigned long noreclaim_flag = 0;
5614         struct sk_buff *skb, *next;
5615         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5616
5617         list_for_each_entry_safe(skb, next, head, list) {
5618                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5619                         struct list_head sublist;
5620
5621                         /* Handle the previous sublist */
5622                         list_cut_before(&sublist, head, &skb->list);
5623                         if (!list_empty(&sublist))
5624                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5625                         pfmemalloc = !pfmemalloc;
5626                         /* See comments in __netif_receive_skb */
5627                         if (pfmemalloc)
5628                                 noreclaim_flag = memalloc_noreclaim_save();
5629                         else
5630                                 memalloc_noreclaim_restore(noreclaim_flag);
5631                 }
5632         }
5633         /* Handle the remaining sublist */
5634         if (!list_empty(head))
5635                 __netif_receive_skb_list_core(head, pfmemalloc);
5636         /* Restore pflags */
5637         if (pfmemalloc)
5638                 memalloc_noreclaim_restore(noreclaim_flag);
5639 }
5640
5641 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5642 {
5643         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5644         struct bpf_prog *new = xdp->prog;
5645         int ret = 0;
5646
5647         switch (xdp->command) {
5648         case XDP_SETUP_PROG:
5649                 rcu_assign_pointer(dev->xdp_prog, new);
5650                 if (old)
5651                         bpf_prog_put(old);
5652
5653                 if (old && !new) {
5654                         static_branch_dec(&generic_xdp_needed_key);
5655                 } else if (new && !old) {
5656                         static_branch_inc(&generic_xdp_needed_key);
5657                         dev_disable_lro(dev);
5658                         dev_disable_gro_hw(dev);
5659                 }
5660                 break;
5661
5662         default:
5663                 ret = -EINVAL;
5664                 break;
5665         }
5666
5667         return ret;
5668 }
5669
5670 static int netif_receive_skb_internal(struct sk_buff *skb)
5671 {
5672         int ret;
5673
5674         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5675
5676         if (skb_defer_rx_timestamp(skb))
5677                 return NET_RX_SUCCESS;
5678
5679         rcu_read_lock();
5680 #ifdef CONFIG_RPS
5681         if (static_branch_unlikely(&rps_needed)) {
5682                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5683                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5684
5685                 if (cpu >= 0) {
5686                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5687                         rcu_read_unlock();
5688                         return ret;
5689                 }
5690         }
5691 #endif
5692         ret = __netif_receive_skb(skb);
5693         rcu_read_unlock();
5694         return ret;
5695 }
5696
5697 void netif_receive_skb_list_internal(struct list_head *head)
5698 {
5699         struct sk_buff *skb, *next;
5700         struct list_head sublist;
5701
5702         INIT_LIST_HEAD(&sublist);
5703         list_for_each_entry_safe(skb, next, head, list) {
5704                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5705                 skb_list_del_init(skb);
5706                 if (!skb_defer_rx_timestamp(skb))
5707                         list_add_tail(&skb->list, &sublist);
5708         }
5709         list_splice_init(&sublist, head);
5710
5711         rcu_read_lock();
5712 #ifdef CONFIG_RPS
5713         if (static_branch_unlikely(&rps_needed)) {
5714                 list_for_each_entry_safe(skb, next, head, list) {
5715                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5716                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5717
5718                         if (cpu >= 0) {
5719                                 /* Will be handled, remove from list */
5720                                 skb_list_del_init(skb);
5721                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5722                         }
5723                 }
5724         }
5725 #endif
5726         __netif_receive_skb_list(head);
5727         rcu_read_unlock();
5728 }
5729
5730 /**
5731  *      netif_receive_skb - process receive buffer from network
5732  *      @skb: buffer to process
5733  *
5734  *      netif_receive_skb() is the main receive data processing function.
5735  *      It always succeeds. The buffer may be dropped during processing
5736  *      for congestion control or by the protocol layers.
5737  *
5738  *      This function may only be called from softirq context and interrupts
5739  *      should be enabled.
5740  *
5741  *      Return values (usually ignored):
5742  *      NET_RX_SUCCESS: no congestion
5743  *      NET_RX_DROP: packet was dropped
5744  */
5745 int netif_receive_skb(struct sk_buff *skb)
5746 {
5747         int ret;
5748
5749         trace_netif_receive_skb_entry(skb);
5750
5751         ret = netif_receive_skb_internal(skb);
5752         trace_netif_receive_skb_exit(ret);
5753
5754         return ret;
5755 }
5756 EXPORT_SYMBOL(netif_receive_skb);
5757
5758 /**
5759  *      netif_receive_skb_list - process many receive buffers from network
5760  *      @head: list of skbs to process.
5761  *
5762  *      Since return value of netif_receive_skb() is normally ignored, and
5763  *      wouldn't be meaningful for a list, this function returns void.
5764  *
5765  *      This function may only be called from softirq context and interrupts
5766  *      should be enabled.
5767  */
5768 void netif_receive_skb_list(struct list_head *head)
5769 {
5770         struct sk_buff *skb;
5771
5772         if (list_empty(head))
5773                 return;
5774         if (trace_netif_receive_skb_list_entry_enabled()) {
5775                 list_for_each_entry(skb, head, list)
5776                         trace_netif_receive_skb_list_entry(skb);
5777         }
5778         netif_receive_skb_list_internal(head);
5779         trace_netif_receive_skb_list_exit(0);
5780 }
5781 EXPORT_SYMBOL(netif_receive_skb_list);
5782
5783 static DEFINE_PER_CPU(struct work_struct, flush_works);
5784
5785 /* Network device is going away, flush any packets still pending */
5786 static void flush_backlog(struct work_struct *work)
5787 {
5788         struct sk_buff *skb, *tmp;
5789         struct softnet_data *sd;
5790
5791         local_bh_disable();
5792         sd = this_cpu_ptr(&softnet_data);
5793
5794         rps_lock_irq_disable(sd);
5795         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5796                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5797                         __skb_unlink(skb, &sd->input_pkt_queue);
5798                         dev_kfree_skb_irq(skb);
5799                         input_queue_head_incr(sd);
5800                 }
5801         }
5802         rps_unlock_irq_enable(sd);
5803
5804         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5805                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5806                         __skb_unlink(skb, &sd->process_queue);
5807                         kfree_skb(skb);
5808                         input_queue_head_incr(sd);
5809                 }
5810         }
5811         local_bh_enable();
5812 }
5813
5814 static bool flush_required(int cpu)
5815 {
5816 #if IS_ENABLED(CONFIG_RPS)
5817         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5818         bool do_flush;
5819
5820         rps_lock_irq_disable(sd);
5821
5822         /* as insertion into process_queue happens with the rps lock held,
5823          * process_queue access may race only with dequeue
5824          */
5825         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5826                    !skb_queue_empty_lockless(&sd->process_queue);
5827         rps_unlock_irq_enable(sd);
5828
5829         return do_flush;
5830 #endif
5831         /* without RPS we can't safely check input_pkt_queue: during a
5832          * concurrent remote skb_queue_splice() we can detect as empty both
5833          * input_pkt_queue and process_queue even if the latter could end-up
5834          * containing a lot of packets.
5835          */
5836         return true;
5837 }
5838
5839 static void flush_all_backlogs(void)
5840 {
5841         static cpumask_t flush_cpus;
5842         unsigned int cpu;
5843
5844         /* since we are under rtnl lock protection we can use static data
5845          * for the cpumask and avoid allocating on stack the possibly
5846          * large mask
5847          */
5848         ASSERT_RTNL();
5849
5850         cpus_read_lock();
5851
5852         cpumask_clear(&flush_cpus);
5853         for_each_online_cpu(cpu) {
5854                 if (flush_required(cpu)) {
5855                         queue_work_on(cpu, system_highpri_wq,
5856                                       per_cpu_ptr(&flush_works, cpu));
5857                         cpumask_set_cpu(cpu, &flush_cpus);
5858                 }
5859         }
5860
5861         /* we can have in flight packet[s] on the cpus we are not flushing,
5862          * synchronize_net() in unregister_netdevice_many() will take care of
5863          * them
5864          */
5865         for_each_cpu(cpu, &flush_cpus)
5866                 flush_work(per_cpu_ptr(&flush_works, cpu));
5867
5868         cpus_read_unlock();
5869 }
5870
5871 static void net_rps_send_ipi(struct softnet_data *remsd)
5872 {
5873 #ifdef CONFIG_RPS
5874         while (remsd) {
5875                 struct softnet_data *next = remsd->rps_ipi_next;
5876
5877                 if (cpu_online(remsd->cpu))
5878                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5879                 remsd = next;
5880         }
5881 #endif
5882 }
5883
5884 /*
5885  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5886  * Note: called with local irq disabled, but exits with local irq enabled.
5887  */
5888 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5889 {
5890 #ifdef CONFIG_RPS
5891         struct softnet_data *remsd = sd->rps_ipi_list;
5892
5893         if (remsd) {
5894                 sd->rps_ipi_list = NULL;
5895
5896                 local_irq_enable();
5897
5898                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5899                 net_rps_send_ipi(remsd);
5900         } else
5901 #endif
5902                 local_irq_enable();
5903 }
5904
5905 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5906 {
5907 #ifdef CONFIG_RPS
5908         return sd->rps_ipi_list != NULL;
5909 #else
5910         return false;
5911 #endif
5912 }
5913
5914 static int process_backlog(struct napi_struct *napi, int quota)
5915 {
5916         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5917         bool again = true;
5918         int work = 0;
5919
5920         /* Check if we have pending ipi, its better to send them now,
5921          * not waiting net_rx_action() end.
5922          */
5923         if (sd_has_rps_ipi_waiting(sd)) {
5924                 local_irq_disable();
5925                 net_rps_action_and_irq_enable(sd);
5926         }
5927
5928         napi->weight = READ_ONCE(dev_rx_weight);
5929         while (again) {
5930                 struct sk_buff *skb;
5931
5932                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5933                         rcu_read_lock();
5934                         __netif_receive_skb(skb);
5935                         rcu_read_unlock();
5936                         input_queue_head_incr(sd);
5937                         if (++work >= quota)
5938                                 return work;
5939
5940                 }
5941
5942                 rps_lock_irq_disable(sd);
5943                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5944                         /*
5945                          * Inline a custom version of __napi_complete().
5946                          * only current cpu owns and manipulates this napi,
5947                          * and NAPI_STATE_SCHED is the only possible flag set
5948                          * on backlog.
5949                          * We can use a plain write instead of clear_bit(),
5950                          * and we dont need an smp_mb() memory barrier.
5951                          */
5952                         napi->state = 0;
5953                         again = false;
5954                 } else {
5955                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5956                                                    &sd->process_queue);
5957                 }
5958                 rps_unlock_irq_enable(sd);
5959         }
5960
5961         return work;
5962 }
5963
5964 /**
5965  * __napi_schedule - schedule for receive
5966  * @n: entry to schedule
5967  *
5968  * The entry's receive function will be scheduled to run.
5969  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5970  */
5971 void __napi_schedule(struct napi_struct *n)
5972 {
5973         unsigned long flags;
5974
5975         local_irq_save(flags);
5976         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5977         local_irq_restore(flags);
5978 }
5979 EXPORT_SYMBOL(__napi_schedule);
5980
5981 /**
5982  *      napi_schedule_prep - check if napi can be scheduled
5983  *      @n: napi context
5984  *
5985  * Test if NAPI routine is already running, and if not mark
5986  * it as running.  This is used as a condition variable to
5987  * insure only one NAPI poll instance runs.  We also make
5988  * sure there is no pending NAPI disable.
5989  */
5990 bool napi_schedule_prep(struct napi_struct *n)
5991 {
5992         unsigned long val, new;
5993
5994         do {
5995                 val = READ_ONCE(n->state);
5996                 if (unlikely(val & NAPIF_STATE_DISABLE))
5997                         return false;
5998                 new = val | NAPIF_STATE_SCHED;
5999
6000                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6001                  * This was suggested by Alexander Duyck, as compiler
6002                  * emits better code than :
6003                  * if (val & NAPIF_STATE_SCHED)
6004                  *     new |= NAPIF_STATE_MISSED;
6005                  */
6006                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6007                                                    NAPIF_STATE_MISSED;
6008         } while (cmpxchg(&n->state, val, new) != val);
6009
6010         return !(val & NAPIF_STATE_SCHED);
6011 }
6012 EXPORT_SYMBOL(napi_schedule_prep);
6013
6014 /**
6015  * __napi_schedule_irqoff - schedule for receive
6016  * @n: entry to schedule
6017  *
6018  * Variant of __napi_schedule() assuming hard irqs are masked.
6019  *
6020  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6021  * because the interrupt disabled assumption might not be true
6022  * due to force-threaded interrupts and spinlock substitution.
6023  */
6024 void __napi_schedule_irqoff(struct napi_struct *n)
6025 {
6026         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6027                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6028         else
6029                 __napi_schedule(n);
6030 }
6031 EXPORT_SYMBOL(__napi_schedule_irqoff);
6032
6033 bool napi_complete_done(struct napi_struct *n, int work_done)
6034 {
6035         unsigned long flags, val, new, timeout = 0;
6036         bool ret = true;
6037
6038         /*
6039          * 1) Don't let napi dequeue from the cpu poll list
6040          *    just in case its running on a different cpu.
6041          * 2) If we are busy polling, do nothing here, we have
6042          *    the guarantee we will be called later.
6043          */
6044         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6045                                  NAPIF_STATE_IN_BUSY_POLL)))
6046                 return false;
6047
6048         if (work_done) {
6049                 if (n->gro_bitmask)
6050                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6051                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6052         }
6053         if (n->defer_hard_irqs_count > 0) {
6054                 n->defer_hard_irqs_count--;
6055                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6056                 if (timeout)
6057                         ret = false;
6058         }
6059         if (n->gro_bitmask) {
6060                 /* When the NAPI instance uses a timeout and keeps postponing
6061                  * it, we need to bound somehow the time packets are kept in
6062                  * the GRO layer
6063                  */
6064                 napi_gro_flush(n, !!timeout);
6065         }
6066
6067         gro_normal_list(n);
6068
6069         if (unlikely(!list_empty(&n->poll_list))) {
6070                 /* If n->poll_list is not empty, we need to mask irqs */
6071                 local_irq_save(flags);
6072                 list_del_init(&n->poll_list);
6073                 local_irq_restore(flags);
6074         }
6075
6076         do {
6077                 val = READ_ONCE(n->state);
6078
6079                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6080
6081                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6082                               NAPIF_STATE_SCHED_THREADED |
6083                               NAPIF_STATE_PREFER_BUSY_POLL);
6084
6085                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6086                  * because we will call napi->poll() one more time.
6087                  * This C code was suggested by Alexander Duyck to help gcc.
6088                  */
6089                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6090                                                     NAPIF_STATE_SCHED;
6091         } while (cmpxchg(&n->state, val, new) != val);
6092
6093         if (unlikely(val & NAPIF_STATE_MISSED)) {
6094                 __napi_schedule(n);
6095                 return false;
6096         }
6097
6098         if (timeout)
6099                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6100                               HRTIMER_MODE_REL_PINNED);
6101         return ret;
6102 }
6103 EXPORT_SYMBOL(napi_complete_done);
6104
6105 /* must be called under rcu_read_lock(), as we dont take a reference */
6106 static struct napi_struct *napi_by_id(unsigned int napi_id)
6107 {
6108         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6109         struct napi_struct *napi;
6110
6111         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6112                 if (napi->napi_id == napi_id)
6113                         return napi;
6114
6115         return NULL;
6116 }
6117
6118 #if defined(CONFIG_NET_RX_BUSY_POLL)
6119
6120 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6121 {
6122         if (!skip_schedule) {
6123                 gro_normal_list(napi);
6124                 __napi_schedule(napi);
6125                 return;
6126         }
6127
6128         if (napi->gro_bitmask) {
6129                 /* flush too old packets
6130                  * If HZ < 1000, flush all packets.
6131                  */
6132                 napi_gro_flush(napi, HZ >= 1000);
6133         }
6134
6135         gro_normal_list(napi);
6136         clear_bit(NAPI_STATE_SCHED, &napi->state);
6137 }
6138
6139 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6140                            u16 budget)
6141 {
6142         bool skip_schedule = false;
6143         unsigned long timeout;
6144         int rc;
6145
6146         /* Busy polling means there is a high chance device driver hard irq
6147          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6148          * set in napi_schedule_prep().
6149          * Since we are about to call napi->poll() once more, we can safely
6150          * clear NAPI_STATE_MISSED.
6151          *
6152          * Note: x86 could use a single "lock and ..." instruction
6153          * to perform these two clear_bit()
6154          */
6155         clear_bit(NAPI_STATE_MISSED, &napi->state);
6156         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6157
6158         local_bh_disable();
6159
6160         if (prefer_busy_poll) {
6161                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6162                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6163                 if (napi->defer_hard_irqs_count && timeout) {
6164                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6165                         skip_schedule = true;
6166                 }
6167         }
6168
6169         /* All we really want here is to re-enable device interrupts.
6170          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6171          */
6172         rc = napi->poll(napi, budget);
6173         /* We can't gro_normal_list() here, because napi->poll() might have
6174          * rearmed the napi (napi_complete_done()) in which case it could
6175          * already be running on another CPU.
6176          */
6177         trace_napi_poll(napi, rc, budget);
6178         netpoll_poll_unlock(have_poll_lock);
6179         if (rc == budget)
6180                 __busy_poll_stop(napi, skip_schedule);
6181         local_bh_enable();
6182 }
6183
6184 void napi_busy_loop(unsigned int napi_id,
6185                     bool (*loop_end)(void *, unsigned long),
6186                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6187 {
6188         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6189         int (*napi_poll)(struct napi_struct *napi, int budget);
6190         void *have_poll_lock = NULL;
6191         struct napi_struct *napi;
6192
6193 restart:
6194         napi_poll = NULL;
6195
6196         rcu_read_lock();
6197
6198         napi = napi_by_id(napi_id);
6199         if (!napi)
6200                 goto out;
6201
6202         preempt_disable();
6203         for (;;) {
6204                 int work = 0;
6205
6206                 local_bh_disable();
6207                 if (!napi_poll) {
6208                         unsigned long val = READ_ONCE(napi->state);
6209
6210                         /* If multiple threads are competing for this napi,
6211                          * we avoid dirtying napi->state as much as we can.
6212                          */
6213                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6214                                    NAPIF_STATE_IN_BUSY_POLL)) {
6215                                 if (prefer_busy_poll)
6216                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6217                                 goto count;
6218                         }
6219                         if (cmpxchg(&napi->state, val,
6220                                     val | NAPIF_STATE_IN_BUSY_POLL |
6221                                           NAPIF_STATE_SCHED) != val) {
6222                                 if (prefer_busy_poll)
6223                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6224                                 goto count;
6225                         }
6226                         have_poll_lock = netpoll_poll_lock(napi);
6227                         napi_poll = napi->poll;
6228                 }
6229                 work = napi_poll(napi, budget);
6230                 trace_napi_poll(napi, work, budget);
6231                 gro_normal_list(napi);
6232 count:
6233                 if (work > 0)
6234                         __NET_ADD_STATS(dev_net(napi->dev),
6235                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6236                 local_bh_enable();
6237
6238                 if (!loop_end || loop_end(loop_end_arg, start_time))
6239                         break;
6240
6241                 if (unlikely(need_resched())) {
6242                         if (napi_poll)
6243                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6244                         preempt_enable();
6245                         rcu_read_unlock();
6246                         cond_resched();
6247                         if (loop_end(loop_end_arg, start_time))
6248                                 return;
6249                         goto restart;
6250                 }
6251                 cpu_relax();
6252         }
6253         if (napi_poll)
6254                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6255         preempt_enable();
6256 out:
6257         rcu_read_unlock();
6258 }
6259 EXPORT_SYMBOL(napi_busy_loop);
6260
6261 #endif /* CONFIG_NET_RX_BUSY_POLL */
6262
6263 static void napi_hash_add(struct napi_struct *napi)
6264 {
6265         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6266                 return;
6267
6268         spin_lock(&napi_hash_lock);
6269
6270         /* 0..NR_CPUS range is reserved for sender_cpu use */
6271         do {
6272                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6273                         napi_gen_id = MIN_NAPI_ID;
6274         } while (napi_by_id(napi_gen_id));
6275         napi->napi_id = napi_gen_id;
6276
6277         hlist_add_head_rcu(&napi->napi_hash_node,
6278                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6279
6280         spin_unlock(&napi_hash_lock);
6281 }
6282
6283 /* Warning : caller is responsible to make sure rcu grace period
6284  * is respected before freeing memory containing @napi
6285  */
6286 static void napi_hash_del(struct napi_struct *napi)
6287 {
6288         spin_lock(&napi_hash_lock);
6289
6290         hlist_del_init_rcu(&napi->napi_hash_node);
6291
6292         spin_unlock(&napi_hash_lock);
6293 }
6294
6295 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6296 {
6297         struct napi_struct *napi;
6298
6299         napi = container_of(timer, struct napi_struct, timer);
6300
6301         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6302          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6303          */
6304         if (!napi_disable_pending(napi) &&
6305             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6306                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6307                 __napi_schedule_irqoff(napi);
6308         }
6309
6310         return HRTIMER_NORESTART;
6311 }
6312
6313 static void init_gro_hash(struct napi_struct *napi)
6314 {
6315         int i;
6316
6317         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6318                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6319                 napi->gro_hash[i].count = 0;
6320         }
6321         napi->gro_bitmask = 0;
6322 }
6323
6324 int dev_set_threaded(struct net_device *dev, bool threaded)
6325 {
6326         struct napi_struct *napi;
6327         int err = 0;
6328
6329         if (dev->threaded == threaded)
6330                 return 0;
6331
6332         if (threaded) {
6333                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6334                         if (!napi->thread) {
6335                                 err = napi_kthread_create(napi);
6336                                 if (err) {
6337                                         threaded = false;
6338                                         break;
6339                                 }
6340                         }
6341                 }
6342         }
6343
6344         dev->threaded = threaded;
6345
6346         /* Make sure kthread is created before THREADED bit
6347          * is set.
6348          */
6349         smp_mb__before_atomic();
6350
6351         /* Setting/unsetting threaded mode on a napi might not immediately
6352          * take effect, if the current napi instance is actively being
6353          * polled. In this case, the switch between threaded mode and
6354          * softirq mode will happen in the next round of napi_schedule().
6355          * This should not cause hiccups/stalls to the live traffic.
6356          */
6357         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6358                 if (threaded)
6359                         set_bit(NAPI_STATE_THREADED, &napi->state);
6360                 else
6361                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6362         }
6363
6364         return err;
6365 }
6366 EXPORT_SYMBOL(dev_set_threaded);
6367
6368 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6369                            int (*poll)(struct napi_struct *, int), int weight)
6370 {
6371         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6372                 return;
6373
6374         INIT_LIST_HEAD(&napi->poll_list);
6375         INIT_HLIST_NODE(&napi->napi_hash_node);
6376         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6377         napi->timer.function = napi_watchdog;
6378         init_gro_hash(napi);
6379         napi->skb = NULL;
6380         INIT_LIST_HEAD(&napi->rx_list);
6381         napi->rx_count = 0;
6382         napi->poll = poll;
6383         if (weight > NAPI_POLL_WEIGHT)
6384                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6385                                 weight);
6386         napi->weight = weight;
6387         napi->dev = dev;
6388 #ifdef CONFIG_NETPOLL
6389         napi->poll_owner = -1;
6390 #endif
6391         set_bit(NAPI_STATE_SCHED, &napi->state);
6392         set_bit(NAPI_STATE_NPSVC, &napi->state);
6393         list_add_rcu(&napi->dev_list, &dev->napi_list);
6394         napi_hash_add(napi);
6395         napi_get_frags_check(napi);
6396         /* Create kthread for this napi if dev->threaded is set.
6397          * Clear dev->threaded if kthread creation failed so that
6398          * threaded mode will not be enabled in napi_enable().
6399          */
6400         if (dev->threaded && napi_kthread_create(napi))
6401                 dev->threaded = 0;
6402 }
6403 EXPORT_SYMBOL(netif_napi_add_weight);
6404
6405 void napi_disable(struct napi_struct *n)
6406 {
6407         unsigned long val, new;
6408
6409         might_sleep();
6410         set_bit(NAPI_STATE_DISABLE, &n->state);
6411
6412         for ( ; ; ) {
6413                 val = READ_ONCE(n->state);
6414                 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6415                         usleep_range(20, 200);
6416                         continue;
6417                 }
6418
6419                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6420                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6421
6422                 if (cmpxchg(&n->state, val, new) == val)
6423                         break;
6424         }
6425
6426         hrtimer_cancel(&n->timer);
6427
6428         clear_bit(NAPI_STATE_DISABLE, &n->state);
6429 }
6430 EXPORT_SYMBOL(napi_disable);
6431
6432 /**
6433  *      napi_enable - enable NAPI scheduling
6434  *      @n: NAPI context
6435  *
6436  * Resume NAPI from being scheduled on this context.
6437  * Must be paired with napi_disable.
6438  */
6439 void napi_enable(struct napi_struct *n)
6440 {
6441         unsigned long val, new;
6442
6443         do {
6444                 val = READ_ONCE(n->state);
6445                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6446
6447                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6448                 if (n->dev->threaded && n->thread)
6449                         new |= NAPIF_STATE_THREADED;
6450         } while (cmpxchg(&n->state, val, new) != val);
6451 }
6452 EXPORT_SYMBOL(napi_enable);
6453
6454 static void flush_gro_hash(struct napi_struct *napi)
6455 {
6456         int i;
6457
6458         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6459                 struct sk_buff *skb, *n;
6460
6461                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6462                         kfree_skb(skb);
6463                 napi->gro_hash[i].count = 0;
6464         }
6465 }
6466
6467 /* Must be called in process context */
6468 void __netif_napi_del(struct napi_struct *napi)
6469 {
6470         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6471                 return;
6472
6473         napi_hash_del(napi);
6474         list_del_rcu(&napi->dev_list);
6475         napi_free_frags(napi);
6476
6477         flush_gro_hash(napi);
6478         napi->gro_bitmask = 0;
6479
6480         if (napi->thread) {
6481                 kthread_stop(napi->thread);
6482                 napi->thread = NULL;
6483         }
6484 }
6485 EXPORT_SYMBOL(__netif_napi_del);
6486
6487 static int __napi_poll(struct napi_struct *n, bool *repoll)
6488 {
6489         int work, weight;
6490
6491         weight = n->weight;
6492
6493         /* This NAPI_STATE_SCHED test is for avoiding a race
6494          * with netpoll's poll_napi().  Only the entity which
6495          * obtains the lock and sees NAPI_STATE_SCHED set will
6496          * actually make the ->poll() call.  Therefore we avoid
6497          * accidentally calling ->poll() when NAPI is not scheduled.
6498          */
6499         work = 0;
6500         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6501                 work = n->poll(n, weight);
6502                 trace_napi_poll(n, work, weight);
6503         }
6504
6505         if (unlikely(work > weight))
6506                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6507                                 n->poll, work, weight);
6508
6509         if (likely(work < weight))
6510                 return work;
6511
6512         /* Drivers must not modify the NAPI state if they
6513          * consume the entire weight.  In such cases this code
6514          * still "owns" the NAPI instance and therefore can
6515          * move the instance around on the list at-will.
6516          */
6517         if (unlikely(napi_disable_pending(n))) {
6518                 napi_complete(n);
6519                 return work;
6520         }
6521
6522         /* The NAPI context has more processing work, but busy-polling
6523          * is preferred. Exit early.
6524          */
6525         if (napi_prefer_busy_poll(n)) {
6526                 if (napi_complete_done(n, work)) {
6527                         /* If timeout is not set, we need to make sure
6528                          * that the NAPI is re-scheduled.
6529                          */
6530                         napi_schedule(n);
6531                 }
6532                 return work;
6533         }
6534
6535         if (n->gro_bitmask) {
6536                 /* flush too old packets
6537                  * If HZ < 1000, flush all packets.
6538                  */
6539                 napi_gro_flush(n, HZ >= 1000);
6540         }
6541
6542         gro_normal_list(n);
6543
6544         /* Some drivers may have called napi_schedule
6545          * prior to exhausting their budget.
6546          */
6547         if (unlikely(!list_empty(&n->poll_list))) {
6548                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6549                              n->dev ? n->dev->name : "backlog");
6550                 return work;
6551         }
6552
6553         *repoll = true;
6554
6555         return work;
6556 }
6557
6558 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6559 {
6560         bool do_repoll = false;
6561         void *have;
6562         int work;
6563
6564         list_del_init(&n->poll_list);
6565
6566         have = netpoll_poll_lock(n);
6567
6568         work = __napi_poll(n, &do_repoll);
6569
6570         if (do_repoll)
6571                 list_add_tail(&n->poll_list, repoll);
6572
6573         netpoll_poll_unlock(have);
6574
6575         return work;
6576 }
6577
6578 static int napi_thread_wait(struct napi_struct *napi)
6579 {
6580         bool woken = false;
6581
6582         set_current_state(TASK_INTERRUPTIBLE);
6583
6584         while (!kthread_should_stop()) {
6585                 /* Testing SCHED_THREADED bit here to make sure the current
6586                  * kthread owns this napi and could poll on this napi.
6587                  * Testing SCHED bit is not enough because SCHED bit might be
6588                  * set by some other busy poll thread or by napi_disable().
6589                  */
6590                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6591                         WARN_ON(!list_empty(&napi->poll_list));
6592                         __set_current_state(TASK_RUNNING);
6593                         return 0;
6594                 }
6595
6596                 schedule();
6597                 /* woken being true indicates this thread owns this napi. */
6598                 woken = true;
6599                 set_current_state(TASK_INTERRUPTIBLE);
6600         }
6601         __set_current_state(TASK_RUNNING);
6602
6603         return -1;
6604 }
6605
6606 static int napi_threaded_poll(void *data)
6607 {
6608         struct napi_struct *napi = data;
6609         void *have;
6610
6611         while (!napi_thread_wait(napi)) {
6612                 for (;;) {
6613                         bool repoll = false;
6614
6615                         local_bh_disable();
6616
6617                         have = netpoll_poll_lock(napi);
6618                         __napi_poll(napi, &repoll);
6619                         netpoll_poll_unlock(have);
6620
6621                         local_bh_enable();
6622
6623                         if (!repoll)
6624                                 break;
6625
6626                         cond_resched();
6627                 }
6628         }
6629         return 0;
6630 }
6631
6632 static void skb_defer_free_flush(struct softnet_data *sd)
6633 {
6634         struct sk_buff *skb, *next;
6635         unsigned long flags;
6636
6637         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6638         if (!READ_ONCE(sd->defer_list))
6639                 return;
6640
6641         spin_lock_irqsave(&sd->defer_lock, flags);
6642         skb = sd->defer_list;
6643         sd->defer_list = NULL;
6644         sd->defer_count = 0;
6645         spin_unlock_irqrestore(&sd->defer_lock, flags);
6646
6647         while (skb != NULL) {
6648                 next = skb->next;
6649                 napi_consume_skb(skb, 1);
6650                 skb = next;
6651         }
6652 }
6653
6654 static __latent_entropy void net_rx_action(struct softirq_action *h)
6655 {
6656         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6657         unsigned long time_limit = jiffies +
6658                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6659         int budget = READ_ONCE(netdev_budget);
6660         LIST_HEAD(list);
6661         LIST_HEAD(repoll);
6662
6663         local_irq_disable();
6664         list_splice_init(&sd->poll_list, &list);
6665         local_irq_enable();
6666
6667         for (;;) {
6668                 struct napi_struct *n;
6669
6670                 skb_defer_free_flush(sd);
6671
6672                 if (list_empty(&list)) {
6673                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6674                                 goto end;
6675                         break;
6676                 }
6677
6678                 n = list_first_entry(&list, struct napi_struct, poll_list);
6679                 budget -= napi_poll(n, &repoll);
6680
6681                 /* If softirq window is exhausted then punt.
6682                  * Allow this to run for 2 jiffies since which will allow
6683                  * an average latency of 1.5/HZ.
6684                  */
6685                 if (unlikely(budget <= 0 ||
6686                              time_after_eq(jiffies, time_limit))) {
6687                         sd->time_squeeze++;
6688                         break;
6689                 }
6690         }
6691
6692         local_irq_disable();
6693
6694         list_splice_tail_init(&sd->poll_list, &list);
6695         list_splice_tail(&repoll, &list);
6696         list_splice(&list, &sd->poll_list);
6697         if (!list_empty(&sd->poll_list))
6698                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6699
6700         net_rps_action_and_irq_enable(sd);
6701 end:;
6702 }
6703
6704 struct netdev_adjacent {
6705         struct net_device *dev;
6706         netdevice_tracker dev_tracker;
6707
6708         /* upper master flag, there can only be one master device per list */
6709         bool master;
6710
6711         /* lookup ignore flag */
6712         bool ignore;
6713
6714         /* counter for the number of times this device was added to us */
6715         u16 ref_nr;
6716
6717         /* private field for the users */
6718         void *private;
6719
6720         struct list_head list;
6721         struct rcu_head rcu;
6722 };
6723
6724 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6725                                                  struct list_head *adj_list)
6726 {
6727         struct netdev_adjacent *adj;
6728
6729         list_for_each_entry(adj, adj_list, list) {
6730                 if (adj->dev == adj_dev)
6731                         return adj;
6732         }
6733         return NULL;
6734 }
6735
6736 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6737                                     struct netdev_nested_priv *priv)
6738 {
6739         struct net_device *dev = (struct net_device *)priv->data;
6740
6741         return upper_dev == dev;
6742 }
6743
6744 /**
6745  * netdev_has_upper_dev - Check if device is linked to an upper device
6746  * @dev: device
6747  * @upper_dev: upper device to check
6748  *
6749  * Find out if a device is linked to specified upper device and return true
6750  * in case it is. Note that this checks only immediate upper device,
6751  * not through a complete stack of devices. The caller must hold the RTNL lock.
6752  */
6753 bool netdev_has_upper_dev(struct net_device *dev,
6754                           struct net_device *upper_dev)
6755 {
6756         struct netdev_nested_priv priv = {
6757                 .data = (void *)upper_dev,
6758         };
6759
6760         ASSERT_RTNL();
6761
6762         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6763                                              &priv);
6764 }
6765 EXPORT_SYMBOL(netdev_has_upper_dev);
6766
6767 /**
6768  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6769  * @dev: device
6770  * @upper_dev: upper device to check
6771  *
6772  * Find out if a device is linked to specified upper device and return true
6773  * in case it is. Note that this checks the entire upper device chain.
6774  * The caller must hold rcu lock.
6775  */
6776
6777 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6778                                   struct net_device *upper_dev)
6779 {
6780         struct netdev_nested_priv priv = {
6781                 .data = (void *)upper_dev,
6782         };
6783
6784         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6785                                                &priv);
6786 }
6787 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6788
6789 /**
6790  * netdev_has_any_upper_dev - Check if device is linked to some device
6791  * @dev: device
6792  *
6793  * Find out if a device is linked to an upper device and return true in case
6794  * it is. The caller must hold the RTNL lock.
6795  */
6796 bool netdev_has_any_upper_dev(struct net_device *dev)
6797 {
6798         ASSERT_RTNL();
6799
6800         return !list_empty(&dev->adj_list.upper);
6801 }
6802 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6803
6804 /**
6805  * netdev_master_upper_dev_get - Get master upper device
6806  * @dev: device
6807  *
6808  * Find a master upper device and return pointer to it or NULL in case
6809  * it's not there. The caller must hold the RTNL lock.
6810  */
6811 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6812 {
6813         struct netdev_adjacent *upper;
6814
6815         ASSERT_RTNL();
6816
6817         if (list_empty(&dev->adj_list.upper))
6818                 return NULL;
6819
6820         upper = list_first_entry(&dev->adj_list.upper,
6821                                  struct netdev_adjacent, list);
6822         if (likely(upper->master))
6823                 return upper->dev;
6824         return NULL;
6825 }
6826 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6827
6828 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6829 {
6830         struct netdev_adjacent *upper;
6831
6832         ASSERT_RTNL();
6833
6834         if (list_empty(&dev->adj_list.upper))
6835                 return NULL;
6836
6837         upper = list_first_entry(&dev->adj_list.upper,
6838                                  struct netdev_adjacent, list);
6839         if (likely(upper->master) && !upper->ignore)
6840                 return upper->dev;
6841         return NULL;
6842 }
6843
6844 /**
6845  * netdev_has_any_lower_dev - Check if device is linked to some device
6846  * @dev: device
6847  *
6848  * Find out if a device is linked to a lower device and return true in case
6849  * it is. The caller must hold the RTNL lock.
6850  */
6851 static bool netdev_has_any_lower_dev(struct net_device *dev)
6852 {
6853         ASSERT_RTNL();
6854
6855         return !list_empty(&dev->adj_list.lower);
6856 }
6857
6858 void *netdev_adjacent_get_private(struct list_head *adj_list)
6859 {
6860         struct netdev_adjacent *adj;
6861
6862         adj = list_entry(adj_list, struct netdev_adjacent, list);
6863
6864         return adj->private;
6865 }
6866 EXPORT_SYMBOL(netdev_adjacent_get_private);
6867
6868 /**
6869  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6870  * @dev: device
6871  * @iter: list_head ** of the current position
6872  *
6873  * Gets the next device from the dev's upper list, starting from iter
6874  * position. The caller must hold RCU read lock.
6875  */
6876 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6877                                                  struct list_head **iter)
6878 {
6879         struct netdev_adjacent *upper;
6880
6881         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6882
6883         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6884
6885         if (&upper->list == &dev->adj_list.upper)
6886                 return NULL;
6887
6888         *iter = &upper->list;
6889
6890         return upper->dev;
6891 }
6892 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6893
6894 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6895                                                   struct list_head **iter,
6896                                                   bool *ignore)
6897 {
6898         struct netdev_adjacent *upper;
6899
6900         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6901
6902         if (&upper->list == &dev->adj_list.upper)
6903                 return NULL;
6904
6905         *iter = &upper->list;
6906         *ignore = upper->ignore;
6907
6908         return upper->dev;
6909 }
6910
6911 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6912                                                     struct list_head **iter)
6913 {
6914         struct netdev_adjacent *upper;
6915
6916         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6917
6918         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6919
6920         if (&upper->list == &dev->adj_list.upper)
6921                 return NULL;
6922
6923         *iter = &upper->list;
6924
6925         return upper->dev;
6926 }
6927
6928 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6929                                        int (*fn)(struct net_device *dev,
6930                                          struct netdev_nested_priv *priv),
6931                                        struct netdev_nested_priv *priv)
6932 {
6933         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6934         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6935         int ret, cur = 0;
6936         bool ignore;
6937
6938         now = dev;
6939         iter = &dev->adj_list.upper;
6940
6941         while (1) {
6942                 if (now != dev) {
6943                         ret = fn(now, priv);
6944                         if (ret)
6945                                 return ret;
6946                 }
6947
6948                 next = NULL;
6949                 while (1) {
6950                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6951                         if (!udev)
6952                                 break;
6953                         if (ignore)
6954                                 continue;
6955
6956                         next = udev;
6957                         niter = &udev->adj_list.upper;
6958                         dev_stack[cur] = now;
6959                         iter_stack[cur++] = iter;
6960                         break;
6961                 }
6962
6963                 if (!next) {
6964                         if (!cur)
6965                                 return 0;
6966                         next = dev_stack[--cur];
6967                         niter = iter_stack[cur];
6968                 }
6969
6970                 now = next;
6971                 iter = niter;
6972         }
6973
6974         return 0;
6975 }
6976
6977 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6978                                   int (*fn)(struct net_device *dev,
6979                                             struct netdev_nested_priv *priv),
6980                                   struct netdev_nested_priv *priv)
6981 {
6982         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6983         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6984         int ret, cur = 0;
6985
6986         now = dev;
6987         iter = &dev->adj_list.upper;
6988
6989         while (1) {
6990                 if (now != dev) {
6991                         ret = fn(now, priv);
6992                         if (ret)
6993                                 return ret;
6994                 }
6995
6996                 next = NULL;
6997                 while (1) {
6998                         udev = netdev_next_upper_dev_rcu(now, &iter);
6999                         if (!udev)
7000                                 break;
7001
7002                         next = udev;
7003                         niter = &udev->adj_list.upper;
7004                         dev_stack[cur] = now;
7005                         iter_stack[cur++] = iter;
7006                         break;
7007                 }
7008
7009                 if (!next) {
7010                         if (!cur)
7011                                 return 0;
7012                         next = dev_stack[--cur];
7013                         niter = iter_stack[cur];
7014                 }
7015
7016                 now = next;
7017                 iter = niter;
7018         }
7019
7020         return 0;
7021 }
7022 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7023
7024 static bool __netdev_has_upper_dev(struct net_device *dev,
7025                                    struct net_device *upper_dev)
7026 {
7027         struct netdev_nested_priv priv = {
7028                 .flags = 0,
7029                 .data = (void *)upper_dev,
7030         };
7031
7032         ASSERT_RTNL();
7033
7034         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7035                                            &priv);
7036 }
7037
7038 /**
7039  * netdev_lower_get_next_private - Get the next ->private from the
7040  *                                 lower neighbour list
7041  * @dev: device
7042  * @iter: list_head ** of the current position
7043  *
7044  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7045  * list, starting from iter position. The caller must hold either hold the
7046  * RTNL lock or its own locking that guarantees that the neighbour lower
7047  * list will remain unchanged.
7048  */
7049 void *netdev_lower_get_next_private(struct net_device *dev,
7050                                     struct list_head **iter)
7051 {
7052         struct netdev_adjacent *lower;
7053
7054         lower = list_entry(*iter, struct netdev_adjacent, list);
7055
7056         if (&lower->list == &dev->adj_list.lower)
7057                 return NULL;
7058
7059         *iter = lower->list.next;
7060
7061         return lower->private;
7062 }
7063 EXPORT_SYMBOL(netdev_lower_get_next_private);
7064
7065 /**
7066  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7067  *                                     lower neighbour list, RCU
7068  *                                     variant
7069  * @dev: device
7070  * @iter: list_head ** of the current position
7071  *
7072  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7073  * list, starting from iter position. The caller must hold RCU read lock.
7074  */
7075 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7076                                         struct list_head **iter)
7077 {
7078         struct netdev_adjacent *lower;
7079
7080         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7081
7082         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7083
7084         if (&lower->list == &dev->adj_list.lower)
7085                 return NULL;
7086
7087         *iter = &lower->list;
7088
7089         return lower->private;
7090 }
7091 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7092
7093 /**
7094  * netdev_lower_get_next - Get the next device from the lower neighbour
7095  *                         list
7096  * @dev: device
7097  * @iter: list_head ** of the current position
7098  *
7099  * Gets the next netdev_adjacent from the dev's lower neighbour
7100  * list, starting from iter position. The caller must hold RTNL lock or
7101  * its own locking that guarantees that the neighbour lower
7102  * list will remain unchanged.
7103  */
7104 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7105 {
7106         struct netdev_adjacent *lower;
7107
7108         lower = list_entry(*iter, struct netdev_adjacent, list);
7109
7110         if (&lower->list == &dev->adj_list.lower)
7111                 return NULL;
7112
7113         *iter = lower->list.next;
7114
7115         return lower->dev;
7116 }
7117 EXPORT_SYMBOL(netdev_lower_get_next);
7118
7119 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7120                                                 struct list_head **iter)
7121 {
7122         struct netdev_adjacent *lower;
7123
7124         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7125
7126         if (&lower->list == &dev->adj_list.lower)
7127                 return NULL;
7128
7129         *iter = &lower->list;
7130
7131         return lower->dev;
7132 }
7133
7134 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7135                                                   struct list_head **iter,
7136                                                   bool *ignore)
7137 {
7138         struct netdev_adjacent *lower;
7139
7140         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7141
7142         if (&lower->list == &dev->adj_list.lower)
7143                 return NULL;
7144
7145         *iter = &lower->list;
7146         *ignore = lower->ignore;
7147
7148         return lower->dev;
7149 }
7150
7151 int netdev_walk_all_lower_dev(struct net_device *dev,
7152                               int (*fn)(struct net_device *dev,
7153                                         struct netdev_nested_priv *priv),
7154                               struct netdev_nested_priv *priv)
7155 {
7156         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7157         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7158         int ret, cur = 0;
7159
7160         now = dev;
7161         iter = &dev->adj_list.lower;
7162
7163         while (1) {
7164                 if (now != dev) {
7165                         ret = fn(now, priv);
7166                         if (ret)
7167                                 return ret;
7168                 }
7169
7170                 next = NULL;
7171                 while (1) {
7172                         ldev = netdev_next_lower_dev(now, &iter);
7173                         if (!ldev)
7174                                 break;
7175
7176                         next = ldev;
7177                         niter = &ldev->adj_list.lower;
7178                         dev_stack[cur] = now;
7179                         iter_stack[cur++] = iter;
7180                         break;
7181                 }
7182
7183                 if (!next) {
7184                         if (!cur)
7185                                 return 0;
7186                         next = dev_stack[--cur];
7187                         niter = iter_stack[cur];
7188                 }
7189
7190                 now = next;
7191                 iter = niter;
7192         }
7193
7194         return 0;
7195 }
7196 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7197
7198 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7199                                        int (*fn)(struct net_device *dev,
7200                                          struct netdev_nested_priv *priv),
7201                                        struct netdev_nested_priv *priv)
7202 {
7203         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7204         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7205         int ret, cur = 0;
7206         bool ignore;
7207
7208         now = dev;
7209         iter = &dev->adj_list.lower;
7210
7211         while (1) {
7212                 if (now != dev) {
7213                         ret = fn(now, priv);
7214                         if (ret)
7215                                 return ret;
7216                 }
7217
7218                 next = NULL;
7219                 while (1) {
7220                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7221                         if (!ldev)
7222                                 break;
7223                         if (ignore)
7224                                 continue;
7225
7226                         next = ldev;
7227                         niter = &ldev->adj_list.lower;
7228                         dev_stack[cur] = now;
7229                         iter_stack[cur++] = iter;
7230                         break;
7231                 }
7232
7233                 if (!next) {
7234                         if (!cur)
7235                                 return 0;
7236                         next = dev_stack[--cur];
7237                         niter = iter_stack[cur];
7238                 }
7239
7240                 now = next;
7241                 iter = niter;
7242         }
7243
7244         return 0;
7245 }
7246
7247 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7248                                              struct list_head **iter)
7249 {
7250         struct netdev_adjacent *lower;
7251
7252         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7253         if (&lower->list == &dev->adj_list.lower)
7254                 return NULL;
7255
7256         *iter = &lower->list;
7257
7258         return lower->dev;
7259 }
7260 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7261
7262 static u8 __netdev_upper_depth(struct net_device *dev)
7263 {
7264         struct net_device *udev;
7265         struct list_head *iter;
7266         u8 max_depth = 0;
7267         bool ignore;
7268
7269         for (iter = &dev->adj_list.upper,
7270              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7271              udev;
7272              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7273                 if (ignore)
7274                         continue;
7275                 if (max_depth < udev->upper_level)
7276                         max_depth = udev->upper_level;
7277         }
7278
7279         return max_depth;
7280 }
7281
7282 static u8 __netdev_lower_depth(struct net_device *dev)
7283 {
7284         struct net_device *ldev;
7285         struct list_head *iter;
7286         u8 max_depth = 0;
7287         bool ignore;
7288
7289         for (iter = &dev->adj_list.lower,
7290              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7291              ldev;
7292              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7293                 if (ignore)
7294                         continue;
7295                 if (max_depth < ldev->lower_level)
7296                         max_depth = ldev->lower_level;
7297         }
7298
7299         return max_depth;
7300 }
7301
7302 static int __netdev_update_upper_level(struct net_device *dev,
7303                                        struct netdev_nested_priv *__unused)
7304 {
7305         dev->upper_level = __netdev_upper_depth(dev) + 1;
7306         return 0;
7307 }
7308
7309 #ifdef CONFIG_LOCKDEP
7310 static LIST_HEAD(net_unlink_list);
7311
7312 static void net_unlink_todo(struct net_device *dev)
7313 {
7314         if (list_empty(&dev->unlink_list))
7315                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7316 }
7317 #endif
7318
7319 static int __netdev_update_lower_level(struct net_device *dev,
7320                                        struct netdev_nested_priv *priv)
7321 {
7322         dev->lower_level = __netdev_lower_depth(dev) + 1;
7323
7324 #ifdef CONFIG_LOCKDEP
7325         if (!priv)
7326                 return 0;
7327
7328         if (priv->flags & NESTED_SYNC_IMM)
7329                 dev->nested_level = dev->lower_level - 1;
7330         if (priv->flags & NESTED_SYNC_TODO)
7331                 net_unlink_todo(dev);
7332 #endif
7333         return 0;
7334 }
7335
7336 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7337                                   int (*fn)(struct net_device *dev,
7338                                             struct netdev_nested_priv *priv),
7339                                   struct netdev_nested_priv *priv)
7340 {
7341         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7342         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7343         int ret, cur = 0;
7344
7345         now = dev;
7346         iter = &dev->adj_list.lower;
7347
7348         while (1) {
7349                 if (now != dev) {
7350                         ret = fn(now, priv);
7351                         if (ret)
7352                                 return ret;
7353                 }
7354
7355                 next = NULL;
7356                 while (1) {
7357                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7358                         if (!ldev)
7359                                 break;
7360
7361                         next = ldev;
7362                         niter = &ldev->adj_list.lower;
7363                         dev_stack[cur] = now;
7364                         iter_stack[cur++] = iter;
7365                         break;
7366                 }
7367
7368                 if (!next) {
7369                         if (!cur)
7370                                 return 0;
7371                         next = dev_stack[--cur];
7372                         niter = iter_stack[cur];
7373                 }
7374
7375                 now = next;
7376                 iter = niter;
7377         }
7378
7379         return 0;
7380 }
7381 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7382
7383 /**
7384  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7385  *                                     lower neighbour list, RCU
7386  *                                     variant
7387  * @dev: device
7388  *
7389  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7390  * list. The caller must hold RCU read lock.
7391  */
7392 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7393 {
7394         struct netdev_adjacent *lower;
7395
7396         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7397                         struct netdev_adjacent, list);
7398         if (lower)
7399                 return lower->private;
7400         return NULL;
7401 }
7402 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7403
7404 /**
7405  * netdev_master_upper_dev_get_rcu - Get master upper device
7406  * @dev: device
7407  *
7408  * Find a master upper device and return pointer to it or NULL in case
7409  * it's not there. The caller must hold the RCU read lock.
7410  */
7411 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7412 {
7413         struct netdev_adjacent *upper;
7414
7415         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7416                                        struct netdev_adjacent, list);
7417         if (upper && likely(upper->master))
7418                 return upper->dev;
7419         return NULL;
7420 }
7421 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7422
7423 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7424                               struct net_device *adj_dev,
7425                               struct list_head *dev_list)
7426 {
7427         char linkname[IFNAMSIZ+7];
7428
7429         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7430                 "upper_%s" : "lower_%s", adj_dev->name);
7431         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7432                                  linkname);
7433 }
7434 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7435                                char *name,
7436                                struct list_head *dev_list)
7437 {
7438         char linkname[IFNAMSIZ+7];
7439
7440         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7441                 "upper_%s" : "lower_%s", name);
7442         sysfs_remove_link(&(dev->dev.kobj), linkname);
7443 }
7444
7445 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7446                                                  struct net_device *adj_dev,
7447                                                  struct list_head *dev_list)
7448 {
7449         return (dev_list == &dev->adj_list.upper ||
7450                 dev_list == &dev->adj_list.lower) &&
7451                 net_eq(dev_net(dev), dev_net(adj_dev));
7452 }
7453
7454 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7455                                         struct net_device *adj_dev,
7456                                         struct list_head *dev_list,
7457                                         void *private, bool master)
7458 {
7459         struct netdev_adjacent *adj;
7460         int ret;
7461
7462         adj = __netdev_find_adj(adj_dev, dev_list);
7463
7464         if (adj) {
7465                 adj->ref_nr += 1;
7466                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7467                          dev->name, adj_dev->name, adj->ref_nr);
7468
7469                 return 0;
7470         }
7471
7472         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7473         if (!adj)
7474                 return -ENOMEM;
7475
7476         adj->dev = adj_dev;
7477         adj->master = master;
7478         adj->ref_nr = 1;
7479         adj->private = private;
7480         adj->ignore = false;
7481         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7482
7483         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7484                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7485
7486         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7487                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7488                 if (ret)
7489                         goto free_adj;
7490         }
7491
7492         /* Ensure that master link is always the first item in list. */
7493         if (master) {
7494                 ret = sysfs_create_link(&(dev->dev.kobj),
7495                                         &(adj_dev->dev.kobj), "master");
7496                 if (ret)
7497                         goto remove_symlinks;
7498
7499                 list_add_rcu(&adj->list, dev_list);
7500         } else {
7501                 list_add_tail_rcu(&adj->list, dev_list);
7502         }
7503
7504         return 0;
7505
7506 remove_symlinks:
7507         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7508                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7509 free_adj:
7510         netdev_put(adj_dev, &adj->dev_tracker);
7511         kfree(adj);
7512
7513         return ret;
7514 }
7515
7516 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7517                                          struct net_device *adj_dev,
7518                                          u16 ref_nr,
7519                                          struct list_head *dev_list)
7520 {
7521         struct netdev_adjacent *adj;
7522
7523         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7524                  dev->name, adj_dev->name, ref_nr);
7525
7526         adj = __netdev_find_adj(adj_dev, dev_list);
7527
7528         if (!adj) {
7529                 pr_err("Adjacency does not exist for device %s from %s\n",
7530                        dev->name, adj_dev->name);
7531                 WARN_ON(1);
7532                 return;
7533         }
7534
7535         if (adj->ref_nr > ref_nr) {
7536                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7537                          dev->name, adj_dev->name, ref_nr,
7538                          adj->ref_nr - ref_nr);
7539                 adj->ref_nr -= ref_nr;
7540                 return;
7541         }
7542
7543         if (adj->master)
7544                 sysfs_remove_link(&(dev->dev.kobj), "master");
7545
7546         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7547                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7548
7549         list_del_rcu(&adj->list);
7550         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7551                  adj_dev->name, dev->name, adj_dev->name);
7552         netdev_put(adj_dev, &adj->dev_tracker);
7553         kfree_rcu(adj, rcu);
7554 }
7555
7556 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7557                                             struct net_device *upper_dev,
7558                                             struct list_head *up_list,
7559                                             struct list_head *down_list,
7560                                             void *private, bool master)
7561 {
7562         int ret;
7563
7564         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7565                                            private, master);
7566         if (ret)
7567                 return ret;
7568
7569         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7570                                            private, false);
7571         if (ret) {
7572                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7573                 return ret;
7574         }
7575
7576         return 0;
7577 }
7578
7579 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7580                                                struct net_device *upper_dev,
7581                                                u16 ref_nr,
7582                                                struct list_head *up_list,
7583                                                struct list_head *down_list)
7584 {
7585         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7586         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7587 }
7588
7589 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7590                                                 struct net_device *upper_dev,
7591                                                 void *private, bool master)
7592 {
7593         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7594                                                 &dev->adj_list.upper,
7595                                                 &upper_dev->adj_list.lower,
7596                                                 private, master);
7597 }
7598
7599 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7600                                                    struct net_device *upper_dev)
7601 {
7602         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7603                                            &dev->adj_list.upper,
7604                                            &upper_dev->adj_list.lower);
7605 }
7606
7607 static int __netdev_upper_dev_link(struct net_device *dev,
7608                                    struct net_device *upper_dev, bool master,
7609                                    void *upper_priv, void *upper_info,
7610                                    struct netdev_nested_priv *priv,
7611                                    struct netlink_ext_ack *extack)
7612 {
7613         struct netdev_notifier_changeupper_info changeupper_info = {
7614                 .info = {
7615                         .dev = dev,
7616                         .extack = extack,
7617                 },
7618                 .upper_dev = upper_dev,
7619                 .master = master,
7620                 .linking = true,
7621                 .upper_info = upper_info,
7622         };
7623         struct net_device *master_dev;
7624         int ret = 0;
7625
7626         ASSERT_RTNL();
7627
7628         if (dev == upper_dev)
7629                 return -EBUSY;
7630
7631         /* To prevent loops, check if dev is not upper device to upper_dev. */
7632         if (__netdev_has_upper_dev(upper_dev, dev))
7633                 return -EBUSY;
7634
7635         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7636                 return -EMLINK;
7637
7638         if (!master) {
7639                 if (__netdev_has_upper_dev(dev, upper_dev))
7640                         return -EEXIST;
7641         } else {
7642                 master_dev = __netdev_master_upper_dev_get(dev);
7643                 if (master_dev)
7644                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7645         }
7646
7647         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7648                                             &changeupper_info.info);
7649         ret = notifier_to_errno(ret);
7650         if (ret)
7651                 return ret;
7652
7653         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7654                                                    master);
7655         if (ret)
7656                 return ret;
7657
7658         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7659                                             &changeupper_info.info);
7660         ret = notifier_to_errno(ret);
7661         if (ret)
7662                 goto rollback;
7663
7664         __netdev_update_upper_level(dev, NULL);
7665         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7666
7667         __netdev_update_lower_level(upper_dev, priv);
7668         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7669                                     priv);
7670
7671         return 0;
7672
7673 rollback:
7674         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7675
7676         return ret;
7677 }
7678
7679 /**
7680  * netdev_upper_dev_link - Add a link to the upper device
7681  * @dev: device
7682  * @upper_dev: new upper device
7683  * @extack: netlink extended ack
7684  *
7685  * Adds a link to device which is upper to this one. The caller must hold
7686  * the RTNL lock. On a failure a negative errno code is returned.
7687  * On success the reference counts are adjusted and the function
7688  * returns zero.
7689  */
7690 int netdev_upper_dev_link(struct net_device *dev,
7691                           struct net_device *upper_dev,
7692                           struct netlink_ext_ack *extack)
7693 {
7694         struct netdev_nested_priv priv = {
7695                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7696                 .data = NULL,
7697         };
7698
7699         return __netdev_upper_dev_link(dev, upper_dev, false,
7700                                        NULL, NULL, &priv, extack);
7701 }
7702 EXPORT_SYMBOL(netdev_upper_dev_link);
7703
7704 /**
7705  * netdev_master_upper_dev_link - Add a master link to the upper device
7706  * @dev: device
7707  * @upper_dev: new upper device
7708  * @upper_priv: upper device private
7709  * @upper_info: upper info to be passed down via notifier
7710  * @extack: netlink extended ack
7711  *
7712  * Adds a link to device which is upper to this one. In this case, only
7713  * one master upper device can be linked, although other non-master devices
7714  * might be linked as well. The caller must hold the RTNL lock.
7715  * On a failure a negative errno code is returned. On success the reference
7716  * counts are adjusted and the function returns zero.
7717  */
7718 int netdev_master_upper_dev_link(struct net_device *dev,
7719                                  struct net_device *upper_dev,
7720                                  void *upper_priv, void *upper_info,
7721                                  struct netlink_ext_ack *extack)
7722 {
7723         struct netdev_nested_priv priv = {
7724                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7725                 .data = NULL,
7726         };
7727
7728         return __netdev_upper_dev_link(dev, upper_dev, true,
7729                                        upper_priv, upper_info, &priv, extack);
7730 }
7731 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7732
7733 static void __netdev_upper_dev_unlink(struct net_device *dev,
7734                                       struct net_device *upper_dev,
7735                                       struct netdev_nested_priv *priv)
7736 {
7737         struct netdev_notifier_changeupper_info changeupper_info = {
7738                 .info = {
7739                         .dev = dev,
7740                 },
7741                 .upper_dev = upper_dev,
7742                 .linking = false,
7743         };
7744
7745         ASSERT_RTNL();
7746
7747         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7748
7749         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7750                                       &changeupper_info.info);
7751
7752         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7753
7754         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7755                                       &changeupper_info.info);
7756
7757         __netdev_update_upper_level(dev, NULL);
7758         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7759
7760         __netdev_update_lower_level(upper_dev, priv);
7761         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7762                                     priv);
7763 }
7764
7765 /**
7766  * netdev_upper_dev_unlink - Removes a link to upper device
7767  * @dev: device
7768  * @upper_dev: new upper device
7769  *
7770  * Removes a link to device which is upper to this one. The caller must hold
7771  * the RTNL lock.
7772  */
7773 void netdev_upper_dev_unlink(struct net_device *dev,
7774                              struct net_device *upper_dev)
7775 {
7776         struct netdev_nested_priv priv = {
7777                 .flags = NESTED_SYNC_TODO,
7778                 .data = NULL,
7779         };
7780
7781         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7782 }
7783 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7784
7785 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7786                                       struct net_device *lower_dev,
7787                                       bool val)
7788 {
7789         struct netdev_adjacent *adj;
7790
7791         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7792         if (adj)
7793                 adj->ignore = val;
7794
7795         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7796         if (adj)
7797                 adj->ignore = val;
7798 }
7799
7800 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7801                                         struct net_device *lower_dev)
7802 {
7803         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7804 }
7805
7806 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7807                                        struct net_device *lower_dev)
7808 {
7809         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7810 }
7811
7812 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7813                                    struct net_device *new_dev,
7814                                    struct net_device *dev,
7815                                    struct netlink_ext_ack *extack)
7816 {
7817         struct netdev_nested_priv priv = {
7818                 .flags = 0,
7819                 .data = NULL,
7820         };
7821         int err;
7822
7823         if (!new_dev)
7824                 return 0;
7825
7826         if (old_dev && new_dev != old_dev)
7827                 netdev_adjacent_dev_disable(dev, old_dev);
7828         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7829                                       extack);
7830         if (err) {
7831                 if (old_dev && new_dev != old_dev)
7832                         netdev_adjacent_dev_enable(dev, old_dev);
7833                 return err;
7834         }
7835
7836         return 0;
7837 }
7838 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7839
7840 void netdev_adjacent_change_commit(struct net_device *old_dev,
7841                                    struct net_device *new_dev,
7842                                    struct net_device *dev)
7843 {
7844         struct netdev_nested_priv priv = {
7845                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7846                 .data = NULL,
7847         };
7848
7849         if (!new_dev || !old_dev)
7850                 return;
7851
7852         if (new_dev == old_dev)
7853                 return;
7854
7855         netdev_adjacent_dev_enable(dev, old_dev);
7856         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7857 }
7858 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7859
7860 void netdev_adjacent_change_abort(struct net_device *old_dev,
7861                                   struct net_device *new_dev,
7862                                   struct net_device *dev)
7863 {
7864         struct netdev_nested_priv priv = {
7865                 .flags = 0,
7866                 .data = NULL,
7867         };
7868
7869         if (!new_dev)
7870                 return;
7871
7872         if (old_dev && new_dev != old_dev)
7873                 netdev_adjacent_dev_enable(dev, old_dev);
7874
7875         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7876 }
7877 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7878
7879 /**
7880  * netdev_bonding_info_change - Dispatch event about slave change
7881  * @dev: device
7882  * @bonding_info: info to dispatch
7883  *
7884  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7885  * The caller must hold the RTNL lock.
7886  */
7887 void netdev_bonding_info_change(struct net_device *dev,
7888                                 struct netdev_bonding_info *bonding_info)
7889 {
7890         struct netdev_notifier_bonding_info info = {
7891                 .info.dev = dev,
7892         };
7893
7894         memcpy(&info.bonding_info, bonding_info,
7895                sizeof(struct netdev_bonding_info));
7896         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7897                                       &info.info);
7898 }
7899 EXPORT_SYMBOL(netdev_bonding_info_change);
7900
7901 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7902                                            struct netlink_ext_ack *extack)
7903 {
7904         struct netdev_notifier_offload_xstats_info info = {
7905                 .info.dev = dev,
7906                 .info.extack = extack,
7907                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7908         };
7909         int err;
7910         int rc;
7911
7912         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7913                                          GFP_KERNEL);
7914         if (!dev->offload_xstats_l3)
7915                 return -ENOMEM;
7916
7917         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7918                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7919                                                   &info.info);
7920         err = notifier_to_errno(rc);
7921         if (err)
7922                 goto free_stats;
7923
7924         return 0;
7925
7926 free_stats:
7927         kfree(dev->offload_xstats_l3);
7928         dev->offload_xstats_l3 = NULL;
7929         return err;
7930 }
7931
7932 int netdev_offload_xstats_enable(struct net_device *dev,
7933                                  enum netdev_offload_xstats_type type,
7934                                  struct netlink_ext_ack *extack)
7935 {
7936         ASSERT_RTNL();
7937
7938         if (netdev_offload_xstats_enabled(dev, type))
7939                 return -EALREADY;
7940
7941         switch (type) {
7942         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7943                 return netdev_offload_xstats_enable_l3(dev, extack);
7944         }
7945
7946         WARN_ON(1);
7947         return -EINVAL;
7948 }
7949 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7950
7951 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7952 {
7953         struct netdev_notifier_offload_xstats_info info = {
7954                 .info.dev = dev,
7955                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7956         };
7957
7958         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7959                                       &info.info);
7960         kfree(dev->offload_xstats_l3);
7961         dev->offload_xstats_l3 = NULL;
7962 }
7963
7964 int netdev_offload_xstats_disable(struct net_device *dev,
7965                                   enum netdev_offload_xstats_type type)
7966 {
7967         ASSERT_RTNL();
7968
7969         if (!netdev_offload_xstats_enabled(dev, type))
7970                 return -EALREADY;
7971
7972         switch (type) {
7973         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7974                 netdev_offload_xstats_disable_l3(dev);
7975                 return 0;
7976         }
7977
7978         WARN_ON(1);
7979         return -EINVAL;
7980 }
7981 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7982
7983 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7984 {
7985         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7986 }
7987
7988 static struct rtnl_hw_stats64 *
7989 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7990                               enum netdev_offload_xstats_type type)
7991 {
7992         switch (type) {
7993         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7994                 return dev->offload_xstats_l3;
7995         }
7996
7997         WARN_ON(1);
7998         return NULL;
7999 }
8000
8001 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8002                                    enum netdev_offload_xstats_type type)
8003 {
8004         ASSERT_RTNL();
8005
8006         return netdev_offload_xstats_get_ptr(dev, type);
8007 }
8008 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8009
8010 struct netdev_notifier_offload_xstats_ru {
8011         bool used;
8012 };
8013
8014 struct netdev_notifier_offload_xstats_rd {
8015         struct rtnl_hw_stats64 stats;
8016         bool used;
8017 };
8018
8019 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8020                                   const struct rtnl_hw_stats64 *src)
8021 {
8022         dest->rx_packets          += src->rx_packets;
8023         dest->tx_packets          += src->tx_packets;
8024         dest->rx_bytes            += src->rx_bytes;
8025         dest->tx_bytes            += src->tx_bytes;
8026         dest->rx_errors           += src->rx_errors;
8027         dest->tx_errors           += src->tx_errors;
8028         dest->rx_dropped          += src->rx_dropped;
8029         dest->tx_dropped          += src->tx_dropped;
8030         dest->multicast           += src->multicast;
8031 }
8032
8033 static int netdev_offload_xstats_get_used(struct net_device *dev,
8034                                           enum netdev_offload_xstats_type type,
8035                                           bool *p_used,
8036                                           struct netlink_ext_ack *extack)
8037 {
8038         struct netdev_notifier_offload_xstats_ru report_used = {};
8039         struct netdev_notifier_offload_xstats_info info = {
8040                 .info.dev = dev,
8041                 .info.extack = extack,
8042                 .type = type,
8043                 .report_used = &report_used,
8044         };
8045         int rc;
8046
8047         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8048         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8049                                            &info.info);
8050         *p_used = report_used.used;
8051         return notifier_to_errno(rc);
8052 }
8053
8054 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8055                                            enum netdev_offload_xstats_type type,
8056                                            struct rtnl_hw_stats64 *p_stats,
8057                                            bool *p_used,
8058                                            struct netlink_ext_ack *extack)
8059 {
8060         struct netdev_notifier_offload_xstats_rd report_delta = {};
8061         struct netdev_notifier_offload_xstats_info info = {
8062                 .info.dev = dev,
8063                 .info.extack = extack,
8064                 .type = type,
8065                 .report_delta = &report_delta,
8066         };
8067         struct rtnl_hw_stats64 *stats;
8068         int rc;
8069
8070         stats = netdev_offload_xstats_get_ptr(dev, type);
8071         if (WARN_ON(!stats))
8072                 return -EINVAL;
8073
8074         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8075                                            &info.info);
8076
8077         /* Cache whatever we got, even if there was an error, otherwise the
8078          * successful stats retrievals would get lost.
8079          */
8080         netdev_hw_stats64_add(stats, &report_delta.stats);
8081
8082         if (p_stats)
8083                 *p_stats = *stats;
8084         *p_used = report_delta.used;
8085
8086         return notifier_to_errno(rc);
8087 }
8088
8089 int netdev_offload_xstats_get(struct net_device *dev,
8090                               enum netdev_offload_xstats_type type,
8091                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8092                               struct netlink_ext_ack *extack)
8093 {
8094         ASSERT_RTNL();
8095
8096         if (p_stats)
8097                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8098                                                        p_used, extack);
8099         else
8100                 return netdev_offload_xstats_get_used(dev, type, p_used,
8101                                                       extack);
8102 }
8103 EXPORT_SYMBOL(netdev_offload_xstats_get);
8104
8105 void
8106 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8107                                    const struct rtnl_hw_stats64 *stats)
8108 {
8109         report_delta->used = true;
8110         netdev_hw_stats64_add(&report_delta->stats, stats);
8111 }
8112 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8113
8114 void
8115 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8116 {
8117         report_used->used = true;
8118 }
8119 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8120
8121 void netdev_offload_xstats_push_delta(struct net_device *dev,
8122                                       enum netdev_offload_xstats_type type,
8123                                       const struct rtnl_hw_stats64 *p_stats)
8124 {
8125         struct rtnl_hw_stats64 *stats;
8126
8127         ASSERT_RTNL();
8128
8129         stats = netdev_offload_xstats_get_ptr(dev, type);
8130         if (WARN_ON(!stats))
8131                 return;
8132
8133         netdev_hw_stats64_add(stats, p_stats);
8134 }
8135 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8136
8137 /**
8138  * netdev_get_xmit_slave - Get the xmit slave of master device
8139  * @dev: device
8140  * @skb: The packet
8141  * @all_slaves: assume all the slaves are active
8142  *
8143  * The reference counters are not incremented so the caller must be
8144  * careful with locks. The caller must hold RCU lock.
8145  * %NULL is returned if no slave is found.
8146  */
8147
8148 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8149                                          struct sk_buff *skb,
8150                                          bool all_slaves)
8151 {
8152         const struct net_device_ops *ops = dev->netdev_ops;
8153
8154         if (!ops->ndo_get_xmit_slave)
8155                 return NULL;
8156         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8157 }
8158 EXPORT_SYMBOL(netdev_get_xmit_slave);
8159
8160 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8161                                                   struct sock *sk)
8162 {
8163         const struct net_device_ops *ops = dev->netdev_ops;
8164
8165         if (!ops->ndo_sk_get_lower_dev)
8166                 return NULL;
8167         return ops->ndo_sk_get_lower_dev(dev, sk);
8168 }
8169
8170 /**
8171  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8172  * @dev: device
8173  * @sk: the socket
8174  *
8175  * %NULL is returned if no lower device is found.
8176  */
8177
8178 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8179                                             struct sock *sk)
8180 {
8181         struct net_device *lower;
8182
8183         lower = netdev_sk_get_lower_dev(dev, sk);
8184         while (lower) {
8185                 dev = lower;
8186                 lower = netdev_sk_get_lower_dev(dev, sk);
8187         }
8188
8189         return dev;
8190 }
8191 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8192
8193 static void netdev_adjacent_add_links(struct net_device *dev)
8194 {
8195         struct netdev_adjacent *iter;
8196
8197         struct net *net = dev_net(dev);
8198
8199         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8200                 if (!net_eq(net, dev_net(iter->dev)))
8201                         continue;
8202                 netdev_adjacent_sysfs_add(iter->dev, dev,
8203                                           &iter->dev->adj_list.lower);
8204                 netdev_adjacent_sysfs_add(dev, iter->dev,
8205                                           &dev->adj_list.upper);
8206         }
8207
8208         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8209                 if (!net_eq(net, dev_net(iter->dev)))
8210                         continue;
8211                 netdev_adjacent_sysfs_add(iter->dev, dev,
8212                                           &iter->dev->adj_list.upper);
8213                 netdev_adjacent_sysfs_add(dev, iter->dev,
8214                                           &dev->adj_list.lower);
8215         }
8216 }
8217
8218 static void netdev_adjacent_del_links(struct net_device *dev)
8219 {
8220         struct netdev_adjacent *iter;
8221
8222         struct net *net = dev_net(dev);
8223
8224         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8225                 if (!net_eq(net, dev_net(iter->dev)))
8226                         continue;
8227                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8228                                           &iter->dev->adj_list.lower);
8229                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8230                                           &dev->adj_list.upper);
8231         }
8232
8233         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8234                 if (!net_eq(net, dev_net(iter->dev)))
8235                         continue;
8236                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8237                                           &iter->dev->adj_list.upper);
8238                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8239                                           &dev->adj_list.lower);
8240         }
8241 }
8242
8243 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8244 {
8245         struct netdev_adjacent *iter;
8246
8247         struct net *net = dev_net(dev);
8248
8249         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8250                 if (!net_eq(net, dev_net(iter->dev)))
8251                         continue;
8252                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8253                                           &iter->dev->adj_list.lower);
8254                 netdev_adjacent_sysfs_add(iter->dev, dev,
8255                                           &iter->dev->adj_list.lower);
8256         }
8257
8258         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8259                 if (!net_eq(net, dev_net(iter->dev)))
8260                         continue;
8261                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8262                                           &iter->dev->adj_list.upper);
8263                 netdev_adjacent_sysfs_add(iter->dev, dev,
8264                                           &iter->dev->adj_list.upper);
8265         }
8266 }
8267
8268 void *netdev_lower_dev_get_private(struct net_device *dev,
8269                                    struct net_device *lower_dev)
8270 {
8271         struct netdev_adjacent *lower;
8272
8273         if (!lower_dev)
8274                 return NULL;
8275         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8276         if (!lower)
8277                 return NULL;
8278
8279         return lower->private;
8280 }
8281 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8282
8283
8284 /**
8285  * netdev_lower_state_changed - Dispatch event about lower device state change
8286  * @lower_dev: device
8287  * @lower_state_info: state to dispatch
8288  *
8289  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8290  * The caller must hold the RTNL lock.
8291  */
8292 void netdev_lower_state_changed(struct net_device *lower_dev,
8293                                 void *lower_state_info)
8294 {
8295         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8296                 .info.dev = lower_dev,
8297         };
8298
8299         ASSERT_RTNL();
8300         changelowerstate_info.lower_state_info = lower_state_info;
8301         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8302                                       &changelowerstate_info.info);
8303 }
8304 EXPORT_SYMBOL(netdev_lower_state_changed);
8305
8306 static void dev_change_rx_flags(struct net_device *dev, int flags)
8307 {
8308         const struct net_device_ops *ops = dev->netdev_ops;
8309
8310         if (ops->ndo_change_rx_flags)
8311                 ops->ndo_change_rx_flags(dev, flags);
8312 }
8313
8314 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8315 {
8316         unsigned int old_flags = dev->flags;
8317         kuid_t uid;
8318         kgid_t gid;
8319
8320         ASSERT_RTNL();
8321
8322         dev->flags |= IFF_PROMISC;
8323         dev->promiscuity += inc;
8324         if (dev->promiscuity == 0) {
8325                 /*
8326                  * Avoid overflow.
8327                  * If inc causes overflow, untouch promisc and return error.
8328                  */
8329                 if (inc < 0)
8330                         dev->flags &= ~IFF_PROMISC;
8331                 else {
8332                         dev->promiscuity -= inc;
8333                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8334                         return -EOVERFLOW;
8335                 }
8336         }
8337         if (dev->flags != old_flags) {
8338                 pr_info("device %s %s promiscuous mode\n",
8339                         dev->name,
8340                         dev->flags & IFF_PROMISC ? "entered" : "left");
8341                 if (audit_enabled) {
8342                         current_uid_gid(&uid, &gid);
8343                         audit_log(audit_context(), GFP_ATOMIC,
8344                                   AUDIT_ANOM_PROMISCUOUS,
8345                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8346                                   dev->name, (dev->flags & IFF_PROMISC),
8347                                   (old_flags & IFF_PROMISC),
8348                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8349                                   from_kuid(&init_user_ns, uid),
8350                                   from_kgid(&init_user_ns, gid),
8351                                   audit_get_sessionid(current));
8352                 }
8353
8354                 dev_change_rx_flags(dev, IFF_PROMISC);
8355         }
8356         if (notify)
8357                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8358         return 0;
8359 }
8360
8361 /**
8362  *      dev_set_promiscuity     - update promiscuity count on a device
8363  *      @dev: device
8364  *      @inc: modifier
8365  *
8366  *      Add or remove promiscuity from a device. While the count in the device
8367  *      remains above zero the interface remains promiscuous. Once it hits zero
8368  *      the device reverts back to normal filtering operation. A negative inc
8369  *      value is used to drop promiscuity on the device.
8370  *      Return 0 if successful or a negative errno code on error.
8371  */
8372 int dev_set_promiscuity(struct net_device *dev, int inc)
8373 {
8374         unsigned int old_flags = dev->flags;
8375         int err;
8376
8377         err = __dev_set_promiscuity(dev, inc, true);
8378         if (err < 0)
8379                 return err;
8380         if (dev->flags != old_flags)
8381                 dev_set_rx_mode(dev);
8382         return err;
8383 }
8384 EXPORT_SYMBOL(dev_set_promiscuity);
8385
8386 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8387 {
8388         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8389
8390         ASSERT_RTNL();
8391
8392         dev->flags |= IFF_ALLMULTI;
8393         dev->allmulti += inc;
8394         if (dev->allmulti == 0) {
8395                 /*
8396                  * Avoid overflow.
8397                  * If inc causes overflow, untouch allmulti and return error.
8398                  */
8399                 if (inc < 0)
8400                         dev->flags &= ~IFF_ALLMULTI;
8401                 else {
8402                         dev->allmulti -= inc;
8403                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8404                         return -EOVERFLOW;
8405                 }
8406         }
8407         if (dev->flags ^ old_flags) {
8408                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8409                 dev_set_rx_mode(dev);
8410                 if (notify)
8411                         __dev_notify_flags(dev, old_flags,
8412                                            dev->gflags ^ old_gflags);
8413         }
8414         return 0;
8415 }
8416
8417 /**
8418  *      dev_set_allmulti        - update allmulti count on a device
8419  *      @dev: device
8420  *      @inc: modifier
8421  *
8422  *      Add or remove reception of all multicast frames to a device. While the
8423  *      count in the device remains above zero the interface remains listening
8424  *      to all interfaces. Once it hits zero the device reverts back to normal
8425  *      filtering operation. A negative @inc value is used to drop the counter
8426  *      when releasing a resource needing all multicasts.
8427  *      Return 0 if successful or a negative errno code on error.
8428  */
8429
8430 int dev_set_allmulti(struct net_device *dev, int inc)
8431 {
8432         return __dev_set_allmulti(dev, inc, true);
8433 }
8434 EXPORT_SYMBOL(dev_set_allmulti);
8435
8436 /*
8437  *      Upload unicast and multicast address lists to device and
8438  *      configure RX filtering. When the device doesn't support unicast
8439  *      filtering it is put in promiscuous mode while unicast addresses
8440  *      are present.
8441  */
8442 void __dev_set_rx_mode(struct net_device *dev)
8443 {
8444         const struct net_device_ops *ops = dev->netdev_ops;
8445
8446         /* dev_open will call this function so the list will stay sane. */
8447         if (!(dev->flags&IFF_UP))
8448                 return;
8449
8450         if (!netif_device_present(dev))
8451                 return;
8452
8453         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8454                 /* Unicast addresses changes may only happen under the rtnl,
8455                  * therefore calling __dev_set_promiscuity here is safe.
8456                  */
8457                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8458                         __dev_set_promiscuity(dev, 1, false);
8459                         dev->uc_promisc = true;
8460                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8461                         __dev_set_promiscuity(dev, -1, false);
8462                         dev->uc_promisc = false;
8463                 }
8464         }
8465
8466         if (ops->ndo_set_rx_mode)
8467                 ops->ndo_set_rx_mode(dev);
8468 }
8469
8470 void dev_set_rx_mode(struct net_device *dev)
8471 {
8472         netif_addr_lock_bh(dev);
8473         __dev_set_rx_mode(dev);
8474         netif_addr_unlock_bh(dev);
8475 }
8476
8477 /**
8478  *      dev_get_flags - get flags reported to userspace
8479  *      @dev: device
8480  *
8481  *      Get the combination of flag bits exported through APIs to userspace.
8482  */
8483 unsigned int dev_get_flags(const struct net_device *dev)
8484 {
8485         unsigned int flags;
8486
8487         flags = (dev->flags & ~(IFF_PROMISC |
8488                                 IFF_ALLMULTI |
8489                                 IFF_RUNNING |
8490                                 IFF_LOWER_UP |
8491                                 IFF_DORMANT)) |
8492                 (dev->gflags & (IFF_PROMISC |
8493                                 IFF_ALLMULTI));
8494
8495         if (netif_running(dev)) {
8496                 if (netif_oper_up(dev))
8497                         flags |= IFF_RUNNING;
8498                 if (netif_carrier_ok(dev))
8499                         flags |= IFF_LOWER_UP;
8500                 if (netif_dormant(dev))
8501                         flags |= IFF_DORMANT;
8502         }
8503
8504         return flags;
8505 }
8506 EXPORT_SYMBOL(dev_get_flags);
8507
8508 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8509                        struct netlink_ext_ack *extack)
8510 {
8511         unsigned int old_flags = dev->flags;
8512         int ret;
8513
8514         ASSERT_RTNL();
8515
8516         /*
8517          *      Set the flags on our device.
8518          */
8519
8520         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8521                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8522                                IFF_AUTOMEDIA)) |
8523                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8524                                     IFF_ALLMULTI));
8525
8526         /*
8527          *      Load in the correct multicast list now the flags have changed.
8528          */
8529
8530         if ((old_flags ^ flags) & IFF_MULTICAST)
8531                 dev_change_rx_flags(dev, IFF_MULTICAST);
8532
8533         dev_set_rx_mode(dev);
8534
8535         /*
8536          *      Have we downed the interface. We handle IFF_UP ourselves
8537          *      according to user attempts to set it, rather than blindly
8538          *      setting it.
8539          */
8540
8541         ret = 0;
8542         if ((old_flags ^ flags) & IFF_UP) {
8543                 if (old_flags & IFF_UP)
8544                         __dev_close(dev);
8545                 else
8546                         ret = __dev_open(dev, extack);
8547         }
8548
8549         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8550                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8551                 unsigned int old_flags = dev->flags;
8552
8553                 dev->gflags ^= IFF_PROMISC;
8554
8555                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8556                         if (dev->flags != old_flags)
8557                                 dev_set_rx_mode(dev);
8558         }
8559
8560         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8561          * is important. Some (broken) drivers set IFF_PROMISC, when
8562          * IFF_ALLMULTI is requested not asking us and not reporting.
8563          */
8564         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8565                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8566
8567                 dev->gflags ^= IFF_ALLMULTI;
8568                 __dev_set_allmulti(dev, inc, false);
8569         }
8570
8571         return ret;
8572 }
8573
8574 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8575                         unsigned int gchanges)
8576 {
8577         unsigned int changes = dev->flags ^ old_flags;
8578
8579         if (gchanges)
8580                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8581
8582         if (changes & IFF_UP) {
8583                 if (dev->flags & IFF_UP)
8584                         call_netdevice_notifiers(NETDEV_UP, dev);
8585                 else
8586                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8587         }
8588
8589         if (dev->flags & IFF_UP &&
8590             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8591                 struct netdev_notifier_change_info change_info = {
8592                         .info = {
8593                                 .dev = dev,
8594                         },
8595                         .flags_changed = changes,
8596                 };
8597
8598                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8599         }
8600 }
8601
8602 /**
8603  *      dev_change_flags - change device settings
8604  *      @dev: device
8605  *      @flags: device state flags
8606  *      @extack: netlink extended ack
8607  *
8608  *      Change settings on device based state flags. The flags are
8609  *      in the userspace exported format.
8610  */
8611 int dev_change_flags(struct net_device *dev, unsigned int flags,
8612                      struct netlink_ext_ack *extack)
8613 {
8614         int ret;
8615         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8616
8617         ret = __dev_change_flags(dev, flags, extack);
8618         if (ret < 0)
8619                 return ret;
8620
8621         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8622         __dev_notify_flags(dev, old_flags, changes);
8623         return ret;
8624 }
8625 EXPORT_SYMBOL(dev_change_flags);
8626
8627 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8628 {
8629         const struct net_device_ops *ops = dev->netdev_ops;
8630
8631         if (ops->ndo_change_mtu)
8632                 return ops->ndo_change_mtu(dev, new_mtu);
8633
8634         /* Pairs with all the lockless reads of dev->mtu in the stack */
8635         WRITE_ONCE(dev->mtu, new_mtu);
8636         return 0;
8637 }
8638 EXPORT_SYMBOL(__dev_set_mtu);
8639
8640 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8641                      struct netlink_ext_ack *extack)
8642 {
8643         /* MTU must be positive, and in range */
8644         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8645                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8646                 return -EINVAL;
8647         }
8648
8649         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8650                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8651                 return -EINVAL;
8652         }
8653         return 0;
8654 }
8655
8656 /**
8657  *      dev_set_mtu_ext - Change maximum transfer unit
8658  *      @dev: device
8659  *      @new_mtu: new transfer unit
8660  *      @extack: netlink extended ack
8661  *
8662  *      Change the maximum transfer size of the network device.
8663  */
8664 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8665                     struct netlink_ext_ack *extack)
8666 {
8667         int err, orig_mtu;
8668
8669         if (new_mtu == dev->mtu)
8670                 return 0;
8671
8672         err = dev_validate_mtu(dev, new_mtu, extack);
8673         if (err)
8674                 return err;
8675
8676         if (!netif_device_present(dev))
8677                 return -ENODEV;
8678
8679         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8680         err = notifier_to_errno(err);
8681         if (err)
8682                 return err;
8683
8684         orig_mtu = dev->mtu;
8685         err = __dev_set_mtu(dev, new_mtu);
8686
8687         if (!err) {
8688                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8689                                                    orig_mtu);
8690                 err = notifier_to_errno(err);
8691                 if (err) {
8692                         /* setting mtu back and notifying everyone again,
8693                          * so that they have a chance to revert changes.
8694                          */
8695                         __dev_set_mtu(dev, orig_mtu);
8696                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8697                                                      new_mtu);
8698                 }
8699         }
8700         return err;
8701 }
8702
8703 int dev_set_mtu(struct net_device *dev, int new_mtu)
8704 {
8705         struct netlink_ext_ack extack;
8706         int err;
8707
8708         memset(&extack, 0, sizeof(extack));
8709         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8710         if (err && extack._msg)
8711                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8712         return err;
8713 }
8714 EXPORT_SYMBOL(dev_set_mtu);
8715
8716 /**
8717  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8718  *      @dev: device
8719  *      @new_len: new tx queue length
8720  */
8721 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8722 {
8723         unsigned int orig_len = dev->tx_queue_len;
8724         int res;
8725
8726         if (new_len != (unsigned int)new_len)
8727                 return -ERANGE;
8728
8729         if (new_len != orig_len) {
8730                 dev->tx_queue_len = new_len;
8731                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8732                 res = notifier_to_errno(res);
8733                 if (res)
8734                         goto err_rollback;
8735                 res = dev_qdisc_change_tx_queue_len(dev);
8736                 if (res)
8737                         goto err_rollback;
8738         }
8739
8740         return 0;
8741
8742 err_rollback:
8743         netdev_err(dev, "refused to change device tx_queue_len\n");
8744         dev->tx_queue_len = orig_len;
8745         return res;
8746 }
8747
8748 /**
8749  *      dev_set_group - Change group this device belongs to
8750  *      @dev: device
8751  *      @new_group: group this device should belong to
8752  */
8753 void dev_set_group(struct net_device *dev, int new_group)
8754 {
8755         dev->group = new_group;
8756 }
8757
8758 /**
8759  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8760  *      @dev: device
8761  *      @addr: new address
8762  *      @extack: netlink extended ack
8763  */
8764 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8765                               struct netlink_ext_ack *extack)
8766 {
8767         struct netdev_notifier_pre_changeaddr_info info = {
8768                 .info.dev = dev,
8769                 .info.extack = extack,
8770                 .dev_addr = addr,
8771         };
8772         int rc;
8773
8774         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8775         return notifier_to_errno(rc);
8776 }
8777 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8778
8779 /**
8780  *      dev_set_mac_address - Change Media Access Control Address
8781  *      @dev: device
8782  *      @sa: new address
8783  *      @extack: netlink extended ack
8784  *
8785  *      Change the hardware (MAC) address of the device
8786  */
8787 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8788                         struct netlink_ext_ack *extack)
8789 {
8790         const struct net_device_ops *ops = dev->netdev_ops;
8791         int err;
8792
8793         if (!ops->ndo_set_mac_address)
8794                 return -EOPNOTSUPP;
8795         if (sa->sa_family != dev->type)
8796                 return -EINVAL;
8797         if (!netif_device_present(dev))
8798                 return -ENODEV;
8799         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8800         if (err)
8801                 return err;
8802         err = ops->ndo_set_mac_address(dev, sa);
8803         if (err)
8804                 return err;
8805         dev->addr_assign_type = NET_ADDR_SET;
8806         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8807         add_device_randomness(dev->dev_addr, dev->addr_len);
8808         return 0;
8809 }
8810 EXPORT_SYMBOL(dev_set_mac_address);
8811
8812 static DECLARE_RWSEM(dev_addr_sem);
8813
8814 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8815                              struct netlink_ext_ack *extack)
8816 {
8817         int ret;
8818
8819         down_write(&dev_addr_sem);
8820         ret = dev_set_mac_address(dev, sa, extack);
8821         up_write(&dev_addr_sem);
8822         return ret;
8823 }
8824 EXPORT_SYMBOL(dev_set_mac_address_user);
8825
8826 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8827 {
8828         size_t size = sizeof(sa->sa_data);
8829         struct net_device *dev;
8830         int ret = 0;
8831
8832         down_read(&dev_addr_sem);
8833         rcu_read_lock();
8834
8835         dev = dev_get_by_name_rcu(net, dev_name);
8836         if (!dev) {
8837                 ret = -ENODEV;
8838                 goto unlock;
8839         }
8840         if (!dev->addr_len)
8841                 memset(sa->sa_data, 0, size);
8842         else
8843                 memcpy(sa->sa_data, dev->dev_addr,
8844                        min_t(size_t, size, dev->addr_len));
8845         sa->sa_family = dev->type;
8846
8847 unlock:
8848         rcu_read_unlock();
8849         up_read(&dev_addr_sem);
8850         return ret;
8851 }
8852 EXPORT_SYMBOL(dev_get_mac_address);
8853
8854 /**
8855  *      dev_change_carrier - Change device carrier
8856  *      @dev: device
8857  *      @new_carrier: new value
8858  *
8859  *      Change device carrier
8860  */
8861 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8862 {
8863         const struct net_device_ops *ops = dev->netdev_ops;
8864
8865         if (!ops->ndo_change_carrier)
8866                 return -EOPNOTSUPP;
8867         if (!netif_device_present(dev))
8868                 return -ENODEV;
8869         return ops->ndo_change_carrier(dev, new_carrier);
8870 }
8871
8872 /**
8873  *      dev_get_phys_port_id - Get device physical port ID
8874  *      @dev: device
8875  *      @ppid: port ID
8876  *
8877  *      Get device physical port ID
8878  */
8879 int dev_get_phys_port_id(struct net_device *dev,
8880                          struct netdev_phys_item_id *ppid)
8881 {
8882         const struct net_device_ops *ops = dev->netdev_ops;
8883
8884         if (!ops->ndo_get_phys_port_id)
8885                 return -EOPNOTSUPP;
8886         return ops->ndo_get_phys_port_id(dev, ppid);
8887 }
8888
8889 /**
8890  *      dev_get_phys_port_name - Get device physical port name
8891  *      @dev: device
8892  *      @name: port name
8893  *      @len: limit of bytes to copy to name
8894  *
8895  *      Get device physical port name
8896  */
8897 int dev_get_phys_port_name(struct net_device *dev,
8898                            char *name, size_t len)
8899 {
8900         const struct net_device_ops *ops = dev->netdev_ops;
8901         int err;
8902
8903         if (ops->ndo_get_phys_port_name) {
8904                 err = ops->ndo_get_phys_port_name(dev, name, len);
8905                 if (err != -EOPNOTSUPP)
8906                         return err;
8907         }
8908         return devlink_compat_phys_port_name_get(dev, name, len);
8909 }
8910
8911 /**
8912  *      dev_get_port_parent_id - Get the device's port parent identifier
8913  *      @dev: network device
8914  *      @ppid: pointer to a storage for the port's parent identifier
8915  *      @recurse: allow/disallow recursion to lower devices
8916  *
8917  *      Get the devices's port parent identifier
8918  */
8919 int dev_get_port_parent_id(struct net_device *dev,
8920                            struct netdev_phys_item_id *ppid,
8921                            bool recurse)
8922 {
8923         const struct net_device_ops *ops = dev->netdev_ops;
8924         struct netdev_phys_item_id first = { };
8925         struct net_device *lower_dev;
8926         struct list_head *iter;
8927         int err;
8928
8929         if (ops->ndo_get_port_parent_id) {
8930                 err = ops->ndo_get_port_parent_id(dev, ppid);
8931                 if (err != -EOPNOTSUPP)
8932                         return err;
8933         }
8934
8935         err = devlink_compat_switch_id_get(dev, ppid);
8936         if (!recurse || err != -EOPNOTSUPP)
8937                 return err;
8938
8939         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8940                 err = dev_get_port_parent_id(lower_dev, ppid, true);
8941                 if (err)
8942                         break;
8943                 if (!first.id_len)
8944                         first = *ppid;
8945                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8946                         return -EOPNOTSUPP;
8947         }
8948
8949         return err;
8950 }
8951 EXPORT_SYMBOL(dev_get_port_parent_id);
8952
8953 /**
8954  *      netdev_port_same_parent_id - Indicate if two network devices have
8955  *      the same port parent identifier
8956  *      @a: first network device
8957  *      @b: second network device
8958  */
8959 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8960 {
8961         struct netdev_phys_item_id a_id = { };
8962         struct netdev_phys_item_id b_id = { };
8963
8964         if (dev_get_port_parent_id(a, &a_id, true) ||
8965             dev_get_port_parent_id(b, &b_id, true))
8966                 return false;
8967
8968         return netdev_phys_item_id_same(&a_id, &b_id);
8969 }
8970 EXPORT_SYMBOL(netdev_port_same_parent_id);
8971
8972 /**
8973  *      dev_change_proto_down - set carrier according to proto_down.
8974  *
8975  *      @dev: device
8976  *      @proto_down: new value
8977  */
8978 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8979 {
8980         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8981                 return -EOPNOTSUPP;
8982         if (!netif_device_present(dev))
8983                 return -ENODEV;
8984         if (proto_down)
8985                 netif_carrier_off(dev);
8986         else
8987                 netif_carrier_on(dev);
8988         dev->proto_down = proto_down;
8989         return 0;
8990 }
8991
8992 /**
8993  *      dev_change_proto_down_reason - proto down reason
8994  *
8995  *      @dev: device
8996  *      @mask: proto down mask
8997  *      @value: proto down value
8998  */
8999 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9000                                   u32 value)
9001 {
9002         int b;
9003
9004         if (!mask) {
9005                 dev->proto_down_reason = value;
9006         } else {
9007                 for_each_set_bit(b, &mask, 32) {
9008                         if (value & (1 << b))
9009                                 dev->proto_down_reason |= BIT(b);
9010                         else
9011                                 dev->proto_down_reason &= ~BIT(b);
9012                 }
9013         }
9014 }
9015
9016 struct bpf_xdp_link {
9017         struct bpf_link link;
9018         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9019         int flags;
9020 };
9021
9022 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9023 {
9024         if (flags & XDP_FLAGS_HW_MODE)
9025                 return XDP_MODE_HW;
9026         if (flags & XDP_FLAGS_DRV_MODE)
9027                 return XDP_MODE_DRV;
9028         if (flags & XDP_FLAGS_SKB_MODE)
9029                 return XDP_MODE_SKB;
9030         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9031 }
9032
9033 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9034 {
9035         switch (mode) {
9036         case XDP_MODE_SKB:
9037                 return generic_xdp_install;
9038         case XDP_MODE_DRV:
9039         case XDP_MODE_HW:
9040                 return dev->netdev_ops->ndo_bpf;
9041         default:
9042                 return NULL;
9043         }
9044 }
9045
9046 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9047                                          enum bpf_xdp_mode mode)
9048 {
9049         return dev->xdp_state[mode].link;
9050 }
9051
9052 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9053                                      enum bpf_xdp_mode mode)
9054 {
9055         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9056
9057         if (link)
9058                 return link->link.prog;
9059         return dev->xdp_state[mode].prog;
9060 }
9061
9062 u8 dev_xdp_prog_count(struct net_device *dev)
9063 {
9064         u8 count = 0;
9065         int i;
9066
9067         for (i = 0; i < __MAX_XDP_MODE; i++)
9068                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9069                         count++;
9070         return count;
9071 }
9072 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9073
9074 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9075 {
9076         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9077
9078         return prog ? prog->aux->id : 0;
9079 }
9080
9081 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9082                              struct bpf_xdp_link *link)
9083 {
9084         dev->xdp_state[mode].link = link;
9085         dev->xdp_state[mode].prog = NULL;
9086 }
9087
9088 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9089                              struct bpf_prog *prog)
9090 {
9091         dev->xdp_state[mode].link = NULL;
9092         dev->xdp_state[mode].prog = prog;
9093 }
9094
9095 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9096                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9097                            u32 flags, struct bpf_prog *prog)
9098 {
9099         struct netdev_bpf xdp;
9100         int err;
9101
9102         memset(&xdp, 0, sizeof(xdp));
9103         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9104         xdp.extack = extack;
9105         xdp.flags = flags;
9106         xdp.prog = prog;
9107
9108         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9109          * "moved" into driver), so they don't increment it on their own, but
9110          * they do decrement refcnt when program is detached or replaced.
9111          * Given net_device also owns link/prog, we need to bump refcnt here
9112          * to prevent drivers from underflowing it.
9113          */
9114         if (prog)
9115                 bpf_prog_inc(prog);
9116         err = bpf_op(dev, &xdp);
9117         if (err) {
9118                 if (prog)
9119                         bpf_prog_put(prog);
9120                 return err;
9121         }
9122
9123         if (mode != XDP_MODE_HW)
9124                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9125
9126         return 0;
9127 }
9128
9129 static void dev_xdp_uninstall(struct net_device *dev)
9130 {
9131         struct bpf_xdp_link *link;
9132         struct bpf_prog *prog;
9133         enum bpf_xdp_mode mode;
9134         bpf_op_t bpf_op;
9135
9136         ASSERT_RTNL();
9137
9138         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9139                 prog = dev_xdp_prog(dev, mode);
9140                 if (!prog)
9141                         continue;
9142
9143                 bpf_op = dev_xdp_bpf_op(dev, mode);
9144                 if (!bpf_op)
9145                         continue;
9146
9147                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9148
9149                 /* auto-detach link from net device */
9150                 link = dev_xdp_link(dev, mode);
9151                 if (link)
9152                         link->dev = NULL;
9153                 else
9154                         bpf_prog_put(prog);
9155
9156                 dev_xdp_set_link(dev, mode, NULL);
9157         }
9158 }
9159
9160 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9161                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9162                           struct bpf_prog *old_prog, u32 flags)
9163 {
9164         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9165         struct bpf_prog *cur_prog;
9166         struct net_device *upper;
9167         struct list_head *iter;
9168         enum bpf_xdp_mode mode;
9169         bpf_op_t bpf_op;
9170         int err;
9171
9172         ASSERT_RTNL();
9173
9174         /* either link or prog attachment, never both */
9175         if (link && (new_prog || old_prog))
9176                 return -EINVAL;
9177         /* link supports only XDP mode flags */
9178         if (link && (flags & ~XDP_FLAGS_MODES)) {
9179                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9180                 return -EINVAL;
9181         }
9182         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9183         if (num_modes > 1) {
9184                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9185                 return -EINVAL;
9186         }
9187         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9188         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9189                 NL_SET_ERR_MSG(extack,
9190                                "More than one program loaded, unset mode is ambiguous");
9191                 return -EINVAL;
9192         }
9193         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9194         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9195                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9196                 return -EINVAL;
9197         }
9198
9199         mode = dev_xdp_mode(dev, flags);
9200         /* can't replace attached link */
9201         if (dev_xdp_link(dev, mode)) {
9202                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9203                 return -EBUSY;
9204         }
9205
9206         /* don't allow if an upper device already has a program */
9207         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9208                 if (dev_xdp_prog_count(upper) > 0) {
9209                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9210                         return -EEXIST;
9211                 }
9212         }
9213
9214         cur_prog = dev_xdp_prog(dev, mode);
9215         /* can't replace attached prog with link */
9216         if (link && cur_prog) {
9217                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9218                 return -EBUSY;
9219         }
9220         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9221                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9222                 return -EEXIST;
9223         }
9224
9225         /* put effective new program into new_prog */
9226         if (link)
9227                 new_prog = link->link.prog;
9228
9229         if (new_prog) {
9230                 bool offload = mode == XDP_MODE_HW;
9231                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9232                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9233
9234                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9235                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9236                         return -EBUSY;
9237                 }
9238                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9239                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9240                         return -EEXIST;
9241                 }
9242                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9243                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9244                         return -EINVAL;
9245                 }
9246                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9247                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9248                         return -EINVAL;
9249                 }
9250                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9251                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9252                         return -EINVAL;
9253                 }
9254         }
9255
9256         /* don't call drivers if the effective program didn't change */
9257         if (new_prog != cur_prog) {
9258                 bpf_op = dev_xdp_bpf_op(dev, mode);
9259                 if (!bpf_op) {
9260                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9261                         return -EOPNOTSUPP;
9262                 }
9263
9264                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9265                 if (err)
9266                         return err;
9267         }
9268
9269         if (link)
9270                 dev_xdp_set_link(dev, mode, link);
9271         else
9272                 dev_xdp_set_prog(dev, mode, new_prog);
9273         if (cur_prog)
9274                 bpf_prog_put(cur_prog);
9275
9276         return 0;
9277 }
9278
9279 static int dev_xdp_attach_link(struct net_device *dev,
9280                                struct netlink_ext_ack *extack,
9281                                struct bpf_xdp_link *link)
9282 {
9283         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9284 }
9285
9286 static int dev_xdp_detach_link(struct net_device *dev,
9287                                struct netlink_ext_ack *extack,
9288                                struct bpf_xdp_link *link)
9289 {
9290         enum bpf_xdp_mode mode;
9291         bpf_op_t bpf_op;
9292
9293         ASSERT_RTNL();
9294
9295         mode = dev_xdp_mode(dev, link->flags);
9296         if (dev_xdp_link(dev, mode) != link)
9297                 return -EINVAL;
9298
9299         bpf_op = dev_xdp_bpf_op(dev, mode);
9300         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9301         dev_xdp_set_link(dev, mode, NULL);
9302         return 0;
9303 }
9304
9305 static void bpf_xdp_link_release(struct bpf_link *link)
9306 {
9307         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9308
9309         rtnl_lock();
9310
9311         /* if racing with net_device's tear down, xdp_link->dev might be
9312          * already NULL, in which case link was already auto-detached
9313          */
9314         if (xdp_link->dev) {
9315                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9316                 xdp_link->dev = NULL;
9317         }
9318
9319         rtnl_unlock();
9320 }
9321
9322 static int bpf_xdp_link_detach(struct bpf_link *link)
9323 {
9324         bpf_xdp_link_release(link);
9325         return 0;
9326 }
9327
9328 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9329 {
9330         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9331
9332         kfree(xdp_link);
9333 }
9334
9335 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9336                                      struct seq_file *seq)
9337 {
9338         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9339         u32 ifindex = 0;
9340
9341         rtnl_lock();
9342         if (xdp_link->dev)
9343                 ifindex = xdp_link->dev->ifindex;
9344         rtnl_unlock();
9345
9346         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9347 }
9348
9349 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9350                                        struct bpf_link_info *info)
9351 {
9352         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9353         u32 ifindex = 0;
9354
9355         rtnl_lock();
9356         if (xdp_link->dev)
9357                 ifindex = xdp_link->dev->ifindex;
9358         rtnl_unlock();
9359
9360         info->xdp.ifindex = ifindex;
9361         return 0;
9362 }
9363
9364 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9365                                struct bpf_prog *old_prog)
9366 {
9367         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9368         enum bpf_xdp_mode mode;
9369         bpf_op_t bpf_op;
9370         int err = 0;
9371
9372         rtnl_lock();
9373
9374         /* link might have been auto-released already, so fail */
9375         if (!xdp_link->dev) {
9376                 err = -ENOLINK;
9377                 goto out_unlock;
9378         }
9379
9380         if (old_prog && link->prog != old_prog) {
9381                 err = -EPERM;
9382                 goto out_unlock;
9383         }
9384         old_prog = link->prog;
9385         if (old_prog->type != new_prog->type ||
9386             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9387                 err = -EINVAL;
9388                 goto out_unlock;
9389         }
9390
9391         if (old_prog == new_prog) {
9392                 /* no-op, don't disturb drivers */
9393                 bpf_prog_put(new_prog);
9394                 goto out_unlock;
9395         }
9396
9397         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9398         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9399         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9400                               xdp_link->flags, new_prog);
9401         if (err)
9402                 goto out_unlock;
9403
9404         old_prog = xchg(&link->prog, new_prog);
9405         bpf_prog_put(old_prog);
9406
9407 out_unlock:
9408         rtnl_unlock();
9409         return err;
9410 }
9411
9412 static const struct bpf_link_ops bpf_xdp_link_lops = {
9413         .release = bpf_xdp_link_release,
9414         .dealloc = bpf_xdp_link_dealloc,
9415         .detach = bpf_xdp_link_detach,
9416         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9417         .fill_link_info = bpf_xdp_link_fill_link_info,
9418         .update_prog = bpf_xdp_link_update,
9419 };
9420
9421 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9422 {
9423         struct net *net = current->nsproxy->net_ns;
9424         struct bpf_link_primer link_primer;
9425         struct bpf_xdp_link *link;
9426         struct net_device *dev;
9427         int err, fd;
9428
9429         rtnl_lock();
9430         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9431         if (!dev) {
9432                 rtnl_unlock();
9433                 return -EINVAL;
9434         }
9435
9436         link = kzalloc(sizeof(*link), GFP_USER);
9437         if (!link) {
9438                 err = -ENOMEM;
9439                 goto unlock;
9440         }
9441
9442         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9443         link->dev = dev;
9444         link->flags = attr->link_create.flags;
9445
9446         err = bpf_link_prime(&link->link, &link_primer);
9447         if (err) {
9448                 kfree(link);
9449                 goto unlock;
9450         }
9451
9452         err = dev_xdp_attach_link(dev, NULL, link);
9453         rtnl_unlock();
9454
9455         if (err) {
9456                 link->dev = NULL;
9457                 bpf_link_cleanup(&link_primer);
9458                 goto out_put_dev;
9459         }
9460
9461         fd = bpf_link_settle(&link_primer);
9462         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9463         dev_put(dev);
9464         return fd;
9465
9466 unlock:
9467         rtnl_unlock();
9468
9469 out_put_dev:
9470         dev_put(dev);
9471         return err;
9472 }
9473
9474 /**
9475  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9476  *      @dev: device
9477  *      @extack: netlink extended ack
9478  *      @fd: new program fd or negative value to clear
9479  *      @expected_fd: old program fd that userspace expects to replace or clear
9480  *      @flags: xdp-related flags
9481  *
9482  *      Set or clear a bpf program for a device
9483  */
9484 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9485                       int fd, int expected_fd, u32 flags)
9486 {
9487         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9488         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9489         int err;
9490
9491         ASSERT_RTNL();
9492
9493         if (fd >= 0) {
9494                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9495                                                  mode != XDP_MODE_SKB);
9496                 if (IS_ERR(new_prog))
9497                         return PTR_ERR(new_prog);
9498         }
9499
9500         if (expected_fd >= 0) {
9501                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9502                                                  mode != XDP_MODE_SKB);
9503                 if (IS_ERR(old_prog)) {
9504                         err = PTR_ERR(old_prog);
9505                         old_prog = NULL;
9506                         goto err_out;
9507                 }
9508         }
9509
9510         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9511
9512 err_out:
9513         if (err && new_prog)
9514                 bpf_prog_put(new_prog);
9515         if (old_prog)
9516                 bpf_prog_put(old_prog);
9517         return err;
9518 }
9519
9520 /**
9521  *      dev_new_index   -       allocate an ifindex
9522  *      @net: the applicable net namespace
9523  *
9524  *      Returns a suitable unique value for a new device interface
9525  *      number.  The caller must hold the rtnl semaphore or the
9526  *      dev_base_lock to be sure it remains unique.
9527  */
9528 static int dev_new_index(struct net *net)
9529 {
9530         int ifindex = net->ifindex;
9531
9532         for (;;) {
9533                 if (++ifindex <= 0)
9534                         ifindex = 1;
9535                 if (!__dev_get_by_index(net, ifindex))
9536                         return net->ifindex = ifindex;
9537         }
9538 }
9539
9540 /* Delayed registration/unregisteration */
9541 LIST_HEAD(net_todo_list);
9542 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9543
9544 static void net_set_todo(struct net_device *dev)
9545 {
9546         list_add_tail(&dev->todo_list, &net_todo_list);
9547         atomic_inc(&dev_net(dev)->dev_unreg_count);
9548 }
9549
9550 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9551         struct net_device *upper, netdev_features_t features)
9552 {
9553         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9554         netdev_features_t feature;
9555         int feature_bit;
9556
9557         for_each_netdev_feature(upper_disables, feature_bit) {
9558                 feature = __NETIF_F_BIT(feature_bit);
9559                 if (!(upper->wanted_features & feature)
9560                     && (features & feature)) {
9561                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9562                                    &feature, upper->name);
9563                         features &= ~feature;
9564                 }
9565         }
9566
9567         return features;
9568 }
9569
9570 static void netdev_sync_lower_features(struct net_device *upper,
9571         struct net_device *lower, netdev_features_t features)
9572 {
9573         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9574         netdev_features_t feature;
9575         int feature_bit;
9576
9577         for_each_netdev_feature(upper_disables, feature_bit) {
9578                 feature = __NETIF_F_BIT(feature_bit);
9579                 if (!(features & feature) && (lower->features & feature)) {
9580                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9581                                    &feature, lower->name);
9582                         lower->wanted_features &= ~feature;
9583                         __netdev_update_features(lower);
9584
9585                         if (unlikely(lower->features & feature))
9586                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9587                                             &feature, lower->name);
9588                         else
9589                                 netdev_features_change(lower);
9590                 }
9591         }
9592 }
9593
9594 static netdev_features_t netdev_fix_features(struct net_device *dev,
9595         netdev_features_t features)
9596 {
9597         /* Fix illegal checksum combinations */
9598         if ((features & NETIF_F_HW_CSUM) &&
9599             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9600                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9601                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9602         }
9603
9604         /* TSO requires that SG is present as well. */
9605         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9606                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9607                 features &= ~NETIF_F_ALL_TSO;
9608         }
9609
9610         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9611                                         !(features & NETIF_F_IP_CSUM)) {
9612                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9613                 features &= ~NETIF_F_TSO;
9614                 features &= ~NETIF_F_TSO_ECN;
9615         }
9616
9617         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9618                                          !(features & NETIF_F_IPV6_CSUM)) {
9619                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9620                 features &= ~NETIF_F_TSO6;
9621         }
9622
9623         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9624         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9625                 features &= ~NETIF_F_TSO_MANGLEID;
9626
9627         /* TSO ECN requires that TSO is present as well. */
9628         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9629                 features &= ~NETIF_F_TSO_ECN;
9630
9631         /* Software GSO depends on SG. */
9632         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9633                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9634                 features &= ~NETIF_F_GSO;
9635         }
9636
9637         /* GSO partial features require GSO partial be set */
9638         if ((features & dev->gso_partial_features) &&
9639             !(features & NETIF_F_GSO_PARTIAL)) {
9640                 netdev_dbg(dev,
9641                            "Dropping partially supported GSO features since no GSO partial.\n");
9642                 features &= ~dev->gso_partial_features;
9643         }
9644
9645         if (!(features & NETIF_F_RXCSUM)) {
9646                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9647                  * successfully merged by hardware must also have the
9648                  * checksum verified by hardware.  If the user does not
9649                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9650                  */
9651                 if (features & NETIF_F_GRO_HW) {
9652                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9653                         features &= ~NETIF_F_GRO_HW;
9654                 }
9655         }
9656
9657         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9658         if (features & NETIF_F_RXFCS) {
9659                 if (features & NETIF_F_LRO) {
9660                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9661                         features &= ~NETIF_F_LRO;
9662                 }
9663
9664                 if (features & NETIF_F_GRO_HW) {
9665                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9666                         features &= ~NETIF_F_GRO_HW;
9667                 }
9668         }
9669
9670         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9671                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9672                 features &= ~NETIF_F_LRO;
9673         }
9674
9675         if (features & NETIF_F_HW_TLS_TX) {
9676                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9677                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9678                 bool hw_csum = features & NETIF_F_HW_CSUM;
9679
9680                 if (!ip_csum && !hw_csum) {
9681                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9682                         features &= ~NETIF_F_HW_TLS_TX;
9683                 }
9684         }
9685
9686         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9687                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9688                 features &= ~NETIF_F_HW_TLS_RX;
9689         }
9690
9691         return features;
9692 }
9693
9694 int __netdev_update_features(struct net_device *dev)
9695 {
9696         struct net_device *upper, *lower;
9697         netdev_features_t features;
9698         struct list_head *iter;
9699         int err = -1;
9700
9701         ASSERT_RTNL();
9702
9703         features = netdev_get_wanted_features(dev);
9704
9705         if (dev->netdev_ops->ndo_fix_features)
9706                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9707
9708         /* driver might be less strict about feature dependencies */
9709         features = netdev_fix_features(dev, features);
9710
9711         /* some features can't be enabled if they're off on an upper device */
9712         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9713                 features = netdev_sync_upper_features(dev, upper, features);
9714
9715         if (dev->features == features)
9716                 goto sync_lower;
9717
9718         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9719                 &dev->features, &features);
9720
9721         if (dev->netdev_ops->ndo_set_features)
9722                 err = dev->netdev_ops->ndo_set_features(dev, features);
9723         else
9724                 err = 0;
9725
9726         if (unlikely(err < 0)) {
9727                 netdev_err(dev,
9728                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9729                         err, &features, &dev->features);
9730                 /* return non-0 since some features might have changed and
9731                  * it's better to fire a spurious notification than miss it
9732                  */
9733                 return -1;
9734         }
9735
9736 sync_lower:
9737         /* some features must be disabled on lower devices when disabled
9738          * on an upper device (think: bonding master or bridge)
9739          */
9740         netdev_for_each_lower_dev(dev, lower, iter)
9741                 netdev_sync_lower_features(dev, lower, features);
9742
9743         if (!err) {
9744                 netdev_features_t diff = features ^ dev->features;
9745
9746                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9747                         /* udp_tunnel_{get,drop}_rx_info both need
9748                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9749                          * device, or they won't do anything.
9750                          * Thus we need to update dev->features
9751                          * *before* calling udp_tunnel_get_rx_info,
9752                          * but *after* calling udp_tunnel_drop_rx_info.
9753                          */
9754                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9755                                 dev->features = features;
9756                                 udp_tunnel_get_rx_info(dev);
9757                         } else {
9758                                 udp_tunnel_drop_rx_info(dev);
9759                         }
9760                 }
9761
9762                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9763                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9764                                 dev->features = features;
9765                                 err |= vlan_get_rx_ctag_filter_info(dev);
9766                         } else {
9767                                 vlan_drop_rx_ctag_filter_info(dev);
9768                         }
9769                 }
9770
9771                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9772                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9773                                 dev->features = features;
9774                                 err |= vlan_get_rx_stag_filter_info(dev);
9775                         } else {
9776                                 vlan_drop_rx_stag_filter_info(dev);
9777                         }
9778                 }
9779
9780                 dev->features = features;
9781         }
9782
9783         return err < 0 ? 0 : 1;
9784 }
9785
9786 /**
9787  *      netdev_update_features - recalculate device features
9788  *      @dev: the device to check
9789  *
9790  *      Recalculate dev->features set and send notifications if it
9791  *      has changed. Should be called after driver or hardware dependent
9792  *      conditions might have changed that influence the features.
9793  */
9794 void netdev_update_features(struct net_device *dev)
9795 {
9796         if (__netdev_update_features(dev))
9797                 netdev_features_change(dev);
9798 }
9799 EXPORT_SYMBOL(netdev_update_features);
9800
9801 /**
9802  *      netdev_change_features - recalculate device features
9803  *      @dev: the device to check
9804  *
9805  *      Recalculate dev->features set and send notifications even
9806  *      if they have not changed. Should be called instead of
9807  *      netdev_update_features() if also dev->vlan_features might
9808  *      have changed to allow the changes to be propagated to stacked
9809  *      VLAN devices.
9810  */
9811 void netdev_change_features(struct net_device *dev)
9812 {
9813         __netdev_update_features(dev);
9814         netdev_features_change(dev);
9815 }
9816 EXPORT_SYMBOL(netdev_change_features);
9817
9818 /**
9819  *      netif_stacked_transfer_operstate -      transfer operstate
9820  *      @rootdev: the root or lower level device to transfer state from
9821  *      @dev: the device to transfer operstate to
9822  *
9823  *      Transfer operational state from root to device. This is normally
9824  *      called when a stacking relationship exists between the root
9825  *      device and the device(a leaf device).
9826  */
9827 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9828                                         struct net_device *dev)
9829 {
9830         if (rootdev->operstate == IF_OPER_DORMANT)
9831                 netif_dormant_on(dev);
9832         else
9833                 netif_dormant_off(dev);
9834
9835         if (rootdev->operstate == IF_OPER_TESTING)
9836                 netif_testing_on(dev);
9837         else
9838                 netif_testing_off(dev);
9839
9840         if (netif_carrier_ok(rootdev))
9841                 netif_carrier_on(dev);
9842         else
9843                 netif_carrier_off(dev);
9844 }
9845 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9846
9847 static int netif_alloc_rx_queues(struct net_device *dev)
9848 {
9849         unsigned int i, count = dev->num_rx_queues;
9850         struct netdev_rx_queue *rx;
9851         size_t sz = count * sizeof(*rx);
9852         int err = 0;
9853
9854         BUG_ON(count < 1);
9855
9856         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9857         if (!rx)
9858                 return -ENOMEM;
9859
9860         dev->_rx = rx;
9861
9862         for (i = 0; i < count; i++) {
9863                 rx[i].dev = dev;
9864
9865                 /* XDP RX-queue setup */
9866                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9867                 if (err < 0)
9868                         goto err_rxq_info;
9869         }
9870         return 0;
9871
9872 err_rxq_info:
9873         /* Rollback successful reg's and free other resources */
9874         while (i--)
9875                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9876         kvfree(dev->_rx);
9877         dev->_rx = NULL;
9878         return err;
9879 }
9880
9881 static void netif_free_rx_queues(struct net_device *dev)
9882 {
9883         unsigned int i, count = dev->num_rx_queues;
9884
9885         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9886         if (!dev->_rx)
9887                 return;
9888
9889         for (i = 0; i < count; i++)
9890                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9891
9892         kvfree(dev->_rx);
9893 }
9894
9895 static void netdev_init_one_queue(struct net_device *dev,
9896                                   struct netdev_queue *queue, void *_unused)
9897 {
9898         /* Initialize queue lock */
9899         spin_lock_init(&queue->_xmit_lock);
9900         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9901         queue->xmit_lock_owner = -1;
9902         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9903         queue->dev = dev;
9904 #ifdef CONFIG_BQL
9905         dql_init(&queue->dql, HZ);
9906 #endif
9907 }
9908
9909 static void netif_free_tx_queues(struct net_device *dev)
9910 {
9911         kvfree(dev->_tx);
9912 }
9913
9914 static int netif_alloc_netdev_queues(struct net_device *dev)
9915 {
9916         unsigned int count = dev->num_tx_queues;
9917         struct netdev_queue *tx;
9918         size_t sz = count * sizeof(*tx);
9919
9920         if (count < 1 || count > 0xffff)
9921                 return -EINVAL;
9922
9923         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9924         if (!tx)
9925                 return -ENOMEM;
9926
9927         dev->_tx = tx;
9928
9929         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9930         spin_lock_init(&dev->tx_global_lock);
9931
9932         return 0;
9933 }
9934
9935 void netif_tx_stop_all_queues(struct net_device *dev)
9936 {
9937         unsigned int i;
9938
9939         for (i = 0; i < dev->num_tx_queues; i++) {
9940                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9941
9942                 netif_tx_stop_queue(txq);
9943         }
9944 }
9945 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9946
9947 /**
9948  * register_netdevice() - register a network device
9949  * @dev: device to register
9950  *
9951  * Take a prepared network device structure and make it externally accessible.
9952  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9953  * Callers must hold the rtnl lock - you may want register_netdev()
9954  * instead of this.
9955  */
9956 int register_netdevice(struct net_device *dev)
9957 {
9958         int ret;
9959         struct net *net = dev_net(dev);
9960
9961         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9962                      NETDEV_FEATURE_COUNT);
9963         BUG_ON(dev_boot_phase);
9964         ASSERT_RTNL();
9965
9966         might_sleep();
9967
9968         /* When net_device's are persistent, this will be fatal. */
9969         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9970         BUG_ON(!net);
9971
9972         ret = ethtool_check_ops(dev->ethtool_ops);
9973         if (ret)
9974                 return ret;
9975
9976         spin_lock_init(&dev->addr_list_lock);
9977         netdev_set_addr_lockdep_class(dev);
9978
9979         ret = dev_get_valid_name(net, dev, dev->name);
9980         if (ret < 0)
9981                 goto out;
9982
9983         ret = -ENOMEM;
9984         dev->name_node = netdev_name_node_head_alloc(dev);
9985         if (!dev->name_node)
9986                 goto out;
9987
9988         /* Init, if this function is available */
9989         if (dev->netdev_ops->ndo_init) {
9990                 ret = dev->netdev_ops->ndo_init(dev);
9991                 if (ret) {
9992                         if (ret > 0)
9993                                 ret = -EIO;
9994                         goto err_free_name;
9995                 }
9996         }
9997
9998         if (((dev->hw_features | dev->features) &
9999              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10000             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10001              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10002                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10003                 ret = -EINVAL;
10004                 goto err_uninit;
10005         }
10006
10007         ret = -EBUSY;
10008         if (!dev->ifindex)
10009                 dev->ifindex = dev_new_index(net);
10010         else if (__dev_get_by_index(net, dev->ifindex))
10011                 goto err_uninit;
10012
10013         /* Transfer changeable features to wanted_features and enable
10014          * software offloads (GSO and GRO).
10015          */
10016         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10017         dev->features |= NETIF_F_SOFT_FEATURES;
10018
10019         if (dev->udp_tunnel_nic_info) {
10020                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10021                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10022         }
10023
10024         dev->wanted_features = dev->features & dev->hw_features;
10025
10026         if (!(dev->flags & IFF_LOOPBACK))
10027                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10028
10029         /* If IPv4 TCP segmentation offload is supported we should also
10030          * allow the device to enable segmenting the frame with the option
10031          * of ignoring a static IP ID value.  This doesn't enable the
10032          * feature itself but allows the user to enable it later.
10033          */
10034         if (dev->hw_features & NETIF_F_TSO)
10035                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10036         if (dev->vlan_features & NETIF_F_TSO)
10037                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10038         if (dev->mpls_features & NETIF_F_TSO)
10039                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10040         if (dev->hw_enc_features & NETIF_F_TSO)
10041                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10042
10043         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10044          */
10045         dev->vlan_features |= NETIF_F_HIGHDMA;
10046
10047         /* Make NETIF_F_SG inheritable to tunnel devices.
10048          */
10049         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10050
10051         /* Make NETIF_F_SG inheritable to MPLS.
10052          */
10053         dev->mpls_features |= NETIF_F_SG;
10054
10055         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10056         ret = notifier_to_errno(ret);
10057         if (ret)
10058                 goto err_uninit;
10059
10060         ret = netdev_register_kobject(dev);
10061         write_lock(&dev_base_lock);
10062         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10063         write_unlock(&dev_base_lock);
10064         if (ret)
10065                 goto err_uninit;
10066
10067         __netdev_update_features(dev);
10068
10069         /*
10070          *      Default initial state at registry is that the
10071          *      device is present.
10072          */
10073
10074         set_bit(__LINK_STATE_PRESENT, &dev->state);
10075
10076         linkwatch_init_dev(dev);
10077
10078         dev_init_scheduler(dev);
10079
10080         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10081         list_netdevice(dev);
10082
10083         add_device_randomness(dev->dev_addr, dev->addr_len);
10084
10085         /* If the device has permanent device address, driver should
10086          * set dev_addr and also addr_assign_type should be set to
10087          * NET_ADDR_PERM (default value).
10088          */
10089         if (dev->addr_assign_type == NET_ADDR_PERM)
10090                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10091
10092         /* Notify protocols, that a new device appeared. */
10093         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10094         ret = notifier_to_errno(ret);
10095         if (ret) {
10096                 /* Expect explicit free_netdev() on failure */
10097                 dev->needs_free_netdev = false;
10098                 unregister_netdevice_queue(dev, NULL);
10099                 goto out;
10100         }
10101         /*
10102          *      Prevent userspace races by waiting until the network
10103          *      device is fully setup before sending notifications.
10104          */
10105         if (!dev->rtnl_link_ops ||
10106             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10107                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10108
10109 out:
10110         return ret;
10111
10112 err_uninit:
10113         if (dev->netdev_ops->ndo_uninit)
10114                 dev->netdev_ops->ndo_uninit(dev);
10115         if (dev->priv_destructor)
10116                 dev->priv_destructor(dev);
10117 err_free_name:
10118         netdev_name_node_free(dev->name_node);
10119         goto out;
10120 }
10121 EXPORT_SYMBOL(register_netdevice);
10122
10123 /**
10124  *      init_dummy_netdev       - init a dummy network device for NAPI
10125  *      @dev: device to init
10126  *
10127  *      This takes a network device structure and initialize the minimum
10128  *      amount of fields so it can be used to schedule NAPI polls without
10129  *      registering a full blown interface. This is to be used by drivers
10130  *      that need to tie several hardware interfaces to a single NAPI
10131  *      poll scheduler due to HW limitations.
10132  */
10133 int init_dummy_netdev(struct net_device *dev)
10134 {
10135         /* Clear everything. Note we don't initialize spinlocks
10136          * are they aren't supposed to be taken by any of the
10137          * NAPI code and this dummy netdev is supposed to be
10138          * only ever used for NAPI polls
10139          */
10140         memset(dev, 0, sizeof(struct net_device));
10141
10142         /* make sure we BUG if trying to hit standard
10143          * register/unregister code path
10144          */
10145         dev->reg_state = NETREG_DUMMY;
10146
10147         /* NAPI wants this */
10148         INIT_LIST_HEAD(&dev->napi_list);
10149
10150         /* a dummy interface is started by default */
10151         set_bit(__LINK_STATE_PRESENT, &dev->state);
10152         set_bit(__LINK_STATE_START, &dev->state);
10153
10154         /* napi_busy_loop stats accounting wants this */
10155         dev_net_set(dev, &init_net);
10156
10157         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10158          * because users of this 'device' dont need to change
10159          * its refcount.
10160          */
10161
10162         return 0;
10163 }
10164 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10165
10166
10167 /**
10168  *      register_netdev - register a network device
10169  *      @dev: device to register
10170  *
10171  *      Take a completed network device structure and add it to the kernel
10172  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10173  *      chain. 0 is returned on success. A negative errno code is returned
10174  *      on a failure to set up the device, or if the name is a duplicate.
10175  *
10176  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10177  *      and expands the device name if you passed a format string to
10178  *      alloc_netdev.
10179  */
10180 int register_netdev(struct net_device *dev)
10181 {
10182         int err;
10183
10184         if (rtnl_lock_killable())
10185                 return -EINTR;
10186         err = register_netdevice(dev);
10187         rtnl_unlock();
10188         return err;
10189 }
10190 EXPORT_SYMBOL(register_netdev);
10191
10192 int netdev_refcnt_read(const struct net_device *dev)
10193 {
10194 #ifdef CONFIG_PCPU_DEV_REFCNT
10195         int i, refcnt = 0;
10196
10197         for_each_possible_cpu(i)
10198                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10199         return refcnt;
10200 #else
10201         return refcount_read(&dev->dev_refcnt);
10202 #endif
10203 }
10204 EXPORT_SYMBOL(netdev_refcnt_read);
10205
10206 int netdev_unregister_timeout_secs __read_mostly = 10;
10207
10208 #define WAIT_REFS_MIN_MSECS 1
10209 #define WAIT_REFS_MAX_MSECS 250
10210 /**
10211  * netdev_wait_allrefs_any - wait until all references are gone.
10212  * @list: list of net_devices to wait on
10213  *
10214  * This is called when unregistering network devices.
10215  *
10216  * Any protocol or device that holds a reference should register
10217  * for netdevice notification, and cleanup and put back the
10218  * reference if they receive an UNREGISTER event.
10219  * We can get stuck here if buggy protocols don't correctly
10220  * call dev_put.
10221  */
10222 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10223 {
10224         unsigned long rebroadcast_time, warning_time;
10225         struct net_device *dev;
10226         int wait = 0;
10227
10228         rebroadcast_time = warning_time = jiffies;
10229
10230         list_for_each_entry(dev, list, todo_list)
10231                 if (netdev_refcnt_read(dev) == 1)
10232                         return dev;
10233
10234         while (true) {
10235                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10236                         rtnl_lock();
10237
10238                         /* Rebroadcast unregister notification */
10239                         list_for_each_entry(dev, list, todo_list)
10240                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10241
10242                         __rtnl_unlock();
10243                         rcu_barrier();
10244                         rtnl_lock();
10245
10246                         list_for_each_entry(dev, list, todo_list)
10247                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10248                                              &dev->state)) {
10249                                         /* We must not have linkwatch events
10250                                          * pending on unregister. If this
10251                                          * happens, we simply run the queue
10252                                          * unscheduled, resulting in a noop
10253                                          * for this device.
10254                                          */
10255                                         linkwatch_run_queue();
10256                                         break;
10257                                 }
10258
10259                         __rtnl_unlock();
10260
10261                         rebroadcast_time = jiffies;
10262                 }
10263
10264                 if (!wait) {
10265                         rcu_barrier();
10266                         wait = WAIT_REFS_MIN_MSECS;
10267                 } else {
10268                         msleep(wait);
10269                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10270                 }
10271
10272                 list_for_each_entry(dev, list, todo_list)
10273                         if (netdev_refcnt_read(dev) == 1)
10274                                 return dev;
10275
10276                 if (time_after(jiffies, warning_time +
10277                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10278                         list_for_each_entry(dev, list, todo_list) {
10279                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10280                                          dev->name, netdev_refcnt_read(dev));
10281                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10282                         }
10283
10284                         warning_time = jiffies;
10285                 }
10286         }
10287 }
10288
10289 /* The sequence is:
10290  *
10291  *      rtnl_lock();
10292  *      ...
10293  *      register_netdevice(x1);
10294  *      register_netdevice(x2);
10295  *      ...
10296  *      unregister_netdevice(y1);
10297  *      unregister_netdevice(y2);
10298  *      ...
10299  *      rtnl_unlock();
10300  *      free_netdev(y1);
10301  *      free_netdev(y2);
10302  *
10303  * We are invoked by rtnl_unlock().
10304  * This allows us to deal with problems:
10305  * 1) We can delete sysfs objects which invoke hotplug
10306  *    without deadlocking with linkwatch via keventd.
10307  * 2) Since we run with the RTNL semaphore not held, we can sleep
10308  *    safely in order to wait for the netdev refcnt to drop to zero.
10309  *
10310  * We must not return until all unregister events added during
10311  * the interval the lock was held have been completed.
10312  */
10313 void netdev_run_todo(void)
10314 {
10315         struct net_device *dev, *tmp;
10316         struct list_head list;
10317 #ifdef CONFIG_LOCKDEP
10318         struct list_head unlink_list;
10319
10320         list_replace_init(&net_unlink_list, &unlink_list);
10321
10322         while (!list_empty(&unlink_list)) {
10323                 struct net_device *dev = list_first_entry(&unlink_list,
10324                                                           struct net_device,
10325                                                           unlink_list);
10326                 list_del_init(&dev->unlink_list);
10327                 dev->nested_level = dev->lower_level - 1;
10328         }
10329 #endif
10330
10331         /* Snapshot list, allow later requests */
10332         list_replace_init(&net_todo_list, &list);
10333
10334         __rtnl_unlock();
10335
10336         /* Wait for rcu callbacks to finish before next phase */
10337         if (!list_empty(&list))
10338                 rcu_barrier();
10339
10340         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10341                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10342                         netdev_WARN(dev, "run_todo but not unregistering\n");
10343                         list_del(&dev->todo_list);
10344                         continue;
10345                 }
10346
10347                 write_lock(&dev_base_lock);
10348                 dev->reg_state = NETREG_UNREGISTERED;
10349                 write_unlock(&dev_base_lock);
10350                 linkwatch_forget_dev(dev);
10351         }
10352
10353         while (!list_empty(&list)) {
10354                 dev = netdev_wait_allrefs_any(&list);
10355                 list_del(&dev->todo_list);
10356
10357                 /* paranoia */
10358                 BUG_ON(netdev_refcnt_read(dev) != 1);
10359                 BUG_ON(!list_empty(&dev->ptype_all));
10360                 BUG_ON(!list_empty(&dev->ptype_specific));
10361                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10362                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10363
10364                 if (dev->priv_destructor)
10365                         dev->priv_destructor(dev);
10366                 if (dev->needs_free_netdev)
10367                         free_netdev(dev);
10368
10369                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10370                         wake_up(&netdev_unregistering_wq);
10371
10372                 /* Free network device */
10373                 kobject_put(&dev->dev.kobj);
10374         }
10375 }
10376
10377 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10378  * all the same fields in the same order as net_device_stats, with only
10379  * the type differing, but rtnl_link_stats64 may have additional fields
10380  * at the end for newer counters.
10381  */
10382 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10383                              const struct net_device_stats *netdev_stats)
10384 {
10385         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10386         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10387         u64 *dst = (u64 *)stats64;
10388
10389         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10390         for (i = 0; i < n; i++)
10391                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10392         /* zero out counters that only exist in rtnl_link_stats64 */
10393         memset((char *)stats64 + n * sizeof(u64), 0,
10394                sizeof(*stats64) - n * sizeof(u64));
10395 }
10396 EXPORT_SYMBOL(netdev_stats_to_stats64);
10397
10398 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10399 {
10400         struct net_device_core_stats __percpu *p;
10401
10402         p = alloc_percpu_gfp(struct net_device_core_stats,
10403                              GFP_ATOMIC | __GFP_NOWARN);
10404
10405         if (p && cmpxchg(&dev->core_stats, NULL, p))
10406                 free_percpu(p);
10407
10408         /* This READ_ONCE() pairs with the cmpxchg() above */
10409         return READ_ONCE(dev->core_stats);
10410 }
10411 EXPORT_SYMBOL(netdev_core_stats_alloc);
10412
10413 /**
10414  *      dev_get_stats   - get network device statistics
10415  *      @dev: device to get statistics from
10416  *      @storage: place to store stats
10417  *
10418  *      Get network statistics from device. Return @storage.
10419  *      The device driver may provide its own method by setting
10420  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10421  *      otherwise the internal statistics structure is used.
10422  */
10423 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10424                                         struct rtnl_link_stats64 *storage)
10425 {
10426         const struct net_device_ops *ops = dev->netdev_ops;
10427         const struct net_device_core_stats __percpu *p;
10428
10429         if (ops->ndo_get_stats64) {
10430                 memset(storage, 0, sizeof(*storage));
10431                 ops->ndo_get_stats64(dev, storage);
10432         } else if (ops->ndo_get_stats) {
10433                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10434         } else {
10435                 netdev_stats_to_stats64(storage, &dev->stats);
10436         }
10437
10438         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10439         p = READ_ONCE(dev->core_stats);
10440         if (p) {
10441                 const struct net_device_core_stats *core_stats;
10442                 int i;
10443
10444                 for_each_possible_cpu(i) {
10445                         core_stats = per_cpu_ptr(p, i);
10446                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10447                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10448                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10449                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10450                 }
10451         }
10452         return storage;
10453 }
10454 EXPORT_SYMBOL(dev_get_stats);
10455
10456 /**
10457  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10458  *      @s: place to store stats
10459  *      @netstats: per-cpu network stats to read from
10460  *
10461  *      Read per-cpu network statistics and populate the related fields in @s.
10462  */
10463 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10464                            const struct pcpu_sw_netstats __percpu *netstats)
10465 {
10466         int cpu;
10467
10468         for_each_possible_cpu(cpu) {
10469                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10470                 const struct pcpu_sw_netstats *stats;
10471                 unsigned int start;
10472
10473                 stats = per_cpu_ptr(netstats, cpu);
10474                 do {
10475                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10476                         rx_packets = u64_stats_read(&stats->rx_packets);
10477                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10478                         tx_packets = u64_stats_read(&stats->tx_packets);
10479                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10480                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10481
10482                 s->rx_packets += rx_packets;
10483                 s->rx_bytes   += rx_bytes;
10484                 s->tx_packets += tx_packets;
10485                 s->tx_bytes   += tx_bytes;
10486         }
10487 }
10488 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10489
10490 /**
10491  *      dev_get_tstats64 - ndo_get_stats64 implementation
10492  *      @dev: device to get statistics from
10493  *      @s: place to store stats
10494  *
10495  *      Populate @s from dev->stats and dev->tstats. Can be used as
10496  *      ndo_get_stats64() callback.
10497  */
10498 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10499 {
10500         netdev_stats_to_stats64(s, &dev->stats);
10501         dev_fetch_sw_netstats(s, dev->tstats);
10502 }
10503 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10504
10505 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10506 {
10507         struct netdev_queue *queue = dev_ingress_queue(dev);
10508
10509 #ifdef CONFIG_NET_CLS_ACT
10510         if (queue)
10511                 return queue;
10512         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10513         if (!queue)
10514                 return NULL;
10515         netdev_init_one_queue(dev, queue, NULL);
10516         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10517         queue->qdisc_sleeping = &noop_qdisc;
10518         rcu_assign_pointer(dev->ingress_queue, queue);
10519 #endif
10520         return queue;
10521 }
10522
10523 static const struct ethtool_ops default_ethtool_ops;
10524
10525 void netdev_set_default_ethtool_ops(struct net_device *dev,
10526                                     const struct ethtool_ops *ops)
10527 {
10528         if (dev->ethtool_ops == &default_ethtool_ops)
10529                 dev->ethtool_ops = ops;
10530 }
10531 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10532
10533 void netdev_freemem(struct net_device *dev)
10534 {
10535         char *addr = (char *)dev - dev->padded;
10536
10537         kvfree(addr);
10538 }
10539
10540 /**
10541  * alloc_netdev_mqs - allocate network device
10542  * @sizeof_priv: size of private data to allocate space for
10543  * @name: device name format string
10544  * @name_assign_type: origin of device name
10545  * @setup: callback to initialize device
10546  * @txqs: the number of TX subqueues to allocate
10547  * @rxqs: the number of RX subqueues to allocate
10548  *
10549  * Allocates a struct net_device with private data area for driver use
10550  * and performs basic initialization.  Also allocates subqueue structs
10551  * for each queue on the device.
10552  */
10553 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10554                 unsigned char name_assign_type,
10555                 void (*setup)(struct net_device *),
10556                 unsigned int txqs, unsigned int rxqs)
10557 {
10558         struct net_device *dev;
10559         unsigned int alloc_size;
10560         struct net_device *p;
10561
10562         BUG_ON(strlen(name) >= sizeof(dev->name));
10563
10564         if (txqs < 1) {
10565                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10566                 return NULL;
10567         }
10568
10569         if (rxqs < 1) {
10570                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10571                 return NULL;
10572         }
10573
10574         alloc_size = sizeof(struct net_device);
10575         if (sizeof_priv) {
10576                 /* ensure 32-byte alignment of private area */
10577                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10578                 alloc_size += sizeof_priv;
10579         }
10580         /* ensure 32-byte alignment of whole construct */
10581         alloc_size += NETDEV_ALIGN - 1;
10582
10583         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10584         if (!p)
10585                 return NULL;
10586
10587         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10588         dev->padded = (char *)dev - (char *)p;
10589
10590         ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10591 #ifdef CONFIG_PCPU_DEV_REFCNT
10592         dev->pcpu_refcnt = alloc_percpu(int);
10593         if (!dev->pcpu_refcnt)
10594                 goto free_dev;
10595         __dev_hold(dev);
10596 #else
10597         refcount_set(&dev->dev_refcnt, 1);
10598 #endif
10599
10600         if (dev_addr_init(dev))
10601                 goto free_pcpu;
10602
10603         dev_mc_init(dev);
10604         dev_uc_init(dev);
10605
10606         dev_net_set(dev, &init_net);
10607
10608         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10609         dev->gso_max_segs = GSO_MAX_SEGS;
10610         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10611         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10612         dev->tso_max_segs = TSO_MAX_SEGS;
10613         dev->upper_level = 1;
10614         dev->lower_level = 1;
10615 #ifdef CONFIG_LOCKDEP
10616         dev->nested_level = 0;
10617         INIT_LIST_HEAD(&dev->unlink_list);
10618 #endif
10619
10620         INIT_LIST_HEAD(&dev->napi_list);
10621         INIT_LIST_HEAD(&dev->unreg_list);
10622         INIT_LIST_HEAD(&dev->close_list);
10623         INIT_LIST_HEAD(&dev->link_watch_list);
10624         INIT_LIST_HEAD(&dev->adj_list.upper);
10625         INIT_LIST_HEAD(&dev->adj_list.lower);
10626         INIT_LIST_HEAD(&dev->ptype_all);
10627         INIT_LIST_HEAD(&dev->ptype_specific);
10628         INIT_LIST_HEAD(&dev->net_notifier_list);
10629 #ifdef CONFIG_NET_SCHED
10630         hash_init(dev->qdisc_hash);
10631 #endif
10632         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10633         setup(dev);
10634
10635         if (!dev->tx_queue_len) {
10636                 dev->priv_flags |= IFF_NO_QUEUE;
10637                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10638         }
10639
10640         dev->num_tx_queues = txqs;
10641         dev->real_num_tx_queues = txqs;
10642         if (netif_alloc_netdev_queues(dev))
10643                 goto free_all;
10644
10645         dev->num_rx_queues = rxqs;
10646         dev->real_num_rx_queues = rxqs;
10647         if (netif_alloc_rx_queues(dev))
10648                 goto free_all;
10649
10650         strcpy(dev->name, name);
10651         dev->name_assign_type = name_assign_type;
10652         dev->group = INIT_NETDEV_GROUP;
10653         if (!dev->ethtool_ops)
10654                 dev->ethtool_ops = &default_ethtool_ops;
10655
10656         nf_hook_netdev_init(dev);
10657
10658         return dev;
10659
10660 free_all:
10661         free_netdev(dev);
10662         return NULL;
10663
10664 free_pcpu:
10665 #ifdef CONFIG_PCPU_DEV_REFCNT
10666         free_percpu(dev->pcpu_refcnt);
10667 free_dev:
10668 #endif
10669         netdev_freemem(dev);
10670         return NULL;
10671 }
10672 EXPORT_SYMBOL(alloc_netdev_mqs);
10673
10674 /**
10675  * free_netdev - free network device
10676  * @dev: device
10677  *
10678  * This function does the last stage of destroying an allocated device
10679  * interface. The reference to the device object is released. If this
10680  * is the last reference then it will be freed.Must be called in process
10681  * context.
10682  */
10683 void free_netdev(struct net_device *dev)
10684 {
10685         struct napi_struct *p, *n;
10686
10687         might_sleep();
10688
10689         /* When called immediately after register_netdevice() failed the unwind
10690          * handling may still be dismantling the device. Handle that case by
10691          * deferring the free.
10692          */
10693         if (dev->reg_state == NETREG_UNREGISTERING) {
10694                 ASSERT_RTNL();
10695                 dev->needs_free_netdev = true;
10696                 return;
10697         }
10698
10699         netif_free_tx_queues(dev);
10700         netif_free_rx_queues(dev);
10701
10702         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10703
10704         /* Flush device addresses */
10705         dev_addr_flush(dev);
10706
10707         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10708                 netif_napi_del(p);
10709
10710         ref_tracker_dir_exit(&dev->refcnt_tracker);
10711 #ifdef CONFIG_PCPU_DEV_REFCNT
10712         free_percpu(dev->pcpu_refcnt);
10713         dev->pcpu_refcnt = NULL;
10714 #endif
10715         free_percpu(dev->core_stats);
10716         dev->core_stats = NULL;
10717         free_percpu(dev->xdp_bulkq);
10718         dev->xdp_bulkq = NULL;
10719
10720         /*  Compatibility with error handling in drivers */
10721         if (dev->reg_state == NETREG_UNINITIALIZED) {
10722                 netdev_freemem(dev);
10723                 return;
10724         }
10725
10726         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10727         dev->reg_state = NETREG_RELEASED;
10728
10729         /* will free via device release */
10730         put_device(&dev->dev);
10731 }
10732 EXPORT_SYMBOL(free_netdev);
10733
10734 /**
10735  *      synchronize_net -  Synchronize with packet receive processing
10736  *
10737  *      Wait for packets currently being received to be done.
10738  *      Does not block later packets from starting.
10739  */
10740 void synchronize_net(void)
10741 {
10742         might_sleep();
10743         if (rtnl_is_locked())
10744                 synchronize_rcu_expedited();
10745         else
10746                 synchronize_rcu();
10747 }
10748 EXPORT_SYMBOL(synchronize_net);
10749
10750 /**
10751  *      unregister_netdevice_queue - remove device from the kernel
10752  *      @dev: device
10753  *      @head: list
10754  *
10755  *      This function shuts down a device interface and removes it
10756  *      from the kernel tables.
10757  *      If head not NULL, device is queued to be unregistered later.
10758  *
10759  *      Callers must hold the rtnl semaphore.  You may want
10760  *      unregister_netdev() instead of this.
10761  */
10762
10763 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10764 {
10765         ASSERT_RTNL();
10766
10767         if (head) {
10768                 list_move_tail(&dev->unreg_list, head);
10769         } else {
10770                 LIST_HEAD(single);
10771
10772                 list_add(&dev->unreg_list, &single);
10773                 unregister_netdevice_many(&single);
10774         }
10775 }
10776 EXPORT_SYMBOL(unregister_netdevice_queue);
10777
10778 /**
10779  *      unregister_netdevice_many - unregister many devices
10780  *      @head: list of devices
10781  *
10782  *  Note: As most callers use a stack allocated list_head,
10783  *  we force a list_del() to make sure stack wont be corrupted later.
10784  */
10785 void unregister_netdevice_many(struct list_head *head)
10786 {
10787         struct net_device *dev, *tmp;
10788         LIST_HEAD(close_head);
10789
10790         BUG_ON(dev_boot_phase);
10791         ASSERT_RTNL();
10792
10793         if (list_empty(head))
10794                 return;
10795
10796         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10797                 /* Some devices call without registering
10798                  * for initialization unwind. Remove those
10799                  * devices and proceed with the remaining.
10800                  */
10801                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10802                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10803                                  dev->name, dev);
10804
10805                         WARN_ON(1);
10806                         list_del(&dev->unreg_list);
10807                         continue;
10808                 }
10809                 dev->dismantle = true;
10810                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10811         }
10812
10813         /* If device is running, close it first. */
10814         list_for_each_entry(dev, head, unreg_list)
10815                 list_add_tail(&dev->close_list, &close_head);
10816         dev_close_many(&close_head, true);
10817
10818         list_for_each_entry(dev, head, unreg_list) {
10819                 /* And unlink it from device chain. */
10820                 write_lock(&dev_base_lock);
10821                 unlist_netdevice(dev, false);
10822                 dev->reg_state = NETREG_UNREGISTERING;
10823                 write_unlock(&dev_base_lock);
10824         }
10825         flush_all_backlogs();
10826
10827         synchronize_net();
10828
10829         list_for_each_entry(dev, head, unreg_list) {
10830                 struct sk_buff *skb = NULL;
10831
10832                 /* Shutdown queueing discipline. */
10833                 dev_shutdown(dev);
10834
10835                 dev_xdp_uninstall(dev);
10836
10837                 netdev_offload_xstats_disable_all(dev);
10838
10839                 /* Notify protocols, that we are about to destroy
10840                  * this device. They should clean all the things.
10841                  */
10842                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10843
10844                 if (!dev->rtnl_link_ops ||
10845                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10846                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10847                                                      GFP_KERNEL, NULL, 0);
10848
10849                 /*
10850                  *      Flush the unicast and multicast chains
10851                  */
10852                 dev_uc_flush(dev);
10853                 dev_mc_flush(dev);
10854
10855                 netdev_name_node_alt_flush(dev);
10856                 netdev_name_node_free(dev->name_node);
10857
10858                 if (dev->netdev_ops->ndo_uninit)
10859                         dev->netdev_ops->ndo_uninit(dev);
10860
10861                 if (skb)
10862                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10863
10864                 /* Notifier chain MUST detach us all upper devices. */
10865                 WARN_ON(netdev_has_any_upper_dev(dev));
10866                 WARN_ON(netdev_has_any_lower_dev(dev));
10867
10868                 /* Remove entries from kobject tree */
10869                 netdev_unregister_kobject(dev);
10870 #ifdef CONFIG_XPS
10871                 /* Remove XPS queueing entries */
10872                 netif_reset_xps_queues_gt(dev, 0);
10873 #endif
10874         }
10875
10876         synchronize_net();
10877
10878         list_for_each_entry(dev, head, unreg_list) {
10879                 netdev_put(dev, &dev->dev_registered_tracker);
10880                 net_set_todo(dev);
10881         }
10882
10883         list_del(head);
10884 }
10885 EXPORT_SYMBOL(unregister_netdevice_many);
10886
10887 /**
10888  *      unregister_netdev - remove device from the kernel
10889  *      @dev: device
10890  *
10891  *      This function shuts down a device interface and removes it
10892  *      from the kernel tables.
10893  *
10894  *      This is just a wrapper for unregister_netdevice that takes
10895  *      the rtnl semaphore.  In general you want to use this and not
10896  *      unregister_netdevice.
10897  */
10898 void unregister_netdev(struct net_device *dev)
10899 {
10900         rtnl_lock();
10901         unregister_netdevice(dev);
10902         rtnl_unlock();
10903 }
10904 EXPORT_SYMBOL(unregister_netdev);
10905
10906 /**
10907  *      __dev_change_net_namespace - move device to different nethost namespace
10908  *      @dev: device
10909  *      @net: network namespace
10910  *      @pat: If not NULL name pattern to try if the current device name
10911  *            is already taken in the destination network namespace.
10912  *      @new_ifindex: If not zero, specifies device index in the target
10913  *                    namespace.
10914  *
10915  *      This function shuts down a device interface and moves it
10916  *      to a new network namespace. On success 0 is returned, on
10917  *      a failure a netagive errno code is returned.
10918  *
10919  *      Callers must hold the rtnl semaphore.
10920  */
10921
10922 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10923                                const char *pat, int new_ifindex)
10924 {
10925         struct net *net_old = dev_net(dev);
10926         int err, new_nsid;
10927
10928         ASSERT_RTNL();
10929
10930         /* Don't allow namespace local devices to be moved. */
10931         err = -EINVAL;
10932         if (dev->features & NETIF_F_NETNS_LOCAL)
10933                 goto out;
10934
10935         /* Ensure the device has been registrered */
10936         if (dev->reg_state != NETREG_REGISTERED)
10937                 goto out;
10938
10939         /* Get out if there is nothing todo */
10940         err = 0;
10941         if (net_eq(net_old, net))
10942                 goto out;
10943
10944         /* Pick the destination device name, and ensure
10945          * we can use it in the destination network namespace.
10946          */
10947         err = -EEXIST;
10948         if (netdev_name_in_use(net, dev->name)) {
10949                 /* We get here if we can't use the current device name */
10950                 if (!pat)
10951                         goto out;
10952                 err = dev_get_valid_name(net, dev, pat);
10953                 if (err < 0)
10954                         goto out;
10955         }
10956
10957         /* Check that new_ifindex isn't used yet. */
10958         err = -EBUSY;
10959         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10960                 goto out;
10961
10962         /*
10963          * And now a mini version of register_netdevice unregister_netdevice.
10964          */
10965
10966         /* If device is running close it first. */
10967         dev_close(dev);
10968
10969         /* And unlink it from device chain */
10970         unlist_netdevice(dev, true);
10971
10972         synchronize_net();
10973
10974         /* Shutdown queueing discipline. */
10975         dev_shutdown(dev);
10976
10977         /* Notify protocols, that we are about to destroy
10978          * this device. They should clean all the things.
10979          *
10980          * Note that dev->reg_state stays at NETREG_REGISTERED.
10981          * This is wanted because this way 8021q and macvlan know
10982          * the device is just moving and can keep their slaves up.
10983          */
10984         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10985         rcu_barrier();
10986
10987         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10988         /* If there is an ifindex conflict assign a new one */
10989         if (!new_ifindex) {
10990                 if (__dev_get_by_index(net, dev->ifindex))
10991                         new_ifindex = dev_new_index(net);
10992                 else
10993                         new_ifindex = dev->ifindex;
10994         }
10995
10996         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10997                             new_ifindex);
10998
10999         /*
11000          *      Flush the unicast and multicast chains
11001          */
11002         dev_uc_flush(dev);
11003         dev_mc_flush(dev);
11004
11005         /* Send a netdev-removed uevent to the old namespace */
11006         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11007         netdev_adjacent_del_links(dev);
11008
11009         /* Move per-net netdevice notifiers that are following the netdevice */
11010         move_netdevice_notifiers_dev_net(dev, net);
11011
11012         /* Actually switch the network namespace */
11013         dev_net_set(dev, net);
11014         dev->ifindex = new_ifindex;
11015
11016         /* Send a netdev-add uevent to the new namespace */
11017         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11018         netdev_adjacent_add_links(dev);
11019
11020         /* Fixup kobjects */
11021         err = device_rename(&dev->dev, dev->name);
11022         WARN_ON(err);
11023
11024         /* Adapt owner in case owning user namespace of target network
11025          * namespace is different from the original one.
11026          */
11027         err = netdev_change_owner(dev, net_old, net);
11028         WARN_ON(err);
11029
11030         /* Add the device back in the hashes */
11031         list_netdevice(dev);
11032
11033         /* Notify protocols, that a new device appeared. */
11034         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11035
11036         /*
11037          *      Prevent userspace races by waiting until the network
11038          *      device is fully setup before sending notifications.
11039          */
11040         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11041
11042         synchronize_net();
11043         err = 0;
11044 out:
11045         return err;
11046 }
11047 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11048
11049 static int dev_cpu_dead(unsigned int oldcpu)
11050 {
11051         struct sk_buff **list_skb;
11052         struct sk_buff *skb;
11053         unsigned int cpu;
11054         struct softnet_data *sd, *oldsd, *remsd = NULL;
11055
11056         local_irq_disable();
11057         cpu = smp_processor_id();
11058         sd = &per_cpu(softnet_data, cpu);
11059         oldsd = &per_cpu(softnet_data, oldcpu);
11060
11061         /* Find end of our completion_queue. */
11062         list_skb = &sd->completion_queue;
11063         while (*list_skb)
11064                 list_skb = &(*list_skb)->next;
11065         /* Append completion queue from offline CPU. */
11066         *list_skb = oldsd->completion_queue;
11067         oldsd->completion_queue = NULL;
11068
11069         /* Append output queue from offline CPU. */
11070         if (oldsd->output_queue) {
11071                 *sd->output_queue_tailp = oldsd->output_queue;
11072                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11073                 oldsd->output_queue = NULL;
11074                 oldsd->output_queue_tailp = &oldsd->output_queue;
11075         }
11076         /* Append NAPI poll list from offline CPU, with one exception :
11077          * process_backlog() must be called by cpu owning percpu backlog.
11078          * We properly handle process_queue & input_pkt_queue later.
11079          */
11080         while (!list_empty(&oldsd->poll_list)) {
11081                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11082                                                             struct napi_struct,
11083                                                             poll_list);
11084
11085                 list_del_init(&napi->poll_list);
11086                 if (napi->poll == process_backlog)
11087                         napi->state = 0;
11088                 else
11089                         ____napi_schedule(sd, napi);
11090         }
11091
11092         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11093         local_irq_enable();
11094
11095 #ifdef CONFIG_RPS
11096         remsd = oldsd->rps_ipi_list;
11097         oldsd->rps_ipi_list = NULL;
11098 #endif
11099         /* send out pending IPI's on offline CPU */
11100         net_rps_send_ipi(remsd);
11101
11102         /* Process offline CPU's input_pkt_queue */
11103         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11104                 netif_rx(skb);
11105                 input_queue_head_incr(oldsd);
11106         }
11107         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11108                 netif_rx(skb);
11109                 input_queue_head_incr(oldsd);
11110         }
11111
11112         return 0;
11113 }
11114
11115 /**
11116  *      netdev_increment_features - increment feature set by one
11117  *      @all: current feature set
11118  *      @one: new feature set
11119  *      @mask: mask feature set
11120  *
11121  *      Computes a new feature set after adding a device with feature set
11122  *      @one to the master device with current feature set @all.  Will not
11123  *      enable anything that is off in @mask. Returns the new feature set.
11124  */
11125 netdev_features_t netdev_increment_features(netdev_features_t all,
11126         netdev_features_t one, netdev_features_t mask)
11127 {
11128         if (mask & NETIF_F_HW_CSUM)
11129                 mask |= NETIF_F_CSUM_MASK;
11130         mask |= NETIF_F_VLAN_CHALLENGED;
11131
11132         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11133         all &= one | ~NETIF_F_ALL_FOR_ALL;
11134
11135         /* If one device supports hw checksumming, set for all. */
11136         if (all & NETIF_F_HW_CSUM)
11137                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11138
11139         return all;
11140 }
11141 EXPORT_SYMBOL(netdev_increment_features);
11142
11143 static struct hlist_head * __net_init netdev_create_hash(void)
11144 {
11145         int i;
11146         struct hlist_head *hash;
11147
11148         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11149         if (hash != NULL)
11150                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11151                         INIT_HLIST_HEAD(&hash[i]);
11152
11153         return hash;
11154 }
11155
11156 /* Initialize per network namespace state */
11157 static int __net_init netdev_init(struct net *net)
11158 {
11159         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11160                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11161
11162         INIT_LIST_HEAD(&net->dev_base_head);
11163
11164         net->dev_name_head = netdev_create_hash();
11165         if (net->dev_name_head == NULL)
11166                 goto err_name;
11167
11168         net->dev_index_head = netdev_create_hash();
11169         if (net->dev_index_head == NULL)
11170                 goto err_idx;
11171
11172         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11173
11174         return 0;
11175
11176 err_idx:
11177         kfree(net->dev_name_head);
11178 err_name:
11179         return -ENOMEM;
11180 }
11181
11182 /**
11183  *      netdev_drivername - network driver for the device
11184  *      @dev: network device
11185  *
11186  *      Determine network driver for device.
11187  */
11188 const char *netdev_drivername(const struct net_device *dev)
11189 {
11190         const struct device_driver *driver;
11191         const struct device *parent;
11192         const char *empty = "";
11193
11194         parent = dev->dev.parent;
11195         if (!parent)
11196                 return empty;
11197
11198         driver = parent->driver;
11199         if (driver && driver->name)
11200                 return driver->name;
11201         return empty;
11202 }
11203
11204 static void __netdev_printk(const char *level, const struct net_device *dev,
11205                             struct va_format *vaf)
11206 {
11207         if (dev && dev->dev.parent) {
11208                 dev_printk_emit(level[1] - '0',
11209                                 dev->dev.parent,
11210                                 "%s %s %s%s: %pV",
11211                                 dev_driver_string(dev->dev.parent),
11212                                 dev_name(dev->dev.parent),
11213                                 netdev_name(dev), netdev_reg_state(dev),
11214                                 vaf);
11215         } else if (dev) {
11216                 printk("%s%s%s: %pV",
11217                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11218         } else {
11219                 printk("%s(NULL net_device): %pV", level, vaf);
11220         }
11221 }
11222
11223 void netdev_printk(const char *level, const struct net_device *dev,
11224                    const char *format, ...)
11225 {
11226         struct va_format vaf;
11227         va_list args;
11228
11229         va_start(args, format);
11230
11231         vaf.fmt = format;
11232         vaf.va = &args;
11233
11234         __netdev_printk(level, dev, &vaf);
11235
11236         va_end(args);
11237 }
11238 EXPORT_SYMBOL(netdev_printk);
11239
11240 #define define_netdev_printk_level(func, level)                 \
11241 void func(const struct net_device *dev, const char *fmt, ...)   \
11242 {                                                               \
11243         struct va_format vaf;                                   \
11244         va_list args;                                           \
11245                                                                 \
11246         va_start(args, fmt);                                    \
11247                                                                 \
11248         vaf.fmt = fmt;                                          \
11249         vaf.va = &args;                                         \
11250                                                                 \
11251         __netdev_printk(level, dev, &vaf);                      \
11252                                                                 \
11253         va_end(args);                                           \
11254 }                                                               \
11255 EXPORT_SYMBOL(func);
11256
11257 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11258 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11259 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11260 define_netdev_printk_level(netdev_err, KERN_ERR);
11261 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11262 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11263 define_netdev_printk_level(netdev_info, KERN_INFO);
11264
11265 static void __net_exit netdev_exit(struct net *net)
11266 {
11267         kfree(net->dev_name_head);
11268         kfree(net->dev_index_head);
11269         if (net != &init_net)
11270                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11271 }
11272
11273 static struct pernet_operations __net_initdata netdev_net_ops = {
11274         .init = netdev_init,
11275         .exit = netdev_exit,
11276 };
11277
11278 static void __net_exit default_device_exit_net(struct net *net)
11279 {
11280         struct net_device *dev, *aux;
11281         /*
11282          * Push all migratable network devices back to the
11283          * initial network namespace
11284          */
11285         ASSERT_RTNL();
11286         for_each_netdev_safe(net, dev, aux) {
11287                 int err;
11288                 char fb_name[IFNAMSIZ];
11289
11290                 /* Ignore unmoveable devices (i.e. loopback) */
11291                 if (dev->features & NETIF_F_NETNS_LOCAL)
11292                         continue;
11293
11294                 /* Leave virtual devices for the generic cleanup */
11295                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11296                         continue;
11297
11298                 /* Push remaining network devices to init_net */
11299                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11300                 if (netdev_name_in_use(&init_net, fb_name))
11301                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11302                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11303                 if (err) {
11304                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11305                                  __func__, dev->name, err);
11306                         BUG();
11307                 }
11308         }
11309 }
11310
11311 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11312 {
11313         /* At exit all network devices most be removed from a network
11314          * namespace.  Do this in the reverse order of registration.
11315          * Do this across as many network namespaces as possible to
11316          * improve batching efficiency.
11317          */
11318         struct net_device *dev;
11319         struct net *net;
11320         LIST_HEAD(dev_kill_list);
11321
11322         rtnl_lock();
11323         list_for_each_entry(net, net_list, exit_list) {
11324                 default_device_exit_net(net);
11325                 cond_resched();
11326         }
11327
11328         list_for_each_entry(net, net_list, exit_list) {
11329                 for_each_netdev_reverse(net, dev) {
11330                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11331                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11332                         else
11333                                 unregister_netdevice_queue(dev, &dev_kill_list);
11334                 }
11335         }
11336         unregister_netdevice_many(&dev_kill_list);
11337         rtnl_unlock();
11338 }
11339
11340 static struct pernet_operations __net_initdata default_device_ops = {
11341         .exit_batch = default_device_exit_batch,
11342 };
11343
11344 /*
11345  *      Initialize the DEV module. At boot time this walks the device list and
11346  *      unhooks any devices that fail to initialise (normally hardware not
11347  *      present) and leaves us with a valid list of present and active devices.
11348  *
11349  */
11350
11351 /*
11352  *       This is called single threaded during boot, so no need
11353  *       to take the rtnl semaphore.
11354  */
11355 static int __init net_dev_init(void)
11356 {
11357         int i, rc = -ENOMEM;
11358
11359         BUG_ON(!dev_boot_phase);
11360
11361         if (dev_proc_init())
11362                 goto out;
11363
11364         if (netdev_kobject_init())
11365                 goto out;
11366
11367         INIT_LIST_HEAD(&ptype_all);
11368         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11369                 INIT_LIST_HEAD(&ptype_base[i]);
11370
11371         if (register_pernet_subsys(&netdev_net_ops))
11372                 goto out;
11373
11374         /*
11375          *      Initialise the packet receive queues.
11376          */
11377
11378         for_each_possible_cpu(i) {
11379                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11380                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11381
11382                 INIT_WORK(flush, flush_backlog);
11383
11384                 skb_queue_head_init(&sd->input_pkt_queue);
11385                 skb_queue_head_init(&sd->process_queue);
11386 #ifdef CONFIG_XFRM_OFFLOAD
11387                 skb_queue_head_init(&sd->xfrm_backlog);
11388 #endif
11389                 INIT_LIST_HEAD(&sd->poll_list);
11390                 sd->output_queue_tailp = &sd->output_queue;
11391 #ifdef CONFIG_RPS
11392                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11393                 sd->cpu = i;
11394 #endif
11395                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11396                 spin_lock_init(&sd->defer_lock);
11397
11398                 init_gro_hash(&sd->backlog);
11399                 sd->backlog.poll = process_backlog;
11400                 sd->backlog.weight = weight_p;
11401         }
11402
11403         dev_boot_phase = 0;
11404
11405         /* The loopback device is special if any other network devices
11406          * is present in a network namespace the loopback device must
11407          * be present. Since we now dynamically allocate and free the
11408          * loopback device ensure this invariant is maintained by
11409          * keeping the loopback device as the first device on the
11410          * list of network devices.  Ensuring the loopback devices
11411          * is the first device that appears and the last network device
11412          * that disappears.
11413          */
11414         if (register_pernet_device(&loopback_net_ops))
11415                 goto out;
11416
11417         if (register_pernet_device(&default_device_ops))
11418                 goto out;
11419
11420         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11421         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11422
11423         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11424                                        NULL, dev_cpu_dead);
11425         WARN_ON(rc < 0);
11426         rc = 0;
11427 out:
11428         return rc;
11429 }
11430
11431 subsys_initcall(net_dev_init);