Merge tag 'powerpc-6.6-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         kfree(name_node->name);
349         netdev_name_node_free(name_node);
350 }
351
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354         struct netdev_name_node *name_node;
355         struct net *net = dev_net(dev);
356
357         name_node = netdev_name_node_lookup(net, name);
358         if (!name_node)
359                 return -ENOENT;
360         /* lookup might have found our primary name or a name belonging
361          * to another device.
362          */
363         if (name_node == dev->name_node || name_node->dev != dev)
364                 return -EINVAL;
365
366         netdev_name_node_del(name_node);
367         synchronize_rcu();
368         __netdev_name_node_alt_destroy(name_node);
369
370         return 0;
371 }
372
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375         struct netdev_name_node *name_node, *tmp;
376
377         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378                 __netdev_name_node_alt_destroy(name_node);
379 }
380
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384         struct netdev_name_node *name_node;
385         struct net *net = dev_net(dev);
386
387         ASSERT_RTNL();
388
389         write_lock(&dev_base_lock);
390         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391         netdev_name_node_add(net, dev->name_node);
392         hlist_add_head_rcu(&dev->index_hlist,
393                            dev_index_hash(net, dev->ifindex));
394         write_unlock(&dev_base_lock);
395
396         netdev_for_each_altname(dev, name_node)
397                 netdev_name_node_add(net, name_node);
398
399         /* We reserved the ifindex, this can't fail */
400         WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401
402         dev_base_seq_inc(net);
403 }
404
405 /* Device list removal
406  * caller must respect a RCU grace period before freeing/reusing dev
407  */
408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410         struct netdev_name_node *name_node;
411         struct net *net = dev_net(dev);
412
413         ASSERT_RTNL();
414
415         xa_erase(&net->dev_by_index, dev->ifindex);
416
417         netdev_for_each_altname(dev, name_node)
418                 netdev_name_node_del(name_node);
419
420         /* Unlink dev from the device chain */
421         if (lock)
422                 write_lock(&dev_base_lock);
423         list_del_rcu(&dev->dev_list);
424         netdev_name_node_del(dev->name_node);
425         hlist_del_rcu(&dev->index_hlist);
426         if (lock)
427                 write_unlock(&dev_base_lock);
428
429         dev_base_seq_inc(dev_net(dev));
430 }
431
432 /*
433  *      Our notifier list
434  */
435
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437
438 /*
439  *      Device drivers call our routines to queue packets here. We empty the
440  *      queue in the local softnet handler.
441  */
442
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445
446 #ifdef CONFIG_LOCKDEP
447 /*
448  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449  * according to dev->type
450  */
451 static const unsigned short netdev_lock_type[] = {
452          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467
468 static const char *const netdev_lock_name[] = {
469         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487
488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490         int i;
491
492         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493                 if (netdev_lock_type[i] == dev_type)
494                         return i;
495         /* the last key is used by default */
496         return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498
499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500                                                  unsigned short dev_type)
501 {
502         int i;
503
504         i = netdev_lock_pos(dev_type);
505         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506                                    netdev_lock_name[i]);
507 }
508
509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511         int i;
512
513         i = netdev_lock_pos(dev->type);
514         lockdep_set_class_and_name(&dev->addr_list_lock,
515                                    &netdev_addr_lock_key[i],
516                                    netdev_lock_name[i]);
517 }
518 #else
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520                                                  unsigned short dev_type)
521 {
522 }
523
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528
529 /*******************************************************************************
530  *
531  *              Protocol management and registration routines
532  *
533  *******************************************************************************/
534
535
536 /*
537  *      Add a protocol ID to the list. Now that the input handler is
538  *      smarter we can dispense with all the messy stuff that used to be
539  *      here.
540  *
541  *      BEWARE!!! Protocol handlers, mangling input packets,
542  *      MUST BE last in hash buckets and checking protocol handlers
543  *      MUST start from promiscuous ptype_all chain in net_bh.
544  *      It is true now, do not change it.
545  *      Explanation follows: if protocol handler, mangling packet, will
546  *      be the first on list, it is not able to sense, that packet
547  *      is cloned and should be copied-on-write, so that it will
548  *      change it and subsequent readers will get broken packet.
549  *                                                      --ANK (980803)
550  */
551
552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554         if (pt->type == htons(ETH_P_ALL))
555                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556         else
557                 return pt->dev ? &pt->dev->ptype_specific :
558                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560
561 /**
562  *      dev_add_pack - add packet handler
563  *      @pt: packet type declaration
564  *
565  *      Add a protocol handler to the networking stack. The passed &packet_type
566  *      is linked into kernel lists and may not be freed until it has been
567  *      removed from the kernel lists.
568  *
569  *      This call does not sleep therefore it can not
570  *      guarantee all CPU's that are in middle of receiving packets
571  *      will see the new packet type (until the next received packet).
572  */
573
574 void dev_add_pack(struct packet_type *pt)
575 {
576         struct list_head *head = ptype_head(pt);
577
578         spin_lock(&ptype_lock);
579         list_add_rcu(&pt->list, head);
580         spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583
584 /**
585  *      __dev_remove_pack        - remove packet handler
586  *      @pt: packet type declaration
587  *
588  *      Remove a protocol handler that was previously added to the kernel
589  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
590  *      from the kernel lists and can be freed or reused once this function
591  *      returns.
592  *
593  *      The packet type might still be in use by receivers
594  *      and must not be freed until after all the CPU's have gone
595  *      through a quiescent state.
596  */
597 void __dev_remove_pack(struct packet_type *pt)
598 {
599         struct list_head *head = ptype_head(pt);
600         struct packet_type *pt1;
601
602         spin_lock(&ptype_lock);
603
604         list_for_each_entry(pt1, head, list) {
605                 if (pt == pt1) {
606                         list_del_rcu(&pt->list);
607                         goto out;
608                 }
609         }
610
611         pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613         spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616
617 /**
618  *      dev_remove_pack  - remove packet handler
619  *      @pt: packet type declaration
620  *
621  *      Remove a protocol handler that was previously added to the kernel
622  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
623  *      from the kernel lists and can be freed or reused once this function
624  *      returns.
625  *
626  *      This call sleeps to guarantee that no CPU is looking at the packet
627  *      type after return.
628  */
629 void dev_remove_pack(struct packet_type *pt)
630 {
631         __dev_remove_pack(pt);
632
633         synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636
637
638 /*******************************************************************************
639  *
640  *                          Device Interface Subroutines
641  *
642  *******************************************************************************/
643
644 /**
645  *      dev_get_iflink  - get 'iflink' value of a interface
646  *      @dev: targeted interface
647  *
648  *      Indicates the ifindex the interface is linked to.
649  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
650  */
651
652 int dev_get_iflink(const struct net_device *dev)
653 {
654         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655                 return dev->netdev_ops->ndo_get_iflink(dev);
656
657         return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660
661 /**
662  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
663  *      @dev: targeted interface
664  *      @skb: The packet.
665  *
666  *      For better visibility of tunnel traffic OVS needs to retrieve
667  *      egress tunnel information for a packet. Following API allows
668  *      user to get this info.
669  */
670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672         struct ip_tunnel_info *info;
673
674         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
675                 return -EINVAL;
676
677         info = skb_tunnel_info_unclone(skb);
678         if (!info)
679                 return -ENOMEM;
680         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681                 return -EINVAL;
682
683         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686
687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689         int k = stack->num_paths++;
690
691         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692                 return NULL;
693
694         return &stack->path[k];
695 }
696
697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698                           struct net_device_path_stack *stack)
699 {
700         const struct net_device *last_dev;
701         struct net_device_path_ctx ctx = {
702                 .dev    = dev,
703         };
704         struct net_device_path *path;
705         int ret = 0;
706
707         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708         stack->num_paths = 0;
709         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710                 last_dev = ctx.dev;
711                 path = dev_fwd_path(stack);
712                 if (!path)
713                         return -1;
714
715                 memset(path, 0, sizeof(struct net_device_path));
716                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717                 if (ret < 0)
718                         return -1;
719
720                 if (WARN_ON_ONCE(last_dev == ctx.dev))
721                         return -1;
722         }
723
724         if (!ctx.dev)
725                 return ret;
726
727         path = dev_fwd_path(stack);
728         if (!path)
729                 return -1;
730         path->type = DEV_PATH_ETHERNET;
731         path->dev = ctx.dev;
732
733         return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736
737 /**
738  *      __dev_get_by_name       - find a device by its name
739  *      @net: the applicable net namespace
740  *      @name: name to find
741  *
742  *      Find an interface by name. Must be called under RTNL semaphore
743  *      or @dev_base_lock. If the name is found a pointer to the device
744  *      is returned. If the name is not found then %NULL is returned. The
745  *      reference counters are not incremented so the caller must be
746  *      careful with locks.
747  */
748
749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751         struct netdev_name_node *node_name;
752
753         node_name = netdev_name_node_lookup(net, name);
754         return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757
758 /**
759  * dev_get_by_name_rcu  - find a device by its name
760  * @net: the applicable net namespace
761  * @name: name to find
762  *
763  * Find an interface by name.
764  * If the name is found a pointer to the device is returned.
765  * If the name is not found then %NULL is returned.
766  * The reference counters are not incremented so the caller must be
767  * careful with locks. The caller must hold RCU lock.
768  */
769
770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772         struct netdev_name_node *node_name;
773
774         node_name = netdev_name_node_lookup_rcu(net, name);
775         return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778
779 /* Deprecated for new users, call netdev_get_by_name() instead */
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782         struct net_device *dev;
783
784         rcu_read_lock();
785         dev = dev_get_by_name_rcu(net, name);
786         dev_hold(dev);
787         rcu_read_unlock();
788         return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791
792 /**
793  *      netdev_get_by_name() - find a device by its name
794  *      @net: the applicable net namespace
795  *      @name: name to find
796  *      @tracker: tracking object for the acquired reference
797  *      @gfp: allocation flags for the tracker
798  *
799  *      Find an interface by name. This can be called from any
800  *      context and does its own locking. The returned handle has
801  *      the usage count incremented and the caller must use netdev_put() to
802  *      release it when it is no longer needed. %NULL is returned if no
803  *      matching device is found.
804  */
805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806                                       netdevice_tracker *tracker, gfp_t gfp)
807 {
808         struct net_device *dev;
809
810         dev = dev_get_by_name(net, name);
811         if (dev)
812                 netdev_tracker_alloc(dev, tracker, gfp);
813         return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816
817 /**
818  *      __dev_get_by_index - find a device by its ifindex
819  *      @net: the applicable net namespace
820  *      @ifindex: index of device
821  *
822  *      Search for an interface by index. Returns %NULL if the device
823  *      is not found or a pointer to the device. The device has not
824  *      had its reference counter increased so the caller must be careful
825  *      about locking. The caller must hold either the RTNL semaphore
826  *      or @dev_base_lock.
827  */
828
829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831         struct net_device *dev;
832         struct hlist_head *head = dev_index_hash(net, ifindex);
833
834         hlist_for_each_entry(dev, head, index_hlist)
835                 if (dev->ifindex == ifindex)
836                         return dev;
837
838         return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841
842 /**
843  *      dev_get_by_index_rcu - find a device by its ifindex
844  *      @net: the applicable net namespace
845  *      @ifindex: index of device
846  *
847  *      Search for an interface by index. Returns %NULL if the device
848  *      is not found or a pointer to the device. The device has not
849  *      had its reference counter increased so the caller must be careful
850  *      about locking. The caller must hold RCU lock.
851  */
852
853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855         struct net_device *dev;
856         struct hlist_head *head = dev_index_hash(net, ifindex);
857
858         hlist_for_each_entry_rcu(dev, head, index_hlist)
859                 if (dev->ifindex == ifindex)
860                         return dev;
861
862         return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865
866 /* Deprecated for new users, call netdev_get_by_index() instead */
867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869         struct net_device *dev;
870
871         rcu_read_lock();
872         dev = dev_get_by_index_rcu(net, ifindex);
873         dev_hold(dev);
874         rcu_read_unlock();
875         return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878
879 /**
880  *      netdev_get_by_index() - find a device by its ifindex
881  *      @net: the applicable net namespace
882  *      @ifindex: index of device
883  *      @tracker: tracking object for the acquired reference
884  *      @gfp: allocation flags for the tracker
885  *
886  *      Search for an interface by index. Returns NULL if the device
887  *      is not found or a pointer to the device. The device returned has
888  *      had a reference added and the pointer is safe until the user calls
889  *      netdev_put() to indicate they have finished with it.
890  */
891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892                                        netdevice_tracker *tracker, gfp_t gfp)
893 {
894         struct net_device *dev;
895
896         dev = dev_get_by_index(net, ifindex);
897         if (dev)
898                 netdev_tracker_alloc(dev, tracker, gfp);
899         return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902
903 /**
904  *      dev_get_by_napi_id - find a device by napi_id
905  *      @napi_id: ID of the NAPI struct
906  *
907  *      Search for an interface by NAPI ID. Returns %NULL if the device
908  *      is not found or a pointer to the device. The device has not had
909  *      its reference counter increased so the caller must be careful
910  *      about locking. The caller must hold RCU lock.
911  */
912
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915         struct napi_struct *napi;
916
917         WARN_ON_ONCE(!rcu_read_lock_held());
918
919         if (napi_id < MIN_NAPI_ID)
920                 return NULL;
921
922         napi = napi_by_id(napi_id);
923
924         return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927
928 /**
929  *      netdev_get_name - get a netdevice name, knowing its ifindex.
930  *      @net: network namespace
931  *      @name: a pointer to the buffer where the name will be stored.
932  *      @ifindex: the ifindex of the interface to get the name from.
933  */
934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936         struct net_device *dev;
937         int ret;
938
939         down_read(&devnet_rename_sem);
940         rcu_read_lock();
941
942         dev = dev_get_by_index_rcu(net, ifindex);
943         if (!dev) {
944                 ret = -ENODEV;
945                 goto out;
946         }
947
948         strcpy(name, dev->name);
949
950         ret = 0;
951 out:
952         rcu_read_unlock();
953         up_read(&devnet_rename_sem);
954         return ret;
955 }
956
957 /**
958  *      dev_getbyhwaddr_rcu - find a device by its hardware address
959  *      @net: the applicable net namespace
960  *      @type: media type of device
961  *      @ha: hardware address
962  *
963  *      Search for an interface by MAC address. Returns NULL if the device
964  *      is not found or a pointer to the device.
965  *      The caller must hold RCU or RTNL.
966  *      The returned device has not had its ref count increased
967  *      and the caller must therefore be careful about locking
968  *
969  */
970
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972                                        const char *ha)
973 {
974         struct net_device *dev;
975
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type &&
978                     !memcmp(dev->dev_addr, ha, dev->addr_len))
979                         return dev;
980
981         return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987         struct net_device *dev, *ret = NULL;
988
989         rcu_read_lock();
990         for_each_netdev_rcu(net, dev)
991                 if (dev->type == type) {
992                         dev_hold(dev);
993                         ret = dev;
994                         break;
995                 }
996         rcu_read_unlock();
997         return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000
1001 /**
1002  *      __dev_get_by_flags - find any device with given flags
1003  *      @net: the applicable net namespace
1004  *      @if_flags: IFF_* values
1005  *      @mask: bitmask of bits in if_flags to check
1006  *
1007  *      Search for any interface with the given flags. Returns NULL if a device
1008  *      is not found or a pointer to the device. Must be called inside
1009  *      rtnl_lock(), and result refcount is unchanged.
1010  */
1011
1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013                                       unsigned short mask)
1014 {
1015         struct net_device *dev, *ret;
1016
1017         ASSERT_RTNL();
1018
1019         ret = NULL;
1020         for_each_netdev(net, dev) {
1021                 if (((dev->flags ^ if_flags) & mask) == 0) {
1022                         ret = dev;
1023                         break;
1024                 }
1025         }
1026         return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029
1030 /**
1031  *      dev_valid_name - check if name is okay for network device
1032  *      @name: name string
1033  *
1034  *      Network device names need to be valid file names to
1035  *      allow sysfs to work.  We also disallow any kind of
1036  *      whitespace.
1037  */
1038 bool dev_valid_name(const char *name)
1039 {
1040         if (*name == '\0')
1041                 return false;
1042         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043                 return false;
1044         if (!strcmp(name, ".") || !strcmp(name, ".."))
1045                 return false;
1046
1047         while (*name) {
1048                 if (*name == '/' || *name == ':' || isspace(*name))
1049                         return false;
1050                 name++;
1051         }
1052         return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055
1056 /**
1057  *      __dev_alloc_name - allocate a name for a device
1058  *      @net: network namespace to allocate the device name in
1059  *      @name: name format string
1060  *      @buf:  scratch buffer and result name string
1061  *
1062  *      Passed a format string - eg "lt%d" it will try and find a suitable
1063  *      id. It scans list of devices to build up a free map, then chooses
1064  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1065  *      while allocating the name and adding the device in order to avoid
1066  *      duplicates.
1067  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068  *      Returns the number of the unit assigned or a negative errno code.
1069  */
1070
1071 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1072 {
1073         int i = 0;
1074         const char *p;
1075         const int max_netdevices = 8*PAGE_SIZE;
1076         unsigned long *inuse;
1077         struct net_device *d;
1078
1079         if (!dev_valid_name(name))
1080                 return -EINVAL;
1081
1082         p = strchr(name, '%');
1083         if (p) {
1084                 /*
1085                  * Verify the string as this thing may have come from
1086                  * the user.  There must be either one "%d" and no other "%"
1087                  * characters.
1088                  */
1089                 if (p[1] != 'd' || strchr(p + 2, '%'))
1090                         return -EINVAL;
1091
1092                 /* Use one page as a bit array of possible slots */
1093                 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1094                 if (!inuse)
1095                         return -ENOMEM;
1096
1097                 for_each_netdev(net, d) {
1098                         struct netdev_name_node *name_node;
1099
1100                         netdev_for_each_altname(d, name_node) {
1101                                 if (!sscanf(name_node->name, name, &i))
1102                                         continue;
1103                                 if (i < 0 || i >= max_netdevices)
1104                                         continue;
1105
1106                                 /*  avoid cases where sscanf is not exact inverse of printf */
1107                                 snprintf(buf, IFNAMSIZ, name, i);
1108                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1109                                         __set_bit(i, inuse);
1110                         }
1111                         if (!sscanf(d->name, name, &i))
1112                                 continue;
1113                         if (i < 0 || i >= max_netdevices)
1114                                 continue;
1115
1116                         /*  avoid cases where sscanf is not exact inverse of printf */
1117                         snprintf(buf, IFNAMSIZ, name, i);
1118                         if (!strncmp(buf, d->name, IFNAMSIZ))
1119                                 __set_bit(i, inuse);
1120                 }
1121
1122                 i = find_first_zero_bit(inuse, max_netdevices);
1123                 bitmap_free(inuse);
1124         }
1125
1126         snprintf(buf, IFNAMSIZ, name, i);
1127         if (!netdev_name_in_use(net, buf))
1128                 return i;
1129
1130         /* It is possible to run out of possible slots
1131          * when the name is long and there isn't enough space left
1132          * for the digits, or if all bits are used.
1133          */
1134         return -ENFILE;
1135 }
1136
1137 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1138                                const char *want_name, char *out_name)
1139 {
1140         int ret;
1141
1142         if (!dev_valid_name(want_name))
1143                 return -EINVAL;
1144
1145         if (strchr(want_name, '%')) {
1146                 ret = __dev_alloc_name(net, want_name, out_name);
1147                 return ret < 0 ? ret : 0;
1148         } else if (netdev_name_in_use(net, want_name)) {
1149                 return -EEXIST;
1150         } else if (out_name != want_name) {
1151                 strscpy(out_name, want_name, IFNAMSIZ);
1152         }
1153
1154         return 0;
1155 }
1156
1157 static int dev_alloc_name_ns(struct net *net,
1158                              struct net_device *dev,
1159                              const char *name)
1160 {
1161         char buf[IFNAMSIZ];
1162         int ret;
1163
1164         BUG_ON(!net);
1165         ret = __dev_alloc_name(net, name, buf);
1166         if (ret >= 0)
1167                 strscpy(dev->name, buf, IFNAMSIZ);
1168         return ret;
1169 }
1170
1171 /**
1172  *      dev_alloc_name - allocate a name for a device
1173  *      @dev: device
1174  *      @name: name format string
1175  *
1176  *      Passed a format string - eg "lt%d" it will try and find a suitable
1177  *      id. It scans list of devices to build up a free map, then chooses
1178  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1179  *      while allocating the name and adding the device in order to avoid
1180  *      duplicates.
1181  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1182  *      Returns the number of the unit assigned or a negative errno code.
1183  */
1184
1185 int dev_alloc_name(struct net_device *dev, const char *name)
1186 {
1187         return dev_alloc_name_ns(dev_net(dev), dev, name);
1188 }
1189 EXPORT_SYMBOL(dev_alloc_name);
1190
1191 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1192                               const char *name)
1193 {
1194         char buf[IFNAMSIZ];
1195         int ret;
1196
1197         ret = dev_prep_valid_name(net, dev, name, buf);
1198         if (ret >= 0)
1199                 strscpy(dev->name, buf, IFNAMSIZ);
1200         return ret;
1201 }
1202
1203 /**
1204  *      dev_change_name - change name of a device
1205  *      @dev: device
1206  *      @newname: name (or format string) must be at least IFNAMSIZ
1207  *
1208  *      Change name of a device, can pass format strings "eth%d".
1209  *      for wildcarding.
1210  */
1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213         unsigned char old_assign_type;
1214         char oldname[IFNAMSIZ];
1215         int err = 0;
1216         int ret;
1217         struct net *net;
1218
1219         ASSERT_RTNL();
1220         BUG_ON(!dev_net(dev));
1221
1222         net = dev_net(dev);
1223
1224         down_write(&devnet_rename_sem);
1225
1226         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227                 up_write(&devnet_rename_sem);
1228                 return 0;
1229         }
1230
1231         memcpy(oldname, dev->name, IFNAMSIZ);
1232
1233         err = dev_get_valid_name(net, dev, newname);
1234         if (err < 0) {
1235                 up_write(&devnet_rename_sem);
1236                 return err;
1237         }
1238
1239         if (oldname[0] && !strchr(oldname, '%'))
1240                 netdev_info(dev, "renamed from %s%s\n", oldname,
1241                             dev->flags & IFF_UP ? " (while UP)" : "");
1242
1243         old_assign_type = dev->name_assign_type;
1244         dev->name_assign_type = NET_NAME_RENAMED;
1245
1246 rollback:
1247         ret = device_rename(&dev->dev, dev->name);
1248         if (ret) {
1249                 memcpy(dev->name, oldname, IFNAMSIZ);
1250                 dev->name_assign_type = old_assign_type;
1251                 up_write(&devnet_rename_sem);
1252                 return ret;
1253         }
1254
1255         up_write(&devnet_rename_sem);
1256
1257         netdev_adjacent_rename_links(dev, oldname);
1258
1259         write_lock(&dev_base_lock);
1260         netdev_name_node_del(dev->name_node);
1261         write_unlock(&dev_base_lock);
1262
1263         synchronize_rcu();
1264
1265         write_lock(&dev_base_lock);
1266         netdev_name_node_add(net, dev->name_node);
1267         write_unlock(&dev_base_lock);
1268
1269         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1270         ret = notifier_to_errno(ret);
1271
1272         if (ret) {
1273                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1274                 if (err >= 0) {
1275                         err = ret;
1276                         down_write(&devnet_rename_sem);
1277                         memcpy(dev->name, oldname, IFNAMSIZ);
1278                         memcpy(oldname, newname, IFNAMSIZ);
1279                         dev->name_assign_type = old_assign_type;
1280                         old_assign_type = NET_NAME_RENAMED;
1281                         goto rollback;
1282                 } else {
1283                         netdev_err(dev, "name change rollback failed: %d\n",
1284                                    ret);
1285                 }
1286         }
1287
1288         return err;
1289 }
1290
1291 /**
1292  *      dev_set_alias - change ifalias of a device
1293  *      @dev: device
1294  *      @alias: name up to IFALIASZ
1295  *      @len: limit of bytes to copy from info
1296  *
1297  *      Set ifalias for a device,
1298  */
1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1300 {
1301         struct dev_ifalias *new_alias = NULL;
1302
1303         if (len >= IFALIASZ)
1304                 return -EINVAL;
1305
1306         if (len) {
1307                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1308                 if (!new_alias)
1309                         return -ENOMEM;
1310
1311                 memcpy(new_alias->ifalias, alias, len);
1312                 new_alias->ifalias[len] = 0;
1313         }
1314
1315         mutex_lock(&ifalias_mutex);
1316         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1317                                         mutex_is_locked(&ifalias_mutex));
1318         mutex_unlock(&ifalias_mutex);
1319
1320         if (new_alias)
1321                 kfree_rcu(new_alias, rcuhead);
1322
1323         return len;
1324 }
1325 EXPORT_SYMBOL(dev_set_alias);
1326
1327 /**
1328  *      dev_get_alias - get ifalias of a device
1329  *      @dev: device
1330  *      @name: buffer to store name of ifalias
1331  *      @len: size of buffer
1332  *
1333  *      get ifalias for a device.  Caller must make sure dev cannot go
1334  *      away,  e.g. rcu read lock or own a reference count to device.
1335  */
1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1337 {
1338         const struct dev_ifalias *alias;
1339         int ret = 0;
1340
1341         rcu_read_lock();
1342         alias = rcu_dereference(dev->ifalias);
1343         if (alias)
1344                 ret = snprintf(name, len, "%s", alias->ifalias);
1345         rcu_read_unlock();
1346
1347         return ret;
1348 }
1349
1350 /**
1351  *      netdev_features_change - device changes features
1352  *      @dev: device to cause notification
1353  *
1354  *      Called to indicate a device has changed features.
1355  */
1356 void netdev_features_change(struct net_device *dev)
1357 {
1358         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1359 }
1360 EXPORT_SYMBOL(netdev_features_change);
1361
1362 /**
1363  *      netdev_state_change - device changes state
1364  *      @dev: device to cause notification
1365  *
1366  *      Called to indicate a device has changed state. This function calls
1367  *      the notifier chains for netdev_chain and sends a NEWLINK message
1368  *      to the routing socket.
1369  */
1370 void netdev_state_change(struct net_device *dev)
1371 {
1372         if (dev->flags & IFF_UP) {
1373                 struct netdev_notifier_change_info change_info = {
1374                         .info.dev = dev,
1375                 };
1376
1377                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1378                                               &change_info.info);
1379                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1380         }
1381 }
1382 EXPORT_SYMBOL(netdev_state_change);
1383
1384 /**
1385  * __netdev_notify_peers - notify network peers about existence of @dev,
1386  * to be called when rtnl lock is already held.
1387  * @dev: network device
1388  *
1389  * Generate traffic such that interested network peers are aware of
1390  * @dev, such as by generating a gratuitous ARP. This may be used when
1391  * a device wants to inform the rest of the network about some sort of
1392  * reconfiguration such as a failover event or virtual machine
1393  * migration.
1394  */
1395 void __netdev_notify_peers(struct net_device *dev)
1396 {
1397         ASSERT_RTNL();
1398         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 }
1401 EXPORT_SYMBOL(__netdev_notify_peers);
1402
1403 /**
1404  * netdev_notify_peers - notify network peers about existence of @dev
1405  * @dev: network device
1406  *
1407  * Generate traffic such that interested network peers are aware of
1408  * @dev, such as by generating a gratuitous ARP. This may be used when
1409  * a device wants to inform the rest of the network about some sort of
1410  * reconfiguration such as a failover event or virtual machine
1411  * migration.
1412  */
1413 void netdev_notify_peers(struct net_device *dev)
1414 {
1415         rtnl_lock();
1416         __netdev_notify_peers(dev);
1417         rtnl_unlock();
1418 }
1419 EXPORT_SYMBOL(netdev_notify_peers);
1420
1421 static int napi_threaded_poll(void *data);
1422
1423 static int napi_kthread_create(struct napi_struct *n)
1424 {
1425         int err = 0;
1426
1427         /* Create and wake up the kthread once to put it in
1428          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1429          * warning and work with loadavg.
1430          */
1431         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1432                                 n->dev->name, n->napi_id);
1433         if (IS_ERR(n->thread)) {
1434                 err = PTR_ERR(n->thread);
1435                 pr_err("kthread_run failed with err %d\n", err);
1436                 n->thread = NULL;
1437         }
1438
1439         return err;
1440 }
1441
1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1443 {
1444         const struct net_device_ops *ops = dev->netdev_ops;
1445         int ret;
1446
1447         ASSERT_RTNL();
1448         dev_addr_check(dev);
1449
1450         if (!netif_device_present(dev)) {
1451                 /* may be detached because parent is runtime-suspended */
1452                 if (dev->dev.parent)
1453                         pm_runtime_resume(dev->dev.parent);
1454                 if (!netif_device_present(dev))
1455                         return -ENODEV;
1456         }
1457
1458         /* Block netpoll from trying to do any rx path servicing.
1459          * If we don't do this there is a chance ndo_poll_controller
1460          * or ndo_poll may be running while we open the device
1461          */
1462         netpoll_poll_disable(dev);
1463
1464         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1465         ret = notifier_to_errno(ret);
1466         if (ret)
1467                 return ret;
1468
1469         set_bit(__LINK_STATE_START, &dev->state);
1470
1471         if (ops->ndo_validate_addr)
1472                 ret = ops->ndo_validate_addr(dev);
1473
1474         if (!ret && ops->ndo_open)
1475                 ret = ops->ndo_open(dev);
1476
1477         netpoll_poll_enable(dev);
1478
1479         if (ret)
1480                 clear_bit(__LINK_STATE_START, &dev->state);
1481         else {
1482                 dev->flags |= IFF_UP;
1483                 dev_set_rx_mode(dev);
1484                 dev_activate(dev);
1485                 add_device_randomness(dev->dev_addr, dev->addr_len);
1486         }
1487
1488         return ret;
1489 }
1490
1491 /**
1492  *      dev_open        - prepare an interface for use.
1493  *      @dev: device to open
1494  *      @extack: netlink extended ack
1495  *
1496  *      Takes a device from down to up state. The device's private open
1497  *      function is invoked and then the multicast lists are loaded. Finally
1498  *      the device is moved into the up state and a %NETDEV_UP message is
1499  *      sent to the netdev notifier chain.
1500  *
1501  *      Calling this function on an active interface is a nop. On a failure
1502  *      a negative errno code is returned.
1503  */
1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1505 {
1506         int ret;
1507
1508         if (dev->flags & IFF_UP)
1509                 return 0;
1510
1511         ret = __dev_open(dev, extack);
1512         if (ret < 0)
1513                 return ret;
1514
1515         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1516         call_netdevice_notifiers(NETDEV_UP, dev);
1517
1518         return ret;
1519 }
1520 EXPORT_SYMBOL(dev_open);
1521
1522 static void __dev_close_many(struct list_head *head)
1523 {
1524         struct net_device *dev;
1525
1526         ASSERT_RTNL();
1527         might_sleep();
1528
1529         list_for_each_entry(dev, head, close_list) {
1530                 /* Temporarily disable netpoll until the interface is down */
1531                 netpoll_poll_disable(dev);
1532
1533                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1534
1535                 clear_bit(__LINK_STATE_START, &dev->state);
1536
1537                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1538                  * can be even on different cpu. So just clear netif_running().
1539                  *
1540                  * dev->stop() will invoke napi_disable() on all of it's
1541                  * napi_struct instances on this device.
1542                  */
1543                 smp_mb__after_atomic(); /* Commit netif_running(). */
1544         }
1545
1546         dev_deactivate_many(head);
1547
1548         list_for_each_entry(dev, head, close_list) {
1549                 const struct net_device_ops *ops = dev->netdev_ops;
1550
1551                 /*
1552                  *      Call the device specific close. This cannot fail.
1553                  *      Only if device is UP
1554                  *
1555                  *      We allow it to be called even after a DETACH hot-plug
1556                  *      event.
1557                  */
1558                 if (ops->ndo_stop)
1559                         ops->ndo_stop(dev);
1560
1561                 dev->flags &= ~IFF_UP;
1562                 netpoll_poll_enable(dev);
1563         }
1564 }
1565
1566 static void __dev_close(struct net_device *dev)
1567 {
1568         LIST_HEAD(single);
1569
1570         list_add(&dev->close_list, &single);
1571         __dev_close_many(&single);
1572         list_del(&single);
1573 }
1574
1575 void dev_close_many(struct list_head *head, bool unlink)
1576 {
1577         struct net_device *dev, *tmp;
1578
1579         /* Remove the devices that don't need to be closed */
1580         list_for_each_entry_safe(dev, tmp, head, close_list)
1581                 if (!(dev->flags & IFF_UP))
1582                         list_del_init(&dev->close_list);
1583
1584         __dev_close_many(head);
1585
1586         list_for_each_entry_safe(dev, tmp, head, close_list) {
1587                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1588                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1589                 if (unlink)
1590                         list_del_init(&dev->close_list);
1591         }
1592 }
1593 EXPORT_SYMBOL(dev_close_many);
1594
1595 /**
1596  *      dev_close - shutdown an interface.
1597  *      @dev: device to shutdown
1598  *
1599  *      This function moves an active device into down state. A
1600  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1601  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1602  *      chain.
1603  */
1604 void dev_close(struct net_device *dev)
1605 {
1606         if (dev->flags & IFF_UP) {
1607                 LIST_HEAD(single);
1608
1609                 list_add(&dev->close_list, &single);
1610                 dev_close_many(&single, true);
1611                 list_del(&single);
1612         }
1613 }
1614 EXPORT_SYMBOL(dev_close);
1615
1616
1617 /**
1618  *      dev_disable_lro - disable Large Receive Offload on a device
1619  *      @dev: device
1620  *
1621  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1622  *      called under RTNL.  This is needed if received packets may be
1623  *      forwarded to another interface.
1624  */
1625 void dev_disable_lro(struct net_device *dev)
1626 {
1627         struct net_device *lower_dev;
1628         struct list_head *iter;
1629
1630         dev->wanted_features &= ~NETIF_F_LRO;
1631         netdev_update_features(dev);
1632
1633         if (unlikely(dev->features & NETIF_F_LRO))
1634                 netdev_WARN(dev, "failed to disable LRO!\n");
1635
1636         netdev_for_each_lower_dev(dev, lower_dev, iter)
1637                 dev_disable_lro(lower_dev);
1638 }
1639 EXPORT_SYMBOL(dev_disable_lro);
1640
1641 /**
1642  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1643  *      @dev: device
1644  *
1645  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1646  *      called under RTNL.  This is needed if Generic XDP is installed on
1647  *      the device.
1648  */
1649 static void dev_disable_gro_hw(struct net_device *dev)
1650 {
1651         dev->wanted_features &= ~NETIF_F_GRO_HW;
1652         netdev_update_features(dev);
1653
1654         if (unlikely(dev->features & NETIF_F_GRO_HW))
1655                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1656 }
1657
1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1659 {
1660 #define N(val)                                          \
1661         case NETDEV_##val:                              \
1662                 return "NETDEV_" __stringify(val);
1663         switch (cmd) {
1664         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1665         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1666         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1667         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1668         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1669         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1670         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1671         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1672         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1673         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1674         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1675         N(XDP_FEAT_CHANGE)
1676         }
1677 #undef N
1678         return "UNKNOWN_NETDEV_EVENT";
1679 }
1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1681
1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1683                                    struct net_device *dev)
1684 {
1685         struct netdev_notifier_info info = {
1686                 .dev = dev,
1687         };
1688
1689         return nb->notifier_call(nb, val, &info);
1690 }
1691
1692 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1693                                              struct net_device *dev)
1694 {
1695         int err;
1696
1697         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1698         err = notifier_to_errno(err);
1699         if (err)
1700                 return err;
1701
1702         if (!(dev->flags & IFF_UP))
1703                 return 0;
1704
1705         call_netdevice_notifier(nb, NETDEV_UP, dev);
1706         return 0;
1707 }
1708
1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1710                                                 struct net_device *dev)
1711 {
1712         if (dev->flags & IFF_UP) {
1713                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714                                         dev);
1715                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1716         }
1717         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1718 }
1719
1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1721                                                  struct net *net)
1722 {
1723         struct net_device *dev;
1724         int err;
1725
1726         for_each_netdev(net, dev) {
1727                 err = call_netdevice_register_notifiers(nb, dev);
1728                 if (err)
1729                         goto rollback;
1730         }
1731         return 0;
1732
1733 rollback:
1734         for_each_netdev_continue_reverse(net, dev)
1735                 call_netdevice_unregister_notifiers(nb, dev);
1736         return err;
1737 }
1738
1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1740                                                     struct net *net)
1741 {
1742         struct net_device *dev;
1743
1744         for_each_netdev(net, dev)
1745                 call_netdevice_unregister_notifiers(nb, dev);
1746 }
1747
1748 static int dev_boot_phase = 1;
1749
1750 /**
1751  * register_netdevice_notifier - register a network notifier block
1752  * @nb: notifier
1753  *
1754  * Register a notifier to be called when network device events occur.
1755  * The notifier passed is linked into the kernel structures and must
1756  * not be reused until it has been unregistered. A negative errno code
1757  * is returned on a failure.
1758  *
1759  * When registered all registration and up events are replayed
1760  * to the new notifier to allow device to have a race free
1761  * view of the network device list.
1762  */
1763
1764 int register_netdevice_notifier(struct notifier_block *nb)
1765 {
1766         struct net *net;
1767         int err;
1768
1769         /* Close race with setup_net() and cleanup_net() */
1770         down_write(&pernet_ops_rwsem);
1771         rtnl_lock();
1772         err = raw_notifier_chain_register(&netdev_chain, nb);
1773         if (err)
1774                 goto unlock;
1775         if (dev_boot_phase)
1776                 goto unlock;
1777         for_each_net(net) {
1778                 err = call_netdevice_register_net_notifiers(nb, net);
1779                 if (err)
1780                         goto rollback;
1781         }
1782
1783 unlock:
1784         rtnl_unlock();
1785         up_write(&pernet_ops_rwsem);
1786         return err;
1787
1788 rollback:
1789         for_each_net_continue_reverse(net)
1790                 call_netdevice_unregister_net_notifiers(nb, net);
1791
1792         raw_notifier_chain_unregister(&netdev_chain, nb);
1793         goto unlock;
1794 }
1795 EXPORT_SYMBOL(register_netdevice_notifier);
1796
1797 /**
1798  * unregister_netdevice_notifier - unregister a network notifier block
1799  * @nb: notifier
1800  *
1801  * Unregister a notifier previously registered by
1802  * register_netdevice_notifier(). The notifier is unlinked into the
1803  * kernel structures and may then be reused. A negative errno code
1804  * is returned on a failure.
1805  *
1806  * After unregistering unregister and down device events are synthesized
1807  * for all devices on the device list to the removed notifier to remove
1808  * the need for special case cleanup code.
1809  */
1810
1811 int unregister_netdevice_notifier(struct notifier_block *nb)
1812 {
1813         struct net *net;
1814         int err;
1815
1816         /* Close race with setup_net() and cleanup_net() */
1817         down_write(&pernet_ops_rwsem);
1818         rtnl_lock();
1819         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1820         if (err)
1821                 goto unlock;
1822
1823         for_each_net(net)
1824                 call_netdevice_unregister_net_notifiers(nb, net);
1825
1826 unlock:
1827         rtnl_unlock();
1828         up_write(&pernet_ops_rwsem);
1829         return err;
1830 }
1831 EXPORT_SYMBOL(unregister_netdevice_notifier);
1832
1833 static int __register_netdevice_notifier_net(struct net *net,
1834                                              struct notifier_block *nb,
1835                                              bool ignore_call_fail)
1836 {
1837         int err;
1838
1839         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1840         if (err)
1841                 return err;
1842         if (dev_boot_phase)
1843                 return 0;
1844
1845         err = call_netdevice_register_net_notifiers(nb, net);
1846         if (err && !ignore_call_fail)
1847                 goto chain_unregister;
1848
1849         return 0;
1850
1851 chain_unregister:
1852         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1853         return err;
1854 }
1855
1856 static int __unregister_netdevice_notifier_net(struct net *net,
1857                                                struct notifier_block *nb)
1858 {
1859         int err;
1860
1861         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862         if (err)
1863                 return err;
1864
1865         call_netdevice_unregister_net_notifiers(nb, net);
1866         return 0;
1867 }
1868
1869 /**
1870  * register_netdevice_notifier_net - register a per-netns network notifier block
1871  * @net: network namespace
1872  * @nb: notifier
1873  *
1874  * Register a notifier to be called when network device events occur.
1875  * The notifier passed is linked into the kernel structures and must
1876  * not be reused until it has been unregistered. A negative errno code
1877  * is returned on a failure.
1878  *
1879  * When registered all registration and up events are replayed
1880  * to the new notifier to allow device to have a race free
1881  * view of the network device list.
1882  */
1883
1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1885 {
1886         int err;
1887
1888         rtnl_lock();
1889         err = __register_netdevice_notifier_net(net, nb, false);
1890         rtnl_unlock();
1891         return err;
1892 }
1893 EXPORT_SYMBOL(register_netdevice_notifier_net);
1894
1895 /**
1896  * unregister_netdevice_notifier_net - unregister a per-netns
1897  *                                     network notifier block
1898  * @net: network namespace
1899  * @nb: notifier
1900  *
1901  * Unregister a notifier previously registered by
1902  * register_netdevice_notifier_net(). The notifier is unlinked from the
1903  * kernel structures and may then be reused. A negative errno code
1904  * is returned on a failure.
1905  *
1906  * After unregistering unregister and down device events are synthesized
1907  * for all devices on the device list to the removed notifier to remove
1908  * the need for special case cleanup code.
1909  */
1910
1911 int unregister_netdevice_notifier_net(struct net *net,
1912                                       struct notifier_block *nb)
1913 {
1914         int err;
1915
1916         rtnl_lock();
1917         err = __unregister_netdevice_notifier_net(net, nb);
1918         rtnl_unlock();
1919         return err;
1920 }
1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1922
1923 static void __move_netdevice_notifier_net(struct net *src_net,
1924                                           struct net *dst_net,
1925                                           struct notifier_block *nb)
1926 {
1927         __unregister_netdevice_notifier_net(src_net, nb);
1928         __register_netdevice_notifier_net(dst_net, nb, true);
1929 }
1930
1931 int register_netdevice_notifier_dev_net(struct net_device *dev,
1932                                         struct notifier_block *nb,
1933                                         struct netdev_net_notifier *nn)
1934 {
1935         int err;
1936
1937         rtnl_lock();
1938         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1939         if (!err) {
1940                 nn->nb = nb;
1941                 list_add(&nn->list, &dev->net_notifier_list);
1942         }
1943         rtnl_unlock();
1944         return err;
1945 }
1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1947
1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1949                                           struct notifier_block *nb,
1950                                           struct netdev_net_notifier *nn)
1951 {
1952         int err;
1953
1954         rtnl_lock();
1955         list_del(&nn->list);
1956         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1957         rtnl_unlock();
1958         return err;
1959 }
1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1961
1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1963                                              struct net *net)
1964 {
1965         struct netdev_net_notifier *nn;
1966
1967         list_for_each_entry(nn, &dev->net_notifier_list, list)
1968                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1969 }
1970
1971 /**
1972  *      call_netdevice_notifiers_info - call all network notifier blocks
1973  *      @val: value passed unmodified to notifier function
1974  *      @info: notifier information data
1975  *
1976  *      Call all network notifier blocks.  Parameters and return value
1977  *      are as for raw_notifier_call_chain().
1978  */
1979
1980 int call_netdevice_notifiers_info(unsigned long val,
1981                                   struct netdev_notifier_info *info)
1982 {
1983         struct net *net = dev_net(info->dev);
1984         int ret;
1985
1986         ASSERT_RTNL();
1987
1988         /* Run per-netns notifier block chain first, then run the global one.
1989          * Hopefully, one day, the global one is going to be removed after
1990          * all notifier block registrators get converted to be per-netns.
1991          */
1992         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1993         if (ret & NOTIFY_STOP_MASK)
1994                 return ret;
1995         return raw_notifier_call_chain(&netdev_chain, val, info);
1996 }
1997
1998 /**
1999  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2000  *                                             for and rollback on error
2001  *      @val_up: value passed unmodified to notifier function
2002  *      @val_down: value passed unmodified to the notifier function when
2003  *                 recovering from an error on @val_up
2004  *      @info: notifier information data
2005  *
2006  *      Call all per-netns network notifier blocks, but not notifier blocks on
2007  *      the global notifier chain. Parameters and return value are as for
2008  *      raw_notifier_call_chain_robust().
2009  */
2010
2011 static int
2012 call_netdevice_notifiers_info_robust(unsigned long val_up,
2013                                      unsigned long val_down,
2014                                      struct netdev_notifier_info *info)
2015 {
2016         struct net *net = dev_net(info->dev);
2017
2018         ASSERT_RTNL();
2019
2020         return raw_notifier_call_chain_robust(&net->netdev_chain,
2021                                               val_up, val_down, info);
2022 }
2023
2024 static int call_netdevice_notifiers_extack(unsigned long val,
2025                                            struct net_device *dev,
2026                                            struct netlink_ext_ack *extack)
2027 {
2028         struct netdev_notifier_info info = {
2029                 .dev = dev,
2030                 .extack = extack,
2031         };
2032
2033         return call_netdevice_notifiers_info(val, &info);
2034 }
2035
2036 /**
2037  *      call_netdevice_notifiers - call all network notifier blocks
2038  *      @val: value passed unmodified to notifier function
2039  *      @dev: net_device pointer passed unmodified to notifier function
2040  *
2041  *      Call all network notifier blocks.  Parameters and return value
2042  *      are as for raw_notifier_call_chain().
2043  */
2044
2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2046 {
2047         return call_netdevice_notifiers_extack(val, dev, NULL);
2048 }
2049 EXPORT_SYMBOL(call_netdevice_notifiers);
2050
2051 /**
2052  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2053  *      @val: value passed unmodified to notifier function
2054  *      @dev: net_device pointer passed unmodified to notifier function
2055  *      @arg: additional u32 argument passed to the notifier function
2056  *
2057  *      Call all network notifier blocks.  Parameters and return value
2058  *      are as for raw_notifier_call_chain().
2059  */
2060 static int call_netdevice_notifiers_mtu(unsigned long val,
2061                                         struct net_device *dev, u32 arg)
2062 {
2063         struct netdev_notifier_info_ext info = {
2064                 .info.dev = dev,
2065                 .ext.mtu = arg,
2066         };
2067
2068         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2069
2070         return call_netdevice_notifiers_info(val, &info.info);
2071 }
2072
2073 #ifdef CONFIG_NET_INGRESS
2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2075
2076 void net_inc_ingress_queue(void)
2077 {
2078         static_branch_inc(&ingress_needed_key);
2079 }
2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2081
2082 void net_dec_ingress_queue(void)
2083 {
2084         static_branch_dec(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2087 #endif
2088
2089 #ifdef CONFIG_NET_EGRESS
2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2091
2092 void net_inc_egress_queue(void)
2093 {
2094         static_branch_inc(&egress_needed_key);
2095 }
2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2097
2098 void net_dec_egress_queue(void)
2099 {
2100         static_branch_dec(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2103 #endif
2104
2105 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2106 EXPORT_SYMBOL(netstamp_needed_key);
2107 #ifdef CONFIG_JUMP_LABEL
2108 static atomic_t netstamp_needed_deferred;
2109 static atomic_t netstamp_wanted;
2110 static void netstamp_clear(struct work_struct *work)
2111 {
2112         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2113         int wanted;
2114
2115         wanted = atomic_add_return(deferred, &netstamp_wanted);
2116         if (wanted > 0)
2117                 static_branch_enable(&netstamp_needed_key);
2118         else
2119                 static_branch_disable(&netstamp_needed_key);
2120 }
2121 static DECLARE_WORK(netstamp_work, netstamp_clear);
2122 #endif
2123
2124 void net_enable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127         int wanted = atomic_read(&netstamp_wanted);
2128
2129         while (wanted > 0) {
2130                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2131                         return;
2132         }
2133         atomic_inc(&netstamp_needed_deferred);
2134         schedule_work(&netstamp_work);
2135 #else
2136         static_branch_inc(&netstamp_needed_key);
2137 #endif
2138 }
2139 EXPORT_SYMBOL(net_enable_timestamp);
2140
2141 void net_disable_timestamp(void)
2142 {
2143 #ifdef CONFIG_JUMP_LABEL
2144         int wanted = atomic_read(&netstamp_wanted);
2145
2146         while (wanted > 1) {
2147                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2148                         return;
2149         }
2150         atomic_dec(&netstamp_needed_deferred);
2151         schedule_work(&netstamp_work);
2152 #else
2153         static_branch_dec(&netstamp_needed_key);
2154 #endif
2155 }
2156 EXPORT_SYMBOL(net_disable_timestamp);
2157
2158 static inline void net_timestamp_set(struct sk_buff *skb)
2159 {
2160         skb->tstamp = 0;
2161         skb->mono_delivery_time = 0;
2162         if (static_branch_unlikely(&netstamp_needed_key))
2163                 skb->tstamp = ktime_get_real();
2164 }
2165
2166 #define net_timestamp_check(COND, SKB)                          \
2167         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2168                 if ((COND) && !(SKB)->tstamp)                   \
2169                         (SKB)->tstamp = ktime_get_real();       \
2170         }                                                       \
2171
2172 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2173 {
2174         return __is_skb_forwardable(dev, skb, true);
2175 }
2176 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2177
2178 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2179                               bool check_mtu)
2180 {
2181         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2182
2183         if (likely(!ret)) {
2184                 skb->protocol = eth_type_trans(skb, dev);
2185                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2186         }
2187
2188         return ret;
2189 }
2190
2191 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2192 {
2193         return __dev_forward_skb2(dev, skb, true);
2194 }
2195 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2196
2197 /**
2198  * dev_forward_skb - loopback an skb to another netif
2199  *
2200  * @dev: destination network device
2201  * @skb: buffer to forward
2202  *
2203  * return values:
2204  *      NET_RX_SUCCESS  (no congestion)
2205  *      NET_RX_DROP     (packet was dropped, but freed)
2206  *
2207  * dev_forward_skb can be used for injecting an skb from the
2208  * start_xmit function of one device into the receive queue
2209  * of another device.
2210  *
2211  * The receiving device may be in another namespace, so
2212  * we have to clear all information in the skb that could
2213  * impact namespace isolation.
2214  */
2215 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2216 {
2217         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2218 }
2219 EXPORT_SYMBOL_GPL(dev_forward_skb);
2220
2221 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2222 {
2223         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2224 }
2225
2226 static inline int deliver_skb(struct sk_buff *skb,
2227                               struct packet_type *pt_prev,
2228                               struct net_device *orig_dev)
2229 {
2230         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2231                 return -ENOMEM;
2232         refcount_inc(&skb->users);
2233         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2234 }
2235
2236 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2237                                           struct packet_type **pt,
2238                                           struct net_device *orig_dev,
2239                                           __be16 type,
2240                                           struct list_head *ptype_list)
2241 {
2242         struct packet_type *ptype, *pt_prev = *pt;
2243
2244         list_for_each_entry_rcu(ptype, ptype_list, list) {
2245                 if (ptype->type != type)
2246                         continue;
2247                 if (pt_prev)
2248                         deliver_skb(skb, pt_prev, orig_dev);
2249                 pt_prev = ptype;
2250         }
2251         *pt = pt_prev;
2252 }
2253
2254 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2255 {
2256         if (!ptype->af_packet_priv || !skb->sk)
2257                 return false;
2258
2259         if (ptype->id_match)
2260                 return ptype->id_match(ptype, skb->sk);
2261         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2262                 return true;
2263
2264         return false;
2265 }
2266
2267 /**
2268  * dev_nit_active - return true if any network interface taps are in use
2269  *
2270  * @dev: network device to check for the presence of taps
2271  */
2272 bool dev_nit_active(struct net_device *dev)
2273 {
2274         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2275 }
2276 EXPORT_SYMBOL_GPL(dev_nit_active);
2277
2278 /*
2279  *      Support routine. Sends outgoing frames to any network
2280  *      taps currently in use.
2281  */
2282
2283 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2284 {
2285         struct packet_type *ptype;
2286         struct sk_buff *skb2 = NULL;
2287         struct packet_type *pt_prev = NULL;
2288         struct list_head *ptype_list = &ptype_all;
2289
2290         rcu_read_lock();
2291 again:
2292         list_for_each_entry_rcu(ptype, ptype_list, list) {
2293                 if (ptype->ignore_outgoing)
2294                         continue;
2295
2296                 /* Never send packets back to the socket
2297                  * they originated from - MvS (miquels@drinkel.ow.org)
2298                  */
2299                 if (skb_loop_sk(ptype, skb))
2300                         continue;
2301
2302                 if (pt_prev) {
2303                         deliver_skb(skb2, pt_prev, skb->dev);
2304                         pt_prev = ptype;
2305                         continue;
2306                 }
2307
2308                 /* need to clone skb, done only once */
2309                 skb2 = skb_clone(skb, GFP_ATOMIC);
2310                 if (!skb2)
2311                         goto out_unlock;
2312
2313                 net_timestamp_set(skb2);
2314
2315                 /* skb->nh should be correctly
2316                  * set by sender, so that the second statement is
2317                  * just protection against buggy protocols.
2318                  */
2319                 skb_reset_mac_header(skb2);
2320
2321                 if (skb_network_header(skb2) < skb2->data ||
2322                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2323                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2324                                              ntohs(skb2->protocol),
2325                                              dev->name);
2326                         skb_reset_network_header(skb2);
2327                 }
2328
2329                 skb2->transport_header = skb2->network_header;
2330                 skb2->pkt_type = PACKET_OUTGOING;
2331                 pt_prev = ptype;
2332         }
2333
2334         if (ptype_list == &ptype_all) {
2335                 ptype_list = &dev->ptype_all;
2336                 goto again;
2337         }
2338 out_unlock:
2339         if (pt_prev) {
2340                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2341                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2342                 else
2343                         kfree_skb(skb2);
2344         }
2345         rcu_read_unlock();
2346 }
2347 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2348
2349 /**
2350  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2351  * @dev: Network device
2352  * @txq: number of queues available
2353  *
2354  * If real_num_tx_queues is changed the tc mappings may no longer be
2355  * valid. To resolve this verify the tc mapping remains valid and if
2356  * not NULL the mapping. With no priorities mapping to this
2357  * offset/count pair it will no longer be used. In the worst case TC0
2358  * is invalid nothing can be done so disable priority mappings. If is
2359  * expected that drivers will fix this mapping if they can before
2360  * calling netif_set_real_num_tx_queues.
2361  */
2362 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2363 {
2364         int i;
2365         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366
2367         /* If TC0 is invalidated disable TC mapping */
2368         if (tc->offset + tc->count > txq) {
2369                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2370                 dev->num_tc = 0;
2371                 return;
2372         }
2373
2374         /* Invalidated prio to tc mappings set to TC0 */
2375         for (i = 1; i < TC_BITMASK + 1; i++) {
2376                 int q = netdev_get_prio_tc_map(dev, i);
2377
2378                 tc = &dev->tc_to_txq[q];
2379                 if (tc->offset + tc->count > txq) {
2380                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2381                                     i, q);
2382                         netdev_set_prio_tc_map(dev, i, 0);
2383                 }
2384         }
2385 }
2386
2387 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2388 {
2389         if (dev->num_tc) {
2390                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2391                 int i;
2392
2393                 /* walk through the TCs and see if it falls into any of them */
2394                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2395                         if ((txq - tc->offset) < tc->count)
2396                                 return i;
2397                 }
2398
2399                 /* didn't find it, just return -1 to indicate no match */
2400                 return -1;
2401         }
2402
2403         return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_txq_to_tc);
2406
2407 #ifdef CONFIG_XPS
2408 static struct static_key xps_needed __read_mostly;
2409 static struct static_key xps_rxqs_needed __read_mostly;
2410 static DEFINE_MUTEX(xps_map_mutex);
2411 #define xmap_dereference(P)             \
2412         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2413
2414 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2415                              struct xps_dev_maps *old_maps, int tci, u16 index)
2416 {
2417         struct xps_map *map = NULL;
2418         int pos;
2419
2420         map = xmap_dereference(dev_maps->attr_map[tci]);
2421         if (!map)
2422                 return false;
2423
2424         for (pos = map->len; pos--;) {
2425                 if (map->queues[pos] != index)
2426                         continue;
2427
2428                 if (map->len > 1) {
2429                         map->queues[pos] = map->queues[--map->len];
2430                         break;
2431                 }
2432
2433                 if (old_maps)
2434                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2435                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2436                 kfree_rcu(map, rcu);
2437                 return false;
2438         }
2439
2440         return true;
2441 }
2442
2443 static bool remove_xps_queue_cpu(struct net_device *dev,
2444                                  struct xps_dev_maps *dev_maps,
2445                                  int cpu, u16 offset, u16 count)
2446 {
2447         int num_tc = dev_maps->num_tc;
2448         bool active = false;
2449         int tci;
2450
2451         for (tci = cpu * num_tc; num_tc--; tci++) {
2452                 int i, j;
2453
2454                 for (i = count, j = offset; i--; j++) {
2455                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2456                                 break;
2457                 }
2458
2459                 active |= i < 0;
2460         }
2461
2462         return active;
2463 }
2464
2465 static void reset_xps_maps(struct net_device *dev,
2466                            struct xps_dev_maps *dev_maps,
2467                            enum xps_map_type type)
2468 {
2469         static_key_slow_dec_cpuslocked(&xps_needed);
2470         if (type == XPS_RXQS)
2471                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2472
2473         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2474
2475         kfree_rcu(dev_maps, rcu);
2476 }
2477
2478 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2479                            u16 offset, u16 count)
2480 {
2481         struct xps_dev_maps *dev_maps;
2482         bool active = false;
2483         int i, j;
2484
2485         dev_maps = xmap_dereference(dev->xps_maps[type]);
2486         if (!dev_maps)
2487                 return;
2488
2489         for (j = 0; j < dev_maps->nr_ids; j++)
2490                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2491         if (!active)
2492                 reset_xps_maps(dev, dev_maps, type);
2493
2494         if (type == XPS_CPUS) {
2495                 for (i = offset + (count - 1); count--; i--)
2496                         netdev_queue_numa_node_write(
2497                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2498         }
2499 }
2500
2501 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2502                                    u16 count)
2503 {
2504         if (!static_key_false(&xps_needed))
2505                 return;
2506
2507         cpus_read_lock();
2508         mutex_lock(&xps_map_mutex);
2509
2510         if (static_key_false(&xps_rxqs_needed))
2511                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2512
2513         clean_xps_maps(dev, XPS_CPUS, offset, count);
2514
2515         mutex_unlock(&xps_map_mutex);
2516         cpus_read_unlock();
2517 }
2518
2519 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2520 {
2521         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2522 }
2523
2524 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2525                                       u16 index, bool is_rxqs_map)
2526 {
2527         struct xps_map *new_map;
2528         int alloc_len = XPS_MIN_MAP_ALLOC;
2529         int i, pos;
2530
2531         for (pos = 0; map && pos < map->len; pos++) {
2532                 if (map->queues[pos] != index)
2533                         continue;
2534                 return map;
2535         }
2536
2537         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2538         if (map) {
2539                 if (pos < map->alloc_len)
2540                         return map;
2541
2542                 alloc_len = map->alloc_len * 2;
2543         }
2544
2545         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2546          *  map
2547          */
2548         if (is_rxqs_map)
2549                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2550         else
2551                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2552                                        cpu_to_node(attr_index));
2553         if (!new_map)
2554                 return NULL;
2555
2556         for (i = 0; i < pos; i++)
2557                 new_map->queues[i] = map->queues[i];
2558         new_map->alloc_len = alloc_len;
2559         new_map->len = pos;
2560
2561         return new_map;
2562 }
2563
2564 /* Copy xps maps at a given index */
2565 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2566                               struct xps_dev_maps *new_dev_maps, int index,
2567                               int tc, bool skip_tc)
2568 {
2569         int i, tci = index * dev_maps->num_tc;
2570         struct xps_map *map;
2571
2572         /* copy maps belonging to foreign traffic classes */
2573         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2574                 if (i == tc && skip_tc)
2575                         continue;
2576
2577                 /* fill in the new device map from the old device map */
2578                 map = xmap_dereference(dev_maps->attr_map[tci]);
2579                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2580         }
2581 }
2582
2583 /* Must be called under cpus_read_lock */
2584 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2585                           u16 index, enum xps_map_type type)
2586 {
2587         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2588         const unsigned long *online_mask = NULL;
2589         bool active = false, copy = false;
2590         int i, j, tci, numa_node_id = -2;
2591         int maps_sz, num_tc = 1, tc = 0;
2592         struct xps_map *map, *new_map;
2593         unsigned int nr_ids;
2594
2595         WARN_ON_ONCE(index >= dev->num_tx_queues);
2596
2597         if (dev->num_tc) {
2598                 /* Do not allow XPS on subordinate device directly */
2599                 num_tc = dev->num_tc;
2600                 if (num_tc < 0)
2601                         return -EINVAL;
2602
2603                 /* If queue belongs to subordinate dev use its map */
2604                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2605
2606                 tc = netdev_txq_to_tc(dev, index);
2607                 if (tc < 0)
2608                         return -EINVAL;
2609         }
2610
2611         mutex_lock(&xps_map_mutex);
2612
2613         dev_maps = xmap_dereference(dev->xps_maps[type]);
2614         if (type == XPS_RXQS) {
2615                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2616                 nr_ids = dev->num_rx_queues;
2617         } else {
2618                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2619                 if (num_possible_cpus() > 1)
2620                         online_mask = cpumask_bits(cpu_online_mask);
2621                 nr_ids = nr_cpu_ids;
2622         }
2623
2624         if (maps_sz < L1_CACHE_BYTES)
2625                 maps_sz = L1_CACHE_BYTES;
2626
2627         /* The old dev_maps could be larger or smaller than the one we're
2628          * setting up now, as dev->num_tc or nr_ids could have been updated in
2629          * between. We could try to be smart, but let's be safe instead and only
2630          * copy foreign traffic classes if the two map sizes match.
2631          */
2632         if (dev_maps &&
2633             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2634                 copy = true;
2635
2636         /* allocate memory for queue storage */
2637         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2638              j < nr_ids;) {
2639                 if (!new_dev_maps) {
2640                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2641                         if (!new_dev_maps) {
2642                                 mutex_unlock(&xps_map_mutex);
2643                                 return -ENOMEM;
2644                         }
2645
2646                         new_dev_maps->nr_ids = nr_ids;
2647                         new_dev_maps->num_tc = num_tc;
2648                 }
2649
2650                 tci = j * num_tc + tc;
2651                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2652
2653                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2654                 if (!map)
2655                         goto error;
2656
2657                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2658         }
2659
2660         if (!new_dev_maps)
2661                 goto out_no_new_maps;
2662
2663         if (!dev_maps) {
2664                 /* Increment static keys at most once per type */
2665                 static_key_slow_inc_cpuslocked(&xps_needed);
2666                 if (type == XPS_RXQS)
2667                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2668         }
2669
2670         for (j = 0; j < nr_ids; j++) {
2671                 bool skip_tc = false;
2672
2673                 tci = j * num_tc + tc;
2674                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2675                     netif_attr_test_online(j, online_mask, nr_ids)) {
2676                         /* add tx-queue to CPU/rx-queue maps */
2677                         int pos = 0;
2678
2679                         skip_tc = true;
2680
2681                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2682                         while ((pos < map->len) && (map->queues[pos] != index))
2683                                 pos++;
2684
2685                         if (pos == map->len)
2686                                 map->queues[map->len++] = index;
2687 #ifdef CONFIG_NUMA
2688                         if (type == XPS_CPUS) {
2689                                 if (numa_node_id == -2)
2690                                         numa_node_id = cpu_to_node(j);
2691                                 else if (numa_node_id != cpu_to_node(j))
2692                                         numa_node_id = -1;
2693                         }
2694 #endif
2695                 }
2696
2697                 if (copy)
2698                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2699                                           skip_tc);
2700         }
2701
2702         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2703
2704         /* Cleanup old maps */
2705         if (!dev_maps)
2706                 goto out_no_old_maps;
2707
2708         for (j = 0; j < dev_maps->nr_ids; j++) {
2709                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2710                         map = xmap_dereference(dev_maps->attr_map[tci]);
2711                         if (!map)
2712                                 continue;
2713
2714                         if (copy) {
2715                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2716                                 if (map == new_map)
2717                                         continue;
2718                         }
2719
2720                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2721                         kfree_rcu(map, rcu);
2722                 }
2723         }
2724
2725         old_dev_maps = dev_maps;
2726
2727 out_no_old_maps:
2728         dev_maps = new_dev_maps;
2729         active = true;
2730
2731 out_no_new_maps:
2732         if (type == XPS_CPUS)
2733                 /* update Tx queue numa node */
2734                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2735                                              (numa_node_id >= 0) ?
2736                                              numa_node_id : NUMA_NO_NODE);
2737
2738         if (!dev_maps)
2739                 goto out_no_maps;
2740
2741         /* removes tx-queue from unused CPUs/rx-queues */
2742         for (j = 0; j < dev_maps->nr_ids; j++) {
2743                 tci = j * dev_maps->num_tc;
2744
2745                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2746                         if (i == tc &&
2747                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2748                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2749                                 continue;
2750
2751                         active |= remove_xps_queue(dev_maps,
2752                                                    copy ? old_dev_maps : NULL,
2753                                                    tci, index);
2754                 }
2755         }
2756
2757         if (old_dev_maps)
2758                 kfree_rcu(old_dev_maps, rcu);
2759
2760         /* free map if not active */
2761         if (!active)
2762                 reset_xps_maps(dev, dev_maps, type);
2763
2764 out_no_maps:
2765         mutex_unlock(&xps_map_mutex);
2766
2767         return 0;
2768 error:
2769         /* remove any maps that we added */
2770         for (j = 0; j < nr_ids; j++) {
2771                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2772                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2773                         map = copy ?
2774                               xmap_dereference(dev_maps->attr_map[tci]) :
2775                               NULL;
2776                         if (new_map && new_map != map)
2777                                 kfree(new_map);
2778                 }
2779         }
2780
2781         mutex_unlock(&xps_map_mutex);
2782
2783         kfree(new_dev_maps);
2784         return -ENOMEM;
2785 }
2786 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2787
2788 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2789                         u16 index)
2790 {
2791         int ret;
2792
2793         cpus_read_lock();
2794         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2795         cpus_read_unlock();
2796
2797         return ret;
2798 }
2799 EXPORT_SYMBOL(netif_set_xps_queue);
2800
2801 #endif
2802 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2803 {
2804         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2805
2806         /* Unbind any subordinate channels */
2807         while (txq-- != &dev->_tx[0]) {
2808                 if (txq->sb_dev)
2809                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2810         }
2811 }
2812
2813 void netdev_reset_tc(struct net_device *dev)
2814 {
2815 #ifdef CONFIG_XPS
2816         netif_reset_xps_queues_gt(dev, 0);
2817 #endif
2818         netdev_unbind_all_sb_channels(dev);
2819
2820         /* Reset TC configuration of device */
2821         dev->num_tc = 0;
2822         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2823         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2824 }
2825 EXPORT_SYMBOL(netdev_reset_tc);
2826
2827 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2828 {
2829         if (tc >= dev->num_tc)
2830                 return -EINVAL;
2831
2832 #ifdef CONFIG_XPS
2833         netif_reset_xps_queues(dev, offset, count);
2834 #endif
2835         dev->tc_to_txq[tc].count = count;
2836         dev->tc_to_txq[tc].offset = offset;
2837         return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_set_tc_queue);
2840
2841 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2842 {
2843         if (num_tc > TC_MAX_QUEUE)
2844                 return -EINVAL;
2845
2846 #ifdef CONFIG_XPS
2847         netif_reset_xps_queues_gt(dev, 0);
2848 #endif
2849         netdev_unbind_all_sb_channels(dev);
2850
2851         dev->num_tc = num_tc;
2852         return 0;
2853 }
2854 EXPORT_SYMBOL(netdev_set_num_tc);
2855
2856 void netdev_unbind_sb_channel(struct net_device *dev,
2857                               struct net_device *sb_dev)
2858 {
2859         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2860
2861 #ifdef CONFIG_XPS
2862         netif_reset_xps_queues_gt(sb_dev, 0);
2863 #endif
2864         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2865         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2866
2867         while (txq-- != &dev->_tx[0]) {
2868                 if (txq->sb_dev == sb_dev)
2869                         txq->sb_dev = NULL;
2870         }
2871 }
2872 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2873
2874 int netdev_bind_sb_channel_queue(struct net_device *dev,
2875                                  struct net_device *sb_dev,
2876                                  u8 tc, u16 count, u16 offset)
2877 {
2878         /* Make certain the sb_dev and dev are already configured */
2879         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2880                 return -EINVAL;
2881
2882         /* We cannot hand out queues we don't have */
2883         if ((offset + count) > dev->real_num_tx_queues)
2884                 return -EINVAL;
2885
2886         /* Record the mapping */
2887         sb_dev->tc_to_txq[tc].count = count;
2888         sb_dev->tc_to_txq[tc].offset = offset;
2889
2890         /* Provide a way for Tx queue to find the tc_to_txq map or
2891          * XPS map for itself.
2892          */
2893         while (count--)
2894                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2895
2896         return 0;
2897 }
2898 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2899
2900 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2901 {
2902         /* Do not use a multiqueue device to represent a subordinate channel */
2903         if (netif_is_multiqueue(dev))
2904                 return -ENODEV;
2905
2906         /* We allow channels 1 - 32767 to be used for subordinate channels.
2907          * Channel 0 is meant to be "native" mode and used only to represent
2908          * the main root device. We allow writing 0 to reset the device back
2909          * to normal mode after being used as a subordinate channel.
2910          */
2911         if (channel > S16_MAX)
2912                 return -EINVAL;
2913
2914         dev->num_tc = -channel;
2915
2916         return 0;
2917 }
2918 EXPORT_SYMBOL(netdev_set_sb_channel);
2919
2920 /*
2921  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2922  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2923  */
2924 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2925 {
2926         bool disabling;
2927         int rc;
2928
2929         disabling = txq < dev->real_num_tx_queues;
2930
2931         if (txq < 1 || txq > dev->num_tx_queues)
2932                 return -EINVAL;
2933
2934         if (dev->reg_state == NETREG_REGISTERED ||
2935             dev->reg_state == NETREG_UNREGISTERING) {
2936                 ASSERT_RTNL();
2937
2938                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2939                                                   txq);
2940                 if (rc)
2941                         return rc;
2942
2943                 if (dev->num_tc)
2944                         netif_setup_tc(dev, txq);
2945
2946                 dev_qdisc_change_real_num_tx(dev, txq);
2947
2948                 dev->real_num_tx_queues = txq;
2949
2950                 if (disabling) {
2951                         synchronize_net();
2952                         qdisc_reset_all_tx_gt(dev, txq);
2953 #ifdef CONFIG_XPS
2954                         netif_reset_xps_queues_gt(dev, txq);
2955 #endif
2956                 }
2957         } else {
2958                 dev->real_num_tx_queues = txq;
2959         }
2960
2961         return 0;
2962 }
2963 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2964
2965 #ifdef CONFIG_SYSFS
2966 /**
2967  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2968  *      @dev: Network device
2969  *      @rxq: Actual number of RX queues
2970  *
2971  *      This must be called either with the rtnl_lock held or before
2972  *      registration of the net device.  Returns 0 on success, or a
2973  *      negative error code.  If called before registration, it always
2974  *      succeeds.
2975  */
2976 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2977 {
2978         int rc;
2979
2980         if (rxq < 1 || rxq > dev->num_rx_queues)
2981                 return -EINVAL;
2982
2983         if (dev->reg_state == NETREG_REGISTERED) {
2984                 ASSERT_RTNL();
2985
2986                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2987                                                   rxq);
2988                 if (rc)
2989                         return rc;
2990         }
2991
2992         dev->real_num_rx_queues = rxq;
2993         return 0;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2996 #endif
2997
2998 /**
2999  *      netif_set_real_num_queues - set actual number of RX and TX queues used
3000  *      @dev: Network device
3001  *      @txq: Actual number of TX queues
3002  *      @rxq: Actual number of RX queues
3003  *
3004  *      Set the real number of both TX and RX queues.
3005  *      Does nothing if the number of queues is already correct.
3006  */
3007 int netif_set_real_num_queues(struct net_device *dev,
3008                               unsigned int txq, unsigned int rxq)
3009 {
3010         unsigned int old_rxq = dev->real_num_rx_queues;
3011         int err;
3012
3013         if (txq < 1 || txq > dev->num_tx_queues ||
3014             rxq < 1 || rxq > dev->num_rx_queues)
3015                 return -EINVAL;
3016
3017         /* Start from increases, so the error path only does decreases -
3018          * decreases can't fail.
3019          */
3020         if (rxq > dev->real_num_rx_queues) {
3021                 err = netif_set_real_num_rx_queues(dev, rxq);
3022                 if (err)
3023                         return err;
3024         }
3025         if (txq > dev->real_num_tx_queues) {
3026                 err = netif_set_real_num_tx_queues(dev, txq);
3027                 if (err)
3028                         goto undo_rx;
3029         }
3030         if (rxq < dev->real_num_rx_queues)
3031                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3032         if (txq < dev->real_num_tx_queues)
3033                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3034
3035         return 0;
3036 undo_rx:
3037         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3038         return err;
3039 }
3040 EXPORT_SYMBOL(netif_set_real_num_queues);
3041
3042 /**
3043  * netif_set_tso_max_size() - set the max size of TSO frames supported
3044  * @dev:        netdev to update
3045  * @size:       max skb->len of a TSO frame
3046  *
3047  * Set the limit on the size of TSO super-frames the device can handle.
3048  * Unless explicitly set the stack will assume the value of
3049  * %GSO_LEGACY_MAX_SIZE.
3050  */
3051 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3052 {
3053         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3054         if (size < READ_ONCE(dev->gso_max_size))
3055                 netif_set_gso_max_size(dev, size);
3056         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3057                 netif_set_gso_ipv4_max_size(dev, size);
3058 }
3059 EXPORT_SYMBOL(netif_set_tso_max_size);
3060
3061 /**
3062  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3063  * @dev:        netdev to update
3064  * @segs:       max number of TCP segments
3065  *
3066  * Set the limit on the number of TCP segments the device can generate from
3067  * a single TSO super-frame.
3068  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3069  */
3070 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3071 {
3072         dev->tso_max_segs = segs;
3073         if (segs < READ_ONCE(dev->gso_max_segs))
3074                 netif_set_gso_max_segs(dev, segs);
3075 }
3076 EXPORT_SYMBOL(netif_set_tso_max_segs);
3077
3078 /**
3079  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3080  * @to:         netdev to update
3081  * @from:       netdev from which to copy the limits
3082  */
3083 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3084 {
3085         netif_set_tso_max_size(to, from->tso_max_size);
3086         netif_set_tso_max_segs(to, from->tso_max_segs);
3087 }
3088 EXPORT_SYMBOL(netif_inherit_tso_max);
3089
3090 /**
3091  * netif_get_num_default_rss_queues - default number of RSS queues
3092  *
3093  * Default value is the number of physical cores if there are only 1 or 2, or
3094  * divided by 2 if there are more.
3095  */
3096 int netif_get_num_default_rss_queues(void)
3097 {
3098         cpumask_var_t cpus;
3099         int cpu, count = 0;
3100
3101         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3102                 return 1;
3103
3104         cpumask_copy(cpus, cpu_online_mask);
3105         for_each_cpu(cpu, cpus) {
3106                 ++count;
3107                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3108         }
3109         free_cpumask_var(cpus);
3110
3111         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3112 }
3113 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3114
3115 static void __netif_reschedule(struct Qdisc *q)
3116 {
3117         struct softnet_data *sd;
3118         unsigned long flags;
3119
3120         local_irq_save(flags);
3121         sd = this_cpu_ptr(&softnet_data);
3122         q->next_sched = NULL;
3123         *sd->output_queue_tailp = q;
3124         sd->output_queue_tailp = &q->next_sched;
3125         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3126         local_irq_restore(flags);
3127 }
3128
3129 void __netif_schedule(struct Qdisc *q)
3130 {
3131         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3132                 __netif_reschedule(q);
3133 }
3134 EXPORT_SYMBOL(__netif_schedule);
3135
3136 struct dev_kfree_skb_cb {
3137         enum skb_drop_reason reason;
3138 };
3139
3140 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3141 {
3142         return (struct dev_kfree_skb_cb *)skb->cb;
3143 }
3144
3145 void netif_schedule_queue(struct netdev_queue *txq)
3146 {
3147         rcu_read_lock();
3148         if (!netif_xmit_stopped(txq)) {
3149                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3150
3151                 __netif_schedule(q);
3152         }
3153         rcu_read_unlock();
3154 }
3155 EXPORT_SYMBOL(netif_schedule_queue);
3156
3157 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3158 {
3159         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3160                 struct Qdisc *q;
3161
3162                 rcu_read_lock();
3163                 q = rcu_dereference(dev_queue->qdisc);
3164                 __netif_schedule(q);
3165                 rcu_read_unlock();
3166         }
3167 }
3168 EXPORT_SYMBOL(netif_tx_wake_queue);
3169
3170 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3171 {
3172         unsigned long flags;
3173
3174         if (unlikely(!skb))
3175                 return;
3176
3177         if (likely(refcount_read(&skb->users) == 1)) {
3178                 smp_rmb();
3179                 refcount_set(&skb->users, 0);
3180         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3181                 return;
3182         }
3183         get_kfree_skb_cb(skb)->reason = reason;
3184         local_irq_save(flags);
3185         skb->next = __this_cpu_read(softnet_data.completion_queue);
3186         __this_cpu_write(softnet_data.completion_queue, skb);
3187         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3188         local_irq_restore(flags);
3189 }
3190 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3191
3192 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3193 {
3194         if (in_hardirq() || irqs_disabled())
3195                 dev_kfree_skb_irq_reason(skb, reason);
3196         else
3197                 kfree_skb_reason(skb, reason);
3198 }
3199 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3200
3201
3202 /**
3203  * netif_device_detach - mark device as removed
3204  * @dev: network device
3205  *
3206  * Mark device as removed from system and therefore no longer available.
3207  */
3208 void netif_device_detach(struct net_device *dev)
3209 {
3210         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3211             netif_running(dev)) {
3212                 netif_tx_stop_all_queues(dev);
3213         }
3214 }
3215 EXPORT_SYMBOL(netif_device_detach);
3216
3217 /**
3218  * netif_device_attach - mark device as attached
3219  * @dev: network device
3220  *
3221  * Mark device as attached from system and restart if needed.
3222  */
3223 void netif_device_attach(struct net_device *dev)
3224 {
3225         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3226             netif_running(dev)) {
3227                 netif_tx_wake_all_queues(dev);
3228                 __netdev_watchdog_up(dev);
3229         }
3230 }
3231 EXPORT_SYMBOL(netif_device_attach);
3232
3233 /*
3234  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3235  * to be used as a distribution range.
3236  */
3237 static u16 skb_tx_hash(const struct net_device *dev,
3238                        const struct net_device *sb_dev,
3239                        struct sk_buff *skb)
3240 {
3241         u32 hash;
3242         u16 qoffset = 0;
3243         u16 qcount = dev->real_num_tx_queues;
3244
3245         if (dev->num_tc) {
3246                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3247
3248                 qoffset = sb_dev->tc_to_txq[tc].offset;
3249                 qcount = sb_dev->tc_to_txq[tc].count;
3250                 if (unlikely(!qcount)) {
3251                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3252                                              sb_dev->name, qoffset, tc);
3253                         qoffset = 0;
3254                         qcount = dev->real_num_tx_queues;
3255                 }
3256         }
3257
3258         if (skb_rx_queue_recorded(skb)) {
3259                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3260                 hash = skb_get_rx_queue(skb);
3261                 if (hash >= qoffset)
3262                         hash -= qoffset;
3263                 while (unlikely(hash >= qcount))
3264                         hash -= qcount;
3265                 return hash + qoffset;
3266         }
3267
3268         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3269 }
3270
3271 void skb_warn_bad_offload(const struct sk_buff *skb)
3272 {
3273         static const netdev_features_t null_features;
3274         struct net_device *dev = skb->dev;
3275         const char *name = "";
3276
3277         if (!net_ratelimit())
3278                 return;
3279
3280         if (dev) {
3281                 if (dev->dev.parent)
3282                         name = dev_driver_string(dev->dev.parent);
3283                 else
3284                         name = netdev_name(dev);
3285         }
3286         skb_dump(KERN_WARNING, skb, false);
3287         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3288              name, dev ? &dev->features : &null_features,
3289              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3290 }
3291
3292 /*
3293  * Invalidate hardware checksum when packet is to be mangled, and
3294  * complete checksum manually on outgoing path.
3295  */
3296 int skb_checksum_help(struct sk_buff *skb)
3297 {
3298         __wsum csum;
3299         int ret = 0, offset;
3300
3301         if (skb->ip_summed == CHECKSUM_COMPLETE)
3302                 goto out_set_summed;
3303
3304         if (unlikely(skb_is_gso(skb))) {
3305                 skb_warn_bad_offload(skb);
3306                 return -EINVAL;
3307         }
3308
3309         /* Before computing a checksum, we should make sure no frag could
3310          * be modified by an external entity : checksum could be wrong.
3311          */
3312         if (skb_has_shared_frag(skb)) {
3313                 ret = __skb_linearize(skb);
3314                 if (ret)
3315                         goto out;
3316         }
3317
3318         offset = skb_checksum_start_offset(skb);
3319         ret = -EINVAL;
3320         if (unlikely(offset >= skb_headlen(skb))) {
3321                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3322                 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3323                           offset, skb_headlen(skb));
3324                 goto out;
3325         }
3326         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3327
3328         offset += skb->csum_offset;
3329         if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3330                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3331                 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3332                           offset + sizeof(__sum16), skb_headlen(skb));
3333                 goto out;
3334         }
3335         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3336         if (ret)
3337                 goto out;
3338
3339         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3340 out_set_summed:
3341         skb->ip_summed = CHECKSUM_NONE;
3342 out:
3343         return ret;
3344 }
3345 EXPORT_SYMBOL(skb_checksum_help);
3346
3347 int skb_crc32c_csum_help(struct sk_buff *skb)
3348 {
3349         __le32 crc32c_csum;
3350         int ret = 0, offset, start;
3351
3352         if (skb->ip_summed != CHECKSUM_PARTIAL)
3353                 goto out;
3354
3355         if (unlikely(skb_is_gso(skb)))
3356                 goto out;
3357
3358         /* Before computing a checksum, we should make sure no frag could
3359          * be modified by an external entity : checksum could be wrong.
3360          */
3361         if (unlikely(skb_has_shared_frag(skb))) {
3362                 ret = __skb_linearize(skb);
3363                 if (ret)
3364                         goto out;
3365         }
3366         start = skb_checksum_start_offset(skb);
3367         offset = start + offsetof(struct sctphdr, checksum);
3368         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3369                 ret = -EINVAL;
3370                 goto out;
3371         }
3372
3373         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3374         if (ret)
3375                 goto out;
3376
3377         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3378                                                   skb->len - start, ~(__u32)0,
3379                                                   crc32c_csum_stub));
3380         *(__le32 *)(skb->data + offset) = crc32c_csum;
3381         skb_reset_csum_not_inet(skb);
3382 out:
3383         return ret;
3384 }
3385
3386 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3387 {
3388         __be16 type = skb->protocol;
3389
3390         /* Tunnel gso handlers can set protocol to ethernet. */
3391         if (type == htons(ETH_P_TEB)) {
3392                 struct ethhdr *eth;
3393
3394                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3395                         return 0;
3396
3397                 eth = (struct ethhdr *)skb->data;
3398                 type = eth->h_proto;
3399         }
3400
3401         return vlan_get_protocol_and_depth(skb, type, depth);
3402 }
3403
3404
3405 /* Take action when hardware reception checksum errors are detected. */
3406 #ifdef CONFIG_BUG
3407 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3408 {
3409         netdev_err(dev, "hw csum failure\n");
3410         skb_dump(KERN_ERR, skb, true);
3411         dump_stack();
3412 }
3413
3414 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3415 {
3416         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3417 }
3418 EXPORT_SYMBOL(netdev_rx_csum_fault);
3419 #endif
3420
3421 /* XXX: check that highmem exists at all on the given machine. */
3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 #ifdef CONFIG_HIGHMEM
3425         int i;
3426
3427         if (!(dev->features & NETIF_F_HIGHDMA)) {
3428                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3430
3431                         if (PageHighMem(skb_frag_page(frag)))
3432                                 return 1;
3433                 }
3434         }
3435 #endif
3436         return 0;
3437 }
3438
3439 /* If MPLS offload request, verify we are testing hardware MPLS features
3440  * instead of standard features for the netdev.
3441  */
3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444                                            netdev_features_t features,
3445                                            __be16 type)
3446 {
3447         if (eth_p_mpls(type))
3448                 features &= skb->dev->mpls_features;
3449
3450         return features;
3451 }
3452 #else
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454                                            netdev_features_t features,
3455                                            __be16 type)
3456 {
3457         return features;
3458 }
3459 #endif
3460
3461 static netdev_features_t harmonize_features(struct sk_buff *skb,
3462         netdev_features_t features)
3463 {
3464         __be16 type;
3465
3466         type = skb_network_protocol(skb, NULL);
3467         features = net_mpls_features(skb, features, type);
3468
3469         if (skb->ip_summed != CHECKSUM_NONE &&
3470             !can_checksum_protocol(features, type)) {
3471                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3472         }
3473         if (illegal_highdma(skb->dev, skb))
3474                 features &= ~NETIF_F_SG;
3475
3476         return features;
3477 }
3478
3479 netdev_features_t passthru_features_check(struct sk_buff *skb,
3480                                           struct net_device *dev,
3481                                           netdev_features_t features)
3482 {
3483         return features;
3484 }
3485 EXPORT_SYMBOL(passthru_features_check);
3486
3487 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488                                              struct net_device *dev,
3489                                              netdev_features_t features)
3490 {
3491         return vlan_features_check(skb, features);
3492 }
3493
3494 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495                                             struct net_device *dev,
3496                                             netdev_features_t features)
3497 {
3498         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499
3500         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3501                 return features & ~NETIF_F_GSO_MASK;
3502
3503         if (!skb_shinfo(skb)->gso_type) {
3504                 skb_warn_bad_offload(skb);
3505                 return features & ~NETIF_F_GSO_MASK;
3506         }
3507
3508         /* Support for GSO partial features requires software
3509          * intervention before we can actually process the packets
3510          * so we need to strip support for any partial features now
3511          * and we can pull them back in after we have partially
3512          * segmented the frame.
3513          */
3514         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3515                 features &= ~dev->gso_partial_features;
3516
3517         /* Make sure to clear the IPv4 ID mangling feature if the
3518          * IPv4 header has the potential to be fragmented.
3519          */
3520         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3521                 struct iphdr *iph = skb->encapsulation ?
3522                                     inner_ip_hdr(skb) : ip_hdr(skb);
3523
3524                 if (!(iph->frag_off & htons(IP_DF)))
3525                         features &= ~NETIF_F_TSO_MANGLEID;
3526         }
3527
3528         return features;
3529 }
3530
3531 netdev_features_t netif_skb_features(struct sk_buff *skb)
3532 {
3533         struct net_device *dev = skb->dev;
3534         netdev_features_t features = dev->features;
3535
3536         if (skb_is_gso(skb))
3537                 features = gso_features_check(skb, dev, features);
3538
3539         /* If encapsulation offload request, verify we are testing
3540          * hardware encapsulation features instead of standard
3541          * features for the netdev
3542          */
3543         if (skb->encapsulation)
3544                 features &= dev->hw_enc_features;
3545
3546         if (skb_vlan_tagged(skb))
3547                 features = netdev_intersect_features(features,
3548                                                      dev->vlan_features |
3549                                                      NETIF_F_HW_VLAN_CTAG_TX |
3550                                                      NETIF_F_HW_VLAN_STAG_TX);
3551
3552         if (dev->netdev_ops->ndo_features_check)
3553                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3554                                                                 features);
3555         else
3556                 features &= dflt_features_check(skb, dev, features);
3557
3558         return harmonize_features(skb, features);
3559 }
3560 EXPORT_SYMBOL(netif_skb_features);
3561
3562 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3563                     struct netdev_queue *txq, bool more)
3564 {
3565         unsigned int len;
3566         int rc;
3567
3568         if (dev_nit_active(dev))
3569                 dev_queue_xmit_nit(skb, dev);
3570
3571         len = skb->len;
3572         trace_net_dev_start_xmit(skb, dev);
3573         rc = netdev_start_xmit(skb, dev, txq, more);
3574         trace_net_dev_xmit(skb, rc, dev, len);
3575
3576         return rc;
3577 }
3578
3579 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3580                                     struct netdev_queue *txq, int *ret)
3581 {
3582         struct sk_buff *skb = first;
3583         int rc = NETDEV_TX_OK;
3584
3585         while (skb) {
3586                 struct sk_buff *next = skb->next;
3587
3588                 skb_mark_not_on_list(skb);
3589                 rc = xmit_one(skb, dev, txq, next != NULL);
3590                 if (unlikely(!dev_xmit_complete(rc))) {
3591                         skb->next = next;
3592                         goto out;
3593                 }
3594
3595                 skb = next;
3596                 if (netif_tx_queue_stopped(txq) && skb) {
3597                         rc = NETDEV_TX_BUSY;
3598                         break;
3599                 }
3600         }
3601
3602 out:
3603         *ret = rc;
3604         return skb;
3605 }
3606
3607 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3608                                           netdev_features_t features)
3609 {
3610         if (skb_vlan_tag_present(skb) &&
3611             !vlan_hw_offload_capable(features, skb->vlan_proto))
3612                 skb = __vlan_hwaccel_push_inside(skb);
3613         return skb;
3614 }
3615
3616 int skb_csum_hwoffload_help(struct sk_buff *skb,
3617                             const netdev_features_t features)
3618 {
3619         if (unlikely(skb_csum_is_sctp(skb)))
3620                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3621                         skb_crc32c_csum_help(skb);
3622
3623         if (features & NETIF_F_HW_CSUM)
3624                 return 0;
3625
3626         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3627                 switch (skb->csum_offset) {
3628                 case offsetof(struct tcphdr, check):
3629                 case offsetof(struct udphdr, check):
3630                         return 0;
3631                 }
3632         }
3633
3634         return skb_checksum_help(skb);
3635 }
3636 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3637
3638 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3639 {
3640         netdev_features_t features;
3641
3642         features = netif_skb_features(skb);
3643         skb = validate_xmit_vlan(skb, features);
3644         if (unlikely(!skb))
3645                 goto out_null;
3646
3647         skb = sk_validate_xmit_skb(skb, dev);
3648         if (unlikely(!skb))
3649                 goto out_null;
3650
3651         if (netif_needs_gso(skb, features)) {
3652                 struct sk_buff *segs;
3653
3654                 segs = skb_gso_segment(skb, features);
3655                 if (IS_ERR(segs)) {
3656                         goto out_kfree_skb;
3657                 } else if (segs) {
3658                         consume_skb(skb);
3659                         skb = segs;
3660                 }
3661         } else {
3662                 if (skb_needs_linearize(skb, features) &&
3663                     __skb_linearize(skb))
3664                         goto out_kfree_skb;
3665
3666                 /* If packet is not checksummed and device does not
3667                  * support checksumming for this protocol, complete
3668                  * checksumming here.
3669                  */
3670                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3671                         if (skb->encapsulation)
3672                                 skb_set_inner_transport_header(skb,
3673                                                                skb_checksum_start_offset(skb));
3674                         else
3675                                 skb_set_transport_header(skb,
3676                                                          skb_checksum_start_offset(skb));
3677                         if (skb_csum_hwoffload_help(skb, features))
3678                                 goto out_kfree_skb;
3679                 }
3680         }
3681
3682         skb = validate_xmit_xfrm(skb, features, again);
3683
3684         return skb;
3685
3686 out_kfree_skb:
3687         kfree_skb(skb);
3688 out_null:
3689         dev_core_stats_tx_dropped_inc(dev);
3690         return NULL;
3691 }
3692
3693 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3694 {
3695         struct sk_buff *next, *head = NULL, *tail;
3696
3697         for (; skb != NULL; skb = next) {
3698                 next = skb->next;
3699                 skb_mark_not_on_list(skb);
3700
3701                 /* in case skb wont be segmented, point to itself */
3702                 skb->prev = skb;
3703
3704                 skb = validate_xmit_skb(skb, dev, again);
3705                 if (!skb)
3706                         continue;
3707
3708                 if (!head)
3709                         head = skb;
3710                 else
3711                         tail->next = skb;
3712                 /* If skb was segmented, skb->prev points to
3713                  * the last segment. If not, it still contains skb.
3714                  */
3715                 tail = skb->prev;
3716         }
3717         return head;
3718 }
3719 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3720
3721 static void qdisc_pkt_len_init(struct sk_buff *skb)
3722 {
3723         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3724
3725         qdisc_skb_cb(skb)->pkt_len = skb->len;
3726
3727         /* To get more precise estimation of bytes sent on wire,
3728          * we add to pkt_len the headers size of all segments
3729          */
3730         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3731                 u16 gso_segs = shinfo->gso_segs;
3732                 unsigned int hdr_len;
3733
3734                 /* mac layer + network layer */
3735                 hdr_len = skb_transport_offset(skb);
3736
3737                 /* + transport layer */
3738                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3739                         const struct tcphdr *th;
3740                         struct tcphdr _tcphdr;
3741
3742                         th = skb_header_pointer(skb, hdr_len,
3743                                                 sizeof(_tcphdr), &_tcphdr);
3744                         if (likely(th))
3745                                 hdr_len += __tcp_hdrlen(th);
3746                 } else {
3747                         struct udphdr _udphdr;
3748
3749                         if (skb_header_pointer(skb, hdr_len,
3750                                                sizeof(_udphdr), &_udphdr))
3751                                 hdr_len += sizeof(struct udphdr);
3752                 }
3753
3754                 if (shinfo->gso_type & SKB_GSO_DODGY)
3755                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3756                                                 shinfo->gso_size);
3757
3758                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3759         }
3760 }
3761
3762 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3763                              struct sk_buff **to_free,
3764                              struct netdev_queue *txq)
3765 {
3766         int rc;
3767
3768         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3769         if (rc == NET_XMIT_SUCCESS)
3770                 trace_qdisc_enqueue(q, txq, skb);
3771         return rc;
3772 }
3773
3774 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3775                                  struct net_device *dev,
3776                                  struct netdev_queue *txq)
3777 {
3778         spinlock_t *root_lock = qdisc_lock(q);
3779         struct sk_buff *to_free = NULL;
3780         bool contended;
3781         int rc;
3782
3783         qdisc_calculate_pkt_len(skb, q);
3784
3785         if (q->flags & TCQ_F_NOLOCK) {
3786                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3787                     qdisc_run_begin(q)) {
3788                         /* Retest nolock_qdisc_is_empty() within the protection
3789                          * of q->seqlock to protect from racing with requeuing.
3790                          */
3791                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3792                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3793                                 __qdisc_run(q);
3794                                 qdisc_run_end(q);
3795
3796                                 goto no_lock_out;
3797                         }
3798
3799                         qdisc_bstats_cpu_update(q, skb);
3800                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3801                             !nolock_qdisc_is_empty(q))
3802                                 __qdisc_run(q);
3803
3804                         qdisc_run_end(q);
3805                         return NET_XMIT_SUCCESS;
3806                 }
3807
3808                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3809                 qdisc_run(q);
3810
3811 no_lock_out:
3812                 if (unlikely(to_free))
3813                         kfree_skb_list_reason(to_free,
3814                                               SKB_DROP_REASON_QDISC_DROP);
3815                 return rc;
3816         }
3817
3818         /*
3819          * Heuristic to force contended enqueues to serialize on a
3820          * separate lock before trying to get qdisc main lock.
3821          * This permits qdisc->running owner to get the lock more
3822          * often and dequeue packets faster.
3823          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3824          * and then other tasks will only enqueue packets. The packets will be
3825          * sent after the qdisc owner is scheduled again. To prevent this
3826          * scenario the task always serialize on the lock.
3827          */
3828         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3829         if (unlikely(contended))
3830                 spin_lock(&q->busylock);
3831
3832         spin_lock(root_lock);
3833         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3834                 __qdisc_drop(skb, &to_free);
3835                 rc = NET_XMIT_DROP;
3836         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3837                    qdisc_run_begin(q)) {
3838                 /*
3839                  * This is a work-conserving queue; there are no old skbs
3840                  * waiting to be sent out; and the qdisc is not running -
3841                  * xmit the skb directly.
3842                  */
3843
3844                 qdisc_bstats_update(q, skb);
3845
3846                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3847                         if (unlikely(contended)) {
3848                                 spin_unlock(&q->busylock);
3849                                 contended = false;
3850                         }
3851                         __qdisc_run(q);
3852                 }
3853
3854                 qdisc_run_end(q);
3855                 rc = NET_XMIT_SUCCESS;
3856         } else {
3857                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3858                 if (qdisc_run_begin(q)) {
3859                         if (unlikely(contended)) {
3860                                 spin_unlock(&q->busylock);
3861                                 contended = false;
3862                         }
3863                         __qdisc_run(q);
3864                         qdisc_run_end(q);
3865                 }
3866         }
3867         spin_unlock(root_lock);
3868         if (unlikely(to_free))
3869                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3870         if (unlikely(contended))
3871                 spin_unlock(&q->busylock);
3872         return rc;
3873 }
3874
3875 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3876 static void skb_update_prio(struct sk_buff *skb)
3877 {
3878         const struct netprio_map *map;
3879         const struct sock *sk;
3880         unsigned int prioidx;
3881
3882         if (skb->priority)
3883                 return;
3884         map = rcu_dereference_bh(skb->dev->priomap);
3885         if (!map)
3886                 return;
3887         sk = skb_to_full_sk(skb);
3888         if (!sk)
3889                 return;
3890
3891         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3892
3893         if (prioidx < map->priomap_len)
3894                 skb->priority = map->priomap[prioidx];
3895 }
3896 #else
3897 #define skb_update_prio(skb)
3898 #endif
3899
3900 /**
3901  *      dev_loopback_xmit - loop back @skb
3902  *      @net: network namespace this loopback is happening in
3903  *      @sk:  sk needed to be a netfilter okfn
3904  *      @skb: buffer to transmit
3905  */
3906 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3907 {
3908         skb_reset_mac_header(skb);
3909         __skb_pull(skb, skb_network_offset(skb));
3910         skb->pkt_type = PACKET_LOOPBACK;
3911         if (skb->ip_summed == CHECKSUM_NONE)
3912                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3913         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3914         skb_dst_force(skb);
3915         netif_rx(skb);
3916         return 0;
3917 }
3918 EXPORT_SYMBOL(dev_loopback_xmit);
3919
3920 #ifdef CONFIG_NET_EGRESS
3921 static struct netdev_queue *
3922 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3923 {
3924         int qm = skb_get_queue_mapping(skb);
3925
3926         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3927 }
3928
3929 static bool netdev_xmit_txqueue_skipped(void)
3930 {
3931         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3932 }
3933
3934 void netdev_xmit_skip_txqueue(bool skip)
3935 {
3936         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3937 }
3938 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3939 #endif /* CONFIG_NET_EGRESS */
3940
3941 #ifdef CONFIG_NET_XGRESS
3942 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3943 {
3944         int ret = TC_ACT_UNSPEC;
3945 #ifdef CONFIG_NET_CLS_ACT
3946         struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3947         struct tcf_result res;
3948
3949         if (!miniq)
3950                 return ret;
3951
3952         tc_skb_cb(skb)->mru = 0;
3953         tc_skb_cb(skb)->post_ct = false;
3954
3955         mini_qdisc_bstats_cpu_update(miniq, skb);
3956         ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3957         /* Only tcf related quirks below. */
3958         switch (ret) {
3959         case TC_ACT_SHOT:
3960                 mini_qdisc_qstats_cpu_drop(miniq);
3961                 break;
3962         case TC_ACT_OK:
3963         case TC_ACT_RECLASSIFY:
3964                 skb->tc_index = TC_H_MIN(res.classid);
3965                 break;
3966         }
3967 #endif /* CONFIG_NET_CLS_ACT */
3968         return ret;
3969 }
3970
3971 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3972
3973 void tcx_inc(void)
3974 {
3975         static_branch_inc(&tcx_needed_key);
3976 }
3977
3978 void tcx_dec(void)
3979 {
3980         static_branch_dec(&tcx_needed_key);
3981 }
3982
3983 static __always_inline enum tcx_action_base
3984 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3985         const bool needs_mac)
3986 {
3987         const struct bpf_mprog_fp *fp;
3988         const struct bpf_prog *prog;
3989         int ret = TCX_NEXT;
3990
3991         if (needs_mac)
3992                 __skb_push(skb, skb->mac_len);
3993         bpf_mprog_foreach_prog(entry, fp, prog) {
3994                 bpf_compute_data_pointers(skb);
3995                 ret = bpf_prog_run(prog, skb);
3996                 if (ret != TCX_NEXT)
3997                         break;
3998         }
3999         if (needs_mac)
4000                 __skb_pull(skb, skb->mac_len);
4001         return tcx_action_code(skb, ret);
4002 }
4003
4004 static __always_inline struct sk_buff *
4005 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4006                    struct net_device *orig_dev, bool *another)
4007 {
4008         struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4009         int sch_ret;
4010
4011         if (!entry)
4012                 return skb;
4013         if (*pt_prev) {
4014                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4015                 *pt_prev = NULL;
4016         }
4017
4018         qdisc_skb_cb(skb)->pkt_len = skb->len;
4019         tcx_set_ingress(skb, true);
4020
4021         if (static_branch_unlikely(&tcx_needed_key)) {
4022                 sch_ret = tcx_run(entry, skb, true);
4023                 if (sch_ret != TC_ACT_UNSPEC)
4024                         goto ingress_verdict;
4025         }
4026         sch_ret = tc_run(tcx_entry(entry), skb);
4027 ingress_verdict:
4028         switch (sch_ret) {
4029         case TC_ACT_REDIRECT:
4030                 /* skb_mac_header check was done by BPF, so we can safely
4031                  * push the L2 header back before redirecting to another
4032                  * netdev.
4033                  */
4034                 __skb_push(skb, skb->mac_len);
4035                 if (skb_do_redirect(skb) == -EAGAIN) {
4036                         __skb_pull(skb, skb->mac_len);
4037                         *another = true;
4038                         break;
4039                 }
4040                 *ret = NET_RX_SUCCESS;
4041                 return NULL;
4042         case TC_ACT_SHOT:
4043                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4044                 *ret = NET_RX_DROP;
4045                 return NULL;
4046         /* used by tc_run */
4047         case TC_ACT_STOLEN:
4048         case TC_ACT_QUEUED:
4049         case TC_ACT_TRAP:
4050                 consume_skb(skb);
4051                 fallthrough;
4052         case TC_ACT_CONSUMED:
4053                 *ret = NET_RX_SUCCESS;
4054                 return NULL;
4055         }
4056
4057         return skb;
4058 }
4059
4060 static __always_inline struct sk_buff *
4061 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4062 {
4063         struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4064         int sch_ret;
4065
4066         if (!entry)
4067                 return skb;
4068
4069         /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4070          * already set by the caller.
4071          */
4072         if (static_branch_unlikely(&tcx_needed_key)) {
4073                 sch_ret = tcx_run(entry, skb, false);
4074                 if (sch_ret != TC_ACT_UNSPEC)
4075                         goto egress_verdict;
4076         }
4077         sch_ret = tc_run(tcx_entry(entry), skb);
4078 egress_verdict:
4079         switch (sch_ret) {
4080         case TC_ACT_REDIRECT:
4081                 /* No need to push/pop skb's mac_header here on egress! */
4082                 skb_do_redirect(skb);
4083                 *ret = NET_XMIT_SUCCESS;
4084                 return NULL;
4085         case TC_ACT_SHOT:
4086                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4087                 *ret = NET_XMIT_DROP;
4088                 return NULL;
4089         /* used by tc_run */
4090         case TC_ACT_STOLEN:
4091         case TC_ACT_QUEUED:
4092         case TC_ACT_TRAP:
4093                 consume_skb(skb);
4094                 fallthrough;
4095         case TC_ACT_CONSUMED:
4096                 *ret = NET_XMIT_SUCCESS;
4097                 return NULL;
4098         }
4099
4100         return skb;
4101 }
4102 #else
4103 static __always_inline struct sk_buff *
4104 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4105                    struct net_device *orig_dev, bool *another)
4106 {
4107         return skb;
4108 }
4109
4110 static __always_inline struct sk_buff *
4111 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4112 {
4113         return skb;
4114 }
4115 #endif /* CONFIG_NET_XGRESS */
4116
4117 #ifdef CONFIG_XPS
4118 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4119                                struct xps_dev_maps *dev_maps, unsigned int tci)
4120 {
4121         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4122         struct xps_map *map;
4123         int queue_index = -1;
4124
4125         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4126                 return queue_index;
4127
4128         tci *= dev_maps->num_tc;
4129         tci += tc;
4130
4131         map = rcu_dereference(dev_maps->attr_map[tci]);
4132         if (map) {
4133                 if (map->len == 1)
4134                         queue_index = map->queues[0];
4135                 else
4136                         queue_index = map->queues[reciprocal_scale(
4137                                                 skb_get_hash(skb), map->len)];
4138                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4139                         queue_index = -1;
4140         }
4141         return queue_index;
4142 }
4143 #endif
4144
4145 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4146                          struct sk_buff *skb)
4147 {
4148 #ifdef CONFIG_XPS
4149         struct xps_dev_maps *dev_maps;
4150         struct sock *sk = skb->sk;
4151         int queue_index = -1;
4152
4153         if (!static_key_false(&xps_needed))
4154                 return -1;
4155
4156         rcu_read_lock();
4157         if (!static_key_false(&xps_rxqs_needed))
4158                 goto get_cpus_map;
4159
4160         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4161         if (dev_maps) {
4162                 int tci = sk_rx_queue_get(sk);
4163
4164                 if (tci >= 0)
4165                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4166                                                           tci);
4167         }
4168
4169 get_cpus_map:
4170         if (queue_index < 0) {
4171                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4172                 if (dev_maps) {
4173                         unsigned int tci = skb->sender_cpu - 1;
4174
4175                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4176                                                           tci);
4177                 }
4178         }
4179         rcu_read_unlock();
4180
4181         return queue_index;
4182 #else
4183         return -1;
4184 #endif
4185 }
4186
4187 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4188                      struct net_device *sb_dev)
4189 {
4190         return 0;
4191 }
4192 EXPORT_SYMBOL(dev_pick_tx_zero);
4193
4194 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4195                        struct net_device *sb_dev)
4196 {
4197         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4198 }
4199 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4200
4201 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4202                      struct net_device *sb_dev)
4203 {
4204         struct sock *sk = skb->sk;
4205         int queue_index = sk_tx_queue_get(sk);
4206
4207         sb_dev = sb_dev ? : dev;
4208
4209         if (queue_index < 0 || skb->ooo_okay ||
4210             queue_index >= dev->real_num_tx_queues) {
4211                 int new_index = get_xps_queue(dev, sb_dev, skb);
4212
4213                 if (new_index < 0)
4214                         new_index = skb_tx_hash(dev, sb_dev, skb);
4215
4216                 if (queue_index != new_index && sk &&
4217                     sk_fullsock(sk) &&
4218                     rcu_access_pointer(sk->sk_dst_cache))
4219                         sk_tx_queue_set(sk, new_index);
4220
4221                 queue_index = new_index;
4222         }
4223
4224         return queue_index;
4225 }
4226 EXPORT_SYMBOL(netdev_pick_tx);
4227
4228 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4229                                          struct sk_buff *skb,
4230                                          struct net_device *sb_dev)
4231 {
4232         int queue_index = 0;
4233
4234 #ifdef CONFIG_XPS
4235         u32 sender_cpu = skb->sender_cpu - 1;
4236
4237         if (sender_cpu >= (u32)NR_CPUS)
4238                 skb->sender_cpu = raw_smp_processor_id() + 1;
4239 #endif
4240
4241         if (dev->real_num_tx_queues != 1) {
4242                 const struct net_device_ops *ops = dev->netdev_ops;
4243
4244                 if (ops->ndo_select_queue)
4245                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4246                 else
4247                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4248
4249                 queue_index = netdev_cap_txqueue(dev, queue_index);
4250         }
4251
4252         skb_set_queue_mapping(skb, queue_index);
4253         return netdev_get_tx_queue(dev, queue_index);
4254 }
4255
4256 /**
4257  * __dev_queue_xmit() - transmit a buffer
4258  * @skb:        buffer to transmit
4259  * @sb_dev:     suboordinate device used for L2 forwarding offload
4260  *
4261  * Queue a buffer for transmission to a network device. The caller must
4262  * have set the device and priority and built the buffer before calling
4263  * this function. The function can be called from an interrupt.
4264  *
4265  * When calling this method, interrupts MUST be enabled. This is because
4266  * the BH enable code must have IRQs enabled so that it will not deadlock.
4267  *
4268  * Regardless of the return value, the skb is consumed, so it is currently
4269  * difficult to retry a send to this method. (You can bump the ref count
4270  * before sending to hold a reference for retry if you are careful.)
4271  *
4272  * Return:
4273  * * 0                          - buffer successfully transmitted
4274  * * positive qdisc return code - NET_XMIT_DROP etc.
4275  * * negative errno             - other errors
4276  */
4277 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4278 {
4279         struct net_device *dev = skb->dev;
4280         struct netdev_queue *txq = NULL;
4281         struct Qdisc *q;
4282         int rc = -ENOMEM;
4283         bool again = false;
4284
4285         skb_reset_mac_header(skb);
4286         skb_assert_len(skb);
4287
4288         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4289                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4290
4291         /* Disable soft irqs for various locks below. Also
4292          * stops preemption for RCU.
4293          */
4294         rcu_read_lock_bh();
4295
4296         skb_update_prio(skb);
4297
4298         qdisc_pkt_len_init(skb);
4299         tcx_set_ingress(skb, false);
4300 #ifdef CONFIG_NET_EGRESS
4301         if (static_branch_unlikely(&egress_needed_key)) {
4302                 if (nf_hook_egress_active()) {
4303                         skb = nf_hook_egress(skb, &rc, dev);
4304                         if (!skb)
4305                                 goto out;
4306                 }
4307
4308                 netdev_xmit_skip_txqueue(false);
4309
4310                 nf_skip_egress(skb, true);
4311                 skb = sch_handle_egress(skb, &rc, dev);
4312                 if (!skb)
4313                         goto out;
4314                 nf_skip_egress(skb, false);
4315
4316                 if (netdev_xmit_txqueue_skipped())
4317                         txq = netdev_tx_queue_mapping(dev, skb);
4318         }
4319 #endif
4320         /* If device/qdisc don't need skb->dst, release it right now while
4321          * its hot in this cpu cache.
4322          */
4323         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4324                 skb_dst_drop(skb);
4325         else
4326                 skb_dst_force(skb);
4327
4328         if (!txq)
4329                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4330
4331         q = rcu_dereference_bh(txq->qdisc);
4332
4333         trace_net_dev_queue(skb);
4334         if (q->enqueue) {
4335                 rc = __dev_xmit_skb(skb, q, dev, txq);
4336                 goto out;
4337         }
4338
4339         /* The device has no queue. Common case for software devices:
4340          * loopback, all the sorts of tunnels...
4341
4342          * Really, it is unlikely that netif_tx_lock protection is necessary
4343          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4344          * counters.)
4345          * However, it is possible, that they rely on protection
4346          * made by us here.
4347
4348          * Check this and shot the lock. It is not prone from deadlocks.
4349          *Either shot noqueue qdisc, it is even simpler 8)
4350          */
4351         if (dev->flags & IFF_UP) {
4352                 int cpu = smp_processor_id(); /* ok because BHs are off */
4353
4354                 /* Other cpus might concurrently change txq->xmit_lock_owner
4355                  * to -1 or to their cpu id, but not to our id.
4356                  */
4357                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4358                         if (dev_xmit_recursion())
4359                                 goto recursion_alert;
4360
4361                         skb = validate_xmit_skb(skb, dev, &again);
4362                         if (!skb)
4363                                 goto out;
4364
4365                         HARD_TX_LOCK(dev, txq, cpu);
4366
4367                         if (!netif_xmit_stopped(txq)) {
4368                                 dev_xmit_recursion_inc();
4369                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4370                                 dev_xmit_recursion_dec();
4371                                 if (dev_xmit_complete(rc)) {
4372                                         HARD_TX_UNLOCK(dev, txq);
4373                                         goto out;
4374                                 }
4375                         }
4376                         HARD_TX_UNLOCK(dev, txq);
4377                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4378                                              dev->name);
4379                 } else {
4380                         /* Recursion is detected! It is possible,
4381                          * unfortunately
4382                          */
4383 recursion_alert:
4384                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4385                                              dev->name);
4386                 }
4387         }
4388
4389         rc = -ENETDOWN;
4390         rcu_read_unlock_bh();
4391
4392         dev_core_stats_tx_dropped_inc(dev);
4393         kfree_skb_list(skb);
4394         return rc;
4395 out:
4396         rcu_read_unlock_bh();
4397         return rc;
4398 }
4399 EXPORT_SYMBOL(__dev_queue_xmit);
4400
4401 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4402 {
4403         struct net_device *dev = skb->dev;
4404         struct sk_buff *orig_skb = skb;
4405         struct netdev_queue *txq;
4406         int ret = NETDEV_TX_BUSY;
4407         bool again = false;
4408
4409         if (unlikely(!netif_running(dev) ||
4410                      !netif_carrier_ok(dev)))
4411                 goto drop;
4412
4413         skb = validate_xmit_skb_list(skb, dev, &again);
4414         if (skb != orig_skb)
4415                 goto drop;
4416
4417         skb_set_queue_mapping(skb, queue_id);
4418         txq = skb_get_tx_queue(dev, skb);
4419
4420         local_bh_disable();
4421
4422         dev_xmit_recursion_inc();
4423         HARD_TX_LOCK(dev, txq, smp_processor_id());
4424         if (!netif_xmit_frozen_or_drv_stopped(txq))
4425                 ret = netdev_start_xmit(skb, dev, txq, false);
4426         HARD_TX_UNLOCK(dev, txq);
4427         dev_xmit_recursion_dec();
4428
4429         local_bh_enable();
4430         return ret;
4431 drop:
4432         dev_core_stats_tx_dropped_inc(dev);
4433         kfree_skb_list(skb);
4434         return NET_XMIT_DROP;
4435 }
4436 EXPORT_SYMBOL(__dev_direct_xmit);
4437
4438 /*************************************************************************
4439  *                      Receiver routines
4440  *************************************************************************/
4441
4442 int netdev_max_backlog __read_mostly = 1000;
4443 EXPORT_SYMBOL(netdev_max_backlog);
4444
4445 int netdev_tstamp_prequeue __read_mostly = 1;
4446 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4447 int netdev_budget __read_mostly = 300;
4448 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4449 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4450 int weight_p __read_mostly = 64;           /* old backlog weight */
4451 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4452 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4453 int dev_rx_weight __read_mostly = 64;
4454 int dev_tx_weight __read_mostly = 64;
4455
4456 /* Called with irq disabled */
4457 static inline void ____napi_schedule(struct softnet_data *sd,
4458                                      struct napi_struct *napi)
4459 {
4460         struct task_struct *thread;
4461
4462         lockdep_assert_irqs_disabled();
4463
4464         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4465                 /* Paired with smp_mb__before_atomic() in
4466                  * napi_enable()/dev_set_threaded().
4467                  * Use READ_ONCE() to guarantee a complete
4468                  * read on napi->thread. Only call
4469                  * wake_up_process() when it's not NULL.
4470                  */
4471                 thread = READ_ONCE(napi->thread);
4472                 if (thread) {
4473                         /* Avoid doing set_bit() if the thread is in
4474                          * INTERRUPTIBLE state, cause napi_thread_wait()
4475                          * makes sure to proceed with napi polling
4476                          * if the thread is explicitly woken from here.
4477                          */
4478                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4479                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4480                         wake_up_process(thread);
4481                         return;
4482                 }
4483         }
4484
4485         list_add_tail(&napi->poll_list, &sd->poll_list);
4486         WRITE_ONCE(napi->list_owner, smp_processor_id());
4487         /* If not called from net_rx_action()
4488          * we have to raise NET_RX_SOFTIRQ.
4489          */
4490         if (!sd->in_net_rx_action)
4491                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4492 }
4493
4494 #ifdef CONFIG_RPS
4495
4496 /* One global table that all flow-based protocols share. */
4497 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4498 EXPORT_SYMBOL(rps_sock_flow_table);
4499 u32 rps_cpu_mask __read_mostly;
4500 EXPORT_SYMBOL(rps_cpu_mask);
4501
4502 struct static_key_false rps_needed __read_mostly;
4503 EXPORT_SYMBOL(rps_needed);
4504 struct static_key_false rfs_needed __read_mostly;
4505 EXPORT_SYMBOL(rfs_needed);
4506
4507 static struct rps_dev_flow *
4508 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4509             struct rps_dev_flow *rflow, u16 next_cpu)
4510 {
4511         if (next_cpu < nr_cpu_ids) {
4512 #ifdef CONFIG_RFS_ACCEL
4513                 struct netdev_rx_queue *rxqueue;
4514                 struct rps_dev_flow_table *flow_table;
4515                 struct rps_dev_flow *old_rflow;
4516                 u32 flow_id;
4517                 u16 rxq_index;
4518                 int rc;
4519
4520                 /* Should we steer this flow to a different hardware queue? */
4521                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4522                     !(dev->features & NETIF_F_NTUPLE))
4523                         goto out;
4524                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4525                 if (rxq_index == skb_get_rx_queue(skb))
4526                         goto out;
4527
4528                 rxqueue = dev->_rx + rxq_index;
4529                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4530                 if (!flow_table)
4531                         goto out;
4532                 flow_id = skb_get_hash(skb) & flow_table->mask;
4533                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4534                                                         rxq_index, flow_id);
4535                 if (rc < 0)
4536                         goto out;
4537                 old_rflow = rflow;
4538                 rflow = &flow_table->flows[flow_id];
4539                 rflow->filter = rc;
4540                 if (old_rflow->filter == rflow->filter)
4541                         old_rflow->filter = RPS_NO_FILTER;
4542         out:
4543 #endif
4544                 rflow->last_qtail =
4545                         per_cpu(softnet_data, next_cpu).input_queue_head;
4546         }
4547
4548         rflow->cpu = next_cpu;
4549         return rflow;
4550 }
4551
4552 /*
4553  * get_rps_cpu is called from netif_receive_skb and returns the target
4554  * CPU from the RPS map of the receiving queue for a given skb.
4555  * rcu_read_lock must be held on entry.
4556  */
4557 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4558                        struct rps_dev_flow **rflowp)
4559 {
4560         const struct rps_sock_flow_table *sock_flow_table;
4561         struct netdev_rx_queue *rxqueue = dev->_rx;
4562         struct rps_dev_flow_table *flow_table;
4563         struct rps_map *map;
4564         int cpu = -1;
4565         u32 tcpu;
4566         u32 hash;
4567
4568         if (skb_rx_queue_recorded(skb)) {
4569                 u16 index = skb_get_rx_queue(skb);
4570
4571                 if (unlikely(index >= dev->real_num_rx_queues)) {
4572                         WARN_ONCE(dev->real_num_rx_queues > 1,
4573                                   "%s received packet on queue %u, but number "
4574                                   "of RX queues is %u\n",
4575                                   dev->name, index, dev->real_num_rx_queues);
4576                         goto done;
4577                 }
4578                 rxqueue += index;
4579         }
4580
4581         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4582
4583         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4584         map = rcu_dereference(rxqueue->rps_map);
4585         if (!flow_table && !map)
4586                 goto done;
4587
4588         skb_reset_network_header(skb);
4589         hash = skb_get_hash(skb);
4590         if (!hash)
4591                 goto done;
4592
4593         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4594         if (flow_table && sock_flow_table) {
4595                 struct rps_dev_flow *rflow;
4596                 u32 next_cpu;
4597                 u32 ident;
4598
4599                 /* First check into global flow table if there is a match.
4600                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4601                  */
4602                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4603                 if ((ident ^ hash) & ~rps_cpu_mask)
4604                         goto try_rps;
4605
4606                 next_cpu = ident & rps_cpu_mask;
4607
4608                 /* OK, now we know there is a match,
4609                  * we can look at the local (per receive queue) flow table
4610                  */
4611                 rflow = &flow_table->flows[hash & flow_table->mask];
4612                 tcpu = rflow->cpu;
4613
4614                 /*
4615                  * If the desired CPU (where last recvmsg was done) is
4616                  * different from current CPU (one in the rx-queue flow
4617                  * table entry), switch if one of the following holds:
4618                  *   - Current CPU is unset (>= nr_cpu_ids).
4619                  *   - Current CPU is offline.
4620                  *   - The current CPU's queue tail has advanced beyond the
4621                  *     last packet that was enqueued using this table entry.
4622                  *     This guarantees that all previous packets for the flow
4623                  *     have been dequeued, thus preserving in order delivery.
4624                  */
4625                 if (unlikely(tcpu != next_cpu) &&
4626                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4627                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4628                       rflow->last_qtail)) >= 0)) {
4629                         tcpu = next_cpu;
4630                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4631                 }
4632
4633                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4634                         *rflowp = rflow;
4635                         cpu = tcpu;
4636                         goto done;
4637                 }
4638         }
4639
4640 try_rps:
4641
4642         if (map) {
4643                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4644                 if (cpu_online(tcpu)) {
4645                         cpu = tcpu;
4646                         goto done;
4647                 }
4648         }
4649
4650 done:
4651         return cpu;
4652 }
4653
4654 #ifdef CONFIG_RFS_ACCEL
4655
4656 /**
4657  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4658  * @dev: Device on which the filter was set
4659  * @rxq_index: RX queue index
4660  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4661  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4662  *
4663  * Drivers that implement ndo_rx_flow_steer() should periodically call
4664  * this function for each installed filter and remove the filters for
4665  * which it returns %true.
4666  */
4667 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4668                          u32 flow_id, u16 filter_id)
4669 {
4670         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4671         struct rps_dev_flow_table *flow_table;
4672         struct rps_dev_flow *rflow;
4673         bool expire = true;
4674         unsigned int cpu;
4675
4676         rcu_read_lock();
4677         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4678         if (flow_table && flow_id <= flow_table->mask) {
4679                 rflow = &flow_table->flows[flow_id];
4680                 cpu = READ_ONCE(rflow->cpu);
4681                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4682                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4683                            rflow->last_qtail) <
4684                      (int)(10 * flow_table->mask)))
4685                         expire = false;
4686         }
4687         rcu_read_unlock();
4688         return expire;
4689 }
4690 EXPORT_SYMBOL(rps_may_expire_flow);
4691
4692 #endif /* CONFIG_RFS_ACCEL */
4693
4694 /* Called from hardirq (IPI) context */
4695 static void rps_trigger_softirq(void *data)
4696 {
4697         struct softnet_data *sd = data;
4698
4699         ____napi_schedule(sd, &sd->backlog);
4700         sd->received_rps++;
4701 }
4702
4703 #endif /* CONFIG_RPS */
4704
4705 /* Called from hardirq (IPI) context */
4706 static void trigger_rx_softirq(void *data)
4707 {
4708         struct softnet_data *sd = data;
4709
4710         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4711         smp_store_release(&sd->defer_ipi_scheduled, 0);
4712 }
4713
4714 /*
4715  * After we queued a packet into sd->input_pkt_queue,
4716  * we need to make sure this queue is serviced soon.
4717  *
4718  * - If this is another cpu queue, link it to our rps_ipi_list,
4719  *   and make sure we will process rps_ipi_list from net_rx_action().
4720  *
4721  * - If this is our own queue, NAPI schedule our backlog.
4722  *   Note that this also raises NET_RX_SOFTIRQ.
4723  */
4724 static void napi_schedule_rps(struct softnet_data *sd)
4725 {
4726         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4727
4728 #ifdef CONFIG_RPS
4729         if (sd != mysd) {
4730                 sd->rps_ipi_next = mysd->rps_ipi_list;
4731                 mysd->rps_ipi_list = sd;
4732
4733                 /* If not called from net_rx_action() or napi_threaded_poll()
4734                  * we have to raise NET_RX_SOFTIRQ.
4735                  */
4736                 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4737                         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4738                 return;
4739         }
4740 #endif /* CONFIG_RPS */
4741         __napi_schedule_irqoff(&mysd->backlog);
4742 }
4743
4744 #ifdef CONFIG_NET_FLOW_LIMIT
4745 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4746 #endif
4747
4748 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4749 {
4750 #ifdef CONFIG_NET_FLOW_LIMIT
4751         struct sd_flow_limit *fl;
4752         struct softnet_data *sd;
4753         unsigned int old_flow, new_flow;
4754
4755         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4756                 return false;
4757
4758         sd = this_cpu_ptr(&softnet_data);
4759
4760         rcu_read_lock();
4761         fl = rcu_dereference(sd->flow_limit);
4762         if (fl) {
4763                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4764                 old_flow = fl->history[fl->history_head];
4765                 fl->history[fl->history_head] = new_flow;
4766
4767                 fl->history_head++;
4768                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4769
4770                 if (likely(fl->buckets[old_flow]))
4771                         fl->buckets[old_flow]--;
4772
4773                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4774                         fl->count++;
4775                         rcu_read_unlock();
4776                         return true;
4777                 }
4778         }
4779         rcu_read_unlock();
4780 #endif
4781         return false;
4782 }
4783
4784 /*
4785  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4786  * queue (may be a remote CPU queue).
4787  */
4788 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4789                               unsigned int *qtail)
4790 {
4791         enum skb_drop_reason reason;
4792         struct softnet_data *sd;
4793         unsigned long flags;
4794         unsigned int qlen;
4795
4796         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4797         sd = &per_cpu(softnet_data, cpu);
4798
4799         rps_lock_irqsave(sd, &flags);
4800         if (!netif_running(skb->dev))
4801                 goto drop;
4802         qlen = skb_queue_len(&sd->input_pkt_queue);
4803         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4804                 if (qlen) {
4805 enqueue:
4806                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4807                         input_queue_tail_incr_save(sd, qtail);
4808                         rps_unlock_irq_restore(sd, &flags);
4809                         return NET_RX_SUCCESS;
4810                 }
4811
4812                 /* Schedule NAPI for backlog device
4813                  * We can use non atomic operation since we own the queue lock
4814                  */
4815                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4816                         napi_schedule_rps(sd);
4817                 goto enqueue;
4818         }
4819         reason = SKB_DROP_REASON_CPU_BACKLOG;
4820
4821 drop:
4822         sd->dropped++;
4823         rps_unlock_irq_restore(sd, &flags);
4824
4825         dev_core_stats_rx_dropped_inc(skb->dev);
4826         kfree_skb_reason(skb, reason);
4827         return NET_RX_DROP;
4828 }
4829
4830 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4831 {
4832         struct net_device *dev = skb->dev;
4833         struct netdev_rx_queue *rxqueue;
4834
4835         rxqueue = dev->_rx;
4836
4837         if (skb_rx_queue_recorded(skb)) {
4838                 u16 index = skb_get_rx_queue(skb);
4839
4840                 if (unlikely(index >= dev->real_num_rx_queues)) {
4841                         WARN_ONCE(dev->real_num_rx_queues > 1,
4842                                   "%s received packet on queue %u, but number "
4843                                   "of RX queues is %u\n",
4844                                   dev->name, index, dev->real_num_rx_queues);
4845
4846                         return rxqueue; /* Return first rxqueue */
4847                 }
4848                 rxqueue += index;
4849         }
4850         return rxqueue;
4851 }
4852
4853 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4854                              struct bpf_prog *xdp_prog)
4855 {
4856         void *orig_data, *orig_data_end, *hard_start;
4857         struct netdev_rx_queue *rxqueue;
4858         bool orig_bcast, orig_host;
4859         u32 mac_len, frame_sz;
4860         __be16 orig_eth_type;
4861         struct ethhdr *eth;
4862         u32 metalen, act;
4863         int off;
4864
4865         /* The XDP program wants to see the packet starting at the MAC
4866          * header.
4867          */
4868         mac_len = skb->data - skb_mac_header(skb);
4869         hard_start = skb->data - skb_headroom(skb);
4870
4871         /* SKB "head" area always have tailroom for skb_shared_info */
4872         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4873         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4874
4875         rxqueue = netif_get_rxqueue(skb);
4876         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4877         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4878                          skb_headlen(skb) + mac_len, true);
4879
4880         orig_data_end = xdp->data_end;
4881         orig_data = xdp->data;
4882         eth = (struct ethhdr *)xdp->data;
4883         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4884         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4885         orig_eth_type = eth->h_proto;
4886
4887         act = bpf_prog_run_xdp(xdp_prog, xdp);
4888
4889         /* check if bpf_xdp_adjust_head was used */
4890         off = xdp->data - orig_data;
4891         if (off) {
4892                 if (off > 0)
4893                         __skb_pull(skb, off);
4894                 else if (off < 0)
4895                         __skb_push(skb, -off);
4896
4897                 skb->mac_header += off;
4898                 skb_reset_network_header(skb);
4899         }
4900
4901         /* check if bpf_xdp_adjust_tail was used */
4902         off = xdp->data_end - orig_data_end;
4903         if (off != 0) {
4904                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4905                 skb->len += off; /* positive on grow, negative on shrink */
4906         }
4907
4908         /* check if XDP changed eth hdr such SKB needs update */
4909         eth = (struct ethhdr *)xdp->data;
4910         if ((orig_eth_type != eth->h_proto) ||
4911             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4912                                                   skb->dev->dev_addr)) ||
4913             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4914                 __skb_push(skb, ETH_HLEN);
4915                 skb->pkt_type = PACKET_HOST;
4916                 skb->protocol = eth_type_trans(skb, skb->dev);
4917         }
4918
4919         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4920          * before calling us again on redirect path. We do not call do_redirect
4921          * as we leave that up to the caller.
4922          *
4923          * Caller is responsible for managing lifetime of skb (i.e. calling
4924          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4925          */
4926         switch (act) {
4927         case XDP_REDIRECT:
4928         case XDP_TX:
4929                 __skb_push(skb, mac_len);
4930                 break;
4931         case XDP_PASS:
4932                 metalen = xdp->data - xdp->data_meta;
4933                 if (metalen)
4934                         skb_metadata_set(skb, metalen);
4935                 break;
4936         }
4937
4938         return act;
4939 }
4940
4941 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4942                                      struct xdp_buff *xdp,
4943                                      struct bpf_prog *xdp_prog)
4944 {
4945         u32 act = XDP_DROP;
4946
4947         /* Reinjected packets coming from act_mirred or similar should
4948          * not get XDP generic processing.
4949          */
4950         if (skb_is_redirected(skb))
4951                 return XDP_PASS;
4952
4953         /* XDP packets must be linear and must have sufficient headroom
4954          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4955          * native XDP provides, thus we need to do it here as well.
4956          */
4957         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4958             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4959                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4960                 int troom = skb->tail + skb->data_len - skb->end;
4961
4962                 /* In case we have to go down the path and also linearize,
4963                  * then lets do the pskb_expand_head() work just once here.
4964                  */
4965                 if (pskb_expand_head(skb,
4966                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4967                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4968                         goto do_drop;
4969                 if (skb_linearize(skb))
4970                         goto do_drop;
4971         }
4972
4973         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4974         switch (act) {
4975         case XDP_REDIRECT:
4976         case XDP_TX:
4977         case XDP_PASS:
4978                 break;
4979         default:
4980                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4981                 fallthrough;
4982         case XDP_ABORTED:
4983                 trace_xdp_exception(skb->dev, xdp_prog, act);
4984                 fallthrough;
4985         case XDP_DROP:
4986         do_drop:
4987                 kfree_skb(skb);
4988                 break;
4989         }
4990
4991         return act;
4992 }
4993
4994 /* When doing generic XDP we have to bypass the qdisc layer and the
4995  * network taps in order to match in-driver-XDP behavior. This also means
4996  * that XDP packets are able to starve other packets going through a qdisc,
4997  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4998  * queues, so they do not have this starvation issue.
4999  */
5000 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5001 {
5002         struct net_device *dev = skb->dev;
5003         struct netdev_queue *txq;
5004         bool free_skb = true;
5005         int cpu, rc;
5006
5007         txq = netdev_core_pick_tx(dev, skb, NULL);
5008         cpu = smp_processor_id();
5009         HARD_TX_LOCK(dev, txq, cpu);
5010         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5011                 rc = netdev_start_xmit(skb, dev, txq, 0);
5012                 if (dev_xmit_complete(rc))
5013                         free_skb = false;
5014         }
5015         HARD_TX_UNLOCK(dev, txq);
5016         if (free_skb) {
5017                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5018                 dev_core_stats_tx_dropped_inc(dev);
5019                 kfree_skb(skb);
5020         }
5021 }
5022
5023 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5024
5025 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5026 {
5027         if (xdp_prog) {
5028                 struct xdp_buff xdp;
5029                 u32 act;
5030                 int err;
5031
5032                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5033                 if (act != XDP_PASS) {
5034                         switch (act) {
5035                         case XDP_REDIRECT:
5036                                 err = xdp_do_generic_redirect(skb->dev, skb,
5037                                                               &xdp, xdp_prog);
5038                                 if (err)
5039                                         goto out_redir;
5040                                 break;
5041                         case XDP_TX:
5042                                 generic_xdp_tx(skb, xdp_prog);
5043                                 break;
5044                         }
5045                         return XDP_DROP;
5046                 }
5047         }
5048         return XDP_PASS;
5049 out_redir:
5050         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5051         return XDP_DROP;
5052 }
5053 EXPORT_SYMBOL_GPL(do_xdp_generic);
5054
5055 static int netif_rx_internal(struct sk_buff *skb)
5056 {
5057         int ret;
5058
5059         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5060
5061         trace_netif_rx(skb);
5062
5063 #ifdef CONFIG_RPS
5064         if (static_branch_unlikely(&rps_needed)) {
5065                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5066                 int cpu;
5067
5068                 rcu_read_lock();
5069
5070                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5071                 if (cpu < 0)
5072                         cpu = smp_processor_id();
5073
5074                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5075
5076                 rcu_read_unlock();
5077         } else
5078 #endif
5079         {
5080                 unsigned int qtail;
5081
5082                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5083         }
5084         return ret;
5085 }
5086
5087 /**
5088  *      __netif_rx      -       Slightly optimized version of netif_rx
5089  *      @skb: buffer to post
5090  *
5091  *      This behaves as netif_rx except that it does not disable bottom halves.
5092  *      As a result this function may only be invoked from the interrupt context
5093  *      (either hard or soft interrupt).
5094  */
5095 int __netif_rx(struct sk_buff *skb)
5096 {
5097         int ret;
5098
5099         lockdep_assert_once(hardirq_count() | softirq_count());
5100
5101         trace_netif_rx_entry(skb);
5102         ret = netif_rx_internal(skb);
5103         trace_netif_rx_exit(ret);
5104         return ret;
5105 }
5106 EXPORT_SYMBOL(__netif_rx);
5107
5108 /**
5109  *      netif_rx        -       post buffer to the network code
5110  *      @skb: buffer to post
5111  *
5112  *      This function receives a packet from a device driver and queues it for
5113  *      the upper (protocol) levels to process via the backlog NAPI device. It
5114  *      always succeeds. The buffer may be dropped during processing for
5115  *      congestion control or by the protocol layers.
5116  *      The network buffer is passed via the backlog NAPI device. Modern NIC
5117  *      driver should use NAPI and GRO.
5118  *      This function can used from interrupt and from process context. The
5119  *      caller from process context must not disable interrupts before invoking
5120  *      this function.
5121  *
5122  *      return values:
5123  *      NET_RX_SUCCESS  (no congestion)
5124  *      NET_RX_DROP     (packet was dropped)
5125  *
5126  */
5127 int netif_rx(struct sk_buff *skb)
5128 {
5129         bool need_bh_off = !(hardirq_count() | softirq_count());
5130         int ret;
5131
5132         if (need_bh_off)
5133                 local_bh_disable();
5134         trace_netif_rx_entry(skb);
5135         ret = netif_rx_internal(skb);
5136         trace_netif_rx_exit(ret);
5137         if (need_bh_off)
5138                 local_bh_enable();
5139         return ret;
5140 }
5141 EXPORT_SYMBOL(netif_rx);
5142
5143 static __latent_entropy void net_tx_action(struct softirq_action *h)
5144 {
5145         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5146
5147         if (sd->completion_queue) {
5148                 struct sk_buff *clist;
5149
5150                 local_irq_disable();
5151                 clist = sd->completion_queue;
5152                 sd->completion_queue = NULL;
5153                 local_irq_enable();
5154
5155                 while (clist) {
5156                         struct sk_buff *skb = clist;
5157
5158                         clist = clist->next;
5159
5160                         WARN_ON(refcount_read(&skb->users));
5161                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5162                                 trace_consume_skb(skb, net_tx_action);
5163                         else
5164                                 trace_kfree_skb(skb, net_tx_action,
5165                                                 get_kfree_skb_cb(skb)->reason);
5166
5167                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5168                                 __kfree_skb(skb);
5169                         else
5170                                 __napi_kfree_skb(skb,
5171                                                  get_kfree_skb_cb(skb)->reason);
5172                 }
5173         }
5174
5175         if (sd->output_queue) {
5176                 struct Qdisc *head;
5177
5178                 local_irq_disable();
5179                 head = sd->output_queue;
5180                 sd->output_queue = NULL;
5181                 sd->output_queue_tailp = &sd->output_queue;
5182                 local_irq_enable();
5183
5184                 rcu_read_lock();
5185
5186                 while (head) {
5187                         struct Qdisc *q = head;
5188                         spinlock_t *root_lock = NULL;
5189
5190                         head = head->next_sched;
5191
5192                         /* We need to make sure head->next_sched is read
5193                          * before clearing __QDISC_STATE_SCHED
5194                          */
5195                         smp_mb__before_atomic();
5196
5197                         if (!(q->flags & TCQ_F_NOLOCK)) {
5198                                 root_lock = qdisc_lock(q);
5199                                 spin_lock(root_lock);
5200                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5201                                                      &q->state))) {
5202                                 /* There is a synchronize_net() between
5203                                  * STATE_DEACTIVATED flag being set and
5204                                  * qdisc_reset()/some_qdisc_is_busy() in
5205                                  * dev_deactivate(), so we can safely bail out
5206                                  * early here to avoid data race between
5207                                  * qdisc_deactivate() and some_qdisc_is_busy()
5208                                  * for lockless qdisc.
5209                                  */
5210                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5211                                 continue;
5212                         }
5213
5214                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5215                         qdisc_run(q);
5216                         if (root_lock)
5217                                 spin_unlock(root_lock);
5218                 }
5219
5220                 rcu_read_unlock();
5221         }
5222
5223         xfrm_dev_backlog(sd);
5224 }
5225
5226 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5227 /* This hook is defined here for ATM LANE */
5228 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5229                              unsigned char *addr) __read_mostly;
5230 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5231 #endif
5232
5233 /**
5234  *      netdev_is_rx_handler_busy - check if receive handler is registered
5235  *      @dev: device to check
5236  *
5237  *      Check if a receive handler is already registered for a given device.
5238  *      Return true if there one.
5239  *
5240  *      The caller must hold the rtnl_mutex.
5241  */
5242 bool netdev_is_rx_handler_busy(struct net_device *dev)
5243 {
5244         ASSERT_RTNL();
5245         return dev && rtnl_dereference(dev->rx_handler);
5246 }
5247 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5248
5249 /**
5250  *      netdev_rx_handler_register - register receive handler
5251  *      @dev: device to register a handler for
5252  *      @rx_handler: receive handler to register
5253  *      @rx_handler_data: data pointer that is used by rx handler
5254  *
5255  *      Register a receive handler for a device. This handler will then be
5256  *      called from __netif_receive_skb. A negative errno code is returned
5257  *      on a failure.
5258  *
5259  *      The caller must hold the rtnl_mutex.
5260  *
5261  *      For a general description of rx_handler, see enum rx_handler_result.
5262  */
5263 int netdev_rx_handler_register(struct net_device *dev,
5264                                rx_handler_func_t *rx_handler,
5265                                void *rx_handler_data)
5266 {
5267         if (netdev_is_rx_handler_busy(dev))
5268                 return -EBUSY;
5269
5270         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5271                 return -EINVAL;
5272
5273         /* Note: rx_handler_data must be set before rx_handler */
5274         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5275         rcu_assign_pointer(dev->rx_handler, rx_handler);
5276
5277         return 0;
5278 }
5279 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5280
5281 /**
5282  *      netdev_rx_handler_unregister - unregister receive handler
5283  *      @dev: device to unregister a handler from
5284  *
5285  *      Unregister a receive handler from a device.
5286  *
5287  *      The caller must hold the rtnl_mutex.
5288  */
5289 void netdev_rx_handler_unregister(struct net_device *dev)
5290 {
5291
5292         ASSERT_RTNL();
5293         RCU_INIT_POINTER(dev->rx_handler, NULL);
5294         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5295          * section has a guarantee to see a non NULL rx_handler_data
5296          * as well.
5297          */
5298         synchronize_net();
5299         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5300 }
5301 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5302
5303 /*
5304  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5305  * the special handling of PFMEMALLOC skbs.
5306  */
5307 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5308 {
5309         switch (skb->protocol) {
5310         case htons(ETH_P_ARP):
5311         case htons(ETH_P_IP):
5312         case htons(ETH_P_IPV6):
5313         case htons(ETH_P_8021Q):
5314         case htons(ETH_P_8021AD):
5315                 return true;
5316         default:
5317                 return false;
5318         }
5319 }
5320
5321 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5322                              int *ret, struct net_device *orig_dev)
5323 {
5324         if (nf_hook_ingress_active(skb)) {
5325                 int ingress_retval;
5326
5327                 if (*pt_prev) {
5328                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5329                         *pt_prev = NULL;
5330                 }
5331
5332                 rcu_read_lock();
5333                 ingress_retval = nf_hook_ingress(skb);
5334                 rcu_read_unlock();
5335                 return ingress_retval;
5336         }
5337         return 0;
5338 }
5339
5340 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5341                                     struct packet_type **ppt_prev)
5342 {
5343         struct packet_type *ptype, *pt_prev;
5344         rx_handler_func_t *rx_handler;
5345         struct sk_buff *skb = *pskb;
5346         struct net_device *orig_dev;
5347         bool deliver_exact = false;
5348         int ret = NET_RX_DROP;
5349         __be16 type;
5350
5351         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5352
5353         trace_netif_receive_skb(skb);
5354
5355         orig_dev = skb->dev;
5356
5357         skb_reset_network_header(skb);
5358         if (!skb_transport_header_was_set(skb))
5359                 skb_reset_transport_header(skb);
5360         skb_reset_mac_len(skb);
5361
5362         pt_prev = NULL;
5363
5364 another_round:
5365         skb->skb_iif = skb->dev->ifindex;
5366
5367         __this_cpu_inc(softnet_data.processed);
5368
5369         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5370                 int ret2;
5371
5372                 migrate_disable();
5373                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5374                 migrate_enable();
5375
5376                 if (ret2 != XDP_PASS) {
5377                         ret = NET_RX_DROP;
5378                         goto out;
5379                 }
5380         }
5381
5382         if (eth_type_vlan(skb->protocol)) {
5383                 skb = skb_vlan_untag(skb);
5384                 if (unlikely(!skb))
5385                         goto out;
5386         }
5387
5388         if (skb_skip_tc_classify(skb))
5389                 goto skip_classify;
5390
5391         if (pfmemalloc)
5392                 goto skip_taps;
5393
5394         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5395                 if (pt_prev)
5396                         ret = deliver_skb(skb, pt_prev, orig_dev);
5397                 pt_prev = ptype;
5398         }
5399
5400         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5401                 if (pt_prev)
5402                         ret = deliver_skb(skb, pt_prev, orig_dev);
5403                 pt_prev = ptype;
5404         }
5405
5406 skip_taps:
5407 #ifdef CONFIG_NET_INGRESS
5408         if (static_branch_unlikely(&ingress_needed_key)) {
5409                 bool another = false;
5410
5411                 nf_skip_egress(skb, true);
5412                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5413                                          &another);
5414                 if (another)
5415                         goto another_round;
5416                 if (!skb)
5417                         goto out;
5418
5419                 nf_skip_egress(skb, false);
5420                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5421                         goto out;
5422         }
5423 #endif
5424         skb_reset_redirect(skb);
5425 skip_classify:
5426         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5427                 goto drop;
5428
5429         if (skb_vlan_tag_present(skb)) {
5430                 if (pt_prev) {
5431                         ret = deliver_skb(skb, pt_prev, orig_dev);
5432                         pt_prev = NULL;
5433                 }
5434                 if (vlan_do_receive(&skb))
5435                         goto another_round;
5436                 else if (unlikely(!skb))
5437                         goto out;
5438         }
5439
5440         rx_handler = rcu_dereference(skb->dev->rx_handler);
5441         if (rx_handler) {
5442                 if (pt_prev) {
5443                         ret = deliver_skb(skb, pt_prev, orig_dev);
5444                         pt_prev = NULL;
5445                 }
5446                 switch (rx_handler(&skb)) {
5447                 case RX_HANDLER_CONSUMED:
5448                         ret = NET_RX_SUCCESS;
5449                         goto out;
5450                 case RX_HANDLER_ANOTHER:
5451                         goto another_round;
5452                 case RX_HANDLER_EXACT:
5453                         deliver_exact = true;
5454                         break;
5455                 case RX_HANDLER_PASS:
5456                         break;
5457                 default:
5458                         BUG();
5459                 }
5460         }
5461
5462         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5463 check_vlan_id:
5464                 if (skb_vlan_tag_get_id(skb)) {
5465                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5466                          * find vlan device.
5467                          */
5468                         skb->pkt_type = PACKET_OTHERHOST;
5469                 } else if (eth_type_vlan(skb->protocol)) {
5470                         /* Outer header is 802.1P with vlan 0, inner header is
5471                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5472                          * not find vlan dev for vlan id 0.
5473                          */
5474                         __vlan_hwaccel_clear_tag(skb);
5475                         skb = skb_vlan_untag(skb);
5476                         if (unlikely(!skb))
5477                                 goto out;
5478                         if (vlan_do_receive(&skb))
5479                                 /* After stripping off 802.1P header with vlan 0
5480                                  * vlan dev is found for inner header.
5481                                  */
5482                                 goto another_round;
5483                         else if (unlikely(!skb))
5484                                 goto out;
5485                         else
5486                                 /* We have stripped outer 802.1P vlan 0 header.
5487                                  * But could not find vlan dev.
5488                                  * check again for vlan id to set OTHERHOST.
5489                                  */
5490                                 goto check_vlan_id;
5491                 }
5492                 /* Note: we might in the future use prio bits
5493                  * and set skb->priority like in vlan_do_receive()
5494                  * For the time being, just ignore Priority Code Point
5495                  */
5496                 __vlan_hwaccel_clear_tag(skb);
5497         }
5498
5499         type = skb->protocol;
5500
5501         /* deliver only exact match when indicated */
5502         if (likely(!deliver_exact)) {
5503                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5504                                        &ptype_base[ntohs(type) &
5505                                                    PTYPE_HASH_MASK]);
5506         }
5507
5508         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5509                                &orig_dev->ptype_specific);
5510
5511         if (unlikely(skb->dev != orig_dev)) {
5512                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5513                                        &skb->dev->ptype_specific);
5514         }
5515
5516         if (pt_prev) {
5517                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5518                         goto drop;
5519                 *ppt_prev = pt_prev;
5520         } else {
5521 drop:
5522                 if (!deliver_exact)
5523                         dev_core_stats_rx_dropped_inc(skb->dev);
5524                 else
5525                         dev_core_stats_rx_nohandler_inc(skb->dev);
5526                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5527                 /* Jamal, now you will not able to escape explaining
5528                  * me how you were going to use this. :-)
5529                  */
5530                 ret = NET_RX_DROP;
5531         }
5532
5533 out:
5534         /* The invariant here is that if *ppt_prev is not NULL
5535          * then skb should also be non-NULL.
5536          *
5537          * Apparently *ppt_prev assignment above holds this invariant due to
5538          * skb dereferencing near it.
5539          */
5540         *pskb = skb;
5541         return ret;
5542 }
5543
5544 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5545 {
5546         struct net_device *orig_dev = skb->dev;
5547         struct packet_type *pt_prev = NULL;
5548         int ret;
5549
5550         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5551         if (pt_prev)
5552                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5553                                          skb->dev, pt_prev, orig_dev);
5554         return ret;
5555 }
5556
5557 /**
5558  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5559  *      @skb: buffer to process
5560  *
5561  *      More direct receive version of netif_receive_skb().  It should
5562  *      only be used by callers that have a need to skip RPS and Generic XDP.
5563  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5564  *
5565  *      This function may only be called from softirq context and interrupts
5566  *      should be enabled.
5567  *
5568  *      Return values (usually ignored):
5569  *      NET_RX_SUCCESS: no congestion
5570  *      NET_RX_DROP: packet was dropped
5571  */
5572 int netif_receive_skb_core(struct sk_buff *skb)
5573 {
5574         int ret;
5575
5576         rcu_read_lock();
5577         ret = __netif_receive_skb_one_core(skb, false);
5578         rcu_read_unlock();
5579
5580         return ret;
5581 }
5582 EXPORT_SYMBOL(netif_receive_skb_core);
5583
5584 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5585                                                   struct packet_type *pt_prev,
5586                                                   struct net_device *orig_dev)
5587 {
5588         struct sk_buff *skb, *next;
5589
5590         if (!pt_prev)
5591                 return;
5592         if (list_empty(head))
5593                 return;
5594         if (pt_prev->list_func != NULL)
5595                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5596                                    ip_list_rcv, head, pt_prev, orig_dev);
5597         else
5598                 list_for_each_entry_safe(skb, next, head, list) {
5599                         skb_list_del_init(skb);
5600                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5601                 }
5602 }
5603
5604 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5605 {
5606         /* Fast-path assumptions:
5607          * - There is no RX handler.
5608          * - Only one packet_type matches.
5609          * If either of these fails, we will end up doing some per-packet
5610          * processing in-line, then handling the 'last ptype' for the whole
5611          * sublist.  This can't cause out-of-order delivery to any single ptype,
5612          * because the 'last ptype' must be constant across the sublist, and all
5613          * other ptypes are handled per-packet.
5614          */
5615         /* Current (common) ptype of sublist */
5616         struct packet_type *pt_curr = NULL;
5617         /* Current (common) orig_dev of sublist */
5618         struct net_device *od_curr = NULL;
5619         struct list_head sublist;
5620         struct sk_buff *skb, *next;
5621
5622         INIT_LIST_HEAD(&sublist);
5623         list_for_each_entry_safe(skb, next, head, list) {
5624                 struct net_device *orig_dev = skb->dev;
5625                 struct packet_type *pt_prev = NULL;
5626
5627                 skb_list_del_init(skb);
5628                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5629                 if (!pt_prev)
5630                         continue;
5631                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5632                         /* dispatch old sublist */
5633                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5634                         /* start new sublist */
5635                         INIT_LIST_HEAD(&sublist);
5636                         pt_curr = pt_prev;
5637                         od_curr = orig_dev;
5638                 }
5639                 list_add_tail(&skb->list, &sublist);
5640         }
5641
5642         /* dispatch final sublist */
5643         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5644 }
5645
5646 static int __netif_receive_skb(struct sk_buff *skb)
5647 {
5648         int ret;
5649
5650         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5651                 unsigned int noreclaim_flag;
5652
5653                 /*
5654                  * PFMEMALLOC skbs are special, they should
5655                  * - be delivered to SOCK_MEMALLOC sockets only
5656                  * - stay away from userspace
5657                  * - have bounded memory usage
5658                  *
5659                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5660                  * context down to all allocation sites.
5661                  */
5662                 noreclaim_flag = memalloc_noreclaim_save();
5663                 ret = __netif_receive_skb_one_core(skb, true);
5664                 memalloc_noreclaim_restore(noreclaim_flag);
5665         } else
5666                 ret = __netif_receive_skb_one_core(skb, false);
5667
5668         return ret;
5669 }
5670
5671 static void __netif_receive_skb_list(struct list_head *head)
5672 {
5673         unsigned long noreclaim_flag = 0;
5674         struct sk_buff *skb, *next;
5675         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5676
5677         list_for_each_entry_safe(skb, next, head, list) {
5678                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5679                         struct list_head sublist;
5680
5681                         /* Handle the previous sublist */
5682                         list_cut_before(&sublist, head, &skb->list);
5683                         if (!list_empty(&sublist))
5684                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5685                         pfmemalloc = !pfmemalloc;
5686                         /* See comments in __netif_receive_skb */
5687                         if (pfmemalloc)
5688                                 noreclaim_flag = memalloc_noreclaim_save();
5689                         else
5690                                 memalloc_noreclaim_restore(noreclaim_flag);
5691                 }
5692         }
5693         /* Handle the remaining sublist */
5694         if (!list_empty(head))
5695                 __netif_receive_skb_list_core(head, pfmemalloc);
5696         /* Restore pflags */
5697         if (pfmemalloc)
5698                 memalloc_noreclaim_restore(noreclaim_flag);
5699 }
5700
5701 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5702 {
5703         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5704         struct bpf_prog *new = xdp->prog;
5705         int ret = 0;
5706
5707         switch (xdp->command) {
5708         case XDP_SETUP_PROG:
5709                 rcu_assign_pointer(dev->xdp_prog, new);
5710                 if (old)
5711                         bpf_prog_put(old);
5712
5713                 if (old && !new) {
5714                         static_branch_dec(&generic_xdp_needed_key);
5715                 } else if (new && !old) {
5716                         static_branch_inc(&generic_xdp_needed_key);
5717                         dev_disable_lro(dev);
5718                         dev_disable_gro_hw(dev);
5719                 }
5720                 break;
5721
5722         default:
5723                 ret = -EINVAL;
5724                 break;
5725         }
5726
5727         return ret;
5728 }
5729
5730 static int netif_receive_skb_internal(struct sk_buff *skb)
5731 {
5732         int ret;
5733
5734         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5735
5736         if (skb_defer_rx_timestamp(skb))
5737                 return NET_RX_SUCCESS;
5738
5739         rcu_read_lock();
5740 #ifdef CONFIG_RPS
5741         if (static_branch_unlikely(&rps_needed)) {
5742                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5743                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5744
5745                 if (cpu >= 0) {
5746                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5747                         rcu_read_unlock();
5748                         return ret;
5749                 }
5750         }
5751 #endif
5752         ret = __netif_receive_skb(skb);
5753         rcu_read_unlock();
5754         return ret;
5755 }
5756
5757 void netif_receive_skb_list_internal(struct list_head *head)
5758 {
5759         struct sk_buff *skb, *next;
5760         struct list_head sublist;
5761
5762         INIT_LIST_HEAD(&sublist);
5763         list_for_each_entry_safe(skb, next, head, list) {
5764                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5765                 skb_list_del_init(skb);
5766                 if (!skb_defer_rx_timestamp(skb))
5767                         list_add_tail(&skb->list, &sublist);
5768         }
5769         list_splice_init(&sublist, head);
5770
5771         rcu_read_lock();
5772 #ifdef CONFIG_RPS
5773         if (static_branch_unlikely(&rps_needed)) {
5774                 list_for_each_entry_safe(skb, next, head, list) {
5775                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5776                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5777
5778                         if (cpu >= 0) {
5779                                 /* Will be handled, remove from list */
5780                                 skb_list_del_init(skb);
5781                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5782                         }
5783                 }
5784         }
5785 #endif
5786         __netif_receive_skb_list(head);
5787         rcu_read_unlock();
5788 }
5789
5790 /**
5791  *      netif_receive_skb - process receive buffer from network
5792  *      @skb: buffer to process
5793  *
5794  *      netif_receive_skb() is the main receive data processing function.
5795  *      It always succeeds. The buffer may be dropped during processing
5796  *      for congestion control or by the protocol layers.
5797  *
5798  *      This function may only be called from softirq context and interrupts
5799  *      should be enabled.
5800  *
5801  *      Return values (usually ignored):
5802  *      NET_RX_SUCCESS: no congestion
5803  *      NET_RX_DROP: packet was dropped
5804  */
5805 int netif_receive_skb(struct sk_buff *skb)
5806 {
5807         int ret;
5808
5809         trace_netif_receive_skb_entry(skb);
5810
5811         ret = netif_receive_skb_internal(skb);
5812         trace_netif_receive_skb_exit(ret);
5813
5814         return ret;
5815 }
5816 EXPORT_SYMBOL(netif_receive_skb);
5817
5818 /**
5819  *      netif_receive_skb_list - process many receive buffers from network
5820  *      @head: list of skbs to process.
5821  *
5822  *      Since return value of netif_receive_skb() is normally ignored, and
5823  *      wouldn't be meaningful for a list, this function returns void.
5824  *
5825  *      This function may only be called from softirq context and interrupts
5826  *      should be enabled.
5827  */
5828 void netif_receive_skb_list(struct list_head *head)
5829 {
5830         struct sk_buff *skb;
5831
5832         if (list_empty(head))
5833                 return;
5834         if (trace_netif_receive_skb_list_entry_enabled()) {
5835                 list_for_each_entry(skb, head, list)
5836                         trace_netif_receive_skb_list_entry(skb);
5837         }
5838         netif_receive_skb_list_internal(head);
5839         trace_netif_receive_skb_list_exit(0);
5840 }
5841 EXPORT_SYMBOL(netif_receive_skb_list);
5842
5843 static DEFINE_PER_CPU(struct work_struct, flush_works);
5844
5845 /* Network device is going away, flush any packets still pending */
5846 static void flush_backlog(struct work_struct *work)
5847 {
5848         struct sk_buff *skb, *tmp;
5849         struct softnet_data *sd;
5850
5851         local_bh_disable();
5852         sd = this_cpu_ptr(&softnet_data);
5853
5854         rps_lock_irq_disable(sd);
5855         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5856                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5857                         __skb_unlink(skb, &sd->input_pkt_queue);
5858                         dev_kfree_skb_irq(skb);
5859                         input_queue_head_incr(sd);
5860                 }
5861         }
5862         rps_unlock_irq_enable(sd);
5863
5864         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5865                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5866                         __skb_unlink(skb, &sd->process_queue);
5867                         kfree_skb(skb);
5868                         input_queue_head_incr(sd);
5869                 }
5870         }
5871         local_bh_enable();
5872 }
5873
5874 static bool flush_required(int cpu)
5875 {
5876 #if IS_ENABLED(CONFIG_RPS)
5877         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5878         bool do_flush;
5879
5880         rps_lock_irq_disable(sd);
5881
5882         /* as insertion into process_queue happens with the rps lock held,
5883          * process_queue access may race only with dequeue
5884          */
5885         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5886                    !skb_queue_empty_lockless(&sd->process_queue);
5887         rps_unlock_irq_enable(sd);
5888
5889         return do_flush;
5890 #endif
5891         /* without RPS we can't safely check input_pkt_queue: during a
5892          * concurrent remote skb_queue_splice() we can detect as empty both
5893          * input_pkt_queue and process_queue even if the latter could end-up
5894          * containing a lot of packets.
5895          */
5896         return true;
5897 }
5898
5899 static void flush_all_backlogs(void)
5900 {
5901         static cpumask_t flush_cpus;
5902         unsigned int cpu;
5903
5904         /* since we are under rtnl lock protection we can use static data
5905          * for the cpumask and avoid allocating on stack the possibly
5906          * large mask
5907          */
5908         ASSERT_RTNL();
5909
5910         cpus_read_lock();
5911
5912         cpumask_clear(&flush_cpus);
5913         for_each_online_cpu(cpu) {
5914                 if (flush_required(cpu)) {
5915                         queue_work_on(cpu, system_highpri_wq,
5916                                       per_cpu_ptr(&flush_works, cpu));
5917                         cpumask_set_cpu(cpu, &flush_cpus);
5918                 }
5919         }
5920
5921         /* we can have in flight packet[s] on the cpus we are not flushing,
5922          * synchronize_net() in unregister_netdevice_many() will take care of
5923          * them
5924          */
5925         for_each_cpu(cpu, &flush_cpus)
5926                 flush_work(per_cpu_ptr(&flush_works, cpu));
5927
5928         cpus_read_unlock();
5929 }
5930
5931 static void net_rps_send_ipi(struct softnet_data *remsd)
5932 {
5933 #ifdef CONFIG_RPS
5934         while (remsd) {
5935                 struct softnet_data *next = remsd->rps_ipi_next;
5936
5937                 if (cpu_online(remsd->cpu))
5938                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5939                 remsd = next;
5940         }
5941 #endif
5942 }
5943
5944 /*
5945  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5946  * Note: called with local irq disabled, but exits with local irq enabled.
5947  */
5948 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5949 {
5950 #ifdef CONFIG_RPS
5951         struct softnet_data *remsd = sd->rps_ipi_list;
5952
5953         if (remsd) {
5954                 sd->rps_ipi_list = NULL;
5955
5956                 local_irq_enable();
5957
5958                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5959                 net_rps_send_ipi(remsd);
5960         } else
5961 #endif
5962                 local_irq_enable();
5963 }
5964
5965 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5966 {
5967 #ifdef CONFIG_RPS
5968         return sd->rps_ipi_list != NULL;
5969 #else
5970         return false;
5971 #endif
5972 }
5973
5974 static int process_backlog(struct napi_struct *napi, int quota)
5975 {
5976         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5977         bool again = true;
5978         int work = 0;
5979
5980         /* Check if we have pending ipi, its better to send them now,
5981          * not waiting net_rx_action() end.
5982          */
5983         if (sd_has_rps_ipi_waiting(sd)) {
5984                 local_irq_disable();
5985                 net_rps_action_and_irq_enable(sd);
5986         }
5987
5988         napi->weight = READ_ONCE(dev_rx_weight);
5989         while (again) {
5990                 struct sk_buff *skb;
5991
5992                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5993                         rcu_read_lock();
5994                         __netif_receive_skb(skb);
5995                         rcu_read_unlock();
5996                         input_queue_head_incr(sd);
5997                         if (++work >= quota)
5998                                 return work;
5999
6000                 }
6001
6002                 rps_lock_irq_disable(sd);
6003                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6004                         /*
6005                          * Inline a custom version of __napi_complete().
6006                          * only current cpu owns and manipulates this napi,
6007                          * and NAPI_STATE_SCHED is the only possible flag set
6008                          * on backlog.
6009                          * We can use a plain write instead of clear_bit(),
6010                          * and we dont need an smp_mb() memory barrier.
6011                          */
6012                         napi->state = 0;
6013                         again = false;
6014                 } else {
6015                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6016                                                    &sd->process_queue);
6017                 }
6018                 rps_unlock_irq_enable(sd);
6019         }
6020
6021         return work;
6022 }
6023
6024 /**
6025  * __napi_schedule - schedule for receive
6026  * @n: entry to schedule
6027  *
6028  * The entry's receive function will be scheduled to run.
6029  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6030  */
6031 void __napi_schedule(struct napi_struct *n)
6032 {
6033         unsigned long flags;
6034
6035         local_irq_save(flags);
6036         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6037         local_irq_restore(flags);
6038 }
6039 EXPORT_SYMBOL(__napi_schedule);
6040
6041 /**
6042  *      napi_schedule_prep - check if napi can be scheduled
6043  *      @n: napi context
6044  *
6045  * Test if NAPI routine is already running, and if not mark
6046  * it as running.  This is used as a condition variable to
6047  * insure only one NAPI poll instance runs.  We also make
6048  * sure there is no pending NAPI disable.
6049  */
6050 bool napi_schedule_prep(struct napi_struct *n)
6051 {
6052         unsigned long new, val = READ_ONCE(n->state);
6053
6054         do {
6055                 if (unlikely(val & NAPIF_STATE_DISABLE))
6056                         return false;
6057                 new = val | NAPIF_STATE_SCHED;
6058
6059                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6060                  * This was suggested by Alexander Duyck, as compiler
6061                  * emits better code than :
6062                  * if (val & NAPIF_STATE_SCHED)
6063                  *     new |= NAPIF_STATE_MISSED;
6064                  */
6065                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6066                                                    NAPIF_STATE_MISSED;
6067         } while (!try_cmpxchg(&n->state, &val, new));
6068
6069         return !(val & NAPIF_STATE_SCHED);
6070 }
6071 EXPORT_SYMBOL(napi_schedule_prep);
6072
6073 /**
6074  * __napi_schedule_irqoff - schedule for receive
6075  * @n: entry to schedule
6076  *
6077  * Variant of __napi_schedule() assuming hard irqs are masked.
6078  *
6079  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6080  * because the interrupt disabled assumption might not be true
6081  * due to force-threaded interrupts and spinlock substitution.
6082  */
6083 void __napi_schedule_irqoff(struct napi_struct *n)
6084 {
6085         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6086                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6087         else
6088                 __napi_schedule(n);
6089 }
6090 EXPORT_SYMBOL(__napi_schedule_irqoff);
6091
6092 bool napi_complete_done(struct napi_struct *n, int work_done)
6093 {
6094         unsigned long flags, val, new, timeout = 0;
6095         bool ret = true;
6096
6097         /*
6098          * 1) Don't let napi dequeue from the cpu poll list
6099          *    just in case its running on a different cpu.
6100          * 2) If we are busy polling, do nothing here, we have
6101          *    the guarantee we will be called later.
6102          */
6103         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6104                                  NAPIF_STATE_IN_BUSY_POLL)))
6105                 return false;
6106
6107         if (work_done) {
6108                 if (n->gro_bitmask)
6109                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6110                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6111         }
6112         if (n->defer_hard_irqs_count > 0) {
6113                 n->defer_hard_irqs_count--;
6114                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6115                 if (timeout)
6116                         ret = false;
6117         }
6118         if (n->gro_bitmask) {
6119                 /* When the NAPI instance uses a timeout and keeps postponing
6120                  * it, we need to bound somehow the time packets are kept in
6121                  * the GRO layer
6122                  */
6123                 napi_gro_flush(n, !!timeout);
6124         }
6125
6126         gro_normal_list(n);
6127
6128         if (unlikely(!list_empty(&n->poll_list))) {
6129                 /* If n->poll_list is not empty, we need to mask irqs */
6130                 local_irq_save(flags);
6131                 list_del_init(&n->poll_list);
6132                 local_irq_restore(flags);
6133         }
6134         WRITE_ONCE(n->list_owner, -1);
6135
6136         val = READ_ONCE(n->state);
6137         do {
6138                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6139
6140                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6141                               NAPIF_STATE_SCHED_THREADED |
6142                               NAPIF_STATE_PREFER_BUSY_POLL);
6143
6144                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6145                  * because we will call napi->poll() one more time.
6146                  * This C code was suggested by Alexander Duyck to help gcc.
6147                  */
6148                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6149                                                     NAPIF_STATE_SCHED;
6150         } while (!try_cmpxchg(&n->state, &val, new));
6151
6152         if (unlikely(val & NAPIF_STATE_MISSED)) {
6153                 __napi_schedule(n);
6154                 return false;
6155         }
6156
6157         if (timeout)
6158                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6159                               HRTIMER_MODE_REL_PINNED);
6160         return ret;
6161 }
6162 EXPORT_SYMBOL(napi_complete_done);
6163
6164 /* must be called under rcu_read_lock(), as we dont take a reference */
6165 static struct napi_struct *napi_by_id(unsigned int napi_id)
6166 {
6167         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6168         struct napi_struct *napi;
6169
6170         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6171                 if (napi->napi_id == napi_id)
6172                         return napi;
6173
6174         return NULL;
6175 }
6176
6177 #if defined(CONFIG_NET_RX_BUSY_POLL)
6178
6179 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6180 {
6181         if (!skip_schedule) {
6182                 gro_normal_list(napi);
6183                 __napi_schedule(napi);
6184                 return;
6185         }
6186
6187         if (napi->gro_bitmask) {
6188                 /* flush too old packets
6189                  * If HZ < 1000, flush all packets.
6190                  */
6191                 napi_gro_flush(napi, HZ >= 1000);
6192         }
6193
6194         gro_normal_list(napi);
6195         clear_bit(NAPI_STATE_SCHED, &napi->state);
6196 }
6197
6198 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6199                            u16 budget)
6200 {
6201         bool skip_schedule = false;
6202         unsigned long timeout;
6203         int rc;
6204
6205         /* Busy polling means there is a high chance device driver hard irq
6206          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6207          * set in napi_schedule_prep().
6208          * Since we are about to call napi->poll() once more, we can safely
6209          * clear NAPI_STATE_MISSED.
6210          *
6211          * Note: x86 could use a single "lock and ..." instruction
6212          * to perform these two clear_bit()
6213          */
6214         clear_bit(NAPI_STATE_MISSED, &napi->state);
6215         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6216
6217         local_bh_disable();
6218
6219         if (prefer_busy_poll) {
6220                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6221                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6222                 if (napi->defer_hard_irqs_count && timeout) {
6223                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6224                         skip_schedule = true;
6225                 }
6226         }
6227
6228         /* All we really want here is to re-enable device interrupts.
6229          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6230          */
6231         rc = napi->poll(napi, budget);
6232         /* We can't gro_normal_list() here, because napi->poll() might have
6233          * rearmed the napi (napi_complete_done()) in which case it could
6234          * already be running on another CPU.
6235          */
6236         trace_napi_poll(napi, rc, budget);
6237         netpoll_poll_unlock(have_poll_lock);
6238         if (rc == budget)
6239                 __busy_poll_stop(napi, skip_schedule);
6240         local_bh_enable();
6241 }
6242
6243 void napi_busy_loop(unsigned int napi_id,
6244                     bool (*loop_end)(void *, unsigned long),
6245                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6246 {
6247         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6248         int (*napi_poll)(struct napi_struct *napi, int budget);
6249         void *have_poll_lock = NULL;
6250         struct napi_struct *napi;
6251
6252 restart:
6253         napi_poll = NULL;
6254
6255         rcu_read_lock();
6256
6257         napi = napi_by_id(napi_id);
6258         if (!napi)
6259                 goto out;
6260
6261         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6262                 preempt_disable();
6263         for (;;) {
6264                 int work = 0;
6265
6266                 local_bh_disable();
6267                 if (!napi_poll) {
6268                         unsigned long val = READ_ONCE(napi->state);
6269
6270                         /* If multiple threads are competing for this napi,
6271                          * we avoid dirtying napi->state as much as we can.
6272                          */
6273                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6274                                    NAPIF_STATE_IN_BUSY_POLL)) {
6275                                 if (prefer_busy_poll)
6276                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6277                                 goto count;
6278                         }
6279                         if (cmpxchg(&napi->state, val,
6280                                     val | NAPIF_STATE_IN_BUSY_POLL |
6281                                           NAPIF_STATE_SCHED) != val) {
6282                                 if (prefer_busy_poll)
6283                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6284                                 goto count;
6285                         }
6286                         have_poll_lock = netpoll_poll_lock(napi);
6287                         napi_poll = napi->poll;
6288                 }
6289                 work = napi_poll(napi, budget);
6290                 trace_napi_poll(napi, work, budget);
6291                 gro_normal_list(napi);
6292 count:
6293                 if (work > 0)
6294                         __NET_ADD_STATS(dev_net(napi->dev),
6295                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6296                 local_bh_enable();
6297
6298                 if (!loop_end || loop_end(loop_end_arg, start_time))
6299                         break;
6300
6301                 if (unlikely(need_resched())) {
6302                         if (napi_poll)
6303                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6304                         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6305                                 preempt_enable();
6306                         rcu_read_unlock();
6307                         cond_resched();
6308                         if (loop_end(loop_end_arg, start_time))
6309                                 return;
6310                         goto restart;
6311                 }
6312                 cpu_relax();
6313         }
6314         if (napi_poll)
6315                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6316         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6317                 preempt_enable();
6318 out:
6319         rcu_read_unlock();
6320 }
6321 EXPORT_SYMBOL(napi_busy_loop);
6322
6323 #endif /* CONFIG_NET_RX_BUSY_POLL */
6324
6325 static void napi_hash_add(struct napi_struct *napi)
6326 {
6327         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6328                 return;
6329
6330         spin_lock(&napi_hash_lock);
6331
6332         /* 0..NR_CPUS range is reserved for sender_cpu use */
6333         do {
6334                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6335                         napi_gen_id = MIN_NAPI_ID;
6336         } while (napi_by_id(napi_gen_id));
6337         napi->napi_id = napi_gen_id;
6338
6339         hlist_add_head_rcu(&napi->napi_hash_node,
6340                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6341
6342         spin_unlock(&napi_hash_lock);
6343 }
6344
6345 /* Warning : caller is responsible to make sure rcu grace period
6346  * is respected before freeing memory containing @napi
6347  */
6348 static void napi_hash_del(struct napi_struct *napi)
6349 {
6350         spin_lock(&napi_hash_lock);
6351
6352         hlist_del_init_rcu(&napi->napi_hash_node);
6353
6354         spin_unlock(&napi_hash_lock);
6355 }
6356
6357 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6358 {
6359         struct napi_struct *napi;
6360
6361         napi = container_of(timer, struct napi_struct, timer);
6362
6363         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6364          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6365          */
6366         if (!napi_disable_pending(napi) &&
6367             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6368                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6369                 __napi_schedule_irqoff(napi);
6370         }
6371
6372         return HRTIMER_NORESTART;
6373 }
6374
6375 static void init_gro_hash(struct napi_struct *napi)
6376 {
6377         int i;
6378
6379         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6380                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6381                 napi->gro_hash[i].count = 0;
6382         }
6383         napi->gro_bitmask = 0;
6384 }
6385
6386 int dev_set_threaded(struct net_device *dev, bool threaded)
6387 {
6388         struct napi_struct *napi;
6389         int err = 0;
6390
6391         if (dev->threaded == threaded)
6392                 return 0;
6393
6394         if (threaded) {
6395                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6396                         if (!napi->thread) {
6397                                 err = napi_kthread_create(napi);
6398                                 if (err) {
6399                                         threaded = false;
6400                                         break;
6401                                 }
6402                         }
6403                 }
6404         }
6405
6406         dev->threaded = threaded;
6407
6408         /* Make sure kthread is created before THREADED bit
6409          * is set.
6410          */
6411         smp_mb__before_atomic();
6412
6413         /* Setting/unsetting threaded mode on a napi might not immediately
6414          * take effect, if the current napi instance is actively being
6415          * polled. In this case, the switch between threaded mode and
6416          * softirq mode will happen in the next round of napi_schedule().
6417          * This should not cause hiccups/stalls to the live traffic.
6418          */
6419         list_for_each_entry(napi, &dev->napi_list, dev_list)
6420                 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6421
6422         return err;
6423 }
6424 EXPORT_SYMBOL(dev_set_threaded);
6425
6426 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6427                            int (*poll)(struct napi_struct *, int), int weight)
6428 {
6429         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6430                 return;
6431
6432         INIT_LIST_HEAD(&napi->poll_list);
6433         INIT_HLIST_NODE(&napi->napi_hash_node);
6434         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6435         napi->timer.function = napi_watchdog;
6436         init_gro_hash(napi);
6437         napi->skb = NULL;
6438         INIT_LIST_HEAD(&napi->rx_list);
6439         napi->rx_count = 0;
6440         napi->poll = poll;
6441         if (weight > NAPI_POLL_WEIGHT)
6442                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6443                                 weight);
6444         napi->weight = weight;
6445         napi->dev = dev;
6446 #ifdef CONFIG_NETPOLL
6447         napi->poll_owner = -1;
6448 #endif
6449         napi->list_owner = -1;
6450         set_bit(NAPI_STATE_SCHED, &napi->state);
6451         set_bit(NAPI_STATE_NPSVC, &napi->state);
6452         list_add_rcu(&napi->dev_list, &dev->napi_list);
6453         napi_hash_add(napi);
6454         napi_get_frags_check(napi);
6455         /* Create kthread for this napi if dev->threaded is set.
6456          * Clear dev->threaded if kthread creation failed so that
6457          * threaded mode will not be enabled in napi_enable().
6458          */
6459         if (dev->threaded && napi_kthread_create(napi))
6460                 dev->threaded = 0;
6461 }
6462 EXPORT_SYMBOL(netif_napi_add_weight);
6463
6464 void napi_disable(struct napi_struct *n)
6465 {
6466         unsigned long val, new;
6467
6468         might_sleep();
6469         set_bit(NAPI_STATE_DISABLE, &n->state);
6470
6471         val = READ_ONCE(n->state);
6472         do {
6473                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6474                         usleep_range(20, 200);
6475                         val = READ_ONCE(n->state);
6476                 }
6477
6478                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6479                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6480         } while (!try_cmpxchg(&n->state, &val, new));
6481
6482         hrtimer_cancel(&n->timer);
6483
6484         clear_bit(NAPI_STATE_DISABLE, &n->state);
6485 }
6486 EXPORT_SYMBOL(napi_disable);
6487
6488 /**
6489  *      napi_enable - enable NAPI scheduling
6490  *      @n: NAPI context
6491  *
6492  * Resume NAPI from being scheduled on this context.
6493  * Must be paired with napi_disable.
6494  */
6495 void napi_enable(struct napi_struct *n)
6496 {
6497         unsigned long new, val = READ_ONCE(n->state);
6498
6499         do {
6500                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6501
6502                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6503                 if (n->dev->threaded && n->thread)
6504                         new |= NAPIF_STATE_THREADED;
6505         } while (!try_cmpxchg(&n->state, &val, new));
6506 }
6507 EXPORT_SYMBOL(napi_enable);
6508
6509 static void flush_gro_hash(struct napi_struct *napi)
6510 {
6511         int i;
6512
6513         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6514                 struct sk_buff *skb, *n;
6515
6516                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6517                         kfree_skb(skb);
6518                 napi->gro_hash[i].count = 0;
6519         }
6520 }
6521
6522 /* Must be called in process context */
6523 void __netif_napi_del(struct napi_struct *napi)
6524 {
6525         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6526                 return;
6527
6528         napi_hash_del(napi);
6529         list_del_rcu(&napi->dev_list);
6530         napi_free_frags(napi);
6531
6532         flush_gro_hash(napi);
6533         napi->gro_bitmask = 0;
6534
6535         if (napi->thread) {
6536                 kthread_stop(napi->thread);
6537                 napi->thread = NULL;
6538         }
6539 }
6540 EXPORT_SYMBOL(__netif_napi_del);
6541
6542 static int __napi_poll(struct napi_struct *n, bool *repoll)
6543 {
6544         int work, weight;
6545
6546         weight = n->weight;
6547
6548         /* This NAPI_STATE_SCHED test is for avoiding a race
6549          * with netpoll's poll_napi().  Only the entity which
6550          * obtains the lock and sees NAPI_STATE_SCHED set will
6551          * actually make the ->poll() call.  Therefore we avoid
6552          * accidentally calling ->poll() when NAPI is not scheduled.
6553          */
6554         work = 0;
6555         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6556                 work = n->poll(n, weight);
6557                 trace_napi_poll(n, work, weight);
6558         }
6559
6560         if (unlikely(work > weight))
6561                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6562                                 n->poll, work, weight);
6563
6564         if (likely(work < weight))
6565                 return work;
6566
6567         /* Drivers must not modify the NAPI state if they
6568          * consume the entire weight.  In such cases this code
6569          * still "owns" the NAPI instance and therefore can
6570          * move the instance around on the list at-will.
6571          */
6572         if (unlikely(napi_disable_pending(n))) {
6573                 napi_complete(n);
6574                 return work;
6575         }
6576
6577         /* The NAPI context has more processing work, but busy-polling
6578          * is preferred. Exit early.
6579          */
6580         if (napi_prefer_busy_poll(n)) {
6581                 if (napi_complete_done(n, work)) {
6582                         /* If timeout is not set, we need to make sure
6583                          * that the NAPI is re-scheduled.
6584                          */
6585                         napi_schedule(n);
6586                 }
6587                 return work;
6588         }
6589
6590         if (n->gro_bitmask) {
6591                 /* flush too old packets
6592                  * If HZ < 1000, flush all packets.
6593                  */
6594                 napi_gro_flush(n, HZ >= 1000);
6595         }
6596
6597         gro_normal_list(n);
6598
6599         /* Some drivers may have called napi_schedule
6600          * prior to exhausting their budget.
6601          */
6602         if (unlikely(!list_empty(&n->poll_list))) {
6603                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6604                              n->dev ? n->dev->name : "backlog");
6605                 return work;
6606         }
6607
6608         *repoll = true;
6609
6610         return work;
6611 }
6612
6613 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6614 {
6615         bool do_repoll = false;
6616         void *have;
6617         int work;
6618
6619         list_del_init(&n->poll_list);
6620
6621         have = netpoll_poll_lock(n);
6622
6623         work = __napi_poll(n, &do_repoll);
6624
6625         if (do_repoll)
6626                 list_add_tail(&n->poll_list, repoll);
6627
6628         netpoll_poll_unlock(have);
6629
6630         return work;
6631 }
6632
6633 static int napi_thread_wait(struct napi_struct *napi)
6634 {
6635         bool woken = false;
6636
6637         set_current_state(TASK_INTERRUPTIBLE);
6638
6639         while (!kthread_should_stop()) {
6640                 /* Testing SCHED_THREADED bit here to make sure the current
6641                  * kthread owns this napi and could poll on this napi.
6642                  * Testing SCHED bit is not enough because SCHED bit might be
6643                  * set by some other busy poll thread or by napi_disable().
6644                  */
6645                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6646                         WARN_ON(!list_empty(&napi->poll_list));
6647                         __set_current_state(TASK_RUNNING);
6648                         return 0;
6649                 }
6650
6651                 schedule();
6652                 /* woken being true indicates this thread owns this napi. */
6653                 woken = true;
6654                 set_current_state(TASK_INTERRUPTIBLE);
6655         }
6656         __set_current_state(TASK_RUNNING);
6657
6658         return -1;
6659 }
6660
6661 static void skb_defer_free_flush(struct softnet_data *sd)
6662 {
6663         struct sk_buff *skb, *next;
6664
6665         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6666         if (!READ_ONCE(sd->defer_list))
6667                 return;
6668
6669         spin_lock(&sd->defer_lock);
6670         skb = sd->defer_list;
6671         sd->defer_list = NULL;
6672         sd->defer_count = 0;
6673         spin_unlock(&sd->defer_lock);
6674
6675         while (skb != NULL) {
6676                 next = skb->next;
6677                 napi_consume_skb(skb, 1);
6678                 skb = next;
6679         }
6680 }
6681
6682 static int napi_threaded_poll(void *data)
6683 {
6684         struct napi_struct *napi = data;
6685         struct softnet_data *sd;
6686         void *have;
6687
6688         while (!napi_thread_wait(napi)) {
6689                 for (;;) {
6690                         bool repoll = false;
6691
6692                         local_bh_disable();
6693                         sd = this_cpu_ptr(&softnet_data);
6694                         sd->in_napi_threaded_poll = true;
6695
6696                         have = netpoll_poll_lock(napi);
6697                         __napi_poll(napi, &repoll);
6698                         netpoll_poll_unlock(have);
6699
6700                         sd->in_napi_threaded_poll = false;
6701                         barrier();
6702
6703                         if (sd_has_rps_ipi_waiting(sd)) {
6704                                 local_irq_disable();
6705                                 net_rps_action_and_irq_enable(sd);
6706                         }
6707                         skb_defer_free_flush(sd);
6708                         local_bh_enable();
6709
6710                         if (!repoll)
6711                                 break;
6712
6713                         cond_resched();
6714                 }
6715         }
6716         return 0;
6717 }
6718
6719 static __latent_entropy void net_rx_action(struct softirq_action *h)
6720 {
6721         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6722         unsigned long time_limit = jiffies +
6723                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6724         int budget = READ_ONCE(netdev_budget);
6725         LIST_HEAD(list);
6726         LIST_HEAD(repoll);
6727
6728 start:
6729         sd->in_net_rx_action = true;
6730         local_irq_disable();
6731         list_splice_init(&sd->poll_list, &list);
6732         local_irq_enable();
6733
6734         for (;;) {
6735                 struct napi_struct *n;
6736
6737                 skb_defer_free_flush(sd);
6738
6739                 if (list_empty(&list)) {
6740                         if (list_empty(&repoll)) {
6741                                 sd->in_net_rx_action = false;
6742                                 barrier();
6743                                 /* We need to check if ____napi_schedule()
6744                                  * had refilled poll_list while
6745                                  * sd->in_net_rx_action was true.
6746                                  */
6747                                 if (!list_empty(&sd->poll_list))
6748                                         goto start;
6749                                 if (!sd_has_rps_ipi_waiting(sd))
6750                                         goto end;
6751                         }
6752                         break;
6753                 }
6754
6755                 n = list_first_entry(&list, struct napi_struct, poll_list);
6756                 budget -= napi_poll(n, &repoll);
6757
6758                 /* If softirq window is exhausted then punt.
6759                  * Allow this to run for 2 jiffies since which will allow
6760                  * an average latency of 1.5/HZ.
6761                  */
6762                 if (unlikely(budget <= 0 ||
6763                              time_after_eq(jiffies, time_limit))) {
6764                         sd->time_squeeze++;
6765                         break;
6766                 }
6767         }
6768
6769         local_irq_disable();
6770
6771         list_splice_tail_init(&sd->poll_list, &list);
6772         list_splice_tail(&repoll, &list);
6773         list_splice(&list, &sd->poll_list);
6774         if (!list_empty(&sd->poll_list))
6775                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6776         else
6777                 sd->in_net_rx_action = false;
6778
6779         net_rps_action_and_irq_enable(sd);
6780 end:;
6781 }
6782
6783 struct netdev_adjacent {
6784         struct net_device *dev;
6785         netdevice_tracker dev_tracker;
6786
6787         /* upper master flag, there can only be one master device per list */
6788         bool master;
6789
6790         /* lookup ignore flag */
6791         bool ignore;
6792
6793         /* counter for the number of times this device was added to us */
6794         u16 ref_nr;
6795
6796         /* private field for the users */
6797         void *private;
6798
6799         struct list_head list;
6800         struct rcu_head rcu;
6801 };
6802
6803 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6804                                                  struct list_head *adj_list)
6805 {
6806         struct netdev_adjacent *adj;
6807
6808         list_for_each_entry(adj, adj_list, list) {
6809                 if (adj->dev == adj_dev)
6810                         return adj;
6811         }
6812         return NULL;
6813 }
6814
6815 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6816                                     struct netdev_nested_priv *priv)
6817 {
6818         struct net_device *dev = (struct net_device *)priv->data;
6819
6820         return upper_dev == dev;
6821 }
6822
6823 /**
6824  * netdev_has_upper_dev - Check if device is linked to an upper device
6825  * @dev: device
6826  * @upper_dev: upper device to check
6827  *
6828  * Find out if a device is linked to specified upper device and return true
6829  * in case it is. Note that this checks only immediate upper device,
6830  * not through a complete stack of devices. The caller must hold the RTNL lock.
6831  */
6832 bool netdev_has_upper_dev(struct net_device *dev,
6833                           struct net_device *upper_dev)
6834 {
6835         struct netdev_nested_priv priv = {
6836                 .data = (void *)upper_dev,
6837         };
6838
6839         ASSERT_RTNL();
6840
6841         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6842                                              &priv);
6843 }
6844 EXPORT_SYMBOL(netdev_has_upper_dev);
6845
6846 /**
6847  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6848  * @dev: device
6849  * @upper_dev: upper device to check
6850  *
6851  * Find out if a device is linked to specified upper device and return true
6852  * in case it is. Note that this checks the entire upper device chain.
6853  * The caller must hold rcu lock.
6854  */
6855
6856 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6857                                   struct net_device *upper_dev)
6858 {
6859         struct netdev_nested_priv priv = {
6860                 .data = (void *)upper_dev,
6861         };
6862
6863         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6864                                                &priv);
6865 }
6866 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6867
6868 /**
6869  * netdev_has_any_upper_dev - Check if device is linked to some device
6870  * @dev: device
6871  *
6872  * Find out if a device is linked to an upper device and return true in case
6873  * it is. The caller must hold the RTNL lock.
6874  */
6875 bool netdev_has_any_upper_dev(struct net_device *dev)
6876 {
6877         ASSERT_RTNL();
6878
6879         return !list_empty(&dev->adj_list.upper);
6880 }
6881 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6882
6883 /**
6884  * netdev_master_upper_dev_get - Get master upper device
6885  * @dev: device
6886  *
6887  * Find a master upper device and return pointer to it or NULL in case
6888  * it's not there. The caller must hold the RTNL lock.
6889  */
6890 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6891 {
6892         struct netdev_adjacent *upper;
6893
6894         ASSERT_RTNL();
6895
6896         if (list_empty(&dev->adj_list.upper))
6897                 return NULL;
6898
6899         upper = list_first_entry(&dev->adj_list.upper,
6900                                  struct netdev_adjacent, list);
6901         if (likely(upper->master))
6902                 return upper->dev;
6903         return NULL;
6904 }
6905 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6906
6907 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6908 {
6909         struct netdev_adjacent *upper;
6910
6911         ASSERT_RTNL();
6912
6913         if (list_empty(&dev->adj_list.upper))
6914                 return NULL;
6915
6916         upper = list_first_entry(&dev->adj_list.upper,
6917                                  struct netdev_adjacent, list);
6918         if (likely(upper->master) && !upper->ignore)
6919                 return upper->dev;
6920         return NULL;
6921 }
6922
6923 /**
6924  * netdev_has_any_lower_dev - Check if device is linked to some device
6925  * @dev: device
6926  *
6927  * Find out if a device is linked to a lower device and return true in case
6928  * it is. The caller must hold the RTNL lock.
6929  */
6930 static bool netdev_has_any_lower_dev(struct net_device *dev)
6931 {
6932         ASSERT_RTNL();
6933
6934         return !list_empty(&dev->adj_list.lower);
6935 }
6936
6937 void *netdev_adjacent_get_private(struct list_head *adj_list)
6938 {
6939         struct netdev_adjacent *adj;
6940
6941         adj = list_entry(adj_list, struct netdev_adjacent, list);
6942
6943         return adj->private;
6944 }
6945 EXPORT_SYMBOL(netdev_adjacent_get_private);
6946
6947 /**
6948  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6949  * @dev: device
6950  * @iter: list_head ** of the current position
6951  *
6952  * Gets the next device from the dev's upper list, starting from iter
6953  * position. The caller must hold RCU read lock.
6954  */
6955 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6956                                                  struct list_head **iter)
6957 {
6958         struct netdev_adjacent *upper;
6959
6960         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6961
6962         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6963
6964         if (&upper->list == &dev->adj_list.upper)
6965                 return NULL;
6966
6967         *iter = &upper->list;
6968
6969         return upper->dev;
6970 }
6971 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6972
6973 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6974                                                   struct list_head **iter,
6975                                                   bool *ignore)
6976 {
6977         struct netdev_adjacent *upper;
6978
6979         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6980
6981         if (&upper->list == &dev->adj_list.upper)
6982                 return NULL;
6983
6984         *iter = &upper->list;
6985         *ignore = upper->ignore;
6986
6987         return upper->dev;
6988 }
6989
6990 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6991                                                     struct list_head **iter)
6992 {
6993         struct netdev_adjacent *upper;
6994
6995         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6996
6997         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6998
6999         if (&upper->list == &dev->adj_list.upper)
7000                 return NULL;
7001
7002         *iter = &upper->list;
7003
7004         return upper->dev;
7005 }
7006
7007 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7008                                        int (*fn)(struct net_device *dev,
7009                                          struct netdev_nested_priv *priv),
7010                                        struct netdev_nested_priv *priv)
7011 {
7012         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7013         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7014         int ret, cur = 0;
7015         bool ignore;
7016
7017         now = dev;
7018         iter = &dev->adj_list.upper;
7019
7020         while (1) {
7021                 if (now != dev) {
7022                         ret = fn(now, priv);
7023                         if (ret)
7024                                 return ret;
7025                 }
7026
7027                 next = NULL;
7028                 while (1) {
7029                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7030                         if (!udev)
7031                                 break;
7032                         if (ignore)
7033                                 continue;
7034
7035                         next = udev;
7036                         niter = &udev->adj_list.upper;
7037                         dev_stack[cur] = now;
7038                         iter_stack[cur++] = iter;
7039                         break;
7040                 }
7041
7042                 if (!next) {
7043                         if (!cur)
7044                                 return 0;
7045                         next = dev_stack[--cur];
7046                         niter = iter_stack[cur];
7047                 }
7048
7049                 now = next;
7050                 iter = niter;
7051         }
7052
7053         return 0;
7054 }
7055
7056 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7057                                   int (*fn)(struct net_device *dev,
7058                                             struct netdev_nested_priv *priv),
7059                                   struct netdev_nested_priv *priv)
7060 {
7061         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7062         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7063         int ret, cur = 0;
7064
7065         now = dev;
7066         iter = &dev->adj_list.upper;
7067
7068         while (1) {
7069                 if (now != dev) {
7070                         ret = fn(now, priv);
7071                         if (ret)
7072                                 return ret;
7073                 }
7074
7075                 next = NULL;
7076                 while (1) {
7077                         udev = netdev_next_upper_dev_rcu(now, &iter);
7078                         if (!udev)
7079                                 break;
7080
7081                         next = udev;
7082                         niter = &udev->adj_list.upper;
7083                         dev_stack[cur] = now;
7084                         iter_stack[cur++] = iter;
7085                         break;
7086                 }
7087
7088                 if (!next) {
7089                         if (!cur)
7090                                 return 0;
7091                         next = dev_stack[--cur];
7092                         niter = iter_stack[cur];
7093                 }
7094
7095                 now = next;
7096                 iter = niter;
7097         }
7098
7099         return 0;
7100 }
7101 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7102
7103 static bool __netdev_has_upper_dev(struct net_device *dev,
7104                                    struct net_device *upper_dev)
7105 {
7106         struct netdev_nested_priv priv = {
7107                 .flags = 0,
7108                 .data = (void *)upper_dev,
7109         };
7110
7111         ASSERT_RTNL();
7112
7113         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7114                                            &priv);
7115 }
7116
7117 /**
7118  * netdev_lower_get_next_private - Get the next ->private from the
7119  *                                 lower neighbour list
7120  * @dev: device
7121  * @iter: list_head ** of the current position
7122  *
7123  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7124  * list, starting from iter position. The caller must hold either hold the
7125  * RTNL lock or its own locking that guarantees that the neighbour lower
7126  * list will remain unchanged.
7127  */
7128 void *netdev_lower_get_next_private(struct net_device *dev,
7129                                     struct list_head **iter)
7130 {
7131         struct netdev_adjacent *lower;
7132
7133         lower = list_entry(*iter, struct netdev_adjacent, list);
7134
7135         if (&lower->list == &dev->adj_list.lower)
7136                 return NULL;
7137
7138         *iter = lower->list.next;
7139
7140         return lower->private;
7141 }
7142 EXPORT_SYMBOL(netdev_lower_get_next_private);
7143
7144 /**
7145  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7146  *                                     lower neighbour list, RCU
7147  *                                     variant
7148  * @dev: device
7149  * @iter: list_head ** of the current position
7150  *
7151  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7152  * list, starting from iter position. The caller must hold RCU read lock.
7153  */
7154 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7155                                         struct list_head **iter)
7156 {
7157         struct netdev_adjacent *lower;
7158
7159         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7160
7161         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7162
7163         if (&lower->list == &dev->adj_list.lower)
7164                 return NULL;
7165
7166         *iter = &lower->list;
7167
7168         return lower->private;
7169 }
7170 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7171
7172 /**
7173  * netdev_lower_get_next - Get the next device from the lower neighbour
7174  *                         list
7175  * @dev: device
7176  * @iter: list_head ** of the current position
7177  *
7178  * Gets the next netdev_adjacent from the dev's lower neighbour
7179  * list, starting from iter position. The caller must hold RTNL lock or
7180  * its own locking that guarantees that the neighbour lower
7181  * list will remain unchanged.
7182  */
7183 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7184 {
7185         struct netdev_adjacent *lower;
7186
7187         lower = list_entry(*iter, struct netdev_adjacent, list);
7188
7189         if (&lower->list == &dev->adj_list.lower)
7190                 return NULL;
7191
7192         *iter = lower->list.next;
7193
7194         return lower->dev;
7195 }
7196 EXPORT_SYMBOL(netdev_lower_get_next);
7197
7198 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7199                                                 struct list_head **iter)
7200 {
7201         struct netdev_adjacent *lower;
7202
7203         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7204
7205         if (&lower->list == &dev->adj_list.lower)
7206                 return NULL;
7207
7208         *iter = &lower->list;
7209
7210         return lower->dev;
7211 }
7212
7213 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7214                                                   struct list_head **iter,
7215                                                   bool *ignore)
7216 {
7217         struct netdev_adjacent *lower;
7218
7219         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7220
7221         if (&lower->list == &dev->adj_list.lower)
7222                 return NULL;
7223
7224         *iter = &lower->list;
7225         *ignore = lower->ignore;
7226
7227         return lower->dev;
7228 }
7229
7230 int netdev_walk_all_lower_dev(struct net_device *dev,
7231                               int (*fn)(struct net_device *dev,
7232                                         struct netdev_nested_priv *priv),
7233                               struct netdev_nested_priv *priv)
7234 {
7235         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7236         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7237         int ret, cur = 0;
7238
7239         now = dev;
7240         iter = &dev->adj_list.lower;
7241
7242         while (1) {
7243                 if (now != dev) {
7244                         ret = fn(now, priv);
7245                         if (ret)
7246                                 return ret;
7247                 }
7248
7249                 next = NULL;
7250                 while (1) {
7251                         ldev = netdev_next_lower_dev(now, &iter);
7252                         if (!ldev)
7253                                 break;
7254
7255                         next = ldev;
7256                         niter = &ldev->adj_list.lower;
7257                         dev_stack[cur] = now;
7258                         iter_stack[cur++] = iter;
7259                         break;
7260                 }
7261
7262                 if (!next) {
7263                         if (!cur)
7264                                 return 0;
7265                         next = dev_stack[--cur];
7266                         niter = iter_stack[cur];
7267                 }
7268
7269                 now = next;
7270                 iter = niter;
7271         }
7272
7273         return 0;
7274 }
7275 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7276
7277 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7278                                        int (*fn)(struct net_device *dev,
7279                                          struct netdev_nested_priv *priv),
7280                                        struct netdev_nested_priv *priv)
7281 {
7282         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7283         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7284         int ret, cur = 0;
7285         bool ignore;
7286
7287         now = dev;
7288         iter = &dev->adj_list.lower;
7289
7290         while (1) {
7291                 if (now != dev) {
7292                         ret = fn(now, priv);
7293                         if (ret)
7294                                 return ret;
7295                 }
7296
7297                 next = NULL;
7298                 while (1) {
7299                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7300                         if (!ldev)
7301                                 break;
7302                         if (ignore)
7303                                 continue;
7304
7305                         next = ldev;
7306                         niter = &ldev->adj_list.lower;
7307                         dev_stack[cur] = now;
7308                         iter_stack[cur++] = iter;
7309                         break;
7310                 }
7311
7312                 if (!next) {
7313                         if (!cur)
7314                                 return 0;
7315                         next = dev_stack[--cur];
7316                         niter = iter_stack[cur];
7317                 }
7318
7319                 now = next;
7320                 iter = niter;
7321         }
7322
7323         return 0;
7324 }
7325
7326 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7327                                              struct list_head **iter)
7328 {
7329         struct netdev_adjacent *lower;
7330
7331         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7332         if (&lower->list == &dev->adj_list.lower)
7333                 return NULL;
7334
7335         *iter = &lower->list;
7336
7337         return lower->dev;
7338 }
7339 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7340
7341 static u8 __netdev_upper_depth(struct net_device *dev)
7342 {
7343         struct net_device *udev;
7344         struct list_head *iter;
7345         u8 max_depth = 0;
7346         bool ignore;
7347
7348         for (iter = &dev->adj_list.upper,
7349              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7350              udev;
7351              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7352                 if (ignore)
7353                         continue;
7354                 if (max_depth < udev->upper_level)
7355                         max_depth = udev->upper_level;
7356         }
7357
7358         return max_depth;
7359 }
7360
7361 static u8 __netdev_lower_depth(struct net_device *dev)
7362 {
7363         struct net_device *ldev;
7364         struct list_head *iter;
7365         u8 max_depth = 0;
7366         bool ignore;
7367
7368         for (iter = &dev->adj_list.lower,
7369              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7370              ldev;
7371              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7372                 if (ignore)
7373                         continue;
7374                 if (max_depth < ldev->lower_level)
7375                         max_depth = ldev->lower_level;
7376         }
7377
7378         return max_depth;
7379 }
7380
7381 static int __netdev_update_upper_level(struct net_device *dev,
7382                                        struct netdev_nested_priv *__unused)
7383 {
7384         dev->upper_level = __netdev_upper_depth(dev) + 1;
7385         return 0;
7386 }
7387
7388 #ifdef CONFIG_LOCKDEP
7389 static LIST_HEAD(net_unlink_list);
7390
7391 static void net_unlink_todo(struct net_device *dev)
7392 {
7393         if (list_empty(&dev->unlink_list))
7394                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7395 }
7396 #endif
7397
7398 static int __netdev_update_lower_level(struct net_device *dev,
7399                                        struct netdev_nested_priv *priv)
7400 {
7401         dev->lower_level = __netdev_lower_depth(dev) + 1;
7402
7403 #ifdef CONFIG_LOCKDEP
7404         if (!priv)
7405                 return 0;
7406
7407         if (priv->flags & NESTED_SYNC_IMM)
7408                 dev->nested_level = dev->lower_level - 1;
7409         if (priv->flags & NESTED_SYNC_TODO)
7410                 net_unlink_todo(dev);
7411 #endif
7412         return 0;
7413 }
7414
7415 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7416                                   int (*fn)(struct net_device *dev,
7417                                             struct netdev_nested_priv *priv),
7418                                   struct netdev_nested_priv *priv)
7419 {
7420         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7421         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7422         int ret, cur = 0;
7423
7424         now = dev;
7425         iter = &dev->adj_list.lower;
7426
7427         while (1) {
7428                 if (now != dev) {
7429                         ret = fn(now, priv);
7430                         if (ret)
7431                                 return ret;
7432                 }
7433
7434                 next = NULL;
7435                 while (1) {
7436                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7437                         if (!ldev)
7438                                 break;
7439
7440                         next = ldev;
7441                         niter = &ldev->adj_list.lower;
7442                         dev_stack[cur] = now;
7443                         iter_stack[cur++] = iter;
7444                         break;
7445                 }
7446
7447                 if (!next) {
7448                         if (!cur)
7449                                 return 0;
7450                         next = dev_stack[--cur];
7451                         niter = iter_stack[cur];
7452                 }
7453
7454                 now = next;
7455                 iter = niter;
7456         }
7457
7458         return 0;
7459 }
7460 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7461
7462 /**
7463  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7464  *                                     lower neighbour list, RCU
7465  *                                     variant
7466  * @dev: device
7467  *
7468  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7469  * list. The caller must hold RCU read lock.
7470  */
7471 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7472 {
7473         struct netdev_adjacent *lower;
7474
7475         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7476                         struct netdev_adjacent, list);
7477         if (lower)
7478                 return lower->private;
7479         return NULL;
7480 }
7481 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7482
7483 /**
7484  * netdev_master_upper_dev_get_rcu - Get master upper device
7485  * @dev: device
7486  *
7487  * Find a master upper device and return pointer to it or NULL in case
7488  * it's not there. The caller must hold the RCU read lock.
7489  */
7490 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7491 {
7492         struct netdev_adjacent *upper;
7493
7494         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7495                                        struct netdev_adjacent, list);
7496         if (upper && likely(upper->master))
7497                 return upper->dev;
7498         return NULL;
7499 }
7500 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7501
7502 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7503                               struct net_device *adj_dev,
7504                               struct list_head *dev_list)
7505 {
7506         char linkname[IFNAMSIZ+7];
7507
7508         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7509                 "upper_%s" : "lower_%s", adj_dev->name);
7510         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7511                                  linkname);
7512 }
7513 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7514                                char *name,
7515                                struct list_head *dev_list)
7516 {
7517         char linkname[IFNAMSIZ+7];
7518
7519         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7520                 "upper_%s" : "lower_%s", name);
7521         sysfs_remove_link(&(dev->dev.kobj), linkname);
7522 }
7523
7524 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7525                                                  struct net_device *adj_dev,
7526                                                  struct list_head *dev_list)
7527 {
7528         return (dev_list == &dev->adj_list.upper ||
7529                 dev_list == &dev->adj_list.lower) &&
7530                 net_eq(dev_net(dev), dev_net(adj_dev));
7531 }
7532
7533 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7534                                         struct net_device *adj_dev,
7535                                         struct list_head *dev_list,
7536                                         void *private, bool master)
7537 {
7538         struct netdev_adjacent *adj;
7539         int ret;
7540
7541         adj = __netdev_find_adj(adj_dev, dev_list);
7542
7543         if (adj) {
7544                 adj->ref_nr += 1;
7545                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7546                          dev->name, adj_dev->name, adj->ref_nr);
7547
7548                 return 0;
7549         }
7550
7551         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7552         if (!adj)
7553                 return -ENOMEM;
7554
7555         adj->dev = adj_dev;
7556         adj->master = master;
7557         adj->ref_nr = 1;
7558         adj->private = private;
7559         adj->ignore = false;
7560         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7561
7562         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7563                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7564
7565         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7566                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7567                 if (ret)
7568                         goto free_adj;
7569         }
7570
7571         /* Ensure that master link is always the first item in list. */
7572         if (master) {
7573                 ret = sysfs_create_link(&(dev->dev.kobj),
7574                                         &(adj_dev->dev.kobj), "master");
7575                 if (ret)
7576                         goto remove_symlinks;
7577
7578                 list_add_rcu(&adj->list, dev_list);
7579         } else {
7580                 list_add_tail_rcu(&adj->list, dev_list);
7581         }
7582
7583         return 0;
7584
7585 remove_symlinks:
7586         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7587                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7588 free_adj:
7589         netdev_put(adj_dev, &adj->dev_tracker);
7590         kfree(adj);
7591
7592         return ret;
7593 }
7594
7595 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7596                                          struct net_device *adj_dev,
7597                                          u16 ref_nr,
7598                                          struct list_head *dev_list)
7599 {
7600         struct netdev_adjacent *adj;
7601
7602         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7603                  dev->name, adj_dev->name, ref_nr);
7604
7605         adj = __netdev_find_adj(adj_dev, dev_list);
7606
7607         if (!adj) {
7608                 pr_err("Adjacency does not exist for device %s from %s\n",
7609                        dev->name, adj_dev->name);
7610                 WARN_ON(1);
7611                 return;
7612         }
7613
7614         if (adj->ref_nr > ref_nr) {
7615                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7616                          dev->name, adj_dev->name, ref_nr,
7617                          adj->ref_nr - ref_nr);
7618                 adj->ref_nr -= ref_nr;
7619                 return;
7620         }
7621
7622         if (adj->master)
7623                 sysfs_remove_link(&(dev->dev.kobj), "master");
7624
7625         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7626                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7627
7628         list_del_rcu(&adj->list);
7629         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7630                  adj_dev->name, dev->name, adj_dev->name);
7631         netdev_put(adj_dev, &adj->dev_tracker);
7632         kfree_rcu(adj, rcu);
7633 }
7634
7635 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7636                                             struct net_device *upper_dev,
7637                                             struct list_head *up_list,
7638                                             struct list_head *down_list,
7639                                             void *private, bool master)
7640 {
7641         int ret;
7642
7643         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7644                                            private, master);
7645         if (ret)
7646                 return ret;
7647
7648         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7649                                            private, false);
7650         if (ret) {
7651                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7652                 return ret;
7653         }
7654
7655         return 0;
7656 }
7657
7658 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7659                                                struct net_device *upper_dev,
7660                                                u16 ref_nr,
7661                                                struct list_head *up_list,
7662                                                struct list_head *down_list)
7663 {
7664         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7665         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7666 }
7667
7668 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7669                                                 struct net_device *upper_dev,
7670                                                 void *private, bool master)
7671 {
7672         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7673                                                 &dev->adj_list.upper,
7674                                                 &upper_dev->adj_list.lower,
7675                                                 private, master);
7676 }
7677
7678 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7679                                                    struct net_device *upper_dev)
7680 {
7681         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7682                                            &dev->adj_list.upper,
7683                                            &upper_dev->adj_list.lower);
7684 }
7685
7686 static int __netdev_upper_dev_link(struct net_device *dev,
7687                                    struct net_device *upper_dev, bool master,
7688                                    void *upper_priv, void *upper_info,
7689                                    struct netdev_nested_priv *priv,
7690                                    struct netlink_ext_ack *extack)
7691 {
7692         struct netdev_notifier_changeupper_info changeupper_info = {
7693                 .info = {
7694                         .dev = dev,
7695                         .extack = extack,
7696                 },
7697                 .upper_dev = upper_dev,
7698                 .master = master,
7699                 .linking = true,
7700                 .upper_info = upper_info,
7701         };
7702         struct net_device *master_dev;
7703         int ret = 0;
7704
7705         ASSERT_RTNL();
7706
7707         if (dev == upper_dev)
7708                 return -EBUSY;
7709
7710         /* To prevent loops, check if dev is not upper device to upper_dev. */
7711         if (__netdev_has_upper_dev(upper_dev, dev))
7712                 return -EBUSY;
7713
7714         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7715                 return -EMLINK;
7716
7717         if (!master) {
7718                 if (__netdev_has_upper_dev(dev, upper_dev))
7719                         return -EEXIST;
7720         } else {
7721                 master_dev = __netdev_master_upper_dev_get(dev);
7722                 if (master_dev)
7723                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7724         }
7725
7726         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7727                                             &changeupper_info.info);
7728         ret = notifier_to_errno(ret);
7729         if (ret)
7730                 return ret;
7731
7732         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7733                                                    master);
7734         if (ret)
7735                 return ret;
7736
7737         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7738                                             &changeupper_info.info);
7739         ret = notifier_to_errno(ret);
7740         if (ret)
7741                 goto rollback;
7742
7743         __netdev_update_upper_level(dev, NULL);
7744         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7745
7746         __netdev_update_lower_level(upper_dev, priv);
7747         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7748                                     priv);
7749
7750         return 0;
7751
7752 rollback:
7753         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7754
7755         return ret;
7756 }
7757
7758 /**
7759  * netdev_upper_dev_link - Add a link to the upper device
7760  * @dev: device
7761  * @upper_dev: new upper device
7762  * @extack: netlink extended ack
7763  *
7764  * Adds a link to device which is upper to this one. The caller must hold
7765  * the RTNL lock. On a failure a negative errno code is returned.
7766  * On success the reference counts are adjusted and the function
7767  * returns zero.
7768  */
7769 int netdev_upper_dev_link(struct net_device *dev,
7770                           struct net_device *upper_dev,
7771                           struct netlink_ext_ack *extack)
7772 {
7773         struct netdev_nested_priv priv = {
7774                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7775                 .data = NULL,
7776         };
7777
7778         return __netdev_upper_dev_link(dev, upper_dev, false,
7779                                        NULL, NULL, &priv, extack);
7780 }
7781 EXPORT_SYMBOL(netdev_upper_dev_link);
7782
7783 /**
7784  * netdev_master_upper_dev_link - Add a master link to the upper device
7785  * @dev: device
7786  * @upper_dev: new upper device
7787  * @upper_priv: upper device private
7788  * @upper_info: upper info to be passed down via notifier
7789  * @extack: netlink extended ack
7790  *
7791  * Adds a link to device which is upper to this one. In this case, only
7792  * one master upper device can be linked, although other non-master devices
7793  * might be linked as well. The caller must hold the RTNL lock.
7794  * On a failure a negative errno code is returned. On success the reference
7795  * counts are adjusted and the function returns zero.
7796  */
7797 int netdev_master_upper_dev_link(struct net_device *dev,
7798                                  struct net_device *upper_dev,
7799                                  void *upper_priv, void *upper_info,
7800                                  struct netlink_ext_ack *extack)
7801 {
7802         struct netdev_nested_priv priv = {
7803                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7804                 .data = NULL,
7805         };
7806
7807         return __netdev_upper_dev_link(dev, upper_dev, true,
7808                                        upper_priv, upper_info, &priv, extack);
7809 }
7810 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7811
7812 static void __netdev_upper_dev_unlink(struct net_device *dev,
7813                                       struct net_device *upper_dev,
7814                                       struct netdev_nested_priv *priv)
7815 {
7816         struct netdev_notifier_changeupper_info changeupper_info = {
7817                 .info = {
7818                         .dev = dev,
7819                 },
7820                 .upper_dev = upper_dev,
7821                 .linking = false,
7822         };
7823
7824         ASSERT_RTNL();
7825
7826         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7827
7828         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7829                                       &changeupper_info.info);
7830
7831         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7832
7833         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7834                                       &changeupper_info.info);
7835
7836         __netdev_update_upper_level(dev, NULL);
7837         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7838
7839         __netdev_update_lower_level(upper_dev, priv);
7840         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7841                                     priv);
7842 }
7843
7844 /**
7845  * netdev_upper_dev_unlink - Removes a link to upper device
7846  * @dev: device
7847  * @upper_dev: new upper device
7848  *
7849  * Removes a link to device which is upper to this one. The caller must hold
7850  * the RTNL lock.
7851  */
7852 void netdev_upper_dev_unlink(struct net_device *dev,
7853                              struct net_device *upper_dev)
7854 {
7855         struct netdev_nested_priv priv = {
7856                 .flags = NESTED_SYNC_TODO,
7857                 .data = NULL,
7858         };
7859
7860         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7861 }
7862 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7863
7864 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7865                                       struct net_device *lower_dev,
7866                                       bool val)
7867 {
7868         struct netdev_adjacent *adj;
7869
7870         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7871         if (adj)
7872                 adj->ignore = val;
7873
7874         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7875         if (adj)
7876                 adj->ignore = val;
7877 }
7878
7879 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7880                                         struct net_device *lower_dev)
7881 {
7882         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7883 }
7884
7885 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7886                                        struct net_device *lower_dev)
7887 {
7888         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7889 }
7890
7891 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7892                                    struct net_device *new_dev,
7893                                    struct net_device *dev,
7894                                    struct netlink_ext_ack *extack)
7895 {
7896         struct netdev_nested_priv priv = {
7897                 .flags = 0,
7898                 .data = NULL,
7899         };
7900         int err;
7901
7902         if (!new_dev)
7903                 return 0;
7904
7905         if (old_dev && new_dev != old_dev)
7906                 netdev_adjacent_dev_disable(dev, old_dev);
7907         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7908                                       extack);
7909         if (err) {
7910                 if (old_dev && new_dev != old_dev)
7911                         netdev_adjacent_dev_enable(dev, old_dev);
7912                 return err;
7913         }
7914
7915         return 0;
7916 }
7917 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7918
7919 void netdev_adjacent_change_commit(struct net_device *old_dev,
7920                                    struct net_device *new_dev,
7921                                    struct net_device *dev)
7922 {
7923         struct netdev_nested_priv priv = {
7924                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7925                 .data = NULL,
7926         };
7927
7928         if (!new_dev || !old_dev)
7929                 return;
7930
7931         if (new_dev == old_dev)
7932                 return;
7933
7934         netdev_adjacent_dev_enable(dev, old_dev);
7935         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7936 }
7937 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7938
7939 void netdev_adjacent_change_abort(struct net_device *old_dev,
7940                                   struct net_device *new_dev,
7941                                   struct net_device *dev)
7942 {
7943         struct netdev_nested_priv priv = {
7944                 .flags = 0,
7945                 .data = NULL,
7946         };
7947
7948         if (!new_dev)
7949                 return;
7950
7951         if (old_dev && new_dev != old_dev)
7952                 netdev_adjacent_dev_enable(dev, old_dev);
7953
7954         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7955 }
7956 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7957
7958 /**
7959  * netdev_bonding_info_change - Dispatch event about slave change
7960  * @dev: device
7961  * @bonding_info: info to dispatch
7962  *
7963  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7964  * The caller must hold the RTNL lock.
7965  */
7966 void netdev_bonding_info_change(struct net_device *dev,
7967                                 struct netdev_bonding_info *bonding_info)
7968 {
7969         struct netdev_notifier_bonding_info info = {
7970                 .info.dev = dev,
7971         };
7972
7973         memcpy(&info.bonding_info, bonding_info,
7974                sizeof(struct netdev_bonding_info));
7975         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7976                                       &info.info);
7977 }
7978 EXPORT_SYMBOL(netdev_bonding_info_change);
7979
7980 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7981                                            struct netlink_ext_ack *extack)
7982 {
7983         struct netdev_notifier_offload_xstats_info info = {
7984                 .info.dev = dev,
7985                 .info.extack = extack,
7986                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7987         };
7988         int err;
7989         int rc;
7990
7991         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7992                                          GFP_KERNEL);
7993         if (!dev->offload_xstats_l3)
7994                 return -ENOMEM;
7995
7996         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7997                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7998                                                   &info.info);
7999         err = notifier_to_errno(rc);
8000         if (err)
8001                 goto free_stats;
8002
8003         return 0;
8004
8005 free_stats:
8006         kfree(dev->offload_xstats_l3);
8007         dev->offload_xstats_l3 = NULL;
8008         return err;
8009 }
8010
8011 int netdev_offload_xstats_enable(struct net_device *dev,
8012                                  enum netdev_offload_xstats_type type,
8013                                  struct netlink_ext_ack *extack)
8014 {
8015         ASSERT_RTNL();
8016
8017         if (netdev_offload_xstats_enabled(dev, type))
8018                 return -EALREADY;
8019
8020         switch (type) {
8021         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8022                 return netdev_offload_xstats_enable_l3(dev, extack);
8023         }
8024
8025         WARN_ON(1);
8026         return -EINVAL;
8027 }
8028 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8029
8030 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8031 {
8032         struct netdev_notifier_offload_xstats_info info = {
8033                 .info.dev = dev,
8034                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8035         };
8036
8037         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8038                                       &info.info);
8039         kfree(dev->offload_xstats_l3);
8040         dev->offload_xstats_l3 = NULL;
8041 }
8042
8043 int netdev_offload_xstats_disable(struct net_device *dev,
8044                                   enum netdev_offload_xstats_type type)
8045 {
8046         ASSERT_RTNL();
8047
8048         if (!netdev_offload_xstats_enabled(dev, type))
8049                 return -EALREADY;
8050
8051         switch (type) {
8052         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8053                 netdev_offload_xstats_disable_l3(dev);
8054                 return 0;
8055         }
8056
8057         WARN_ON(1);
8058         return -EINVAL;
8059 }
8060 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8061
8062 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8063 {
8064         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8065 }
8066
8067 static struct rtnl_hw_stats64 *
8068 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8069                               enum netdev_offload_xstats_type type)
8070 {
8071         switch (type) {
8072         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8073                 return dev->offload_xstats_l3;
8074         }
8075
8076         WARN_ON(1);
8077         return NULL;
8078 }
8079
8080 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8081                                    enum netdev_offload_xstats_type type)
8082 {
8083         ASSERT_RTNL();
8084
8085         return netdev_offload_xstats_get_ptr(dev, type);
8086 }
8087 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8088
8089 struct netdev_notifier_offload_xstats_ru {
8090         bool used;
8091 };
8092
8093 struct netdev_notifier_offload_xstats_rd {
8094         struct rtnl_hw_stats64 stats;
8095         bool used;
8096 };
8097
8098 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8099                                   const struct rtnl_hw_stats64 *src)
8100 {
8101         dest->rx_packets          += src->rx_packets;
8102         dest->tx_packets          += src->tx_packets;
8103         dest->rx_bytes            += src->rx_bytes;
8104         dest->tx_bytes            += src->tx_bytes;
8105         dest->rx_errors           += src->rx_errors;
8106         dest->tx_errors           += src->tx_errors;
8107         dest->rx_dropped          += src->rx_dropped;
8108         dest->tx_dropped          += src->tx_dropped;
8109         dest->multicast           += src->multicast;
8110 }
8111
8112 static int netdev_offload_xstats_get_used(struct net_device *dev,
8113                                           enum netdev_offload_xstats_type type,
8114                                           bool *p_used,
8115                                           struct netlink_ext_ack *extack)
8116 {
8117         struct netdev_notifier_offload_xstats_ru report_used = {};
8118         struct netdev_notifier_offload_xstats_info info = {
8119                 .info.dev = dev,
8120                 .info.extack = extack,
8121                 .type = type,
8122                 .report_used = &report_used,
8123         };
8124         int rc;
8125
8126         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8127         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8128                                            &info.info);
8129         *p_used = report_used.used;
8130         return notifier_to_errno(rc);
8131 }
8132
8133 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8134                                            enum netdev_offload_xstats_type type,
8135                                            struct rtnl_hw_stats64 *p_stats,
8136                                            bool *p_used,
8137                                            struct netlink_ext_ack *extack)
8138 {
8139         struct netdev_notifier_offload_xstats_rd report_delta = {};
8140         struct netdev_notifier_offload_xstats_info info = {
8141                 .info.dev = dev,
8142                 .info.extack = extack,
8143                 .type = type,
8144                 .report_delta = &report_delta,
8145         };
8146         struct rtnl_hw_stats64 *stats;
8147         int rc;
8148
8149         stats = netdev_offload_xstats_get_ptr(dev, type);
8150         if (WARN_ON(!stats))
8151                 return -EINVAL;
8152
8153         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8154                                            &info.info);
8155
8156         /* Cache whatever we got, even if there was an error, otherwise the
8157          * successful stats retrievals would get lost.
8158          */
8159         netdev_hw_stats64_add(stats, &report_delta.stats);
8160
8161         if (p_stats)
8162                 *p_stats = *stats;
8163         *p_used = report_delta.used;
8164
8165         return notifier_to_errno(rc);
8166 }
8167
8168 int netdev_offload_xstats_get(struct net_device *dev,
8169                               enum netdev_offload_xstats_type type,
8170                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8171                               struct netlink_ext_ack *extack)
8172 {
8173         ASSERT_RTNL();
8174
8175         if (p_stats)
8176                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8177                                                        p_used, extack);
8178         else
8179                 return netdev_offload_xstats_get_used(dev, type, p_used,
8180                                                       extack);
8181 }
8182 EXPORT_SYMBOL(netdev_offload_xstats_get);
8183
8184 void
8185 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8186                                    const struct rtnl_hw_stats64 *stats)
8187 {
8188         report_delta->used = true;
8189         netdev_hw_stats64_add(&report_delta->stats, stats);
8190 }
8191 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8192
8193 void
8194 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8195 {
8196         report_used->used = true;
8197 }
8198 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8199
8200 void netdev_offload_xstats_push_delta(struct net_device *dev,
8201                                       enum netdev_offload_xstats_type type,
8202                                       const struct rtnl_hw_stats64 *p_stats)
8203 {
8204         struct rtnl_hw_stats64 *stats;
8205
8206         ASSERT_RTNL();
8207
8208         stats = netdev_offload_xstats_get_ptr(dev, type);
8209         if (WARN_ON(!stats))
8210                 return;
8211
8212         netdev_hw_stats64_add(stats, p_stats);
8213 }
8214 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8215
8216 /**
8217  * netdev_get_xmit_slave - Get the xmit slave of master device
8218  * @dev: device
8219  * @skb: The packet
8220  * @all_slaves: assume all the slaves are active
8221  *
8222  * The reference counters are not incremented so the caller must be
8223  * careful with locks. The caller must hold RCU lock.
8224  * %NULL is returned if no slave is found.
8225  */
8226
8227 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8228                                          struct sk_buff *skb,
8229                                          bool all_slaves)
8230 {
8231         const struct net_device_ops *ops = dev->netdev_ops;
8232
8233         if (!ops->ndo_get_xmit_slave)
8234                 return NULL;
8235         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8236 }
8237 EXPORT_SYMBOL(netdev_get_xmit_slave);
8238
8239 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8240                                                   struct sock *sk)
8241 {
8242         const struct net_device_ops *ops = dev->netdev_ops;
8243
8244         if (!ops->ndo_sk_get_lower_dev)
8245                 return NULL;
8246         return ops->ndo_sk_get_lower_dev(dev, sk);
8247 }
8248
8249 /**
8250  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8251  * @dev: device
8252  * @sk: the socket
8253  *
8254  * %NULL is returned if no lower device is found.
8255  */
8256
8257 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8258                                             struct sock *sk)
8259 {
8260         struct net_device *lower;
8261
8262         lower = netdev_sk_get_lower_dev(dev, sk);
8263         while (lower) {
8264                 dev = lower;
8265                 lower = netdev_sk_get_lower_dev(dev, sk);
8266         }
8267
8268         return dev;
8269 }
8270 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8271
8272 static void netdev_adjacent_add_links(struct net_device *dev)
8273 {
8274         struct netdev_adjacent *iter;
8275
8276         struct net *net = dev_net(dev);
8277
8278         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8279                 if (!net_eq(net, dev_net(iter->dev)))
8280                         continue;
8281                 netdev_adjacent_sysfs_add(iter->dev, dev,
8282                                           &iter->dev->adj_list.lower);
8283                 netdev_adjacent_sysfs_add(dev, iter->dev,
8284                                           &dev->adj_list.upper);
8285         }
8286
8287         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8288                 if (!net_eq(net, dev_net(iter->dev)))
8289                         continue;
8290                 netdev_adjacent_sysfs_add(iter->dev, dev,
8291                                           &iter->dev->adj_list.upper);
8292                 netdev_adjacent_sysfs_add(dev, iter->dev,
8293                                           &dev->adj_list.lower);
8294         }
8295 }
8296
8297 static void netdev_adjacent_del_links(struct net_device *dev)
8298 {
8299         struct netdev_adjacent *iter;
8300
8301         struct net *net = dev_net(dev);
8302
8303         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8304                 if (!net_eq(net, dev_net(iter->dev)))
8305                         continue;
8306                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8307                                           &iter->dev->adj_list.lower);
8308                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8309                                           &dev->adj_list.upper);
8310         }
8311
8312         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8313                 if (!net_eq(net, dev_net(iter->dev)))
8314                         continue;
8315                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8316                                           &iter->dev->adj_list.upper);
8317                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8318                                           &dev->adj_list.lower);
8319         }
8320 }
8321
8322 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8323 {
8324         struct netdev_adjacent *iter;
8325
8326         struct net *net = dev_net(dev);
8327
8328         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8329                 if (!net_eq(net, dev_net(iter->dev)))
8330                         continue;
8331                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8332                                           &iter->dev->adj_list.lower);
8333                 netdev_adjacent_sysfs_add(iter->dev, dev,
8334                                           &iter->dev->adj_list.lower);
8335         }
8336
8337         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8338                 if (!net_eq(net, dev_net(iter->dev)))
8339                         continue;
8340                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8341                                           &iter->dev->adj_list.upper);
8342                 netdev_adjacent_sysfs_add(iter->dev, dev,
8343                                           &iter->dev->adj_list.upper);
8344         }
8345 }
8346
8347 void *netdev_lower_dev_get_private(struct net_device *dev,
8348                                    struct net_device *lower_dev)
8349 {
8350         struct netdev_adjacent *lower;
8351
8352         if (!lower_dev)
8353                 return NULL;
8354         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8355         if (!lower)
8356                 return NULL;
8357
8358         return lower->private;
8359 }
8360 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8361
8362
8363 /**
8364  * netdev_lower_state_changed - Dispatch event about lower device state change
8365  * @lower_dev: device
8366  * @lower_state_info: state to dispatch
8367  *
8368  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8369  * The caller must hold the RTNL lock.
8370  */
8371 void netdev_lower_state_changed(struct net_device *lower_dev,
8372                                 void *lower_state_info)
8373 {
8374         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8375                 .info.dev = lower_dev,
8376         };
8377
8378         ASSERT_RTNL();
8379         changelowerstate_info.lower_state_info = lower_state_info;
8380         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8381                                       &changelowerstate_info.info);
8382 }
8383 EXPORT_SYMBOL(netdev_lower_state_changed);
8384
8385 static void dev_change_rx_flags(struct net_device *dev, int flags)
8386 {
8387         const struct net_device_ops *ops = dev->netdev_ops;
8388
8389         if (ops->ndo_change_rx_flags)
8390                 ops->ndo_change_rx_flags(dev, flags);
8391 }
8392
8393 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8394 {
8395         unsigned int old_flags = dev->flags;
8396         kuid_t uid;
8397         kgid_t gid;
8398
8399         ASSERT_RTNL();
8400
8401         dev->flags |= IFF_PROMISC;
8402         dev->promiscuity += inc;
8403         if (dev->promiscuity == 0) {
8404                 /*
8405                  * Avoid overflow.
8406                  * If inc causes overflow, untouch promisc and return error.
8407                  */
8408                 if (inc < 0)
8409                         dev->flags &= ~IFF_PROMISC;
8410                 else {
8411                         dev->promiscuity -= inc;
8412                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8413                         return -EOVERFLOW;
8414                 }
8415         }
8416         if (dev->flags != old_flags) {
8417                 netdev_info(dev, "%s promiscuous mode\n",
8418                             dev->flags & IFF_PROMISC ? "entered" : "left");
8419                 if (audit_enabled) {
8420                         current_uid_gid(&uid, &gid);
8421                         audit_log(audit_context(), GFP_ATOMIC,
8422                                   AUDIT_ANOM_PROMISCUOUS,
8423                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8424                                   dev->name, (dev->flags & IFF_PROMISC),
8425                                   (old_flags & IFF_PROMISC),
8426                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8427                                   from_kuid(&init_user_ns, uid),
8428                                   from_kgid(&init_user_ns, gid),
8429                                   audit_get_sessionid(current));
8430                 }
8431
8432                 dev_change_rx_flags(dev, IFF_PROMISC);
8433         }
8434         if (notify)
8435                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8436         return 0;
8437 }
8438
8439 /**
8440  *      dev_set_promiscuity     - update promiscuity count on a device
8441  *      @dev: device
8442  *      @inc: modifier
8443  *
8444  *      Add or remove promiscuity from a device. While the count in the device
8445  *      remains above zero the interface remains promiscuous. Once it hits zero
8446  *      the device reverts back to normal filtering operation. A negative inc
8447  *      value is used to drop promiscuity on the device.
8448  *      Return 0 if successful or a negative errno code on error.
8449  */
8450 int dev_set_promiscuity(struct net_device *dev, int inc)
8451 {
8452         unsigned int old_flags = dev->flags;
8453         int err;
8454
8455         err = __dev_set_promiscuity(dev, inc, true);
8456         if (err < 0)
8457                 return err;
8458         if (dev->flags != old_flags)
8459                 dev_set_rx_mode(dev);
8460         return err;
8461 }
8462 EXPORT_SYMBOL(dev_set_promiscuity);
8463
8464 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8465 {
8466         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8467
8468         ASSERT_RTNL();
8469
8470         dev->flags |= IFF_ALLMULTI;
8471         dev->allmulti += inc;
8472         if (dev->allmulti == 0) {
8473                 /*
8474                  * Avoid overflow.
8475                  * If inc causes overflow, untouch allmulti and return error.
8476                  */
8477                 if (inc < 0)
8478                         dev->flags &= ~IFF_ALLMULTI;
8479                 else {
8480                         dev->allmulti -= inc;
8481                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8482                         return -EOVERFLOW;
8483                 }
8484         }
8485         if (dev->flags ^ old_flags) {
8486                 netdev_info(dev, "%s allmulticast mode\n",
8487                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8488                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8489                 dev_set_rx_mode(dev);
8490                 if (notify)
8491                         __dev_notify_flags(dev, old_flags,
8492                                            dev->gflags ^ old_gflags, 0, NULL);
8493         }
8494         return 0;
8495 }
8496
8497 /**
8498  *      dev_set_allmulti        - update allmulti count on a device
8499  *      @dev: device
8500  *      @inc: modifier
8501  *
8502  *      Add or remove reception of all multicast frames to a device. While the
8503  *      count in the device remains above zero the interface remains listening
8504  *      to all interfaces. Once it hits zero the device reverts back to normal
8505  *      filtering operation. A negative @inc value is used to drop the counter
8506  *      when releasing a resource needing all multicasts.
8507  *      Return 0 if successful or a negative errno code on error.
8508  */
8509
8510 int dev_set_allmulti(struct net_device *dev, int inc)
8511 {
8512         return __dev_set_allmulti(dev, inc, true);
8513 }
8514 EXPORT_SYMBOL(dev_set_allmulti);
8515
8516 /*
8517  *      Upload unicast and multicast address lists to device and
8518  *      configure RX filtering. When the device doesn't support unicast
8519  *      filtering it is put in promiscuous mode while unicast addresses
8520  *      are present.
8521  */
8522 void __dev_set_rx_mode(struct net_device *dev)
8523 {
8524         const struct net_device_ops *ops = dev->netdev_ops;
8525
8526         /* dev_open will call this function so the list will stay sane. */
8527         if (!(dev->flags&IFF_UP))
8528                 return;
8529
8530         if (!netif_device_present(dev))
8531                 return;
8532
8533         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8534                 /* Unicast addresses changes may only happen under the rtnl,
8535                  * therefore calling __dev_set_promiscuity here is safe.
8536                  */
8537                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8538                         __dev_set_promiscuity(dev, 1, false);
8539                         dev->uc_promisc = true;
8540                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8541                         __dev_set_promiscuity(dev, -1, false);
8542                         dev->uc_promisc = false;
8543                 }
8544         }
8545
8546         if (ops->ndo_set_rx_mode)
8547                 ops->ndo_set_rx_mode(dev);
8548 }
8549
8550 void dev_set_rx_mode(struct net_device *dev)
8551 {
8552         netif_addr_lock_bh(dev);
8553         __dev_set_rx_mode(dev);
8554         netif_addr_unlock_bh(dev);
8555 }
8556
8557 /**
8558  *      dev_get_flags - get flags reported to userspace
8559  *      @dev: device
8560  *
8561  *      Get the combination of flag bits exported through APIs to userspace.
8562  */
8563 unsigned int dev_get_flags(const struct net_device *dev)
8564 {
8565         unsigned int flags;
8566
8567         flags = (dev->flags & ~(IFF_PROMISC |
8568                                 IFF_ALLMULTI |
8569                                 IFF_RUNNING |
8570                                 IFF_LOWER_UP |
8571                                 IFF_DORMANT)) |
8572                 (dev->gflags & (IFF_PROMISC |
8573                                 IFF_ALLMULTI));
8574
8575         if (netif_running(dev)) {
8576                 if (netif_oper_up(dev))
8577                         flags |= IFF_RUNNING;
8578                 if (netif_carrier_ok(dev))
8579                         flags |= IFF_LOWER_UP;
8580                 if (netif_dormant(dev))
8581                         flags |= IFF_DORMANT;
8582         }
8583
8584         return flags;
8585 }
8586 EXPORT_SYMBOL(dev_get_flags);
8587
8588 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8589                        struct netlink_ext_ack *extack)
8590 {
8591         unsigned int old_flags = dev->flags;
8592         int ret;
8593
8594         ASSERT_RTNL();
8595
8596         /*
8597          *      Set the flags on our device.
8598          */
8599
8600         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8601                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8602                                IFF_AUTOMEDIA)) |
8603                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8604                                     IFF_ALLMULTI));
8605
8606         /*
8607          *      Load in the correct multicast list now the flags have changed.
8608          */
8609
8610         if ((old_flags ^ flags) & IFF_MULTICAST)
8611                 dev_change_rx_flags(dev, IFF_MULTICAST);
8612
8613         dev_set_rx_mode(dev);
8614
8615         /*
8616          *      Have we downed the interface. We handle IFF_UP ourselves
8617          *      according to user attempts to set it, rather than blindly
8618          *      setting it.
8619          */
8620
8621         ret = 0;
8622         if ((old_flags ^ flags) & IFF_UP) {
8623                 if (old_flags & IFF_UP)
8624                         __dev_close(dev);
8625                 else
8626                         ret = __dev_open(dev, extack);
8627         }
8628
8629         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8630                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8631                 unsigned int old_flags = dev->flags;
8632
8633                 dev->gflags ^= IFF_PROMISC;
8634
8635                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8636                         if (dev->flags != old_flags)
8637                                 dev_set_rx_mode(dev);
8638         }
8639
8640         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8641          * is important. Some (broken) drivers set IFF_PROMISC, when
8642          * IFF_ALLMULTI is requested not asking us and not reporting.
8643          */
8644         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8645                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8646
8647                 dev->gflags ^= IFF_ALLMULTI;
8648                 __dev_set_allmulti(dev, inc, false);
8649         }
8650
8651         return ret;
8652 }
8653
8654 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8655                         unsigned int gchanges, u32 portid,
8656                         const struct nlmsghdr *nlh)
8657 {
8658         unsigned int changes = dev->flags ^ old_flags;
8659
8660         if (gchanges)
8661                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8662
8663         if (changes & IFF_UP) {
8664                 if (dev->flags & IFF_UP)
8665                         call_netdevice_notifiers(NETDEV_UP, dev);
8666                 else
8667                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8668         }
8669
8670         if (dev->flags & IFF_UP &&
8671             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8672                 struct netdev_notifier_change_info change_info = {
8673                         .info = {
8674                                 .dev = dev,
8675                         },
8676                         .flags_changed = changes,
8677                 };
8678
8679                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8680         }
8681 }
8682
8683 /**
8684  *      dev_change_flags - change device settings
8685  *      @dev: device
8686  *      @flags: device state flags
8687  *      @extack: netlink extended ack
8688  *
8689  *      Change settings on device based state flags. The flags are
8690  *      in the userspace exported format.
8691  */
8692 int dev_change_flags(struct net_device *dev, unsigned int flags,
8693                      struct netlink_ext_ack *extack)
8694 {
8695         int ret;
8696         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8697
8698         ret = __dev_change_flags(dev, flags, extack);
8699         if (ret < 0)
8700                 return ret;
8701
8702         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8703         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8704         return ret;
8705 }
8706 EXPORT_SYMBOL(dev_change_flags);
8707
8708 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8709 {
8710         const struct net_device_ops *ops = dev->netdev_ops;
8711
8712         if (ops->ndo_change_mtu)
8713                 return ops->ndo_change_mtu(dev, new_mtu);
8714
8715         /* Pairs with all the lockless reads of dev->mtu in the stack */
8716         WRITE_ONCE(dev->mtu, new_mtu);
8717         return 0;
8718 }
8719 EXPORT_SYMBOL(__dev_set_mtu);
8720
8721 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8722                      struct netlink_ext_ack *extack)
8723 {
8724         /* MTU must be positive, and in range */
8725         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8726                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8727                 return -EINVAL;
8728         }
8729
8730         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8731                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8732                 return -EINVAL;
8733         }
8734         return 0;
8735 }
8736
8737 /**
8738  *      dev_set_mtu_ext - Change maximum transfer unit
8739  *      @dev: device
8740  *      @new_mtu: new transfer unit
8741  *      @extack: netlink extended ack
8742  *
8743  *      Change the maximum transfer size of the network device.
8744  */
8745 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8746                     struct netlink_ext_ack *extack)
8747 {
8748         int err, orig_mtu;
8749
8750         if (new_mtu == dev->mtu)
8751                 return 0;
8752
8753         err = dev_validate_mtu(dev, new_mtu, extack);
8754         if (err)
8755                 return err;
8756
8757         if (!netif_device_present(dev))
8758                 return -ENODEV;
8759
8760         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8761         err = notifier_to_errno(err);
8762         if (err)
8763                 return err;
8764
8765         orig_mtu = dev->mtu;
8766         err = __dev_set_mtu(dev, new_mtu);
8767
8768         if (!err) {
8769                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8770                                                    orig_mtu);
8771                 err = notifier_to_errno(err);
8772                 if (err) {
8773                         /* setting mtu back and notifying everyone again,
8774                          * so that they have a chance to revert changes.
8775                          */
8776                         __dev_set_mtu(dev, orig_mtu);
8777                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8778                                                      new_mtu);
8779                 }
8780         }
8781         return err;
8782 }
8783
8784 int dev_set_mtu(struct net_device *dev, int new_mtu)
8785 {
8786         struct netlink_ext_ack extack;
8787         int err;
8788
8789         memset(&extack, 0, sizeof(extack));
8790         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8791         if (err && extack._msg)
8792                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8793         return err;
8794 }
8795 EXPORT_SYMBOL(dev_set_mtu);
8796
8797 /**
8798  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8799  *      @dev: device
8800  *      @new_len: new tx queue length
8801  */
8802 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8803 {
8804         unsigned int orig_len = dev->tx_queue_len;
8805         int res;
8806
8807         if (new_len != (unsigned int)new_len)
8808                 return -ERANGE;
8809
8810         if (new_len != orig_len) {
8811                 dev->tx_queue_len = new_len;
8812                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8813                 res = notifier_to_errno(res);
8814                 if (res)
8815                         goto err_rollback;
8816                 res = dev_qdisc_change_tx_queue_len(dev);
8817                 if (res)
8818                         goto err_rollback;
8819         }
8820
8821         return 0;
8822
8823 err_rollback:
8824         netdev_err(dev, "refused to change device tx_queue_len\n");
8825         dev->tx_queue_len = orig_len;
8826         return res;
8827 }
8828
8829 /**
8830  *      dev_set_group - Change group this device belongs to
8831  *      @dev: device
8832  *      @new_group: group this device should belong to
8833  */
8834 void dev_set_group(struct net_device *dev, int new_group)
8835 {
8836         dev->group = new_group;
8837 }
8838
8839 /**
8840  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8841  *      @dev: device
8842  *      @addr: new address
8843  *      @extack: netlink extended ack
8844  */
8845 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8846                               struct netlink_ext_ack *extack)
8847 {
8848         struct netdev_notifier_pre_changeaddr_info info = {
8849                 .info.dev = dev,
8850                 .info.extack = extack,
8851                 .dev_addr = addr,
8852         };
8853         int rc;
8854
8855         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8856         return notifier_to_errno(rc);
8857 }
8858 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8859
8860 /**
8861  *      dev_set_mac_address - Change Media Access Control Address
8862  *      @dev: device
8863  *      @sa: new address
8864  *      @extack: netlink extended ack
8865  *
8866  *      Change the hardware (MAC) address of the device
8867  */
8868 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8869                         struct netlink_ext_ack *extack)
8870 {
8871         const struct net_device_ops *ops = dev->netdev_ops;
8872         int err;
8873
8874         if (!ops->ndo_set_mac_address)
8875                 return -EOPNOTSUPP;
8876         if (sa->sa_family != dev->type)
8877                 return -EINVAL;
8878         if (!netif_device_present(dev))
8879                 return -ENODEV;
8880         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8881         if (err)
8882                 return err;
8883         if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8884                 err = ops->ndo_set_mac_address(dev, sa);
8885                 if (err)
8886                         return err;
8887         }
8888         dev->addr_assign_type = NET_ADDR_SET;
8889         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8890         add_device_randomness(dev->dev_addr, dev->addr_len);
8891         return 0;
8892 }
8893 EXPORT_SYMBOL(dev_set_mac_address);
8894
8895 static DECLARE_RWSEM(dev_addr_sem);
8896
8897 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8898                              struct netlink_ext_ack *extack)
8899 {
8900         int ret;
8901
8902         down_write(&dev_addr_sem);
8903         ret = dev_set_mac_address(dev, sa, extack);
8904         up_write(&dev_addr_sem);
8905         return ret;
8906 }
8907 EXPORT_SYMBOL(dev_set_mac_address_user);
8908
8909 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8910 {
8911         size_t size = sizeof(sa->sa_data_min);
8912         struct net_device *dev;
8913         int ret = 0;
8914
8915         down_read(&dev_addr_sem);
8916         rcu_read_lock();
8917
8918         dev = dev_get_by_name_rcu(net, dev_name);
8919         if (!dev) {
8920                 ret = -ENODEV;
8921                 goto unlock;
8922         }
8923         if (!dev->addr_len)
8924                 memset(sa->sa_data, 0, size);
8925         else
8926                 memcpy(sa->sa_data, dev->dev_addr,
8927                        min_t(size_t, size, dev->addr_len));
8928         sa->sa_family = dev->type;
8929
8930 unlock:
8931         rcu_read_unlock();
8932         up_read(&dev_addr_sem);
8933         return ret;
8934 }
8935 EXPORT_SYMBOL(dev_get_mac_address);
8936
8937 /**
8938  *      dev_change_carrier - Change device carrier
8939  *      @dev: device
8940  *      @new_carrier: new value
8941  *
8942  *      Change device carrier
8943  */
8944 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8945 {
8946         const struct net_device_ops *ops = dev->netdev_ops;
8947
8948         if (!ops->ndo_change_carrier)
8949                 return -EOPNOTSUPP;
8950         if (!netif_device_present(dev))
8951                 return -ENODEV;
8952         return ops->ndo_change_carrier(dev, new_carrier);
8953 }
8954
8955 /**
8956  *      dev_get_phys_port_id - Get device physical port ID
8957  *      @dev: device
8958  *      @ppid: port ID
8959  *
8960  *      Get device physical port ID
8961  */
8962 int dev_get_phys_port_id(struct net_device *dev,
8963                          struct netdev_phys_item_id *ppid)
8964 {
8965         const struct net_device_ops *ops = dev->netdev_ops;
8966
8967         if (!ops->ndo_get_phys_port_id)
8968                 return -EOPNOTSUPP;
8969         return ops->ndo_get_phys_port_id(dev, ppid);
8970 }
8971
8972 /**
8973  *      dev_get_phys_port_name - Get device physical port name
8974  *      @dev: device
8975  *      @name: port name
8976  *      @len: limit of bytes to copy to name
8977  *
8978  *      Get device physical port name
8979  */
8980 int dev_get_phys_port_name(struct net_device *dev,
8981                            char *name, size_t len)
8982 {
8983         const struct net_device_ops *ops = dev->netdev_ops;
8984         int err;
8985
8986         if (ops->ndo_get_phys_port_name) {
8987                 err = ops->ndo_get_phys_port_name(dev, name, len);
8988                 if (err != -EOPNOTSUPP)
8989                         return err;
8990         }
8991         return devlink_compat_phys_port_name_get(dev, name, len);
8992 }
8993
8994 /**
8995  *      dev_get_port_parent_id - Get the device's port parent identifier
8996  *      @dev: network device
8997  *      @ppid: pointer to a storage for the port's parent identifier
8998  *      @recurse: allow/disallow recursion to lower devices
8999  *
9000  *      Get the devices's port parent identifier
9001  */
9002 int dev_get_port_parent_id(struct net_device *dev,
9003                            struct netdev_phys_item_id *ppid,
9004                            bool recurse)
9005 {
9006         const struct net_device_ops *ops = dev->netdev_ops;
9007         struct netdev_phys_item_id first = { };
9008         struct net_device *lower_dev;
9009         struct list_head *iter;
9010         int err;
9011
9012         if (ops->ndo_get_port_parent_id) {
9013                 err = ops->ndo_get_port_parent_id(dev, ppid);
9014                 if (err != -EOPNOTSUPP)
9015                         return err;
9016         }
9017
9018         err = devlink_compat_switch_id_get(dev, ppid);
9019         if (!recurse || err != -EOPNOTSUPP)
9020                 return err;
9021
9022         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9023                 err = dev_get_port_parent_id(lower_dev, ppid, true);
9024                 if (err)
9025                         break;
9026                 if (!first.id_len)
9027                         first = *ppid;
9028                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9029                         return -EOPNOTSUPP;
9030         }
9031
9032         return err;
9033 }
9034 EXPORT_SYMBOL(dev_get_port_parent_id);
9035
9036 /**
9037  *      netdev_port_same_parent_id - Indicate if two network devices have
9038  *      the same port parent identifier
9039  *      @a: first network device
9040  *      @b: second network device
9041  */
9042 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9043 {
9044         struct netdev_phys_item_id a_id = { };
9045         struct netdev_phys_item_id b_id = { };
9046
9047         if (dev_get_port_parent_id(a, &a_id, true) ||
9048             dev_get_port_parent_id(b, &b_id, true))
9049                 return false;
9050
9051         return netdev_phys_item_id_same(&a_id, &b_id);
9052 }
9053 EXPORT_SYMBOL(netdev_port_same_parent_id);
9054
9055 /**
9056  *      dev_change_proto_down - set carrier according to proto_down.
9057  *
9058  *      @dev: device
9059  *      @proto_down: new value
9060  */
9061 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9062 {
9063         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9064                 return -EOPNOTSUPP;
9065         if (!netif_device_present(dev))
9066                 return -ENODEV;
9067         if (proto_down)
9068                 netif_carrier_off(dev);
9069         else
9070                 netif_carrier_on(dev);
9071         dev->proto_down = proto_down;
9072         return 0;
9073 }
9074
9075 /**
9076  *      dev_change_proto_down_reason - proto down reason
9077  *
9078  *      @dev: device
9079  *      @mask: proto down mask
9080  *      @value: proto down value
9081  */
9082 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9083                                   u32 value)
9084 {
9085         int b;
9086
9087         if (!mask) {
9088                 dev->proto_down_reason = value;
9089         } else {
9090                 for_each_set_bit(b, &mask, 32) {
9091                         if (value & (1 << b))
9092                                 dev->proto_down_reason |= BIT(b);
9093                         else
9094                                 dev->proto_down_reason &= ~BIT(b);
9095                 }
9096         }
9097 }
9098
9099 struct bpf_xdp_link {
9100         struct bpf_link link;
9101         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9102         int flags;
9103 };
9104
9105 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9106 {
9107         if (flags & XDP_FLAGS_HW_MODE)
9108                 return XDP_MODE_HW;
9109         if (flags & XDP_FLAGS_DRV_MODE)
9110                 return XDP_MODE_DRV;
9111         if (flags & XDP_FLAGS_SKB_MODE)
9112                 return XDP_MODE_SKB;
9113         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9114 }
9115
9116 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9117 {
9118         switch (mode) {
9119         case XDP_MODE_SKB:
9120                 return generic_xdp_install;
9121         case XDP_MODE_DRV:
9122         case XDP_MODE_HW:
9123                 return dev->netdev_ops->ndo_bpf;
9124         default:
9125                 return NULL;
9126         }
9127 }
9128
9129 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9130                                          enum bpf_xdp_mode mode)
9131 {
9132         return dev->xdp_state[mode].link;
9133 }
9134
9135 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9136                                      enum bpf_xdp_mode mode)
9137 {
9138         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9139
9140         if (link)
9141                 return link->link.prog;
9142         return dev->xdp_state[mode].prog;
9143 }
9144
9145 u8 dev_xdp_prog_count(struct net_device *dev)
9146 {
9147         u8 count = 0;
9148         int i;
9149
9150         for (i = 0; i < __MAX_XDP_MODE; i++)
9151                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9152                         count++;
9153         return count;
9154 }
9155 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9156
9157 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9158 {
9159         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9160
9161         return prog ? prog->aux->id : 0;
9162 }
9163
9164 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9165                              struct bpf_xdp_link *link)
9166 {
9167         dev->xdp_state[mode].link = link;
9168         dev->xdp_state[mode].prog = NULL;
9169 }
9170
9171 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9172                              struct bpf_prog *prog)
9173 {
9174         dev->xdp_state[mode].link = NULL;
9175         dev->xdp_state[mode].prog = prog;
9176 }
9177
9178 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9179                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9180                            u32 flags, struct bpf_prog *prog)
9181 {
9182         struct netdev_bpf xdp;
9183         int err;
9184
9185         memset(&xdp, 0, sizeof(xdp));
9186         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9187         xdp.extack = extack;
9188         xdp.flags = flags;
9189         xdp.prog = prog;
9190
9191         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9192          * "moved" into driver), so they don't increment it on their own, but
9193          * they do decrement refcnt when program is detached or replaced.
9194          * Given net_device also owns link/prog, we need to bump refcnt here
9195          * to prevent drivers from underflowing it.
9196          */
9197         if (prog)
9198                 bpf_prog_inc(prog);
9199         err = bpf_op(dev, &xdp);
9200         if (err) {
9201                 if (prog)
9202                         bpf_prog_put(prog);
9203                 return err;
9204         }
9205
9206         if (mode != XDP_MODE_HW)
9207                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9208
9209         return 0;
9210 }
9211
9212 static void dev_xdp_uninstall(struct net_device *dev)
9213 {
9214         struct bpf_xdp_link *link;
9215         struct bpf_prog *prog;
9216         enum bpf_xdp_mode mode;
9217         bpf_op_t bpf_op;
9218
9219         ASSERT_RTNL();
9220
9221         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9222                 prog = dev_xdp_prog(dev, mode);
9223                 if (!prog)
9224                         continue;
9225
9226                 bpf_op = dev_xdp_bpf_op(dev, mode);
9227                 if (!bpf_op)
9228                         continue;
9229
9230                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9231
9232                 /* auto-detach link from net device */
9233                 link = dev_xdp_link(dev, mode);
9234                 if (link)
9235                         link->dev = NULL;
9236                 else
9237                         bpf_prog_put(prog);
9238
9239                 dev_xdp_set_link(dev, mode, NULL);
9240         }
9241 }
9242
9243 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9244                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9245                           struct bpf_prog *old_prog, u32 flags)
9246 {
9247         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9248         struct bpf_prog *cur_prog;
9249         struct net_device *upper;
9250         struct list_head *iter;
9251         enum bpf_xdp_mode mode;
9252         bpf_op_t bpf_op;
9253         int err;
9254
9255         ASSERT_RTNL();
9256
9257         /* either link or prog attachment, never both */
9258         if (link && (new_prog || old_prog))
9259                 return -EINVAL;
9260         /* link supports only XDP mode flags */
9261         if (link && (flags & ~XDP_FLAGS_MODES)) {
9262                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9263                 return -EINVAL;
9264         }
9265         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9266         if (num_modes > 1) {
9267                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9268                 return -EINVAL;
9269         }
9270         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9271         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9272                 NL_SET_ERR_MSG(extack,
9273                                "More than one program loaded, unset mode is ambiguous");
9274                 return -EINVAL;
9275         }
9276         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9277         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9278                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9279                 return -EINVAL;
9280         }
9281
9282         mode = dev_xdp_mode(dev, flags);
9283         /* can't replace attached link */
9284         if (dev_xdp_link(dev, mode)) {
9285                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9286                 return -EBUSY;
9287         }
9288
9289         /* don't allow if an upper device already has a program */
9290         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9291                 if (dev_xdp_prog_count(upper) > 0) {
9292                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9293                         return -EEXIST;
9294                 }
9295         }
9296
9297         cur_prog = dev_xdp_prog(dev, mode);
9298         /* can't replace attached prog with link */
9299         if (link && cur_prog) {
9300                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9301                 return -EBUSY;
9302         }
9303         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9304                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9305                 return -EEXIST;
9306         }
9307
9308         /* put effective new program into new_prog */
9309         if (link)
9310                 new_prog = link->link.prog;
9311
9312         if (new_prog) {
9313                 bool offload = mode == XDP_MODE_HW;
9314                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9315                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9316
9317                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9318                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9319                         return -EBUSY;
9320                 }
9321                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9322                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9323                         return -EEXIST;
9324                 }
9325                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9326                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9327                         return -EINVAL;
9328                 }
9329                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9330                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9331                         return -EINVAL;
9332                 }
9333                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9334                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9335                         return -EINVAL;
9336                 }
9337                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9338                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9339                         return -EINVAL;
9340                 }
9341         }
9342
9343         /* don't call drivers if the effective program didn't change */
9344         if (new_prog != cur_prog) {
9345                 bpf_op = dev_xdp_bpf_op(dev, mode);
9346                 if (!bpf_op) {
9347                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9348                         return -EOPNOTSUPP;
9349                 }
9350
9351                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9352                 if (err)
9353                         return err;
9354         }
9355
9356         if (link)
9357                 dev_xdp_set_link(dev, mode, link);
9358         else
9359                 dev_xdp_set_prog(dev, mode, new_prog);
9360         if (cur_prog)
9361                 bpf_prog_put(cur_prog);
9362
9363         return 0;
9364 }
9365
9366 static int dev_xdp_attach_link(struct net_device *dev,
9367                                struct netlink_ext_ack *extack,
9368                                struct bpf_xdp_link *link)
9369 {
9370         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9371 }
9372
9373 static int dev_xdp_detach_link(struct net_device *dev,
9374                                struct netlink_ext_ack *extack,
9375                                struct bpf_xdp_link *link)
9376 {
9377         enum bpf_xdp_mode mode;
9378         bpf_op_t bpf_op;
9379
9380         ASSERT_RTNL();
9381
9382         mode = dev_xdp_mode(dev, link->flags);
9383         if (dev_xdp_link(dev, mode) != link)
9384                 return -EINVAL;
9385
9386         bpf_op = dev_xdp_bpf_op(dev, mode);
9387         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9388         dev_xdp_set_link(dev, mode, NULL);
9389         return 0;
9390 }
9391
9392 static void bpf_xdp_link_release(struct bpf_link *link)
9393 {
9394         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9395
9396         rtnl_lock();
9397
9398         /* if racing with net_device's tear down, xdp_link->dev might be
9399          * already NULL, in which case link was already auto-detached
9400          */
9401         if (xdp_link->dev) {
9402                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9403                 xdp_link->dev = NULL;
9404         }
9405
9406         rtnl_unlock();
9407 }
9408
9409 static int bpf_xdp_link_detach(struct bpf_link *link)
9410 {
9411         bpf_xdp_link_release(link);
9412         return 0;
9413 }
9414
9415 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9416 {
9417         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9418
9419         kfree(xdp_link);
9420 }
9421
9422 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9423                                      struct seq_file *seq)
9424 {
9425         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9426         u32 ifindex = 0;
9427
9428         rtnl_lock();
9429         if (xdp_link->dev)
9430                 ifindex = xdp_link->dev->ifindex;
9431         rtnl_unlock();
9432
9433         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9434 }
9435
9436 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9437                                        struct bpf_link_info *info)
9438 {
9439         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9440         u32 ifindex = 0;
9441
9442         rtnl_lock();
9443         if (xdp_link->dev)
9444                 ifindex = xdp_link->dev->ifindex;
9445         rtnl_unlock();
9446
9447         info->xdp.ifindex = ifindex;
9448         return 0;
9449 }
9450
9451 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9452                                struct bpf_prog *old_prog)
9453 {
9454         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9455         enum bpf_xdp_mode mode;
9456         bpf_op_t bpf_op;
9457         int err = 0;
9458
9459         rtnl_lock();
9460
9461         /* link might have been auto-released already, so fail */
9462         if (!xdp_link->dev) {
9463                 err = -ENOLINK;
9464                 goto out_unlock;
9465         }
9466
9467         if (old_prog && link->prog != old_prog) {
9468                 err = -EPERM;
9469                 goto out_unlock;
9470         }
9471         old_prog = link->prog;
9472         if (old_prog->type != new_prog->type ||
9473             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9474                 err = -EINVAL;
9475                 goto out_unlock;
9476         }
9477
9478         if (old_prog == new_prog) {
9479                 /* no-op, don't disturb drivers */
9480                 bpf_prog_put(new_prog);
9481                 goto out_unlock;
9482         }
9483
9484         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9485         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9486         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9487                               xdp_link->flags, new_prog);
9488         if (err)
9489                 goto out_unlock;
9490
9491         old_prog = xchg(&link->prog, new_prog);
9492         bpf_prog_put(old_prog);
9493
9494 out_unlock:
9495         rtnl_unlock();
9496         return err;
9497 }
9498
9499 static const struct bpf_link_ops bpf_xdp_link_lops = {
9500         .release = bpf_xdp_link_release,
9501         .dealloc = bpf_xdp_link_dealloc,
9502         .detach = bpf_xdp_link_detach,
9503         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9504         .fill_link_info = bpf_xdp_link_fill_link_info,
9505         .update_prog = bpf_xdp_link_update,
9506 };
9507
9508 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9509 {
9510         struct net *net = current->nsproxy->net_ns;
9511         struct bpf_link_primer link_primer;
9512         struct netlink_ext_ack extack = {};
9513         struct bpf_xdp_link *link;
9514         struct net_device *dev;
9515         int err, fd;
9516
9517         rtnl_lock();
9518         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9519         if (!dev) {
9520                 rtnl_unlock();
9521                 return -EINVAL;
9522         }
9523
9524         link = kzalloc(sizeof(*link), GFP_USER);
9525         if (!link) {
9526                 err = -ENOMEM;
9527                 goto unlock;
9528         }
9529
9530         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9531         link->dev = dev;
9532         link->flags = attr->link_create.flags;
9533
9534         err = bpf_link_prime(&link->link, &link_primer);
9535         if (err) {
9536                 kfree(link);
9537                 goto unlock;
9538         }
9539
9540         err = dev_xdp_attach_link(dev, &extack, link);
9541         rtnl_unlock();
9542
9543         if (err) {
9544                 link->dev = NULL;
9545                 bpf_link_cleanup(&link_primer);
9546                 trace_bpf_xdp_link_attach_failed(extack._msg);
9547                 goto out_put_dev;
9548         }
9549
9550         fd = bpf_link_settle(&link_primer);
9551         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9552         dev_put(dev);
9553         return fd;
9554
9555 unlock:
9556         rtnl_unlock();
9557
9558 out_put_dev:
9559         dev_put(dev);
9560         return err;
9561 }
9562
9563 /**
9564  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9565  *      @dev: device
9566  *      @extack: netlink extended ack
9567  *      @fd: new program fd or negative value to clear
9568  *      @expected_fd: old program fd that userspace expects to replace or clear
9569  *      @flags: xdp-related flags
9570  *
9571  *      Set or clear a bpf program for a device
9572  */
9573 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9574                       int fd, int expected_fd, u32 flags)
9575 {
9576         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9577         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9578         int err;
9579
9580         ASSERT_RTNL();
9581
9582         if (fd >= 0) {
9583                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9584                                                  mode != XDP_MODE_SKB);
9585                 if (IS_ERR(new_prog))
9586                         return PTR_ERR(new_prog);
9587         }
9588
9589         if (expected_fd >= 0) {
9590                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9591                                                  mode != XDP_MODE_SKB);
9592                 if (IS_ERR(old_prog)) {
9593                         err = PTR_ERR(old_prog);
9594                         old_prog = NULL;
9595                         goto err_out;
9596                 }
9597         }
9598
9599         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9600
9601 err_out:
9602         if (err && new_prog)
9603                 bpf_prog_put(new_prog);
9604         if (old_prog)
9605                 bpf_prog_put(old_prog);
9606         return err;
9607 }
9608
9609 /**
9610  * dev_index_reserve() - allocate an ifindex in a namespace
9611  * @net: the applicable net namespace
9612  * @ifindex: requested ifindex, pass %0 to get one allocated
9613  *
9614  * Allocate a ifindex for a new device. Caller must either use the ifindex
9615  * to store the device (via list_netdevice()) or call dev_index_release()
9616  * to give the index up.
9617  *
9618  * Return: a suitable unique value for a new device interface number or -errno.
9619  */
9620 static int dev_index_reserve(struct net *net, u32 ifindex)
9621 {
9622         int err;
9623
9624         if (ifindex > INT_MAX) {
9625                 DEBUG_NET_WARN_ON_ONCE(1);
9626                 return -EINVAL;
9627         }
9628
9629         if (!ifindex)
9630                 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9631                                       xa_limit_31b, &net->ifindex, GFP_KERNEL);
9632         else
9633                 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9634         if (err < 0)
9635                 return err;
9636
9637         return ifindex;
9638 }
9639
9640 static void dev_index_release(struct net *net, int ifindex)
9641 {
9642         /* Expect only unused indexes, unlist_netdevice() removes the used */
9643         WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9644 }
9645
9646 /* Delayed registration/unregisteration */
9647 LIST_HEAD(net_todo_list);
9648 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9649
9650 static void net_set_todo(struct net_device *dev)
9651 {
9652         list_add_tail(&dev->todo_list, &net_todo_list);
9653         atomic_inc(&dev_net(dev)->dev_unreg_count);
9654 }
9655
9656 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9657         struct net_device *upper, netdev_features_t features)
9658 {
9659         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9660         netdev_features_t feature;
9661         int feature_bit;
9662
9663         for_each_netdev_feature(upper_disables, feature_bit) {
9664                 feature = __NETIF_F_BIT(feature_bit);
9665                 if (!(upper->wanted_features & feature)
9666                     && (features & feature)) {
9667                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9668                                    &feature, upper->name);
9669                         features &= ~feature;
9670                 }
9671         }
9672
9673         return features;
9674 }
9675
9676 static void netdev_sync_lower_features(struct net_device *upper,
9677         struct net_device *lower, netdev_features_t features)
9678 {
9679         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9680         netdev_features_t feature;
9681         int feature_bit;
9682
9683         for_each_netdev_feature(upper_disables, feature_bit) {
9684                 feature = __NETIF_F_BIT(feature_bit);
9685                 if (!(features & feature) && (lower->features & feature)) {
9686                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9687                                    &feature, lower->name);
9688                         lower->wanted_features &= ~feature;
9689                         __netdev_update_features(lower);
9690
9691                         if (unlikely(lower->features & feature))
9692                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9693                                             &feature, lower->name);
9694                         else
9695                                 netdev_features_change(lower);
9696                 }
9697         }
9698 }
9699
9700 static netdev_features_t netdev_fix_features(struct net_device *dev,
9701         netdev_features_t features)
9702 {
9703         /* Fix illegal checksum combinations */
9704         if ((features & NETIF_F_HW_CSUM) &&
9705             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9706                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9707                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9708         }
9709
9710         /* TSO requires that SG is present as well. */
9711         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9712                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9713                 features &= ~NETIF_F_ALL_TSO;
9714         }
9715
9716         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9717                                         !(features & NETIF_F_IP_CSUM)) {
9718                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9719                 features &= ~NETIF_F_TSO;
9720                 features &= ~NETIF_F_TSO_ECN;
9721         }
9722
9723         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9724                                          !(features & NETIF_F_IPV6_CSUM)) {
9725                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9726                 features &= ~NETIF_F_TSO6;
9727         }
9728
9729         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9730         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9731                 features &= ~NETIF_F_TSO_MANGLEID;
9732
9733         /* TSO ECN requires that TSO is present as well. */
9734         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9735                 features &= ~NETIF_F_TSO_ECN;
9736
9737         /* Software GSO depends on SG. */
9738         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9739                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9740                 features &= ~NETIF_F_GSO;
9741         }
9742
9743         /* GSO partial features require GSO partial be set */
9744         if ((features & dev->gso_partial_features) &&
9745             !(features & NETIF_F_GSO_PARTIAL)) {
9746                 netdev_dbg(dev,
9747                            "Dropping partially supported GSO features since no GSO partial.\n");
9748                 features &= ~dev->gso_partial_features;
9749         }
9750
9751         if (!(features & NETIF_F_RXCSUM)) {
9752                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9753                  * successfully merged by hardware must also have the
9754                  * checksum verified by hardware.  If the user does not
9755                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9756                  */
9757                 if (features & NETIF_F_GRO_HW) {
9758                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9759                         features &= ~NETIF_F_GRO_HW;
9760                 }
9761         }
9762
9763         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9764         if (features & NETIF_F_RXFCS) {
9765                 if (features & NETIF_F_LRO) {
9766                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9767                         features &= ~NETIF_F_LRO;
9768                 }
9769
9770                 if (features & NETIF_F_GRO_HW) {
9771                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9772                         features &= ~NETIF_F_GRO_HW;
9773                 }
9774         }
9775
9776         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9777                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9778                 features &= ~NETIF_F_LRO;
9779         }
9780
9781         if (features & NETIF_F_HW_TLS_TX) {
9782                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9783                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9784                 bool hw_csum = features & NETIF_F_HW_CSUM;
9785
9786                 if (!ip_csum && !hw_csum) {
9787                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9788                         features &= ~NETIF_F_HW_TLS_TX;
9789                 }
9790         }
9791
9792         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9793                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9794                 features &= ~NETIF_F_HW_TLS_RX;
9795         }
9796
9797         return features;
9798 }
9799
9800 int __netdev_update_features(struct net_device *dev)
9801 {
9802         struct net_device *upper, *lower;
9803         netdev_features_t features;
9804         struct list_head *iter;
9805         int err = -1;
9806
9807         ASSERT_RTNL();
9808
9809         features = netdev_get_wanted_features(dev);
9810
9811         if (dev->netdev_ops->ndo_fix_features)
9812                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9813
9814         /* driver might be less strict about feature dependencies */
9815         features = netdev_fix_features(dev, features);
9816
9817         /* some features can't be enabled if they're off on an upper device */
9818         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9819                 features = netdev_sync_upper_features(dev, upper, features);
9820
9821         if (dev->features == features)
9822                 goto sync_lower;
9823
9824         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9825                 &dev->features, &features);
9826
9827         if (dev->netdev_ops->ndo_set_features)
9828                 err = dev->netdev_ops->ndo_set_features(dev, features);
9829         else
9830                 err = 0;
9831
9832         if (unlikely(err < 0)) {
9833                 netdev_err(dev,
9834                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9835                         err, &features, &dev->features);
9836                 /* return non-0 since some features might have changed and
9837                  * it's better to fire a spurious notification than miss it
9838                  */
9839                 return -1;
9840         }
9841
9842 sync_lower:
9843         /* some features must be disabled on lower devices when disabled
9844          * on an upper device (think: bonding master or bridge)
9845          */
9846         netdev_for_each_lower_dev(dev, lower, iter)
9847                 netdev_sync_lower_features(dev, lower, features);
9848
9849         if (!err) {
9850                 netdev_features_t diff = features ^ dev->features;
9851
9852                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9853                         /* udp_tunnel_{get,drop}_rx_info both need
9854                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9855                          * device, or they won't do anything.
9856                          * Thus we need to update dev->features
9857                          * *before* calling udp_tunnel_get_rx_info,
9858                          * but *after* calling udp_tunnel_drop_rx_info.
9859                          */
9860                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9861                                 dev->features = features;
9862                                 udp_tunnel_get_rx_info(dev);
9863                         } else {
9864                                 udp_tunnel_drop_rx_info(dev);
9865                         }
9866                 }
9867
9868                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9869                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9870                                 dev->features = features;
9871                                 err |= vlan_get_rx_ctag_filter_info(dev);
9872                         } else {
9873                                 vlan_drop_rx_ctag_filter_info(dev);
9874                         }
9875                 }
9876
9877                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9878                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9879                                 dev->features = features;
9880                                 err |= vlan_get_rx_stag_filter_info(dev);
9881                         } else {
9882                                 vlan_drop_rx_stag_filter_info(dev);
9883                         }
9884                 }
9885
9886                 dev->features = features;
9887         }
9888
9889         return err < 0 ? 0 : 1;
9890 }
9891
9892 /**
9893  *      netdev_update_features - recalculate device features
9894  *      @dev: the device to check
9895  *
9896  *      Recalculate dev->features set and send notifications if it
9897  *      has changed. Should be called after driver or hardware dependent
9898  *      conditions might have changed that influence the features.
9899  */
9900 void netdev_update_features(struct net_device *dev)
9901 {
9902         if (__netdev_update_features(dev))
9903                 netdev_features_change(dev);
9904 }
9905 EXPORT_SYMBOL(netdev_update_features);
9906
9907 /**
9908  *      netdev_change_features - recalculate device features
9909  *      @dev: the device to check
9910  *
9911  *      Recalculate dev->features set and send notifications even
9912  *      if they have not changed. Should be called instead of
9913  *      netdev_update_features() if also dev->vlan_features might
9914  *      have changed to allow the changes to be propagated to stacked
9915  *      VLAN devices.
9916  */
9917 void netdev_change_features(struct net_device *dev)
9918 {
9919         __netdev_update_features(dev);
9920         netdev_features_change(dev);
9921 }
9922 EXPORT_SYMBOL(netdev_change_features);
9923
9924 /**
9925  *      netif_stacked_transfer_operstate -      transfer operstate
9926  *      @rootdev: the root or lower level device to transfer state from
9927  *      @dev: the device to transfer operstate to
9928  *
9929  *      Transfer operational state from root to device. This is normally
9930  *      called when a stacking relationship exists between the root
9931  *      device and the device(a leaf device).
9932  */
9933 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9934                                         struct net_device *dev)
9935 {
9936         if (rootdev->operstate == IF_OPER_DORMANT)
9937                 netif_dormant_on(dev);
9938         else
9939                 netif_dormant_off(dev);
9940
9941         if (rootdev->operstate == IF_OPER_TESTING)
9942                 netif_testing_on(dev);
9943         else
9944                 netif_testing_off(dev);
9945
9946         if (netif_carrier_ok(rootdev))
9947                 netif_carrier_on(dev);
9948         else
9949                 netif_carrier_off(dev);
9950 }
9951 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9952
9953 static int netif_alloc_rx_queues(struct net_device *dev)
9954 {
9955         unsigned int i, count = dev->num_rx_queues;
9956         struct netdev_rx_queue *rx;
9957         size_t sz = count * sizeof(*rx);
9958         int err = 0;
9959
9960         BUG_ON(count < 1);
9961
9962         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9963         if (!rx)
9964                 return -ENOMEM;
9965
9966         dev->_rx = rx;
9967
9968         for (i = 0; i < count; i++) {
9969                 rx[i].dev = dev;
9970
9971                 /* XDP RX-queue setup */
9972                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9973                 if (err < 0)
9974                         goto err_rxq_info;
9975         }
9976         return 0;
9977
9978 err_rxq_info:
9979         /* Rollback successful reg's and free other resources */
9980         while (i--)
9981                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9982         kvfree(dev->_rx);
9983         dev->_rx = NULL;
9984         return err;
9985 }
9986
9987 static void netif_free_rx_queues(struct net_device *dev)
9988 {
9989         unsigned int i, count = dev->num_rx_queues;
9990
9991         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9992         if (!dev->_rx)
9993                 return;
9994
9995         for (i = 0; i < count; i++)
9996                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9997
9998         kvfree(dev->_rx);
9999 }
10000
10001 static void netdev_init_one_queue(struct net_device *dev,
10002                                   struct netdev_queue *queue, void *_unused)
10003 {
10004         /* Initialize queue lock */
10005         spin_lock_init(&queue->_xmit_lock);
10006         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10007         queue->xmit_lock_owner = -1;
10008         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10009         queue->dev = dev;
10010 #ifdef CONFIG_BQL
10011         dql_init(&queue->dql, HZ);
10012 #endif
10013 }
10014
10015 static void netif_free_tx_queues(struct net_device *dev)
10016 {
10017         kvfree(dev->_tx);
10018 }
10019
10020 static int netif_alloc_netdev_queues(struct net_device *dev)
10021 {
10022         unsigned int count = dev->num_tx_queues;
10023         struct netdev_queue *tx;
10024         size_t sz = count * sizeof(*tx);
10025
10026         if (count < 1 || count > 0xffff)
10027                 return -EINVAL;
10028
10029         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10030         if (!tx)
10031                 return -ENOMEM;
10032
10033         dev->_tx = tx;
10034
10035         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10036         spin_lock_init(&dev->tx_global_lock);
10037
10038         return 0;
10039 }
10040
10041 void netif_tx_stop_all_queues(struct net_device *dev)
10042 {
10043         unsigned int i;
10044
10045         for (i = 0; i < dev->num_tx_queues; i++) {
10046                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10047
10048                 netif_tx_stop_queue(txq);
10049         }
10050 }
10051 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10052
10053 /**
10054  * register_netdevice() - register a network device
10055  * @dev: device to register
10056  *
10057  * Take a prepared network device structure and make it externally accessible.
10058  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10059  * Callers must hold the rtnl lock - you may want register_netdev()
10060  * instead of this.
10061  */
10062 int register_netdevice(struct net_device *dev)
10063 {
10064         int ret;
10065         struct net *net = dev_net(dev);
10066
10067         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10068                      NETDEV_FEATURE_COUNT);
10069         BUG_ON(dev_boot_phase);
10070         ASSERT_RTNL();
10071
10072         might_sleep();
10073
10074         /* When net_device's are persistent, this will be fatal. */
10075         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10076         BUG_ON(!net);
10077
10078         ret = ethtool_check_ops(dev->ethtool_ops);
10079         if (ret)
10080                 return ret;
10081
10082         spin_lock_init(&dev->addr_list_lock);
10083         netdev_set_addr_lockdep_class(dev);
10084
10085         ret = dev_get_valid_name(net, dev, dev->name);
10086         if (ret < 0)
10087                 goto out;
10088
10089         ret = -ENOMEM;
10090         dev->name_node = netdev_name_node_head_alloc(dev);
10091         if (!dev->name_node)
10092                 goto out;
10093
10094         /* Init, if this function is available */
10095         if (dev->netdev_ops->ndo_init) {
10096                 ret = dev->netdev_ops->ndo_init(dev);
10097                 if (ret) {
10098                         if (ret > 0)
10099                                 ret = -EIO;
10100                         goto err_free_name;
10101                 }
10102         }
10103
10104         if (((dev->hw_features | dev->features) &
10105              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10106             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10107              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10108                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10109                 ret = -EINVAL;
10110                 goto err_uninit;
10111         }
10112
10113         ret = dev_index_reserve(net, dev->ifindex);
10114         if (ret < 0)
10115                 goto err_uninit;
10116         dev->ifindex = ret;
10117
10118         /* Transfer changeable features to wanted_features and enable
10119          * software offloads (GSO and GRO).
10120          */
10121         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10122         dev->features |= NETIF_F_SOFT_FEATURES;
10123
10124         if (dev->udp_tunnel_nic_info) {
10125                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10126                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10127         }
10128
10129         dev->wanted_features = dev->features & dev->hw_features;
10130
10131         if (!(dev->flags & IFF_LOOPBACK))
10132                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10133
10134         /* If IPv4 TCP segmentation offload is supported we should also
10135          * allow the device to enable segmenting the frame with the option
10136          * of ignoring a static IP ID value.  This doesn't enable the
10137          * feature itself but allows the user to enable it later.
10138          */
10139         if (dev->hw_features & NETIF_F_TSO)
10140                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10141         if (dev->vlan_features & NETIF_F_TSO)
10142                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10143         if (dev->mpls_features & NETIF_F_TSO)
10144                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10145         if (dev->hw_enc_features & NETIF_F_TSO)
10146                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10147
10148         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10149          */
10150         dev->vlan_features |= NETIF_F_HIGHDMA;
10151
10152         /* Make NETIF_F_SG inheritable to tunnel devices.
10153          */
10154         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10155
10156         /* Make NETIF_F_SG inheritable to MPLS.
10157          */
10158         dev->mpls_features |= NETIF_F_SG;
10159
10160         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10161         ret = notifier_to_errno(ret);
10162         if (ret)
10163                 goto err_ifindex_release;
10164
10165         ret = netdev_register_kobject(dev);
10166         write_lock(&dev_base_lock);
10167         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10168         write_unlock(&dev_base_lock);
10169         if (ret)
10170                 goto err_uninit_notify;
10171
10172         __netdev_update_features(dev);
10173
10174         /*
10175          *      Default initial state at registry is that the
10176          *      device is present.
10177          */
10178
10179         set_bit(__LINK_STATE_PRESENT, &dev->state);
10180
10181         linkwatch_init_dev(dev);
10182
10183         dev_init_scheduler(dev);
10184
10185         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10186         list_netdevice(dev);
10187
10188         add_device_randomness(dev->dev_addr, dev->addr_len);
10189
10190         /* If the device has permanent device address, driver should
10191          * set dev_addr and also addr_assign_type should be set to
10192          * NET_ADDR_PERM (default value).
10193          */
10194         if (dev->addr_assign_type == NET_ADDR_PERM)
10195                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10196
10197         /* Notify protocols, that a new device appeared. */
10198         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10199         ret = notifier_to_errno(ret);
10200         if (ret) {
10201                 /* Expect explicit free_netdev() on failure */
10202                 dev->needs_free_netdev = false;
10203                 unregister_netdevice_queue(dev, NULL);
10204                 goto out;
10205         }
10206         /*
10207          *      Prevent userspace races by waiting until the network
10208          *      device is fully setup before sending notifications.
10209          */
10210         if (!dev->rtnl_link_ops ||
10211             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10212                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10213
10214 out:
10215         return ret;
10216
10217 err_uninit_notify:
10218         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10219 err_ifindex_release:
10220         dev_index_release(net, dev->ifindex);
10221 err_uninit:
10222         if (dev->netdev_ops->ndo_uninit)
10223                 dev->netdev_ops->ndo_uninit(dev);
10224         if (dev->priv_destructor)
10225                 dev->priv_destructor(dev);
10226 err_free_name:
10227         netdev_name_node_free(dev->name_node);
10228         goto out;
10229 }
10230 EXPORT_SYMBOL(register_netdevice);
10231
10232 /**
10233  *      init_dummy_netdev       - init a dummy network device for NAPI
10234  *      @dev: device to init
10235  *
10236  *      This takes a network device structure and initialize the minimum
10237  *      amount of fields so it can be used to schedule NAPI polls without
10238  *      registering a full blown interface. This is to be used by drivers
10239  *      that need to tie several hardware interfaces to a single NAPI
10240  *      poll scheduler due to HW limitations.
10241  */
10242 int init_dummy_netdev(struct net_device *dev)
10243 {
10244         /* Clear everything. Note we don't initialize spinlocks
10245          * are they aren't supposed to be taken by any of the
10246          * NAPI code and this dummy netdev is supposed to be
10247          * only ever used for NAPI polls
10248          */
10249         memset(dev, 0, sizeof(struct net_device));
10250
10251         /* make sure we BUG if trying to hit standard
10252          * register/unregister code path
10253          */
10254         dev->reg_state = NETREG_DUMMY;
10255
10256         /* NAPI wants this */
10257         INIT_LIST_HEAD(&dev->napi_list);
10258
10259         /* a dummy interface is started by default */
10260         set_bit(__LINK_STATE_PRESENT, &dev->state);
10261         set_bit(__LINK_STATE_START, &dev->state);
10262
10263         /* napi_busy_loop stats accounting wants this */
10264         dev_net_set(dev, &init_net);
10265
10266         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10267          * because users of this 'device' dont need to change
10268          * its refcount.
10269          */
10270
10271         return 0;
10272 }
10273 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10274
10275
10276 /**
10277  *      register_netdev - register a network device
10278  *      @dev: device to register
10279  *
10280  *      Take a completed network device structure and add it to the kernel
10281  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10282  *      chain. 0 is returned on success. A negative errno code is returned
10283  *      on a failure to set up the device, or if the name is a duplicate.
10284  *
10285  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10286  *      and expands the device name if you passed a format string to
10287  *      alloc_netdev.
10288  */
10289 int register_netdev(struct net_device *dev)
10290 {
10291         int err;
10292
10293         if (rtnl_lock_killable())
10294                 return -EINTR;
10295         err = register_netdevice(dev);
10296         rtnl_unlock();
10297         return err;
10298 }
10299 EXPORT_SYMBOL(register_netdev);
10300
10301 int netdev_refcnt_read(const struct net_device *dev)
10302 {
10303 #ifdef CONFIG_PCPU_DEV_REFCNT
10304         int i, refcnt = 0;
10305
10306         for_each_possible_cpu(i)
10307                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10308         return refcnt;
10309 #else
10310         return refcount_read(&dev->dev_refcnt);
10311 #endif
10312 }
10313 EXPORT_SYMBOL(netdev_refcnt_read);
10314
10315 int netdev_unregister_timeout_secs __read_mostly = 10;
10316
10317 #define WAIT_REFS_MIN_MSECS 1
10318 #define WAIT_REFS_MAX_MSECS 250
10319 /**
10320  * netdev_wait_allrefs_any - wait until all references are gone.
10321  * @list: list of net_devices to wait on
10322  *
10323  * This is called when unregistering network devices.
10324  *
10325  * Any protocol or device that holds a reference should register
10326  * for netdevice notification, and cleanup and put back the
10327  * reference if they receive an UNREGISTER event.
10328  * We can get stuck here if buggy protocols don't correctly
10329  * call dev_put.
10330  */
10331 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10332 {
10333         unsigned long rebroadcast_time, warning_time;
10334         struct net_device *dev;
10335         int wait = 0;
10336
10337         rebroadcast_time = warning_time = jiffies;
10338
10339         list_for_each_entry(dev, list, todo_list)
10340                 if (netdev_refcnt_read(dev) == 1)
10341                         return dev;
10342
10343         while (true) {
10344                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10345                         rtnl_lock();
10346
10347                         /* Rebroadcast unregister notification */
10348                         list_for_each_entry(dev, list, todo_list)
10349                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10350
10351                         __rtnl_unlock();
10352                         rcu_barrier();
10353                         rtnl_lock();
10354
10355                         list_for_each_entry(dev, list, todo_list)
10356                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10357                                              &dev->state)) {
10358                                         /* We must not have linkwatch events
10359                                          * pending on unregister. If this
10360                                          * happens, we simply run the queue
10361                                          * unscheduled, resulting in a noop
10362                                          * for this device.
10363                                          */
10364                                         linkwatch_run_queue();
10365                                         break;
10366                                 }
10367
10368                         __rtnl_unlock();
10369
10370                         rebroadcast_time = jiffies;
10371                 }
10372
10373                 if (!wait) {
10374                         rcu_barrier();
10375                         wait = WAIT_REFS_MIN_MSECS;
10376                 } else {
10377                         msleep(wait);
10378                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10379                 }
10380
10381                 list_for_each_entry(dev, list, todo_list)
10382                         if (netdev_refcnt_read(dev) == 1)
10383                                 return dev;
10384
10385                 if (time_after(jiffies, warning_time +
10386                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10387                         list_for_each_entry(dev, list, todo_list) {
10388                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10389                                          dev->name, netdev_refcnt_read(dev));
10390                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10391                         }
10392
10393                         warning_time = jiffies;
10394                 }
10395         }
10396 }
10397
10398 /* The sequence is:
10399  *
10400  *      rtnl_lock();
10401  *      ...
10402  *      register_netdevice(x1);
10403  *      register_netdevice(x2);
10404  *      ...
10405  *      unregister_netdevice(y1);
10406  *      unregister_netdevice(y2);
10407  *      ...
10408  *      rtnl_unlock();
10409  *      free_netdev(y1);
10410  *      free_netdev(y2);
10411  *
10412  * We are invoked by rtnl_unlock().
10413  * This allows us to deal with problems:
10414  * 1) We can delete sysfs objects which invoke hotplug
10415  *    without deadlocking with linkwatch via keventd.
10416  * 2) Since we run with the RTNL semaphore not held, we can sleep
10417  *    safely in order to wait for the netdev refcnt to drop to zero.
10418  *
10419  * We must not return until all unregister events added during
10420  * the interval the lock was held have been completed.
10421  */
10422 void netdev_run_todo(void)
10423 {
10424         struct net_device *dev, *tmp;
10425         struct list_head list;
10426 #ifdef CONFIG_LOCKDEP
10427         struct list_head unlink_list;
10428
10429         list_replace_init(&net_unlink_list, &unlink_list);
10430
10431         while (!list_empty(&unlink_list)) {
10432                 struct net_device *dev = list_first_entry(&unlink_list,
10433                                                           struct net_device,
10434                                                           unlink_list);
10435                 list_del_init(&dev->unlink_list);
10436                 dev->nested_level = dev->lower_level - 1;
10437         }
10438 #endif
10439
10440         /* Snapshot list, allow later requests */
10441         list_replace_init(&net_todo_list, &list);
10442
10443         __rtnl_unlock();
10444
10445         /* Wait for rcu callbacks to finish before next phase */
10446         if (!list_empty(&list))
10447                 rcu_barrier();
10448
10449         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10450                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10451                         netdev_WARN(dev, "run_todo but not unregistering\n");
10452                         list_del(&dev->todo_list);
10453                         continue;
10454                 }
10455
10456                 write_lock(&dev_base_lock);
10457                 dev->reg_state = NETREG_UNREGISTERED;
10458                 write_unlock(&dev_base_lock);
10459                 linkwatch_forget_dev(dev);
10460         }
10461
10462         while (!list_empty(&list)) {
10463                 dev = netdev_wait_allrefs_any(&list);
10464                 list_del(&dev->todo_list);
10465
10466                 /* paranoia */
10467                 BUG_ON(netdev_refcnt_read(dev) != 1);
10468                 BUG_ON(!list_empty(&dev->ptype_all));
10469                 BUG_ON(!list_empty(&dev->ptype_specific));
10470                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10471                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10472
10473                 if (dev->priv_destructor)
10474                         dev->priv_destructor(dev);
10475                 if (dev->needs_free_netdev)
10476                         free_netdev(dev);
10477
10478                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10479                         wake_up(&netdev_unregistering_wq);
10480
10481                 /* Free network device */
10482                 kobject_put(&dev->dev.kobj);
10483         }
10484 }
10485
10486 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10487  * all the same fields in the same order as net_device_stats, with only
10488  * the type differing, but rtnl_link_stats64 may have additional fields
10489  * at the end for newer counters.
10490  */
10491 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10492                              const struct net_device_stats *netdev_stats)
10493 {
10494         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10495         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10496         u64 *dst = (u64 *)stats64;
10497
10498         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10499         for (i = 0; i < n; i++)
10500                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10501         /* zero out counters that only exist in rtnl_link_stats64 */
10502         memset((char *)stats64 + n * sizeof(u64), 0,
10503                sizeof(*stats64) - n * sizeof(u64));
10504 }
10505 EXPORT_SYMBOL(netdev_stats_to_stats64);
10506
10507 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10508 {
10509         struct net_device_core_stats __percpu *p;
10510
10511         p = alloc_percpu_gfp(struct net_device_core_stats,
10512                              GFP_ATOMIC | __GFP_NOWARN);
10513
10514         if (p && cmpxchg(&dev->core_stats, NULL, p))
10515                 free_percpu(p);
10516
10517         /* This READ_ONCE() pairs with the cmpxchg() above */
10518         return READ_ONCE(dev->core_stats);
10519 }
10520 EXPORT_SYMBOL(netdev_core_stats_alloc);
10521
10522 /**
10523  *      dev_get_stats   - get network device statistics
10524  *      @dev: device to get statistics from
10525  *      @storage: place to store stats
10526  *
10527  *      Get network statistics from device. Return @storage.
10528  *      The device driver may provide its own method by setting
10529  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10530  *      otherwise the internal statistics structure is used.
10531  */
10532 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10533                                         struct rtnl_link_stats64 *storage)
10534 {
10535         const struct net_device_ops *ops = dev->netdev_ops;
10536         const struct net_device_core_stats __percpu *p;
10537
10538         if (ops->ndo_get_stats64) {
10539                 memset(storage, 0, sizeof(*storage));
10540                 ops->ndo_get_stats64(dev, storage);
10541         } else if (ops->ndo_get_stats) {
10542                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10543         } else {
10544                 netdev_stats_to_stats64(storage, &dev->stats);
10545         }
10546
10547         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10548         p = READ_ONCE(dev->core_stats);
10549         if (p) {
10550                 const struct net_device_core_stats *core_stats;
10551                 int i;
10552
10553                 for_each_possible_cpu(i) {
10554                         core_stats = per_cpu_ptr(p, i);
10555                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10556                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10557                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10558                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10559                 }
10560         }
10561         return storage;
10562 }
10563 EXPORT_SYMBOL(dev_get_stats);
10564
10565 /**
10566  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10567  *      @s: place to store stats
10568  *      @netstats: per-cpu network stats to read from
10569  *
10570  *      Read per-cpu network statistics and populate the related fields in @s.
10571  */
10572 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10573                            const struct pcpu_sw_netstats __percpu *netstats)
10574 {
10575         int cpu;
10576
10577         for_each_possible_cpu(cpu) {
10578                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10579                 const struct pcpu_sw_netstats *stats;
10580                 unsigned int start;
10581
10582                 stats = per_cpu_ptr(netstats, cpu);
10583                 do {
10584                         start = u64_stats_fetch_begin(&stats->syncp);
10585                         rx_packets = u64_stats_read(&stats->rx_packets);
10586                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10587                         tx_packets = u64_stats_read(&stats->tx_packets);
10588                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10589                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10590
10591                 s->rx_packets += rx_packets;
10592                 s->rx_bytes   += rx_bytes;
10593                 s->tx_packets += tx_packets;
10594                 s->tx_bytes   += tx_bytes;
10595         }
10596 }
10597 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10598
10599 /**
10600  *      dev_get_tstats64 - ndo_get_stats64 implementation
10601  *      @dev: device to get statistics from
10602  *      @s: place to store stats
10603  *
10604  *      Populate @s from dev->stats and dev->tstats. Can be used as
10605  *      ndo_get_stats64() callback.
10606  */
10607 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10608 {
10609         netdev_stats_to_stats64(s, &dev->stats);
10610         dev_fetch_sw_netstats(s, dev->tstats);
10611 }
10612 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10613
10614 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10615 {
10616         struct netdev_queue *queue = dev_ingress_queue(dev);
10617
10618 #ifdef CONFIG_NET_CLS_ACT
10619         if (queue)
10620                 return queue;
10621         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10622         if (!queue)
10623                 return NULL;
10624         netdev_init_one_queue(dev, queue, NULL);
10625         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10626         RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10627         rcu_assign_pointer(dev->ingress_queue, queue);
10628 #endif
10629         return queue;
10630 }
10631
10632 static const struct ethtool_ops default_ethtool_ops;
10633
10634 void netdev_set_default_ethtool_ops(struct net_device *dev,
10635                                     const struct ethtool_ops *ops)
10636 {
10637         if (dev->ethtool_ops == &default_ethtool_ops)
10638                 dev->ethtool_ops = ops;
10639 }
10640 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10641
10642 /**
10643  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10644  * @dev: netdev to enable the IRQ coalescing on
10645  *
10646  * Sets a conservative default for SW IRQ coalescing. Users can use
10647  * sysfs attributes to override the default values.
10648  */
10649 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10650 {
10651         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10652
10653         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10654                 dev->gro_flush_timeout = 20000;
10655                 dev->napi_defer_hard_irqs = 1;
10656         }
10657 }
10658 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10659
10660 void netdev_freemem(struct net_device *dev)
10661 {
10662         char *addr = (char *)dev - dev->padded;
10663
10664         kvfree(addr);
10665 }
10666
10667 /**
10668  * alloc_netdev_mqs - allocate network device
10669  * @sizeof_priv: size of private data to allocate space for
10670  * @name: device name format string
10671  * @name_assign_type: origin of device name
10672  * @setup: callback to initialize device
10673  * @txqs: the number of TX subqueues to allocate
10674  * @rxqs: the number of RX subqueues to allocate
10675  *
10676  * Allocates a struct net_device with private data area for driver use
10677  * and performs basic initialization.  Also allocates subqueue structs
10678  * for each queue on the device.
10679  */
10680 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10681                 unsigned char name_assign_type,
10682                 void (*setup)(struct net_device *),
10683                 unsigned int txqs, unsigned int rxqs)
10684 {
10685         struct net_device *dev;
10686         unsigned int alloc_size;
10687         struct net_device *p;
10688
10689         BUG_ON(strlen(name) >= sizeof(dev->name));
10690
10691         if (txqs < 1) {
10692                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10693                 return NULL;
10694         }
10695
10696         if (rxqs < 1) {
10697                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10698                 return NULL;
10699         }
10700
10701         alloc_size = sizeof(struct net_device);
10702         if (sizeof_priv) {
10703                 /* ensure 32-byte alignment of private area */
10704                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10705                 alloc_size += sizeof_priv;
10706         }
10707         /* ensure 32-byte alignment of whole construct */
10708         alloc_size += NETDEV_ALIGN - 1;
10709
10710         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10711         if (!p)
10712                 return NULL;
10713
10714         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10715         dev->padded = (char *)dev - (char *)p;
10716
10717         ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10718 #ifdef CONFIG_PCPU_DEV_REFCNT
10719         dev->pcpu_refcnt = alloc_percpu(int);
10720         if (!dev->pcpu_refcnt)
10721                 goto free_dev;
10722         __dev_hold(dev);
10723 #else
10724         refcount_set(&dev->dev_refcnt, 1);
10725 #endif
10726
10727         if (dev_addr_init(dev))
10728                 goto free_pcpu;
10729
10730         dev_mc_init(dev);
10731         dev_uc_init(dev);
10732
10733         dev_net_set(dev, &init_net);
10734
10735         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10736         dev->xdp_zc_max_segs = 1;
10737         dev->gso_max_segs = GSO_MAX_SEGS;
10738         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10739         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10740         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10741         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10742         dev->tso_max_segs = TSO_MAX_SEGS;
10743         dev->upper_level = 1;
10744         dev->lower_level = 1;
10745 #ifdef CONFIG_LOCKDEP
10746         dev->nested_level = 0;
10747         INIT_LIST_HEAD(&dev->unlink_list);
10748 #endif
10749
10750         INIT_LIST_HEAD(&dev->napi_list);
10751         INIT_LIST_HEAD(&dev->unreg_list);
10752         INIT_LIST_HEAD(&dev->close_list);
10753         INIT_LIST_HEAD(&dev->link_watch_list);
10754         INIT_LIST_HEAD(&dev->adj_list.upper);
10755         INIT_LIST_HEAD(&dev->adj_list.lower);
10756         INIT_LIST_HEAD(&dev->ptype_all);
10757         INIT_LIST_HEAD(&dev->ptype_specific);
10758         INIT_LIST_HEAD(&dev->net_notifier_list);
10759 #ifdef CONFIG_NET_SCHED
10760         hash_init(dev->qdisc_hash);
10761 #endif
10762         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10763         setup(dev);
10764
10765         if (!dev->tx_queue_len) {
10766                 dev->priv_flags |= IFF_NO_QUEUE;
10767                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10768         }
10769
10770         dev->num_tx_queues = txqs;
10771         dev->real_num_tx_queues = txqs;
10772         if (netif_alloc_netdev_queues(dev))
10773                 goto free_all;
10774
10775         dev->num_rx_queues = rxqs;
10776         dev->real_num_rx_queues = rxqs;
10777         if (netif_alloc_rx_queues(dev))
10778                 goto free_all;
10779
10780         strcpy(dev->name, name);
10781         dev->name_assign_type = name_assign_type;
10782         dev->group = INIT_NETDEV_GROUP;
10783         if (!dev->ethtool_ops)
10784                 dev->ethtool_ops = &default_ethtool_ops;
10785
10786         nf_hook_netdev_init(dev);
10787
10788         return dev;
10789
10790 free_all:
10791         free_netdev(dev);
10792         return NULL;
10793
10794 free_pcpu:
10795 #ifdef CONFIG_PCPU_DEV_REFCNT
10796         free_percpu(dev->pcpu_refcnt);
10797 free_dev:
10798 #endif
10799         netdev_freemem(dev);
10800         return NULL;
10801 }
10802 EXPORT_SYMBOL(alloc_netdev_mqs);
10803
10804 /**
10805  * free_netdev - free network device
10806  * @dev: device
10807  *
10808  * This function does the last stage of destroying an allocated device
10809  * interface. The reference to the device object is released. If this
10810  * is the last reference then it will be freed.Must be called in process
10811  * context.
10812  */
10813 void free_netdev(struct net_device *dev)
10814 {
10815         struct napi_struct *p, *n;
10816
10817         might_sleep();
10818
10819         /* When called immediately after register_netdevice() failed the unwind
10820          * handling may still be dismantling the device. Handle that case by
10821          * deferring the free.
10822          */
10823         if (dev->reg_state == NETREG_UNREGISTERING) {
10824                 ASSERT_RTNL();
10825                 dev->needs_free_netdev = true;
10826                 return;
10827         }
10828
10829         netif_free_tx_queues(dev);
10830         netif_free_rx_queues(dev);
10831
10832         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10833
10834         /* Flush device addresses */
10835         dev_addr_flush(dev);
10836
10837         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10838                 netif_napi_del(p);
10839
10840         ref_tracker_dir_exit(&dev->refcnt_tracker);
10841 #ifdef CONFIG_PCPU_DEV_REFCNT
10842         free_percpu(dev->pcpu_refcnt);
10843         dev->pcpu_refcnt = NULL;
10844 #endif
10845         free_percpu(dev->core_stats);
10846         dev->core_stats = NULL;
10847         free_percpu(dev->xdp_bulkq);
10848         dev->xdp_bulkq = NULL;
10849
10850         /*  Compatibility with error handling in drivers */
10851         if (dev->reg_state == NETREG_UNINITIALIZED) {
10852                 netdev_freemem(dev);
10853                 return;
10854         }
10855
10856         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10857         dev->reg_state = NETREG_RELEASED;
10858
10859         /* will free via device release */
10860         put_device(&dev->dev);
10861 }
10862 EXPORT_SYMBOL(free_netdev);
10863
10864 /**
10865  *      synchronize_net -  Synchronize with packet receive processing
10866  *
10867  *      Wait for packets currently being received to be done.
10868  *      Does not block later packets from starting.
10869  */
10870 void synchronize_net(void)
10871 {
10872         might_sleep();
10873         if (rtnl_is_locked())
10874                 synchronize_rcu_expedited();
10875         else
10876                 synchronize_rcu();
10877 }
10878 EXPORT_SYMBOL(synchronize_net);
10879
10880 /**
10881  *      unregister_netdevice_queue - remove device from the kernel
10882  *      @dev: device
10883  *      @head: list
10884  *
10885  *      This function shuts down a device interface and removes it
10886  *      from the kernel tables.
10887  *      If head not NULL, device is queued to be unregistered later.
10888  *
10889  *      Callers must hold the rtnl semaphore.  You may want
10890  *      unregister_netdev() instead of this.
10891  */
10892
10893 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10894 {
10895         ASSERT_RTNL();
10896
10897         if (head) {
10898                 list_move_tail(&dev->unreg_list, head);
10899         } else {
10900                 LIST_HEAD(single);
10901
10902                 list_add(&dev->unreg_list, &single);
10903                 unregister_netdevice_many(&single);
10904         }
10905 }
10906 EXPORT_SYMBOL(unregister_netdevice_queue);
10907
10908 void unregister_netdevice_many_notify(struct list_head *head,
10909                                       u32 portid, const struct nlmsghdr *nlh)
10910 {
10911         struct net_device *dev, *tmp;
10912         LIST_HEAD(close_head);
10913
10914         BUG_ON(dev_boot_phase);
10915         ASSERT_RTNL();
10916
10917         if (list_empty(head))
10918                 return;
10919
10920         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10921                 /* Some devices call without registering
10922                  * for initialization unwind. Remove those
10923                  * devices and proceed with the remaining.
10924                  */
10925                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10926                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10927                                  dev->name, dev);
10928
10929                         WARN_ON(1);
10930                         list_del(&dev->unreg_list);
10931                         continue;
10932                 }
10933                 dev->dismantle = true;
10934                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10935         }
10936
10937         /* If device is running, close it first. */
10938         list_for_each_entry(dev, head, unreg_list)
10939                 list_add_tail(&dev->close_list, &close_head);
10940         dev_close_many(&close_head, true);
10941
10942         list_for_each_entry(dev, head, unreg_list) {
10943                 /* And unlink it from device chain. */
10944                 write_lock(&dev_base_lock);
10945                 unlist_netdevice(dev, false);
10946                 dev->reg_state = NETREG_UNREGISTERING;
10947                 write_unlock(&dev_base_lock);
10948         }
10949         flush_all_backlogs();
10950
10951         synchronize_net();
10952
10953         list_for_each_entry(dev, head, unreg_list) {
10954                 struct sk_buff *skb = NULL;
10955
10956                 /* Shutdown queueing discipline. */
10957                 dev_shutdown(dev);
10958                 dev_tcx_uninstall(dev);
10959                 dev_xdp_uninstall(dev);
10960                 bpf_dev_bound_netdev_unregister(dev);
10961
10962                 netdev_offload_xstats_disable_all(dev);
10963
10964                 /* Notify protocols, that we are about to destroy
10965                  * this device. They should clean all the things.
10966                  */
10967                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10968
10969                 if (!dev->rtnl_link_ops ||
10970                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10971                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10972                                                      GFP_KERNEL, NULL, 0,
10973                                                      portid, nlh);
10974
10975                 /*
10976                  *      Flush the unicast and multicast chains
10977                  */
10978                 dev_uc_flush(dev);
10979                 dev_mc_flush(dev);
10980
10981                 netdev_name_node_alt_flush(dev);
10982                 netdev_name_node_free(dev->name_node);
10983
10984                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10985
10986                 if (dev->netdev_ops->ndo_uninit)
10987                         dev->netdev_ops->ndo_uninit(dev);
10988
10989                 if (skb)
10990                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10991
10992                 /* Notifier chain MUST detach us all upper devices. */
10993                 WARN_ON(netdev_has_any_upper_dev(dev));
10994                 WARN_ON(netdev_has_any_lower_dev(dev));
10995
10996                 /* Remove entries from kobject tree */
10997                 netdev_unregister_kobject(dev);
10998 #ifdef CONFIG_XPS
10999                 /* Remove XPS queueing entries */
11000                 netif_reset_xps_queues_gt(dev, 0);
11001 #endif
11002         }
11003
11004         synchronize_net();
11005
11006         list_for_each_entry(dev, head, unreg_list) {
11007                 netdev_put(dev, &dev->dev_registered_tracker);
11008                 net_set_todo(dev);
11009         }
11010
11011         list_del(head);
11012 }
11013
11014 /**
11015  *      unregister_netdevice_many - unregister many devices
11016  *      @head: list of devices
11017  *
11018  *  Note: As most callers use a stack allocated list_head,
11019  *  we force a list_del() to make sure stack wont be corrupted later.
11020  */
11021 void unregister_netdevice_many(struct list_head *head)
11022 {
11023         unregister_netdevice_many_notify(head, 0, NULL);
11024 }
11025 EXPORT_SYMBOL(unregister_netdevice_many);
11026
11027 /**
11028  *      unregister_netdev - remove device from the kernel
11029  *      @dev: device
11030  *
11031  *      This function shuts down a device interface and removes it
11032  *      from the kernel tables.
11033  *
11034  *      This is just a wrapper for unregister_netdevice that takes
11035  *      the rtnl semaphore.  In general you want to use this and not
11036  *      unregister_netdevice.
11037  */
11038 void unregister_netdev(struct net_device *dev)
11039 {
11040         rtnl_lock();
11041         unregister_netdevice(dev);
11042         rtnl_unlock();
11043 }
11044 EXPORT_SYMBOL(unregister_netdev);
11045
11046 /**
11047  *      __dev_change_net_namespace - move device to different nethost namespace
11048  *      @dev: device
11049  *      @net: network namespace
11050  *      @pat: If not NULL name pattern to try if the current device name
11051  *            is already taken in the destination network namespace.
11052  *      @new_ifindex: If not zero, specifies device index in the target
11053  *                    namespace.
11054  *
11055  *      This function shuts down a device interface and moves it
11056  *      to a new network namespace. On success 0 is returned, on
11057  *      a failure a netagive errno code is returned.
11058  *
11059  *      Callers must hold the rtnl semaphore.
11060  */
11061
11062 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11063                                const char *pat, int new_ifindex)
11064 {
11065         struct netdev_name_node *name_node;
11066         struct net *net_old = dev_net(dev);
11067         char new_name[IFNAMSIZ] = {};
11068         int err, new_nsid;
11069
11070         ASSERT_RTNL();
11071
11072         /* Don't allow namespace local devices to be moved. */
11073         err = -EINVAL;
11074         if (dev->features & NETIF_F_NETNS_LOCAL)
11075                 goto out;
11076
11077         /* Ensure the device has been registrered */
11078         if (dev->reg_state != NETREG_REGISTERED)
11079                 goto out;
11080
11081         /* Get out if there is nothing todo */
11082         err = 0;
11083         if (net_eq(net_old, net))
11084                 goto out;
11085
11086         /* Pick the destination device name, and ensure
11087          * we can use it in the destination network namespace.
11088          */
11089         err = -EEXIST;
11090         if (netdev_name_in_use(net, dev->name)) {
11091                 /* We get here if we can't use the current device name */
11092                 if (!pat)
11093                         goto out;
11094                 err = dev_prep_valid_name(net, dev, pat, new_name);
11095                 if (err < 0)
11096                         goto out;
11097         }
11098         /* Check that none of the altnames conflicts. */
11099         err = -EEXIST;
11100         netdev_for_each_altname(dev, name_node)
11101                 if (netdev_name_in_use(net, name_node->name))
11102                         goto out;
11103
11104         /* Check that new_ifindex isn't used yet. */
11105         if (new_ifindex) {
11106                 err = dev_index_reserve(net, new_ifindex);
11107                 if (err < 0)
11108                         goto out;
11109         } else {
11110                 /* If there is an ifindex conflict assign a new one */
11111                 err = dev_index_reserve(net, dev->ifindex);
11112                 if (err == -EBUSY)
11113                         err = dev_index_reserve(net, 0);
11114                 if (err < 0)
11115                         goto out;
11116                 new_ifindex = err;
11117         }
11118
11119         /*
11120          * And now a mini version of register_netdevice unregister_netdevice.
11121          */
11122
11123         /* If device is running close it first. */
11124         dev_close(dev);
11125
11126         /* And unlink it from device chain */
11127         unlist_netdevice(dev, true);
11128
11129         synchronize_net();
11130
11131         /* Shutdown queueing discipline. */
11132         dev_shutdown(dev);
11133
11134         /* Notify protocols, that we are about to destroy
11135          * this device. They should clean all the things.
11136          *
11137          * Note that dev->reg_state stays at NETREG_REGISTERED.
11138          * This is wanted because this way 8021q and macvlan know
11139          * the device is just moving and can keep their slaves up.
11140          */
11141         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11142         rcu_barrier();
11143
11144         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11145
11146         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11147                             new_ifindex);
11148
11149         /*
11150          *      Flush the unicast and multicast chains
11151          */
11152         dev_uc_flush(dev);
11153         dev_mc_flush(dev);
11154
11155         /* Send a netdev-removed uevent to the old namespace */
11156         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11157         netdev_adjacent_del_links(dev);
11158
11159         /* Move per-net netdevice notifiers that are following the netdevice */
11160         move_netdevice_notifiers_dev_net(dev, net);
11161
11162         /* Actually switch the network namespace */
11163         dev_net_set(dev, net);
11164         dev->ifindex = new_ifindex;
11165
11166         /* Send a netdev-add uevent to the new namespace */
11167         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11168         netdev_adjacent_add_links(dev);
11169
11170         if (new_name[0]) /* Rename the netdev to prepared name */
11171                 strscpy(dev->name, new_name, IFNAMSIZ);
11172
11173         /* Fixup kobjects */
11174         err = device_rename(&dev->dev, dev->name);
11175         WARN_ON(err);
11176
11177         /* Adapt owner in case owning user namespace of target network
11178          * namespace is different from the original one.
11179          */
11180         err = netdev_change_owner(dev, net_old, net);
11181         WARN_ON(err);
11182
11183         /* Add the device back in the hashes */
11184         list_netdevice(dev);
11185
11186         /* Notify protocols, that a new device appeared. */
11187         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11188
11189         /*
11190          *      Prevent userspace races by waiting until the network
11191          *      device is fully setup before sending notifications.
11192          */
11193         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11194
11195         synchronize_net();
11196         err = 0;
11197 out:
11198         return err;
11199 }
11200 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11201
11202 static int dev_cpu_dead(unsigned int oldcpu)
11203 {
11204         struct sk_buff **list_skb;
11205         struct sk_buff *skb;
11206         unsigned int cpu;
11207         struct softnet_data *sd, *oldsd, *remsd = NULL;
11208
11209         local_irq_disable();
11210         cpu = smp_processor_id();
11211         sd = &per_cpu(softnet_data, cpu);
11212         oldsd = &per_cpu(softnet_data, oldcpu);
11213
11214         /* Find end of our completion_queue. */
11215         list_skb = &sd->completion_queue;
11216         while (*list_skb)
11217                 list_skb = &(*list_skb)->next;
11218         /* Append completion queue from offline CPU. */
11219         *list_skb = oldsd->completion_queue;
11220         oldsd->completion_queue = NULL;
11221
11222         /* Append output queue from offline CPU. */
11223         if (oldsd->output_queue) {
11224                 *sd->output_queue_tailp = oldsd->output_queue;
11225                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11226                 oldsd->output_queue = NULL;
11227                 oldsd->output_queue_tailp = &oldsd->output_queue;
11228         }
11229         /* Append NAPI poll list from offline CPU, with one exception :
11230          * process_backlog() must be called by cpu owning percpu backlog.
11231          * We properly handle process_queue & input_pkt_queue later.
11232          */
11233         while (!list_empty(&oldsd->poll_list)) {
11234                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11235                                                             struct napi_struct,
11236                                                             poll_list);
11237
11238                 list_del_init(&napi->poll_list);
11239                 if (napi->poll == process_backlog)
11240                         napi->state = 0;
11241                 else
11242                         ____napi_schedule(sd, napi);
11243         }
11244
11245         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11246         local_irq_enable();
11247
11248 #ifdef CONFIG_RPS
11249         remsd = oldsd->rps_ipi_list;
11250         oldsd->rps_ipi_list = NULL;
11251 #endif
11252         /* send out pending IPI's on offline CPU */
11253         net_rps_send_ipi(remsd);
11254
11255         /* Process offline CPU's input_pkt_queue */
11256         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11257                 netif_rx(skb);
11258                 input_queue_head_incr(oldsd);
11259         }
11260         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11261                 netif_rx(skb);
11262                 input_queue_head_incr(oldsd);
11263         }
11264
11265         return 0;
11266 }
11267
11268 /**
11269  *      netdev_increment_features - increment feature set by one
11270  *      @all: current feature set
11271  *      @one: new feature set
11272  *      @mask: mask feature set
11273  *
11274  *      Computes a new feature set after adding a device with feature set
11275  *      @one to the master device with current feature set @all.  Will not
11276  *      enable anything that is off in @mask. Returns the new feature set.
11277  */
11278 netdev_features_t netdev_increment_features(netdev_features_t all,
11279         netdev_features_t one, netdev_features_t mask)
11280 {
11281         if (mask & NETIF_F_HW_CSUM)
11282                 mask |= NETIF_F_CSUM_MASK;
11283         mask |= NETIF_F_VLAN_CHALLENGED;
11284
11285         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11286         all &= one | ~NETIF_F_ALL_FOR_ALL;
11287
11288         /* If one device supports hw checksumming, set for all. */
11289         if (all & NETIF_F_HW_CSUM)
11290                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11291
11292         return all;
11293 }
11294 EXPORT_SYMBOL(netdev_increment_features);
11295
11296 static struct hlist_head * __net_init netdev_create_hash(void)
11297 {
11298         int i;
11299         struct hlist_head *hash;
11300
11301         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11302         if (hash != NULL)
11303                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11304                         INIT_HLIST_HEAD(&hash[i]);
11305
11306         return hash;
11307 }
11308
11309 /* Initialize per network namespace state */
11310 static int __net_init netdev_init(struct net *net)
11311 {
11312         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11313                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11314
11315         INIT_LIST_HEAD(&net->dev_base_head);
11316
11317         net->dev_name_head = netdev_create_hash();
11318         if (net->dev_name_head == NULL)
11319                 goto err_name;
11320
11321         net->dev_index_head = netdev_create_hash();
11322         if (net->dev_index_head == NULL)
11323                 goto err_idx;
11324
11325         xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11326
11327         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11328
11329         return 0;
11330
11331 err_idx:
11332         kfree(net->dev_name_head);
11333 err_name:
11334         return -ENOMEM;
11335 }
11336
11337 /**
11338  *      netdev_drivername - network driver for the device
11339  *      @dev: network device
11340  *
11341  *      Determine network driver for device.
11342  */
11343 const char *netdev_drivername(const struct net_device *dev)
11344 {
11345         const struct device_driver *driver;
11346         const struct device *parent;
11347         const char *empty = "";
11348
11349         parent = dev->dev.parent;
11350         if (!parent)
11351                 return empty;
11352
11353         driver = parent->driver;
11354         if (driver && driver->name)
11355                 return driver->name;
11356         return empty;
11357 }
11358
11359 static void __netdev_printk(const char *level, const struct net_device *dev,
11360                             struct va_format *vaf)
11361 {
11362         if (dev && dev->dev.parent) {
11363                 dev_printk_emit(level[1] - '0',
11364                                 dev->dev.parent,
11365                                 "%s %s %s%s: %pV",
11366                                 dev_driver_string(dev->dev.parent),
11367                                 dev_name(dev->dev.parent),
11368                                 netdev_name(dev), netdev_reg_state(dev),
11369                                 vaf);
11370         } else if (dev) {
11371                 printk("%s%s%s: %pV",
11372                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11373         } else {
11374                 printk("%s(NULL net_device): %pV", level, vaf);
11375         }
11376 }
11377
11378 void netdev_printk(const char *level, const struct net_device *dev,
11379                    const char *format, ...)
11380 {
11381         struct va_format vaf;
11382         va_list args;
11383
11384         va_start(args, format);
11385
11386         vaf.fmt = format;
11387         vaf.va = &args;
11388
11389         __netdev_printk(level, dev, &vaf);
11390
11391         va_end(args);
11392 }
11393 EXPORT_SYMBOL(netdev_printk);
11394
11395 #define define_netdev_printk_level(func, level)                 \
11396 void func(const struct net_device *dev, const char *fmt, ...)   \
11397 {                                                               \
11398         struct va_format vaf;                                   \
11399         va_list args;                                           \
11400                                                                 \
11401         va_start(args, fmt);                                    \
11402                                                                 \
11403         vaf.fmt = fmt;                                          \
11404         vaf.va = &args;                                         \
11405                                                                 \
11406         __netdev_printk(level, dev, &vaf);                      \
11407                                                                 \
11408         va_end(args);                                           \
11409 }                                                               \
11410 EXPORT_SYMBOL(func);
11411
11412 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11413 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11414 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11415 define_netdev_printk_level(netdev_err, KERN_ERR);
11416 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11417 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11418 define_netdev_printk_level(netdev_info, KERN_INFO);
11419
11420 static void __net_exit netdev_exit(struct net *net)
11421 {
11422         kfree(net->dev_name_head);
11423         kfree(net->dev_index_head);
11424         xa_destroy(&net->dev_by_index);
11425         if (net != &init_net)
11426                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11427 }
11428
11429 static struct pernet_operations __net_initdata netdev_net_ops = {
11430         .init = netdev_init,
11431         .exit = netdev_exit,
11432 };
11433
11434 static void __net_exit default_device_exit_net(struct net *net)
11435 {
11436         struct net_device *dev, *aux;
11437         /*
11438          * Push all migratable network devices back to the
11439          * initial network namespace
11440          */
11441         ASSERT_RTNL();
11442         for_each_netdev_safe(net, dev, aux) {
11443                 int err;
11444                 char fb_name[IFNAMSIZ];
11445
11446                 /* Ignore unmoveable devices (i.e. loopback) */
11447                 if (dev->features & NETIF_F_NETNS_LOCAL)
11448                         continue;
11449
11450                 /* Leave virtual devices for the generic cleanup */
11451                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11452                         continue;
11453
11454                 /* Push remaining network devices to init_net */
11455                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11456                 if (netdev_name_in_use(&init_net, fb_name))
11457                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11458                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11459                 if (err) {
11460                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11461                                  __func__, dev->name, err);
11462                         BUG();
11463                 }
11464         }
11465 }
11466
11467 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11468 {
11469         /* At exit all network devices most be removed from a network
11470          * namespace.  Do this in the reverse order of registration.
11471          * Do this across as many network namespaces as possible to
11472          * improve batching efficiency.
11473          */
11474         struct net_device *dev;
11475         struct net *net;
11476         LIST_HEAD(dev_kill_list);
11477
11478         rtnl_lock();
11479         list_for_each_entry(net, net_list, exit_list) {
11480                 default_device_exit_net(net);
11481                 cond_resched();
11482         }
11483
11484         list_for_each_entry(net, net_list, exit_list) {
11485                 for_each_netdev_reverse(net, dev) {
11486                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11487                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11488                         else
11489                                 unregister_netdevice_queue(dev, &dev_kill_list);
11490                 }
11491         }
11492         unregister_netdevice_many(&dev_kill_list);
11493         rtnl_unlock();
11494 }
11495
11496 static struct pernet_operations __net_initdata default_device_ops = {
11497         .exit_batch = default_device_exit_batch,
11498 };
11499
11500 /*
11501  *      Initialize the DEV module. At boot time this walks the device list and
11502  *      unhooks any devices that fail to initialise (normally hardware not
11503  *      present) and leaves us with a valid list of present and active devices.
11504  *
11505  */
11506
11507 /*
11508  *       This is called single threaded during boot, so no need
11509  *       to take the rtnl semaphore.
11510  */
11511 static int __init net_dev_init(void)
11512 {
11513         int i, rc = -ENOMEM;
11514
11515         BUG_ON(!dev_boot_phase);
11516
11517         if (dev_proc_init())
11518                 goto out;
11519
11520         if (netdev_kobject_init())
11521                 goto out;
11522
11523         INIT_LIST_HEAD(&ptype_all);
11524         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11525                 INIT_LIST_HEAD(&ptype_base[i]);
11526
11527         if (register_pernet_subsys(&netdev_net_ops))
11528                 goto out;
11529
11530         /*
11531          *      Initialise the packet receive queues.
11532          */
11533
11534         for_each_possible_cpu(i) {
11535                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11536                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11537
11538                 INIT_WORK(flush, flush_backlog);
11539
11540                 skb_queue_head_init(&sd->input_pkt_queue);
11541                 skb_queue_head_init(&sd->process_queue);
11542 #ifdef CONFIG_XFRM_OFFLOAD
11543                 skb_queue_head_init(&sd->xfrm_backlog);
11544 #endif
11545                 INIT_LIST_HEAD(&sd->poll_list);
11546                 sd->output_queue_tailp = &sd->output_queue;
11547 #ifdef CONFIG_RPS
11548                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11549                 sd->cpu = i;
11550 #endif
11551                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11552                 spin_lock_init(&sd->defer_lock);
11553
11554                 init_gro_hash(&sd->backlog);
11555                 sd->backlog.poll = process_backlog;
11556                 sd->backlog.weight = weight_p;
11557         }
11558
11559         dev_boot_phase = 0;
11560
11561         /* The loopback device is special if any other network devices
11562          * is present in a network namespace the loopback device must
11563          * be present. Since we now dynamically allocate and free the
11564          * loopback device ensure this invariant is maintained by
11565          * keeping the loopback device as the first device on the
11566          * list of network devices.  Ensuring the loopback devices
11567          * is the first device that appears and the last network device
11568          * that disappears.
11569          */
11570         if (register_pernet_device(&loopback_net_ops))
11571                 goto out;
11572
11573         if (register_pernet_device(&default_device_ops))
11574                 goto out;
11575
11576         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11577         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11578
11579         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11580                                        NULL, dev_cpu_dead);
11581         WARN_ON(rc < 0);
11582         rc = 0;
11583 out:
11584         return rc;
11585 }
11586
11587 subsys_initcall(net_dev_init);