93d430693ca0fecce5137761907aa37f21354d54
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "dev.h"
155 #include "net-sysfs.h"
156
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         netdev_name_node_del(name_node);
349         kfree(name_node->name);
350         netdev_name_node_free(name_node);
351 }
352
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355         struct netdev_name_node *name_node;
356         struct net *net = dev_net(dev);
357
358         name_node = netdev_name_node_lookup(net, name);
359         if (!name_node)
360                 return -ENOENT;
361         /* lookup might have found our primary name or a name belonging
362          * to another device.
363          */
364         if (name_node == dev->name_node || name_node->dev != dev)
365                 return -EINVAL;
366
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct net *net = dev_net(dev);
384
385         ASSERT_RTNL();
386
387         write_lock(&dev_base_lock);
388         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389         netdev_name_node_add(net, dev->name_node);
390         hlist_add_head_rcu(&dev->index_hlist,
391                            dev_index_hash(net, dev->ifindex));
392         write_unlock(&dev_base_lock);
393
394         dev_base_seq_inc(net);
395 }
396
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402         ASSERT_RTNL();
403
404         /* Unlink dev from the device chain */
405         if (lock)
406                 write_lock(&dev_base_lock);
407         list_del_rcu(&dev->dev_list);
408         netdev_name_node_del(dev->name_node);
409         hlist_del_rcu(&dev->index_hlist);
410         if (lock)
411                 write_unlock(&dev_base_lock);
412
413         dev_base_seq_inc(dev_net(dev));
414 }
415
416 /*
417  *      Our notifier list
418  */
419
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421
422 /*
423  *      Device drivers call our routines to queue packets here. We empty the
424  *      queue in the local softnet handler.
425  */
426
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452 static const char *const netdev_lock_name[] = {
453         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474         int i;
475
476         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477                 if (netdev_lock_type[i] == dev_type)
478                         return i;
479         /* the last key is used by default */
480         return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484                                                  unsigned short dev_type)
485 {
486         int i;
487
488         i = netdev_lock_pos(dev_type);
489         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490                                    netdev_lock_name[i]);
491 }
492
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495         int i;
496
497         i = netdev_lock_pos(dev->type);
498         lockdep_set_class_and_name(&dev->addr_list_lock,
499                                    &netdev_addr_lock_key[i],
500                                    netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504                                                  unsigned short dev_type)
505 {
506 }
507
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512
513 /*******************************************************************************
514  *
515  *              Protocol management and registration routines
516  *
517  *******************************************************************************/
518
519
520 /*
521  *      Add a protocol ID to the list. Now that the input handler is
522  *      smarter we can dispense with all the messy stuff that used to be
523  *      here.
524  *
525  *      BEWARE!!! Protocol handlers, mangling input packets,
526  *      MUST BE last in hash buckets and checking protocol handlers
527  *      MUST start from promiscuous ptype_all chain in net_bh.
528  *      It is true now, do not change it.
529  *      Explanation follows: if protocol handler, mangling packet, will
530  *      be the first on list, it is not able to sense, that packet
531  *      is cloned and should be copied-on-write, so that it will
532  *      change it and subsequent readers will get broken packet.
533  *                                                      --ANK (980803)
534  */
535
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538         if (pt->type == htons(ETH_P_ALL))
539                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540         else
541                 return pt->dev ? &pt->dev->ptype_specific :
542                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544
545 /**
546  *      dev_add_pack - add packet handler
547  *      @pt: packet type declaration
548  *
549  *      Add a protocol handler to the networking stack. The passed &packet_type
550  *      is linked into kernel lists and may not be freed until it has been
551  *      removed from the kernel lists.
552  *
553  *      This call does not sleep therefore it can not
554  *      guarantee all CPU's that are in middle of receiving packets
555  *      will see the new packet type (until the next received packet).
556  */
557
558 void dev_add_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561
562         spin_lock(&ptype_lock);
563         list_add_rcu(&pt->list, head);
564         spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567
568 /**
569  *      __dev_remove_pack        - remove packet handler
570  *      @pt: packet type declaration
571  *
572  *      Remove a protocol handler that was previously added to the kernel
573  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *      from the kernel lists and can be freed or reused once this function
575  *      returns.
576  *
577  *      The packet type might still be in use by receivers
578  *      and must not be freed until after all the CPU's have gone
579  *      through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583         struct list_head *head = ptype_head(pt);
584         struct packet_type *pt1;
585
586         spin_lock(&ptype_lock);
587
588         list_for_each_entry(pt1, head, list) {
589                 if (pt == pt1) {
590                         list_del_rcu(&pt->list);
591                         goto out;
592                 }
593         }
594
595         pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597         spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600
601 /**
602  *      dev_remove_pack  - remove packet handler
603  *      @pt: packet type declaration
604  *
605  *      Remove a protocol handler that was previously added to the kernel
606  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *      from the kernel lists and can be freed or reused once this function
608  *      returns.
609  *
610  *      This call sleeps to guarantee that no CPU is looking at the packet
611  *      type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615         __dev_remove_pack(pt);
616
617         synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620
621
622 /*******************************************************************************
623  *
624  *                          Device Interface Subroutines
625  *
626  *******************************************************************************/
627
628 /**
629  *      dev_get_iflink  - get 'iflink' value of a interface
630  *      @dev: targeted interface
631  *
632  *      Indicates the ifindex the interface is linked to.
633  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635
636 int dev_get_iflink(const struct net_device *dev)
637 {
638         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639                 return dev->netdev_ops->ndo_get_iflink(dev);
640
641         return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644
645 /**
646  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *      @dev: targeted interface
648  *      @skb: The packet.
649  *
650  *      For better visibility of tunnel traffic OVS needs to retrieve
651  *      egress tunnel information for a packet. Following API allows
652  *      user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656         struct ip_tunnel_info *info;
657
658         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659                 return -EINVAL;
660
661         info = skb_tunnel_info_unclone(skb);
662         if (!info)
663                 return -ENOMEM;
664         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665                 return -EINVAL;
666
667         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673         int k = stack->num_paths++;
674
675         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676                 return NULL;
677
678         return &stack->path[k];
679 }
680
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682                           struct net_device_path_stack *stack)
683 {
684         const struct net_device *last_dev;
685         struct net_device_path_ctx ctx = {
686                 .dev    = dev,
687         };
688         struct net_device_path *path;
689         int ret = 0;
690
691         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692         stack->num_paths = 0;
693         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694                 last_dev = ctx.dev;
695                 path = dev_fwd_path(stack);
696                 if (!path)
697                         return -1;
698
699                 memset(path, 0, sizeof(struct net_device_path));
700                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701                 if (ret < 0)
702                         return -1;
703
704                 if (WARN_ON_ONCE(last_dev == ctx.dev))
705                         return -1;
706         }
707
708         if (!ctx.dev)
709                 return ret;
710
711         path = dev_fwd_path(stack);
712         if (!path)
713                 return -1;
714         path->type = DEV_PATH_ETHERNET;
715         path->dev = ctx.dev;
716
717         return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721 /**
722  *      __dev_get_by_name       - find a device by its name
723  *      @net: the applicable net namespace
724  *      @name: name to find
725  *
726  *      Find an interface by name. Must be called under RTNL semaphore
727  *      or @dev_base_lock. If the name is found a pointer to the device
728  *      is returned. If the name is not found then %NULL is returned. The
729  *      reference counters are not incremented so the caller must be
730  *      careful with locks.
731  */
732
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735         struct netdev_name_node *node_name;
736
737         node_name = netdev_name_node_lookup(net, name);
738         return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741
742 /**
743  * dev_get_by_name_rcu  - find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756         struct netdev_name_node *node_name;
757
758         node_name = netdev_name_node_lookup_rcu(net, name);
759         return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764  *      dev_get_by_name         - find a device by its name
765  *      @net: the applicable net namespace
766  *      @name: name to find
767  *
768  *      Find an interface by name. This can be called from any
769  *      context and does its own locking. The returned handle has
770  *      the usage count incremented and the caller must use dev_put() to
771  *      release it when it is no longer needed. %NULL is returned if no
772  *      matching device is found.
773  */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777         struct net_device *dev;
778
779         rcu_read_lock();
780         dev = dev_get_by_name_rcu(net, name);
781         dev_hold(dev);
782         rcu_read_unlock();
783         return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786
787 /**
788  *      __dev_get_by_index - find a device by its ifindex
789  *      @net: the applicable net namespace
790  *      @ifindex: index of device
791  *
792  *      Search for an interface by index. Returns %NULL if the device
793  *      is not found or a pointer to the device. The device has not
794  *      had its reference counter increased so the caller must be careful
795  *      about locking. The caller must hold either the RTNL semaphore
796  *      or @dev_base_lock.
797  */
798
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801         struct net_device *dev;
802         struct hlist_head *head = dev_index_hash(net, ifindex);
803
804         hlist_for_each_entry(dev, head, index_hlist)
805                 if (dev->ifindex == ifindex)
806                         return dev;
807
808         return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811
812 /**
813  *      dev_get_by_index_rcu - find a device by its ifindex
814  *      @net: the applicable net namespace
815  *      @ifindex: index of device
816  *
817  *      Search for an interface by index. Returns %NULL if the device
818  *      is not found or a pointer to the device. The device has not
819  *      had its reference counter increased so the caller must be careful
820  *      about locking. The caller must hold RCU lock.
821  */
822
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825         struct net_device *dev;
826         struct hlist_head *head = dev_index_hash(net, ifindex);
827
828         hlist_for_each_entry_rcu(dev, head, index_hlist)
829                 if (dev->ifindex == ifindex)
830                         return dev;
831
832         return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837 /**
838  *      dev_get_by_index - find a device by its ifindex
839  *      @net: the applicable net namespace
840  *      @ifindex: index of device
841  *
842  *      Search for an interface by index. Returns NULL if the device
843  *      is not found or a pointer to the device. The device returned has
844  *      had a reference added and the pointer is safe until the user calls
845  *      dev_put to indicate they have finished with it.
846  */
847
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850         struct net_device *dev;
851
852         rcu_read_lock();
853         dev = dev_get_by_index_rcu(net, ifindex);
854         dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      dev_get_by_napi_id - find a device by napi_id
862  *      @napi_id: ID of the NAPI struct
863  *
864  *      Search for an interface by NAPI ID. Returns %NULL if the device
865  *      is not found or a pointer to the device. The device has not had
866  *      its reference counter increased so the caller must be careful
867  *      about locking. The caller must hold RCU lock.
868  */
869
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872         struct napi_struct *napi;
873
874         WARN_ON_ONCE(!rcu_read_lock_held());
875
876         if (napi_id < MIN_NAPI_ID)
877                 return NULL;
878
879         napi = napi_by_id(napi_id);
880
881         return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884
885 /**
886  *      netdev_get_name - get a netdevice name, knowing its ifindex.
887  *      @net: network namespace
888  *      @name: a pointer to the buffer where the name will be stored.
889  *      @ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893         struct net_device *dev;
894         int ret;
895
896         down_read(&devnet_rename_sem);
897         rcu_read_lock();
898
899         dev = dev_get_by_index_rcu(net, ifindex);
900         if (!dev) {
901                 ret = -ENODEV;
902                 goto out;
903         }
904
905         strcpy(name, dev->name);
906
907         ret = 0;
908 out:
909         rcu_read_unlock();
910         up_read(&devnet_rename_sem);
911         return ret;
912 }
913
914 /**
915  *      dev_getbyhwaddr_rcu - find a device by its hardware address
916  *      @net: the applicable net namespace
917  *      @type: media type of device
918  *      @ha: hardware address
919  *
920  *      Search for an interface by MAC address. Returns NULL if the device
921  *      is not found or a pointer to the device.
922  *      The caller must hold RCU or RTNL.
923  *      The returned device has not had its ref count increased
924  *      and the caller must therefore be careful about locking
925  *
926  */
927
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929                                        const char *ha)
930 {
931         struct net_device *dev;
932
933         for_each_netdev_rcu(net, dev)
934                 if (dev->type == type &&
935                     !memcmp(dev->dev_addr, ha, dev->addr_len))
936                         return dev;
937
938         return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944         struct net_device *dev, *ret = NULL;
945
946         rcu_read_lock();
947         for_each_netdev_rcu(net, dev)
948                 if (dev->type == type) {
949                         dev_hold(dev);
950                         ret = dev;
951                         break;
952                 }
953         rcu_read_unlock();
954         return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958 /**
959  *      __dev_get_by_flags - find any device with given flags
960  *      @net: the applicable net namespace
961  *      @if_flags: IFF_* values
962  *      @mask: bitmask of bits in if_flags to check
963  *
964  *      Search for any interface with the given flags. Returns NULL if a device
965  *      is not found or a pointer to the device. Must be called inside
966  *      rtnl_lock(), and result refcount is unchanged.
967  */
968
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970                                       unsigned short mask)
971 {
972         struct net_device *dev, *ret;
973
974         ASSERT_RTNL();
975
976         ret = NULL;
977         for_each_netdev(net, dev) {
978                 if (((dev->flags ^ if_flags) & mask) == 0) {
979                         ret = dev;
980                         break;
981                 }
982         }
983         return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986
987 /**
988  *      dev_valid_name - check if name is okay for network device
989  *      @name: name string
990  *
991  *      Network device names need to be valid file names to
992  *      allow sysfs to work.  We also disallow any kind of
993  *      whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997         if (*name == '\0')
998                 return false;
999         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000                 return false;
1001         if (!strcmp(name, ".") || !strcmp(name, ".."))
1002                 return false;
1003
1004         while (*name) {
1005                 if (*name == '/' || *name == ':' || isspace(*name))
1006                         return false;
1007                 name++;
1008         }
1009         return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012
1013 /**
1014  *      __dev_alloc_name - allocate a name for a device
1015  *      @net: network namespace to allocate the device name in
1016  *      @name: name format string
1017  *      @buf:  scratch buffer and result name string
1018  *
1019  *      Passed a format string - eg "lt%d" it will try and find a suitable
1020  *      id. It scans list of devices to build up a free map, then chooses
1021  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *      while allocating the name and adding the device in order to avoid
1023  *      duplicates.
1024  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *      Returns the number of the unit assigned or a negative errno code.
1026  */
1027
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030         int i = 0;
1031         const char *p;
1032         const int max_netdevices = 8*PAGE_SIZE;
1033         unsigned long *inuse;
1034         struct net_device *d;
1035
1036         if (!dev_valid_name(name))
1037                 return -EINVAL;
1038
1039         p = strchr(name, '%');
1040         if (p) {
1041                 /*
1042                  * Verify the string as this thing may have come from
1043                  * the user.  There must be either one "%d" and no other "%"
1044                  * characters.
1045                  */
1046                 if (p[1] != 'd' || strchr(p + 2, '%'))
1047                         return -EINVAL;
1048
1049                 /* Use one page as a bit array of possible slots */
1050                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051                 if (!inuse)
1052                         return -ENOMEM;
1053
1054                 for_each_netdev(net, d) {
1055                         struct netdev_name_node *name_node;
1056                         list_for_each_entry(name_node, &d->name_node->list, list) {
1057                                 if (!sscanf(name_node->name, name, &i))
1058                                         continue;
1059                                 if (i < 0 || i >= max_netdevices)
1060                                         continue;
1061
1062                                 /*  avoid cases where sscanf is not exact inverse of printf */
1063                                 snprintf(buf, IFNAMSIZ, name, i);
1064                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065                                         __set_bit(i, inuse);
1066                         }
1067                         if (!sscanf(d->name, name, &i))
1068                                 continue;
1069                         if (i < 0 || i >= max_netdevices)
1070                                 continue;
1071
1072                         /*  avoid cases where sscanf is not exact inverse of printf */
1073                         snprintf(buf, IFNAMSIZ, name, i);
1074                         if (!strncmp(buf, d->name, IFNAMSIZ))
1075                                 __set_bit(i, inuse);
1076                 }
1077
1078                 i = find_first_zero_bit(inuse, max_netdevices);
1079                 free_page((unsigned long) inuse);
1080         }
1081
1082         snprintf(buf, IFNAMSIZ, name, i);
1083         if (!netdev_name_in_use(net, buf))
1084                 return i;
1085
1086         /* It is possible to run out of possible slots
1087          * when the name is long and there isn't enough space left
1088          * for the digits, or if all bits are used.
1089          */
1090         return -ENFILE;
1091 }
1092
1093 static int dev_alloc_name_ns(struct net *net,
1094                              struct net_device *dev,
1095                              const char *name)
1096 {
1097         char buf[IFNAMSIZ];
1098         int ret;
1099
1100         BUG_ON(!net);
1101         ret = __dev_alloc_name(net, name, buf);
1102         if (ret >= 0)
1103                 strscpy(dev->name, buf, IFNAMSIZ);
1104         return ret;
1105 }
1106
1107 /**
1108  *      dev_alloc_name - allocate a name for a device
1109  *      @dev: device
1110  *      @name: name format string
1111  *
1112  *      Passed a format string - eg "lt%d" it will try and find a suitable
1113  *      id. It scans list of devices to build up a free map, then chooses
1114  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *      while allocating the name and adding the device in order to avoid
1116  *      duplicates.
1117  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *      Returns the number of the unit assigned or a negative errno code.
1119  */
1120
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123         return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128                               const char *name)
1129 {
1130         BUG_ON(!net);
1131
1132         if (!dev_valid_name(name))
1133                 return -EINVAL;
1134
1135         if (strchr(name, '%'))
1136                 return dev_alloc_name_ns(net, dev, name);
1137         else if (netdev_name_in_use(net, name))
1138                 return -EEXIST;
1139         else if (dev->name != name)
1140                 strscpy(dev->name, name, IFNAMSIZ);
1141
1142         return 0;
1143 }
1144
1145 /**
1146  *      dev_change_name - change name of a device
1147  *      @dev: device
1148  *      @newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *      Change name of a device, can pass format strings "eth%d".
1151  *      for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155         unsigned char old_assign_type;
1156         char oldname[IFNAMSIZ];
1157         int err = 0;
1158         int ret;
1159         struct net *net;
1160
1161         ASSERT_RTNL();
1162         BUG_ON(!dev_net(dev));
1163
1164         net = dev_net(dev);
1165
1166         /* Some auto-enslaved devices e.g. failover slaves are
1167          * special, as userspace might rename the device after
1168          * the interface had been brought up and running since
1169          * the point kernel initiated auto-enslavement. Allow
1170          * live name change even when these slave devices are
1171          * up and running.
1172          *
1173          * Typically, users of these auto-enslaving devices
1174          * don't actually care about slave name change, as
1175          * they are supposed to operate on master interface
1176          * directly.
1177          */
1178         if (dev->flags & IFF_UP &&
1179             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1180                 return -EBUSY;
1181
1182         down_write(&devnet_rename_sem);
1183
1184         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1185                 up_write(&devnet_rename_sem);
1186                 return 0;
1187         }
1188
1189         memcpy(oldname, dev->name, IFNAMSIZ);
1190
1191         err = dev_get_valid_name(net, dev, newname);
1192         if (err < 0) {
1193                 up_write(&devnet_rename_sem);
1194                 return err;
1195         }
1196
1197         if (oldname[0] && !strchr(oldname, '%'))
1198                 netdev_info(dev, "renamed from %s\n", oldname);
1199
1200         old_assign_type = dev->name_assign_type;
1201         dev->name_assign_type = NET_NAME_RENAMED;
1202
1203 rollback:
1204         ret = device_rename(&dev->dev, dev->name);
1205         if (ret) {
1206                 memcpy(dev->name, oldname, IFNAMSIZ);
1207                 dev->name_assign_type = old_assign_type;
1208                 up_write(&devnet_rename_sem);
1209                 return ret;
1210         }
1211
1212         up_write(&devnet_rename_sem);
1213
1214         netdev_adjacent_rename_links(dev, oldname);
1215
1216         write_lock(&dev_base_lock);
1217         netdev_name_node_del(dev->name_node);
1218         write_unlock(&dev_base_lock);
1219
1220         synchronize_rcu();
1221
1222         write_lock(&dev_base_lock);
1223         netdev_name_node_add(net, dev->name_node);
1224         write_unlock(&dev_base_lock);
1225
1226         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1227         ret = notifier_to_errno(ret);
1228
1229         if (ret) {
1230                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1231                 if (err >= 0) {
1232                         err = ret;
1233                         down_write(&devnet_rename_sem);
1234                         memcpy(dev->name, oldname, IFNAMSIZ);
1235                         memcpy(oldname, newname, IFNAMSIZ);
1236                         dev->name_assign_type = old_assign_type;
1237                         old_assign_type = NET_NAME_RENAMED;
1238                         goto rollback;
1239                 } else {
1240                         netdev_err(dev, "name change rollback failed: %d\n",
1241                                    ret);
1242                 }
1243         }
1244
1245         return err;
1246 }
1247
1248 /**
1249  *      dev_set_alias - change ifalias of a device
1250  *      @dev: device
1251  *      @alias: name up to IFALIASZ
1252  *      @len: limit of bytes to copy from info
1253  *
1254  *      Set ifalias for a device,
1255  */
1256 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1257 {
1258         struct dev_ifalias *new_alias = NULL;
1259
1260         if (len >= IFALIASZ)
1261                 return -EINVAL;
1262
1263         if (len) {
1264                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1265                 if (!new_alias)
1266                         return -ENOMEM;
1267
1268                 memcpy(new_alias->ifalias, alias, len);
1269                 new_alias->ifalias[len] = 0;
1270         }
1271
1272         mutex_lock(&ifalias_mutex);
1273         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1274                                         mutex_is_locked(&ifalias_mutex));
1275         mutex_unlock(&ifalias_mutex);
1276
1277         if (new_alias)
1278                 kfree_rcu(new_alias, rcuhead);
1279
1280         return len;
1281 }
1282 EXPORT_SYMBOL(dev_set_alias);
1283
1284 /**
1285  *      dev_get_alias - get ifalias of a device
1286  *      @dev: device
1287  *      @name: buffer to store name of ifalias
1288  *      @len: size of buffer
1289  *
1290  *      get ifalias for a device.  Caller must make sure dev cannot go
1291  *      away,  e.g. rcu read lock or own a reference count to device.
1292  */
1293 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1294 {
1295         const struct dev_ifalias *alias;
1296         int ret = 0;
1297
1298         rcu_read_lock();
1299         alias = rcu_dereference(dev->ifalias);
1300         if (alias)
1301                 ret = snprintf(name, len, "%s", alias->ifalias);
1302         rcu_read_unlock();
1303
1304         return ret;
1305 }
1306
1307 /**
1308  *      netdev_features_change - device changes features
1309  *      @dev: device to cause notification
1310  *
1311  *      Called to indicate a device has changed features.
1312  */
1313 void netdev_features_change(struct net_device *dev)
1314 {
1315         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1316 }
1317 EXPORT_SYMBOL(netdev_features_change);
1318
1319 /**
1320  *      netdev_state_change - device changes state
1321  *      @dev: device to cause notification
1322  *
1323  *      Called to indicate a device has changed state. This function calls
1324  *      the notifier chains for netdev_chain and sends a NEWLINK message
1325  *      to the routing socket.
1326  */
1327 void netdev_state_change(struct net_device *dev)
1328 {
1329         if (dev->flags & IFF_UP) {
1330                 struct netdev_notifier_change_info change_info = {
1331                         .info.dev = dev,
1332                 };
1333
1334                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1335                                               &change_info.info);
1336                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1337         }
1338 }
1339 EXPORT_SYMBOL(netdev_state_change);
1340
1341 /**
1342  * __netdev_notify_peers - notify network peers about existence of @dev,
1343  * to be called when rtnl lock is already held.
1344  * @dev: network device
1345  *
1346  * Generate traffic such that interested network peers are aware of
1347  * @dev, such as by generating a gratuitous ARP. This may be used when
1348  * a device wants to inform the rest of the network about some sort of
1349  * reconfiguration such as a failover event or virtual machine
1350  * migration.
1351  */
1352 void __netdev_notify_peers(struct net_device *dev)
1353 {
1354         ASSERT_RTNL();
1355         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1356         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1357 }
1358 EXPORT_SYMBOL(__netdev_notify_peers);
1359
1360 /**
1361  * netdev_notify_peers - notify network peers about existence of @dev
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void netdev_notify_peers(struct net_device *dev)
1371 {
1372         rtnl_lock();
1373         __netdev_notify_peers(dev);
1374         rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377
1378 static int napi_threaded_poll(void *data);
1379
1380 static int napi_kthread_create(struct napi_struct *n)
1381 {
1382         int err = 0;
1383
1384         /* Create and wake up the kthread once to put it in
1385          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1386          * warning and work with loadavg.
1387          */
1388         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1389                                 n->dev->name, n->napi_id);
1390         if (IS_ERR(n->thread)) {
1391                 err = PTR_ERR(n->thread);
1392                 pr_err("kthread_run failed with err %d\n", err);
1393                 n->thread = NULL;
1394         }
1395
1396         return err;
1397 }
1398
1399 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1400 {
1401         const struct net_device_ops *ops = dev->netdev_ops;
1402         int ret;
1403
1404         ASSERT_RTNL();
1405         dev_addr_check(dev);
1406
1407         if (!netif_device_present(dev)) {
1408                 /* may be detached because parent is runtime-suspended */
1409                 if (dev->dev.parent)
1410                         pm_runtime_resume(dev->dev.parent);
1411                 if (!netif_device_present(dev))
1412                         return -ENODEV;
1413         }
1414
1415         /* Block netpoll from trying to do any rx path servicing.
1416          * If we don't do this there is a chance ndo_poll_controller
1417          * or ndo_poll may be running while we open the device
1418          */
1419         netpoll_poll_disable(dev);
1420
1421         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1422         ret = notifier_to_errno(ret);
1423         if (ret)
1424                 return ret;
1425
1426         set_bit(__LINK_STATE_START, &dev->state);
1427
1428         if (ops->ndo_validate_addr)
1429                 ret = ops->ndo_validate_addr(dev);
1430
1431         if (!ret && ops->ndo_open)
1432                 ret = ops->ndo_open(dev);
1433
1434         netpoll_poll_enable(dev);
1435
1436         if (ret)
1437                 clear_bit(__LINK_STATE_START, &dev->state);
1438         else {
1439                 dev->flags |= IFF_UP;
1440                 dev_set_rx_mode(dev);
1441                 dev_activate(dev);
1442                 add_device_randomness(dev->dev_addr, dev->addr_len);
1443         }
1444
1445         return ret;
1446 }
1447
1448 /**
1449  *      dev_open        - prepare an interface for use.
1450  *      @dev: device to open
1451  *      @extack: netlink extended ack
1452  *
1453  *      Takes a device from down to up state. The device's private open
1454  *      function is invoked and then the multicast lists are loaded. Finally
1455  *      the device is moved into the up state and a %NETDEV_UP message is
1456  *      sent to the netdev notifier chain.
1457  *
1458  *      Calling this function on an active interface is a nop. On a failure
1459  *      a negative errno code is returned.
1460  */
1461 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1462 {
1463         int ret;
1464
1465         if (dev->flags & IFF_UP)
1466                 return 0;
1467
1468         ret = __dev_open(dev, extack);
1469         if (ret < 0)
1470                 return ret;
1471
1472         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1473         call_netdevice_notifiers(NETDEV_UP, dev);
1474
1475         return ret;
1476 }
1477 EXPORT_SYMBOL(dev_open);
1478
1479 static void __dev_close_many(struct list_head *head)
1480 {
1481         struct net_device *dev;
1482
1483         ASSERT_RTNL();
1484         might_sleep();
1485
1486         list_for_each_entry(dev, head, close_list) {
1487                 /* Temporarily disable netpoll until the interface is down */
1488                 netpoll_poll_disable(dev);
1489
1490                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1491
1492                 clear_bit(__LINK_STATE_START, &dev->state);
1493
1494                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1495                  * can be even on different cpu. So just clear netif_running().
1496                  *
1497                  * dev->stop() will invoke napi_disable() on all of it's
1498                  * napi_struct instances on this device.
1499                  */
1500                 smp_mb__after_atomic(); /* Commit netif_running(). */
1501         }
1502
1503         dev_deactivate_many(head);
1504
1505         list_for_each_entry(dev, head, close_list) {
1506                 const struct net_device_ops *ops = dev->netdev_ops;
1507
1508                 /*
1509                  *      Call the device specific close. This cannot fail.
1510                  *      Only if device is UP
1511                  *
1512                  *      We allow it to be called even after a DETACH hot-plug
1513                  *      event.
1514                  */
1515                 if (ops->ndo_stop)
1516                         ops->ndo_stop(dev);
1517
1518                 dev->flags &= ~IFF_UP;
1519                 netpoll_poll_enable(dev);
1520         }
1521 }
1522
1523 static void __dev_close(struct net_device *dev)
1524 {
1525         LIST_HEAD(single);
1526
1527         list_add(&dev->close_list, &single);
1528         __dev_close_many(&single);
1529         list_del(&single);
1530 }
1531
1532 void dev_close_many(struct list_head *head, bool unlink)
1533 {
1534         struct net_device *dev, *tmp;
1535
1536         /* Remove the devices that don't need to be closed */
1537         list_for_each_entry_safe(dev, tmp, head, close_list)
1538                 if (!(dev->flags & IFF_UP))
1539                         list_del_init(&dev->close_list);
1540
1541         __dev_close_many(head);
1542
1543         list_for_each_entry_safe(dev, tmp, head, close_list) {
1544                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1546                 if (unlink)
1547                         list_del_init(&dev->close_list);
1548         }
1549 }
1550 EXPORT_SYMBOL(dev_close_many);
1551
1552 /**
1553  *      dev_close - shutdown an interface.
1554  *      @dev: device to shutdown
1555  *
1556  *      This function moves an active device into down state. A
1557  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1558  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1559  *      chain.
1560  */
1561 void dev_close(struct net_device *dev)
1562 {
1563         if (dev->flags & IFF_UP) {
1564                 LIST_HEAD(single);
1565
1566                 list_add(&dev->close_list, &single);
1567                 dev_close_many(&single, true);
1568                 list_del(&single);
1569         }
1570 }
1571 EXPORT_SYMBOL(dev_close);
1572
1573
1574 /**
1575  *      dev_disable_lro - disable Large Receive Offload on a device
1576  *      @dev: device
1577  *
1578  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1579  *      called under RTNL.  This is needed if received packets may be
1580  *      forwarded to another interface.
1581  */
1582 void dev_disable_lro(struct net_device *dev)
1583 {
1584         struct net_device *lower_dev;
1585         struct list_head *iter;
1586
1587         dev->wanted_features &= ~NETIF_F_LRO;
1588         netdev_update_features(dev);
1589
1590         if (unlikely(dev->features & NETIF_F_LRO))
1591                 netdev_WARN(dev, "failed to disable LRO!\n");
1592
1593         netdev_for_each_lower_dev(dev, lower_dev, iter)
1594                 dev_disable_lro(lower_dev);
1595 }
1596 EXPORT_SYMBOL(dev_disable_lro);
1597
1598 /**
1599  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1600  *      @dev: device
1601  *
1602  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1603  *      called under RTNL.  This is needed if Generic XDP is installed on
1604  *      the device.
1605  */
1606 static void dev_disable_gro_hw(struct net_device *dev)
1607 {
1608         dev->wanted_features &= ~NETIF_F_GRO_HW;
1609         netdev_update_features(dev);
1610
1611         if (unlikely(dev->features & NETIF_F_GRO_HW))
1612                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1613 }
1614
1615 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1616 {
1617 #define N(val)                                          \
1618         case NETDEV_##val:                              \
1619                 return "NETDEV_" __stringify(val);
1620         switch (cmd) {
1621         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1622         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1623         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1624         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1625         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1626         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1627         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1628         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1629         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1630         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1631         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1632         }
1633 #undef N
1634         return "UNKNOWN_NETDEV_EVENT";
1635 }
1636 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1637
1638 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1639                                    struct net_device *dev)
1640 {
1641         struct netdev_notifier_info info = {
1642                 .dev = dev,
1643         };
1644
1645         return nb->notifier_call(nb, val, &info);
1646 }
1647
1648 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1649                                              struct net_device *dev)
1650 {
1651         int err;
1652
1653         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654         err = notifier_to_errno(err);
1655         if (err)
1656                 return err;
1657
1658         if (!(dev->flags & IFF_UP))
1659                 return 0;
1660
1661         call_netdevice_notifier(nb, NETDEV_UP, dev);
1662         return 0;
1663 }
1664
1665 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1666                                                 struct net_device *dev)
1667 {
1668         if (dev->flags & IFF_UP) {
1669                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670                                         dev);
1671                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1672         }
1673         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674 }
1675
1676 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1677                                                  struct net *net)
1678 {
1679         struct net_device *dev;
1680         int err;
1681
1682         for_each_netdev(net, dev) {
1683                 err = call_netdevice_register_notifiers(nb, dev);
1684                 if (err)
1685                         goto rollback;
1686         }
1687         return 0;
1688
1689 rollback:
1690         for_each_netdev_continue_reverse(net, dev)
1691                 call_netdevice_unregister_notifiers(nb, dev);
1692         return err;
1693 }
1694
1695 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1696                                                     struct net *net)
1697 {
1698         struct net_device *dev;
1699
1700         for_each_netdev(net, dev)
1701                 call_netdevice_unregister_notifiers(nb, dev);
1702 }
1703
1704 static int dev_boot_phase = 1;
1705
1706 /**
1707  * register_netdevice_notifier - register a network notifier block
1708  * @nb: notifier
1709  *
1710  * Register a notifier to be called when network device events occur.
1711  * The notifier passed is linked into the kernel structures and must
1712  * not be reused until it has been unregistered. A negative errno code
1713  * is returned on a failure.
1714  *
1715  * When registered all registration and up events are replayed
1716  * to the new notifier to allow device to have a race free
1717  * view of the network device list.
1718  */
1719
1720 int register_netdevice_notifier(struct notifier_block *nb)
1721 {
1722         struct net *net;
1723         int err;
1724
1725         /* Close race with setup_net() and cleanup_net() */
1726         down_write(&pernet_ops_rwsem);
1727         rtnl_lock();
1728         err = raw_notifier_chain_register(&netdev_chain, nb);
1729         if (err)
1730                 goto unlock;
1731         if (dev_boot_phase)
1732                 goto unlock;
1733         for_each_net(net) {
1734                 err = call_netdevice_register_net_notifiers(nb, net);
1735                 if (err)
1736                         goto rollback;
1737         }
1738
1739 unlock:
1740         rtnl_unlock();
1741         up_write(&pernet_ops_rwsem);
1742         return err;
1743
1744 rollback:
1745         for_each_net_continue_reverse(net)
1746                 call_netdevice_unregister_net_notifiers(nb, net);
1747
1748         raw_notifier_chain_unregister(&netdev_chain, nb);
1749         goto unlock;
1750 }
1751 EXPORT_SYMBOL(register_netdevice_notifier);
1752
1753 /**
1754  * unregister_netdevice_notifier - unregister a network notifier block
1755  * @nb: notifier
1756  *
1757  * Unregister a notifier previously registered by
1758  * register_netdevice_notifier(). The notifier is unlinked into the
1759  * kernel structures and may then be reused. A negative errno code
1760  * is returned on a failure.
1761  *
1762  * After unregistering unregister and down device events are synthesized
1763  * for all devices on the device list to the removed notifier to remove
1764  * the need for special case cleanup code.
1765  */
1766
1767 int unregister_netdevice_notifier(struct notifier_block *nb)
1768 {
1769         struct net *net;
1770         int err;
1771
1772         /* Close race with setup_net() and cleanup_net() */
1773         down_write(&pernet_ops_rwsem);
1774         rtnl_lock();
1775         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1776         if (err)
1777                 goto unlock;
1778
1779         for_each_net(net)
1780                 call_netdevice_unregister_net_notifiers(nb, net);
1781
1782 unlock:
1783         rtnl_unlock();
1784         up_write(&pernet_ops_rwsem);
1785         return err;
1786 }
1787 EXPORT_SYMBOL(unregister_netdevice_notifier);
1788
1789 static int __register_netdevice_notifier_net(struct net *net,
1790                                              struct notifier_block *nb,
1791                                              bool ignore_call_fail)
1792 {
1793         int err;
1794
1795         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1796         if (err)
1797                 return err;
1798         if (dev_boot_phase)
1799                 return 0;
1800
1801         err = call_netdevice_register_net_notifiers(nb, net);
1802         if (err && !ignore_call_fail)
1803                 goto chain_unregister;
1804
1805         return 0;
1806
1807 chain_unregister:
1808         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1809         return err;
1810 }
1811
1812 static int __unregister_netdevice_notifier_net(struct net *net,
1813                                                struct notifier_block *nb)
1814 {
1815         int err;
1816
1817         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1818         if (err)
1819                 return err;
1820
1821         call_netdevice_unregister_net_notifiers(nb, net);
1822         return 0;
1823 }
1824
1825 /**
1826  * register_netdevice_notifier_net - register a per-netns network notifier block
1827  * @net: network namespace
1828  * @nb: notifier
1829  *
1830  * Register a notifier to be called when network device events occur.
1831  * The notifier passed is linked into the kernel structures and must
1832  * not be reused until it has been unregistered. A negative errno code
1833  * is returned on a failure.
1834  *
1835  * When registered all registration and up events are replayed
1836  * to the new notifier to allow device to have a race free
1837  * view of the network device list.
1838  */
1839
1840 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1841 {
1842         int err;
1843
1844         rtnl_lock();
1845         err = __register_netdevice_notifier_net(net, nb, false);
1846         rtnl_unlock();
1847         return err;
1848 }
1849 EXPORT_SYMBOL(register_netdevice_notifier_net);
1850
1851 /**
1852  * unregister_netdevice_notifier_net - unregister a per-netns
1853  *                                     network notifier block
1854  * @net: network namespace
1855  * @nb: notifier
1856  *
1857  * Unregister a notifier previously registered by
1858  * register_netdevice_notifier(). The notifier is unlinked into the
1859  * kernel structures and may then be reused. A negative errno code
1860  * is returned on a failure.
1861  *
1862  * After unregistering unregister and down device events are synthesized
1863  * for all devices on the device list to the removed notifier to remove
1864  * the need for special case cleanup code.
1865  */
1866
1867 int unregister_netdevice_notifier_net(struct net *net,
1868                                       struct notifier_block *nb)
1869 {
1870         int err;
1871
1872         rtnl_lock();
1873         err = __unregister_netdevice_notifier_net(net, nb);
1874         rtnl_unlock();
1875         return err;
1876 }
1877 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1878
1879 int register_netdevice_notifier_dev_net(struct net_device *dev,
1880                                         struct notifier_block *nb,
1881                                         struct netdev_net_notifier *nn)
1882 {
1883         int err;
1884
1885         rtnl_lock();
1886         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1887         if (!err) {
1888                 nn->nb = nb;
1889                 list_add(&nn->list, &dev->net_notifier_list);
1890         }
1891         rtnl_unlock();
1892         return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1895
1896 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1897                                           struct notifier_block *nb,
1898                                           struct netdev_net_notifier *nn)
1899 {
1900         int err;
1901
1902         rtnl_lock();
1903         list_del(&nn->list);
1904         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1905         rtnl_unlock();
1906         return err;
1907 }
1908 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1909
1910 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1911                                              struct net *net)
1912 {
1913         struct netdev_net_notifier *nn;
1914
1915         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1916                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1917                 __register_netdevice_notifier_net(net, nn->nb, true);
1918         }
1919 }
1920
1921 /**
1922  *      call_netdevice_notifiers_info - call all network notifier blocks
1923  *      @val: value passed unmodified to notifier function
1924  *      @info: notifier information data
1925  *
1926  *      Call all network notifier blocks.  Parameters and return value
1927  *      are as for raw_notifier_call_chain().
1928  */
1929
1930 static int call_netdevice_notifiers_info(unsigned long val,
1931                                          struct netdev_notifier_info *info)
1932 {
1933         struct net *net = dev_net(info->dev);
1934         int ret;
1935
1936         ASSERT_RTNL();
1937
1938         /* Run per-netns notifier block chain first, then run the global one.
1939          * Hopefully, one day, the global one is going to be removed after
1940          * all notifier block registrators get converted to be per-netns.
1941          */
1942         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1943         if (ret & NOTIFY_STOP_MASK)
1944                 return ret;
1945         return raw_notifier_call_chain(&netdev_chain, val, info);
1946 }
1947
1948 /**
1949  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1950  *                                             for and rollback on error
1951  *      @val_up: value passed unmodified to notifier function
1952  *      @val_down: value passed unmodified to the notifier function when
1953  *                 recovering from an error on @val_up
1954  *      @info: notifier information data
1955  *
1956  *      Call all per-netns network notifier blocks, but not notifier blocks on
1957  *      the global notifier chain. Parameters and return value are as for
1958  *      raw_notifier_call_chain_robust().
1959  */
1960
1961 static int
1962 call_netdevice_notifiers_info_robust(unsigned long val_up,
1963                                      unsigned long val_down,
1964                                      struct netdev_notifier_info *info)
1965 {
1966         struct net *net = dev_net(info->dev);
1967
1968         ASSERT_RTNL();
1969
1970         return raw_notifier_call_chain_robust(&net->netdev_chain,
1971                                               val_up, val_down, info);
1972 }
1973
1974 static int call_netdevice_notifiers_extack(unsigned long val,
1975                                            struct net_device *dev,
1976                                            struct netlink_ext_ack *extack)
1977 {
1978         struct netdev_notifier_info info = {
1979                 .dev = dev,
1980                 .extack = extack,
1981         };
1982
1983         return call_netdevice_notifiers_info(val, &info);
1984 }
1985
1986 /**
1987  *      call_netdevice_notifiers - call all network notifier blocks
1988  *      @val: value passed unmodified to notifier function
1989  *      @dev: net_device pointer passed unmodified to notifier function
1990  *
1991  *      Call all network notifier blocks.  Parameters and return value
1992  *      are as for raw_notifier_call_chain().
1993  */
1994
1995 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1996 {
1997         return call_netdevice_notifiers_extack(val, dev, NULL);
1998 }
1999 EXPORT_SYMBOL(call_netdevice_notifiers);
2000
2001 /**
2002  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2003  *      @val: value passed unmodified to notifier function
2004  *      @dev: net_device pointer passed unmodified to notifier function
2005  *      @arg: additional u32 argument passed to the notifier function
2006  *
2007  *      Call all network notifier blocks.  Parameters and return value
2008  *      are as for raw_notifier_call_chain().
2009  */
2010 static int call_netdevice_notifiers_mtu(unsigned long val,
2011                                         struct net_device *dev, u32 arg)
2012 {
2013         struct netdev_notifier_info_ext info = {
2014                 .info.dev = dev,
2015                 .ext.mtu = arg,
2016         };
2017
2018         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2019
2020         return call_netdevice_notifiers_info(val, &info.info);
2021 }
2022
2023 #ifdef CONFIG_NET_INGRESS
2024 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2025
2026 void net_inc_ingress_queue(void)
2027 {
2028         static_branch_inc(&ingress_needed_key);
2029 }
2030 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2031
2032 void net_dec_ingress_queue(void)
2033 {
2034         static_branch_dec(&ingress_needed_key);
2035 }
2036 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2037 #endif
2038
2039 #ifdef CONFIG_NET_EGRESS
2040 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2041
2042 void net_inc_egress_queue(void)
2043 {
2044         static_branch_inc(&egress_needed_key);
2045 }
2046 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2047
2048 void net_dec_egress_queue(void)
2049 {
2050         static_branch_dec(&egress_needed_key);
2051 }
2052 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2053 #endif
2054
2055 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2056 EXPORT_SYMBOL(netstamp_needed_key);
2057 #ifdef CONFIG_JUMP_LABEL
2058 static atomic_t netstamp_needed_deferred;
2059 static atomic_t netstamp_wanted;
2060 static void netstamp_clear(struct work_struct *work)
2061 {
2062         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2063         int wanted;
2064
2065         wanted = atomic_add_return(deferred, &netstamp_wanted);
2066         if (wanted > 0)
2067                 static_branch_enable(&netstamp_needed_key);
2068         else
2069                 static_branch_disable(&netstamp_needed_key);
2070 }
2071 static DECLARE_WORK(netstamp_work, netstamp_clear);
2072 #endif
2073
2074 void net_enable_timestamp(void)
2075 {
2076 #ifdef CONFIG_JUMP_LABEL
2077         int wanted;
2078
2079         while (1) {
2080                 wanted = atomic_read(&netstamp_wanted);
2081                 if (wanted <= 0)
2082                         break;
2083                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2084                         return;
2085         }
2086         atomic_inc(&netstamp_needed_deferred);
2087         schedule_work(&netstamp_work);
2088 #else
2089         static_branch_inc(&netstamp_needed_key);
2090 #endif
2091 }
2092 EXPORT_SYMBOL(net_enable_timestamp);
2093
2094 void net_disable_timestamp(void)
2095 {
2096 #ifdef CONFIG_JUMP_LABEL
2097         int wanted;
2098
2099         while (1) {
2100                 wanted = atomic_read(&netstamp_wanted);
2101                 if (wanted <= 1)
2102                         break;
2103                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2104                         return;
2105         }
2106         atomic_dec(&netstamp_needed_deferred);
2107         schedule_work(&netstamp_work);
2108 #else
2109         static_branch_dec(&netstamp_needed_key);
2110 #endif
2111 }
2112 EXPORT_SYMBOL(net_disable_timestamp);
2113
2114 static inline void net_timestamp_set(struct sk_buff *skb)
2115 {
2116         skb->tstamp = 0;
2117         skb->mono_delivery_time = 0;
2118         if (static_branch_unlikely(&netstamp_needed_key))
2119                 skb->tstamp = ktime_get_real();
2120 }
2121
2122 #define net_timestamp_check(COND, SKB)                          \
2123         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2124                 if ((COND) && !(SKB)->tstamp)                   \
2125                         (SKB)->tstamp = ktime_get_real();       \
2126         }                                                       \
2127
2128 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2129 {
2130         return __is_skb_forwardable(dev, skb, true);
2131 }
2132 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2133
2134 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2135                               bool check_mtu)
2136 {
2137         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2138
2139         if (likely(!ret)) {
2140                 skb->protocol = eth_type_trans(skb, dev);
2141                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2142         }
2143
2144         return ret;
2145 }
2146
2147 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2148 {
2149         return __dev_forward_skb2(dev, skb, true);
2150 }
2151 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2152
2153 /**
2154  * dev_forward_skb - loopback an skb to another netif
2155  *
2156  * @dev: destination network device
2157  * @skb: buffer to forward
2158  *
2159  * return values:
2160  *      NET_RX_SUCCESS  (no congestion)
2161  *      NET_RX_DROP     (packet was dropped, but freed)
2162  *
2163  * dev_forward_skb can be used for injecting an skb from the
2164  * start_xmit function of one device into the receive queue
2165  * of another device.
2166  *
2167  * The receiving device may be in another namespace, so
2168  * we have to clear all information in the skb that could
2169  * impact namespace isolation.
2170  */
2171 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2172 {
2173         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2174 }
2175 EXPORT_SYMBOL_GPL(dev_forward_skb);
2176
2177 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2178 {
2179         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2180 }
2181
2182 static inline int deliver_skb(struct sk_buff *skb,
2183                               struct packet_type *pt_prev,
2184                               struct net_device *orig_dev)
2185 {
2186         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2187                 return -ENOMEM;
2188         refcount_inc(&skb->users);
2189         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2190 }
2191
2192 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2193                                           struct packet_type **pt,
2194                                           struct net_device *orig_dev,
2195                                           __be16 type,
2196                                           struct list_head *ptype_list)
2197 {
2198         struct packet_type *ptype, *pt_prev = *pt;
2199
2200         list_for_each_entry_rcu(ptype, ptype_list, list) {
2201                 if (ptype->type != type)
2202                         continue;
2203                 if (pt_prev)
2204                         deliver_skb(skb, pt_prev, orig_dev);
2205                 pt_prev = ptype;
2206         }
2207         *pt = pt_prev;
2208 }
2209
2210 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2211 {
2212         if (!ptype->af_packet_priv || !skb->sk)
2213                 return false;
2214
2215         if (ptype->id_match)
2216                 return ptype->id_match(ptype, skb->sk);
2217         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2218                 return true;
2219
2220         return false;
2221 }
2222
2223 /**
2224  * dev_nit_active - return true if any network interface taps are in use
2225  *
2226  * @dev: network device to check for the presence of taps
2227  */
2228 bool dev_nit_active(struct net_device *dev)
2229 {
2230         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2231 }
2232 EXPORT_SYMBOL_GPL(dev_nit_active);
2233
2234 /*
2235  *      Support routine. Sends outgoing frames to any network
2236  *      taps currently in use.
2237  */
2238
2239 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240 {
2241         struct packet_type *ptype;
2242         struct sk_buff *skb2 = NULL;
2243         struct packet_type *pt_prev = NULL;
2244         struct list_head *ptype_list = &ptype_all;
2245
2246         rcu_read_lock();
2247 again:
2248         list_for_each_entry_rcu(ptype, ptype_list, list) {
2249                 if (ptype->ignore_outgoing)
2250                         continue;
2251
2252                 /* Never send packets back to the socket
2253                  * they originated from - MvS (miquels@drinkel.ow.org)
2254                  */
2255                 if (skb_loop_sk(ptype, skb))
2256                         continue;
2257
2258                 if (pt_prev) {
2259                         deliver_skb(skb2, pt_prev, skb->dev);
2260                         pt_prev = ptype;
2261                         continue;
2262                 }
2263
2264                 /* need to clone skb, done only once */
2265                 skb2 = skb_clone(skb, GFP_ATOMIC);
2266                 if (!skb2)
2267                         goto out_unlock;
2268
2269                 net_timestamp_set(skb2);
2270
2271                 /* skb->nh should be correctly
2272                  * set by sender, so that the second statement is
2273                  * just protection against buggy protocols.
2274                  */
2275                 skb_reset_mac_header(skb2);
2276
2277                 if (skb_network_header(skb2) < skb2->data ||
2278                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2279                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2280                                              ntohs(skb2->protocol),
2281                                              dev->name);
2282                         skb_reset_network_header(skb2);
2283                 }
2284
2285                 skb2->transport_header = skb2->network_header;
2286                 skb2->pkt_type = PACKET_OUTGOING;
2287                 pt_prev = ptype;
2288         }
2289
2290         if (ptype_list == &ptype_all) {
2291                 ptype_list = &dev->ptype_all;
2292                 goto again;
2293         }
2294 out_unlock:
2295         if (pt_prev) {
2296                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2297                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2298                 else
2299                         kfree_skb(skb2);
2300         }
2301         rcu_read_unlock();
2302 }
2303 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2304
2305 /**
2306  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2307  * @dev: Network device
2308  * @txq: number of queues available
2309  *
2310  * If real_num_tx_queues is changed the tc mappings may no longer be
2311  * valid. To resolve this verify the tc mapping remains valid and if
2312  * not NULL the mapping. With no priorities mapping to this
2313  * offset/count pair it will no longer be used. In the worst case TC0
2314  * is invalid nothing can be done so disable priority mappings. If is
2315  * expected that drivers will fix this mapping if they can before
2316  * calling netif_set_real_num_tx_queues.
2317  */
2318 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2319 {
2320         int i;
2321         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2322
2323         /* If TC0 is invalidated disable TC mapping */
2324         if (tc->offset + tc->count > txq) {
2325                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2326                 dev->num_tc = 0;
2327                 return;
2328         }
2329
2330         /* Invalidated prio to tc mappings set to TC0 */
2331         for (i = 1; i < TC_BITMASK + 1; i++) {
2332                 int q = netdev_get_prio_tc_map(dev, i);
2333
2334                 tc = &dev->tc_to_txq[q];
2335                 if (tc->offset + tc->count > txq) {
2336                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2337                                     i, q);
2338                         netdev_set_prio_tc_map(dev, i, 0);
2339                 }
2340         }
2341 }
2342
2343 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2344 {
2345         if (dev->num_tc) {
2346                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347                 int i;
2348
2349                 /* walk through the TCs and see if it falls into any of them */
2350                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2351                         if ((txq - tc->offset) < tc->count)
2352                                 return i;
2353                 }
2354
2355                 /* didn't find it, just return -1 to indicate no match */
2356                 return -1;
2357         }
2358
2359         return 0;
2360 }
2361 EXPORT_SYMBOL(netdev_txq_to_tc);
2362
2363 #ifdef CONFIG_XPS
2364 static struct static_key xps_needed __read_mostly;
2365 static struct static_key xps_rxqs_needed __read_mostly;
2366 static DEFINE_MUTEX(xps_map_mutex);
2367 #define xmap_dereference(P)             \
2368         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2369
2370 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2371                              struct xps_dev_maps *old_maps, int tci, u16 index)
2372 {
2373         struct xps_map *map = NULL;
2374         int pos;
2375
2376         if (dev_maps)
2377                 map = xmap_dereference(dev_maps->attr_map[tci]);
2378         if (!map)
2379                 return false;
2380
2381         for (pos = map->len; pos--;) {
2382                 if (map->queues[pos] != index)
2383                         continue;
2384
2385                 if (map->len > 1) {
2386                         map->queues[pos] = map->queues[--map->len];
2387                         break;
2388                 }
2389
2390                 if (old_maps)
2391                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2392                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2393                 kfree_rcu(map, rcu);
2394                 return false;
2395         }
2396
2397         return true;
2398 }
2399
2400 static bool remove_xps_queue_cpu(struct net_device *dev,
2401                                  struct xps_dev_maps *dev_maps,
2402                                  int cpu, u16 offset, u16 count)
2403 {
2404         int num_tc = dev_maps->num_tc;
2405         bool active = false;
2406         int tci;
2407
2408         for (tci = cpu * num_tc; num_tc--; tci++) {
2409                 int i, j;
2410
2411                 for (i = count, j = offset; i--; j++) {
2412                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2413                                 break;
2414                 }
2415
2416                 active |= i < 0;
2417         }
2418
2419         return active;
2420 }
2421
2422 static void reset_xps_maps(struct net_device *dev,
2423                            struct xps_dev_maps *dev_maps,
2424                            enum xps_map_type type)
2425 {
2426         static_key_slow_dec_cpuslocked(&xps_needed);
2427         if (type == XPS_RXQS)
2428                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2429
2430         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2431
2432         kfree_rcu(dev_maps, rcu);
2433 }
2434
2435 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2436                            u16 offset, u16 count)
2437 {
2438         struct xps_dev_maps *dev_maps;
2439         bool active = false;
2440         int i, j;
2441
2442         dev_maps = xmap_dereference(dev->xps_maps[type]);
2443         if (!dev_maps)
2444                 return;
2445
2446         for (j = 0; j < dev_maps->nr_ids; j++)
2447                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2448         if (!active)
2449                 reset_xps_maps(dev, dev_maps, type);
2450
2451         if (type == XPS_CPUS) {
2452                 for (i = offset + (count - 1); count--; i--)
2453                         netdev_queue_numa_node_write(
2454                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2455         }
2456 }
2457
2458 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2459                                    u16 count)
2460 {
2461         if (!static_key_false(&xps_needed))
2462                 return;
2463
2464         cpus_read_lock();
2465         mutex_lock(&xps_map_mutex);
2466
2467         if (static_key_false(&xps_rxqs_needed))
2468                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2469
2470         clean_xps_maps(dev, XPS_CPUS, offset, count);
2471
2472         mutex_unlock(&xps_map_mutex);
2473         cpus_read_unlock();
2474 }
2475
2476 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2477 {
2478         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2479 }
2480
2481 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2482                                       u16 index, bool is_rxqs_map)
2483 {
2484         struct xps_map *new_map;
2485         int alloc_len = XPS_MIN_MAP_ALLOC;
2486         int i, pos;
2487
2488         for (pos = 0; map && pos < map->len; pos++) {
2489                 if (map->queues[pos] != index)
2490                         continue;
2491                 return map;
2492         }
2493
2494         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2495         if (map) {
2496                 if (pos < map->alloc_len)
2497                         return map;
2498
2499                 alloc_len = map->alloc_len * 2;
2500         }
2501
2502         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2503          *  map
2504          */
2505         if (is_rxqs_map)
2506                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2507         else
2508                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2509                                        cpu_to_node(attr_index));
2510         if (!new_map)
2511                 return NULL;
2512
2513         for (i = 0; i < pos; i++)
2514                 new_map->queues[i] = map->queues[i];
2515         new_map->alloc_len = alloc_len;
2516         new_map->len = pos;
2517
2518         return new_map;
2519 }
2520
2521 /* Copy xps maps at a given index */
2522 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2523                               struct xps_dev_maps *new_dev_maps, int index,
2524                               int tc, bool skip_tc)
2525 {
2526         int i, tci = index * dev_maps->num_tc;
2527         struct xps_map *map;
2528
2529         /* copy maps belonging to foreign traffic classes */
2530         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2531                 if (i == tc && skip_tc)
2532                         continue;
2533
2534                 /* fill in the new device map from the old device map */
2535                 map = xmap_dereference(dev_maps->attr_map[tci]);
2536                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2537         }
2538 }
2539
2540 /* Must be called under cpus_read_lock */
2541 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2542                           u16 index, enum xps_map_type type)
2543 {
2544         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2545         const unsigned long *online_mask = NULL;
2546         bool active = false, copy = false;
2547         int i, j, tci, numa_node_id = -2;
2548         int maps_sz, num_tc = 1, tc = 0;
2549         struct xps_map *map, *new_map;
2550         unsigned int nr_ids;
2551
2552         WARN_ON_ONCE(index >= dev->num_tx_queues);
2553
2554         if (dev->num_tc) {
2555                 /* Do not allow XPS on subordinate device directly */
2556                 num_tc = dev->num_tc;
2557                 if (num_tc < 0)
2558                         return -EINVAL;
2559
2560                 /* If queue belongs to subordinate dev use its map */
2561                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2562
2563                 tc = netdev_txq_to_tc(dev, index);
2564                 if (tc < 0)
2565                         return -EINVAL;
2566         }
2567
2568         mutex_lock(&xps_map_mutex);
2569
2570         dev_maps = xmap_dereference(dev->xps_maps[type]);
2571         if (type == XPS_RXQS) {
2572                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2573                 nr_ids = dev->num_rx_queues;
2574         } else {
2575                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2576                 if (num_possible_cpus() > 1)
2577                         online_mask = cpumask_bits(cpu_online_mask);
2578                 nr_ids = nr_cpu_ids;
2579         }
2580
2581         if (maps_sz < L1_CACHE_BYTES)
2582                 maps_sz = L1_CACHE_BYTES;
2583
2584         /* The old dev_maps could be larger or smaller than the one we're
2585          * setting up now, as dev->num_tc or nr_ids could have been updated in
2586          * between. We could try to be smart, but let's be safe instead and only
2587          * copy foreign traffic classes if the two map sizes match.
2588          */
2589         if (dev_maps &&
2590             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2591                 copy = true;
2592
2593         /* allocate memory for queue storage */
2594         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2595              j < nr_ids;) {
2596                 if (!new_dev_maps) {
2597                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2598                         if (!new_dev_maps) {
2599                                 mutex_unlock(&xps_map_mutex);
2600                                 return -ENOMEM;
2601                         }
2602
2603                         new_dev_maps->nr_ids = nr_ids;
2604                         new_dev_maps->num_tc = num_tc;
2605                 }
2606
2607                 tci = j * num_tc + tc;
2608                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2609
2610                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2611                 if (!map)
2612                         goto error;
2613
2614                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2615         }
2616
2617         if (!new_dev_maps)
2618                 goto out_no_new_maps;
2619
2620         if (!dev_maps) {
2621                 /* Increment static keys at most once per type */
2622                 static_key_slow_inc_cpuslocked(&xps_needed);
2623                 if (type == XPS_RXQS)
2624                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2625         }
2626
2627         for (j = 0; j < nr_ids; j++) {
2628                 bool skip_tc = false;
2629
2630                 tci = j * num_tc + tc;
2631                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2632                     netif_attr_test_online(j, online_mask, nr_ids)) {
2633                         /* add tx-queue to CPU/rx-queue maps */
2634                         int pos = 0;
2635
2636                         skip_tc = true;
2637
2638                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2639                         while ((pos < map->len) && (map->queues[pos] != index))
2640                                 pos++;
2641
2642                         if (pos == map->len)
2643                                 map->queues[map->len++] = index;
2644 #ifdef CONFIG_NUMA
2645                         if (type == XPS_CPUS) {
2646                                 if (numa_node_id == -2)
2647                                         numa_node_id = cpu_to_node(j);
2648                                 else if (numa_node_id != cpu_to_node(j))
2649                                         numa_node_id = -1;
2650                         }
2651 #endif
2652                 }
2653
2654                 if (copy)
2655                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2656                                           skip_tc);
2657         }
2658
2659         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2660
2661         /* Cleanup old maps */
2662         if (!dev_maps)
2663                 goto out_no_old_maps;
2664
2665         for (j = 0; j < dev_maps->nr_ids; j++) {
2666                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2667                         map = xmap_dereference(dev_maps->attr_map[tci]);
2668                         if (!map)
2669                                 continue;
2670
2671                         if (copy) {
2672                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2673                                 if (map == new_map)
2674                                         continue;
2675                         }
2676
2677                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2678                         kfree_rcu(map, rcu);
2679                 }
2680         }
2681
2682         old_dev_maps = dev_maps;
2683
2684 out_no_old_maps:
2685         dev_maps = new_dev_maps;
2686         active = true;
2687
2688 out_no_new_maps:
2689         if (type == XPS_CPUS)
2690                 /* update Tx queue numa node */
2691                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2692                                              (numa_node_id >= 0) ?
2693                                              numa_node_id : NUMA_NO_NODE);
2694
2695         if (!dev_maps)
2696                 goto out_no_maps;
2697
2698         /* removes tx-queue from unused CPUs/rx-queues */
2699         for (j = 0; j < dev_maps->nr_ids; j++) {
2700                 tci = j * dev_maps->num_tc;
2701
2702                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2703                         if (i == tc &&
2704                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2705                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2706                                 continue;
2707
2708                         active |= remove_xps_queue(dev_maps,
2709                                                    copy ? old_dev_maps : NULL,
2710                                                    tci, index);
2711                 }
2712         }
2713
2714         if (old_dev_maps)
2715                 kfree_rcu(old_dev_maps, rcu);
2716
2717         /* free map if not active */
2718         if (!active)
2719                 reset_xps_maps(dev, dev_maps, type);
2720
2721 out_no_maps:
2722         mutex_unlock(&xps_map_mutex);
2723
2724         return 0;
2725 error:
2726         /* remove any maps that we added */
2727         for (j = 0; j < nr_ids; j++) {
2728                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2729                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2730                         map = copy ?
2731                               xmap_dereference(dev_maps->attr_map[tci]) :
2732                               NULL;
2733                         if (new_map && new_map != map)
2734                                 kfree(new_map);
2735                 }
2736         }
2737
2738         mutex_unlock(&xps_map_mutex);
2739
2740         kfree(new_dev_maps);
2741         return -ENOMEM;
2742 }
2743 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2744
2745 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2746                         u16 index)
2747 {
2748         int ret;
2749
2750         cpus_read_lock();
2751         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2752         cpus_read_unlock();
2753
2754         return ret;
2755 }
2756 EXPORT_SYMBOL(netif_set_xps_queue);
2757
2758 #endif
2759 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2760 {
2761         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2762
2763         /* Unbind any subordinate channels */
2764         while (txq-- != &dev->_tx[0]) {
2765                 if (txq->sb_dev)
2766                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2767         }
2768 }
2769
2770 void netdev_reset_tc(struct net_device *dev)
2771 {
2772 #ifdef CONFIG_XPS
2773         netif_reset_xps_queues_gt(dev, 0);
2774 #endif
2775         netdev_unbind_all_sb_channels(dev);
2776
2777         /* Reset TC configuration of device */
2778         dev->num_tc = 0;
2779         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2780         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2781 }
2782 EXPORT_SYMBOL(netdev_reset_tc);
2783
2784 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2785 {
2786         if (tc >= dev->num_tc)
2787                 return -EINVAL;
2788
2789 #ifdef CONFIG_XPS
2790         netif_reset_xps_queues(dev, offset, count);
2791 #endif
2792         dev->tc_to_txq[tc].count = count;
2793         dev->tc_to_txq[tc].offset = offset;
2794         return 0;
2795 }
2796 EXPORT_SYMBOL(netdev_set_tc_queue);
2797
2798 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2799 {
2800         if (num_tc > TC_MAX_QUEUE)
2801                 return -EINVAL;
2802
2803 #ifdef CONFIG_XPS
2804         netif_reset_xps_queues_gt(dev, 0);
2805 #endif
2806         netdev_unbind_all_sb_channels(dev);
2807
2808         dev->num_tc = num_tc;
2809         return 0;
2810 }
2811 EXPORT_SYMBOL(netdev_set_num_tc);
2812
2813 void netdev_unbind_sb_channel(struct net_device *dev,
2814                               struct net_device *sb_dev)
2815 {
2816         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2817
2818 #ifdef CONFIG_XPS
2819         netif_reset_xps_queues_gt(sb_dev, 0);
2820 #endif
2821         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2822         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2823
2824         while (txq-- != &dev->_tx[0]) {
2825                 if (txq->sb_dev == sb_dev)
2826                         txq->sb_dev = NULL;
2827         }
2828 }
2829 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2830
2831 int netdev_bind_sb_channel_queue(struct net_device *dev,
2832                                  struct net_device *sb_dev,
2833                                  u8 tc, u16 count, u16 offset)
2834 {
2835         /* Make certain the sb_dev and dev are already configured */
2836         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2837                 return -EINVAL;
2838
2839         /* We cannot hand out queues we don't have */
2840         if ((offset + count) > dev->real_num_tx_queues)
2841                 return -EINVAL;
2842
2843         /* Record the mapping */
2844         sb_dev->tc_to_txq[tc].count = count;
2845         sb_dev->tc_to_txq[tc].offset = offset;
2846
2847         /* Provide a way for Tx queue to find the tc_to_txq map or
2848          * XPS map for itself.
2849          */
2850         while (count--)
2851                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2852
2853         return 0;
2854 }
2855 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2856
2857 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2858 {
2859         /* Do not use a multiqueue device to represent a subordinate channel */
2860         if (netif_is_multiqueue(dev))
2861                 return -ENODEV;
2862
2863         /* We allow channels 1 - 32767 to be used for subordinate channels.
2864          * Channel 0 is meant to be "native" mode and used only to represent
2865          * the main root device. We allow writing 0 to reset the device back
2866          * to normal mode after being used as a subordinate channel.
2867          */
2868         if (channel > S16_MAX)
2869                 return -EINVAL;
2870
2871         dev->num_tc = -channel;
2872
2873         return 0;
2874 }
2875 EXPORT_SYMBOL(netdev_set_sb_channel);
2876
2877 /*
2878  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2879  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2880  */
2881 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2882 {
2883         bool disabling;
2884         int rc;
2885
2886         disabling = txq < dev->real_num_tx_queues;
2887
2888         if (txq < 1 || txq > dev->num_tx_queues)
2889                 return -EINVAL;
2890
2891         if (dev->reg_state == NETREG_REGISTERED ||
2892             dev->reg_state == NETREG_UNREGISTERING) {
2893                 ASSERT_RTNL();
2894
2895                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2896                                                   txq);
2897                 if (rc)
2898                         return rc;
2899
2900                 if (dev->num_tc)
2901                         netif_setup_tc(dev, txq);
2902
2903                 dev_qdisc_change_real_num_tx(dev, txq);
2904
2905                 dev->real_num_tx_queues = txq;
2906
2907                 if (disabling) {
2908                         synchronize_net();
2909                         qdisc_reset_all_tx_gt(dev, txq);
2910 #ifdef CONFIG_XPS
2911                         netif_reset_xps_queues_gt(dev, txq);
2912 #endif
2913                 }
2914         } else {
2915                 dev->real_num_tx_queues = txq;
2916         }
2917
2918         return 0;
2919 }
2920 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2921
2922 #ifdef CONFIG_SYSFS
2923 /**
2924  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2925  *      @dev: Network device
2926  *      @rxq: Actual number of RX queues
2927  *
2928  *      This must be called either with the rtnl_lock held or before
2929  *      registration of the net device.  Returns 0 on success, or a
2930  *      negative error code.  If called before registration, it always
2931  *      succeeds.
2932  */
2933 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2934 {
2935         int rc;
2936
2937         if (rxq < 1 || rxq > dev->num_rx_queues)
2938                 return -EINVAL;
2939
2940         if (dev->reg_state == NETREG_REGISTERED) {
2941                 ASSERT_RTNL();
2942
2943                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2944                                                   rxq);
2945                 if (rc)
2946                         return rc;
2947         }
2948
2949         dev->real_num_rx_queues = rxq;
2950         return 0;
2951 }
2952 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2953 #endif
2954
2955 /**
2956  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2957  *      @dev: Network device
2958  *      @txq: Actual number of TX queues
2959  *      @rxq: Actual number of RX queues
2960  *
2961  *      Set the real number of both TX and RX queues.
2962  *      Does nothing if the number of queues is already correct.
2963  */
2964 int netif_set_real_num_queues(struct net_device *dev,
2965                               unsigned int txq, unsigned int rxq)
2966 {
2967         unsigned int old_rxq = dev->real_num_rx_queues;
2968         int err;
2969
2970         if (txq < 1 || txq > dev->num_tx_queues ||
2971             rxq < 1 || rxq > dev->num_rx_queues)
2972                 return -EINVAL;
2973
2974         /* Start from increases, so the error path only does decreases -
2975          * decreases can't fail.
2976          */
2977         if (rxq > dev->real_num_rx_queues) {
2978                 err = netif_set_real_num_rx_queues(dev, rxq);
2979                 if (err)
2980                         return err;
2981         }
2982         if (txq > dev->real_num_tx_queues) {
2983                 err = netif_set_real_num_tx_queues(dev, txq);
2984                 if (err)
2985                         goto undo_rx;
2986         }
2987         if (rxq < dev->real_num_rx_queues)
2988                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2989         if (txq < dev->real_num_tx_queues)
2990                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2991
2992         return 0;
2993 undo_rx:
2994         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2995         return err;
2996 }
2997 EXPORT_SYMBOL(netif_set_real_num_queues);
2998
2999 /**
3000  * netif_set_tso_max_size() - set the max size of TSO frames supported
3001  * @dev:        netdev to update
3002  * @size:       max skb->len of a TSO frame
3003  *
3004  * Set the limit on the size of TSO super-frames the device can handle.
3005  * Unless explicitly set the stack will assume the value of
3006  * %GSO_LEGACY_MAX_SIZE.
3007  */
3008 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3009 {
3010         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3011         if (size < READ_ONCE(dev->gso_max_size))
3012                 netif_set_gso_max_size(dev, size);
3013 }
3014 EXPORT_SYMBOL(netif_set_tso_max_size);
3015
3016 /**
3017  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3018  * @dev:        netdev to update
3019  * @segs:       max number of TCP segments
3020  *
3021  * Set the limit on the number of TCP segments the device can generate from
3022  * a single TSO super-frame.
3023  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3024  */
3025 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3026 {
3027         dev->tso_max_segs = segs;
3028         if (segs < READ_ONCE(dev->gso_max_segs))
3029                 netif_set_gso_max_segs(dev, segs);
3030 }
3031 EXPORT_SYMBOL(netif_set_tso_max_segs);
3032
3033 /**
3034  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3035  * @to:         netdev to update
3036  * @from:       netdev from which to copy the limits
3037  */
3038 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3039 {
3040         netif_set_tso_max_size(to, from->tso_max_size);
3041         netif_set_tso_max_segs(to, from->tso_max_segs);
3042 }
3043 EXPORT_SYMBOL(netif_inherit_tso_max);
3044
3045 /**
3046  * netif_get_num_default_rss_queues - default number of RSS queues
3047  *
3048  * Default value is the number of physical cores if there are only 1 or 2, or
3049  * divided by 2 if there are more.
3050  */
3051 int netif_get_num_default_rss_queues(void)
3052 {
3053         cpumask_var_t cpus;
3054         int cpu, count = 0;
3055
3056         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3057                 return 1;
3058
3059         cpumask_copy(cpus, cpu_online_mask);
3060         for_each_cpu(cpu, cpus) {
3061                 ++count;
3062                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3063         }
3064         free_cpumask_var(cpus);
3065
3066         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3067 }
3068 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3069
3070 static void __netif_reschedule(struct Qdisc *q)
3071 {
3072         struct softnet_data *sd;
3073         unsigned long flags;
3074
3075         local_irq_save(flags);
3076         sd = this_cpu_ptr(&softnet_data);
3077         q->next_sched = NULL;
3078         *sd->output_queue_tailp = q;
3079         sd->output_queue_tailp = &q->next_sched;
3080         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3081         local_irq_restore(flags);
3082 }
3083
3084 void __netif_schedule(struct Qdisc *q)
3085 {
3086         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3087                 __netif_reschedule(q);
3088 }
3089 EXPORT_SYMBOL(__netif_schedule);
3090
3091 struct dev_kfree_skb_cb {
3092         enum skb_free_reason reason;
3093 };
3094
3095 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3096 {
3097         return (struct dev_kfree_skb_cb *)skb->cb;
3098 }
3099
3100 void netif_schedule_queue(struct netdev_queue *txq)
3101 {
3102         rcu_read_lock();
3103         if (!netif_xmit_stopped(txq)) {
3104                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3105
3106                 __netif_schedule(q);
3107         }
3108         rcu_read_unlock();
3109 }
3110 EXPORT_SYMBOL(netif_schedule_queue);
3111
3112 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3113 {
3114         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3115                 struct Qdisc *q;
3116
3117                 rcu_read_lock();
3118                 q = rcu_dereference(dev_queue->qdisc);
3119                 __netif_schedule(q);
3120                 rcu_read_unlock();
3121         }
3122 }
3123 EXPORT_SYMBOL(netif_tx_wake_queue);
3124
3125 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3126 {
3127         unsigned long flags;
3128
3129         if (unlikely(!skb))
3130                 return;
3131
3132         if (likely(refcount_read(&skb->users) == 1)) {
3133                 smp_rmb();
3134                 refcount_set(&skb->users, 0);
3135         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3136                 return;
3137         }
3138         get_kfree_skb_cb(skb)->reason = reason;
3139         local_irq_save(flags);
3140         skb->next = __this_cpu_read(softnet_data.completion_queue);
3141         __this_cpu_write(softnet_data.completion_queue, skb);
3142         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3143         local_irq_restore(flags);
3144 }
3145 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3146
3147 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3148 {
3149         if (in_hardirq() || irqs_disabled())
3150                 __dev_kfree_skb_irq(skb, reason);
3151         else if (unlikely(reason == SKB_REASON_DROPPED))
3152                 kfree_skb(skb);
3153         else
3154                 consume_skb(skb);
3155 }
3156 EXPORT_SYMBOL(__dev_kfree_skb_any);
3157
3158
3159 /**
3160  * netif_device_detach - mark device as removed
3161  * @dev: network device
3162  *
3163  * Mark device as removed from system and therefore no longer available.
3164  */
3165 void netif_device_detach(struct net_device *dev)
3166 {
3167         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3168             netif_running(dev)) {
3169                 netif_tx_stop_all_queues(dev);
3170         }
3171 }
3172 EXPORT_SYMBOL(netif_device_detach);
3173
3174 /**
3175  * netif_device_attach - mark device as attached
3176  * @dev: network device
3177  *
3178  * Mark device as attached from system and restart if needed.
3179  */
3180 void netif_device_attach(struct net_device *dev)
3181 {
3182         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3183             netif_running(dev)) {
3184                 netif_tx_wake_all_queues(dev);
3185                 __netdev_watchdog_up(dev);
3186         }
3187 }
3188 EXPORT_SYMBOL(netif_device_attach);
3189
3190 /*
3191  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3192  * to be used as a distribution range.
3193  */
3194 static u16 skb_tx_hash(const struct net_device *dev,
3195                        const struct net_device *sb_dev,
3196                        struct sk_buff *skb)
3197 {
3198         u32 hash;
3199         u16 qoffset = 0;
3200         u16 qcount = dev->real_num_tx_queues;
3201
3202         if (dev->num_tc) {
3203                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3204
3205                 qoffset = sb_dev->tc_to_txq[tc].offset;
3206                 qcount = sb_dev->tc_to_txq[tc].count;
3207                 if (unlikely(!qcount)) {
3208                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3209                                              sb_dev->name, qoffset, tc);
3210                         qoffset = 0;
3211                         qcount = dev->real_num_tx_queues;
3212                 }
3213         }
3214
3215         if (skb_rx_queue_recorded(skb)) {
3216                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3217                 hash = skb_get_rx_queue(skb);
3218                 if (hash >= qoffset)
3219                         hash -= qoffset;
3220                 while (unlikely(hash >= qcount))
3221                         hash -= qcount;
3222                 return hash + qoffset;
3223         }
3224
3225         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3226 }
3227
3228 static void skb_warn_bad_offload(const struct sk_buff *skb)
3229 {
3230         static const netdev_features_t null_features;
3231         struct net_device *dev = skb->dev;
3232         const char *name = "";
3233
3234         if (!net_ratelimit())
3235                 return;
3236
3237         if (dev) {
3238                 if (dev->dev.parent)
3239                         name = dev_driver_string(dev->dev.parent);
3240                 else
3241                         name = netdev_name(dev);
3242         }
3243         skb_dump(KERN_WARNING, skb, false);
3244         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3245              name, dev ? &dev->features : &null_features,
3246              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3247 }
3248
3249 /*
3250  * Invalidate hardware checksum when packet is to be mangled, and
3251  * complete checksum manually on outgoing path.
3252  */
3253 int skb_checksum_help(struct sk_buff *skb)
3254 {
3255         __wsum csum;
3256         int ret = 0, offset;
3257
3258         if (skb->ip_summed == CHECKSUM_COMPLETE)
3259                 goto out_set_summed;
3260
3261         if (unlikely(skb_is_gso(skb))) {
3262                 skb_warn_bad_offload(skb);
3263                 return -EINVAL;
3264         }
3265
3266         /* Before computing a checksum, we should make sure no frag could
3267          * be modified by an external entity : checksum could be wrong.
3268          */
3269         if (skb_has_shared_frag(skb)) {
3270                 ret = __skb_linearize(skb);
3271                 if (ret)
3272                         goto out;
3273         }
3274
3275         offset = skb_checksum_start_offset(skb);
3276         ret = -EINVAL;
3277         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3278                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3279                 goto out;
3280         }
3281         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3282
3283         offset += skb->csum_offset;
3284         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3285                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3286                 goto out;
3287         }
3288         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3289         if (ret)
3290                 goto out;
3291
3292         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3293 out_set_summed:
3294         skb->ip_summed = CHECKSUM_NONE;
3295 out:
3296         return ret;
3297 }
3298 EXPORT_SYMBOL(skb_checksum_help);
3299
3300 int skb_crc32c_csum_help(struct sk_buff *skb)
3301 {
3302         __le32 crc32c_csum;
3303         int ret = 0, offset, start;
3304
3305         if (skb->ip_summed != CHECKSUM_PARTIAL)
3306                 goto out;
3307
3308         if (unlikely(skb_is_gso(skb)))
3309                 goto out;
3310
3311         /* Before computing a checksum, we should make sure no frag could
3312          * be modified by an external entity : checksum could be wrong.
3313          */
3314         if (unlikely(skb_has_shared_frag(skb))) {
3315                 ret = __skb_linearize(skb);
3316                 if (ret)
3317                         goto out;
3318         }
3319         start = skb_checksum_start_offset(skb);
3320         offset = start + offsetof(struct sctphdr, checksum);
3321         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3322                 ret = -EINVAL;
3323                 goto out;
3324         }
3325
3326         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3327         if (ret)
3328                 goto out;
3329
3330         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3331                                                   skb->len - start, ~(__u32)0,
3332                                                   crc32c_csum_stub));
3333         *(__le32 *)(skb->data + offset) = crc32c_csum;
3334         skb->ip_summed = CHECKSUM_NONE;
3335         skb->csum_not_inet = 0;
3336 out:
3337         return ret;
3338 }
3339
3340 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3341 {
3342         __be16 type = skb->protocol;
3343
3344         /* Tunnel gso handlers can set protocol to ethernet. */
3345         if (type == htons(ETH_P_TEB)) {
3346                 struct ethhdr *eth;
3347
3348                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3349                         return 0;
3350
3351                 eth = (struct ethhdr *)skb->data;
3352                 type = eth->h_proto;
3353         }
3354
3355         return vlan_get_protocol_and_depth(skb, type, depth);
3356 }
3357
3358 /* openvswitch calls this on rx path, so we need a different check.
3359  */
3360 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3361 {
3362         if (tx_path)
3363                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3364                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3365
3366         return skb->ip_summed == CHECKSUM_NONE;
3367 }
3368
3369 /**
3370  *      __skb_gso_segment - Perform segmentation on skb.
3371  *      @skb: buffer to segment
3372  *      @features: features for the output path (see dev->features)
3373  *      @tx_path: whether it is called in TX path
3374  *
3375  *      This function segments the given skb and returns a list of segments.
3376  *
3377  *      It may return NULL if the skb requires no segmentation.  This is
3378  *      only possible when GSO is used for verifying header integrity.
3379  *
3380  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3381  */
3382 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3383                                   netdev_features_t features, bool tx_path)
3384 {
3385         struct sk_buff *segs;
3386
3387         if (unlikely(skb_needs_check(skb, tx_path))) {
3388                 int err;
3389
3390                 /* We're going to init ->check field in TCP or UDP header */
3391                 err = skb_cow_head(skb, 0);
3392                 if (err < 0)
3393                         return ERR_PTR(err);
3394         }
3395
3396         /* Only report GSO partial support if it will enable us to
3397          * support segmentation on this frame without needing additional
3398          * work.
3399          */
3400         if (features & NETIF_F_GSO_PARTIAL) {
3401                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3402                 struct net_device *dev = skb->dev;
3403
3404                 partial_features |= dev->features & dev->gso_partial_features;
3405                 if (!skb_gso_ok(skb, features | partial_features))
3406                         features &= ~NETIF_F_GSO_PARTIAL;
3407         }
3408
3409         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3410                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3411
3412         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3413         SKB_GSO_CB(skb)->encap_level = 0;
3414
3415         skb_reset_mac_header(skb);
3416         skb_reset_mac_len(skb);
3417
3418         segs = skb_mac_gso_segment(skb, features);
3419
3420         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3421                 skb_warn_bad_offload(skb);
3422
3423         return segs;
3424 }
3425 EXPORT_SYMBOL(__skb_gso_segment);
3426
3427 /* Take action when hardware reception checksum errors are detected. */
3428 #ifdef CONFIG_BUG
3429 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3430 {
3431         netdev_err(dev, "hw csum failure\n");
3432         skb_dump(KERN_ERR, skb, true);
3433         dump_stack();
3434 }
3435
3436 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3437 {
3438         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3439 }
3440 EXPORT_SYMBOL(netdev_rx_csum_fault);
3441 #endif
3442
3443 /* XXX: check that highmem exists at all on the given machine. */
3444 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3445 {
3446 #ifdef CONFIG_HIGHMEM
3447         int i;
3448
3449         if (!(dev->features & NETIF_F_HIGHDMA)) {
3450                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3451                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3452
3453                         if (PageHighMem(skb_frag_page(frag)))
3454                                 return 1;
3455                 }
3456         }
3457 #endif
3458         return 0;
3459 }
3460
3461 /* If MPLS offload request, verify we are testing hardware MPLS features
3462  * instead of standard features for the netdev.
3463  */
3464 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3465 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3466                                            netdev_features_t features,
3467                                            __be16 type)
3468 {
3469         if (eth_p_mpls(type))
3470                 features &= skb->dev->mpls_features;
3471
3472         return features;
3473 }
3474 #else
3475 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3476                                            netdev_features_t features,
3477                                            __be16 type)
3478 {
3479         return features;
3480 }
3481 #endif
3482
3483 static netdev_features_t harmonize_features(struct sk_buff *skb,
3484         netdev_features_t features)
3485 {
3486         __be16 type;
3487
3488         type = skb_network_protocol(skb, NULL);
3489         features = net_mpls_features(skb, features, type);
3490
3491         if (skb->ip_summed != CHECKSUM_NONE &&
3492             !can_checksum_protocol(features, type)) {
3493                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3494         }
3495         if (illegal_highdma(skb->dev, skb))
3496                 features &= ~NETIF_F_SG;
3497
3498         return features;
3499 }
3500
3501 netdev_features_t passthru_features_check(struct sk_buff *skb,
3502                                           struct net_device *dev,
3503                                           netdev_features_t features)
3504 {
3505         return features;
3506 }
3507 EXPORT_SYMBOL(passthru_features_check);
3508
3509 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3510                                              struct net_device *dev,
3511                                              netdev_features_t features)
3512 {
3513         return vlan_features_check(skb, features);
3514 }
3515
3516 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3517                                             struct net_device *dev,
3518                                             netdev_features_t features)
3519 {
3520         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3521
3522         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3523                 return features & ~NETIF_F_GSO_MASK;
3524
3525         if (!skb_shinfo(skb)->gso_type) {
3526                 skb_warn_bad_offload(skb);
3527                 return features & ~NETIF_F_GSO_MASK;
3528         }
3529
3530         /* Support for GSO partial features requires software
3531          * intervention before we can actually process the packets
3532          * so we need to strip support for any partial features now
3533          * and we can pull them back in after we have partially
3534          * segmented the frame.
3535          */
3536         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3537                 features &= ~dev->gso_partial_features;
3538
3539         /* Make sure to clear the IPv4 ID mangling feature if the
3540          * IPv4 header has the potential to be fragmented.
3541          */
3542         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3543                 struct iphdr *iph = skb->encapsulation ?
3544                                     inner_ip_hdr(skb) : ip_hdr(skb);
3545
3546                 if (!(iph->frag_off & htons(IP_DF)))
3547                         features &= ~NETIF_F_TSO_MANGLEID;
3548         }
3549
3550         return features;
3551 }
3552
3553 netdev_features_t netif_skb_features(struct sk_buff *skb)
3554 {
3555         struct net_device *dev = skb->dev;
3556         netdev_features_t features = dev->features;
3557
3558         if (skb_is_gso(skb))
3559                 features = gso_features_check(skb, dev, features);
3560
3561         /* If encapsulation offload request, verify we are testing
3562          * hardware encapsulation features instead of standard
3563          * features for the netdev
3564          */
3565         if (skb->encapsulation)
3566                 features &= dev->hw_enc_features;
3567
3568         if (skb_vlan_tagged(skb))
3569                 features = netdev_intersect_features(features,
3570                                                      dev->vlan_features |
3571                                                      NETIF_F_HW_VLAN_CTAG_TX |
3572                                                      NETIF_F_HW_VLAN_STAG_TX);
3573
3574         if (dev->netdev_ops->ndo_features_check)
3575                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3576                                                                 features);
3577         else
3578                 features &= dflt_features_check(skb, dev, features);
3579
3580         return harmonize_features(skb, features);
3581 }
3582 EXPORT_SYMBOL(netif_skb_features);
3583
3584 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3585                     struct netdev_queue *txq, bool more)
3586 {
3587         unsigned int len;
3588         int rc;
3589
3590         if (dev_nit_active(dev))
3591                 dev_queue_xmit_nit(skb, dev);
3592
3593         len = skb->len;
3594         trace_net_dev_start_xmit(skb, dev);
3595         rc = netdev_start_xmit(skb, dev, txq, more);
3596         trace_net_dev_xmit(skb, rc, dev, len);
3597
3598         return rc;
3599 }
3600
3601 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3602                                     struct netdev_queue *txq, int *ret)
3603 {
3604         struct sk_buff *skb = first;
3605         int rc = NETDEV_TX_OK;
3606
3607         while (skb) {
3608                 struct sk_buff *next = skb->next;
3609
3610                 skb_mark_not_on_list(skb);
3611                 rc = xmit_one(skb, dev, txq, next != NULL);
3612                 if (unlikely(!dev_xmit_complete(rc))) {
3613                         skb->next = next;
3614                         goto out;
3615                 }
3616
3617                 skb = next;
3618                 if (netif_tx_queue_stopped(txq) && skb) {
3619                         rc = NETDEV_TX_BUSY;
3620                         break;
3621                 }
3622         }
3623
3624 out:
3625         *ret = rc;
3626         return skb;
3627 }
3628
3629 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3630                                           netdev_features_t features)
3631 {
3632         if (skb_vlan_tag_present(skb) &&
3633             !vlan_hw_offload_capable(features, skb->vlan_proto))
3634                 skb = __vlan_hwaccel_push_inside(skb);
3635         return skb;
3636 }
3637
3638 int skb_csum_hwoffload_help(struct sk_buff *skb,
3639                             const netdev_features_t features)
3640 {
3641         if (unlikely(skb_csum_is_sctp(skb)))
3642                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3643                         skb_crc32c_csum_help(skb);
3644
3645         if (features & NETIF_F_HW_CSUM)
3646                 return 0;
3647
3648         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3649                 switch (skb->csum_offset) {
3650                 case offsetof(struct tcphdr, check):
3651                 case offsetof(struct udphdr, check):
3652                         return 0;
3653                 }
3654         }
3655
3656         return skb_checksum_help(skb);
3657 }
3658 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3659
3660 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3661 {
3662         netdev_features_t features;
3663
3664         features = netif_skb_features(skb);
3665         skb = validate_xmit_vlan(skb, features);
3666         if (unlikely(!skb))
3667                 goto out_null;
3668
3669         skb = sk_validate_xmit_skb(skb, dev);
3670         if (unlikely(!skb))
3671                 goto out_null;
3672
3673         if (netif_needs_gso(skb, features)) {
3674                 struct sk_buff *segs;
3675
3676                 segs = skb_gso_segment(skb, features);
3677                 if (IS_ERR(segs)) {
3678                         goto out_kfree_skb;
3679                 } else if (segs) {
3680                         consume_skb(skb);
3681                         skb = segs;
3682                 }
3683         } else {
3684                 if (skb_needs_linearize(skb, features) &&
3685                     __skb_linearize(skb))
3686                         goto out_kfree_skb;
3687
3688                 /* If packet is not checksummed and device does not
3689                  * support checksumming for this protocol, complete
3690                  * checksumming here.
3691                  */
3692                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3693                         if (skb->encapsulation)
3694                                 skb_set_inner_transport_header(skb,
3695                                                                skb_checksum_start_offset(skb));
3696                         else
3697                                 skb_set_transport_header(skb,
3698                                                          skb_checksum_start_offset(skb));
3699                         if (skb_csum_hwoffload_help(skb, features))
3700                                 goto out_kfree_skb;
3701                 }
3702         }
3703
3704         skb = validate_xmit_xfrm(skb, features, again);
3705
3706         return skb;
3707
3708 out_kfree_skb:
3709         kfree_skb(skb);
3710 out_null:
3711         dev_core_stats_tx_dropped_inc(dev);
3712         return NULL;
3713 }
3714
3715 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3716 {
3717         struct sk_buff *next, *head = NULL, *tail;
3718
3719         for (; skb != NULL; skb = next) {
3720                 next = skb->next;
3721                 skb_mark_not_on_list(skb);
3722
3723                 /* in case skb wont be segmented, point to itself */
3724                 skb->prev = skb;
3725
3726                 skb = validate_xmit_skb(skb, dev, again);
3727                 if (!skb)
3728                         continue;
3729
3730                 if (!head)
3731                         head = skb;
3732                 else
3733                         tail->next = skb;
3734                 /* If skb was segmented, skb->prev points to
3735                  * the last segment. If not, it still contains skb.
3736                  */
3737                 tail = skb->prev;
3738         }
3739         return head;
3740 }
3741 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3742
3743 static void qdisc_pkt_len_init(struct sk_buff *skb)
3744 {
3745         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3746
3747         qdisc_skb_cb(skb)->pkt_len = skb->len;
3748
3749         /* To get more precise estimation of bytes sent on wire,
3750          * we add to pkt_len the headers size of all segments
3751          */
3752         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3753                 unsigned int hdr_len;
3754                 u16 gso_segs = shinfo->gso_segs;
3755
3756                 /* mac layer + network layer */
3757                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3758
3759                 /* + transport layer */
3760                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3761                         const struct tcphdr *th;
3762                         struct tcphdr _tcphdr;
3763
3764                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3765                                                 sizeof(_tcphdr), &_tcphdr);
3766                         if (likely(th))
3767                                 hdr_len += __tcp_hdrlen(th);
3768                 } else {
3769                         struct udphdr _udphdr;
3770
3771                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3772                                                sizeof(_udphdr), &_udphdr))
3773                                 hdr_len += sizeof(struct udphdr);
3774                 }
3775
3776                 if (shinfo->gso_type & SKB_GSO_DODGY)
3777                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3778                                                 shinfo->gso_size);
3779
3780                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3781         }
3782 }
3783
3784 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3785                              struct sk_buff **to_free,
3786                              struct netdev_queue *txq)
3787 {
3788         int rc;
3789
3790         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3791         if (rc == NET_XMIT_SUCCESS)
3792                 trace_qdisc_enqueue(q, txq, skb);
3793         return rc;
3794 }
3795
3796 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3797                                  struct net_device *dev,
3798                                  struct netdev_queue *txq)
3799 {
3800         spinlock_t *root_lock = qdisc_lock(q);
3801         struct sk_buff *to_free = NULL;
3802         bool contended;
3803         int rc;
3804
3805         qdisc_calculate_pkt_len(skb, q);
3806
3807         if (q->flags & TCQ_F_NOLOCK) {
3808                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3809                     qdisc_run_begin(q)) {
3810                         /* Retest nolock_qdisc_is_empty() within the protection
3811                          * of q->seqlock to protect from racing with requeuing.
3812                          */
3813                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3814                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3815                                 __qdisc_run(q);
3816                                 qdisc_run_end(q);
3817
3818                                 goto no_lock_out;
3819                         }
3820
3821                         qdisc_bstats_cpu_update(q, skb);
3822                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3823                             !nolock_qdisc_is_empty(q))
3824                                 __qdisc_run(q);
3825
3826                         qdisc_run_end(q);
3827                         return NET_XMIT_SUCCESS;
3828                 }
3829
3830                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3831                 qdisc_run(q);
3832
3833 no_lock_out:
3834                 if (unlikely(to_free))
3835                         kfree_skb_list_reason(to_free,
3836                                               SKB_DROP_REASON_QDISC_DROP);
3837                 return rc;
3838         }
3839
3840         /*
3841          * Heuristic to force contended enqueues to serialize on a
3842          * separate lock before trying to get qdisc main lock.
3843          * This permits qdisc->running owner to get the lock more
3844          * often and dequeue packets faster.
3845          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3846          * and then other tasks will only enqueue packets. The packets will be
3847          * sent after the qdisc owner is scheduled again. To prevent this
3848          * scenario the task always serialize on the lock.
3849          */
3850         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3851         if (unlikely(contended))
3852                 spin_lock(&q->busylock);
3853
3854         spin_lock(root_lock);
3855         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3856                 __qdisc_drop(skb, &to_free);
3857                 rc = NET_XMIT_DROP;
3858         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3859                    qdisc_run_begin(q)) {
3860                 /*
3861                  * This is a work-conserving queue; there are no old skbs
3862                  * waiting to be sent out; and the qdisc is not running -
3863                  * xmit the skb directly.
3864                  */
3865
3866                 qdisc_bstats_update(q, skb);
3867
3868                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3869                         if (unlikely(contended)) {
3870                                 spin_unlock(&q->busylock);
3871                                 contended = false;
3872                         }
3873                         __qdisc_run(q);
3874                 }
3875
3876                 qdisc_run_end(q);
3877                 rc = NET_XMIT_SUCCESS;
3878         } else {
3879                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3880                 if (qdisc_run_begin(q)) {
3881                         if (unlikely(contended)) {
3882                                 spin_unlock(&q->busylock);
3883                                 contended = false;
3884                         }
3885                         __qdisc_run(q);
3886                         qdisc_run_end(q);
3887                 }
3888         }
3889         spin_unlock(root_lock);
3890         if (unlikely(to_free))
3891                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3892         if (unlikely(contended))
3893                 spin_unlock(&q->busylock);
3894         return rc;
3895 }
3896
3897 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3898 static void skb_update_prio(struct sk_buff *skb)
3899 {
3900         const struct netprio_map *map;
3901         const struct sock *sk;
3902         unsigned int prioidx;
3903
3904         if (skb->priority)
3905                 return;
3906         map = rcu_dereference_bh(skb->dev->priomap);
3907         if (!map)
3908                 return;
3909         sk = skb_to_full_sk(skb);
3910         if (!sk)
3911                 return;
3912
3913         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3914
3915         if (prioidx < map->priomap_len)
3916                 skb->priority = map->priomap[prioidx];
3917 }
3918 #else
3919 #define skb_update_prio(skb)
3920 #endif
3921
3922 /**
3923  *      dev_loopback_xmit - loop back @skb
3924  *      @net: network namespace this loopback is happening in
3925  *      @sk:  sk needed to be a netfilter okfn
3926  *      @skb: buffer to transmit
3927  */
3928 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3929 {
3930         skb_reset_mac_header(skb);
3931         __skb_pull(skb, skb_network_offset(skb));
3932         skb->pkt_type = PACKET_LOOPBACK;
3933         if (skb->ip_summed == CHECKSUM_NONE)
3934                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3935         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3936         skb_dst_force(skb);
3937         netif_rx(skb);
3938         return 0;
3939 }
3940 EXPORT_SYMBOL(dev_loopback_xmit);
3941
3942 #ifdef CONFIG_NET_EGRESS
3943 static struct sk_buff *
3944 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3945 {
3946 #ifdef CONFIG_NET_CLS_ACT
3947         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3948         struct tcf_result cl_res;
3949
3950         if (!miniq)
3951                 return skb;
3952
3953         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3954         tc_skb_cb(skb)->mru = 0;
3955         tc_skb_cb(skb)->post_ct = false;
3956         mini_qdisc_bstats_cpu_update(miniq, skb);
3957
3958         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3959         case TC_ACT_OK:
3960         case TC_ACT_RECLASSIFY:
3961                 skb->tc_index = TC_H_MIN(cl_res.classid);
3962                 break;
3963         case TC_ACT_SHOT:
3964                 mini_qdisc_qstats_cpu_drop(miniq);
3965                 *ret = NET_XMIT_DROP;
3966                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3967                 return NULL;
3968         case TC_ACT_STOLEN:
3969         case TC_ACT_QUEUED:
3970         case TC_ACT_TRAP:
3971                 *ret = NET_XMIT_SUCCESS;
3972                 consume_skb(skb);
3973                 return NULL;
3974         case TC_ACT_REDIRECT:
3975                 /* No need to push/pop skb's mac_header here on egress! */
3976                 skb_do_redirect(skb);
3977                 *ret = NET_XMIT_SUCCESS;
3978                 return NULL;
3979         default:
3980                 break;
3981         }
3982 #endif /* CONFIG_NET_CLS_ACT */
3983
3984         return skb;
3985 }
3986
3987 static struct netdev_queue *
3988 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3989 {
3990         int qm = skb_get_queue_mapping(skb);
3991
3992         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3993 }
3994
3995 static bool netdev_xmit_txqueue_skipped(void)
3996 {
3997         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3998 }
3999
4000 void netdev_xmit_skip_txqueue(bool skip)
4001 {
4002         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4003 }
4004 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4005 #endif /* CONFIG_NET_EGRESS */
4006
4007 #ifdef CONFIG_XPS
4008 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4009                                struct xps_dev_maps *dev_maps, unsigned int tci)
4010 {
4011         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4012         struct xps_map *map;
4013         int queue_index = -1;
4014
4015         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4016                 return queue_index;
4017
4018         tci *= dev_maps->num_tc;
4019         tci += tc;
4020
4021         map = rcu_dereference(dev_maps->attr_map[tci]);
4022         if (map) {
4023                 if (map->len == 1)
4024                         queue_index = map->queues[0];
4025                 else
4026                         queue_index = map->queues[reciprocal_scale(
4027                                                 skb_get_hash(skb), map->len)];
4028                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4029                         queue_index = -1;
4030         }
4031         return queue_index;
4032 }
4033 #endif
4034
4035 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4036                          struct sk_buff *skb)
4037 {
4038 #ifdef CONFIG_XPS
4039         struct xps_dev_maps *dev_maps;
4040         struct sock *sk = skb->sk;
4041         int queue_index = -1;
4042
4043         if (!static_key_false(&xps_needed))
4044                 return -1;
4045
4046         rcu_read_lock();
4047         if (!static_key_false(&xps_rxqs_needed))
4048                 goto get_cpus_map;
4049
4050         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4051         if (dev_maps) {
4052                 int tci = sk_rx_queue_get(sk);
4053
4054                 if (tci >= 0)
4055                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4056                                                           tci);
4057         }
4058
4059 get_cpus_map:
4060         if (queue_index < 0) {
4061                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4062                 if (dev_maps) {
4063                         unsigned int tci = skb->sender_cpu - 1;
4064
4065                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4066                                                           tci);
4067                 }
4068         }
4069         rcu_read_unlock();
4070
4071         return queue_index;
4072 #else
4073         return -1;
4074 #endif
4075 }
4076
4077 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4078                      struct net_device *sb_dev)
4079 {
4080         return 0;
4081 }
4082 EXPORT_SYMBOL(dev_pick_tx_zero);
4083
4084 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4085                        struct net_device *sb_dev)
4086 {
4087         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4088 }
4089 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4090
4091 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4092                      struct net_device *sb_dev)
4093 {
4094         struct sock *sk = skb->sk;
4095         int queue_index = sk_tx_queue_get(sk);
4096
4097         sb_dev = sb_dev ? : dev;
4098
4099         if (queue_index < 0 || skb->ooo_okay ||
4100             queue_index >= dev->real_num_tx_queues) {
4101                 int new_index = get_xps_queue(dev, sb_dev, skb);
4102
4103                 if (new_index < 0)
4104                         new_index = skb_tx_hash(dev, sb_dev, skb);
4105
4106                 if (queue_index != new_index && sk &&
4107                     sk_fullsock(sk) &&
4108                     rcu_access_pointer(sk->sk_dst_cache))
4109                         sk_tx_queue_set(sk, new_index);
4110
4111                 queue_index = new_index;
4112         }
4113
4114         return queue_index;
4115 }
4116 EXPORT_SYMBOL(netdev_pick_tx);
4117
4118 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4119                                          struct sk_buff *skb,
4120                                          struct net_device *sb_dev)
4121 {
4122         int queue_index = 0;
4123
4124 #ifdef CONFIG_XPS
4125         u32 sender_cpu = skb->sender_cpu - 1;
4126
4127         if (sender_cpu >= (u32)NR_CPUS)
4128                 skb->sender_cpu = raw_smp_processor_id() + 1;
4129 #endif
4130
4131         if (dev->real_num_tx_queues != 1) {
4132                 const struct net_device_ops *ops = dev->netdev_ops;
4133
4134                 if (ops->ndo_select_queue)
4135                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4136                 else
4137                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4138
4139                 queue_index = netdev_cap_txqueue(dev, queue_index);
4140         }
4141
4142         skb_set_queue_mapping(skb, queue_index);
4143         return netdev_get_tx_queue(dev, queue_index);
4144 }
4145
4146 /**
4147  * __dev_queue_xmit() - transmit a buffer
4148  * @skb:        buffer to transmit
4149  * @sb_dev:     suboordinate device used for L2 forwarding offload
4150  *
4151  * Queue a buffer for transmission to a network device. The caller must
4152  * have set the device and priority and built the buffer before calling
4153  * this function. The function can be called from an interrupt.
4154  *
4155  * When calling this method, interrupts MUST be enabled. This is because
4156  * the BH enable code must have IRQs enabled so that it will not deadlock.
4157  *
4158  * Regardless of the return value, the skb is consumed, so it is currently
4159  * difficult to retry a send to this method. (You can bump the ref count
4160  * before sending to hold a reference for retry if you are careful.)
4161  *
4162  * Return:
4163  * * 0                          - buffer successfully transmitted
4164  * * positive qdisc return code - NET_XMIT_DROP etc.
4165  * * negative errno             - other errors
4166  */
4167 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4168 {
4169         struct net_device *dev = skb->dev;
4170         struct netdev_queue *txq = NULL;
4171         struct Qdisc *q;
4172         int rc = -ENOMEM;
4173         bool again = false;
4174
4175         skb_reset_mac_header(skb);
4176         skb_assert_len(skb);
4177
4178         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4179                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4180
4181         /* Disable soft irqs for various locks below. Also
4182          * stops preemption for RCU.
4183          */
4184         rcu_read_lock_bh();
4185
4186         skb_update_prio(skb);
4187
4188         qdisc_pkt_len_init(skb);
4189 #ifdef CONFIG_NET_CLS_ACT
4190         skb->tc_at_ingress = 0;
4191 #endif
4192 #ifdef CONFIG_NET_EGRESS
4193         if (static_branch_unlikely(&egress_needed_key)) {
4194                 if (nf_hook_egress_active()) {
4195                         skb = nf_hook_egress(skb, &rc, dev);
4196                         if (!skb)
4197                                 goto out;
4198                 }
4199
4200                 netdev_xmit_skip_txqueue(false);
4201
4202                 nf_skip_egress(skb, true);
4203                 skb = sch_handle_egress(skb, &rc, dev);
4204                 if (!skb)
4205                         goto out;
4206                 nf_skip_egress(skb, false);
4207
4208                 if (netdev_xmit_txqueue_skipped())
4209                         txq = netdev_tx_queue_mapping(dev, skb);
4210         }
4211 #endif
4212         /* If device/qdisc don't need skb->dst, release it right now while
4213          * its hot in this cpu cache.
4214          */
4215         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4216                 skb_dst_drop(skb);
4217         else
4218                 skb_dst_force(skb);
4219
4220         if (!txq)
4221                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4222
4223         q = rcu_dereference_bh(txq->qdisc);
4224
4225         trace_net_dev_queue(skb);
4226         if (q->enqueue) {
4227                 rc = __dev_xmit_skb(skb, q, dev, txq);
4228                 goto out;
4229         }
4230
4231         /* The device has no queue. Common case for software devices:
4232          * loopback, all the sorts of tunnels...
4233
4234          * Really, it is unlikely that netif_tx_lock protection is necessary
4235          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4236          * counters.)
4237          * However, it is possible, that they rely on protection
4238          * made by us here.
4239
4240          * Check this and shot the lock. It is not prone from deadlocks.
4241          *Either shot noqueue qdisc, it is even simpler 8)
4242          */
4243         if (dev->flags & IFF_UP) {
4244                 int cpu = smp_processor_id(); /* ok because BHs are off */
4245
4246                 /* Other cpus might concurrently change txq->xmit_lock_owner
4247                  * to -1 or to their cpu id, but not to our id.
4248                  */
4249                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4250                         if (dev_xmit_recursion())
4251                                 goto recursion_alert;
4252
4253                         skb = validate_xmit_skb(skb, dev, &again);
4254                         if (!skb)
4255                                 goto out;
4256
4257                         HARD_TX_LOCK(dev, txq, cpu);
4258
4259                         if (!netif_xmit_stopped(txq)) {
4260                                 dev_xmit_recursion_inc();
4261                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4262                                 dev_xmit_recursion_dec();
4263                                 if (dev_xmit_complete(rc)) {
4264                                         HARD_TX_UNLOCK(dev, txq);
4265                                         goto out;
4266                                 }
4267                         }
4268                         HARD_TX_UNLOCK(dev, txq);
4269                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4270                                              dev->name);
4271                 } else {
4272                         /* Recursion is detected! It is possible,
4273                          * unfortunately
4274                          */
4275 recursion_alert:
4276                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4277                                              dev->name);
4278                 }
4279         }
4280
4281         rc = -ENETDOWN;
4282         rcu_read_unlock_bh();
4283
4284         dev_core_stats_tx_dropped_inc(dev);
4285         kfree_skb_list(skb);
4286         return rc;
4287 out:
4288         rcu_read_unlock_bh();
4289         return rc;
4290 }
4291 EXPORT_SYMBOL(__dev_queue_xmit);
4292
4293 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4294 {
4295         struct net_device *dev = skb->dev;
4296         struct sk_buff *orig_skb = skb;
4297         struct netdev_queue *txq;
4298         int ret = NETDEV_TX_BUSY;
4299         bool again = false;
4300
4301         if (unlikely(!netif_running(dev) ||
4302                      !netif_carrier_ok(dev)))
4303                 goto drop;
4304
4305         skb = validate_xmit_skb_list(skb, dev, &again);
4306         if (skb != orig_skb)
4307                 goto drop;
4308
4309         skb_set_queue_mapping(skb, queue_id);
4310         txq = skb_get_tx_queue(dev, skb);
4311
4312         local_bh_disable();
4313
4314         dev_xmit_recursion_inc();
4315         HARD_TX_LOCK(dev, txq, smp_processor_id());
4316         if (!netif_xmit_frozen_or_drv_stopped(txq))
4317                 ret = netdev_start_xmit(skb, dev, txq, false);
4318         HARD_TX_UNLOCK(dev, txq);
4319         dev_xmit_recursion_dec();
4320
4321         local_bh_enable();
4322         return ret;
4323 drop:
4324         dev_core_stats_tx_dropped_inc(dev);
4325         kfree_skb_list(skb);
4326         return NET_XMIT_DROP;
4327 }
4328 EXPORT_SYMBOL(__dev_direct_xmit);
4329
4330 /*************************************************************************
4331  *                      Receiver routines
4332  *************************************************************************/
4333
4334 int netdev_max_backlog __read_mostly = 1000;
4335 EXPORT_SYMBOL(netdev_max_backlog);
4336
4337 int netdev_tstamp_prequeue __read_mostly = 1;
4338 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4339 int netdev_budget __read_mostly = 300;
4340 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4341 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4342 int weight_p __read_mostly = 64;           /* old backlog weight */
4343 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4344 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4345 int dev_rx_weight __read_mostly = 64;
4346 int dev_tx_weight __read_mostly = 64;
4347
4348 /* Called with irq disabled */
4349 static inline void ____napi_schedule(struct softnet_data *sd,
4350                                      struct napi_struct *napi)
4351 {
4352         struct task_struct *thread;
4353
4354         lockdep_assert_irqs_disabled();
4355
4356         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4357                 /* Paired with smp_mb__before_atomic() in
4358                  * napi_enable()/dev_set_threaded().
4359                  * Use READ_ONCE() to guarantee a complete
4360                  * read on napi->thread. Only call
4361                  * wake_up_process() when it's not NULL.
4362                  */
4363                 thread = READ_ONCE(napi->thread);
4364                 if (thread) {
4365                         /* Avoid doing set_bit() if the thread is in
4366                          * INTERRUPTIBLE state, cause napi_thread_wait()
4367                          * makes sure to proceed with napi polling
4368                          * if the thread is explicitly woken from here.
4369                          */
4370                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4371                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4372                         wake_up_process(thread);
4373                         return;
4374                 }
4375         }
4376
4377         list_add_tail(&napi->poll_list, &sd->poll_list);
4378         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4379 }
4380
4381 #ifdef CONFIG_RPS
4382
4383 /* One global table that all flow-based protocols share. */
4384 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4385 EXPORT_SYMBOL(rps_sock_flow_table);
4386 u32 rps_cpu_mask __read_mostly;
4387 EXPORT_SYMBOL(rps_cpu_mask);
4388
4389 struct static_key_false rps_needed __read_mostly;
4390 EXPORT_SYMBOL(rps_needed);
4391 struct static_key_false rfs_needed __read_mostly;
4392 EXPORT_SYMBOL(rfs_needed);
4393
4394 static struct rps_dev_flow *
4395 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4396             struct rps_dev_flow *rflow, u16 next_cpu)
4397 {
4398         if (next_cpu < nr_cpu_ids) {
4399 #ifdef CONFIG_RFS_ACCEL
4400                 struct netdev_rx_queue *rxqueue;
4401                 struct rps_dev_flow_table *flow_table;
4402                 struct rps_dev_flow *old_rflow;
4403                 u32 flow_id;
4404                 u16 rxq_index;
4405                 int rc;
4406
4407                 /* Should we steer this flow to a different hardware queue? */
4408                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4409                     !(dev->features & NETIF_F_NTUPLE))
4410                         goto out;
4411                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4412                 if (rxq_index == skb_get_rx_queue(skb))
4413                         goto out;
4414
4415                 rxqueue = dev->_rx + rxq_index;
4416                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4417                 if (!flow_table)
4418                         goto out;
4419                 flow_id = skb_get_hash(skb) & flow_table->mask;
4420                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4421                                                         rxq_index, flow_id);
4422                 if (rc < 0)
4423                         goto out;
4424                 old_rflow = rflow;
4425                 rflow = &flow_table->flows[flow_id];
4426                 rflow->filter = rc;
4427                 if (old_rflow->filter == rflow->filter)
4428                         old_rflow->filter = RPS_NO_FILTER;
4429         out:
4430 #endif
4431                 rflow->last_qtail =
4432                         per_cpu(softnet_data, next_cpu).input_queue_head;
4433         }
4434
4435         rflow->cpu = next_cpu;
4436         return rflow;
4437 }
4438
4439 /*
4440  * get_rps_cpu is called from netif_receive_skb and returns the target
4441  * CPU from the RPS map of the receiving queue for a given skb.
4442  * rcu_read_lock must be held on entry.
4443  */
4444 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4445                        struct rps_dev_flow **rflowp)
4446 {
4447         const struct rps_sock_flow_table *sock_flow_table;
4448         struct netdev_rx_queue *rxqueue = dev->_rx;
4449         struct rps_dev_flow_table *flow_table;
4450         struct rps_map *map;
4451         int cpu = -1;
4452         u32 tcpu;
4453         u32 hash;
4454
4455         if (skb_rx_queue_recorded(skb)) {
4456                 u16 index = skb_get_rx_queue(skb);
4457
4458                 if (unlikely(index >= dev->real_num_rx_queues)) {
4459                         WARN_ONCE(dev->real_num_rx_queues > 1,
4460                                   "%s received packet on queue %u, but number "
4461                                   "of RX queues is %u\n",
4462                                   dev->name, index, dev->real_num_rx_queues);
4463                         goto done;
4464                 }
4465                 rxqueue += index;
4466         }
4467
4468         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4469
4470         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4471         map = rcu_dereference(rxqueue->rps_map);
4472         if (!flow_table && !map)
4473                 goto done;
4474
4475         skb_reset_network_header(skb);
4476         hash = skb_get_hash(skb);
4477         if (!hash)
4478                 goto done;
4479
4480         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4481         if (flow_table && sock_flow_table) {
4482                 struct rps_dev_flow *rflow;
4483                 u32 next_cpu;
4484                 u32 ident;
4485
4486                 /* First check into global flow table if there is a match */
4487                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4488                 if ((ident ^ hash) & ~rps_cpu_mask)
4489                         goto try_rps;
4490
4491                 next_cpu = ident & rps_cpu_mask;
4492
4493                 /* OK, now we know there is a match,
4494                  * we can look at the local (per receive queue) flow table
4495                  */
4496                 rflow = &flow_table->flows[hash & flow_table->mask];
4497                 tcpu = rflow->cpu;
4498
4499                 /*
4500                  * If the desired CPU (where last recvmsg was done) is
4501                  * different from current CPU (one in the rx-queue flow
4502                  * table entry), switch if one of the following holds:
4503                  *   - Current CPU is unset (>= nr_cpu_ids).
4504                  *   - Current CPU is offline.
4505                  *   - The current CPU's queue tail has advanced beyond the
4506                  *     last packet that was enqueued using this table entry.
4507                  *     This guarantees that all previous packets for the flow
4508                  *     have been dequeued, thus preserving in order delivery.
4509                  */
4510                 if (unlikely(tcpu != next_cpu) &&
4511                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4512                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4513                       rflow->last_qtail)) >= 0)) {
4514                         tcpu = next_cpu;
4515                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4516                 }
4517
4518                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4519                         *rflowp = rflow;
4520                         cpu = tcpu;
4521                         goto done;
4522                 }
4523         }
4524
4525 try_rps:
4526
4527         if (map) {
4528                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4529                 if (cpu_online(tcpu)) {
4530                         cpu = tcpu;
4531                         goto done;
4532                 }
4533         }
4534
4535 done:
4536         return cpu;
4537 }
4538
4539 #ifdef CONFIG_RFS_ACCEL
4540
4541 /**
4542  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4543  * @dev: Device on which the filter was set
4544  * @rxq_index: RX queue index
4545  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4546  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4547  *
4548  * Drivers that implement ndo_rx_flow_steer() should periodically call
4549  * this function for each installed filter and remove the filters for
4550  * which it returns %true.
4551  */
4552 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4553                          u32 flow_id, u16 filter_id)
4554 {
4555         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4556         struct rps_dev_flow_table *flow_table;
4557         struct rps_dev_flow *rflow;
4558         bool expire = true;
4559         unsigned int cpu;
4560
4561         rcu_read_lock();
4562         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4563         if (flow_table && flow_id <= flow_table->mask) {
4564                 rflow = &flow_table->flows[flow_id];
4565                 cpu = READ_ONCE(rflow->cpu);
4566                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4567                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4568                            rflow->last_qtail) <
4569                      (int)(10 * flow_table->mask)))
4570                         expire = false;
4571         }
4572         rcu_read_unlock();
4573         return expire;
4574 }
4575 EXPORT_SYMBOL(rps_may_expire_flow);
4576
4577 #endif /* CONFIG_RFS_ACCEL */
4578
4579 /* Called from hardirq (IPI) context */
4580 static void rps_trigger_softirq(void *data)
4581 {
4582         struct softnet_data *sd = data;
4583
4584         ____napi_schedule(sd, &sd->backlog);
4585         sd->received_rps++;
4586 }
4587
4588 #endif /* CONFIG_RPS */
4589
4590 /* Called from hardirq (IPI) context */
4591 static void trigger_rx_softirq(void *data)
4592 {
4593         struct softnet_data *sd = data;
4594
4595         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4596         smp_store_release(&sd->defer_ipi_scheduled, 0);
4597 }
4598
4599 /*
4600  * Check if this softnet_data structure is another cpu one
4601  * If yes, queue it to our IPI list and return 1
4602  * If no, return 0
4603  */
4604 static int napi_schedule_rps(struct softnet_data *sd)
4605 {
4606         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4607
4608 #ifdef CONFIG_RPS
4609         if (sd != mysd) {
4610                 sd->rps_ipi_next = mysd->rps_ipi_list;
4611                 mysd->rps_ipi_list = sd;
4612
4613                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4614                 return 1;
4615         }
4616 #endif /* CONFIG_RPS */
4617         __napi_schedule_irqoff(&mysd->backlog);
4618         return 0;
4619 }
4620
4621 #ifdef CONFIG_NET_FLOW_LIMIT
4622 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4623 #endif
4624
4625 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4626 {
4627 #ifdef CONFIG_NET_FLOW_LIMIT
4628         struct sd_flow_limit *fl;
4629         struct softnet_data *sd;
4630         unsigned int old_flow, new_flow;
4631
4632         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4633                 return false;
4634
4635         sd = this_cpu_ptr(&softnet_data);
4636
4637         rcu_read_lock();
4638         fl = rcu_dereference(sd->flow_limit);
4639         if (fl) {
4640                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4641                 old_flow = fl->history[fl->history_head];
4642                 fl->history[fl->history_head] = new_flow;
4643
4644                 fl->history_head++;
4645                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4646
4647                 if (likely(fl->buckets[old_flow]))
4648                         fl->buckets[old_flow]--;
4649
4650                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4651                         fl->count++;
4652                         rcu_read_unlock();
4653                         return true;
4654                 }
4655         }
4656         rcu_read_unlock();
4657 #endif
4658         return false;
4659 }
4660
4661 /*
4662  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4663  * queue (may be a remote CPU queue).
4664  */
4665 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4666                               unsigned int *qtail)
4667 {
4668         enum skb_drop_reason reason;
4669         struct softnet_data *sd;
4670         unsigned long flags;
4671         unsigned int qlen;
4672
4673         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4674         sd = &per_cpu(softnet_data, cpu);
4675
4676         rps_lock_irqsave(sd, &flags);
4677         if (!netif_running(skb->dev))
4678                 goto drop;
4679         qlen = skb_queue_len(&sd->input_pkt_queue);
4680         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4681                 if (qlen) {
4682 enqueue:
4683                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4684                         input_queue_tail_incr_save(sd, qtail);
4685                         rps_unlock_irq_restore(sd, &flags);
4686                         return NET_RX_SUCCESS;
4687                 }
4688
4689                 /* Schedule NAPI for backlog device
4690                  * We can use non atomic operation since we own the queue lock
4691                  */
4692                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4693                         napi_schedule_rps(sd);
4694                 goto enqueue;
4695         }
4696         reason = SKB_DROP_REASON_CPU_BACKLOG;
4697
4698 drop:
4699         sd->dropped++;
4700         rps_unlock_irq_restore(sd, &flags);
4701
4702         dev_core_stats_rx_dropped_inc(skb->dev);
4703         kfree_skb_reason(skb, reason);
4704         return NET_RX_DROP;
4705 }
4706
4707 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4708 {
4709         struct net_device *dev = skb->dev;
4710         struct netdev_rx_queue *rxqueue;
4711
4712         rxqueue = dev->_rx;
4713
4714         if (skb_rx_queue_recorded(skb)) {
4715                 u16 index = skb_get_rx_queue(skb);
4716
4717                 if (unlikely(index >= dev->real_num_rx_queues)) {
4718                         WARN_ONCE(dev->real_num_rx_queues > 1,
4719                                   "%s received packet on queue %u, but number "
4720                                   "of RX queues is %u\n",
4721                                   dev->name, index, dev->real_num_rx_queues);
4722
4723                         return rxqueue; /* Return first rxqueue */
4724                 }
4725                 rxqueue += index;
4726         }
4727         return rxqueue;
4728 }
4729
4730 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4731                              struct bpf_prog *xdp_prog)
4732 {
4733         void *orig_data, *orig_data_end, *hard_start;
4734         struct netdev_rx_queue *rxqueue;
4735         bool orig_bcast, orig_host;
4736         u32 mac_len, frame_sz;
4737         __be16 orig_eth_type;
4738         struct ethhdr *eth;
4739         u32 metalen, act;
4740         int off;
4741
4742         /* The XDP program wants to see the packet starting at the MAC
4743          * header.
4744          */
4745         mac_len = skb->data - skb_mac_header(skb);
4746         hard_start = skb->data - skb_headroom(skb);
4747
4748         /* SKB "head" area always have tailroom for skb_shared_info */
4749         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4750         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4751
4752         rxqueue = netif_get_rxqueue(skb);
4753         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4754         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4755                          skb_headlen(skb) + mac_len, true);
4756
4757         orig_data_end = xdp->data_end;
4758         orig_data = xdp->data;
4759         eth = (struct ethhdr *)xdp->data;
4760         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4761         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4762         orig_eth_type = eth->h_proto;
4763
4764         act = bpf_prog_run_xdp(xdp_prog, xdp);
4765
4766         /* check if bpf_xdp_adjust_head was used */
4767         off = xdp->data - orig_data;
4768         if (off) {
4769                 if (off > 0)
4770                         __skb_pull(skb, off);
4771                 else if (off < 0)
4772                         __skb_push(skb, -off);
4773
4774                 skb->mac_header += off;
4775                 skb_reset_network_header(skb);
4776         }
4777
4778         /* check if bpf_xdp_adjust_tail was used */
4779         off = xdp->data_end - orig_data_end;
4780         if (off != 0) {
4781                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4782                 skb->len += off; /* positive on grow, negative on shrink */
4783         }
4784
4785         /* check if XDP changed eth hdr such SKB needs update */
4786         eth = (struct ethhdr *)xdp->data;
4787         if ((orig_eth_type != eth->h_proto) ||
4788             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4789                                                   skb->dev->dev_addr)) ||
4790             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4791                 __skb_push(skb, ETH_HLEN);
4792                 skb->pkt_type = PACKET_HOST;
4793                 skb->protocol = eth_type_trans(skb, skb->dev);
4794         }
4795
4796         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4797          * before calling us again on redirect path. We do not call do_redirect
4798          * as we leave that up to the caller.
4799          *
4800          * Caller is responsible for managing lifetime of skb (i.e. calling
4801          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4802          */
4803         switch (act) {
4804         case XDP_REDIRECT:
4805         case XDP_TX:
4806                 __skb_push(skb, mac_len);
4807                 break;
4808         case XDP_PASS:
4809                 metalen = xdp->data - xdp->data_meta;
4810                 if (metalen)
4811                         skb_metadata_set(skb, metalen);
4812                 break;
4813         }
4814
4815         return act;
4816 }
4817
4818 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4819                                      struct xdp_buff *xdp,
4820                                      struct bpf_prog *xdp_prog)
4821 {
4822         u32 act = XDP_DROP;
4823
4824         /* Reinjected packets coming from act_mirred or similar should
4825          * not get XDP generic processing.
4826          */
4827         if (skb_is_redirected(skb))
4828                 return XDP_PASS;
4829
4830         /* XDP packets must be linear and must have sufficient headroom
4831          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4832          * native XDP provides, thus we need to do it here as well.
4833          */
4834         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4835             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4836                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4837                 int troom = skb->tail + skb->data_len - skb->end;
4838
4839                 /* In case we have to go down the path and also linearize,
4840                  * then lets do the pskb_expand_head() work just once here.
4841                  */
4842                 if (pskb_expand_head(skb,
4843                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4844                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4845                         goto do_drop;
4846                 if (skb_linearize(skb))
4847                         goto do_drop;
4848         }
4849
4850         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4851         switch (act) {
4852         case XDP_REDIRECT:
4853         case XDP_TX:
4854         case XDP_PASS:
4855                 break;
4856         default:
4857                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4858                 fallthrough;
4859         case XDP_ABORTED:
4860                 trace_xdp_exception(skb->dev, xdp_prog, act);
4861                 fallthrough;
4862         case XDP_DROP:
4863         do_drop:
4864                 kfree_skb(skb);
4865                 break;
4866         }
4867
4868         return act;
4869 }
4870
4871 /* When doing generic XDP we have to bypass the qdisc layer and the
4872  * network taps in order to match in-driver-XDP behavior. This also means
4873  * that XDP packets are able to starve other packets going through a qdisc,
4874  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4875  * queues, so they do not have this starvation issue.
4876  */
4877 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4878 {
4879         struct net_device *dev = skb->dev;
4880         struct netdev_queue *txq;
4881         bool free_skb = true;
4882         int cpu, rc;
4883
4884         txq = netdev_core_pick_tx(dev, skb, NULL);
4885         cpu = smp_processor_id();
4886         HARD_TX_LOCK(dev, txq, cpu);
4887         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4888                 rc = netdev_start_xmit(skb, dev, txq, 0);
4889                 if (dev_xmit_complete(rc))
4890                         free_skb = false;
4891         }
4892         HARD_TX_UNLOCK(dev, txq);
4893         if (free_skb) {
4894                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4895                 dev_core_stats_tx_dropped_inc(dev);
4896                 kfree_skb(skb);
4897         }
4898 }
4899
4900 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4901
4902 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4903 {
4904         if (xdp_prog) {
4905                 struct xdp_buff xdp;
4906                 u32 act;
4907                 int err;
4908
4909                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4910                 if (act != XDP_PASS) {
4911                         switch (act) {
4912                         case XDP_REDIRECT:
4913                                 err = xdp_do_generic_redirect(skb->dev, skb,
4914                                                               &xdp, xdp_prog);
4915                                 if (err)
4916                                         goto out_redir;
4917                                 break;
4918                         case XDP_TX:
4919                                 generic_xdp_tx(skb, xdp_prog);
4920                                 break;
4921                         }
4922                         return XDP_DROP;
4923                 }
4924         }
4925         return XDP_PASS;
4926 out_redir:
4927         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4928         return XDP_DROP;
4929 }
4930 EXPORT_SYMBOL_GPL(do_xdp_generic);
4931
4932 static int netif_rx_internal(struct sk_buff *skb)
4933 {
4934         int ret;
4935
4936         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4937
4938         trace_netif_rx(skb);
4939
4940 #ifdef CONFIG_RPS
4941         if (static_branch_unlikely(&rps_needed)) {
4942                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4943                 int cpu;
4944
4945                 rcu_read_lock();
4946
4947                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4948                 if (cpu < 0)
4949                         cpu = smp_processor_id();
4950
4951                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4952
4953                 rcu_read_unlock();
4954         } else
4955 #endif
4956         {
4957                 unsigned int qtail;
4958
4959                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4960         }
4961         return ret;
4962 }
4963
4964 /**
4965  *      __netif_rx      -       Slightly optimized version of netif_rx
4966  *      @skb: buffer to post
4967  *
4968  *      This behaves as netif_rx except that it does not disable bottom halves.
4969  *      As a result this function may only be invoked from the interrupt context
4970  *      (either hard or soft interrupt).
4971  */
4972 int __netif_rx(struct sk_buff *skb)
4973 {
4974         int ret;
4975
4976         lockdep_assert_once(hardirq_count() | softirq_count());
4977
4978         trace_netif_rx_entry(skb);
4979         ret = netif_rx_internal(skb);
4980         trace_netif_rx_exit(ret);
4981         return ret;
4982 }
4983 EXPORT_SYMBOL(__netif_rx);
4984
4985 /**
4986  *      netif_rx        -       post buffer to the network code
4987  *      @skb: buffer to post
4988  *
4989  *      This function receives a packet from a device driver and queues it for
4990  *      the upper (protocol) levels to process via the backlog NAPI device. It
4991  *      always succeeds. The buffer may be dropped during processing for
4992  *      congestion control or by the protocol layers.
4993  *      The network buffer is passed via the backlog NAPI device. Modern NIC
4994  *      driver should use NAPI and GRO.
4995  *      This function can used from interrupt and from process context. The
4996  *      caller from process context must not disable interrupts before invoking
4997  *      this function.
4998  *
4999  *      return values:
5000  *      NET_RX_SUCCESS  (no congestion)
5001  *      NET_RX_DROP     (packet was dropped)
5002  *
5003  */
5004 int netif_rx(struct sk_buff *skb)
5005 {
5006         bool need_bh_off = !(hardirq_count() | softirq_count());
5007         int ret;
5008
5009         if (need_bh_off)
5010                 local_bh_disable();
5011         trace_netif_rx_entry(skb);
5012         ret = netif_rx_internal(skb);
5013         trace_netif_rx_exit(ret);
5014         if (need_bh_off)
5015                 local_bh_enable();
5016         return ret;
5017 }
5018 EXPORT_SYMBOL(netif_rx);
5019
5020 static __latent_entropy void net_tx_action(struct softirq_action *h)
5021 {
5022         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5023
5024         if (sd->completion_queue) {
5025                 struct sk_buff *clist;
5026
5027                 local_irq_disable();
5028                 clist = sd->completion_queue;
5029                 sd->completion_queue = NULL;
5030                 local_irq_enable();
5031
5032                 while (clist) {
5033                         struct sk_buff *skb = clist;
5034
5035                         clist = clist->next;
5036
5037                         WARN_ON(refcount_read(&skb->users));
5038                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5039                                 trace_consume_skb(skb);
5040                         else
5041                                 trace_kfree_skb(skb, net_tx_action,
5042                                                 SKB_DROP_REASON_NOT_SPECIFIED);
5043
5044                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5045                                 __kfree_skb(skb);
5046                         else
5047                                 __kfree_skb_defer(skb);
5048                 }
5049         }
5050
5051         if (sd->output_queue) {
5052                 struct Qdisc *head;
5053
5054                 local_irq_disable();
5055                 head = sd->output_queue;
5056                 sd->output_queue = NULL;
5057                 sd->output_queue_tailp = &sd->output_queue;
5058                 local_irq_enable();
5059
5060                 rcu_read_lock();
5061
5062                 while (head) {
5063                         struct Qdisc *q = head;
5064                         spinlock_t *root_lock = NULL;
5065
5066                         head = head->next_sched;
5067
5068                         /* We need to make sure head->next_sched is read
5069                          * before clearing __QDISC_STATE_SCHED
5070                          */
5071                         smp_mb__before_atomic();
5072
5073                         if (!(q->flags & TCQ_F_NOLOCK)) {
5074                                 root_lock = qdisc_lock(q);
5075                                 spin_lock(root_lock);
5076                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5077                                                      &q->state))) {
5078                                 /* There is a synchronize_net() between
5079                                  * STATE_DEACTIVATED flag being set and
5080                                  * qdisc_reset()/some_qdisc_is_busy() in
5081                                  * dev_deactivate(), so we can safely bail out
5082                                  * early here to avoid data race between
5083                                  * qdisc_deactivate() and some_qdisc_is_busy()
5084                                  * for lockless qdisc.
5085                                  */
5086                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5087                                 continue;
5088                         }
5089
5090                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5091                         qdisc_run(q);
5092                         if (root_lock)
5093                                 spin_unlock(root_lock);
5094                 }
5095
5096                 rcu_read_unlock();
5097         }
5098
5099         xfrm_dev_backlog(sd);
5100 }
5101
5102 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5103 /* This hook is defined here for ATM LANE */
5104 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5105                              unsigned char *addr) __read_mostly;
5106 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5107 #endif
5108
5109 static inline struct sk_buff *
5110 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5111                    struct net_device *orig_dev, bool *another)
5112 {
5113 #ifdef CONFIG_NET_CLS_ACT
5114         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5115         struct tcf_result cl_res;
5116
5117         /* If there's at least one ingress present somewhere (so
5118          * we get here via enabled static key), remaining devices
5119          * that are not configured with an ingress qdisc will bail
5120          * out here.
5121          */
5122         if (!miniq)
5123                 return skb;
5124
5125         if (*pt_prev) {
5126                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5127                 *pt_prev = NULL;
5128         }
5129
5130         qdisc_skb_cb(skb)->pkt_len = skb->len;
5131         tc_skb_cb(skb)->mru = 0;
5132         tc_skb_cb(skb)->post_ct = false;
5133         skb->tc_at_ingress = 1;
5134         mini_qdisc_bstats_cpu_update(miniq, skb);
5135
5136         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5137         case TC_ACT_OK:
5138         case TC_ACT_RECLASSIFY:
5139                 skb->tc_index = TC_H_MIN(cl_res.classid);
5140                 break;
5141         case TC_ACT_SHOT:
5142                 mini_qdisc_qstats_cpu_drop(miniq);
5143                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5144                 *ret = NET_RX_DROP;
5145                 return NULL;
5146         case TC_ACT_STOLEN:
5147         case TC_ACT_QUEUED:
5148         case TC_ACT_TRAP:
5149                 consume_skb(skb);
5150                 *ret = NET_RX_SUCCESS;
5151                 return NULL;
5152         case TC_ACT_REDIRECT:
5153                 /* skb_mac_header check was done by cls/act_bpf, so
5154                  * we can safely push the L2 header back before
5155                  * redirecting to another netdev
5156                  */
5157                 __skb_push(skb, skb->mac_len);
5158                 if (skb_do_redirect(skb) == -EAGAIN) {
5159                         __skb_pull(skb, skb->mac_len);
5160                         *another = true;
5161                         break;
5162                 }
5163                 *ret = NET_RX_SUCCESS;
5164                 return NULL;
5165         case TC_ACT_CONSUMED:
5166                 *ret = NET_RX_SUCCESS;
5167                 return NULL;
5168         default:
5169                 break;
5170         }
5171 #endif /* CONFIG_NET_CLS_ACT */
5172         return skb;
5173 }
5174
5175 /**
5176  *      netdev_is_rx_handler_busy - check if receive handler is registered
5177  *      @dev: device to check
5178  *
5179  *      Check if a receive handler is already registered for a given device.
5180  *      Return true if there one.
5181  *
5182  *      The caller must hold the rtnl_mutex.
5183  */
5184 bool netdev_is_rx_handler_busy(struct net_device *dev)
5185 {
5186         ASSERT_RTNL();
5187         return dev && rtnl_dereference(dev->rx_handler);
5188 }
5189 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5190
5191 /**
5192  *      netdev_rx_handler_register - register receive handler
5193  *      @dev: device to register a handler for
5194  *      @rx_handler: receive handler to register
5195  *      @rx_handler_data: data pointer that is used by rx handler
5196  *
5197  *      Register a receive handler for a device. This handler will then be
5198  *      called from __netif_receive_skb. A negative errno code is returned
5199  *      on a failure.
5200  *
5201  *      The caller must hold the rtnl_mutex.
5202  *
5203  *      For a general description of rx_handler, see enum rx_handler_result.
5204  */
5205 int netdev_rx_handler_register(struct net_device *dev,
5206                                rx_handler_func_t *rx_handler,
5207                                void *rx_handler_data)
5208 {
5209         if (netdev_is_rx_handler_busy(dev))
5210                 return -EBUSY;
5211
5212         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5213                 return -EINVAL;
5214
5215         /* Note: rx_handler_data must be set before rx_handler */
5216         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5217         rcu_assign_pointer(dev->rx_handler, rx_handler);
5218
5219         return 0;
5220 }
5221 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5222
5223 /**
5224  *      netdev_rx_handler_unregister - unregister receive handler
5225  *      @dev: device to unregister a handler from
5226  *
5227  *      Unregister a receive handler from a device.
5228  *
5229  *      The caller must hold the rtnl_mutex.
5230  */
5231 void netdev_rx_handler_unregister(struct net_device *dev)
5232 {
5233
5234         ASSERT_RTNL();
5235         RCU_INIT_POINTER(dev->rx_handler, NULL);
5236         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5237          * section has a guarantee to see a non NULL rx_handler_data
5238          * as well.
5239          */
5240         synchronize_net();
5241         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5242 }
5243 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5244
5245 /*
5246  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5247  * the special handling of PFMEMALLOC skbs.
5248  */
5249 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5250 {
5251         switch (skb->protocol) {
5252         case htons(ETH_P_ARP):
5253         case htons(ETH_P_IP):
5254         case htons(ETH_P_IPV6):
5255         case htons(ETH_P_8021Q):
5256         case htons(ETH_P_8021AD):
5257                 return true;
5258         default:
5259                 return false;
5260         }
5261 }
5262
5263 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5264                              int *ret, struct net_device *orig_dev)
5265 {
5266         if (nf_hook_ingress_active(skb)) {
5267                 int ingress_retval;
5268
5269                 if (*pt_prev) {
5270                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5271                         *pt_prev = NULL;
5272                 }
5273
5274                 rcu_read_lock();
5275                 ingress_retval = nf_hook_ingress(skb);
5276                 rcu_read_unlock();
5277                 return ingress_retval;
5278         }
5279         return 0;
5280 }
5281
5282 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5283                                     struct packet_type **ppt_prev)
5284 {
5285         struct packet_type *ptype, *pt_prev;
5286         rx_handler_func_t *rx_handler;
5287         struct sk_buff *skb = *pskb;
5288         struct net_device *orig_dev;
5289         bool deliver_exact = false;
5290         int ret = NET_RX_DROP;
5291         __be16 type;
5292
5293         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5294
5295         trace_netif_receive_skb(skb);
5296
5297         orig_dev = skb->dev;
5298
5299         skb_reset_network_header(skb);
5300         if (!skb_transport_header_was_set(skb))
5301                 skb_reset_transport_header(skb);
5302         skb_reset_mac_len(skb);
5303
5304         pt_prev = NULL;
5305
5306 another_round:
5307         skb->skb_iif = skb->dev->ifindex;
5308
5309         __this_cpu_inc(softnet_data.processed);
5310
5311         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5312                 int ret2;
5313
5314                 migrate_disable();
5315                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5316                 migrate_enable();
5317
5318                 if (ret2 != XDP_PASS) {
5319                         ret = NET_RX_DROP;
5320                         goto out;
5321                 }
5322         }
5323
5324         if (eth_type_vlan(skb->protocol)) {
5325                 skb = skb_vlan_untag(skb);
5326                 if (unlikely(!skb))
5327                         goto out;
5328         }
5329
5330         if (skb_skip_tc_classify(skb))
5331                 goto skip_classify;
5332
5333         if (pfmemalloc)
5334                 goto skip_taps;
5335
5336         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5337                 if (pt_prev)
5338                         ret = deliver_skb(skb, pt_prev, orig_dev);
5339                 pt_prev = ptype;
5340         }
5341
5342         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5343                 if (pt_prev)
5344                         ret = deliver_skb(skb, pt_prev, orig_dev);
5345                 pt_prev = ptype;
5346         }
5347
5348 skip_taps:
5349 #ifdef CONFIG_NET_INGRESS
5350         if (static_branch_unlikely(&ingress_needed_key)) {
5351                 bool another = false;
5352
5353                 nf_skip_egress(skb, true);
5354                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5355                                          &another);
5356                 if (another)
5357                         goto another_round;
5358                 if (!skb)
5359                         goto out;
5360
5361                 nf_skip_egress(skb, false);
5362                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5363                         goto out;
5364         }
5365 #endif
5366         skb_reset_redirect(skb);
5367 skip_classify:
5368         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5369                 goto drop;
5370
5371         if (skb_vlan_tag_present(skb)) {
5372                 if (pt_prev) {
5373                         ret = deliver_skb(skb, pt_prev, orig_dev);
5374                         pt_prev = NULL;
5375                 }
5376                 if (vlan_do_receive(&skb))
5377                         goto another_round;
5378                 else if (unlikely(!skb))
5379                         goto out;
5380         }
5381
5382         rx_handler = rcu_dereference(skb->dev->rx_handler);
5383         if (rx_handler) {
5384                 if (pt_prev) {
5385                         ret = deliver_skb(skb, pt_prev, orig_dev);
5386                         pt_prev = NULL;
5387                 }
5388                 switch (rx_handler(&skb)) {
5389                 case RX_HANDLER_CONSUMED:
5390                         ret = NET_RX_SUCCESS;
5391                         goto out;
5392                 case RX_HANDLER_ANOTHER:
5393                         goto another_round;
5394                 case RX_HANDLER_EXACT:
5395                         deliver_exact = true;
5396                         break;
5397                 case RX_HANDLER_PASS:
5398                         break;
5399                 default:
5400                         BUG();
5401                 }
5402         }
5403
5404         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5405 check_vlan_id:
5406                 if (skb_vlan_tag_get_id(skb)) {
5407                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5408                          * find vlan device.
5409                          */
5410                         skb->pkt_type = PACKET_OTHERHOST;
5411                 } else if (eth_type_vlan(skb->protocol)) {
5412                         /* Outer header is 802.1P with vlan 0, inner header is
5413                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5414                          * not find vlan dev for vlan id 0.
5415                          */
5416                         __vlan_hwaccel_clear_tag(skb);
5417                         skb = skb_vlan_untag(skb);
5418                         if (unlikely(!skb))
5419                                 goto out;
5420                         if (vlan_do_receive(&skb))
5421                                 /* After stripping off 802.1P header with vlan 0
5422                                  * vlan dev is found for inner header.
5423                                  */
5424                                 goto another_round;
5425                         else if (unlikely(!skb))
5426                                 goto out;
5427                         else
5428                                 /* We have stripped outer 802.1P vlan 0 header.
5429                                  * But could not find vlan dev.
5430                                  * check again for vlan id to set OTHERHOST.
5431                                  */
5432                                 goto check_vlan_id;
5433                 }
5434                 /* Note: we might in the future use prio bits
5435                  * and set skb->priority like in vlan_do_receive()
5436                  * For the time being, just ignore Priority Code Point
5437                  */
5438                 __vlan_hwaccel_clear_tag(skb);
5439         }
5440
5441         type = skb->protocol;
5442
5443         /* deliver only exact match when indicated */
5444         if (likely(!deliver_exact)) {
5445                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5446                                        &ptype_base[ntohs(type) &
5447                                                    PTYPE_HASH_MASK]);
5448         }
5449
5450         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5451                                &orig_dev->ptype_specific);
5452
5453         if (unlikely(skb->dev != orig_dev)) {
5454                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5455                                        &skb->dev->ptype_specific);
5456         }
5457
5458         if (pt_prev) {
5459                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5460                         goto drop;
5461                 *ppt_prev = pt_prev;
5462         } else {
5463 drop:
5464                 if (!deliver_exact)
5465                         dev_core_stats_rx_dropped_inc(skb->dev);
5466                 else
5467                         dev_core_stats_rx_nohandler_inc(skb->dev);
5468                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5469                 /* Jamal, now you will not able to escape explaining
5470                  * me how you were going to use this. :-)
5471                  */
5472                 ret = NET_RX_DROP;
5473         }
5474
5475 out:
5476         /* The invariant here is that if *ppt_prev is not NULL
5477          * then skb should also be non-NULL.
5478          *
5479          * Apparently *ppt_prev assignment above holds this invariant due to
5480          * skb dereferencing near it.
5481          */
5482         *pskb = skb;
5483         return ret;
5484 }
5485
5486 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5487 {
5488         struct net_device *orig_dev = skb->dev;
5489         struct packet_type *pt_prev = NULL;
5490         int ret;
5491
5492         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5493         if (pt_prev)
5494                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5495                                          skb->dev, pt_prev, orig_dev);
5496         return ret;
5497 }
5498
5499 /**
5500  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5501  *      @skb: buffer to process
5502  *
5503  *      More direct receive version of netif_receive_skb().  It should
5504  *      only be used by callers that have a need to skip RPS and Generic XDP.
5505  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5506  *
5507  *      This function may only be called from softirq context and interrupts
5508  *      should be enabled.
5509  *
5510  *      Return values (usually ignored):
5511  *      NET_RX_SUCCESS: no congestion
5512  *      NET_RX_DROP: packet was dropped
5513  */
5514 int netif_receive_skb_core(struct sk_buff *skb)
5515 {
5516         int ret;
5517
5518         rcu_read_lock();
5519         ret = __netif_receive_skb_one_core(skb, false);
5520         rcu_read_unlock();
5521
5522         return ret;
5523 }
5524 EXPORT_SYMBOL(netif_receive_skb_core);
5525
5526 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5527                                                   struct packet_type *pt_prev,
5528                                                   struct net_device *orig_dev)
5529 {
5530         struct sk_buff *skb, *next;
5531
5532         if (!pt_prev)
5533                 return;
5534         if (list_empty(head))
5535                 return;
5536         if (pt_prev->list_func != NULL)
5537                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5538                                    ip_list_rcv, head, pt_prev, orig_dev);
5539         else
5540                 list_for_each_entry_safe(skb, next, head, list) {
5541                         skb_list_del_init(skb);
5542                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5543                 }
5544 }
5545
5546 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5547 {
5548         /* Fast-path assumptions:
5549          * - There is no RX handler.
5550          * - Only one packet_type matches.
5551          * If either of these fails, we will end up doing some per-packet
5552          * processing in-line, then handling the 'last ptype' for the whole
5553          * sublist.  This can't cause out-of-order delivery to any single ptype,
5554          * because the 'last ptype' must be constant across the sublist, and all
5555          * other ptypes are handled per-packet.
5556          */
5557         /* Current (common) ptype of sublist */
5558         struct packet_type *pt_curr = NULL;
5559         /* Current (common) orig_dev of sublist */
5560         struct net_device *od_curr = NULL;
5561         struct list_head sublist;
5562         struct sk_buff *skb, *next;
5563
5564         INIT_LIST_HEAD(&sublist);
5565         list_for_each_entry_safe(skb, next, head, list) {
5566                 struct net_device *orig_dev = skb->dev;
5567                 struct packet_type *pt_prev = NULL;
5568
5569                 skb_list_del_init(skb);
5570                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5571                 if (!pt_prev)
5572                         continue;
5573                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5574                         /* dispatch old sublist */
5575                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5576                         /* start new sublist */
5577                         INIT_LIST_HEAD(&sublist);
5578                         pt_curr = pt_prev;
5579                         od_curr = orig_dev;
5580                 }
5581                 list_add_tail(&skb->list, &sublist);
5582         }
5583
5584         /* dispatch final sublist */
5585         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5586 }
5587
5588 static int __netif_receive_skb(struct sk_buff *skb)
5589 {
5590         int ret;
5591
5592         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5593                 unsigned int noreclaim_flag;
5594
5595                 /*
5596                  * PFMEMALLOC skbs are special, they should
5597                  * - be delivered to SOCK_MEMALLOC sockets only
5598                  * - stay away from userspace
5599                  * - have bounded memory usage
5600                  *
5601                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5602                  * context down to all allocation sites.
5603                  */
5604                 noreclaim_flag = memalloc_noreclaim_save();
5605                 ret = __netif_receive_skb_one_core(skb, true);
5606                 memalloc_noreclaim_restore(noreclaim_flag);
5607         } else
5608                 ret = __netif_receive_skb_one_core(skb, false);
5609
5610         return ret;
5611 }
5612
5613 static void __netif_receive_skb_list(struct list_head *head)
5614 {
5615         unsigned long noreclaim_flag = 0;
5616         struct sk_buff *skb, *next;
5617         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5618
5619         list_for_each_entry_safe(skb, next, head, list) {
5620                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5621                         struct list_head sublist;
5622
5623                         /* Handle the previous sublist */
5624                         list_cut_before(&sublist, head, &skb->list);
5625                         if (!list_empty(&sublist))
5626                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5627                         pfmemalloc = !pfmemalloc;
5628                         /* See comments in __netif_receive_skb */
5629                         if (pfmemalloc)
5630                                 noreclaim_flag = memalloc_noreclaim_save();
5631                         else
5632                                 memalloc_noreclaim_restore(noreclaim_flag);
5633                 }
5634         }
5635         /* Handle the remaining sublist */
5636         if (!list_empty(head))
5637                 __netif_receive_skb_list_core(head, pfmemalloc);
5638         /* Restore pflags */
5639         if (pfmemalloc)
5640                 memalloc_noreclaim_restore(noreclaim_flag);
5641 }
5642
5643 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5644 {
5645         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5646         struct bpf_prog *new = xdp->prog;
5647         int ret = 0;
5648
5649         switch (xdp->command) {
5650         case XDP_SETUP_PROG:
5651                 rcu_assign_pointer(dev->xdp_prog, new);
5652                 if (old)
5653                         bpf_prog_put(old);
5654
5655                 if (old && !new) {
5656                         static_branch_dec(&generic_xdp_needed_key);
5657                 } else if (new && !old) {
5658                         static_branch_inc(&generic_xdp_needed_key);
5659                         dev_disable_lro(dev);
5660                         dev_disable_gro_hw(dev);
5661                 }
5662                 break;
5663
5664         default:
5665                 ret = -EINVAL;
5666                 break;
5667         }
5668
5669         return ret;
5670 }
5671
5672 static int netif_receive_skb_internal(struct sk_buff *skb)
5673 {
5674         int ret;
5675
5676         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5677
5678         if (skb_defer_rx_timestamp(skb))
5679                 return NET_RX_SUCCESS;
5680
5681         rcu_read_lock();
5682 #ifdef CONFIG_RPS
5683         if (static_branch_unlikely(&rps_needed)) {
5684                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5685                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5686
5687                 if (cpu >= 0) {
5688                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5689                         rcu_read_unlock();
5690                         return ret;
5691                 }
5692         }
5693 #endif
5694         ret = __netif_receive_skb(skb);
5695         rcu_read_unlock();
5696         return ret;
5697 }
5698
5699 void netif_receive_skb_list_internal(struct list_head *head)
5700 {
5701         struct sk_buff *skb, *next;
5702         struct list_head sublist;
5703
5704         INIT_LIST_HEAD(&sublist);
5705         list_for_each_entry_safe(skb, next, head, list) {
5706                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5707                 skb_list_del_init(skb);
5708                 if (!skb_defer_rx_timestamp(skb))
5709                         list_add_tail(&skb->list, &sublist);
5710         }
5711         list_splice_init(&sublist, head);
5712
5713         rcu_read_lock();
5714 #ifdef CONFIG_RPS
5715         if (static_branch_unlikely(&rps_needed)) {
5716                 list_for_each_entry_safe(skb, next, head, list) {
5717                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5718                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5719
5720                         if (cpu >= 0) {
5721                                 /* Will be handled, remove from list */
5722                                 skb_list_del_init(skb);
5723                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5724                         }
5725                 }
5726         }
5727 #endif
5728         __netif_receive_skb_list(head);
5729         rcu_read_unlock();
5730 }
5731
5732 /**
5733  *      netif_receive_skb - process receive buffer from network
5734  *      @skb: buffer to process
5735  *
5736  *      netif_receive_skb() is the main receive data processing function.
5737  *      It always succeeds. The buffer may be dropped during processing
5738  *      for congestion control or by the protocol layers.
5739  *
5740  *      This function may only be called from softirq context and interrupts
5741  *      should be enabled.
5742  *
5743  *      Return values (usually ignored):
5744  *      NET_RX_SUCCESS: no congestion
5745  *      NET_RX_DROP: packet was dropped
5746  */
5747 int netif_receive_skb(struct sk_buff *skb)
5748 {
5749         int ret;
5750
5751         trace_netif_receive_skb_entry(skb);
5752
5753         ret = netif_receive_skb_internal(skb);
5754         trace_netif_receive_skb_exit(ret);
5755
5756         return ret;
5757 }
5758 EXPORT_SYMBOL(netif_receive_skb);
5759
5760 /**
5761  *      netif_receive_skb_list - process many receive buffers from network
5762  *      @head: list of skbs to process.
5763  *
5764  *      Since return value of netif_receive_skb() is normally ignored, and
5765  *      wouldn't be meaningful for a list, this function returns void.
5766  *
5767  *      This function may only be called from softirq context and interrupts
5768  *      should be enabled.
5769  */
5770 void netif_receive_skb_list(struct list_head *head)
5771 {
5772         struct sk_buff *skb;
5773
5774         if (list_empty(head))
5775                 return;
5776         if (trace_netif_receive_skb_list_entry_enabled()) {
5777                 list_for_each_entry(skb, head, list)
5778                         trace_netif_receive_skb_list_entry(skb);
5779         }
5780         netif_receive_skb_list_internal(head);
5781         trace_netif_receive_skb_list_exit(0);
5782 }
5783 EXPORT_SYMBOL(netif_receive_skb_list);
5784
5785 static DEFINE_PER_CPU(struct work_struct, flush_works);
5786
5787 /* Network device is going away, flush any packets still pending */
5788 static void flush_backlog(struct work_struct *work)
5789 {
5790         struct sk_buff *skb, *tmp;
5791         struct softnet_data *sd;
5792
5793         local_bh_disable();
5794         sd = this_cpu_ptr(&softnet_data);
5795
5796         rps_lock_irq_disable(sd);
5797         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5798                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5799                         __skb_unlink(skb, &sd->input_pkt_queue);
5800                         dev_kfree_skb_irq(skb);
5801                         input_queue_head_incr(sd);
5802                 }
5803         }
5804         rps_unlock_irq_enable(sd);
5805
5806         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5807                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5808                         __skb_unlink(skb, &sd->process_queue);
5809                         kfree_skb(skb);
5810                         input_queue_head_incr(sd);
5811                 }
5812         }
5813         local_bh_enable();
5814 }
5815
5816 static bool flush_required(int cpu)
5817 {
5818 #if IS_ENABLED(CONFIG_RPS)
5819         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5820         bool do_flush;
5821
5822         rps_lock_irq_disable(sd);
5823
5824         /* as insertion into process_queue happens with the rps lock held,
5825          * process_queue access may race only with dequeue
5826          */
5827         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5828                    !skb_queue_empty_lockless(&sd->process_queue);
5829         rps_unlock_irq_enable(sd);
5830
5831         return do_flush;
5832 #endif
5833         /* without RPS we can't safely check input_pkt_queue: during a
5834          * concurrent remote skb_queue_splice() we can detect as empty both
5835          * input_pkt_queue and process_queue even if the latter could end-up
5836          * containing a lot of packets.
5837          */
5838         return true;
5839 }
5840
5841 static void flush_all_backlogs(void)
5842 {
5843         static cpumask_t flush_cpus;
5844         unsigned int cpu;
5845
5846         /* since we are under rtnl lock protection we can use static data
5847          * for the cpumask and avoid allocating on stack the possibly
5848          * large mask
5849          */
5850         ASSERT_RTNL();
5851
5852         cpus_read_lock();
5853
5854         cpumask_clear(&flush_cpus);
5855         for_each_online_cpu(cpu) {
5856                 if (flush_required(cpu)) {
5857                         queue_work_on(cpu, system_highpri_wq,
5858                                       per_cpu_ptr(&flush_works, cpu));
5859                         cpumask_set_cpu(cpu, &flush_cpus);
5860                 }
5861         }
5862
5863         /* we can have in flight packet[s] on the cpus we are not flushing,
5864          * synchronize_net() in unregister_netdevice_many() will take care of
5865          * them
5866          */
5867         for_each_cpu(cpu, &flush_cpus)
5868                 flush_work(per_cpu_ptr(&flush_works, cpu));
5869
5870         cpus_read_unlock();
5871 }
5872
5873 static void net_rps_send_ipi(struct softnet_data *remsd)
5874 {
5875 #ifdef CONFIG_RPS
5876         while (remsd) {
5877                 struct softnet_data *next = remsd->rps_ipi_next;
5878
5879                 if (cpu_online(remsd->cpu))
5880                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5881                 remsd = next;
5882         }
5883 #endif
5884 }
5885
5886 /*
5887  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5888  * Note: called with local irq disabled, but exits with local irq enabled.
5889  */
5890 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5891 {
5892 #ifdef CONFIG_RPS
5893         struct softnet_data *remsd = sd->rps_ipi_list;
5894
5895         if (remsd) {
5896                 sd->rps_ipi_list = NULL;
5897
5898                 local_irq_enable();
5899
5900                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5901                 net_rps_send_ipi(remsd);
5902         } else
5903 #endif
5904                 local_irq_enable();
5905 }
5906
5907 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5908 {
5909 #ifdef CONFIG_RPS
5910         return sd->rps_ipi_list != NULL;
5911 #else
5912         return false;
5913 #endif
5914 }
5915
5916 static int process_backlog(struct napi_struct *napi, int quota)
5917 {
5918         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5919         bool again = true;
5920         int work = 0;
5921
5922         /* Check if we have pending ipi, its better to send them now,
5923          * not waiting net_rx_action() end.
5924          */
5925         if (sd_has_rps_ipi_waiting(sd)) {
5926                 local_irq_disable();
5927                 net_rps_action_and_irq_enable(sd);
5928         }
5929
5930         napi->weight = READ_ONCE(dev_rx_weight);
5931         while (again) {
5932                 struct sk_buff *skb;
5933
5934                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5935                         rcu_read_lock();
5936                         __netif_receive_skb(skb);
5937                         rcu_read_unlock();
5938                         input_queue_head_incr(sd);
5939                         if (++work >= quota)
5940                                 return work;
5941
5942                 }
5943
5944                 rps_lock_irq_disable(sd);
5945                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5946                         /*
5947                          * Inline a custom version of __napi_complete().
5948                          * only current cpu owns and manipulates this napi,
5949                          * and NAPI_STATE_SCHED is the only possible flag set
5950                          * on backlog.
5951                          * We can use a plain write instead of clear_bit(),
5952                          * and we dont need an smp_mb() memory barrier.
5953                          */
5954                         napi->state = 0;
5955                         again = false;
5956                 } else {
5957                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5958                                                    &sd->process_queue);
5959                 }
5960                 rps_unlock_irq_enable(sd);
5961         }
5962
5963         return work;
5964 }
5965
5966 /**
5967  * __napi_schedule - schedule for receive
5968  * @n: entry to schedule
5969  *
5970  * The entry's receive function will be scheduled to run.
5971  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5972  */
5973 void __napi_schedule(struct napi_struct *n)
5974 {
5975         unsigned long flags;
5976
5977         local_irq_save(flags);
5978         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5979         local_irq_restore(flags);
5980 }
5981 EXPORT_SYMBOL(__napi_schedule);
5982
5983 /**
5984  *      napi_schedule_prep - check if napi can be scheduled
5985  *      @n: napi context
5986  *
5987  * Test if NAPI routine is already running, and if not mark
5988  * it as running.  This is used as a condition variable to
5989  * insure only one NAPI poll instance runs.  We also make
5990  * sure there is no pending NAPI disable.
5991  */
5992 bool napi_schedule_prep(struct napi_struct *n)
5993 {
5994         unsigned long val, new;
5995
5996         do {
5997                 val = READ_ONCE(n->state);
5998                 if (unlikely(val & NAPIF_STATE_DISABLE))
5999                         return false;
6000                 new = val | NAPIF_STATE_SCHED;
6001
6002                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6003                  * This was suggested by Alexander Duyck, as compiler
6004                  * emits better code than :
6005                  * if (val & NAPIF_STATE_SCHED)
6006                  *     new |= NAPIF_STATE_MISSED;
6007                  */
6008                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6009                                                    NAPIF_STATE_MISSED;
6010         } while (cmpxchg(&n->state, val, new) != val);
6011
6012         return !(val & NAPIF_STATE_SCHED);
6013 }
6014 EXPORT_SYMBOL(napi_schedule_prep);
6015
6016 /**
6017  * __napi_schedule_irqoff - schedule for receive
6018  * @n: entry to schedule
6019  *
6020  * Variant of __napi_schedule() assuming hard irqs are masked.
6021  *
6022  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6023  * because the interrupt disabled assumption might not be true
6024  * due to force-threaded interrupts and spinlock substitution.
6025  */
6026 void __napi_schedule_irqoff(struct napi_struct *n)
6027 {
6028         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6029                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6030         else
6031                 __napi_schedule(n);
6032 }
6033 EXPORT_SYMBOL(__napi_schedule_irqoff);
6034
6035 bool napi_complete_done(struct napi_struct *n, int work_done)
6036 {
6037         unsigned long flags, val, new, timeout = 0;
6038         bool ret = true;
6039
6040         /*
6041          * 1) Don't let napi dequeue from the cpu poll list
6042          *    just in case its running on a different cpu.
6043          * 2) If we are busy polling, do nothing here, we have
6044          *    the guarantee we will be called later.
6045          */
6046         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6047                                  NAPIF_STATE_IN_BUSY_POLL)))
6048                 return false;
6049
6050         if (work_done) {
6051                 if (n->gro_bitmask)
6052                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6053                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6054         }
6055         if (n->defer_hard_irqs_count > 0) {
6056                 n->defer_hard_irqs_count--;
6057                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6058                 if (timeout)
6059                         ret = false;
6060         }
6061         if (n->gro_bitmask) {
6062                 /* When the NAPI instance uses a timeout and keeps postponing
6063                  * it, we need to bound somehow the time packets are kept in
6064                  * the GRO layer
6065                  */
6066                 napi_gro_flush(n, !!timeout);
6067         }
6068
6069         gro_normal_list(n);
6070
6071         if (unlikely(!list_empty(&n->poll_list))) {
6072                 /* If n->poll_list is not empty, we need to mask irqs */
6073                 local_irq_save(flags);
6074                 list_del_init(&n->poll_list);
6075                 local_irq_restore(flags);
6076         }
6077
6078         do {
6079                 val = READ_ONCE(n->state);
6080
6081                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6082
6083                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6084                               NAPIF_STATE_SCHED_THREADED |
6085                               NAPIF_STATE_PREFER_BUSY_POLL);
6086
6087                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6088                  * because we will call napi->poll() one more time.
6089                  * This C code was suggested by Alexander Duyck to help gcc.
6090                  */
6091                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6092                                                     NAPIF_STATE_SCHED;
6093         } while (cmpxchg(&n->state, val, new) != val);
6094
6095         if (unlikely(val & NAPIF_STATE_MISSED)) {
6096                 __napi_schedule(n);
6097                 return false;
6098         }
6099
6100         if (timeout)
6101                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6102                               HRTIMER_MODE_REL_PINNED);
6103         return ret;
6104 }
6105 EXPORT_SYMBOL(napi_complete_done);
6106
6107 /* must be called under rcu_read_lock(), as we dont take a reference */
6108 static struct napi_struct *napi_by_id(unsigned int napi_id)
6109 {
6110         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6111         struct napi_struct *napi;
6112
6113         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6114                 if (napi->napi_id == napi_id)
6115                         return napi;
6116
6117         return NULL;
6118 }
6119
6120 #if defined(CONFIG_NET_RX_BUSY_POLL)
6121
6122 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6123 {
6124         if (!skip_schedule) {
6125                 gro_normal_list(napi);
6126                 __napi_schedule(napi);
6127                 return;
6128         }
6129
6130         if (napi->gro_bitmask) {
6131                 /* flush too old packets
6132                  * If HZ < 1000, flush all packets.
6133                  */
6134                 napi_gro_flush(napi, HZ >= 1000);
6135         }
6136
6137         gro_normal_list(napi);
6138         clear_bit(NAPI_STATE_SCHED, &napi->state);
6139 }
6140
6141 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6142                            u16 budget)
6143 {
6144         bool skip_schedule = false;
6145         unsigned long timeout;
6146         int rc;
6147
6148         /* Busy polling means there is a high chance device driver hard irq
6149          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6150          * set in napi_schedule_prep().
6151          * Since we are about to call napi->poll() once more, we can safely
6152          * clear NAPI_STATE_MISSED.
6153          *
6154          * Note: x86 could use a single "lock and ..." instruction
6155          * to perform these two clear_bit()
6156          */
6157         clear_bit(NAPI_STATE_MISSED, &napi->state);
6158         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6159
6160         local_bh_disable();
6161
6162         if (prefer_busy_poll) {
6163                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6164                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6165                 if (napi->defer_hard_irqs_count && timeout) {
6166                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6167                         skip_schedule = true;
6168                 }
6169         }
6170
6171         /* All we really want here is to re-enable device interrupts.
6172          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6173          */
6174         rc = napi->poll(napi, budget);
6175         /* We can't gro_normal_list() here, because napi->poll() might have
6176          * rearmed the napi (napi_complete_done()) in which case it could
6177          * already be running on another CPU.
6178          */
6179         trace_napi_poll(napi, rc, budget);
6180         netpoll_poll_unlock(have_poll_lock);
6181         if (rc == budget)
6182                 __busy_poll_stop(napi, skip_schedule);
6183         local_bh_enable();
6184 }
6185
6186 void napi_busy_loop(unsigned int napi_id,
6187                     bool (*loop_end)(void *, unsigned long),
6188                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6189 {
6190         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6191         int (*napi_poll)(struct napi_struct *napi, int budget);
6192         void *have_poll_lock = NULL;
6193         struct napi_struct *napi;
6194
6195 restart:
6196         napi_poll = NULL;
6197
6198         rcu_read_lock();
6199
6200         napi = napi_by_id(napi_id);
6201         if (!napi)
6202                 goto out;
6203
6204         preempt_disable();
6205         for (;;) {
6206                 int work = 0;
6207
6208                 local_bh_disable();
6209                 if (!napi_poll) {
6210                         unsigned long val = READ_ONCE(napi->state);
6211
6212                         /* If multiple threads are competing for this napi,
6213                          * we avoid dirtying napi->state as much as we can.
6214                          */
6215                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6216                                    NAPIF_STATE_IN_BUSY_POLL)) {
6217                                 if (prefer_busy_poll)
6218                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6219                                 goto count;
6220                         }
6221                         if (cmpxchg(&napi->state, val,
6222                                     val | NAPIF_STATE_IN_BUSY_POLL |
6223                                           NAPIF_STATE_SCHED) != val) {
6224                                 if (prefer_busy_poll)
6225                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6226                                 goto count;
6227                         }
6228                         have_poll_lock = netpoll_poll_lock(napi);
6229                         napi_poll = napi->poll;
6230                 }
6231                 work = napi_poll(napi, budget);
6232                 trace_napi_poll(napi, work, budget);
6233                 gro_normal_list(napi);
6234 count:
6235                 if (work > 0)
6236                         __NET_ADD_STATS(dev_net(napi->dev),
6237                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6238                 local_bh_enable();
6239
6240                 if (!loop_end || loop_end(loop_end_arg, start_time))
6241                         break;
6242
6243                 if (unlikely(need_resched())) {
6244                         if (napi_poll)
6245                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6246                         preempt_enable();
6247                         rcu_read_unlock();
6248                         cond_resched();
6249                         if (loop_end(loop_end_arg, start_time))
6250                                 return;
6251                         goto restart;
6252                 }
6253                 cpu_relax();
6254         }
6255         if (napi_poll)
6256                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6257         preempt_enable();
6258 out:
6259         rcu_read_unlock();
6260 }
6261 EXPORT_SYMBOL(napi_busy_loop);
6262
6263 #endif /* CONFIG_NET_RX_BUSY_POLL */
6264
6265 static void napi_hash_add(struct napi_struct *napi)
6266 {
6267         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6268                 return;
6269
6270         spin_lock(&napi_hash_lock);
6271
6272         /* 0..NR_CPUS range is reserved for sender_cpu use */
6273         do {
6274                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6275                         napi_gen_id = MIN_NAPI_ID;
6276         } while (napi_by_id(napi_gen_id));
6277         napi->napi_id = napi_gen_id;
6278
6279         hlist_add_head_rcu(&napi->napi_hash_node,
6280                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6281
6282         spin_unlock(&napi_hash_lock);
6283 }
6284
6285 /* Warning : caller is responsible to make sure rcu grace period
6286  * is respected before freeing memory containing @napi
6287  */
6288 static void napi_hash_del(struct napi_struct *napi)
6289 {
6290         spin_lock(&napi_hash_lock);
6291
6292         hlist_del_init_rcu(&napi->napi_hash_node);
6293
6294         spin_unlock(&napi_hash_lock);
6295 }
6296
6297 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6298 {
6299         struct napi_struct *napi;
6300
6301         napi = container_of(timer, struct napi_struct, timer);
6302
6303         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6304          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6305          */
6306         if (!napi_disable_pending(napi) &&
6307             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6308                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6309                 __napi_schedule_irqoff(napi);
6310         }
6311
6312         return HRTIMER_NORESTART;
6313 }
6314
6315 static void init_gro_hash(struct napi_struct *napi)
6316 {
6317         int i;
6318
6319         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6320                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6321                 napi->gro_hash[i].count = 0;
6322         }
6323         napi->gro_bitmask = 0;
6324 }
6325
6326 int dev_set_threaded(struct net_device *dev, bool threaded)
6327 {
6328         struct napi_struct *napi;
6329         int err = 0;
6330
6331         if (dev->threaded == threaded)
6332                 return 0;
6333
6334         if (threaded) {
6335                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6336                         if (!napi->thread) {
6337                                 err = napi_kthread_create(napi);
6338                                 if (err) {
6339                                         threaded = false;
6340                                         break;
6341                                 }
6342                         }
6343                 }
6344         }
6345
6346         dev->threaded = threaded;
6347
6348         /* Make sure kthread is created before THREADED bit
6349          * is set.
6350          */
6351         smp_mb__before_atomic();
6352
6353         /* Setting/unsetting threaded mode on a napi might not immediately
6354          * take effect, if the current napi instance is actively being
6355          * polled. In this case, the switch between threaded mode and
6356          * softirq mode will happen in the next round of napi_schedule().
6357          * This should not cause hiccups/stalls to the live traffic.
6358          */
6359         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6360                 if (threaded)
6361                         set_bit(NAPI_STATE_THREADED, &napi->state);
6362                 else
6363                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6364         }
6365
6366         return err;
6367 }
6368 EXPORT_SYMBOL(dev_set_threaded);
6369
6370 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6371                            int (*poll)(struct napi_struct *, int), int weight)
6372 {
6373         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6374                 return;
6375
6376         INIT_LIST_HEAD(&napi->poll_list);
6377         INIT_HLIST_NODE(&napi->napi_hash_node);
6378         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6379         napi->timer.function = napi_watchdog;
6380         init_gro_hash(napi);
6381         napi->skb = NULL;
6382         INIT_LIST_HEAD(&napi->rx_list);
6383         napi->rx_count = 0;
6384         napi->poll = poll;
6385         if (weight > NAPI_POLL_WEIGHT)
6386                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6387                                 weight);
6388         napi->weight = weight;
6389         napi->dev = dev;
6390 #ifdef CONFIG_NETPOLL
6391         napi->poll_owner = -1;
6392 #endif
6393         set_bit(NAPI_STATE_SCHED, &napi->state);
6394         set_bit(NAPI_STATE_NPSVC, &napi->state);
6395         list_add_rcu(&napi->dev_list, &dev->napi_list);
6396         napi_hash_add(napi);
6397         napi_get_frags_check(napi);
6398         /* Create kthread for this napi if dev->threaded is set.
6399          * Clear dev->threaded if kthread creation failed so that
6400          * threaded mode will not be enabled in napi_enable().
6401          */
6402         if (dev->threaded && napi_kthread_create(napi))
6403                 dev->threaded = 0;
6404 }
6405 EXPORT_SYMBOL(netif_napi_add_weight);
6406
6407 void napi_disable(struct napi_struct *n)
6408 {
6409         unsigned long val, new;
6410
6411         might_sleep();
6412         set_bit(NAPI_STATE_DISABLE, &n->state);
6413
6414         for ( ; ; ) {
6415                 val = READ_ONCE(n->state);
6416                 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6417                         usleep_range(20, 200);
6418                         continue;
6419                 }
6420
6421                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6422                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6423
6424                 if (cmpxchg(&n->state, val, new) == val)
6425                         break;
6426         }
6427
6428         hrtimer_cancel(&n->timer);
6429
6430         clear_bit(NAPI_STATE_DISABLE, &n->state);
6431 }
6432 EXPORT_SYMBOL(napi_disable);
6433
6434 /**
6435  *      napi_enable - enable NAPI scheduling
6436  *      @n: NAPI context
6437  *
6438  * Resume NAPI from being scheduled on this context.
6439  * Must be paired with napi_disable.
6440  */
6441 void napi_enable(struct napi_struct *n)
6442 {
6443         unsigned long val, new;
6444
6445         do {
6446                 val = READ_ONCE(n->state);
6447                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6448
6449                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6450                 if (n->dev->threaded && n->thread)
6451                         new |= NAPIF_STATE_THREADED;
6452         } while (cmpxchg(&n->state, val, new) != val);
6453 }
6454 EXPORT_SYMBOL(napi_enable);
6455
6456 static void flush_gro_hash(struct napi_struct *napi)
6457 {
6458         int i;
6459
6460         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6461                 struct sk_buff *skb, *n;
6462
6463                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6464                         kfree_skb(skb);
6465                 napi->gro_hash[i].count = 0;
6466         }
6467 }
6468
6469 /* Must be called in process context */
6470 void __netif_napi_del(struct napi_struct *napi)
6471 {
6472         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6473                 return;
6474
6475         napi_hash_del(napi);
6476         list_del_rcu(&napi->dev_list);
6477         napi_free_frags(napi);
6478
6479         flush_gro_hash(napi);
6480         napi->gro_bitmask = 0;
6481
6482         if (napi->thread) {
6483                 kthread_stop(napi->thread);
6484                 napi->thread = NULL;
6485         }
6486 }
6487 EXPORT_SYMBOL(__netif_napi_del);
6488
6489 static int __napi_poll(struct napi_struct *n, bool *repoll)
6490 {
6491         int work, weight;
6492
6493         weight = n->weight;
6494
6495         /* This NAPI_STATE_SCHED test is for avoiding a race
6496          * with netpoll's poll_napi().  Only the entity which
6497          * obtains the lock and sees NAPI_STATE_SCHED set will
6498          * actually make the ->poll() call.  Therefore we avoid
6499          * accidentally calling ->poll() when NAPI is not scheduled.
6500          */
6501         work = 0;
6502         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6503                 work = n->poll(n, weight);
6504                 trace_napi_poll(n, work, weight);
6505         }
6506
6507         if (unlikely(work > weight))
6508                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6509                                 n->poll, work, weight);
6510
6511         if (likely(work < weight))
6512                 return work;
6513
6514         /* Drivers must not modify the NAPI state if they
6515          * consume the entire weight.  In such cases this code
6516          * still "owns" the NAPI instance and therefore can
6517          * move the instance around on the list at-will.
6518          */
6519         if (unlikely(napi_disable_pending(n))) {
6520                 napi_complete(n);
6521                 return work;
6522         }
6523
6524         /* The NAPI context has more processing work, but busy-polling
6525          * is preferred. Exit early.
6526          */
6527         if (napi_prefer_busy_poll(n)) {
6528                 if (napi_complete_done(n, work)) {
6529                         /* If timeout is not set, we need to make sure
6530                          * that the NAPI is re-scheduled.
6531                          */
6532                         napi_schedule(n);
6533                 }
6534                 return work;
6535         }
6536
6537         if (n->gro_bitmask) {
6538                 /* flush too old packets
6539                  * If HZ < 1000, flush all packets.
6540                  */
6541                 napi_gro_flush(n, HZ >= 1000);
6542         }
6543
6544         gro_normal_list(n);
6545
6546         /* Some drivers may have called napi_schedule
6547          * prior to exhausting their budget.
6548          */
6549         if (unlikely(!list_empty(&n->poll_list))) {
6550                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6551                              n->dev ? n->dev->name : "backlog");
6552                 return work;
6553         }
6554
6555         *repoll = true;
6556
6557         return work;
6558 }
6559
6560 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6561 {
6562         bool do_repoll = false;
6563         void *have;
6564         int work;
6565
6566         list_del_init(&n->poll_list);
6567
6568         have = netpoll_poll_lock(n);
6569
6570         work = __napi_poll(n, &do_repoll);
6571
6572         if (do_repoll)
6573                 list_add_tail(&n->poll_list, repoll);
6574
6575         netpoll_poll_unlock(have);
6576
6577         return work;
6578 }
6579
6580 static int napi_thread_wait(struct napi_struct *napi)
6581 {
6582         bool woken = false;
6583
6584         set_current_state(TASK_INTERRUPTIBLE);
6585
6586         while (!kthread_should_stop()) {
6587                 /* Testing SCHED_THREADED bit here to make sure the current
6588                  * kthread owns this napi and could poll on this napi.
6589                  * Testing SCHED bit is not enough because SCHED bit might be
6590                  * set by some other busy poll thread or by napi_disable().
6591                  */
6592                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6593                         WARN_ON(!list_empty(&napi->poll_list));
6594                         __set_current_state(TASK_RUNNING);
6595                         return 0;
6596                 }
6597
6598                 schedule();
6599                 /* woken being true indicates this thread owns this napi. */
6600                 woken = true;
6601                 set_current_state(TASK_INTERRUPTIBLE);
6602         }
6603         __set_current_state(TASK_RUNNING);
6604
6605         return -1;
6606 }
6607
6608 static int napi_threaded_poll(void *data)
6609 {
6610         struct napi_struct *napi = data;
6611         void *have;
6612
6613         while (!napi_thread_wait(napi)) {
6614                 for (;;) {
6615                         bool repoll = false;
6616
6617                         local_bh_disable();
6618
6619                         have = netpoll_poll_lock(napi);
6620                         __napi_poll(napi, &repoll);
6621                         netpoll_poll_unlock(have);
6622
6623                         local_bh_enable();
6624
6625                         if (!repoll)
6626                                 break;
6627
6628                         cond_resched();
6629                 }
6630         }
6631         return 0;
6632 }
6633
6634 static void skb_defer_free_flush(struct softnet_data *sd)
6635 {
6636         struct sk_buff *skb, *next;
6637         unsigned long flags;
6638
6639         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6640         if (!READ_ONCE(sd->defer_list))
6641                 return;
6642
6643         spin_lock_irqsave(&sd->defer_lock, flags);
6644         skb = sd->defer_list;
6645         sd->defer_list = NULL;
6646         sd->defer_count = 0;
6647         spin_unlock_irqrestore(&sd->defer_lock, flags);
6648
6649         while (skb != NULL) {
6650                 next = skb->next;
6651                 napi_consume_skb(skb, 1);
6652                 skb = next;
6653         }
6654 }
6655
6656 static __latent_entropy void net_rx_action(struct softirq_action *h)
6657 {
6658         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6659         unsigned long time_limit = jiffies +
6660                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6661         int budget = READ_ONCE(netdev_budget);
6662         LIST_HEAD(list);
6663         LIST_HEAD(repoll);
6664
6665         local_irq_disable();
6666         list_splice_init(&sd->poll_list, &list);
6667         local_irq_enable();
6668
6669         for (;;) {
6670                 struct napi_struct *n;
6671
6672                 skb_defer_free_flush(sd);
6673
6674                 if (list_empty(&list)) {
6675                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6676                                 goto end;
6677                         break;
6678                 }
6679
6680                 n = list_first_entry(&list, struct napi_struct, poll_list);
6681                 budget -= napi_poll(n, &repoll);
6682
6683                 /* If softirq window is exhausted then punt.
6684                  * Allow this to run for 2 jiffies since which will allow
6685                  * an average latency of 1.5/HZ.
6686                  */
6687                 if (unlikely(budget <= 0 ||
6688                              time_after_eq(jiffies, time_limit))) {
6689                         sd->time_squeeze++;
6690                         break;
6691                 }
6692         }
6693
6694         local_irq_disable();
6695
6696         list_splice_tail_init(&sd->poll_list, &list);
6697         list_splice_tail(&repoll, &list);
6698         list_splice(&list, &sd->poll_list);
6699         if (!list_empty(&sd->poll_list))
6700                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6701
6702         net_rps_action_and_irq_enable(sd);
6703 end:;
6704 }
6705
6706 struct netdev_adjacent {
6707         struct net_device *dev;
6708         netdevice_tracker dev_tracker;
6709
6710         /* upper master flag, there can only be one master device per list */
6711         bool master;
6712
6713         /* lookup ignore flag */
6714         bool ignore;
6715
6716         /* counter for the number of times this device was added to us */
6717         u16 ref_nr;
6718
6719         /* private field for the users */
6720         void *private;
6721
6722         struct list_head list;
6723         struct rcu_head rcu;
6724 };
6725
6726 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6727                                                  struct list_head *adj_list)
6728 {
6729         struct netdev_adjacent *adj;
6730
6731         list_for_each_entry(adj, adj_list, list) {
6732                 if (adj->dev == adj_dev)
6733                         return adj;
6734         }
6735         return NULL;
6736 }
6737
6738 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6739                                     struct netdev_nested_priv *priv)
6740 {
6741         struct net_device *dev = (struct net_device *)priv->data;
6742
6743         return upper_dev == dev;
6744 }
6745
6746 /**
6747  * netdev_has_upper_dev - Check if device is linked to an upper device
6748  * @dev: device
6749  * @upper_dev: upper device to check
6750  *
6751  * Find out if a device is linked to specified upper device and return true
6752  * in case it is. Note that this checks only immediate upper device,
6753  * not through a complete stack of devices. The caller must hold the RTNL lock.
6754  */
6755 bool netdev_has_upper_dev(struct net_device *dev,
6756                           struct net_device *upper_dev)
6757 {
6758         struct netdev_nested_priv priv = {
6759                 .data = (void *)upper_dev,
6760         };
6761
6762         ASSERT_RTNL();
6763
6764         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6765                                              &priv);
6766 }
6767 EXPORT_SYMBOL(netdev_has_upper_dev);
6768
6769 /**
6770  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6771  * @dev: device
6772  * @upper_dev: upper device to check
6773  *
6774  * Find out if a device is linked to specified upper device and return true
6775  * in case it is. Note that this checks the entire upper device chain.
6776  * The caller must hold rcu lock.
6777  */
6778
6779 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6780                                   struct net_device *upper_dev)
6781 {
6782         struct netdev_nested_priv priv = {
6783                 .data = (void *)upper_dev,
6784         };
6785
6786         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6787                                                &priv);
6788 }
6789 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6790
6791 /**
6792  * netdev_has_any_upper_dev - Check if device is linked to some device
6793  * @dev: device
6794  *
6795  * Find out if a device is linked to an upper device and return true in case
6796  * it is. The caller must hold the RTNL lock.
6797  */
6798 bool netdev_has_any_upper_dev(struct net_device *dev)
6799 {
6800         ASSERT_RTNL();
6801
6802         return !list_empty(&dev->adj_list.upper);
6803 }
6804 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6805
6806 /**
6807  * netdev_master_upper_dev_get - Get master upper device
6808  * @dev: device
6809  *
6810  * Find a master upper device and return pointer to it or NULL in case
6811  * it's not there. The caller must hold the RTNL lock.
6812  */
6813 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6814 {
6815         struct netdev_adjacent *upper;
6816
6817         ASSERT_RTNL();
6818
6819         if (list_empty(&dev->adj_list.upper))
6820                 return NULL;
6821
6822         upper = list_first_entry(&dev->adj_list.upper,
6823                                  struct netdev_adjacent, list);
6824         if (likely(upper->master))
6825                 return upper->dev;
6826         return NULL;
6827 }
6828 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6829
6830 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6831 {
6832         struct netdev_adjacent *upper;
6833
6834         ASSERT_RTNL();
6835
6836         if (list_empty(&dev->adj_list.upper))
6837                 return NULL;
6838
6839         upper = list_first_entry(&dev->adj_list.upper,
6840                                  struct netdev_adjacent, list);
6841         if (likely(upper->master) && !upper->ignore)
6842                 return upper->dev;
6843         return NULL;
6844 }
6845
6846 /**
6847  * netdev_has_any_lower_dev - Check if device is linked to some device
6848  * @dev: device
6849  *
6850  * Find out if a device is linked to a lower device and return true in case
6851  * it is. The caller must hold the RTNL lock.
6852  */
6853 static bool netdev_has_any_lower_dev(struct net_device *dev)
6854 {
6855         ASSERT_RTNL();
6856
6857         return !list_empty(&dev->adj_list.lower);
6858 }
6859
6860 void *netdev_adjacent_get_private(struct list_head *adj_list)
6861 {
6862         struct netdev_adjacent *adj;
6863
6864         adj = list_entry(adj_list, struct netdev_adjacent, list);
6865
6866         return adj->private;
6867 }
6868 EXPORT_SYMBOL(netdev_adjacent_get_private);
6869
6870 /**
6871  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6872  * @dev: device
6873  * @iter: list_head ** of the current position
6874  *
6875  * Gets the next device from the dev's upper list, starting from iter
6876  * position. The caller must hold RCU read lock.
6877  */
6878 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6879                                                  struct list_head **iter)
6880 {
6881         struct netdev_adjacent *upper;
6882
6883         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6884
6885         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6886
6887         if (&upper->list == &dev->adj_list.upper)
6888                 return NULL;
6889
6890         *iter = &upper->list;
6891
6892         return upper->dev;
6893 }
6894 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6895
6896 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6897                                                   struct list_head **iter,
6898                                                   bool *ignore)
6899 {
6900         struct netdev_adjacent *upper;
6901
6902         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6903
6904         if (&upper->list == &dev->adj_list.upper)
6905                 return NULL;
6906
6907         *iter = &upper->list;
6908         *ignore = upper->ignore;
6909
6910         return upper->dev;
6911 }
6912
6913 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6914                                                     struct list_head **iter)
6915 {
6916         struct netdev_adjacent *upper;
6917
6918         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6919
6920         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6921
6922         if (&upper->list == &dev->adj_list.upper)
6923                 return NULL;
6924
6925         *iter = &upper->list;
6926
6927         return upper->dev;
6928 }
6929
6930 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6931                                        int (*fn)(struct net_device *dev,
6932                                          struct netdev_nested_priv *priv),
6933                                        struct netdev_nested_priv *priv)
6934 {
6935         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6936         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6937         int ret, cur = 0;
6938         bool ignore;
6939
6940         now = dev;
6941         iter = &dev->adj_list.upper;
6942
6943         while (1) {
6944                 if (now != dev) {
6945                         ret = fn(now, priv);
6946                         if (ret)
6947                                 return ret;
6948                 }
6949
6950                 next = NULL;
6951                 while (1) {
6952                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6953                         if (!udev)
6954                                 break;
6955                         if (ignore)
6956                                 continue;
6957
6958                         next = udev;
6959                         niter = &udev->adj_list.upper;
6960                         dev_stack[cur] = now;
6961                         iter_stack[cur++] = iter;
6962                         break;
6963                 }
6964
6965                 if (!next) {
6966                         if (!cur)
6967                                 return 0;
6968                         next = dev_stack[--cur];
6969                         niter = iter_stack[cur];
6970                 }
6971
6972                 now = next;
6973                 iter = niter;
6974         }
6975
6976         return 0;
6977 }
6978
6979 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6980                                   int (*fn)(struct net_device *dev,
6981                                             struct netdev_nested_priv *priv),
6982                                   struct netdev_nested_priv *priv)
6983 {
6984         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6985         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6986         int ret, cur = 0;
6987
6988         now = dev;
6989         iter = &dev->adj_list.upper;
6990
6991         while (1) {
6992                 if (now != dev) {
6993                         ret = fn(now, priv);
6994                         if (ret)
6995                                 return ret;
6996                 }
6997
6998                 next = NULL;
6999                 while (1) {
7000                         udev = netdev_next_upper_dev_rcu(now, &iter);
7001                         if (!udev)
7002                                 break;
7003
7004                         next = udev;
7005                         niter = &udev->adj_list.upper;
7006                         dev_stack[cur] = now;
7007                         iter_stack[cur++] = iter;
7008                         break;
7009                 }
7010
7011                 if (!next) {
7012                         if (!cur)
7013                                 return 0;
7014                         next = dev_stack[--cur];
7015                         niter = iter_stack[cur];
7016                 }
7017
7018                 now = next;
7019                 iter = niter;
7020         }
7021
7022         return 0;
7023 }
7024 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7025
7026 static bool __netdev_has_upper_dev(struct net_device *dev,
7027                                    struct net_device *upper_dev)
7028 {
7029         struct netdev_nested_priv priv = {
7030                 .flags = 0,
7031                 .data = (void *)upper_dev,
7032         };
7033
7034         ASSERT_RTNL();
7035
7036         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7037                                            &priv);
7038 }
7039
7040 /**
7041  * netdev_lower_get_next_private - Get the next ->private from the
7042  *                                 lower neighbour list
7043  * @dev: device
7044  * @iter: list_head ** of the current position
7045  *
7046  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7047  * list, starting from iter position. The caller must hold either hold the
7048  * RTNL lock or its own locking that guarantees that the neighbour lower
7049  * list will remain unchanged.
7050  */
7051 void *netdev_lower_get_next_private(struct net_device *dev,
7052                                     struct list_head **iter)
7053 {
7054         struct netdev_adjacent *lower;
7055
7056         lower = list_entry(*iter, struct netdev_adjacent, list);
7057
7058         if (&lower->list == &dev->adj_list.lower)
7059                 return NULL;
7060
7061         *iter = lower->list.next;
7062
7063         return lower->private;
7064 }
7065 EXPORT_SYMBOL(netdev_lower_get_next_private);
7066
7067 /**
7068  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7069  *                                     lower neighbour list, RCU
7070  *                                     variant
7071  * @dev: device
7072  * @iter: list_head ** of the current position
7073  *
7074  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7075  * list, starting from iter position. The caller must hold RCU read lock.
7076  */
7077 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7078                                         struct list_head **iter)
7079 {
7080         struct netdev_adjacent *lower;
7081
7082         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7083
7084         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7085
7086         if (&lower->list == &dev->adj_list.lower)
7087                 return NULL;
7088
7089         *iter = &lower->list;
7090
7091         return lower->private;
7092 }
7093 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7094
7095 /**
7096  * netdev_lower_get_next - Get the next device from the lower neighbour
7097  *                         list
7098  * @dev: device
7099  * @iter: list_head ** of the current position
7100  *
7101  * Gets the next netdev_adjacent from the dev's lower neighbour
7102  * list, starting from iter position. The caller must hold RTNL lock or
7103  * its own locking that guarantees that the neighbour lower
7104  * list will remain unchanged.
7105  */
7106 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7107 {
7108         struct netdev_adjacent *lower;
7109
7110         lower = list_entry(*iter, struct netdev_adjacent, list);
7111
7112         if (&lower->list == &dev->adj_list.lower)
7113                 return NULL;
7114
7115         *iter = lower->list.next;
7116
7117         return lower->dev;
7118 }
7119 EXPORT_SYMBOL(netdev_lower_get_next);
7120
7121 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7122                                                 struct list_head **iter)
7123 {
7124         struct netdev_adjacent *lower;
7125
7126         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7127
7128         if (&lower->list == &dev->adj_list.lower)
7129                 return NULL;
7130
7131         *iter = &lower->list;
7132
7133         return lower->dev;
7134 }
7135
7136 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7137                                                   struct list_head **iter,
7138                                                   bool *ignore)
7139 {
7140         struct netdev_adjacent *lower;
7141
7142         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7143
7144         if (&lower->list == &dev->adj_list.lower)
7145                 return NULL;
7146
7147         *iter = &lower->list;
7148         *ignore = lower->ignore;
7149
7150         return lower->dev;
7151 }
7152
7153 int netdev_walk_all_lower_dev(struct net_device *dev,
7154                               int (*fn)(struct net_device *dev,
7155                                         struct netdev_nested_priv *priv),
7156                               struct netdev_nested_priv *priv)
7157 {
7158         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7159         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7160         int ret, cur = 0;
7161
7162         now = dev;
7163         iter = &dev->adj_list.lower;
7164
7165         while (1) {
7166                 if (now != dev) {
7167                         ret = fn(now, priv);
7168                         if (ret)
7169                                 return ret;
7170                 }
7171
7172                 next = NULL;
7173                 while (1) {
7174                         ldev = netdev_next_lower_dev(now, &iter);
7175                         if (!ldev)
7176                                 break;
7177
7178                         next = ldev;
7179                         niter = &ldev->adj_list.lower;
7180                         dev_stack[cur] = now;
7181                         iter_stack[cur++] = iter;
7182                         break;
7183                 }
7184
7185                 if (!next) {
7186                         if (!cur)
7187                                 return 0;
7188                         next = dev_stack[--cur];
7189                         niter = iter_stack[cur];
7190                 }
7191
7192                 now = next;
7193                 iter = niter;
7194         }
7195
7196         return 0;
7197 }
7198 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7199
7200 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7201                                        int (*fn)(struct net_device *dev,
7202                                          struct netdev_nested_priv *priv),
7203                                        struct netdev_nested_priv *priv)
7204 {
7205         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7206         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7207         int ret, cur = 0;
7208         bool ignore;
7209
7210         now = dev;
7211         iter = &dev->adj_list.lower;
7212
7213         while (1) {
7214                 if (now != dev) {
7215                         ret = fn(now, priv);
7216                         if (ret)
7217                                 return ret;
7218                 }
7219
7220                 next = NULL;
7221                 while (1) {
7222                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7223                         if (!ldev)
7224                                 break;
7225                         if (ignore)
7226                                 continue;
7227
7228                         next = ldev;
7229                         niter = &ldev->adj_list.lower;
7230                         dev_stack[cur] = now;
7231                         iter_stack[cur++] = iter;
7232                         break;
7233                 }
7234
7235                 if (!next) {
7236                         if (!cur)
7237                                 return 0;
7238                         next = dev_stack[--cur];
7239                         niter = iter_stack[cur];
7240                 }
7241
7242                 now = next;
7243                 iter = niter;
7244         }
7245
7246         return 0;
7247 }
7248
7249 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7250                                              struct list_head **iter)
7251 {
7252         struct netdev_adjacent *lower;
7253
7254         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7255         if (&lower->list == &dev->adj_list.lower)
7256                 return NULL;
7257
7258         *iter = &lower->list;
7259
7260         return lower->dev;
7261 }
7262 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7263
7264 static u8 __netdev_upper_depth(struct net_device *dev)
7265 {
7266         struct net_device *udev;
7267         struct list_head *iter;
7268         u8 max_depth = 0;
7269         bool ignore;
7270
7271         for (iter = &dev->adj_list.upper,
7272              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7273              udev;
7274              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7275                 if (ignore)
7276                         continue;
7277                 if (max_depth < udev->upper_level)
7278                         max_depth = udev->upper_level;
7279         }
7280
7281         return max_depth;
7282 }
7283
7284 static u8 __netdev_lower_depth(struct net_device *dev)
7285 {
7286         struct net_device *ldev;
7287         struct list_head *iter;
7288         u8 max_depth = 0;
7289         bool ignore;
7290
7291         for (iter = &dev->adj_list.lower,
7292              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7293              ldev;
7294              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7295                 if (ignore)
7296                         continue;
7297                 if (max_depth < ldev->lower_level)
7298                         max_depth = ldev->lower_level;
7299         }
7300
7301         return max_depth;
7302 }
7303
7304 static int __netdev_update_upper_level(struct net_device *dev,
7305                                        struct netdev_nested_priv *__unused)
7306 {
7307         dev->upper_level = __netdev_upper_depth(dev) + 1;
7308         return 0;
7309 }
7310
7311 #ifdef CONFIG_LOCKDEP
7312 static LIST_HEAD(net_unlink_list);
7313
7314 static void net_unlink_todo(struct net_device *dev)
7315 {
7316         if (list_empty(&dev->unlink_list))
7317                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7318 }
7319 #endif
7320
7321 static int __netdev_update_lower_level(struct net_device *dev,
7322                                        struct netdev_nested_priv *priv)
7323 {
7324         dev->lower_level = __netdev_lower_depth(dev) + 1;
7325
7326 #ifdef CONFIG_LOCKDEP
7327         if (!priv)
7328                 return 0;
7329
7330         if (priv->flags & NESTED_SYNC_IMM)
7331                 dev->nested_level = dev->lower_level - 1;
7332         if (priv->flags & NESTED_SYNC_TODO)
7333                 net_unlink_todo(dev);
7334 #endif
7335         return 0;
7336 }
7337
7338 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7339                                   int (*fn)(struct net_device *dev,
7340                                             struct netdev_nested_priv *priv),
7341                                   struct netdev_nested_priv *priv)
7342 {
7343         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7344         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7345         int ret, cur = 0;
7346
7347         now = dev;
7348         iter = &dev->adj_list.lower;
7349
7350         while (1) {
7351                 if (now != dev) {
7352                         ret = fn(now, priv);
7353                         if (ret)
7354                                 return ret;
7355                 }
7356
7357                 next = NULL;
7358                 while (1) {
7359                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7360                         if (!ldev)
7361                                 break;
7362
7363                         next = ldev;
7364                         niter = &ldev->adj_list.lower;
7365                         dev_stack[cur] = now;
7366                         iter_stack[cur++] = iter;
7367                         break;
7368                 }
7369
7370                 if (!next) {
7371                         if (!cur)
7372                                 return 0;
7373                         next = dev_stack[--cur];
7374                         niter = iter_stack[cur];
7375                 }
7376
7377                 now = next;
7378                 iter = niter;
7379         }
7380
7381         return 0;
7382 }
7383 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7384
7385 /**
7386  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7387  *                                     lower neighbour list, RCU
7388  *                                     variant
7389  * @dev: device
7390  *
7391  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7392  * list. The caller must hold RCU read lock.
7393  */
7394 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7395 {
7396         struct netdev_adjacent *lower;
7397
7398         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7399                         struct netdev_adjacent, list);
7400         if (lower)
7401                 return lower->private;
7402         return NULL;
7403 }
7404 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7405
7406 /**
7407  * netdev_master_upper_dev_get_rcu - Get master upper device
7408  * @dev: device
7409  *
7410  * Find a master upper device and return pointer to it or NULL in case
7411  * it's not there. The caller must hold the RCU read lock.
7412  */
7413 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7414 {
7415         struct netdev_adjacent *upper;
7416
7417         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7418                                        struct netdev_adjacent, list);
7419         if (upper && likely(upper->master))
7420                 return upper->dev;
7421         return NULL;
7422 }
7423 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7424
7425 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7426                               struct net_device *adj_dev,
7427                               struct list_head *dev_list)
7428 {
7429         char linkname[IFNAMSIZ+7];
7430
7431         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7432                 "upper_%s" : "lower_%s", adj_dev->name);
7433         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7434                                  linkname);
7435 }
7436 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7437                                char *name,
7438                                struct list_head *dev_list)
7439 {
7440         char linkname[IFNAMSIZ+7];
7441
7442         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7443                 "upper_%s" : "lower_%s", name);
7444         sysfs_remove_link(&(dev->dev.kobj), linkname);
7445 }
7446
7447 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7448                                                  struct net_device *adj_dev,
7449                                                  struct list_head *dev_list)
7450 {
7451         return (dev_list == &dev->adj_list.upper ||
7452                 dev_list == &dev->adj_list.lower) &&
7453                 net_eq(dev_net(dev), dev_net(adj_dev));
7454 }
7455
7456 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7457                                         struct net_device *adj_dev,
7458                                         struct list_head *dev_list,
7459                                         void *private, bool master)
7460 {
7461         struct netdev_adjacent *adj;
7462         int ret;
7463
7464         adj = __netdev_find_adj(adj_dev, dev_list);
7465
7466         if (adj) {
7467                 adj->ref_nr += 1;
7468                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7469                          dev->name, adj_dev->name, adj->ref_nr);
7470
7471                 return 0;
7472         }
7473
7474         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7475         if (!adj)
7476                 return -ENOMEM;
7477
7478         adj->dev = adj_dev;
7479         adj->master = master;
7480         adj->ref_nr = 1;
7481         adj->private = private;
7482         adj->ignore = false;
7483         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7484
7485         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7486                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7487
7488         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7489                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7490                 if (ret)
7491                         goto free_adj;
7492         }
7493
7494         /* Ensure that master link is always the first item in list. */
7495         if (master) {
7496                 ret = sysfs_create_link(&(dev->dev.kobj),
7497                                         &(adj_dev->dev.kobj), "master");
7498                 if (ret)
7499                         goto remove_symlinks;
7500
7501                 list_add_rcu(&adj->list, dev_list);
7502         } else {
7503                 list_add_tail_rcu(&adj->list, dev_list);
7504         }
7505
7506         return 0;
7507
7508 remove_symlinks:
7509         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7510                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7511 free_adj:
7512         netdev_put(adj_dev, &adj->dev_tracker);
7513         kfree(adj);
7514
7515         return ret;
7516 }
7517
7518 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7519                                          struct net_device *adj_dev,
7520                                          u16 ref_nr,
7521                                          struct list_head *dev_list)
7522 {
7523         struct netdev_adjacent *adj;
7524
7525         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7526                  dev->name, adj_dev->name, ref_nr);
7527
7528         adj = __netdev_find_adj(adj_dev, dev_list);
7529
7530         if (!adj) {
7531                 pr_err("Adjacency does not exist for device %s from %s\n",
7532                        dev->name, adj_dev->name);
7533                 WARN_ON(1);
7534                 return;
7535         }
7536
7537         if (adj->ref_nr > ref_nr) {
7538                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7539                          dev->name, adj_dev->name, ref_nr,
7540                          adj->ref_nr - ref_nr);
7541                 adj->ref_nr -= ref_nr;
7542                 return;
7543         }
7544
7545         if (adj->master)
7546                 sysfs_remove_link(&(dev->dev.kobj), "master");
7547
7548         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7549                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7550
7551         list_del_rcu(&adj->list);
7552         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7553                  adj_dev->name, dev->name, adj_dev->name);
7554         netdev_put(adj_dev, &adj->dev_tracker);
7555         kfree_rcu(adj, rcu);
7556 }
7557
7558 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7559                                             struct net_device *upper_dev,
7560                                             struct list_head *up_list,
7561                                             struct list_head *down_list,
7562                                             void *private, bool master)
7563 {
7564         int ret;
7565
7566         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7567                                            private, master);
7568         if (ret)
7569                 return ret;
7570
7571         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7572                                            private, false);
7573         if (ret) {
7574                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7575                 return ret;
7576         }
7577
7578         return 0;
7579 }
7580
7581 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7582                                                struct net_device *upper_dev,
7583                                                u16 ref_nr,
7584                                                struct list_head *up_list,
7585                                                struct list_head *down_list)
7586 {
7587         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7588         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7589 }
7590
7591 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7592                                                 struct net_device *upper_dev,
7593                                                 void *private, bool master)
7594 {
7595         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7596                                                 &dev->adj_list.upper,
7597                                                 &upper_dev->adj_list.lower,
7598                                                 private, master);
7599 }
7600
7601 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7602                                                    struct net_device *upper_dev)
7603 {
7604         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7605                                            &dev->adj_list.upper,
7606                                            &upper_dev->adj_list.lower);
7607 }
7608
7609 static int __netdev_upper_dev_link(struct net_device *dev,
7610                                    struct net_device *upper_dev, bool master,
7611                                    void *upper_priv, void *upper_info,
7612                                    struct netdev_nested_priv *priv,
7613                                    struct netlink_ext_ack *extack)
7614 {
7615         struct netdev_notifier_changeupper_info changeupper_info = {
7616                 .info = {
7617                         .dev = dev,
7618                         .extack = extack,
7619                 },
7620                 .upper_dev = upper_dev,
7621                 .master = master,
7622                 .linking = true,
7623                 .upper_info = upper_info,
7624         };
7625         struct net_device *master_dev;
7626         int ret = 0;
7627
7628         ASSERT_RTNL();
7629
7630         if (dev == upper_dev)
7631                 return -EBUSY;
7632
7633         /* To prevent loops, check if dev is not upper device to upper_dev. */
7634         if (__netdev_has_upper_dev(upper_dev, dev))
7635                 return -EBUSY;
7636
7637         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7638                 return -EMLINK;
7639
7640         if (!master) {
7641                 if (__netdev_has_upper_dev(dev, upper_dev))
7642                         return -EEXIST;
7643         } else {
7644                 master_dev = __netdev_master_upper_dev_get(dev);
7645                 if (master_dev)
7646                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7647         }
7648
7649         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7650                                             &changeupper_info.info);
7651         ret = notifier_to_errno(ret);
7652         if (ret)
7653                 return ret;
7654
7655         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7656                                                    master);
7657         if (ret)
7658                 return ret;
7659
7660         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7661                                             &changeupper_info.info);
7662         ret = notifier_to_errno(ret);
7663         if (ret)
7664                 goto rollback;
7665
7666         __netdev_update_upper_level(dev, NULL);
7667         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7668
7669         __netdev_update_lower_level(upper_dev, priv);
7670         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7671                                     priv);
7672
7673         return 0;
7674
7675 rollback:
7676         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7677
7678         return ret;
7679 }
7680
7681 /**
7682  * netdev_upper_dev_link - Add a link to the upper device
7683  * @dev: device
7684  * @upper_dev: new upper device
7685  * @extack: netlink extended ack
7686  *
7687  * Adds a link to device which is upper to this one. The caller must hold
7688  * the RTNL lock. On a failure a negative errno code is returned.
7689  * On success the reference counts are adjusted and the function
7690  * returns zero.
7691  */
7692 int netdev_upper_dev_link(struct net_device *dev,
7693                           struct net_device *upper_dev,
7694                           struct netlink_ext_ack *extack)
7695 {
7696         struct netdev_nested_priv priv = {
7697                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7698                 .data = NULL,
7699         };
7700
7701         return __netdev_upper_dev_link(dev, upper_dev, false,
7702                                        NULL, NULL, &priv, extack);
7703 }
7704 EXPORT_SYMBOL(netdev_upper_dev_link);
7705
7706 /**
7707  * netdev_master_upper_dev_link - Add a master link to the upper device
7708  * @dev: device
7709  * @upper_dev: new upper device
7710  * @upper_priv: upper device private
7711  * @upper_info: upper info to be passed down via notifier
7712  * @extack: netlink extended ack
7713  *
7714  * Adds a link to device which is upper to this one. In this case, only
7715  * one master upper device can be linked, although other non-master devices
7716  * might be linked as well. The caller must hold the RTNL lock.
7717  * On a failure a negative errno code is returned. On success the reference
7718  * counts are adjusted and the function returns zero.
7719  */
7720 int netdev_master_upper_dev_link(struct net_device *dev,
7721                                  struct net_device *upper_dev,
7722                                  void *upper_priv, void *upper_info,
7723                                  struct netlink_ext_ack *extack)
7724 {
7725         struct netdev_nested_priv priv = {
7726                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7727                 .data = NULL,
7728         };
7729
7730         return __netdev_upper_dev_link(dev, upper_dev, true,
7731                                        upper_priv, upper_info, &priv, extack);
7732 }
7733 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7734
7735 static void __netdev_upper_dev_unlink(struct net_device *dev,
7736                                       struct net_device *upper_dev,
7737                                       struct netdev_nested_priv *priv)
7738 {
7739         struct netdev_notifier_changeupper_info changeupper_info = {
7740                 .info = {
7741                         .dev = dev,
7742                 },
7743                 .upper_dev = upper_dev,
7744                 .linking = false,
7745         };
7746
7747         ASSERT_RTNL();
7748
7749         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7750
7751         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7752                                       &changeupper_info.info);
7753
7754         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7755
7756         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7757                                       &changeupper_info.info);
7758
7759         __netdev_update_upper_level(dev, NULL);
7760         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7761
7762         __netdev_update_lower_level(upper_dev, priv);
7763         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7764                                     priv);
7765 }
7766
7767 /**
7768  * netdev_upper_dev_unlink - Removes a link to upper device
7769  * @dev: device
7770  * @upper_dev: new upper device
7771  *
7772  * Removes a link to device which is upper to this one. The caller must hold
7773  * the RTNL lock.
7774  */
7775 void netdev_upper_dev_unlink(struct net_device *dev,
7776                              struct net_device *upper_dev)
7777 {
7778         struct netdev_nested_priv priv = {
7779                 .flags = NESTED_SYNC_TODO,
7780                 .data = NULL,
7781         };
7782
7783         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7784 }
7785 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7786
7787 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7788                                       struct net_device *lower_dev,
7789                                       bool val)
7790 {
7791         struct netdev_adjacent *adj;
7792
7793         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7794         if (adj)
7795                 adj->ignore = val;
7796
7797         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7798         if (adj)
7799                 adj->ignore = val;
7800 }
7801
7802 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7803                                         struct net_device *lower_dev)
7804 {
7805         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7806 }
7807
7808 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7809                                        struct net_device *lower_dev)
7810 {
7811         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7812 }
7813
7814 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7815                                    struct net_device *new_dev,
7816                                    struct net_device *dev,
7817                                    struct netlink_ext_ack *extack)
7818 {
7819         struct netdev_nested_priv priv = {
7820                 .flags = 0,
7821                 .data = NULL,
7822         };
7823         int err;
7824
7825         if (!new_dev)
7826                 return 0;
7827
7828         if (old_dev && new_dev != old_dev)
7829                 netdev_adjacent_dev_disable(dev, old_dev);
7830         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7831                                       extack);
7832         if (err) {
7833                 if (old_dev && new_dev != old_dev)
7834                         netdev_adjacent_dev_enable(dev, old_dev);
7835                 return err;
7836         }
7837
7838         return 0;
7839 }
7840 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7841
7842 void netdev_adjacent_change_commit(struct net_device *old_dev,
7843                                    struct net_device *new_dev,
7844                                    struct net_device *dev)
7845 {
7846         struct netdev_nested_priv priv = {
7847                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7848                 .data = NULL,
7849         };
7850
7851         if (!new_dev || !old_dev)
7852                 return;
7853
7854         if (new_dev == old_dev)
7855                 return;
7856
7857         netdev_adjacent_dev_enable(dev, old_dev);
7858         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7859 }
7860 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7861
7862 void netdev_adjacent_change_abort(struct net_device *old_dev,
7863                                   struct net_device *new_dev,
7864                                   struct net_device *dev)
7865 {
7866         struct netdev_nested_priv priv = {
7867                 .flags = 0,
7868                 .data = NULL,
7869         };
7870
7871         if (!new_dev)
7872                 return;
7873
7874         if (old_dev && new_dev != old_dev)
7875                 netdev_adjacent_dev_enable(dev, old_dev);
7876
7877         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7878 }
7879 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7880
7881 /**
7882  * netdev_bonding_info_change - Dispatch event about slave change
7883  * @dev: device
7884  * @bonding_info: info to dispatch
7885  *
7886  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7887  * The caller must hold the RTNL lock.
7888  */
7889 void netdev_bonding_info_change(struct net_device *dev,
7890                                 struct netdev_bonding_info *bonding_info)
7891 {
7892         struct netdev_notifier_bonding_info info = {
7893                 .info.dev = dev,
7894         };
7895
7896         memcpy(&info.bonding_info, bonding_info,
7897                sizeof(struct netdev_bonding_info));
7898         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7899                                       &info.info);
7900 }
7901 EXPORT_SYMBOL(netdev_bonding_info_change);
7902
7903 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7904                                            struct netlink_ext_ack *extack)
7905 {
7906         struct netdev_notifier_offload_xstats_info info = {
7907                 .info.dev = dev,
7908                 .info.extack = extack,
7909                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7910         };
7911         int err;
7912         int rc;
7913
7914         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7915                                          GFP_KERNEL);
7916         if (!dev->offload_xstats_l3)
7917                 return -ENOMEM;
7918
7919         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7920                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7921                                                   &info.info);
7922         err = notifier_to_errno(rc);
7923         if (err)
7924                 goto free_stats;
7925
7926         return 0;
7927
7928 free_stats:
7929         kfree(dev->offload_xstats_l3);
7930         dev->offload_xstats_l3 = NULL;
7931         return err;
7932 }
7933
7934 int netdev_offload_xstats_enable(struct net_device *dev,
7935                                  enum netdev_offload_xstats_type type,
7936                                  struct netlink_ext_ack *extack)
7937 {
7938         ASSERT_RTNL();
7939
7940         if (netdev_offload_xstats_enabled(dev, type))
7941                 return -EALREADY;
7942
7943         switch (type) {
7944         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7945                 return netdev_offload_xstats_enable_l3(dev, extack);
7946         }
7947
7948         WARN_ON(1);
7949         return -EINVAL;
7950 }
7951 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7952
7953 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7954 {
7955         struct netdev_notifier_offload_xstats_info info = {
7956                 .info.dev = dev,
7957                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7958         };
7959
7960         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7961                                       &info.info);
7962         kfree(dev->offload_xstats_l3);
7963         dev->offload_xstats_l3 = NULL;
7964 }
7965
7966 int netdev_offload_xstats_disable(struct net_device *dev,
7967                                   enum netdev_offload_xstats_type type)
7968 {
7969         ASSERT_RTNL();
7970
7971         if (!netdev_offload_xstats_enabled(dev, type))
7972                 return -EALREADY;
7973
7974         switch (type) {
7975         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7976                 netdev_offload_xstats_disable_l3(dev);
7977                 return 0;
7978         }
7979
7980         WARN_ON(1);
7981         return -EINVAL;
7982 }
7983 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7984
7985 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7986 {
7987         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7988 }
7989
7990 static struct rtnl_hw_stats64 *
7991 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7992                               enum netdev_offload_xstats_type type)
7993 {
7994         switch (type) {
7995         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7996                 return dev->offload_xstats_l3;
7997         }
7998
7999         WARN_ON(1);
8000         return NULL;
8001 }
8002
8003 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8004                                    enum netdev_offload_xstats_type type)
8005 {
8006         ASSERT_RTNL();
8007
8008         return netdev_offload_xstats_get_ptr(dev, type);
8009 }
8010 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8011
8012 struct netdev_notifier_offload_xstats_ru {
8013         bool used;
8014 };
8015
8016 struct netdev_notifier_offload_xstats_rd {
8017         struct rtnl_hw_stats64 stats;
8018         bool used;
8019 };
8020
8021 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8022                                   const struct rtnl_hw_stats64 *src)
8023 {
8024         dest->rx_packets          += src->rx_packets;
8025         dest->tx_packets          += src->tx_packets;
8026         dest->rx_bytes            += src->rx_bytes;
8027         dest->tx_bytes            += src->tx_bytes;
8028         dest->rx_errors           += src->rx_errors;
8029         dest->tx_errors           += src->tx_errors;
8030         dest->rx_dropped          += src->rx_dropped;
8031         dest->tx_dropped          += src->tx_dropped;
8032         dest->multicast           += src->multicast;
8033 }
8034
8035 static int netdev_offload_xstats_get_used(struct net_device *dev,
8036                                           enum netdev_offload_xstats_type type,
8037                                           bool *p_used,
8038                                           struct netlink_ext_ack *extack)
8039 {
8040         struct netdev_notifier_offload_xstats_ru report_used = {};
8041         struct netdev_notifier_offload_xstats_info info = {
8042                 .info.dev = dev,
8043                 .info.extack = extack,
8044                 .type = type,
8045                 .report_used = &report_used,
8046         };
8047         int rc;
8048
8049         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8050         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8051                                            &info.info);
8052         *p_used = report_used.used;
8053         return notifier_to_errno(rc);
8054 }
8055
8056 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8057                                            enum netdev_offload_xstats_type type,
8058                                            struct rtnl_hw_stats64 *p_stats,
8059                                            bool *p_used,
8060                                            struct netlink_ext_ack *extack)
8061 {
8062         struct netdev_notifier_offload_xstats_rd report_delta = {};
8063         struct netdev_notifier_offload_xstats_info info = {
8064                 .info.dev = dev,
8065                 .info.extack = extack,
8066                 .type = type,
8067                 .report_delta = &report_delta,
8068         };
8069         struct rtnl_hw_stats64 *stats;
8070         int rc;
8071
8072         stats = netdev_offload_xstats_get_ptr(dev, type);
8073         if (WARN_ON(!stats))
8074                 return -EINVAL;
8075
8076         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8077                                            &info.info);
8078
8079         /* Cache whatever we got, even if there was an error, otherwise the
8080          * successful stats retrievals would get lost.
8081          */
8082         netdev_hw_stats64_add(stats, &report_delta.stats);
8083
8084         if (p_stats)
8085                 *p_stats = *stats;
8086         *p_used = report_delta.used;
8087
8088         return notifier_to_errno(rc);
8089 }
8090
8091 int netdev_offload_xstats_get(struct net_device *dev,
8092                               enum netdev_offload_xstats_type type,
8093                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8094                               struct netlink_ext_ack *extack)
8095 {
8096         ASSERT_RTNL();
8097
8098         if (p_stats)
8099                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8100                                                        p_used, extack);
8101         else
8102                 return netdev_offload_xstats_get_used(dev, type, p_used,
8103                                                       extack);
8104 }
8105 EXPORT_SYMBOL(netdev_offload_xstats_get);
8106
8107 void
8108 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8109                                    const struct rtnl_hw_stats64 *stats)
8110 {
8111         report_delta->used = true;
8112         netdev_hw_stats64_add(&report_delta->stats, stats);
8113 }
8114 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8115
8116 void
8117 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8118 {
8119         report_used->used = true;
8120 }
8121 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8122
8123 void netdev_offload_xstats_push_delta(struct net_device *dev,
8124                                       enum netdev_offload_xstats_type type,
8125                                       const struct rtnl_hw_stats64 *p_stats)
8126 {
8127         struct rtnl_hw_stats64 *stats;
8128
8129         ASSERT_RTNL();
8130
8131         stats = netdev_offload_xstats_get_ptr(dev, type);
8132         if (WARN_ON(!stats))
8133                 return;
8134
8135         netdev_hw_stats64_add(stats, p_stats);
8136 }
8137 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8138
8139 /**
8140  * netdev_get_xmit_slave - Get the xmit slave of master device
8141  * @dev: device
8142  * @skb: The packet
8143  * @all_slaves: assume all the slaves are active
8144  *
8145  * The reference counters are not incremented so the caller must be
8146  * careful with locks. The caller must hold RCU lock.
8147  * %NULL is returned if no slave is found.
8148  */
8149
8150 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8151                                          struct sk_buff *skb,
8152                                          bool all_slaves)
8153 {
8154         const struct net_device_ops *ops = dev->netdev_ops;
8155
8156         if (!ops->ndo_get_xmit_slave)
8157                 return NULL;
8158         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8159 }
8160 EXPORT_SYMBOL(netdev_get_xmit_slave);
8161
8162 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8163                                                   struct sock *sk)
8164 {
8165         const struct net_device_ops *ops = dev->netdev_ops;
8166
8167         if (!ops->ndo_sk_get_lower_dev)
8168                 return NULL;
8169         return ops->ndo_sk_get_lower_dev(dev, sk);
8170 }
8171
8172 /**
8173  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8174  * @dev: device
8175  * @sk: the socket
8176  *
8177  * %NULL is returned if no lower device is found.
8178  */
8179
8180 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8181                                             struct sock *sk)
8182 {
8183         struct net_device *lower;
8184
8185         lower = netdev_sk_get_lower_dev(dev, sk);
8186         while (lower) {
8187                 dev = lower;
8188                 lower = netdev_sk_get_lower_dev(dev, sk);
8189         }
8190
8191         return dev;
8192 }
8193 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8194
8195 static void netdev_adjacent_add_links(struct net_device *dev)
8196 {
8197         struct netdev_adjacent *iter;
8198
8199         struct net *net = dev_net(dev);
8200
8201         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8202                 if (!net_eq(net, dev_net(iter->dev)))
8203                         continue;
8204                 netdev_adjacent_sysfs_add(iter->dev, dev,
8205                                           &iter->dev->adj_list.lower);
8206                 netdev_adjacent_sysfs_add(dev, iter->dev,
8207                                           &dev->adj_list.upper);
8208         }
8209
8210         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8211                 if (!net_eq(net, dev_net(iter->dev)))
8212                         continue;
8213                 netdev_adjacent_sysfs_add(iter->dev, dev,
8214                                           &iter->dev->adj_list.upper);
8215                 netdev_adjacent_sysfs_add(dev, iter->dev,
8216                                           &dev->adj_list.lower);
8217         }
8218 }
8219
8220 static void netdev_adjacent_del_links(struct net_device *dev)
8221 {
8222         struct netdev_adjacent *iter;
8223
8224         struct net *net = dev_net(dev);
8225
8226         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8227                 if (!net_eq(net, dev_net(iter->dev)))
8228                         continue;
8229                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8230                                           &iter->dev->adj_list.lower);
8231                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8232                                           &dev->adj_list.upper);
8233         }
8234
8235         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8236                 if (!net_eq(net, dev_net(iter->dev)))
8237                         continue;
8238                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8239                                           &iter->dev->adj_list.upper);
8240                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8241                                           &dev->adj_list.lower);
8242         }
8243 }
8244
8245 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8246 {
8247         struct netdev_adjacent *iter;
8248
8249         struct net *net = dev_net(dev);
8250
8251         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8252                 if (!net_eq(net, dev_net(iter->dev)))
8253                         continue;
8254                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8255                                           &iter->dev->adj_list.lower);
8256                 netdev_adjacent_sysfs_add(iter->dev, dev,
8257                                           &iter->dev->adj_list.lower);
8258         }
8259
8260         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8261                 if (!net_eq(net, dev_net(iter->dev)))
8262                         continue;
8263                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8264                                           &iter->dev->adj_list.upper);
8265                 netdev_adjacent_sysfs_add(iter->dev, dev,
8266                                           &iter->dev->adj_list.upper);
8267         }
8268 }
8269
8270 void *netdev_lower_dev_get_private(struct net_device *dev,
8271                                    struct net_device *lower_dev)
8272 {
8273         struct netdev_adjacent *lower;
8274
8275         if (!lower_dev)
8276                 return NULL;
8277         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8278         if (!lower)
8279                 return NULL;
8280
8281         return lower->private;
8282 }
8283 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8284
8285
8286 /**
8287  * netdev_lower_state_changed - Dispatch event about lower device state change
8288  * @lower_dev: device
8289  * @lower_state_info: state to dispatch
8290  *
8291  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8292  * The caller must hold the RTNL lock.
8293  */
8294 void netdev_lower_state_changed(struct net_device *lower_dev,
8295                                 void *lower_state_info)
8296 {
8297         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8298                 .info.dev = lower_dev,
8299         };
8300
8301         ASSERT_RTNL();
8302         changelowerstate_info.lower_state_info = lower_state_info;
8303         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8304                                       &changelowerstate_info.info);
8305 }
8306 EXPORT_SYMBOL(netdev_lower_state_changed);
8307
8308 static void dev_change_rx_flags(struct net_device *dev, int flags)
8309 {
8310         const struct net_device_ops *ops = dev->netdev_ops;
8311
8312         if (ops->ndo_change_rx_flags)
8313                 ops->ndo_change_rx_flags(dev, flags);
8314 }
8315
8316 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8317 {
8318         unsigned int old_flags = dev->flags;
8319         kuid_t uid;
8320         kgid_t gid;
8321
8322         ASSERT_RTNL();
8323
8324         dev->flags |= IFF_PROMISC;
8325         dev->promiscuity += inc;
8326         if (dev->promiscuity == 0) {
8327                 /*
8328                  * Avoid overflow.
8329                  * If inc causes overflow, untouch promisc and return error.
8330                  */
8331                 if (inc < 0)
8332                         dev->flags &= ~IFF_PROMISC;
8333                 else {
8334                         dev->promiscuity -= inc;
8335                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8336                         return -EOVERFLOW;
8337                 }
8338         }
8339         if (dev->flags != old_flags) {
8340                 pr_info("device %s %s promiscuous mode\n",
8341                         dev->name,
8342                         dev->flags & IFF_PROMISC ? "entered" : "left");
8343                 if (audit_enabled) {
8344                         current_uid_gid(&uid, &gid);
8345                         audit_log(audit_context(), GFP_ATOMIC,
8346                                   AUDIT_ANOM_PROMISCUOUS,
8347                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8348                                   dev->name, (dev->flags & IFF_PROMISC),
8349                                   (old_flags & IFF_PROMISC),
8350                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8351                                   from_kuid(&init_user_ns, uid),
8352                                   from_kgid(&init_user_ns, gid),
8353                                   audit_get_sessionid(current));
8354                 }
8355
8356                 dev_change_rx_flags(dev, IFF_PROMISC);
8357         }
8358         if (notify)
8359                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8360         return 0;
8361 }
8362
8363 /**
8364  *      dev_set_promiscuity     - update promiscuity count on a device
8365  *      @dev: device
8366  *      @inc: modifier
8367  *
8368  *      Add or remove promiscuity from a device. While the count in the device
8369  *      remains above zero the interface remains promiscuous. Once it hits zero
8370  *      the device reverts back to normal filtering operation. A negative inc
8371  *      value is used to drop promiscuity on the device.
8372  *      Return 0 if successful or a negative errno code on error.
8373  */
8374 int dev_set_promiscuity(struct net_device *dev, int inc)
8375 {
8376         unsigned int old_flags = dev->flags;
8377         int err;
8378
8379         err = __dev_set_promiscuity(dev, inc, true);
8380         if (err < 0)
8381                 return err;
8382         if (dev->flags != old_flags)
8383                 dev_set_rx_mode(dev);
8384         return err;
8385 }
8386 EXPORT_SYMBOL(dev_set_promiscuity);
8387
8388 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8389 {
8390         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8391
8392         ASSERT_RTNL();
8393
8394         dev->flags |= IFF_ALLMULTI;
8395         dev->allmulti += inc;
8396         if (dev->allmulti == 0) {
8397                 /*
8398                  * Avoid overflow.
8399                  * If inc causes overflow, untouch allmulti and return error.
8400                  */
8401                 if (inc < 0)
8402                         dev->flags &= ~IFF_ALLMULTI;
8403                 else {
8404                         dev->allmulti -= inc;
8405                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8406                         return -EOVERFLOW;
8407                 }
8408         }
8409         if (dev->flags ^ old_flags) {
8410                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8411                 dev_set_rx_mode(dev);
8412                 if (notify)
8413                         __dev_notify_flags(dev, old_flags,
8414                                            dev->gflags ^ old_gflags);
8415         }
8416         return 0;
8417 }
8418
8419 /**
8420  *      dev_set_allmulti        - update allmulti count on a device
8421  *      @dev: device
8422  *      @inc: modifier
8423  *
8424  *      Add or remove reception of all multicast frames to a device. While the
8425  *      count in the device remains above zero the interface remains listening
8426  *      to all interfaces. Once it hits zero the device reverts back to normal
8427  *      filtering operation. A negative @inc value is used to drop the counter
8428  *      when releasing a resource needing all multicasts.
8429  *      Return 0 if successful or a negative errno code on error.
8430  */
8431
8432 int dev_set_allmulti(struct net_device *dev, int inc)
8433 {
8434         return __dev_set_allmulti(dev, inc, true);
8435 }
8436 EXPORT_SYMBOL(dev_set_allmulti);
8437
8438 /*
8439  *      Upload unicast and multicast address lists to device and
8440  *      configure RX filtering. When the device doesn't support unicast
8441  *      filtering it is put in promiscuous mode while unicast addresses
8442  *      are present.
8443  */
8444 void __dev_set_rx_mode(struct net_device *dev)
8445 {
8446         const struct net_device_ops *ops = dev->netdev_ops;
8447
8448         /* dev_open will call this function so the list will stay sane. */
8449         if (!(dev->flags&IFF_UP))
8450                 return;
8451
8452         if (!netif_device_present(dev))
8453                 return;
8454
8455         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8456                 /* Unicast addresses changes may only happen under the rtnl,
8457                  * therefore calling __dev_set_promiscuity here is safe.
8458                  */
8459                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8460                         __dev_set_promiscuity(dev, 1, false);
8461                         dev->uc_promisc = true;
8462                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8463                         __dev_set_promiscuity(dev, -1, false);
8464                         dev->uc_promisc = false;
8465                 }
8466         }
8467
8468         if (ops->ndo_set_rx_mode)
8469                 ops->ndo_set_rx_mode(dev);
8470 }
8471
8472 void dev_set_rx_mode(struct net_device *dev)
8473 {
8474         netif_addr_lock_bh(dev);
8475         __dev_set_rx_mode(dev);
8476         netif_addr_unlock_bh(dev);
8477 }
8478
8479 /**
8480  *      dev_get_flags - get flags reported to userspace
8481  *      @dev: device
8482  *
8483  *      Get the combination of flag bits exported through APIs to userspace.
8484  */
8485 unsigned int dev_get_flags(const struct net_device *dev)
8486 {
8487         unsigned int flags;
8488
8489         flags = (dev->flags & ~(IFF_PROMISC |
8490                                 IFF_ALLMULTI |
8491                                 IFF_RUNNING |
8492                                 IFF_LOWER_UP |
8493                                 IFF_DORMANT)) |
8494                 (dev->gflags & (IFF_PROMISC |
8495                                 IFF_ALLMULTI));
8496
8497         if (netif_running(dev)) {
8498                 if (netif_oper_up(dev))
8499                         flags |= IFF_RUNNING;
8500                 if (netif_carrier_ok(dev))
8501                         flags |= IFF_LOWER_UP;
8502                 if (netif_dormant(dev))
8503                         flags |= IFF_DORMANT;
8504         }
8505
8506         return flags;
8507 }
8508 EXPORT_SYMBOL(dev_get_flags);
8509
8510 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8511                        struct netlink_ext_ack *extack)
8512 {
8513         unsigned int old_flags = dev->flags;
8514         int ret;
8515
8516         ASSERT_RTNL();
8517
8518         /*
8519          *      Set the flags on our device.
8520          */
8521
8522         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8523                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8524                                IFF_AUTOMEDIA)) |
8525                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8526                                     IFF_ALLMULTI));
8527
8528         /*
8529          *      Load in the correct multicast list now the flags have changed.
8530          */
8531
8532         if ((old_flags ^ flags) & IFF_MULTICAST)
8533                 dev_change_rx_flags(dev, IFF_MULTICAST);
8534
8535         dev_set_rx_mode(dev);
8536
8537         /*
8538          *      Have we downed the interface. We handle IFF_UP ourselves
8539          *      according to user attempts to set it, rather than blindly
8540          *      setting it.
8541          */
8542
8543         ret = 0;
8544         if ((old_flags ^ flags) & IFF_UP) {
8545                 if (old_flags & IFF_UP)
8546                         __dev_close(dev);
8547                 else
8548                         ret = __dev_open(dev, extack);
8549         }
8550
8551         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8552                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8553                 unsigned int old_flags = dev->flags;
8554
8555                 dev->gflags ^= IFF_PROMISC;
8556
8557                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8558                         if (dev->flags != old_flags)
8559                                 dev_set_rx_mode(dev);
8560         }
8561
8562         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8563          * is important. Some (broken) drivers set IFF_PROMISC, when
8564          * IFF_ALLMULTI is requested not asking us and not reporting.
8565          */
8566         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8567                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8568
8569                 dev->gflags ^= IFF_ALLMULTI;
8570                 __dev_set_allmulti(dev, inc, false);
8571         }
8572
8573         return ret;
8574 }
8575
8576 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8577                         unsigned int gchanges)
8578 {
8579         unsigned int changes = dev->flags ^ old_flags;
8580
8581         if (gchanges)
8582                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8583
8584         if (changes & IFF_UP) {
8585                 if (dev->flags & IFF_UP)
8586                         call_netdevice_notifiers(NETDEV_UP, dev);
8587                 else
8588                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8589         }
8590
8591         if (dev->flags & IFF_UP &&
8592             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8593                 struct netdev_notifier_change_info change_info = {
8594                         .info = {
8595                                 .dev = dev,
8596                         },
8597                         .flags_changed = changes,
8598                 };
8599
8600                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8601         }
8602 }
8603
8604 /**
8605  *      dev_change_flags - change device settings
8606  *      @dev: device
8607  *      @flags: device state flags
8608  *      @extack: netlink extended ack
8609  *
8610  *      Change settings on device based state flags. The flags are
8611  *      in the userspace exported format.
8612  */
8613 int dev_change_flags(struct net_device *dev, unsigned int flags,
8614                      struct netlink_ext_ack *extack)
8615 {
8616         int ret;
8617         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8618
8619         ret = __dev_change_flags(dev, flags, extack);
8620         if (ret < 0)
8621                 return ret;
8622
8623         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8624         __dev_notify_flags(dev, old_flags, changes);
8625         return ret;
8626 }
8627 EXPORT_SYMBOL(dev_change_flags);
8628
8629 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8630 {
8631         const struct net_device_ops *ops = dev->netdev_ops;
8632
8633         if (ops->ndo_change_mtu)
8634                 return ops->ndo_change_mtu(dev, new_mtu);
8635
8636         /* Pairs with all the lockless reads of dev->mtu in the stack */
8637         WRITE_ONCE(dev->mtu, new_mtu);
8638         return 0;
8639 }
8640 EXPORT_SYMBOL(__dev_set_mtu);
8641
8642 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8643                      struct netlink_ext_ack *extack)
8644 {
8645         /* MTU must be positive, and in range */
8646         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8647                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8648                 return -EINVAL;
8649         }
8650
8651         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8652                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8653                 return -EINVAL;
8654         }
8655         return 0;
8656 }
8657
8658 /**
8659  *      dev_set_mtu_ext - Change maximum transfer unit
8660  *      @dev: device
8661  *      @new_mtu: new transfer unit
8662  *      @extack: netlink extended ack
8663  *
8664  *      Change the maximum transfer size of the network device.
8665  */
8666 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8667                     struct netlink_ext_ack *extack)
8668 {
8669         int err, orig_mtu;
8670
8671         if (new_mtu == dev->mtu)
8672                 return 0;
8673
8674         err = dev_validate_mtu(dev, new_mtu, extack);
8675         if (err)
8676                 return err;
8677
8678         if (!netif_device_present(dev))
8679                 return -ENODEV;
8680
8681         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8682         err = notifier_to_errno(err);
8683         if (err)
8684                 return err;
8685
8686         orig_mtu = dev->mtu;
8687         err = __dev_set_mtu(dev, new_mtu);
8688
8689         if (!err) {
8690                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8691                                                    orig_mtu);
8692                 err = notifier_to_errno(err);
8693                 if (err) {
8694                         /* setting mtu back and notifying everyone again,
8695                          * so that they have a chance to revert changes.
8696                          */
8697                         __dev_set_mtu(dev, orig_mtu);
8698                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8699                                                      new_mtu);
8700                 }
8701         }
8702         return err;
8703 }
8704
8705 int dev_set_mtu(struct net_device *dev, int new_mtu)
8706 {
8707         struct netlink_ext_ack extack;
8708         int err;
8709
8710         memset(&extack, 0, sizeof(extack));
8711         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8712         if (err && extack._msg)
8713                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8714         return err;
8715 }
8716 EXPORT_SYMBOL(dev_set_mtu);
8717
8718 /**
8719  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8720  *      @dev: device
8721  *      @new_len: new tx queue length
8722  */
8723 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8724 {
8725         unsigned int orig_len = dev->tx_queue_len;
8726         int res;
8727
8728         if (new_len != (unsigned int)new_len)
8729                 return -ERANGE;
8730
8731         if (new_len != orig_len) {
8732                 dev->tx_queue_len = new_len;
8733                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8734                 res = notifier_to_errno(res);
8735                 if (res)
8736                         goto err_rollback;
8737                 res = dev_qdisc_change_tx_queue_len(dev);
8738                 if (res)
8739                         goto err_rollback;
8740         }
8741
8742         return 0;
8743
8744 err_rollback:
8745         netdev_err(dev, "refused to change device tx_queue_len\n");
8746         dev->tx_queue_len = orig_len;
8747         return res;
8748 }
8749
8750 /**
8751  *      dev_set_group - Change group this device belongs to
8752  *      @dev: device
8753  *      @new_group: group this device should belong to
8754  */
8755 void dev_set_group(struct net_device *dev, int new_group)
8756 {
8757         dev->group = new_group;
8758 }
8759
8760 /**
8761  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8762  *      @dev: device
8763  *      @addr: new address
8764  *      @extack: netlink extended ack
8765  */
8766 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8767                               struct netlink_ext_ack *extack)
8768 {
8769         struct netdev_notifier_pre_changeaddr_info info = {
8770                 .info.dev = dev,
8771                 .info.extack = extack,
8772                 .dev_addr = addr,
8773         };
8774         int rc;
8775
8776         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8777         return notifier_to_errno(rc);
8778 }
8779 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8780
8781 /**
8782  *      dev_set_mac_address - Change Media Access Control Address
8783  *      @dev: device
8784  *      @sa: new address
8785  *      @extack: netlink extended ack
8786  *
8787  *      Change the hardware (MAC) address of the device
8788  */
8789 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8790                         struct netlink_ext_ack *extack)
8791 {
8792         const struct net_device_ops *ops = dev->netdev_ops;
8793         int err;
8794
8795         if (!ops->ndo_set_mac_address)
8796                 return -EOPNOTSUPP;
8797         if (sa->sa_family != dev->type)
8798                 return -EINVAL;
8799         if (!netif_device_present(dev))
8800                 return -ENODEV;
8801         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8802         if (err)
8803                 return err;
8804         err = ops->ndo_set_mac_address(dev, sa);
8805         if (err)
8806                 return err;
8807         dev->addr_assign_type = NET_ADDR_SET;
8808         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8809         add_device_randomness(dev->dev_addr, dev->addr_len);
8810         return 0;
8811 }
8812 EXPORT_SYMBOL(dev_set_mac_address);
8813
8814 static DECLARE_RWSEM(dev_addr_sem);
8815
8816 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8817                              struct netlink_ext_ack *extack)
8818 {
8819         int ret;
8820
8821         down_write(&dev_addr_sem);
8822         ret = dev_set_mac_address(dev, sa, extack);
8823         up_write(&dev_addr_sem);
8824         return ret;
8825 }
8826 EXPORT_SYMBOL(dev_set_mac_address_user);
8827
8828 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8829 {
8830         size_t size = sizeof(sa->sa_data);
8831         struct net_device *dev;
8832         int ret = 0;
8833
8834         down_read(&dev_addr_sem);
8835         rcu_read_lock();
8836
8837         dev = dev_get_by_name_rcu(net, dev_name);
8838         if (!dev) {
8839                 ret = -ENODEV;
8840                 goto unlock;
8841         }
8842         if (!dev->addr_len)
8843                 memset(sa->sa_data, 0, size);
8844         else
8845                 memcpy(sa->sa_data, dev->dev_addr,
8846                        min_t(size_t, size, dev->addr_len));
8847         sa->sa_family = dev->type;
8848
8849 unlock:
8850         rcu_read_unlock();
8851         up_read(&dev_addr_sem);
8852         return ret;
8853 }
8854 EXPORT_SYMBOL(dev_get_mac_address);
8855
8856 /**
8857  *      dev_change_carrier - Change device carrier
8858  *      @dev: device
8859  *      @new_carrier: new value
8860  *
8861  *      Change device carrier
8862  */
8863 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8864 {
8865         const struct net_device_ops *ops = dev->netdev_ops;
8866
8867         if (!ops->ndo_change_carrier)
8868                 return -EOPNOTSUPP;
8869         if (!netif_device_present(dev))
8870                 return -ENODEV;
8871         return ops->ndo_change_carrier(dev, new_carrier);
8872 }
8873
8874 /**
8875  *      dev_get_phys_port_id - Get device physical port ID
8876  *      @dev: device
8877  *      @ppid: port ID
8878  *
8879  *      Get device physical port ID
8880  */
8881 int dev_get_phys_port_id(struct net_device *dev,
8882                          struct netdev_phys_item_id *ppid)
8883 {
8884         const struct net_device_ops *ops = dev->netdev_ops;
8885
8886         if (!ops->ndo_get_phys_port_id)
8887                 return -EOPNOTSUPP;
8888         return ops->ndo_get_phys_port_id(dev, ppid);
8889 }
8890
8891 /**
8892  *      dev_get_phys_port_name - Get device physical port name
8893  *      @dev: device
8894  *      @name: port name
8895  *      @len: limit of bytes to copy to name
8896  *
8897  *      Get device physical port name
8898  */
8899 int dev_get_phys_port_name(struct net_device *dev,
8900                            char *name, size_t len)
8901 {
8902         const struct net_device_ops *ops = dev->netdev_ops;
8903         int err;
8904
8905         if (ops->ndo_get_phys_port_name) {
8906                 err = ops->ndo_get_phys_port_name(dev, name, len);
8907                 if (err != -EOPNOTSUPP)
8908                         return err;
8909         }
8910         return devlink_compat_phys_port_name_get(dev, name, len);
8911 }
8912
8913 /**
8914  *      dev_get_port_parent_id - Get the device's port parent identifier
8915  *      @dev: network device
8916  *      @ppid: pointer to a storage for the port's parent identifier
8917  *      @recurse: allow/disallow recursion to lower devices
8918  *
8919  *      Get the devices's port parent identifier
8920  */
8921 int dev_get_port_parent_id(struct net_device *dev,
8922                            struct netdev_phys_item_id *ppid,
8923                            bool recurse)
8924 {
8925         const struct net_device_ops *ops = dev->netdev_ops;
8926         struct netdev_phys_item_id first = { };
8927         struct net_device *lower_dev;
8928         struct list_head *iter;
8929         int err;
8930
8931         if (ops->ndo_get_port_parent_id) {
8932                 err = ops->ndo_get_port_parent_id(dev, ppid);
8933                 if (err != -EOPNOTSUPP)
8934                         return err;
8935         }
8936
8937         err = devlink_compat_switch_id_get(dev, ppid);
8938         if (!recurse || err != -EOPNOTSUPP)
8939                 return err;
8940
8941         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8942                 err = dev_get_port_parent_id(lower_dev, ppid, true);
8943                 if (err)
8944                         break;
8945                 if (!first.id_len)
8946                         first = *ppid;
8947                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8948                         return -EOPNOTSUPP;
8949         }
8950
8951         return err;
8952 }
8953 EXPORT_SYMBOL(dev_get_port_parent_id);
8954
8955 /**
8956  *      netdev_port_same_parent_id - Indicate if two network devices have
8957  *      the same port parent identifier
8958  *      @a: first network device
8959  *      @b: second network device
8960  */
8961 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8962 {
8963         struct netdev_phys_item_id a_id = { };
8964         struct netdev_phys_item_id b_id = { };
8965
8966         if (dev_get_port_parent_id(a, &a_id, true) ||
8967             dev_get_port_parent_id(b, &b_id, true))
8968                 return false;
8969
8970         return netdev_phys_item_id_same(&a_id, &b_id);
8971 }
8972 EXPORT_SYMBOL(netdev_port_same_parent_id);
8973
8974 /**
8975  *      dev_change_proto_down - set carrier according to proto_down.
8976  *
8977  *      @dev: device
8978  *      @proto_down: new value
8979  */
8980 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8981 {
8982         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8983                 return -EOPNOTSUPP;
8984         if (!netif_device_present(dev))
8985                 return -ENODEV;
8986         if (proto_down)
8987                 netif_carrier_off(dev);
8988         else
8989                 netif_carrier_on(dev);
8990         dev->proto_down = proto_down;
8991         return 0;
8992 }
8993
8994 /**
8995  *      dev_change_proto_down_reason - proto down reason
8996  *
8997  *      @dev: device
8998  *      @mask: proto down mask
8999  *      @value: proto down value
9000  */
9001 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9002                                   u32 value)
9003 {
9004         int b;
9005
9006         if (!mask) {
9007                 dev->proto_down_reason = value;
9008         } else {
9009                 for_each_set_bit(b, &mask, 32) {
9010                         if (value & (1 << b))
9011                                 dev->proto_down_reason |= BIT(b);
9012                         else
9013                                 dev->proto_down_reason &= ~BIT(b);
9014                 }
9015         }
9016 }
9017
9018 struct bpf_xdp_link {
9019         struct bpf_link link;
9020         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9021         int flags;
9022 };
9023
9024 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9025 {
9026         if (flags & XDP_FLAGS_HW_MODE)
9027                 return XDP_MODE_HW;
9028         if (flags & XDP_FLAGS_DRV_MODE)
9029                 return XDP_MODE_DRV;
9030         if (flags & XDP_FLAGS_SKB_MODE)
9031                 return XDP_MODE_SKB;
9032         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9033 }
9034
9035 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9036 {
9037         switch (mode) {
9038         case XDP_MODE_SKB:
9039                 return generic_xdp_install;
9040         case XDP_MODE_DRV:
9041         case XDP_MODE_HW:
9042                 return dev->netdev_ops->ndo_bpf;
9043         default:
9044                 return NULL;
9045         }
9046 }
9047
9048 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9049                                          enum bpf_xdp_mode mode)
9050 {
9051         return dev->xdp_state[mode].link;
9052 }
9053
9054 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9055                                      enum bpf_xdp_mode mode)
9056 {
9057         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9058
9059         if (link)
9060                 return link->link.prog;
9061         return dev->xdp_state[mode].prog;
9062 }
9063
9064 u8 dev_xdp_prog_count(struct net_device *dev)
9065 {
9066         u8 count = 0;
9067         int i;
9068
9069         for (i = 0; i < __MAX_XDP_MODE; i++)
9070                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9071                         count++;
9072         return count;
9073 }
9074 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9075
9076 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9077 {
9078         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9079
9080         return prog ? prog->aux->id : 0;
9081 }
9082
9083 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9084                              struct bpf_xdp_link *link)
9085 {
9086         dev->xdp_state[mode].link = link;
9087         dev->xdp_state[mode].prog = NULL;
9088 }
9089
9090 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9091                              struct bpf_prog *prog)
9092 {
9093         dev->xdp_state[mode].link = NULL;
9094         dev->xdp_state[mode].prog = prog;
9095 }
9096
9097 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9098                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9099                            u32 flags, struct bpf_prog *prog)
9100 {
9101         struct netdev_bpf xdp;
9102         int err;
9103
9104         memset(&xdp, 0, sizeof(xdp));
9105         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9106         xdp.extack = extack;
9107         xdp.flags = flags;
9108         xdp.prog = prog;
9109
9110         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9111          * "moved" into driver), so they don't increment it on their own, but
9112          * they do decrement refcnt when program is detached or replaced.
9113          * Given net_device also owns link/prog, we need to bump refcnt here
9114          * to prevent drivers from underflowing it.
9115          */
9116         if (prog)
9117                 bpf_prog_inc(prog);
9118         err = bpf_op(dev, &xdp);
9119         if (err) {
9120                 if (prog)
9121                         bpf_prog_put(prog);
9122                 return err;
9123         }
9124
9125         if (mode != XDP_MODE_HW)
9126                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9127
9128         return 0;
9129 }
9130
9131 static void dev_xdp_uninstall(struct net_device *dev)
9132 {
9133         struct bpf_xdp_link *link;
9134         struct bpf_prog *prog;
9135         enum bpf_xdp_mode mode;
9136         bpf_op_t bpf_op;
9137
9138         ASSERT_RTNL();
9139
9140         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9141                 prog = dev_xdp_prog(dev, mode);
9142                 if (!prog)
9143                         continue;
9144
9145                 bpf_op = dev_xdp_bpf_op(dev, mode);
9146                 if (!bpf_op)
9147                         continue;
9148
9149                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9150
9151                 /* auto-detach link from net device */
9152                 link = dev_xdp_link(dev, mode);
9153                 if (link)
9154                         link->dev = NULL;
9155                 else
9156                         bpf_prog_put(prog);
9157
9158                 dev_xdp_set_link(dev, mode, NULL);
9159         }
9160 }
9161
9162 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9163                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9164                           struct bpf_prog *old_prog, u32 flags)
9165 {
9166         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9167         struct bpf_prog *cur_prog;
9168         struct net_device *upper;
9169         struct list_head *iter;
9170         enum bpf_xdp_mode mode;
9171         bpf_op_t bpf_op;
9172         int err;
9173
9174         ASSERT_RTNL();
9175
9176         /* either link or prog attachment, never both */
9177         if (link && (new_prog || old_prog))
9178                 return -EINVAL;
9179         /* link supports only XDP mode flags */
9180         if (link && (flags & ~XDP_FLAGS_MODES)) {
9181                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9182                 return -EINVAL;
9183         }
9184         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9185         if (num_modes > 1) {
9186                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9187                 return -EINVAL;
9188         }
9189         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9190         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9191                 NL_SET_ERR_MSG(extack,
9192                                "More than one program loaded, unset mode is ambiguous");
9193                 return -EINVAL;
9194         }
9195         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9196         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9197                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9198                 return -EINVAL;
9199         }
9200
9201         mode = dev_xdp_mode(dev, flags);
9202         /* can't replace attached link */
9203         if (dev_xdp_link(dev, mode)) {
9204                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9205                 return -EBUSY;
9206         }
9207
9208         /* don't allow if an upper device already has a program */
9209         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9210                 if (dev_xdp_prog_count(upper) > 0) {
9211                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9212                         return -EEXIST;
9213                 }
9214         }
9215
9216         cur_prog = dev_xdp_prog(dev, mode);
9217         /* can't replace attached prog with link */
9218         if (link && cur_prog) {
9219                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9220                 return -EBUSY;
9221         }
9222         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9223                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9224                 return -EEXIST;
9225         }
9226
9227         /* put effective new program into new_prog */
9228         if (link)
9229                 new_prog = link->link.prog;
9230
9231         if (new_prog) {
9232                 bool offload = mode == XDP_MODE_HW;
9233                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9234                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9235
9236                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9237                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9238                         return -EBUSY;
9239                 }
9240                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9241                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9242                         return -EEXIST;
9243                 }
9244                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9245                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9246                         return -EINVAL;
9247                 }
9248                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9249                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9250                         return -EINVAL;
9251                 }
9252                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9253                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9254                         return -EINVAL;
9255                 }
9256         }
9257
9258         /* don't call drivers if the effective program didn't change */
9259         if (new_prog != cur_prog) {
9260                 bpf_op = dev_xdp_bpf_op(dev, mode);
9261                 if (!bpf_op) {
9262                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9263                         return -EOPNOTSUPP;
9264                 }
9265
9266                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9267                 if (err)
9268                         return err;
9269         }
9270
9271         if (link)
9272                 dev_xdp_set_link(dev, mode, link);
9273         else
9274                 dev_xdp_set_prog(dev, mode, new_prog);
9275         if (cur_prog)
9276                 bpf_prog_put(cur_prog);
9277
9278         return 0;
9279 }
9280
9281 static int dev_xdp_attach_link(struct net_device *dev,
9282                                struct netlink_ext_ack *extack,
9283                                struct bpf_xdp_link *link)
9284 {
9285         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9286 }
9287
9288 static int dev_xdp_detach_link(struct net_device *dev,
9289                                struct netlink_ext_ack *extack,
9290                                struct bpf_xdp_link *link)
9291 {
9292         enum bpf_xdp_mode mode;
9293         bpf_op_t bpf_op;
9294
9295         ASSERT_RTNL();
9296
9297         mode = dev_xdp_mode(dev, link->flags);
9298         if (dev_xdp_link(dev, mode) != link)
9299                 return -EINVAL;
9300
9301         bpf_op = dev_xdp_bpf_op(dev, mode);
9302         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9303         dev_xdp_set_link(dev, mode, NULL);
9304         return 0;
9305 }
9306
9307 static void bpf_xdp_link_release(struct bpf_link *link)
9308 {
9309         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9310
9311         rtnl_lock();
9312
9313         /* if racing with net_device's tear down, xdp_link->dev might be
9314          * already NULL, in which case link was already auto-detached
9315          */
9316         if (xdp_link->dev) {
9317                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9318                 xdp_link->dev = NULL;
9319         }
9320
9321         rtnl_unlock();
9322 }
9323
9324 static int bpf_xdp_link_detach(struct bpf_link *link)
9325 {
9326         bpf_xdp_link_release(link);
9327         return 0;
9328 }
9329
9330 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9331 {
9332         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9333
9334         kfree(xdp_link);
9335 }
9336
9337 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9338                                      struct seq_file *seq)
9339 {
9340         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9341         u32 ifindex = 0;
9342
9343         rtnl_lock();
9344         if (xdp_link->dev)
9345                 ifindex = xdp_link->dev->ifindex;
9346         rtnl_unlock();
9347
9348         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9349 }
9350
9351 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9352                                        struct bpf_link_info *info)
9353 {
9354         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9355         u32 ifindex = 0;
9356
9357         rtnl_lock();
9358         if (xdp_link->dev)
9359                 ifindex = xdp_link->dev->ifindex;
9360         rtnl_unlock();
9361
9362         info->xdp.ifindex = ifindex;
9363         return 0;
9364 }
9365
9366 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9367                                struct bpf_prog *old_prog)
9368 {
9369         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9370         enum bpf_xdp_mode mode;
9371         bpf_op_t bpf_op;
9372         int err = 0;
9373
9374         rtnl_lock();
9375
9376         /* link might have been auto-released already, so fail */
9377         if (!xdp_link->dev) {
9378                 err = -ENOLINK;
9379                 goto out_unlock;
9380         }
9381
9382         if (old_prog && link->prog != old_prog) {
9383                 err = -EPERM;
9384                 goto out_unlock;
9385         }
9386         old_prog = link->prog;
9387         if (old_prog->type != new_prog->type ||
9388             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9389                 err = -EINVAL;
9390                 goto out_unlock;
9391         }
9392
9393         if (old_prog == new_prog) {
9394                 /* no-op, don't disturb drivers */
9395                 bpf_prog_put(new_prog);
9396                 goto out_unlock;
9397         }
9398
9399         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9400         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9401         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9402                               xdp_link->flags, new_prog);
9403         if (err)
9404                 goto out_unlock;
9405
9406         old_prog = xchg(&link->prog, new_prog);
9407         bpf_prog_put(old_prog);
9408
9409 out_unlock:
9410         rtnl_unlock();
9411         return err;
9412 }
9413
9414 static const struct bpf_link_ops bpf_xdp_link_lops = {
9415         .release = bpf_xdp_link_release,
9416         .dealloc = bpf_xdp_link_dealloc,
9417         .detach = bpf_xdp_link_detach,
9418         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9419         .fill_link_info = bpf_xdp_link_fill_link_info,
9420         .update_prog = bpf_xdp_link_update,
9421 };
9422
9423 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9424 {
9425         struct net *net = current->nsproxy->net_ns;
9426         struct bpf_link_primer link_primer;
9427         struct bpf_xdp_link *link;
9428         struct net_device *dev;
9429         int err, fd;
9430
9431         rtnl_lock();
9432         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9433         if (!dev) {
9434                 rtnl_unlock();
9435                 return -EINVAL;
9436         }
9437
9438         link = kzalloc(sizeof(*link), GFP_USER);
9439         if (!link) {
9440                 err = -ENOMEM;
9441                 goto unlock;
9442         }
9443
9444         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9445         link->dev = dev;
9446         link->flags = attr->link_create.flags;
9447
9448         err = bpf_link_prime(&link->link, &link_primer);
9449         if (err) {
9450                 kfree(link);
9451                 goto unlock;
9452         }
9453
9454         err = dev_xdp_attach_link(dev, NULL, link);
9455         rtnl_unlock();
9456
9457         if (err) {
9458                 link->dev = NULL;
9459                 bpf_link_cleanup(&link_primer);
9460                 goto out_put_dev;
9461         }
9462
9463         fd = bpf_link_settle(&link_primer);
9464         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9465         dev_put(dev);
9466         return fd;
9467
9468 unlock:
9469         rtnl_unlock();
9470
9471 out_put_dev:
9472         dev_put(dev);
9473         return err;
9474 }
9475
9476 /**
9477  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9478  *      @dev: device
9479  *      @extack: netlink extended ack
9480  *      @fd: new program fd or negative value to clear
9481  *      @expected_fd: old program fd that userspace expects to replace or clear
9482  *      @flags: xdp-related flags
9483  *
9484  *      Set or clear a bpf program for a device
9485  */
9486 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9487                       int fd, int expected_fd, u32 flags)
9488 {
9489         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9490         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9491         int err;
9492
9493         ASSERT_RTNL();
9494
9495         if (fd >= 0) {
9496                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9497                                                  mode != XDP_MODE_SKB);
9498                 if (IS_ERR(new_prog))
9499                         return PTR_ERR(new_prog);
9500         }
9501
9502         if (expected_fd >= 0) {
9503                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9504                                                  mode != XDP_MODE_SKB);
9505                 if (IS_ERR(old_prog)) {
9506                         err = PTR_ERR(old_prog);
9507                         old_prog = NULL;
9508                         goto err_out;
9509                 }
9510         }
9511
9512         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9513
9514 err_out:
9515         if (err && new_prog)
9516                 bpf_prog_put(new_prog);
9517         if (old_prog)
9518                 bpf_prog_put(old_prog);
9519         return err;
9520 }
9521
9522 /**
9523  *      dev_new_index   -       allocate an ifindex
9524  *      @net: the applicable net namespace
9525  *
9526  *      Returns a suitable unique value for a new device interface
9527  *      number.  The caller must hold the rtnl semaphore or the
9528  *      dev_base_lock to be sure it remains unique.
9529  */
9530 static int dev_new_index(struct net *net)
9531 {
9532         int ifindex = net->ifindex;
9533
9534         for (;;) {
9535                 if (++ifindex <= 0)
9536                         ifindex = 1;
9537                 if (!__dev_get_by_index(net, ifindex))
9538                         return net->ifindex = ifindex;
9539         }
9540 }
9541
9542 /* Delayed registration/unregisteration */
9543 LIST_HEAD(net_todo_list);
9544 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9545
9546 static void net_set_todo(struct net_device *dev)
9547 {
9548         list_add_tail(&dev->todo_list, &net_todo_list);
9549         atomic_inc(&dev_net(dev)->dev_unreg_count);
9550 }
9551
9552 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9553         struct net_device *upper, netdev_features_t features)
9554 {
9555         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9556         netdev_features_t feature;
9557         int feature_bit;
9558
9559         for_each_netdev_feature(upper_disables, feature_bit) {
9560                 feature = __NETIF_F_BIT(feature_bit);
9561                 if (!(upper->wanted_features & feature)
9562                     && (features & feature)) {
9563                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9564                                    &feature, upper->name);
9565                         features &= ~feature;
9566                 }
9567         }
9568
9569         return features;
9570 }
9571
9572 static void netdev_sync_lower_features(struct net_device *upper,
9573         struct net_device *lower, netdev_features_t features)
9574 {
9575         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9576         netdev_features_t feature;
9577         int feature_bit;
9578
9579         for_each_netdev_feature(upper_disables, feature_bit) {
9580                 feature = __NETIF_F_BIT(feature_bit);
9581                 if (!(features & feature) && (lower->features & feature)) {
9582                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9583                                    &feature, lower->name);
9584                         lower->wanted_features &= ~feature;
9585                         __netdev_update_features(lower);
9586
9587                         if (unlikely(lower->features & feature))
9588                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9589                                             &feature, lower->name);
9590                         else
9591                                 netdev_features_change(lower);
9592                 }
9593         }
9594 }
9595
9596 static netdev_features_t netdev_fix_features(struct net_device *dev,
9597         netdev_features_t features)
9598 {
9599         /* Fix illegal checksum combinations */
9600         if ((features & NETIF_F_HW_CSUM) &&
9601             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9602                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9603                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9604         }
9605
9606         /* TSO requires that SG is present as well. */
9607         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9608                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9609                 features &= ~NETIF_F_ALL_TSO;
9610         }
9611
9612         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9613                                         !(features & NETIF_F_IP_CSUM)) {
9614                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9615                 features &= ~NETIF_F_TSO;
9616                 features &= ~NETIF_F_TSO_ECN;
9617         }
9618
9619         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9620                                          !(features & NETIF_F_IPV6_CSUM)) {
9621                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9622                 features &= ~NETIF_F_TSO6;
9623         }
9624
9625         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9626         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9627                 features &= ~NETIF_F_TSO_MANGLEID;
9628
9629         /* TSO ECN requires that TSO is present as well. */
9630         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9631                 features &= ~NETIF_F_TSO_ECN;
9632
9633         /* Software GSO depends on SG. */
9634         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9635                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9636                 features &= ~NETIF_F_GSO;
9637         }
9638
9639         /* GSO partial features require GSO partial be set */
9640         if ((features & dev->gso_partial_features) &&
9641             !(features & NETIF_F_GSO_PARTIAL)) {
9642                 netdev_dbg(dev,
9643                            "Dropping partially supported GSO features since no GSO partial.\n");
9644                 features &= ~dev->gso_partial_features;
9645         }
9646
9647         if (!(features & NETIF_F_RXCSUM)) {
9648                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9649                  * successfully merged by hardware must also have the
9650                  * checksum verified by hardware.  If the user does not
9651                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9652                  */
9653                 if (features & NETIF_F_GRO_HW) {
9654                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9655                         features &= ~NETIF_F_GRO_HW;
9656                 }
9657         }
9658
9659         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9660         if (features & NETIF_F_RXFCS) {
9661                 if (features & NETIF_F_LRO) {
9662                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9663                         features &= ~NETIF_F_LRO;
9664                 }
9665
9666                 if (features & NETIF_F_GRO_HW) {
9667                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9668                         features &= ~NETIF_F_GRO_HW;
9669                 }
9670         }
9671
9672         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9673                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9674                 features &= ~NETIF_F_LRO;
9675         }
9676
9677         if (features & NETIF_F_HW_TLS_TX) {
9678                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9679                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9680                 bool hw_csum = features & NETIF_F_HW_CSUM;
9681
9682                 if (!ip_csum && !hw_csum) {
9683                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9684                         features &= ~NETIF_F_HW_TLS_TX;
9685                 }
9686         }
9687
9688         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9689                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9690                 features &= ~NETIF_F_HW_TLS_RX;
9691         }
9692
9693         return features;
9694 }
9695
9696 int __netdev_update_features(struct net_device *dev)
9697 {
9698         struct net_device *upper, *lower;
9699         netdev_features_t features;
9700         struct list_head *iter;
9701         int err = -1;
9702
9703         ASSERT_RTNL();
9704
9705         features = netdev_get_wanted_features(dev);
9706
9707         if (dev->netdev_ops->ndo_fix_features)
9708                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9709
9710         /* driver might be less strict about feature dependencies */
9711         features = netdev_fix_features(dev, features);
9712
9713         /* some features can't be enabled if they're off on an upper device */
9714         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9715                 features = netdev_sync_upper_features(dev, upper, features);
9716
9717         if (dev->features == features)
9718                 goto sync_lower;
9719
9720         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9721                 &dev->features, &features);
9722
9723         if (dev->netdev_ops->ndo_set_features)
9724                 err = dev->netdev_ops->ndo_set_features(dev, features);
9725         else
9726                 err = 0;
9727
9728         if (unlikely(err < 0)) {
9729                 netdev_err(dev,
9730                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9731                         err, &features, &dev->features);
9732                 /* return non-0 since some features might have changed and
9733                  * it's better to fire a spurious notification than miss it
9734                  */
9735                 return -1;
9736         }
9737
9738 sync_lower:
9739         /* some features must be disabled on lower devices when disabled
9740          * on an upper device (think: bonding master or bridge)
9741          */
9742         netdev_for_each_lower_dev(dev, lower, iter)
9743                 netdev_sync_lower_features(dev, lower, features);
9744
9745         if (!err) {
9746                 netdev_features_t diff = features ^ dev->features;
9747
9748                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9749                         /* udp_tunnel_{get,drop}_rx_info both need
9750                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9751                          * device, or they won't do anything.
9752                          * Thus we need to update dev->features
9753                          * *before* calling udp_tunnel_get_rx_info,
9754                          * but *after* calling udp_tunnel_drop_rx_info.
9755                          */
9756                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9757                                 dev->features = features;
9758                                 udp_tunnel_get_rx_info(dev);
9759                         } else {
9760                                 udp_tunnel_drop_rx_info(dev);
9761                         }
9762                 }
9763
9764                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9765                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9766                                 dev->features = features;
9767                                 err |= vlan_get_rx_ctag_filter_info(dev);
9768                         } else {
9769                                 vlan_drop_rx_ctag_filter_info(dev);
9770                         }
9771                 }
9772
9773                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9774                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9775                                 dev->features = features;
9776                                 err |= vlan_get_rx_stag_filter_info(dev);
9777                         } else {
9778                                 vlan_drop_rx_stag_filter_info(dev);
9779                         }
9780                 }
9781
9782                 dev->features = features;
9783         }
9784
9785         return err < 0 ? 0 : 1;
9786 }
9787
9788 /**
9789  *      netdev_update_features - recalculate device features
9790  *      @dev: the device to check
9791  *
9792  *      Recalculate dev->features set and send notifications if it
9793  *      has changed. Should be called after driver or hardware dependent
9794  *      conditions might have changed that influence the features.
9795  */
9796 void netdev_update_features(struct net_device *dev)
9797 {
9798         if (__netdev_update_features(dev))
9799                 netdev_features_change(dev);
9800 }
9801 EXPORT_SYMBOL(netdev_update_features);
9802
9803 /**
9804  *      netdev_change_features - recalculate device features
9805  *      @dev: the device to check
9806  *
9807  *      Recalculate dev->features set and send notifications even
9808  *      if they have not changed. Should be called instead of
9809  *      netdev_update_features() if also dev->vlan_features might
9810  *      have changed to allow the changes to be propagated to stacked
9811  *      VLAN devices.
9812  */
9813 void netdev_change_features(struct net_device *dev)
9814 {
9815         __netdev_update_features(dev);
9816         netdev_features_change(dev);
9817 }
9818 EXPORT_SYMBOL(netdev_change_features);
9819
9820 /**
9821  *      netif_stacked_transfer_operstate -      transfer operstate
9822  *      @rootdev: the root or lower level device to transfer state from
9823  *      @dev: the device to transfer operstate to
9824  *
9825  *      Transfer operational state from root to device. This is normally
9826  *      called when a stacking relationship exists between the root
9827  *      device and the device(a leaf device).
9828  */
9829 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9830                                         struct net_device *dev)
9831 {
9832         if (rootdev->operstate == IF_OPER_DORMANT)
9833                 netif_dormant_on(dev);
9834         else
9835                 netif_dormant_off(dev);
9836
9837         if (rootdev->operstate == IF_OPER_TESTING)
9838                 netif_testing_on(dev);
9839         else
9840                 netif_testing_off(dev);
9841
9842         if (netif_carrier_ok(rootdev))
9843                 netif_carrier_on(dev);
9844         else
9845                 netif_carrier_off(dev);
9846 }
9847 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9848
9849 static int netif_alloc_rx_queues(struct net_device *dev)
9850 {
9851         unsigned int i, count = dev->num_rx_queues;
9852         struct netdev_rx_queue *rx;
9853         size_t sz = count * sizeof(*rx);
9854         int err = 0;
9855
9856         BUG_ON(count < 1);
9857
9858         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9859         if (!rx)
9860                 return -ENOMEM;
9861
9862         dev->_rx = rx;
9863
9864         for (i = 0; i < count; i++) {
9865                 rx[i].dev = dev;
9866
9867                 /* XDP RX-queue setup */
9868                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9869                 if (err < 0)
9870                         goto err_rxq_info;
9871         }
9872         return 0;
9873
9874 err_rxq_info:
9875         /* Rollback successful reg's and free other resources */
9876         while (i--)
9877                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9878         kvfree(dev->_rx);
9879         dev->_rx = NULL;
9880         return err;
9881 }
9882
9883 static void netif_free_rx_queues(struct net_device *dev)
9884 {
9885         unsigned int i, count = dev->num_rx_queues;
9886
9887         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9888         if (!dev->_rx)
9889                 return;
9890
9891         for (i = 0; i < count; i++)
9892                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9893
9894         kvfree(dev->_rx);
9895 }
9896
9897 static void netdev_init_one_queue(struct net_device *dev,
9898                                   struct netdev_queue *queue, void *_unused)
9899 {
9900         /* Initialize queue lock */
9901         spin_lock_init(&queue->_xmit_lock);
9902         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9903         queue->xmit_lock_owner = -1;
9904         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9905         queue->dev = dev;
9906 #ifdef CONFIG_BQL
9907         dql_init(&queue->dql, HZ);
9908 #endif
9909 }
9910
9911 static void netif_free_tx_queues(struct net_device *dev)
9912 {
9913         kvfree(dev->_tx);
9914 }
9915
9916 static int netif_alloc_netdev_queues(struct net_device *dev)
9917 {
9918         unsigned int count = dev->num_tx_queues;
9919         struct netdev_queue *tx;
9920         size_t sz = count * sizeof(*tx);
9921
9922         if (count < 1 || count > 0xffff)
9923                 return -EINVAL;
9924
9925         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9926         if (!tx)
9927                 return -ENOMEM;
9928
9929         dev->_tx = tx;
9930
9931         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9932         spin_lock_init(&dev->tx_global_lock);
9933
9934         return 0;
9935 }
9936
9937 void netif_tx_stop_all_queues(struct net_device *dev)
9938 {
9939         unsigned int i;
9940
9941         for (i = 0; i < dev->num_tx_queues; i++) {
9942                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9943
9944                 netif_tx_stop_queue(txq);
9945         }
9946 }
9947 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9948
9949 /**
9950  * register_netdevice() - register a network device
9951  * @dev: device to register
9952  *
9953  * Take a prepared network device structure and make it externally accessible.
9954  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9955  * Callers must hold the rtnl lock - you may want register_netdev()
9956  * instead of this.
9957  */
9958 int register_netdevice(struct net_device *dev)
9959 {
9960         int ret;
9961         struct net *net = dev_net(dev);
9962
9963         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9964                      NETDEV_FEATURE_COUNT);
9965         BUG_ON(dev_boot_phase);
9966         ASSERT_RTNL();
9967
9968         might_sleep();
9969
9970         /* When net_device's are persistent, this will be fatal. */
9971         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9972         BUG_ON(!net);
9973
9974         ret = ethtool_check_ops(dev->ethtool_ops);
9975         if (ret)
9976                 return ret;
9977
9978         spin_lock_init(&dev->addr_list_lock);
9979         netdev_set_addr_lockdep_class(dev);
9980
9981         ret = dev_get_valid_name(net, dev, dev->name);
9982         if (ret < 0)
9983                 goto out;
9984
9985         ret = -ENOMEM;
9986         dev->name_node = netdev_name_node_head_alloc(dev);
9987         if (!dev->name_node)
9988                 goto out;
9989
9990         /* Init, if this function is available */
9991         if (dev->netdev_ops->ndo_init) {
9992                 ret = dev->netdev_ops->ndo_init(dev);
9993                 if (ret) {
9994                         if (ret > 0)
9995                                 ret = -EIO;
9996                         goto err_free_name;
9997                 }
9998         }
9999
10000         if (((dev->hw_features | dev->features) &
10001              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10002             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10003              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10004                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10005                 ret = -EINVAL;
10006                 goto err_uninit;
10007         }
10008
10009         ret = -EBUSY;
10010         if (!dev->ifindex)
10011                 dev->ifindex = dev_new_index(net);
10012         else if (__dev_get_by_index(net, dev->ifindex))
10013                 goto err_uninit;
10014
10015         /* Transfer changeable features to wanted_features and enable
10016          * software offloads (GSO and GRO).
10017          */
10018         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10019         dev->features |= NETIF_F_SOFT_FEATURES;
10020
10021         if (dev->udp_tunnel_nic_info) {
10022                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10023                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10024         }
10025
10026         dev->wanted_features = dev->features & dev->hw_features;
10027
10028         if (!(dev->flags & IFF_LOOPBACK))
10029                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10030
10031         /* If IPv4 TCP segmentation offload is supported we should also
10032          * allow the device to enable segmenting the frame with the option
10033          * of ignoring a static IP ID value.  This doesn't enable the
10034          * feature itself but allows the user to enable it later.
10035          */
10036         if (dev->hw_features & NETIF_F_TSO)
10037                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10038         if (dev->vlan_features & NETIF_F_TSO)
10039                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10040         if (dev->mpls_features & NETIF_F_TSO)
10041                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10042         if (dev->hw_enc_features & NETIF_F_TSO)
10043                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10044
10045         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10046          */
10047         dev->vlan_features |= NETIF_F_HIGHDMA;
10048
10049         /* Make NETIF_F_SG inheritable to tunnel devices.
10050          */
10051         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10052
10053         /* Make NETIF_F_SG inheritable to MPLS.
10054          */
10055         dev->mpls_features |= NETIF_F_SG;
10056
10057         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10058         ret = notifier_to_errno(ret);
10059         if (ret)
10060                 goto err_uninit;
10061
10062         ret = netdev_register_kobject(dev);
10063         write_lock(&dev_base_lock);
10064         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10065         write_unlock(&dev_base_lock);
10066         if (ret)
10067                 goto err_uninit;
10068
10069         __netdev_update_features(dev);
10070
10071         /*
10072          *      Default initial state at registry is that the
10073          *      device is present.
10074          */
10075
10076         set_bit(__LINK_STATE_PRESENT, &dev->state);
10077
10078         linkwatch_init_dev(dev);
10079
10080         dev_init_scheduler(dev);
10081
10082         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10083         list_netdevice(dev);
10084
10085         add_device_randomness(dev->dev_addr, dev->addr_len);
10086
10087         /* If the device has permanent device address, driver should
10088          * set dev_addr and also addr_assign_type should be set to
10089          * NET_ADDR_PERM (default value).
10090          */
10091         if (dev->addr_assign_type == NET_ADDR_PERM)
10092                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10093
10094         /* Notify protocols, that a new device appeared. */
10095         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10096         ret = notifier_to_errno(ret);
10097         if (ret) {
10098                 /* Expect explicit free_netdev() on failure */
10099                 dev->needs_free_netdev = false;
10100                 unregister_netdevice_queue(dev, NULL);
10101                 goto out;
10102         }
10103         /*
10104          *      Prevent userspace races by waiting until the network
10105          *      device is fully setup before sending notifications.
10106          */
10107         if (!dev->rtnl_link_ops ||
10108             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10109                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10110
10111 out:
10112         return ret;
10113
10114 err_uninit:
10115         if (dev->netdev_ops->ndo_uninit)
10116                 dev->netdev_ops->ndo_uninit(dev);
10117         if (dev->priv_destructor)
10118                 dev->priv_destructor(dev);
10119 err_free_name:
10120         netdev_name_node_free(dev->name_node);
10121         goto out;
10122 }
10123 EXPORT_SYMBOL(register_netdevice);
10124
10125 /**
10126  *      init_dummy_netdev       - init a dummy network device for NAPI
10127  *      @dev: device to init
10128  *
10129  *      This takes a network device structure and initialize the minimum
10130  *      amount of fields so it can be used to schedule NAPI polls without
10131  *      registering a full blown interface. This is to be used by drivers
10132  *      that need to tie several hardware interfaces to a single NAPI
10133  *      poll scheduler due to HW limitations.
10134  */
10135 int init_dummy_netdev(struct net_device *dev)
10136 {
10137         /* Clear everything. Note we don't initialize spinlocks
10138          * are they aren't supposed to be taken by any of the
10139          * NAPI code and this dummy netdev is supposed to be
10140          * only ever used for NAPI polls
10141          */
10142         memset(dev, 0, sizeof(struct net_device));
10143
10144         /* make sure we BUG if trying to hit standard
10145          * register/unregister code path
10146          */
10147         dev->reg_state = NETREG_DUMMY;
10148
10149         /* NAPI wants this */
10150         INIT_LIST_HEAD(&dev->napi_list);
10151
10152         /* a dummy interface is started by default */
10153         set_bit(__LINK_STATE_PRESENT, &dev->state);
10154         set_bit(__LINK_STATE_START, &dev->state);
10155
10156         /* napi_busy_loop stats accounting wants this */
10157         dev_net_set(dev, &init_net);
10158
10159         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10160          * because users of this 'device' dont need to change
10161          * its refcount.
10162          */
10163
10164         return 0;
10165 }
10166 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10167
10168
10169 /**
10170  *      register_netdev - register a network device
10171  *      @dev: device to register
10172  *
10173  *      Take a completed network device structure and add it to the kernel
10174  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10175  *      chain. 0 is returned on success. A negative errno code is returned
10176  *      on a failure to set up the device, or if the name is a duplicate.
10177  *
10178  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10179  *      and expands the device name if you passed a format string to
10180  *      alloc_netdev.
10181  */
10182 int register_netdev(struct net_device *dev)
10183 {
10184         int err;
10185
10186         if (rtnl_lock_killable())
10187                 return -EINTR;
10188         err = register_netdevice(dev);
10189         rtnl_unlock();
10190         return err;
10191 }
10192 EXPORT_SYMBOL(register_netdev);
10193
10194 int netdev_refcnt_read(const struct net_device *dev)
10195 {
10196 #ifdef CONFIG_PCPU_DEV_REFCNT
10197         int i, refcnt = 0;
10198
10199         for_each_possible_cpu(i)
10200                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10201         return refcnt;
10202 #else
10203         return refcount_read(&dev->dev_refcnt);
10204 #endif
10205 }
10206 EXPORT_SYMBOL(netdev_refcnt_read);
10207
10208 int netdev_unregister_timeout_secs __read_mostly = 10;
10209
10210 #define WAIT_REFS_MIN_MSECS 1
10211 #define WAIT_REFS_MAX_MSECS 250
10212 /**
10213  * netdev_wait_allrefs_any - wait until all references are gone.
10214  * @list: list of net_devices to wait on
10215  *
10216  * This is called when unregistering network devices.
10217  *
10218  * Any protocol or device that holds a reference should register
10219  * for netdevice notification, and cleanup and put back the
10220  * reference if they receive an UNREGISTER event.
10221  * We can get stuck here if buggy protocols don't correctly
10222  * call dev_put.
10223  */
10224 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10225 {
10226         unsigned long rebroadcast_time, warning_time;
10227         struct net_device *dev;
10228         int wait = 0;
10229
10230         rebroadcast_time = warning_time = jiffies;
10231
10232         list_for_each_entry(dev, list, todo_list)
10233                 if (netdev_refcnt_read(dev) == 1)
10234                         return dev;
10235
10236         while (true) {
10237                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10238                         rtnl_lock();
10239
10240                         /* Rebroadcast unregister notification */
10241                         list_for_each_entry(dev, list, todo_list)
10242                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10243
10244                         __rtnl_unlock();
10245                         rcu_barrier();
10246                         rtnl_lock();
10247
10248                         list_for_each_entry(dev, list, todo_list)
10249                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10250                                              &dev->state)) {
10251                                         /* We must not have linkwatch events
10252                                          * pending on unregister. If this
10253                                          * happens, we simply run the queue
10254                                          * unscheduled, resulting in a noop
10255                                          * for this device.
10256                                          */
10257                                         linkwatch_run_queue();
10258                                         break;
10259                                 }
10260
10261                         __rtnl_unlock();
10262
10263                         rebroadcast_time = jiffies;
10264                 }
10265
10266                 if (!wait) {
10267                         rcu_barrier();
10268                         wait = WAIT_REFS_MIN_MSECS;
10269                 } else {
10270                         msleep(wait);
10271                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10272                 }
10273
10274                 list_for_each_entry(dev, list, todo_list)
10275                         if (netdev_refcnt_read(dev) == 1)
10276                                 return dev;
10277
10278                 if (time_after(jiffies, warning_time +
10279                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10280                         list_for_each_entry(dev, list, todo_list) {
10281                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10282                                          dev->name, netdev_refcnt_read(dev));
10283                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10284                         }
10285
10286                         warning_time = jiffies;
10287                 }
10288         }
10289 }
10290
10291 /* The sequence is:
10292  *
10293  *      rtnl_lock();
10294  *      ...
10295  *      register_netdevice(x1);
10296  *      register_netdevice(x2);
10297  *      ...
10298  *      unregister_netdevice(y1);
10299  *      unregister_netdevice(y2);
10300  *      ...
10301  *      rtnl_unlock();
10302  *      free_netdev(y1);
10303  *      free_netdev(y2);
10304  *
10305  * We are invoked by rtnl_unlock().
10306  * This allows us to deal with problems:
10307  * 1) We can delete sysfs objects which invoke hotplug
10308  *    without deadlocking with linkwatch via keventd.
10309  * 2) Since we run with the RTNL semaphore not held, we can sleep
10310  *    safely in order to wait for the netdev refcnt to drop to zero.
10311  *
10312  * We must not return until all unregister events added during
10313  * the interval the lock was held have been completed.
10314  */
10315 void netdev_run_todo(void)
10316 {
10317         struct net_device *dev, *tmp;
10318         struct list_head list;
10319 #ifdef CONFIG_LOCKDEP
10320         struct list_head unlink_list;
10321
10322         list_replace_init(&net_unlink_list, &unlink_list);
10323
10324         while (!list_empty(&unlink_list)) {
10325                 struct net_device *dev = list_first_entry(&unlink_list,
10326                                                           struct net_device,
10327                                                           unlink_list);
10328                 list_del_init(&dev->unlink_list);
10329                 dev->nested_level = dev->lower_level - 1;
10330         }
10331 #endif
10332
10333         /* Snapshot list, allow later requests */
10334         list_replace_init(&net_todo_list, &list);
10335
10336         __rtnl_unlock();
10337
10338         /* Wait for rcu callbacks to finish before next phase */
10339         if (!list_empty(&list))
10340                 rcu_barrier();
10341
10342         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10343                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10344                         netdev_WARN(dev, "run_todo but not unregistering\n");
10345                         list_del(&dev->todo_list);
10346                         continue;
10347                 }
10348
10349                 write_lock(&dev_base_lock);
10350                 dev->reg_state = NETREG_UNREGISTERED;
10351                 write_unlock(&dev_base_lock);
10352                 linkwatch_forget_dev(dev);
10353         }
10354
10355         while (!list_empty(&list)) {
10356                 dev = netdev_wait_allrefs_any(&list);
10357                 list_del(&dev->todo_list);
10358
10359                 /* paranoia */
10360                 BUG_ON(netdev_refcnt_read(dev) != 1);
10361                 BUG_ON(!list_empty(&dev->ptype_all));
10362                 BUG_ON(!list_empty(&dev->ptype_specific));
10363                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10364                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10365
10366                 if (dev->priv_destructor)
10367                         dev->priv_destructor(dev);
10368                 if (dev->needs_free_netdev)
10369                         free_netdev(dev);
10370
10371                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10372                         wake_up(&netdev_unregistering_wq);
10373
10374                 /* Free network device */
10375                 kobject_put(&dev->dev.kobj);
10376         }
10377 }
10378
10379 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10380  * all the same fields in the same order as net_device_stats, with only
10381  * the type differing, but rtnl_link_stats64 may have additional fields
10382  * at the end for newer counters.
10383  */
10384 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10385                              const struct net_device_stats *netdev_stats)
10386 {
10387         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10388         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10389         u64 *dst = (u64 *)stats64;
10390
10391         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10392         for (i = 0; i < n; i++)
10393                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10394         /* zero out counters that only exist in rtnl_link_stats64 */
10395         memset((char *)stats64 + n * sizeof(u64), 0,
10396                sizeof(*stats64) - n * sizeof(u64));
10397 }
10398 EXPORT_SYMBOL(netdev_stats_to_stats64);
10399
10400 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10401 {
10402         struct net_device_core_stats __percpu *p;
10403
10404         p = alloc_percpu_gfp(struct net_device_core_stats,
10405                              GFP_ATOMIC | __GFP_NOWARN);
10406
10407         if (p && cmpxchg(&dev->core_stats, NULL, p))
10408                 free_percpu(p);
10409
10410         /* This READ_ONCE() pairs with the cmpxchg() above */
10411         return READ_ONCE(dev->core_stats);
10412 }
10413 EXPORT_SYMBOL(netdev_core_stats_alloc);
10414
10415 /**
10416  *      dev_get_stats   - get network device statistics
10417  *      @dev: device to get statistics from
10418  *      @storage: place to store stats
10419  *
10420  *      Get network statistics from device. Return @storage.
10421  *      The device driver may provide its own method by setting
10422  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10423  *      otherwise the internal statistics structure is used.
10424  */
10425 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10426                                         struct rtnl_link_stats64 *storage)
10427 {
10428         const struct net_device_ops *ops = dev->netdev_ops;
10429         const struct net_device_core_stats __percpu *p;
10430
10431         if (ops->ndo_get_stats64) {
10432                 memset(storage, 0, sizeof(*storage));
10433                 ops->ndo_get_stats64(dev, storage);
10434         } else if (ops->ndo_get_stats) {
10435                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10436         } else {
10437                 netdev_stats_to_stats64(storage, &dev->stats);
10438         }
10439
10440         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10441         p = READ_ONCE(dev->core_stats);
10442         if (p) {
10443                 const struct net_device_core_stats *core_stats;
10444                 int i;
10445
10446                 for_each_possible_cpu(i) {
10447                         core_stats = per_cpu_ptr(p, i);
10448                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10449                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10450                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10451                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10452                 }
10453         }
10454         return storage;
10455 }
10456 EXPORT_SYMBOL(dev_get_stats);
10457
10458 /**
10459  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10460  *      @s: place to store stats
10461  *      @netstats: per-cpu network stats to read from
10462  *
10463  *      Read per-cpu network statistics and populate the related fields in @s.
10464  */
10465 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10466                            const struct pcpu_sw_netstats __percpu *netstats)
10467 {
10468         int cpu;
10469
10470         for_each_possible_cpu(cpu) {
10471                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10472                 const struct pcpu_sw_netstats *stats;
10473                 unsigned int start;
10474
10475                 stats = per_cpu_ptr(netstats, cpu);
10476                 do {
10477                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10478                         rx_packets = u64_stats_read(&stats->rx_packets);
10479                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10480                         tx_packets = u64_stats_read(&stats->tx_packets);
10481                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10482                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10483
10484                 s->rx_packets += rx_packets;
10485                 s->rx_bytes   += rx_bytes;
10486                 s->tx_packets += tx_packets;
10487                 s->tx_bytes   += tx_bytes;
10488         }
10489 }
10490 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10491
10492 /**
10493  *      dev_get_tstats64 - ndo_get_stats64 implementation
10494  *      @dev: device to get statistics from
10495  *      @s: place to store stats
10496  *
10497  *      Populate @s from dev->stats and dev->tstats. Can be used as
10498  *      ndo_get_stats64() callback.
10499  */
10500 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10501 {
10502         netdev_stats_to_stats64(s, &dev->stats);
10503         dev_fetch_sw_netstats(s, dev->tstats);
10504 }
10505 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10506
10507 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10508 {
10509         struct netdev_queue *queue = dev_ingress_queue(dev);
10510
10511 #ifdef CONFIG_NET_CLS_ACT
10512         if (queue)
10513                 return queue;
10514         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10515         if (!queue)
10516                 return NULL;
10517         netdev_init_one_queue(dev, queue, NULL);
10518         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10519         queue->qdisc_sleeping = &noop_qdisc;
10520         rcu_assign_pointer(dev->ingress_queue, queue);
10521 #endif
10522         return queue;
10523 }
10524
10525 static const struct ethtool_ops default_ethtool_ops;
10526
10527 void netdev_set_default_ethtool_ops(struct net_device *dev,
10528                                     const struct ethtool_ops *ops)
10529 {
10530         if (dev->ethtool_ops == &default_ethtool_ops)
10531                 dev->ethtool_ops = ops;
10532 }
10533 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10534
10535 void netdev_freemem(struct net_device *dev)
10536 {
10537         char *addr = (char *)dev - dev->padded;
10538
10539         kvfree(addr);
10540 }
10541
10542 /**
10543  * alloc_netdev_mqs - allocate network device
10544  * @sizeof_priv: size of private data to allocate space for
10545  * @name: device name format string
10546  * @name_assign_type: origin of device name
10547  * @setup: callback to initialize device
10548  * @txqs: the number of TX subqueues to allocate
10549  * @rxqs: the number of RX subqueues to allocate
10550  *
10551  * Allocates a struct net_device with private data area for driver use
10552  * and performs basic initialization.  Also allocates subqueue structs
10553  * for each queue on the device.
10554  */
10555 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10556                 unsigned char name_assign_type,
10557                 void (*setup)(struct net_device *),
10558                 unsigned int txqs, unsigned int rxqs)
10559 {
10560         struct net_device *dev;
10561         unsigned int alloc_size;
10562         struct net_device *p;
10563
10564         BUG_ON(strlen(name) >= sizeof(dev->name));
10565
10566         if (txqs < 1) {
10567                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10568                 return NULL;
10569         }
10570
10571         if (rxqs < 1) {
10572                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10573                 return NULL;
10574         }
10575
10576         alloc_size = sizeof(struct net_device);
10577         if (sizeof_priv) {
10578                 /* ensure 32-byte alignment of private area */
10579                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10580                 alloc_size += sizeof_priv;
10581         }
10582         /* ensure 32-byte alignment of whole construct */
10583         alloc_size += NETDEV_ALIGN - 1;
10584
10585         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10586         if (!p)
10587                 return NULL;
10588
10589         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10590         dev->padded = (char *)dev - (char *)p;
10591
10592         ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10593 #ifdef CONFIG_PCPU_DEV_REFCNT
10594         dev->pcpu_refcnt = alloc_percpu(int);
10595         if (!dev->pcpu_refcnt)
10596                 goto free_dev;
10597         __dev_hold(dev);
10598 #else
10599         refcount_set(&dev->dev_refcnt, 1);
10600 #endif
10601
10602         if (dev_addr_init(dev))
10603                 goto free_pcpu;
10604
10605         dev_mc_init(dev);
10606         dev_uc_init(dev);
10607
10608         dev_net_set(dev, &init_net);
10609
10610         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10611         dev->gso_max_segs = GSO_MAX_SEGS;
10612         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10613         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10614         dev->tso_max_segs = TSO_MAX_SEGS;
10615         dev->upper_level = 1;
10616         dev->lower_level = 1;
10617 #ifdef CONFIG_LOCKDEP
10618         dev->nested_level = 0;
10619         INIT_LIST_HEAD(&dev->unlink_list);
10620 #endif
10621
10622         INIT_LIST_HEAD(&dev->napi_list);
10623         INIT_LIST_HEAD(&dev->unreg_list);
10624         INIT_LIST_HEAD(&dev->close_list);
10625         INIT_LIST_HEAD(&dev->link_watch_list);
10626         INIT_LIST_HEAD(&dev->adj_list.upper);
10627         INIT_LIST_HEAD(&dev->adj_list.lower);
10628         INIT_LIST_HEAD(&dev->ptype_all);
10629         INIT_LIST_HEAD(&dev->ptype_specific);
10630         INIT_LIST_HEAD(&dev->net_notifier_list);
10631 #ifdef CONFIG_NET_SCHED
10632         hash_init(dev->qdisc_hash);
10633 #endif
10634         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10635         setup(dev);
10636
10637         if (!dev->tx_queue_len) {
10638                 dev->priv_flags |= IFF_NO_QUEUE;
10639                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10640         }
10641
10642         dev->num_tx_queues = txqs;
10643         dev->real_num_tx_queues = txqs;
10644         if (netif_alloc_netdev_queues(dev))
10645                 goto free_all;
10646
10647         dev->num_rx_queues = rxqs;
10648         dev->real_num_rx_queues = rxqs;
10649         if (netif_alloc_rx_queues(dev))
10650                 goto free_all;
10651
10652         strcpy(dev->name, name);
10653         dev->name_assign_type = name_assign_type;
10654         dev->group = INIT_NETDEV_GROUP;
10655         if (!dev->ethtool_ops)
10656                 dev->ethtool_ops = &default_ethtool_ops;
10657
10658         nf_hook_netdev_init(dev);
10659
10660         return dev;
10661
10662 free_all:
10663         free_netdev(dev);
10664         return NULL;
10665
10666 free_pcpu:
10667 #ifdef CONFIG_PCPU_DEV_REFCNT
10668         free_percpu(dev->pcpu_refcnt);
10669 free_dev:
10670 #endif
10671         netdev_freemem(dev);
10672         return NULL;
10673 }
10674 EXPORT_SYMBOL(alloc_netdev_mqs);
10675
10676 /**
10677  * free_netdev - free network device
10678  * @dev: device
10679  *
10680  * This function does the last stage of destroying an allocated device
10681  * interface. The reference to the device object is released. If this
10682  * is the last reference then it will be freed.Must be called in process
10683  * context.
10684  */
10685 void free_netdev(struct net_device *dev)
10686 {
10687         struct napi_struct *p, *n;
10688
10689         might_sleep();
10690
10691         /* When called immediately after register_netdevice() failed the unwind
10692          * handling may still be dismantling the device. Handle that case by
10693          * deferring the free.
10694          */
10695         if (dev->reg_state == NETREG_UNREGISTERING) {
10696                 ASSERT_RTNL();
10697                 dev->needs_free_netdev = true;
10698                 return;
10699         }
10700
10701         netif_free_tx_queues(dev);
10702         netif_free_rx_queues(dev);
10703
10704         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10705
10706         /* Flush device addresses */
10707         dev_addr_flush(dev);
10708
10709         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10710                 netif_napi_del(p);
10711
10712         ref_tracker_dir_exit(&dev->refcnt_tracker);
10713 #ifdef CONFIG_PCPU_DEV_REFCNT
10714         free_percpu(dev->pcpu_refcnt);
10715         dev->pcpu_refcnt = NULL;
10716 #endif
10717         free_percpu(dev->core_stats);
10718         dev->core_stats = NULL;
10719         free_percpu(dev->xdp_bulkq);
10720         dev->xdp_bulkq = NULL;
10721
10722         /*  Compatibility with error handling in drivers */
10723         if (dev->reg_state == NETREG_UNINITIALIZED) {
10724                 netdev_freemem(dev);
10725                 return;
10726         }
10727
10728         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10729         dev->reg_state = NETREG_RELEASED;
10730
10731         /* will free via device release */
10732         put_device(&dev->dev);
10733 }
10734 EXPORT_SYMBOL(free_netdev);
10735
10736 /**
10737  *      synchronize_net -  Synchronize with packet receive processing
10738  *
10739  *      Wait for packets currently being received to be done.
10740  *      Does not block later packets from starting.
10741  */
10742 void synchronize_net(void)
10743 {
10744         might_sleep();
10745         if (rtnl_is_locked())
10746                 synchronize_rcu_expedited();
10747         else
10748                 synchronize_rcu();
10749 }
10750 EXPORT_SYMBOL(synchronize_net);
10751
10752 /**
10753  *      unregister_netdevice_queue - remove device from the kernel
10754  *      @dev: device
10755  *      @head: list
10756  *
10757  *      This function shuts down a device interface and removes it
10758  *      from the kernel tables.
10759  *      If head not NULL, device is queued to be unregistered later.
10760  *
10761  *      Callers must hold the rtnl semaphore.  You may want
10762  *      unregister_netdev() instead of this.
10763  */
10764
10765 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10766 {
10767         ASSERT_RTNL();
10768
10769         if (head) {
10770                 list_move_tail(&dev->unreg_list, head);
10771         } else {
10772                 LIST_HEAD(single);
10773
10774                 list_add(&dev->unreg_list, &single);
10775                 unregister_netdevice_many(&single);
10776         }
10777 }
10778 EXPORT_SYMBOL(unregister_netdevice_queue);
10779
10780 /**
10781  *      unregister_netdevice_many - unregister many devices
10782  *      @head: list of devices
10783  *
10784  *  Note: As most callers use a stack allocated list_head,
10785  *  we force a list_del() to make sure stack wont be corrupted later.
10786  */
10787 void unregister_netdevice_many(struct list_head *head)
10788 {
10789         struct net_device *dev, *tmp;
10790         LIST_HEAD(close_head);
10791
10792         BUG_ON(dev_boot_phase);
10793         ASSERT_RTNL();
10794
10795         if (list_empty(head))
10796                 return;
10797
10798         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10799                 /* Some devices call without registering
10800                  * for initialization unwind. Remove those
10801                  * devices and proceed with the remaining.
10802                  */
10803                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10804                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10805                                  dev->name, dev);
10806
10807                         WARN_ON(1);
10808                         list_del(&dev->unreg_list);
10809                         continue;
10810                 }
10811                 dev->dismantle = true;
10812                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10813         }
10814
10815         /* If device is running, close it first. */
10816         list_for_each_entry(dev, head, unreg_list)
10817                 list_add_tail(&dev->close_list, &close_head);
10818         dev_close_many(&close_head, true);
10819
10820         list_for_each_entry(dev, head, unreg_list) {
10821                 /* And unlink it from device chain. */
10822                 write_lock(&dev_base_lock);
10823                 unlist_netdevice(dev, false);
10824                 dev->reg_state = NETREG_UNREGISTERING;
10825                 write_unlock(&dev_base_lock);
10826         }
10827         flush_all_backlogs();
10828
10829         synchronize_net();
10830
10831         list_for_each_entry(dev, head, unreg_list) {
10832                 struct sk_buff *skb = NULL;
10833
10834                 /* Shutdown queueing discipline. */
10835                 dev_shutdown(dev);
10836
10837                 dev_xdp_uninstall(dev);
10838
10839                 netdev_offload_xstats_disable_all(dev);
10840
10841                 /* Notify protocols, that we are about to destroy
10842                  * this device. They should clean all the things.
10843                  */
10844                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10845
10846                 if (!dev->rtnl_link_ops ||
10847                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10848                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10849                                                      GFP_KERNEL, NULL, 0);
10850
10851                 /*
10852                  *      Flush the unicast and multicast chains
10853                  */
10854                 dev_uc_flush(dev);
10855                 dev_mc_flush(dev);
10856
10857                 netdev_name_node_alt_flush(dev);
10858                 netdev_name_node_free(dev->name_node);
10859
10860                 if (dev->netdev_ops->ndo_uninit)
10861                         dev->netdev_ops->ndo_uninit(dev);
10862
10863                 if (skb)
10864                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10865
10866                 /* Notifier chain MUST detach us all upper devices. */
10867                 WARN_ON(netdev_has_any_upper_dev(dev));
10868                 WARN_ON(netdev_has_any_lower_dev(dev));
10869
10870                 /* Remove entries from kobject tree */
10871                 netdev_unregister_kobject(dev);
10872 #ifdef CONFIG_XPS
10873                 /* Remove XPS queueing entries */
10874                 netif_reset_xps_queues_gt(dev, 0);
10875 #endif
10876         }
10877
10878         synchronize_net();
10879
10880         list_for_each_entry(dev, head, unreg_list) {
10881                 netdev_put(dev, &dev->dev_registered_tracker);
10882                 net_set_todo(dev);
10883         }
10884
10885         list_del(head);
10886 }
10887 EXPORT_SYMBOL(unregister_netdevice_many);
10888
10889 /**
10890  *      unregister_netdev - remove device from the kernel
10891  *      @dev: device
10892  *
10893  *      This function shuts down a device interface and removes it
10894  *      from the kernel tables.
10895  *
10896  *      This is just a wrapper for unregister_netdevice that takes
10897  *      the rtnl semaphore.  In general you want to use this and not
10898  *      unregister_netdevice.
10899  */
10900 void unregister_netdev(struct net_device *dev)
10901 {
10902         rtnl_lock();
10903         unregister_netdevice(dev);
10904         rtnl_unlock();
10905 }
10906 EXPORT_SYMBOL(unregister_netdev);
10907
10908 /**
10909  *      __dev_change_net_namespace - move device to different nethost namespace
10910  *      @dev: device
10911  *      @net: network namespace
10912  *      @pat: If not NULL name pattern to try if the current device name
10913  *            is already taken in the destination network namespace.
10914  *      @new_ifindex: If not zero, specifies device index in the target
10915  *                    namespace.
10916  *
10917  *      This function shuts down a device interface and moves it
10918  *      to a new network namespace. On success 0 is returned, on
10919  *      a failure a netagive errno code is returned.
10920  *
10921  *      Callers must hold the rtnl semaphore.
10922  */
10923
10924 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10925                                const char *pat, int new_ifindex)
10926 {
10927         struct net *net_old = dev_net(dev);
10928         int err, new_nsid;
10929
10930         ASSERT_RTNL();
10931
10932         /* Don't allow namespace local devices to be moved. */
10933         err = -EINVAL;
10934         if (dev->features & NETIF_F_NETNS_LOCAL)
10935                 goto out;
10936
10937         /* Ensure the device has been registrered */
10938         if (dev->reg_state != NETREG_REGISTERED)
10939                 goto out;
10940
10941         /* Get out if there is nothing todo */
10942         err = 0;
10943         if (net_eq(net_old, net))
10944                 goto out;
10945
10946         /* Pick the destination device name, and ensure
10947          * we can use it in the destination network namespace.
10948          */
10949         err = -EEXIST;
10950         if (netdev_name_in_use(net, dev->name)) {
10951                 /* We get here if we can't use the current device name */
10952                 if (!pat)
10953                         goto out;
10954                 err = dev_get_valid_name(net, dev, pat);
10955                 if (err < 0)
10956                         goto out;
10957         }
10958
10959         /* Check that new_ifindex isn't used yet. */
10960         err = -EBUSY;
10961         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10962                 goto out;
10963
10964         /*
10965          * And now a mini version of register_netdevice unregister_netdevice.
10966          */
10967
10968         /* If device is running close it first. */
10969         dev_close(dev);
10970
10971         /* And unlink it from device chain */
10972         unlist_netdevice(dev, true);
10973
10974         synchronize_net();
10975
10976         /* Shutdown queueing discipline. */
10977         dev_shutdown(dev);
10978
10979         /* Notify protocols, that we are about to destroy
10980          * this device. They should clean all the things.
10981          *
10982          * Note that dev->reg_state stays at NETREG_REGISTERED.
10983          * This is wanted because this way 8021q and macvlan know
10984          * the device is just moving and can keep their slaves up.
10985          */
10986         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10987         rcu_barrier();
10988
10989         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10990         /* If there is an ifindex conflict assign a new one */
10991         if (!new_ifindex) {
10992                 if (__dev_get_by_index(net, dev->ifindex))
10993                         new_ifindex = dev_new_index(net);
10994                 else
10995                         new_ifindex = dev->ifindex;
10996         }
10997
10998         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10999                             new_ifindex);
11000
11001         /*
11002          *      Flush the unicast and multicast chains
11003          */
11004         dev_uc_flush(dev);
11005         dev_mc_flush(dev);
11006
11007         /* Send a netdev-removed uevent to the old namespace */
11008         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11009         netdev_adjacent_del_links(dev);
11010
11011         /* Move per-net netdevice notifiers that are following the netdevice */
11012         move_netdevice_notifiers_dev_net(dev, net);
11013
11014         /* Actually switch the network namespace */
11015         dev_net_set(dev, net);
11016         dev->ifindex = new_ifindex;
11017
11018         /* Send a netdev-add uevent to the new namespace */
11019         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11020         netdev_adjacent_add_links(dev);
11021
11022         /* Fixup kobjects */
11023         err = device_rename(&dev->dev, dev->name);
11024         WARN_ON(err);
11025
11026         /* Adapt owner in case owning user namespace of target network
11027          * namespace is different from the original one.
11028          */
11029         err = netdev_change_owner(dev, net_old, net);
11030         WARN_ON(err);
11031
11032         /* Add the device back in the hashes */
11033         list_netdevice(dev);
11034
11035         /* Notify protocols, that a new device appeared. */
11036         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11037
11038         /*
11039          *      Prevent userspace races by waiting until the network
11040          *      device is fully setup before sending notifications.
11041          */
11042         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11043
11044         synchronize_net();
11045         err = 0;
11046 out:
11047         return err;
11048 }
11049 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11050
11051 static int dev_cpu_dead(unsigned int oldcpu)
11052 {
11053         struct sk_buff **list_skb;
11054         struct sk_buff *skb;
11055         unsigned int cpu;
11056         struct softnet_data *sd, *oldsd, *remsd = NULL;
11057
11058         local_irq_disable();
11059         cpu = smp_processor_id();
11060         sd = &per_cpu(softnet_data, cpu);
11061         oldsd = &per_cpu(softnet_data, oldcpu);
11062
11063         /* Find end of our completion_queue. */
11064         list_skb = &sd->completion_queue;
11065         while (*list_skb)
11066                 list_skb = &(*list_skb)->next;
11067         /* Append completion queue from offline CPU. */
11068         *list_skb = oldsd->completion_queue;
11069         oldsd->completion_queue = NULL;
11070
11071         /* Append output queue from offline CPU. */
11072         if (oldsd->output_queue) {
11073                 *sd->output_queue_tailp = oldsd->output_queue;
11074                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11075                 oldsd->output_queue = NULL;
11076                 oldsd->output_queue_tailp = &oldsd->output_queue;
11077         }
11078         /* Append NAPI poll list from offline CPU, with one exception :
11079          * process_backlog() must be called by cpu owning percpu backlog.
11080          * We properly handle process_queue & input_pkt_queue later.
11081          */
11082         while (!list_empty(&oldsd->poll_list)) {
11083                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11084                                                             struct napi_struct,
11085                                                             poll_list);
11086
11087                 list_del_init(&napi->poll_list);
11088                 if (napi->poll == process_backlog)
11089                         napi->state = 0;
11090                 else
11091                         ____napi_schedule(sd, napi);
11092         }
11093
11094         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11095         local_irq_enable();
11096
11097 #ifdef CONFIG_RPS
11098         remsd = oldsd->rps_ipi_list;
11099         oldsd->rps_ipi_list = NULL;
11100 #endif
11101         /* send out pending IPI's on offline CPU */
11102         net_rps_send_ipi(remsd);
11103
11104         /* Process offline CPU's input_pkt_queue */
11105         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11106                 netif_rx(skb);
11107                 input_queue_head_incr(oldsd);
11108         }
11109         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11110                 netif_rx(skb);
11111                 input_queue_head_incr(oldsd);
11112         }
11113
11114         return 0;
11115 }
11116
11117 /**
11118  *      netdev_increment_features - increment feature set by one
11119  *      @all: current feature set
11120  *      @one: new feature set
11121  *      @mask: mask feature set
11122  *
11123  *      Computes a new feature set after adding a device with feature set
11124  *      @one to the master device with current feature set @all.  Will not
11125  *      enable anything that is off in @mask. Returns the new feature set.
11126  */
11127 netdev_features_t netdev_increment_features(netdev_features_t all,
11128         netdev_features_t one, netdev_features_t mask)
11129 {
11130         if (mask & NETIF_F_HW_CSUM)
11131                 mask |= NETIF_F_CSUM_MASK;
11132         mask |= NETIF_F_VLAN_CHALLENGED;
11133
11134         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11135         all &= one | ~NETIF_F_ALL_FOR_ALL;
11136
11137         /* If one device supports hw checksumming, set for all. */
11138         if (all & NETIF_F_HW_CSUM)
11139                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11140
11141         return all;
11142 }
11143 EXPORT_SYMBOL(netdev_increment_features);
11144
11145 static struct hlist_head * __net_init netdev_create_hash(void)
11146 {
11147         int i;
11148         struct hlist_head *hash;
11149
11150         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11151         if (hash != NULL)
11152                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11153                         INIT_HLIST_HEAD(&hash[i]);
11154
11155         return hash;
11156 }
11157
11158 /* Initialize per network namespace state */
11159 static int __net_init netdev_init(struct net *net)
11160 {
11161         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11162                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11163
11164         INIT_LIST_HEAD(&net->dev_base_head);
11165
11166         net->dev_name_head = netdev_create_hash();
11167         if (net->dev_name_head == NULL)
11168                 goto err_name;
11169
11170         net->dev_index_head = netdev_create_hash();
11171         if (net->dev_index_head == NULL)
11172                 goto err_idx;
11173
11174         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11175
11176         return 0;
11177
11178 err_idx:
11179         kfree(net->dev_name_head);
11180 err_name:
11181         return -ENOMEM;
11182 }
11183
11184 /**
11185  *      netdev_drivername - network driver for the device
11186  *      @dev: network device
11187  *
11188  *      Determine network driver for device.
11189  */
11190 const char *netdev_drivername(const struct net_device *dev)
11191 {
11192         const struct device_driver *driver;
11193         const struct device *parent;
11194         const char *empty = "";
11195
11196         parent = dev->dev.parent;
11197         if (!parent)
11198                 return empty;
11199
11200         driver = parent->driver;
11201         if (driver && driver->name)
11202                 return driver->name;
11203         return empty;
11204 }
11205
11206 static void __netdev_printk(const char *level, const struct net_device *dev,
11207                             struct va_format *vaf)
11208 {
11209         if (dev && dev->dev.parent) {
11210                 dev_printk_emit(level[1] - '0',
11211                                 dev->dev.parent,
11212                                 "%s %s %s%s: %pV",
11213                                 dev_driver_string(dev->dev.parent),
11214                                 dev_name(dev->dev.parent),
11215                                 netdev_name(dev), netdev_reg_state(dev),
11216                                 vaf);
11217         } else if (dev) {
11218                 printk("%s%s%s: %pV",
11219                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11220         } else {
11221                 printk("%s(NULL net_device): %pV", level, vaf);
11222         }
11223 }
11224
11225 void netdev_printk(const char *level, const struct net_device *dev,
11226                    const char *format, ...)
11227 {
11228         struct va_format vaf;
11229         va_list args;
11230
11231         va_start(args, format);
11232
11233         vaf.fmt = format;
11234         vaf.va = &args;
11235
11236         __netdev_printk(level, dev, &vaf);
11237
11238         va_end(args);
11239 }
11240 EXPORT_SYMBOL(netdev_printk);
11241
11242 #define define_netdev_printk_level(func, level)                 \
11243 void func(const struct net_device *dev, const char *fmt, ...)   \
11244 {                                                               \
11245         struct va_format vaf;                                   \
11246         va_list args;                                           \
11247                                                                 \
11248         va_start(args, fmt);                                    \
11249                                                                 \
11250         vaf.fmt = fmt;                                          \
11251         vaf.va = &args;                                         \
11252                                                                 \
11253         __netdev_printk(level, dev, &vaf);                      \
11254                                                                 \
11255         va_end(args);                                           \
11256 }                                                               \
11257 EXPORT_SYMBOL(func);
11258
11259 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11260 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11261 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11262 define_netdev_printk_level(netdev_err, KERN_ERR);
11263 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11264 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11265 define_netdev_printk_level(netdev_info, KERN_INFO);
11266
11267 static void __net_exit netdev_exit(struct net *net)
11268 {
11269         kfree(net->dev_name_head);
11270         kfree(net->dev_index_head);
11271         if (net != &init_net)
11272                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11273 }
11274
11275 static struct pernet_operations __net_initdata netdev_net_ops = {
11276         .init = netdev_init,
11277         .exit = netdev_exit,
11278 };
11279
11280 static void __net_exit default_device_exit_net(struct net *net)
11281 {
11282         struct net_device *dev, *aux;
11283         /*
11284          * Push all migratable network devices back to the
11285          * initial network namespace
11286          */
11287         ASSERT_RTNL();
11288         for_each_netdev_safe(net, dev, aux) {
11289                 int err;
11290                 char fb_name[IFNAMSIZ];
11291
11292                 /* Ignore unmoveable devices (i.e. loopback) */
11293                 if (dev->features & NETIF_F_NETNS_LOCAL)
11294                         continue;
11295
11296                 /* Leave virtual devices for the generic cleanup */
11297                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11298                         continue;
11299
11300                 /* Push remaining network devices to init_net */
11301                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11302                 if (netdev_name_in_use(&init_net, fb_name))
11303                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11304                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11305                 if (err) {
11306                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11307                                  __func__, dev->name, err);
11308                         BUG();
11309                 }
11310         }
11311 }
11312
11313 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11314 {
11315         /* At exit all network devices most be removed from a network
11316          * namespace.  Do this in the reverse order of registration.
11317          * Do this across as many network namespaces as possible to
11318          * improve batching efficiency.
11319          */
11320         struct net_device *dev;
11321         struct net *net;
11322         LIST_HEAD(dev_kill_list);
11323
11324         rtnl_lock();
11325         list_for_each_entry(net, net_list, exit_list) {
11326                 default_device_exit_net(net);
11327                 cond_resched();
11328         }
11329
11330         list_for_each_entry(net, net_list, exit_list) {
11331                 for_each_netdev_reverse(net, dev) {
11332                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11333                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11334                         else
11335                                 unregister_netdevice_queue(dev, &dev_kill_list);
11336                 }
11337         }
11338         unregister_netdevice_many(&dev_kill_list);
11339         rtnl_unlock();
11340 }
11341
11342 static struct pernet_operations __net_initdata default_device_ops = {
11343         .exit_batch = default_device_exit_batch,
11344 };
11345
11346 /*
11347  *      Initialize the DEV module. At boot time this walks the device list and
11348  *      unhooks any devices that fail to initialise (normally hardware not
11349  *      present) and leaves us with a valid list of present and active devices.
11350  *
11351  */
11352
11353 /*
11354  *       This is called single threaded during boot, so no need
11355  *       to take the rtnl semaphore.
11356  */
11357 static int __init net_dev_init(void)
11358 {
11359         int i, rc = -ENOMEM;
11360
11361         BUG_ON(!dev_boot_phase);
11362
11363         if (dev_proc_init())
11364                 goto out;
11365
11366         if (netdev_kobject_init())
11367                 goto out;
11368
11369         INIT_LIST_HEAD(&ptype_all);
11370         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11371                 INIT_LIST_HEAD(&ptype_base[i]);
11372
11373         if (register_pernet_subsys(&netdev_net_ops))
11374                 goto out;
11375
11376         /*
11377          *      Initialise the packet receive queues.
11378          */
11379
11380         for_each_possible_cpu(i) {
11381                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11382                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11383
11384                 INIT_WORK(flush, flush_backlog);
11385
11386                 skb_queue_head_init(&sd->input_pkt_queue);
11387                 skb_queue_head_init(&sd->process_queue);
11388 #ifdef CONFIG_XFRM_OFFLOAD
11389                 skb_queue_head_init(&sd->xfrm_backlog);
11390 #endif
11391                 INIT_LIST_HEAD(&sd->poll_list);
11392                 sd->output_queue_tailp = &sd->output_queue;
11393 #ifdef CONFIG_RPS
11394                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11395                 sd->cpu = i;
11396 #endif
11397                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11398                 spin_lock_init(&sd->defer_lock);
11399
11400                 init_gro_hash(&sd->backlog);
11401                 sd->backlog.poll = process_backlog;
11402                 sd->backlog.weight = weight_p;
11403         }
11404
11405         dev_boot_phase = 0;
11406
11407         /* The loopback device is special if any other network devices
11408          * is present in a network namespace the loopback device must
11409          * be present. Since we now dynamically allocate and free the
11410          * loopback device ensure this invariant is maintained by
11411          * keeping the loopback device as the first device on the
11412          * list of network devices.  Ensuring the loopback devices
11413          * is the first device that appears and the last network device
11414          * that disappears.
11415          */
11416         if (register_pernet_device(&loopback_net_ops))
11417                 goto out;
11418
11419         if (register_pernet_device(&default_device_ops))
11420                 goto out;
11421
11422         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11423         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11424
11425         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11426                                        NULL, dev_cpu_dead);
11427         WARN_ON(rc < 0);
11428         rc = 0;
11429 out:
11430         return rc;
11431 }
11432
11433 subsys_initcall(net_dev_init);