2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
135 #include "net-sysfs.h"
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143 static DEFINE_SPINLOCK(ptype_lock);
144 static DEFINE_SPINLOCK(offload_lock);
145 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
146 struct list_head ptype_all __read_mostly; /* Taps */
147 static struct list_head offload_base __read_mostly;
150 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
153 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
155 * Writers must hold the rtnl semaphore while they loop through the
156 * dev_base_head list, and hold dev_base_lock for writing when they do the
157 * actual updates. This allows pure readers to access the list even
158 * while a writer is preparing to update it.
160 * To put it another way, dev_base_lock is held for writing only to
161 * protect against pure readers; the rtnl semaphore provides the
162 * protection against other writers.
164 * See, for example usages, register_netdevice() and
165 * unregister_netdevice(), which must be called with the rtnl
168 DEFINE_RWLOCK(dev_base_lock);
169 EXPORT_SYMBOL(dev_base_lock);
171 /* protects napi_hash addition/deletion and napi_gen_id */
172 static DEFINE_SPINLOCK(napi_hash_lock);
174 static unsigned int napi_gen_id;
175 static DEFINE_HASHTABLE(napi_hash, 8);
177 static seqcount_t devnet_rename_seq;
179 static inline void dev_base_seq_inc(struct net *net)
181 while (++net->dev_base_seq == 0);
184 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
186 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
188 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
191 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
193 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
196 static inline void rps_lock(struct softnet_data *sd)
199 spin_lock(&sd->input_pkt_queue.lock);
203 static inline void rps_unlock(struct softnet_data *sd)
206 spin_unlock(&sd->input_pkt_queue.lock);
210 /* Device list insertion */
211 static void list_netdevice(struct net_device *dev)
213 struct net *net = dev_net(dev);
217 write_lock_bh(&dev_base_lock);
218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head_rcu(&dev->index_hlist,
221 dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
224 dev_base_seq_inc(net);
227 /* Device list removal
228 * caller must respect a RCU grace period before freeing/reusing dev
230 static void unlist_netdevice(struct net_device *dev)
234 /* Unlink dev from the device chain */
235 write_lock_bh(&dev_base_lock);
236 list_del_rcu(&dev->dev_list);
237 hlist_del_rcu(&dev->name_hlist);
238 hlist_del_rcu(&dev->index_hlist);
239 write_unlock_bh(&dev_base_lock);
241 dev_base_seq_inc(dev_net(dev));
248 static RAW_NOTIFIER_HEAD(netdev_chain);
251 * Device drivers call our routines to queue packets here. We empty the
252 * queue in the local softnet handler.
255 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
256 EXPORT_PER_CPU_SYMBOL(softnet_data);
258 #ifdef CONFIG_LOCKDEP
260 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
261 * according to dev->type
263 static const unsigned short netdev_lock_type[] =
264 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
265 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
266 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
267 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
268 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
269 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
270 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
271 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
272 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
273 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
274 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
275 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
276 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
277 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
278 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
280 static const char *const netdev_lock_name[] =
281 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
282 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
283 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
284 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
285 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
286 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
287 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
288 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
289 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
290 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
291 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
292 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
293 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
294 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
295 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 if (netdev_lock_type[i] == dev_type)
307 /* the last key is used by default */
308 return ARRAY_SIZE(netdev_lock_type) - 1;
311 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
312 unsigned short dev_type)
316 i = netdev_lock_pos(dev_type);
317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 netdev_lock_name[i]);
321 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325 i = netdev_lock_pos(dev->type);
326 lockdep_set_class_and_name(&dev->addr_list_lock,
327 &netdev_addr_lock_key[i],
328 netdev_lock_name[i]);
331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 unsigned short dev_type)
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
340 /*******************************************************************************
342 Protocol management and registration routines
344 *******************************************************************************/
347 * Add a protocol ID to the list. Now that the input handler is
348 * smarter we can dispense with all the messy stuff that used to be
351 * BEWARE!!! Protocol handlers, mangling input packets,
352 * MUST BE last in hash buckets and checking protocol handlers
353 * MUST start from promiscuous ptype_all chain in net_bh.
354 * It is true now, do not change it.
355 * Explanation follows: if protocol handler, mangling packet, will
356 * be the first on list, it is not able to sense, that packet
357 * is cloned and should be copied-on-write, so that it will
358 * change it and subsequent readers will get broken packet.
362 static inline struct list_head *ptype_head(const struct packet_type *pt)
364 if (pt->type == htons(ETH_P_ALL))
367 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371 * dev_add_pack - add packet handler
372 * @pt: packet type declaration
374 * Add a protocol handler to the networking stack. The passed &packet_type
375 * is linked into kernel lists and may not be freed until it has been
376 * removed from the kernel lists.
378 * This call does not sleep therefore it can not
379 * guarantee all CPU's that are in middle of receiving packets
380 * will see the new packet type (until the next received packet).
383 void dev_add_pack(struct packet_type *pt)
385 struct list_head *head = ptype_head(pt);
387 spin_lock(&ptype_lock);
388 list_add_rcu(&pt->list, head);
389 spin_unlock(&ptype_lock);
391 EXPORT_SYMBOL(dev_add_pack);
394 * __dev_remove_pack - remove packet handler
395 * @pt: packet type declaration
397 * Remove a protocol handler that was previously added to the kernel
398 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
399 * from the kernel lists and can be freed or reused once this function
402 * The packet type might still be in use by receivers
403 * and must not be freed until after all the CPU's have gone
404 * through a quiescent state.
406 void __dev_remove_pack(struct packet_type *pt)
408 struct list_head *head = ptype_head(pt);
409 struct packet_type *pt1;
411 spin_lock(&ptype_lock);
413 list_for_each_entry(pt1, head, list) {
415 list_del_rcu(&pt->list);
420 pr_warn("dev_remove_pack: %p not found\n", pt);
422 spin_unlock(&ptype_lock);
424 EXPORT_SYMBOL(__dev_remove_pack);
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
435 * This call sleeps to guarantee that no CPU is looking at the packet
438 void dev_remove_pack(struct packet_type *pt)
440 __dev_remove_pack(pt);
444 EXPORT_SYMBOL(dev_remove_pack);
448 * dev_add_offload - register offload handlers
449 * @po: protocol offload declaration
451 * Add protocol offload handlers to the networking stack. The passed
452 * &proto_offload is linked into kernel lists and may not be freed until
453 * it has been removed from the kernel lists.
455 * This call does not sleep therefore it can not
456 * guarantee all CPU's that are in middle of receiving packets
457 * will see the new offload handlers (until the next received packet).
459 void dev_add_offload(struct packet_offload *po)
461 struct list_head *head = &offload_base;
463 spin_lock(&offload_lock);
464 list_add_rcu(&po->list, head);
465 spin_unlock(&offload_lock);
467 EXPORT_SYMBOL(dev_add_offload);
470 * __dev_remove_offload - remove offload handler
471 * @po: packet offload declaration
473 * Remove a protocol offload handler that was previously added to the
474 * kernel offload handlers by dev_add_offload(). The passed &offload_type
475 * is removed from the kernel lists and can be freed or reused once this
478 * The packet type might still be in use by receivers
479 * and must not be freed until after all the CPU's have gone
480 * through a quiescent state.
482 void __dev_remove_offload(struct packet_offload *po)
484 struct list_head *head = &offload_base;
485 struct packet_offload *po1;
487 spin_lock(&offload_lock);
489 list_for_each_entry(po1, head, list) {
491 list_del_rcu(&po->list);
496 pr_warn("dev_remove_offload: %p not found\n", po);
498 spin_unlock(&offload_lock);
500 EXPORT_SYMBOL(__dev_remove_offload);
503 * dev_remove_offload - remove packet offload handler
504 * @po: packet offload declaration
506 * Remove a packet offload handler that was previously added to the kernel
507 * offload handlers by dev_add_offload(). The passed &offload_type is
508 * removed from the kernel lists and can be freed or reused once this
511 * This call sleeps to guarantee that no CPU is looking at the packet
514 void dev_remove_offload(struct packet_offload *po)
516 __dev_remove_offload(po);
520 EXPORT_SYMBOL(dev_remove_offload);
522 /******************************************************************************
524 Device Boot-time Settings Routines
526 *******************************************************************************/
528 /* Boot time configuration table */
529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532 * netdev_boot_setup_add - add new setup entry
533 * @name: name of the device
534 * @map: configured settings for the device
536 * Adds new setup entry to the dev_boot_setup list. The function
537 * returns 0 on error and 1 on success. This is a generic routine to
540 static int netdev_boot_setup_add(char *name, struct ifmap *map)
542 struct netdev_boot_setup *s;
546 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
547 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
548 memset(s[i].name, 0, sizeof(s[i].name));
549 strlcpy(s[i].name, name, IFNAMSIZ);
550 memcpy(&s[i].map, map, sizeof(s[i].map));
555 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
559 * netdev_boot_setup_check - check boot time settings
560 * @dev: the netdevice
562 * Check boot time settings for the device.
563 * The found settings are set for the device to be used
564 * later in the device probing.
565 * Returns 0 if no settings found, 1 if they are.
567 int netdev_boot_setup_check(struct net_device *dev)
569 struct netdev_boot_setup *s = dev_boot_setup;
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
574 !strcmp(dev->name, s[i].name)) {
575 dev->irq = s[i].map.irq;
576 dev->base_addr = s[i].map.base_addr;
577 dev->mem_start = s[i].map.mem_start;
578 dev->mem_end = s[i].map.mem_end;
584 EXPORT_SYMBOL(netdev_boot_setup_check);
588 * netdev_boot_base - get address from boot time settings
589 * @prefix: prefix for network device
590 * @unit: id for network device
592 * Check boot time settings for the base address of device.
593 * The found settings are set for the device to be used
594 * later in the device probing.
595 * Returns 0 if no settings found.
597 unsigned long netdev_boot_base(const char *prefix, int unit)
599 const struct netdev_boot_setup *s = dev_boot_setup;
603 sprintf(name, "%s%d", prefix, unit);
606 * If device already registered then return base of 1
607 * to indicate not to probe for this interface
609 if (__dev_get_by_name(&init_net, name))
612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
613 if (!strcmp(name, s[i].name))
614 return s[i].map.base_addr;
619 * Saves at boot time configured settings for any netdevice.
621 int __init netdev_boot_setup(char *str)
626 str = get_options(str, ARRAY_SIZE(ints), ints);
631 memset(&map, 0, sizeof(map));
635 map.base_addr = ints[2];
637 map.mem_start = ints[3];
639 map.mem_end = ints[4];
641 /* Add new entry to the list */
642 return netdev_boot_setup_add(str, &map);
645 __setup("netdev=", netdev_boot_setup);
647 /*******************************************************************************
649 Device Interface Subroutines
651 *******************************************************************************/
654 * __dev_get_by_name - find a device by its name
655 * @net: the applicable net namespace
656 * @name: name to find
658 * Find an interface by name. Must be called under RTNL semaphore
659 * or @dev_base_lock. If the name is found a pointer to the device
660 * is returned. If the name is not found then %NULL is returned. The
661 * reference counters are not incremented so the caller must be
662 * careful with locks.
665 struct net_device *__dev_get_by_name(struct net *net, const char *name)
667 struct net_device *dev;
668 struct hlist_head *head = dev_name_hash(net, name);
670 hlist_for_each_entry(dev, head, name_hlist)
671 if (!strncmp(dev->name, name, IFNAMSIZ))
676 EXPORT_SYMBOL(__dev_get_by_name);
679 * dev_get_by_name_rcu - find a device by its name
680 * @net: the applicable net namespace
681 * @name: name to find
683 * Find an interface by name.
684 * If the name is found a pointer to the device is returned.
685 * If the name is not found then %NULL is returned.
686 * The reference counters are not incremented so the caller must be
687 * careful with locks. The caller must hold RCU lock.
690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
692 struct net_device *dev;
693 struct hlist_head *head = dev_name_hash(net, name);
695 hlist_for_each_entry_rcu(dev, head, name_hlist)
696 if (!strncmp(dev->name, name, IFNAMSIZ))
701 EXPORT_SYMBOL(dev_get_by_name_rcu);
704 * dev_get_by_name - find a device by its name
705 * @net: the applicable net namespace
706 * @name: name to find
708 * Find an interface by name. This can be called from any
709 * context and does its own locking. The returned handle has
710 * the usage count incremented and the caller must use dev_put() to
711 * release it when it is no longer needed. %NULL is returned if no
712 * matching device is found.
715 struct net_device *dev_get_by_name(struct net *net, const char *name)
717 struct net_device *dev;
720 dev = dev_get_by_name_rcu(net, name);
726 EXPORT_SYMBOL(dev_get_by_name);
729 * __dev_get_by_index - find a device by its ifindex
730 * @net: the applicable net namespace
731 * @ifindex: index of device
733 * Search for an interface by index. Returns %NULL if the device
734 * is not found or a pointer to the device. The device has not
735 * had its reference counter increased so the caller must be careful
736 * about locking. The caller must hold either the RTNL semaphore
740 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
742 struct net_device *dev;
743 struct hlist_head *head = dev_index_hash(net, ifindex);
745 hlist_for_each_entry(dev, head, index_hlist)
746 if (dev->ifindex == ifindex)
751 EXPORT_SYMBOL(__dev_get_by_index);
754 * dev_get_by_index_rcu - find a device by its ifindex
755 * @net: the applicable net namespace
756 * @ifindex: index of device
758 * Search for an interface by index. Returns %NULL if the device
759 * is not found or a pointer to the device. The device has not
760 * had its reference counter increased so the caller must be careful
761 * about locking. The caller must hold RCU lock.
764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
766 struct net_device *dev;
767 struct hlist_head *head = dev_index_hash(net, ifindex);
769 hlist_for_each_entry_rcu(dev, head, index_hlist)
770 if (dev->ifindex == ifindex)
775 EXPORT_SYMBOL(dev_get_by_index_rcu);
779 * dev_get_by_index - find a device by its ifindex
780 * @net: the applicable net namespace
781 * @ifindex: index of device
783 * Search for an interface by index. Returns NULL if the device
784 * is not found or a pointer to the device. The device returned has
785 * had a reference added and the pointer is safe until the user calls
786 * dev_put to indicate they have finished with it.
789 struct net_device *dev_get_by_index(struct net *net, int ifindex)
791 struct net_device *dev;
794 dev = dev_get_by_index_rcu(net, ifindex);
800 EXPORT_SYMBOL(dev_get_by_index);
803 * netdev_get_name - get a netdevice name, knowing its ifindex.
804 * @net: network namespace
805 * @name: a pointer to the buffer where the name will be stored.
806 * @ifindex: the ifindex of the interface to get the name from.
808 * The use of raw_seqcount_begin() and cond_resched() before
809 * retrying is required as we want to give the writers a chance
810 * to complete when CONFIG_PREEMPT is not set.
812 int netdev_get_name(struct net *net, char *name, int ifindex)
814 struct net_device *dev;
818 seq = raw_seqcount_begin(&devnet_rename_seq);
820 dev = dev_get_by_index_rcu(net, ifindex);
826 strcpy(name, dev->name);
828 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
837 * dev_getbyhwaddr_rcu - find a device by its hardware address
838 * @net: the applicable net namespace
839 * @type: media type of device
840 * @ha: hardware address
842 * Search for an interface by MAC address. Returns NULL if the device
843 * is not found or a pointer to the device.
844 * The caller must hold RCU or RTNL.
845 * The returned device has not had its ref count increased
846 * and the caller must therefore be careful about locking
850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 struct net_device *dev;
855 for_each_netdev_rcu(net, dev)
856 if (dev->type == type &&
857 !memcmp(dev->dev_addr, ha, dev->addr_len))
862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
866 struct net_device *dev;
869 for_each_netdev(net, dev)
870 if (dev->type == type)
875 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
879 struct net_device *dev, *ret = NULL;
882 for_each_netdev_rcu(net, dev)
883 if (dev->type == type) {
891 EXPORT_SYMBOL(dev_getfirstbyhwtype);
894 * dev_get_by_flags_rcu - find any device with given flags
895 * @net: the applicable net namespace
896 * @if_flags: IFF_* values
897 * @mask: bitmask of bits in if_flags to check
899 * Search for any interface with the given flags. Returns NULL if a device
900 * is not found or a pointer to the device. Must be called inside
901 * rcu_read_lock(), and result refcount is unchanged.
904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 struct net_device *dev, *ret;
910 for_each_netdev_rcu(net, dev) {
911 if (((dev->flags ^ if_flags) & mask) == 0) {
918 EXPORT_SYMBOL(dev_get_by_flags_rcu);
921 * dev_valid_name - check if name is okay for network device
924 * Network device names need to be valid file names to
925 * to allow sysfs to work. We also disallow any kind of
928 bool dev_valid_name(const char *name)
932 if (strlen(name) >= IFNAMSIZ)
934 if (!strcmp(name, ".") || !strcmp(name, ".."))
938 if (*name == '/' || isspace(*name))
944 EXPORT_SYMBOL(dev_valid_name);
947 * __dev_alloc_name - allocate a name for a device
948 * @net: network namespace to allocate the device name in
949 * @name: name format string
950 * @buf: scratch buffer and result name string
952 * Passed a format string - eg "lt%d" it will try and find a suitable
953 * id. It scans list of devices to build up a free map, then chooses
954 * the first empty slot. The caller must hold the dev_base or rtnl lock
955 * while allocating the name and adding the device in order to avoid
957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
958 * Returns the number of the unit assigned or a negative errno code.
961 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
965 const int max_netdevices = 8*PAGE_SIZE;
966 unsigned long *inuse;
967 struct net_device *d;
969 p = strnchr(name, IFNAMSIZ-1, '%');
972 * Verify the string as this thing may have come from
973 * the user. There must be either one "%d" and no other "%"
976 if (p[1] != 'd' || strchr(p + 2, '%'))
979 /* Use one page as a bit array of possible slots */
980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
984 for_each_netdev(net, d) {
985 if (!sscanf(d->name, name, &i))
987 if (i < 0 || i >= max_netdevices)
990 /* avoid cases where sscanf is not exact inverse of printf */
991 snprintf(buf, IFNAMSIZ, name, i);
992 if (!strncmp(buf, d->name, IFNAMSIZ))
996 i = find_first_zero_bit(inuse, max_netdevices);
997 free_page((unsigned long) inuse);
1001 snprintf(buf, IFNAMSIZ, name, i);
1002 if (!__dev_get_by_name(net, buf))
1005 /* It is possible to run out of possible slots
1006 * when the name is long and there isn't enough space left
1007 * for the digits, or if all bits are used.
1013 * dev_alloc_name - allocate a name for a device
1015 * @name: name format string
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1026 int dev_alloc_name(struct net_device *dev, const char *name)
1032 BUG_ON(!dev_net(dev));
1034 ret = __dev_alloc_name(net, name, buf);
1036 strlcpy(dev->name, buf, IFNAMSIZ);
1039 EXPORT_SYMBOL(dev_alloc_name);
1041 static int dev_alloc_name_ns(struct net *net,
1042 struct net_device *dev,
1048 ret = __dev_alloc_name(net, name, buf);
1050 strlcpy(dev->name, buf, IFNAMSIZ);
1054 static int dev_get_valid_name(struct net *net,
1055 struct net_device *dev,
1060 if (!dev_valid_name(name))
1063 if (strchr(name, '%'))
1064 return dev_alloc_name_ns(net, dev, name);
1065 else if (__dev_get_by_name(net, name))
1067 else if (dev->name != name)
1068 strlcpy(dev->name, name, IFNAMSIZ);
1074 * dev_change_name - change name of a device
1076 * @newname: name (or format string) must be at least IFNAMSIZ
1078 * Change name of a device, can pass format strings "eth%d".
1081 int dev_change_name(struct net_device *dev, const char *newname)
1083 char oldname[IFNAMSIZ];
1089 BUG_ON(!dev_net(dev));
1092 if (dev->flags & IFF_UP)
1095 write_seqcount_begin(&devnet_rename_seq);
1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1098 write_seqcount_end(&devnet_rename_seq);
1102 memcpy(oldname, dev->name, IFNAMSIZ);
1104 err = dev_get_valid_name(net, dev, newname);
1106 write_seqcount_end(&devnet_rename_seq);
1111 ret = device_rename(&dev->dev, dev->name);
1113 memcpy(dev->name, oldname, IFNAMSIZ);
1114 write_seqcount_end(&devnet_rename_seq);
1118 write_seqcount_end(&devnet_rename_seq);
1120 write_lock_bh(&dev_base_lock);
1121 hlist_del_rcu(&dev->name_hlist);
1122 write_unlock_bh(&dev_base_lock);
1126 write_lock_bh(&dev_base_lock);
1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1128 write_unlock_bh(&dev_base_lock);
1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1131 ret = notifier_to_errno(ret);
1134 /* err >= 0 after dev_alloc_name() or stores the first errno */
1137 write_seqcount_begin(&devnet_rename_seq);
1138 memcpy(dev->name, oldname, IFNAMSIZ);
1141 pr_err("%s: name change rollback failed: %d\n",
1150 * dev_set_alias - change ifalias of a device
1152 * @alias: name up to IFALIASZ
1153 * @len: limit of bytes to copy from info
1155 * Set ifalias for a device,
1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163 if (len >= IFALIASZ)
1167 kfree(dev->ifalias);
1168 dev->ifalias = NULL;
1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1175 dev->ifalias = new_ifalias;
1177 strlcpy(dev->ifalias, alias, len+1);
1183 * netdev_features_change - device changes features
1184 * @dev: device to cause notification
1186 * Called to indicate a device has changed features.
1188 void netdev_features_change(struct net_device *dev)
1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1192 EXPORT_SYMBOL(netdev_features_change);
1195 * netdev_state_change - device changes state
1196 * @dev: device to cause notification
1198 * Called to indicate a device has changed state. This function calls
1199 * the notifier chains for netdev_chain and sends a NEWLINK message
1200 * to the routing socket.
1202 void netdev_state_change(struct net_device *dev)
1204 if (dev->flags & IFF_UP) {
1205 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1209 EXPORT_SYMBOL(netdev_state_change);
1212 * netdev_notify_peers - notify network peers about existence of @dev
1213 * @dev: network device
1215 * Generate traffic such that interested network peers are aware of
1216 * @dev, such as by generating a gratuitous ARP. This may be used when
1217 * a device wants to inform the rest of the network about some sort of
1218 * reconfiguration such as a failover event or virtual machine
1221 void netdev_notify_peers(struct net_device *dev)
1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1227 EXPORT_SYMBOL(netdev_notify_peers);
1229 static int __dev_open(struct net_device *dev)
1231 const struct net_device_ops *ops = dev->netdev_ops;
1236 if (!netif_device_present(dev))
1239 /* Block netpoll from trying to do any rx path servicing.
1240 * If we don't do this there is a chance ndo_poll_controller
1241 * or ndo_poll may be running while we open the device
1243 netpoll_rx_disable(dev);
1245 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1246 ret = notifier_to_errno(ret);
1250 set_bit(__LINK_STATE_START, &dev->state);
1252 if (ops->ndo_validate_addr)
1253 ret = ops->ndo_validate_addr(dev);
1255 if (!ret && ops->ndo_open)
1256 ret = ops->ndo_open(dev);
1258 netpoll_rx_enable(dev);
1261 clear_bit(__LINK_STATE_START, &dev->state);
1263 dev->flags |= IFF_UP;
1264 net_dmaengine_get();
1265 dev_set_rx_mode(dev);
1267 add_device_randomness(dev->dev_addr, dev->addr_len);
1274 * dev_open - prepare an interface for use.
1275 * @dev: device to open
1277 * Takes a device from down to up state. The device's private open
1278 * function is invoked and then the multicast lists are loaded. Finally
1279 * the device is moved into the up state and a %NETDEV_UP message is
1280 * sent to the netdev notifier chain.
1282 * Calling this function on an active interface is a nop. On a failure
1283 * a negative errno code is returned.
1285 int dev_open(struct net_device *dev)
1289 if (dev->flags & IFF_UP)
1292 ret = __dev_open(dev);
1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1297 call_netdevice_notifiers(NETDEV_UP, dev);
1301 EXPORT_SYMBOL(dev_open);
1303 static int __dev_close_many(struct list_head *head)
1305 struct net_device *dev;
1310 list_for_each_entry(dev, head, close_list) {
1311 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1313 clear_bit(__LINK_STATE_START, &dev->state);
1315 /* Synchronize to scheduled poll. We cannot touch poll list, it
1316 * can be even on different cpu. So just clear netif_running().
1318 * dev->stop() will invoke napi_disable() on all of it's
1319 * napi_struct instances on this device.
1321 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1324 dev_deactivate_many(head);
1326 list_for_each_entry(dev, head, close_list) {
1327 const struct net_device_ops *ops = dev->netdev_ops;
1330 * Call the device specific close. This cannot fail.
1331 * Only if device is UP
1333 * We allow it to be called even after a DETACH hot-plug
1339 dev->flags &= ~IFF_UP;
1340 net_dmaengine_put();
1346 static int __dev_close(struct net_device *dev)
1351 /* Temporarily disable netpoll until the interface is down */
1352 netpoll_rx_disable(dev);
1354 list_add(&dev->close_list, &single);
1355 retval = __dev_close_many(&single);
1358 netpoll_rx_enable(dev);
1362 static int dev_close_many(struct list_head *head)
1364 struct net_device *dev, *tmp;
1366 /* Remove the devices that don't need to be closed */
1367 list_for_each_entry_safe(dev, tmp, head, close_list)
1368 if (!(dev->flags & IFF_UP))
1369 list_del_init(&dev->close_list);
1371 __dev_close_many(head);
1373 list_for_each_entry_safe(dev, tmp, head, close_list) {
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 call_netdevice_notifiers(NETDEV_DOWN, dev);
1376 list_del_init(&dev->close_list);
1383 * dev_close - shutdown an interface.
1384 * @dev: device to shutdown
1386 * This function moves an active device into down state. A
1387 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1388 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1391 int dev_close(struct net_device *dev)
1393 if (dev->flags & IFF_UP) {
1396 /* Block netpoll rx while the interface is going down */
1397 netpoll_rx_disable(dev);
1399 list_add(&dev->close_list, &single);
1400 dev_close_many(&single);
1403 netpoll_rx_enable(dev);
1407 EXPORT_SYMBOL(dev_close);
1411 * dev_disable_lro - disable Large Receive Offload on a device
1414 * Disable Large Receive Offload (LRO) on a net device. Must be
1415 * called under RTNL. This is needed if received packets may be
1416 * forwarded to another interface.
1418 void dev_disable_lro(struct net_device *dev)
1421 * If we're trying to disable lro on a vlan device
1422 * use the underlying physical device instead
1424 if (is_vlan_dev(dev))
1425 dev = vlan_dev_real_dev(dev);
1427 dev->wanted_features &= ~NETIF_F_LRO;
1428 netdev_update_features(dev);
1430 if (unlikely(dev->features & NETIF_F_LRO))
1431 netdev_WARN(dev, "failed to disable LRO!\n");
1433 EXPORT_SYMBOL(dev_disable_lro);
1435 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1436 struct net_device *dev)
1438 struct netdev_notifier_info info;
1440 netdev_notifier_info_init(&info, dev);
1441 return nb->notifier_call(nb, val, &info);
1444 static int dev_boot_phase = 1;
1447 * register_netdevice_notifier - register a network notifier block
1450 * Register a notifier to be called when network device events occur.
1451 * The notifier passed is linked into the kernel structures and must
1452 * not be reused until it has been unregistered. A negative errno code
1453 * is returned on a failure.
1455 * When registered all registration and up events are replayed
1456 * to the new notifier to allow device to have a race free
1457 * view of the network device list.
1460 int register_netdevice_notifier(struct notifier_block *nb)
1462 struct net_device *dev;
1463 struct net_device *last;
1468 err = raw_notifier_chain_register(&netdev_chain, nb);
1474 for_each_netdev(net, dev) {
1475 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1476 err = notifier_to_errno(err);
1480 if (!(dev->flags & IFF_UP))
1483 call_netdevice_notifier(nb, NETDEV_UP, dev);
1494 for_each_netdev(net, dev) {
1498 if (dev->flags & IFF_UP) {
1499 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1501 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1503 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1508 raw_notifier_chain_unregister(&netdev_chain, nb);
1511 EXPORT_SYMBOL(register_netdevice_notifier);
1514 * unregister_netdevice_notifier - unregister a network notifier block
1517 * Unregister a notifier previously registered by
1518 * register_netdevice_notifier(). The notifier is unlinked into the
1519 * kernel structures and may then be reused. A negative errno code
1520 * is returned on a failure.
1522 * After unregistering unregister and down device events are synthesized
1523 * for all devices on the device list to the removed notifier to remove
1524 * the need for special case cleanup code.
1527 int unregister_netdevice_notifier(struct notifier_block *nb)
1529 struct net_device *dev;
1534 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539 for_each_netdev(net, dev) {
1540 if (dev->flags & IFF_UP) {
1541 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1543 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1545 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1552 EXPORT_SYMBOL(unregister_netdevice_notifier);
1555 * call_netdevice_notifiers_info - call all network notifier blocks
1556 * @val: value passed unmodified to notifier function
1557 * @dev: net_device pointer passed unmodified to notifier function
1558 * @info: notifier information data
1560 * Call all network notifier blocks. Parameters and return value
1561 * are as for raw_notifier_call_chain().
1564 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1565 struct netdev_notifier_info *info)
1568 netdev_notifier_info_init(info, dev);
1569 return raw_notifier_call_chain(&netdev_chain, val, info);
1571 EXPORT_SYMBOL(call_netdevice_notifiers_info);
1574 * call_netdevice_notifiers - call all network notifier blocks
1575 * @val: value passed unmodified to notifier function
1576 * @dev: net_device pointer passed unmodified to notifier function
1578 * Call all network notifier blocks. Parameters and return value
1579 * are as for raw_notifier_call_chain().
1582 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1584 struct netdev_notifier_info info;
1586 return call_netdevice_notifiers_info(val, dev, &info);
1588 EXPORT_SYMBOL(call_netdevice_notifiers);
1590 static struct static_key netstamp_needed __read_mostly;
1591 #ifdef HAVE_JUMP_LABEL
1592 /* We are not allowed to call static_key_slow_dec() from irq context
1593 * If net_disable_timestamp() is called from irq context, defer the
1594 * static_key_slow_dec() calls.
1596 static atomic_t netstamp_needed_deferred;
1599 void net_enable_timestamp(void)
1601 #ifdef HAVE_JUMP_LABEL
1602 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1606 static_key_slow_dec(&netstamp_needed);
1610 static_key_slow_inc(&netstamp_needed);
1612 EXPORT_SYMBOL(net_enable_timestamp);
1614 void net_disable_timestamp(void)
1616 #ifdef HAVE_JUMP_LABEL
1617 if (in_interrupt()) {
1618 atomic_inc(&netstamp_needed_deferred);
1622 static_key_slow_dec(&netstamp_needed);
1624 EXPORT_SYMBOL(net_disable_timestamp);
1626 static inline void net_timestamp_set(struct sk_buff *skb)
1628 skb->tstamp.tv64 = 0;
1629 if (static_key_false(&netstamp_needed))
1630 __net_timestamp(skb);
1633 #define net_timestamp_check(COND, SKB) \
1634 if (static_key_false(&netstamp_needed)) { \
1635 if ((COND) && !(SKB)->tstamp.tv64) \
1636 __net_timestamp(SKB); \
1639 static inline bool is_skb_forwardable(struct net_device *dev,
1640 struct sk_buff *skb)
1644 if (!(dev->flags & IFF_UP))
1647 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1648 if (skb->len <= len)
1651 /* if TSO is enabled, we don't care about the length as the packet
1652 * could be forwarded without being segmented before
1654 if (skb_is_gso(skb))
1661 * dev_forward_skb - loopback an skb to another netif
1663 * @dev: destination network device
1664 * @skb: buffer to forward
1667 * NET_RX_SUCCESS (no congestion)
1668 * NET_RX_DROP (packet was dropped, but freed)
1670 * dev_forward_skb can be used for injecting an skb from the
1671 * start_xmit function of one device into the receive queue
1672 * of another device.
1674 * The receiving device may be in another namespace, so
1675 * we have to clear all information in the skb that could
1676 * impact namespace isolation.
1678 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1680 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1681 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1682 atomic_long_inc(&dev->rx_dropped);
1688 if (unlikely(!is_skb_forwardable(dev, skb))) {
1689 atomic_long_inc(&dev->rx_dropped);
1693 skb->protocol = eth_type_trans(skb, dev);
1695 /* eth_type_trans() can set pkt_type.
1696 * call skb_scrub_packet() after it to clear pkt_type _after_ calling
1699 skb_scrub_packet(skb, true);
1701 return netif_rx(skb);
1703 EXPORT_SYMBOL_GPL(dev_forward_skb);
1705 static inline int deliver_skb(struct sk_buff *skb,
1706 struct packet_type *pt_prev,
1707 struct net_device *orig_dev)
1709 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1711 atomic_inc(&skb->users);
1712 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1715 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1717 if (!ptype->af_packet_priv || !skb->sk)
1720 if (ptype->id_match)
1721 return ptype->id_match(ptype, skb->sk);
1722 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1729 * Support routine. Sends outgoing frames to any network
1730 * taps currently in use.
1733 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1735 struct packet_type *ptype;
1736 struct sk_buff *skb2 = NULL;
1737 struct packet_type *pt_prev = NULL;
1740 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1741 /* Never send packets back to the socket
1742 * they originated from - MvS (miquels@drinkel.ow.org)
1744 if ((ptype->dev == dev || !ptype->dev) &&
1745 (!skb_loop_sk(ptype, skb))) {
1747 deliver_skb(skb2, pt_prev, skb->dev);
1752 skb2 = skb_clone(skb, GFP_ATOMIC);
1756 net_timestamp_set(skb2);
1758 /* skb->nh should be correctly
1759 set by sender, so that the second statement is
1760 just protection against buggy protocols.
1762 skb_reset_mac_header(skb2);
1764 if (skb_network_header(skb2) < skb2->data ||
1765 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1766 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1767 ntohs(skb2->protocol),
1769 skb_reset_network_header(skb2);
1772 skb2->transport_header = skb2->network_header;
1773 skb2->pkt_type = PACKET_OUTGOING;
1778 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1783 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1784 * @dev: Network device
1785 * @txq: number of queues available
1787 * If real_num_tx_queues is changed the tc mappings may no longer be
1788 * valid. To resolve this verify the tc mapping remains valid and if
1789 * not NULL the mapping. With no priorities mapping to this
1790 * offset/count pair it will no longer be used. In the worst case TC0
1791 * is invalid nothing can be done so disable priority mappings. If is
1792 * expected that drivers will fix this mapping if they can before
1793 * calling netif_set_real_num_tx_queues.
1795 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1798 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1800 /* If TC0 is invalidated disable TC mapping */
1801 if (tc->offset + tc->count > txq) {
1802 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1807 /* Invalidated prio to tc mappings set to TC0 */
1808 for (i = 1; i < TC_BITMASK + 1; i++) {
1809 int q = netdev_get_prio_tc_map(dev, i);
1811 tc = &dev->tc_to_txq[q];
1812 if (tc->offset + tc->count > txq) {
1813 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1815 netdev_set_prio_tc_map(dev, i, 0);
1821 static DEFINE_MUTEX(xps_map_mutex);
1822 #define xmap_dereference(P) \
1823 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1825 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1828 struct xps_map *map = NULL;
1832 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1834 for (pos = 0; map && pos < map->len; pos++) {
1835 if (map->queues[pos] == index) {
1837 map->queues[pos] = map->queues[--map->len];
1839 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1840 kfree_rcu(map, rcu);
1850 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1852 struct xps_dev_maps *dev_maps;
1854 bool active = false;
1856 mutex_lock(&xps_map_mutex);
1857 dev_maps = xmap_dereference(dev->xps_maps);
1862 for_each_possible_cpu(cpu) {
1863 for (i = index; i < dev->num_tx_queues; i++) {
1864 if (!remove_xps_queue(dev_maps, cpu, i))
1867 if (i == dev->num_tx_queues)
1872 RCU_INIT_POINTER(dev->xps_maps, NULL);
1873 kfree_rcu(dev_maps, rcu);
1876 for (i = index; i < dev->num_tx_queues; i++)
1877 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1881 mutex_unlock(&xps_map_mutex);
1884 static struct xps_map *expand_xps_map(struct xps_map *map,
1887 struct xps_map *new_map;
1888 int alloc_len = XPS_MIN_MAP_ALLOC;
1891 for (pos = 0; map && pos < map->len; pos++) {
1892 if (map->queues[pos] != index)
1897 /* Need to add queue to this CPU's existing map */
1899 if (pos < map->alloc_len)
1902 alloc_len = map->alloc_len * 2;
1905 /* Need to allocate new map to store queue on this CPU's map */
1906 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1911 for (i = 0; i < pos; i++)
1912 new_map->queues[i] = map->queues[i];
1913 new_map->alloc_len = alloc_len;
1919 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 struct xps_map *map, *new_map;
1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 int cpu, numa_node_id = -2;
1926 bool active = false;
1928 mutex_lock(&xps_map_mutex);
1930 dev_maps = xmap_dereference(dev->xps_maps);
1932 /* allocate memory for queue storage */
1933 for_each_online_cpu(cpu) {
1934 if (!cpumask_test_cpu(cpu, mask))
1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 if (!new_dev_maps) {
1940 mutex_unlock(&xps_map_mutex);
1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1947 map = expand_xps_map(map, cpu, index);
1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1955 goto out_no_new_maps;
1957 for_each_possible_cpu(cpu) {
1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 /* add queue to CPU maps */
1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 while ((pos < map->len) && (map->queues[pos] != index))
1966 if (pos == map->len)
1967 map->queues[map->len++] = index;
1969 if (numa_node_id == -2)
1970 numa_node_id = cpu_to_node(cpu);
1971 else if (numa_node_id != cpu_to_node(cpu))
1974 } else if (dev_maps) {
1975 /* fill in the new device map from the old device map */
1976 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1984 /* Cleanup old maps */
1986 for_each_possible_cpu(cpu) {
1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 if (map && map != new_map)
1990 kfree_rcu(map, rcu);
1993 kfree_rcu(dev_maps, rcu);
1996 dev_maps = new_dev_maps;
2000 /* update Tx queue numa node */
2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 (numa_node_id >= 0) ? numa_node_id :
2008 /* removes queue from unused CPUs */
2009 for_each_possible_cpu(cpu) {
2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2013 if (remove_xps_queue(dev_maps, cpu, index))
2017 /* free map if not active */
2019 RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 kfree_rcu(dev_maps, rcu);
2024 mutex_unlock(&xps_map_mutex);
2028 /* remove any maps that we added */
2029 for_each_possible_cpu(cpu) {
2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2033 if (new_map && new_map != map)
2037 mutex_unlock(&xps_map_mutex);
2039 kfree(new_dev_maps);
2042 EXPORT_SYMBOL(netif_set_xps_queue);
2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2053 if (txq < 1 || txq > dev->num_tx_queues)
2056 if (dev->reg_state == NETREG_REGISTERED ||
2057 dev->reg_state == NETREG_UNREGISTERING) {
2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2066 netif_setup_tc(dev, txq);
2068 if (txq < dev->real_num_tx_queues) {
2069 qdisc_reset_all_tx_gt(dev, txq);
2071 netif_reset_xps_queues_gt(dev, txq);
2076 dev->real_num_tx_queues = txq;
2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2083 * netif_set_real_num_rx_queues - set actual number of RX queues used
2084 * @dev: Network device
2085 * @rxq: Actual number of RX queues
2087 * This must be called either with the rtnl_lock held or before
2088 * registration of the net device. Returns 0 on success, or a
2089 * negative error code. If called before registration, it always
2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2096 if (rxq < 1 || rxq > dev->num_rx_queues)
2099 if (dev->reg_state == NETREG_REGISTERED) {
2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2108 dev->real_num_rx_queues = rxq;
2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2115 * netif_get_num_default_rss_queues - default number of RSS queues
2117 * This routine should set an upper limit on the number of RSS queues
2118 * used by default by multiqueue devices.
2120 int netif_get_num_default_rss_queues(void)
2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2126 static inline void __netif_reschedule(struct Qdisc *q)
2128 struct softnet_data *sd;
2129 unsigned long flags;
2131 local_irq_save(flags);
2132 sd = &__get_cpu_var(softnet_data);
2133 q->next_sched = NULL;
2134 *sd->output_queue_tailp = q;
2135 sd->output_queue_tailp = &q->next_sched;
2136 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 local_irq_restore(flags);
2140 void __netif_schedule(struct Qdisc *q)
2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 __netif_reschedule(q);
2145 EXPORT_SYMBOL(__netif_schedule);
2147 void dev_kfree_skb_irq(struct sk_buff *skb)
2149 if (atomic_dec_and_test(&skb->users)) {
2150 struct softnet_data *sd;
2151 unsigned long flags;
2153 local_irq_save(flags);
2154 sd = &__get_cpu_var(softnet_data);
2155 skb->next = sd->completion_queue;
2156 sd->completion_queue = skb;
2157 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2158 local_irq_restore(flags);
2161 EXPORT_SYMBOL(dev_kfree_skb_irq);
2163 void dev_kfree_skb_any(struct sk_buff *skb)
2165 if (in_irq() || irqs_disabled())
2166 dev_kfree_skb_irq(skb);
2170 EXPORT_SYMBOL(dev_kfree_skb_any);
2174 * netif_device_detach - mark device as removed
2175 * @dev: network device
2177 * Mark device as removed from system and therefore no longer available.
2179 void netif_device_detach(struct net_device *dev)
2181 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2182 netif_running(dev)) {
2183 netif_tx_stop_all_queues(dev);
2186 EXPORT_SYMBOL(netif_device_detach);
2189 * netif_device_attach - mark device as attached
2190 * @dev: network device
2192 * Mark device as attached from system and restart if needed.
2194 void netif_device_attach(struct net_device *dev)
2196 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2197 netif_running(dev)) {
2198 netif_tx_wake_all_queues(dev);
2199 __netdev_watchdog_up(dev);
2202 EXPORT_SYMBOL(netif_device_attach);
2204 static void skb_warn_bad_offload(const struct sk_buff *skb)
2206 static const netdev_features_t null_features = 0;
2207 struct net_device *dev = skb->dev;
2208 const char *driver = "";
2210 if (!net_ratelimit())
2213 if (dev && dev->dev.parent)
2214 driver = dev_driver_string(dev->dev.parent);
2216 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2217 "gso_type=%d ip_summed=%d\n",
2218 driver, dev ? &dev->features : &null_features,
2219 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2220 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2221 skb_shinfo(skb)->gso_type, skb->ip_summed);
2225 * Invalidate hardware checksum when packet is to be mangled, and
2226 * complete checksum manually on outgoing path.
2228 int skb_checksum_help(struct sk_buff *skb)
2231 int ret = 0, offset;
2233 if (skb->ip_summed == CHECKSUM_COMPLETE)
2234 goto out_set_summed;
2236 if (unlikely(skb_shinfo(skb)->gso_size)) {
2237 skb_warn_bad_offload(skb);
2241 /* Before computing a checksum, we should make sure no frag could
2242 * be modified by an external entity : checksum could be wrong.
2244 if (skb_has_shared_frag(skb)) {
2245 ret = __skb_linearize(skb);
2250 offset = skb_checksum_start_offset(skb);
2251 BUG_ON(offset >= skb_headlen(skb));
2252 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2254 offset += skb->csum_offset;
2255 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2257 if (skb_cloned(skb) &&
2258 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2259 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2264 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2266 skb->ip_summed = CHECKSUM_NONE;
2270 EXPORT_SYMBOL(skb_checksum_help);
2272 __be16 skb_network_protocol(struct sk_buff *skb)
2274 __be16 type = skb->protocol;
2275 int vlan_depth = ETH_HLEN;
2277 /* Tunnel gso handlers can set protocol to ethernet. */
2278 if (type == htons(ETH_P_TEB)) {
2281 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2284 eth = (struct ethhdr *)skb_mac_header(skb);
2285 type = eth->h_proto;
2288 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2289 struct vlan_hdr *vh;
2291 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2294 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2295 type = vh->h_vlan_encapsulated_proto;
2296 vlan_depth += VLAN_HLEN;
2303 * skb_mac_gso_segment - mac layer segmentation handler.
2304 * @skb: buffer to segment
2305 * @features: features for the output path (see dev->features)
2307 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2308 netdev_features_t features)
2310 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2311 struct packet_offload *ptype;
2312 __be16 type = skb_network_protocol(skb);
2314 if (unlikely(!type))
2315 return ERR_PTR(-EINVAL);
2317 __skb_pull(skb, skb->mac_len);
2320 list_for_each_entry_rcu(ptype, &offload_base, list) {
2321 if (ptype->type == type && ptype->callbacks.gso_segment) {
2322 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2325 err = ptype->callbacks.gso_send_check(skb);
2326 segs = ERR_PTR(err);
2327 if (err || skb_gso_ok(skb, features))
2329 __skb_push(skb, (skb->data -
2330 skb_network_header(skb)));
2332 segs = ptype->callbacks.gso_segment(skb, features);
2338 __skb_push(skb, skb->data - skb_mac_header(skb));
2342 EXPORT_SYMBOL(skb_mac_gso_segment);
2345 /* openvswitch calls this on rx path, so we need a different check.
2347 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2350 return skb->ip_summed != CHECKSUM_PARTIAL;
2352 return skb->ip_summed == CHECKSUM_NONE;
2356 * __skb_gso_segment - Perform segmentation on skb.
2357 * @skb: buffer to segment
2358 * @features: features for the output path (see dev->features)
2359 * @tx_path: whether it is called in TX path
2361 * This function segments the given skb and returns a list of segments.
2363 * It may return NULL if the skb requires no segmentation. This is
2364 * only possible when GSO is used for verifying header integrity.
2366 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2367 netdev_features_t features, bool tx_path)
2369 if (unlikely(skb_needs_check(skb, tx_path))) {
2372 skb_warn_bad_offload(skb);
2374 if (skb_header_cloned(skb) &&
2375 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2376 return ERR_PTR(err);
2379 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2380 SKB_GSO_CB(skb)->encap_level = 0;
2382 skb_reset_mac_header(skb);
2383 skb_reset_mac_len(skb);
2385 return skb_mac_gso_segment(skb, features);
2387 EXPORT_SYMBOL(__skb_gso_segment);
2389 /* Take action when hardware reception checksum errors are detected. */
2391 void netdev_rx_csum_fault(struct net_device *dev)
2393 if (net_ratelimit()) {
2394 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2398 EXPORT_SYMBOL(netdev_rx_csum_fault);
2401 /* Actually, we should eliminate this check as soon as we know, that:
2402 * 1. IOMMU is present and allows to map all the memory.
2403 * 2. No high memory really exists on this machine.
2406 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2408 #ifdef CONFIG_HIGHMEM
2410 if (!(dev->features & NETIF_F_HIGHDMA)) {
2411 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2412 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2413 if (PageHighMem(skb_frag_page(frag)))
2418 if (PCI_DMA_BUS_IS_PHYS) {
2419 struct device *pdev = dev->dev.parent;
2423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2424 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2425 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2426 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2435 void (*destructor)(struct sk_buff *skb);
2438 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2440 static void dev_gso_skb_destructor(struct sk_buff *skb)
2442 struct dev_gso_cb *cb;
2445 struct sk_buff *nskb = skb->next;
2447 skb->next = nskb->next;
2450 } while (skb->next);
2452 cb = DEV_GSO_CB(skb);
2454 cb->destructor(skb);
2458 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2459 * @skb: buffer to segment
2460 * @features: device features as applicable to this skb
2462 * This function segments the given skb and stores the list of segments
2465 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2467 struct sk_buff *segs;
2469 segs = skb_gso_segment(skb, features);
2471 /* Verifying header integrity only. */
2476 return PTR_ERR(segs);
2479 DEV_GSO_CB(skb)->destructor = skb->destructor;
2480 skb->destructor = dev_gso_skb_destructor;
2485 static netdev_features_t harmonize_features(struct sk_buff *skb,
2486 netdev_features_t features)
2488 if (skb->ip_summed != CHECKSUM_NONE &&
2489 !can_checksum_protocol(features, skb_network_protocol(skb))) {
2490 features &= ~NETIF_F_ALL_CSUM;
2491 } else if (illegal_highdma(skb->dev, skb)) {
2492 features &= ~NETIF_F_SG;
2498 netdev_features_t netif_skb_features(struct sk_buff *skb)
2500 __be16 protocol = skb->protocol;
2501 netdev_features_t features = skb->dev->features;
2503 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2504 features &= ~NETIF_F_GSO_MASK;
2506 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2507 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2508 protocol = veh->h_vlan_encapsulated_proto;
2509 } else if (!vlan_tx_tag_present(skb)) {
2510 return harmonize_features(skb, features);
2513 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2514 NETIF_F_HW_VLAN_STAG_TX);
2516 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2517 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2518 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2519 NETIF_F_HW_VLAN_STAG_TX;
2521 return harmonize_features(skb, features);
2523 EXPORT_SYMBOL(netif_skb_features);
2526 * Returns true if either:
2527 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2528 * 2. skb is fragmented and the device does not support SG.
2530 static inline int skb_needs_linearize(struct sk_buff *skb,
2531 netdev_features_t features)
2533 return skb_is_nonlinear(skb) &&
2534 ((skb_has_frag_list(skb) &&
2535 !(features & NETIF_F_FRAGLIST)) ||
2536 (skb_shinfo(skb)->nr_frags &&
2537 !(features & NETIF_F_SG)));
2540 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2541 struct netdev_queue *txq, void *accel_priv)
2543 const struct net_device_ops *ops = dev->netdev_ops;
2544 int rc = NETDEV_TX_OK;
2545 unsigned int skb_len;
2547 if (likely(!skb->next)) {
2548 netdev_features_t features;
2551 * If device doesn't need skb->dst, release it right now while
2552 * its hot in this cpu cache
2554 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2557 features = netif_skb_features(skb);
2559 if (vlan_tx_tag_present(skb) &&
2560 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2561 skb = __vlan_put_tag(skb, skb->vlan_proto,
2562 vlan_tx_tag_get(skb));
2569 /* If encapsulation offload request, verify we are testing
2570 * hardware encapsulation features instead of standard
2571 * features for the netdev
2573 if (skb->encapsulation)
2574 features &= dev->hw_enc_features;
2576 if (netif_needs_gso(skb, features)) {
2577 if (unlikely(dev_gso_segment(skb, features)))
2582 if (skb_needs_linearize(skb, features) &&
2583 __skb_linearize(skb))
2586 /* If packet is not checksummed and device does not
2587 * support checksumming for this protocol, complete
2588 * checksumming here.
2590 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2591 if (skb->encapsulation)
2592 skb_set_inner_transport_header(skb,
2593 skb_checksum_start_offset(skb));
2595 skb_set_transport_header(skb,
2596 skb_checksum_start_offset(skb));
2597 if (!(features & NETIF_F_ALL_CSUM) &&
2598 skb_checksum_help(skb))
2603 if (!list_empty(&ptype_all))
2604 dev_queue_xmit_nit(skb, dev);
2608 rc = ops->ndo_dfwd_start_xmit(skb, dev, accel_priv);
2610 rc = ops->ndo_start_xmit(skb, dev);
2612 trace_net_dev_xmit(skb, rc, dev, skb_len);
2613 if (rc == NETDEV_TX_OK && txq)
2614 txq_trans_update(txq);
2620 struct sk_buff *nskb = skb->next;
2622 skb->next = nskb->next;
2625 if (!list_empty(&ptype_all))
2626 dev_queue_xmit_nit(nskb, dev);
2628 skb_len = nskb->len;
2630 rc = ops->ndo_dfwd_start_xmit(nskb, dev, accel_priv);
2632 rc = ops->ndo_start_xmit(nskb, dev);
2633 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2634 if (unlikely(rc != NETDEV_TX_OK)) {
2635 if (rc & ~NETDEV_TX_MASK)
2636 goto out_kfree_gso_skb;
2637 nskb->next = skb->next;
2641 txq_trans_update(txq);
2642 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2643 return NETDEV_TX_BUSY;
2644 } while (skb->next);
2647 if (likely(skb->next == NULL)) {
2648 skb->destructor = DEV_GSO_CB(skb)->destructor;
2657 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2659 static void qdisc_pkt_len_init(struct sk_buff *skb)
2661 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2663 qdisc_skb_cb(skb)->pkt_len = skb->len;
2665 /* To get more precise estimation of bytes sent on wire,
2666 * we add to pkt_len the headers size of all segments
2668 if (shinfo->gso_size) {
2669 unsigned int hdr_len;
2670 u16 gso_segs = shinfo->gso_segs;
2672 /* mac layer + network layer */
2673 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2675 /* + transport layer */
2676 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2677 hdr_len += tcp_hdrlen(skb);
2679 hdr_len += sizeof(struct udphdr);
2681 if (shinfo->gso_type & SKB_GSO_DODGY)
2682 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2685 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2689 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2690 struct net_device *dev,
2691 struct netdev_queue *txq)
2693 spinlock_t *root_lock = qdisc_lock(q);
2697 qdisc_pkt_len_init(skb);
2698 qdisc_calculate_pkt_len(skb, q);
2700 * Heuristic to force contended enqueues to serialize on a
2701 * separate lock before trying to get qdisc main lock.
2702 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2703 * and dequeue packets faster.
2705 contended = qdisc_is_running(q);
2706 if (unlikely(contended))
2707 spin_lock(&q->busylock);
2709 spin_lock(root_lock);
2710 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2713 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2714 qdisc_run_begin(q)) {
2716 * This is a work-conserving queue; there are no old skbs
2717 * waiting to be sent out; and the qdisc is not running -
2718 * xmit the skb directly.
2720 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2723 qdisc_bstats_update(q, skb);
2725 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2726 if (unlikely(contended)) {
2727 spin_unlock(&q->busylock);
2734 rc = NET_XMIT_SUCCESS;
2737 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2738 if (qdisc_run_begin(q)) {
2739 if (unlikely(contended)) {
2740 spin_unlock(&q->busylock);
2746 spin_unlock(root_lock);
2747 if (unlikely(contended))
2748 spin_unlock(&q->busylock);
2752 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2753 static void skb_update_prio(struct sk_buff *skb)
2755 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2757 if (!skb->priority && skb->sk && map) {
2758 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2760 if (prioidx < map->priomap_len)
2761 skb->priority = map->priomap[prioidx];
2765 #define skb_update_prio(skb)
2768 static DEFINE_PER_CPU(int, xmit_recursion);
2769 #define RECURSION_LIMIT 10
2772 * dev_loopback_xmit - loop back @skb
2773 * @skb: buffer to transmit
2775 int dev_loopback_xmit(struct sk_buff *skb)
2777 skb_reset_mac_header(skb);
2778 __skb_pull(skb, skb_network_offset(skb));
2779 skb->pkt_type = PACKET_LOOPBACK;
2780 skb->ip_summed = CHECKSUM_UNNECESSARY;
2781 WARN_ON(!skb_dst(skb));
2786 EXPORT_SYMBOL(dev_loopback_xmit);
2789 * dev_queue_xmit - transmit a buffer
2790 * @skb: buffer to transmit
2792 * Queue a buffer for transmission to a network device. The caller must
2793 * have set the device and priority and built the buffer before calling
2794 * this function. The function can be called from an interrupt.
2796 * A negative errno code is returned on a failure. A success does not
2797 * guarantee the frame will be transmitted as it may be dropped due
2798 * to congestion or traffic shaping.
2800 * -----------------------------------------------------------------------------------
2801 * I notice this method can also return errors from the queue disciplines,
2802 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2805 * Regardless of the return value, the skb is consumed, so it is currently
2806 * difficult to retry a send to this method. (You can bump the ref count
2807 * before sending to hold a reference for retry if you are careful.)
2809 * When calling this method, interrupts MUST be enabled. This is because
2810 * the BH enable code must have IRQs enabled so that it will not deadlock.
2813 int dev_queue_xmit(struct sk_buff *skb)
2815 struct net_device *dev = skb->dev;
2816 struct netdev_queue *txq;
2820 skb_reset_mac_header(skb);
2822 /* Disable soft irqs for various locks below. Also
2823 * stops preemption for RCU.
2827 skb_update_prio(skb);
2829 txq = netdev_pick_tx(dev, skb);
2830 q = rcu_dereference_bh(txq->qdisc);
2832 #ifdef CONFIG_NET_CLS_ACT
2833 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2835 trace_net_dev_queue(skb);
2837 rc = __dev_xmit_skb(skb, q, dev, txq);
2841 /* The device has no queue. Common case for software devices:
2842 loopback, all the sorts of tunnels...
2844 Really, it is unlikely that netif_tx_lock protection is necessary
2845 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2847 However, it is possible, that they rely on protection
2850 Check this and shot the lock. It is not prone from deadlocks.
2851 Either shot noqueue qdisc, it is even simpler 8)
2853 if (dev->flags & IFF_UP) {
2854 int cpu = smp_processor_id(); /* ok because BHs are off */
2856 if (txq->xmit_lock_owner != cpu) {
2858 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2859 goto recursion_alert;
2861 HARD_TX_LOCK(dev, txq, cpu);
2863 if (!netif_xmit_stopped(txq)) {
2864 __this_cpu_inc(xmit_recursion);
2865 rc = dev_hard_start_xmit(skb, dev, txq, NULL);
2866 __this_cpu_dec(xmit_recursion);
2867 if (dev_xmit_complete(rc)) {
2868 HARD_TX_UNLOCK(dev, txq);
2872 HARD_TX_UNLOCK(dev, txq);
2873 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2876 /* Recursion is detected! It is possible,
2880 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2886 rcu_read_unlock_bh();
2891 rcu_read_unlock_bh();
2894 EXPORT_SYMBOL(dev_queue_xmit);
2897 /*=======================================================================
2899 =======================================================================*/
2901 int netdev_max_backlog __read_mostly = 1000;
2902 EXPORT_SYMBOL(netdev_max_backlog);
2904 int netdev_tstamp_prequeue __read_mostly = 1;
2905 int netdev_budget __read_mostly = 300;
2906 int weight_p __read_mostly = 64; /* old backlog weight */
2908 /* Called with irq disabled */
2909 static inline void ____napi_schedule(struct softnet_data *sd,
2910 struct napi_struct *napi)
2912 list_add_tail(&napi->poll_list, &sd->poll_list);
2913 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2918 /* One global table that all flow-based protocols share. */
2919 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2920 EXPORT_SYMBOL(rps_sock_flow_table);
2922 struct static_key rps_needed __read_mostly;
2924 static struct rps_dev_flow *
2925 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2926 struct rps_dev_flow *rflow, u16 next_cpu)
2928 if (next_cpu != RPS_NO_CPU) {
2929 #ifdef CONFIG_RFS_ACCEL
2930 struct netdev_rx_queue *rxqueue;
2931 struct rps_dev_flow_table *flow_table;
2932 struct rps_dev_flow *old_rflow;
2937 /* Should we steer this flow to a different hardware queue? */
2938 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2939 !(dev->features & NETIF_F_NTUPLE))
2941 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2942 if (rxq_index == skb_get_rx_queue(skb))
2945 rxqueue = dev->_rx + rxq_index;
2946 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2949 flow_id = skb->rxhash & flow_table->mask;
2950 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2951 rxq_index, flow_id);
2955 rflow = &flow_table->flows[flow_id];
2957 if (old_rflow->filter == rflow->filter)
2958 old_rflow->filter = RPS_NO_FILTER;
2962 per_cpu(softnet_data, next_cpu).input_queue_head;
2965 rflow->cpu = next_cpu;
2970 * get_rps_cpu is called from netif_receive_skb and returns the target
2971 * CPU from the RPS map of the receiving queue for a given skb.
2972 * rcu_read_lock must be held on entry.
2974 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2975 struct rps_dev_flow **rflowp)
2977 struct netdev_rx_queue *rxqueue;
2978 struct rps_map *map;
2979 struct rps_dev_flow_table *flow_table;
2980 struct rps_sock_flow_table *sock_flow_table;
2984 if (skb_rx_queue_recorded(skb)) {
2985 u16 index = skb_get_rx_queue(skb);
2986 if (unlikely(index >= dev->real_num_rx_queues)) {
2987 WARN_ONCE(dev->real_num_rx_queues > 1,
2988 "%s received packet on queue %u, but number "
2989 "of RX queues is %u\n",
2990 dev->name, index, dev->real_num_rx_queues);
2993 rxqueue = dev->_rx + index;
2997 map = rcu_dereference(rxqueue->rps_map);
2999 if (map->len == 1 &&
3000 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3001 tcpu = map->cpus[0];
3002 if (cpu_online(tcpu))
3006 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3010 skb_reset_network_header(skb);
3011 if (!skb_get_rxhash(skb))
3014 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3015 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3016 if (flow_table && sock_flow_table) {
3018 struct rps_dev_flow *rflow;
3020 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3023 next_cpu = sock_flow_table->ents[skb->rxhash &
3024 sock_flow_table->mask];
3027 * If the desired CPU (where last recvmsg was done) is
3028 * different from current CPU (one in the rx-queue flow
3029 * table entry), switch if one of the following holds:
3030 * - Current CPU is unset (equal to RPS_NO_CPU).
3031 * - Current CPU is offline.
3032 * - The current CPU's queue tail has advanced beyond the
3033 * last packet that was enqueued using this table entry.
3034 * This guarantees that all previous packets for the flow
3035 * have been dequeued, thus preserving in order delivery.
3037 if (unlikely(tcpu != next_cpu) &&
3038 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3039 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3040 rflow->last_qtail)) >= 0)) {
3042 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3045 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3053 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3055 if (cpu_online(tcpu)) {
3065 #ifdef CONFIG_RFS_ACCEL
3068 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3069 * @dev: Device on which the filter was set
3070 * @rxq_index: RX queue index
3071 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3072 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3074 * Drivers that implement ndo_rx_flow_steer() should periodically call
3075 * this function for each installed filter and remove the filters for
3076 * which it returns %true.
3078 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3079 u32 flow_id, u16 filter_id)
3081 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3082 struct rps_dev_flow_table *flow_table;
3083 struct rps_dev_flow *rflow;
3088 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3089 if (flow_table && flow_id <= flow_table->mask) {
3090 rflow = &flow_table->flows[flow_id];
3091 cpu = ACCESS_ONCE(rflow->cpu);
3092 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3093 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3094 rflow->last_qtail) <
3095 (int)(10 * flow_table->mask)))
3101 EXPORT_SYMBOL(rps_may_expire_flow);
3103 #endif /* CONFIG_RFS_ACCEL */
3105 /* Called from hardirq (IPI) context */
3106 static void rps_trigger_softirq(void *data)
3108 struct softnet_data *sd = data;
3110 ____napi_schedule(sd, &sd->backlog);
3114 #endif /* CONFIG_RPS */
3117 * Check if this softnet_data structure is another cpu one
3118 * If yes, queue it to our IPI list and return 1
3121 static int rps_ipi_queued(struct softnet_data *sd)
3124 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3127 sd->rps_ipi_next = mysd->rps_ipi_list;
3128 mysd->rps_ipi_list = sd;
3130 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3133 #endif /* CONFIG_RPS */
3137 #ifdef CONFIG_NET_FLOW_LIMIT
3138 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3141 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3143 #ifdef CONFIG_NET_FLOW_LIMIT
3144 struct sd_flow_limit *fl;
3145 struct softnet_data *sd;
3146 unsigned int old_flow, new_flow;
3148 if (qlen < (netdev_max_backlog >> 1))
3151 sd = &__get_cpu_var(softnet_data);
3154 fl = rcu_dereference(sd->flow_limit);
3156 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1);
3157 old_flow = fl->history[fl->history_head];
3158 fl->history[fl->history_head] = new_flow;
3161 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3163 if (likely(fl->buckets[old_flow]))
3164 fl->buckets[old_flow]--;
3166 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3178 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3179 * queue (may be a remote CPU queue).
3181 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3182 unsigned int *qtail)
3184 struct softnet_data *sd;
3185 unsigned long flags;
3188 sd = &per_cpu(softnet_data, cpu);
3190 local_irq_save(flags);
3193 qlen = skb_queue_len(&sd->input_pkt_queue);
3194 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3195 if (skb_queue_len(&sd->input_pkt_queue)) {
3197 __skb_queue_tail(&sd->input_pkt_queue, skb);
3198 input_queue_tail_incr_save(sd, qtail);
3200 local_irq_restore(flags);
3201 return NET_RX_SUCCESS;
3204 /* Schedule NAPI for backlog device
3205 * We can use non atomic operation since we own the queue lock
3207 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3208 if (!rps_ipi_queued(sd))
3209 ____napi_schedule(sd, &sd->backlog);
3217 local_irq_restore(flags);
3219 atomic_long_inc(&skb->dev->rx_dropped);
3225 * netif_rx - post buffer to the network code
3226 * @skb: buffer to post
3228 * This function receives a packet from a device driver and queues it for
3229 * the upper (protocol) levels to process. It always succeeds. The buffer
3230 * may be dropped during processing for congestion control or by the
3234 * NET_RX_SUCCESS (no congestion)
3235 * NET_RX_DROP (packet was dropped)
3239 int netif_rx(struct sk_buff *skb)
3243 /* if netpoll wants it, pretend we never saw it */
3244 if (netpoll_rx(skb))
3247 net_timestamp_check(netdev_tstamp_prequeue, skb);
3249 trace_netif_rx(skb);
3251 if (static_key_false(&rps_needed)) {
3252 struct rps_dev_flow voidflow, *rflow = &voidflow;
3258 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3260 cpu = smp_processor_id();
3262 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3270 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3275 EXPORT_SYMBOL(netif_rx);
3277 int netif_rx_ni(struct sk_buff *skb)
3282 err = netif_rx(skb);
3283 if (local_softirq_pending())
3289 EXPORT_SYMBOL(netif_rx_ni);
3291 static void net_tx_action(struct softirq_action *h)
3293 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3295 if (sd->completion_queue) {
3296 struct sk_buff *clist;
3298 local_irq_disable();
3299 clist = sd->completion_queue;
3300 sd->completion_queue = NULL;
3304 struct sk_buff *skb = clist;
3305 clist = clist->next;
3307 WARN_ON(atomic_read(&skb->users));
3308 trace_kfree_skb(skb, net_tx_action);
3313 if (sd->output_queue) {
3316 local_irq_disable();
3317 head = sd->output_queue;
3318 sd->output_queue = NULL;
3319 sd->output_queue_tailp = &sd->output_queue;
3323 struct Qdisc *q = head;
3324 spinlock_t *root_lock;
3326 head = head->next_sched;
3328 root_lock = qdisc_lock(q);
3329 if (spin_trylock(root_lock)) {
3330 smp_mb__before_clear_bit();
3331 clear_bit(__QDISC_STATE_SCHED,
3334 spin_unlock(root_lock);
3336 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3338 __netif_reschedule(q);
3340 smp_mb__before_clear_bit();
3341 clear_bit(__QDISC_STATE_SCHED,
3349 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3350 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3351 /* This hook is defined here for ATM LANE */
3352 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3353 unsigned char *addr) __read_mostly;
3354 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3357 #ifdef CONFIG_NET_CLS_ACT
3358 /* TODO: Maybe we should just force sch_ingress to be compiled in
3359 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3360 * a compare and 2 stores extra right now if we dont have it on
3361 * but have CONFIG_NET_CLS_ACT
3362 * NOTE: This doesn't stop any functionality; if you dont have
3363 * the ingress scheduler, you just can't add policies on ingress.
3366 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3368 struct net_device *dev = skb->dev;
3369 u32 ttl = G_TC_RTTL(skb->tc_verd);
3370 int result = TC_ACT_OK;
3373 if (unlikely(MAX_RED_LOOP < ttl++)) {
3374 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3375 skb->skb_iif, dev->ifindex);
3379 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3380 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3383 if (q != &noop_qdisc) {
3384 spin_lock(qdisc_lock(q));
3385 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3386 result = qdisc_enqueue_root(skb, q);
3387 spin_unlock(qdisc_lock(q));
3393 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3394 struct packet_type **pt_prev,
3395 int *ret, struct net_device *orig_dev)
3397 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3399 if (!rxq || rxq->qdisc == &noop_qdisc)
3403 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3407 switch (ing_filter(skb, rxq)) {
3421 * netdev_rx_handler_register - register receive handler
3422 * @dev: device to register a handler for
3423 * @rx_handler: receive handler to register
3424 * @rx_handler_data: data pointer that is used by rx handler
3426 * Register a receive hander for a device. This handler will then be
3427 * called from __netif_receive_skb. A negative errno code is returned
3430 * The caller must hold the rtnl_mutex.
3432 * For a general description of rx_handler, see enum rx_handler_result.
3434 int netdev_rx_handler_register(struct net_device *dev,
3435 rx_handler_func_t *rx_handler,
3436 void *rx_handler_data)
3440 if (dev->rx_handler)
3443 /* Note: rx_handler_data must be set before rx_handler */
3444 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3445 rcu_assign_pointer(dev->rx_handler, rx_handler);
3449 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3452 * netdev_rx_handler_unregister - unregister receive handler
3453 * @dev: device to unregister a handler from
3455 * Unregister a receive handler from a device.
3457 * The caller must hold the rtnl_mutex.
3459 void netdev_rx_handler_unregister(struct net_device *dev)
3463 RCU_INIT_POINTER(dev->rx_handler, NULL);
3464 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3465 * section has a guarantee to see a non NULL rx_handler_data
3469 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3471 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3474 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3475 * the special handling of PFMEMALLOC skbs.
3477 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3479 switch (skb->protocol) {
3480 case __constant_htons(ETH_P_ARP):
3481 case __constant_htons(ETH_P_IP):
3482 case __constant_htons(ETH_P_IPV6):
3483 case __constant_htons(ETH_P_8021Q):
3484 case __constant_htons(ETH_P_8021AD):
3491 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3493 struct packet_type *ptype, *pt_prev;
3494 rx_handler_func_t *rx_handler;
3495 struct net_device *orig_dev;
3496 struct net_device *null_or_dev;
3497 bool deliver_exact = false;
3498 int ret = NET_RX_DROP;
3501 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3503 trace_netif_receive_skb(skb);
3505 /* if we've gotten here through NAPI, check netpoll */
3506 if (netpoll_receive_skb(skb))
3509 orig_dev = skb->dev;
3511 skb_reset_network_header(skb);
3512 if (!skb_transport_header_was_set(skb))
3513 skb_reset_transport_header(skb);
3514 skb_reset_mac_len(skb);
3521 skb->skb_iif = skb->dev->ifindex;
3523 __this_cpu_inc(softnet_data.processed);
3525 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3526 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3527 skb = vlan_untag(skb);
3532 #ifdef CONFIG_NET_CLS_ACT
3533 if (skb->tc_verd & TC_NCLS) {
3534 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3542 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3543 if (!ptype->dev || ptype->dev == skb->dev) {
3545 ret = deliver_skb(skb, pt_prev, orig_dev);
3551 #ifdef CONFIG_NET_CLS_ACT
3552 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3558 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3561 if (vlan_tx_tag_present(skb)) {
3563 ret = deliver_skb(skb, pt_prev, orig_dev);
3566 if (vlan_do_receive(&skb))
3568 else if (unlikely(!skb))
3572 rx_handler = rcu_dereference(skb->dev->rx_handler);
3575 ret = deliver_skb(skb, pt_prev, orig_dev);
3578 switch (rx_handler(&skb)) {
3579 case RX_HANDLER_CONSUMED:
3580 ret = NET_RX_SUCCESS;
3582 case RX_HANDLER_ANOTHER:
3584 case RX_HANDLER_EXACT:
3585 deliver_exact = true;
3586 case RX_HANDLER_PASS:
3593 if (unlikely(vlan_tx_tag_present(skb))) {
3594 if (vlan_tx_tag_get_id(skb))
3595 skb->pkt_type = PACKET_OTHERHOST;
3596 /* Note: we might in the future use prio bits
3597 * and set skb->priority like in vlan_do_receive()
3598 * For the time being, just ignore Priority Code Point
3603 /* deliver only exact match when indicated */
3604 null_or_dev = deliver_exact ? skb->dev : NULL;
3606 type = skb->protocol;
3607 list_for_each_entry_rcu(ptype,
3608 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3609 if (ptype->type == type &&
3610 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3611 ptype->dev == orig_dev)) {
3613 ret = deliver_skb(skb, pt_prev, orig_dev);
3619 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3622 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3625 atomic_long_inc(&skb->dev->rx_dropped);
3627 /* Jamal, now you will not able to escape explaining
3628 * me how you were going to use this. :-)
3639 static int __netif_receive_skb(struct sk_buff *skb)
3643 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3644 unsigned long pflags = current->flags;
3647 * PFMEMALLOC skbs are special, they should
3648 * - be delivered to SOCK_MEMALLOC sockets only
3649 * - stay away from userspace
3650 * - have bounded memory usage
3652 * Use PF_MEMALLOC as this saves us from propagating the allocation
3653 * context down to all allocation sites.
3655 current->flags |= PF_MEMALLOC;
3656 ret = __netif_receive_skb_core(skb, true);
3657 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3659 ret = __netif_receive_skb_core(skb, false);
3665 * netif_receive_skb - process receive buffer from network
3666 * @skb: buffer to process
3668 * netif_receive_skb() is the main receive data processing function.
3669 * It always succeeds. The buffer may be dropped during processing
3670 * for congestion control or by the protocol layers.
3672 * This function may only be called from softirq context and interrupts
3673 * should be enabled.
3675 * Return values (usually ignored):
3676 * NET_RX_SUCCESS: no congestion
3677 * NET_RX_DROP: packet was dropped
3679 int netif_receive_skb(struct sk_buff *skb)
3681 net_timestamp_check(netdev_tstamp_prequeue, skb);
3683 if (skb_defer_rx_timestamp(skb))
3684 return NET_RX_SUCCESS;
3687 if (static_key_false(&rps_needed)) {
3688 struct rps_dev_flow voidflow, *rflow = &voidflow;
3693 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3696 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3703 return __netif_receive_skb(skb);
3705 EXPORT_SYMBOL(netif_receive_skb);
3707 /* Network device is going away, flush any packets still pending
3708 * Called with irqs disabled.
3710 static void flush_backlog(void *arg)
3712 struct net_device *dev = arg;
3713 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3714 struct sk_buff *skb, *tmp;
3717 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3718 if (skb->dev == dev) {
3719 __skb_unlink(skb, &sd->input_pkt_queue);
3721 input_queue_head_incr(sd);
3726 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3727 if (skb->dev == dev) {
3728 __skb_unlink(skb, &sd->process_queue);
3730 input_queue_head_incr(sd);
3735 static int napi_gro_complete(struct sk_buff *skb)
3737 struct packet_offload *ptype;
3738 __be16 type = skb->protocol;
3739 struct list_head *head = &offload_base;
3742 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3744 if (NAPI_GRO_CB(skb)->count == 1) {
3745 skb_shinfo(skb)->gso_size = 0;
3750 list_for_each_entry_rcu(ptype, head, list) {
3751 if (ptype->type != type || !ptype->callbacks.gro_complete)
3754 err = ptype->callbacks.gro_complete(skb);
3760 WARN_ON(&ptype->list == head);
3762 return NET_RX_SUCCESS;
3766 return netif_receive_skb(skb);
3769 /* napi->gro_list contains packets ordered by age.
3770 * youngest packets at the head of it.
3771 * Complete skbs in reverse order to reduce latencies.
3773 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3775 struct sk_buff *skb, *prev = NULL;
3777 /* scan list and build reverse chain */
3778 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3783 for (skb = prev; skb; skb = prev) {
3786 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3790 napi_gro_complete(skb);
3794 napi->gro_list = NULL;
3796 EXPORT_SYMBOL(napi_gro_flush);
3798 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3801 unsigned int maclen = skb->dev->hard_header_len;
3803 for (p = napi->gro_list; p; p = p->next) {
3804 unsigned long diffs;
3806 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3807 diffs |= p->vlan_tci ^ skb->vlan_tci;
3808 if (maclen == ETH_HLEN)
3809 diffs |= compare_ether_header(skb_mac_header(p),
3810 skb_gro_mac_header(skb));
3812 diffs = memcmp(skb_mac_header(p),
3813 skb_gro_mac_header(skb),
3815 NAPI_GRO_CB(p)->same_flow = !diffs;
3816 NAPI_GRO_CB(p)->flush = 0;
3820 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3822 struct sk_buff **pp = NULL;
3823 struct packet_offload *ptype;
3824 __be16 type = skb->protocol;
3825 struct list_head *head = &offload_base;
3827 enum gro_result ret;
3829 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3832 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3835 gro_list_prepare(napi, skb);
3838 list_for_each_entry_rcu(ptype, head, list) {
3839 if (ptype->type != type || !ptype->callbacks.gro_receive)
3842 skb_set_network_header(skb, skb_gro_offset(skb));
3843 skb_reset_mac_len(skb);
3844 NAPI_GRO_CB(skb)->same_flow = 0;
3845 NAPI_GRO_CB(skb)->flush = 0;
3846 NAPI_GRO_CB(skb)->free = 0;
3848 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3853 if (&ptype->list == head)
3856 same_flow = NAPI_GRO_CB(skb)->same_flow;
3857 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3860 struct sk_buff *nskb = *pp;
3864 napi_gro_complete(nskb);
3871 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3875 NAPI_GRO_CB(skb)->count = 1;
3876 NAPI_GRO_CB(skb)->age = jiffies;
3877 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3878 skb->next = napi->gro_list;
3879 napi->gro_list = skb;
3883 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3884 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3886 BUG_ON(skb->end - skb->tail < grow);
3888 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3891 skb->data_len -= grow;
3893 skb_shinfo(skb)->frags[0].page_offset += grow;
3894 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3896 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3897 skb_frag_unref(skb, 0);
3898 memmove(skb_shinfo(skb)->frags,
3899 skb_shinfo(skb)->frags + 1,
3900 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3913 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3917 if (netif_receive_skb(skb))
3925 case GRO_MERGED_FREE:
3926 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3927 kmem_cache_free(skbuff_head_cache, skb);
3940 static void skb_gro_reset_offset(struct sk_buff *skb)
3942 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3943 const skb_frag_t *frag0 = &pinfo->frags[0];
3945 NAPI_GRO_CB(skb)->data_offset = 0;
3946 NAPI_GRO_CB(skb)->frag0 = NULL;
3947 NAPI_GRO_CB(skb)->frag0_len = 0;
3949 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3951 !PageHighMem(skb_frag_page(frag0))) {
3952 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3953 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3957 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3959 skb_gro_reset_offset(skb);
3961 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3963 EXPORT_SYMBOL(napi_gro_receive);
3965 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3967 __skb_pull(skb, skb_headlen(skb));
3968 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3969 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3971 skb->dev = napi->dev;
3977 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3979 struct sk_buff *skb = napi->skb;
3982 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3988 EXPORT_SYMBOL(napi_get_frags);
3990 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3996 skb->protocol = eth_type_trans(skb, skb->dev);
3998 if (ret == GRO_HELD)
3999 skb_gro_pull(skb, -ETH_HLEN);
4000 else if (netif_receive_skb(skb))
4005 case GRO_MERGED_FREE:
4006 napi_reuse_skb(napi, skb);
4016 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4018 struct sk_buff *skb = napi->skb;
4025 skb_reset_mac_header(skb);
4026 skb_gro_reset_offset(skb);
4028 off = skb_gro_offset(skb);
4029 hlen = off + sizeof(*eth);
4030 eth = skb_gro_header_fast(skb, off);
4031 if (skb_gro_header_hard(skb, hlen)) {
4032 eth = skb_gro_header_slow(skb, hlen, off);
4033 if (unlikely(!eth)) {
4034 napi_reuse_skb(napi, skb);
4040 skb_gro_pull(skb, sizeof(*eth));
4043 * This works because the only protocols we care about don't require
4044 * special handling. We'll fix it up properly at the end.
4046 skb->protocol = eth->h_proto;
4052 gro_result_t napi_gro_frags(struct napi_struct *napi)
4054 struct sk_buff *skb = napi_frags_skb(napi);
4059 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4061 EXPORT_SYMBOL(napi_gro_frags);
4064 * net_rps_action sends any pending IPI's for rps.
4065 * Note: called with local irq disabled, but exits with local irq enabled.
4067 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4070 struct softnet_data *remsd = sd->rps_ipi_list;
4073 sd->rps_ipi_list = NULL;
4077 /* Send pending IPI's to kick RPS processing on remote cpus. */
4079 struct softnet_data *next = remsd->rps_ipi_next;
4081 if (cpu_online(remsd->cpu))
4082 __smp_call_function_single(remsd->cpu,
4091 static int process_backlog(struct napi_struct *napi, int quota)
4094 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4097 /* Check if we have pending ipi, its better to send them now,
4098 * not waiting net_rx_action() end.
4100 if (sd->rps_ipi_list) {
4101 local_irq_disable();
4102 net_rps_action_and_irq_enable(sd);
4105 napi->weight = weight_p;
4106 local_irq_disable();
4107 while (work < quota) {
4108 struct sk_buff *skb;
4111 while ((skb = __skb_dequeue(&sd->process_queue))) {
4113 __netif_receive_skb(skb);
4114 local_irq_disable();
4115 input_queue_head_incr(sd);
4116 if (++work >= quota) {
4123 qlen = skb_queue_len(&sd->input_pkt_queue);
4125 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4126 &sd->process_queue);
4128 if (qlen < quota - work) {
4130 * Inline a custom version of __napi_complete().
4131 * only current cpu owns and manipulates this napi,
4132 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4133 * we can use a plain write instead of clear_bit(),
4134 * and we dont need an smp_mb() memory barrier.
4136 list_del(&napi->poll_list);
4139 quota = work + qlen;
4149 * __napi_schedule - schedule for receive
4150 * @n: entry to schedule
4152 * The entry's receive function will be scheduled to run
4154 void __napi_schedule(struct napi_struct *n)
4156 unsigned long flags;
4158 local_irq_save(flags);
4159 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4160 local_irq_restore(flags);
4162 EXPORT_SYMBOL(__napi_schedule);
4164 void __napi_complete(struct napi_struct *n)
4166 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4167 BUG_ON(n->gro_list);
4169 list_del(&n->poll_list);
4170 smp_mb__before_clear_bit();
4171 clear_bit(NAPI_STATE_SCHED, &n->state);
4173 EXPORT_SYMBOL(__napi_complete);
4175 void napi_complete(struct napi_struct *n)
4177 unsigned long flags;
4180 * don't let napi dequeue from the cpu poll list
4181 * just in case its running on a different cpu
4183 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4186 napi_gro_flush(n, false);
4187 local_irq_save(flags);
4189 local_irq_restore(flags);
4191 EXPORT_SYMBOL(napi_complete);
4193 /* must be called under rcu_read_lock(), as we dont take a reference */
4194 struct napi_struct *napi_by_id(unsigned int napi_id)
4196 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4197 struct napi_struct *napi;
4199 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4200 if (napi->napi_id == napi_id)
4205 EXPORT_SYMBOL_GPL(napi_by_id);
4207 void napi_hash_add(struct napi_struct *napi)
4209 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4211 spin_lock(&napi_hash_lock);
4213 /* 0 is not a valid id, we also skip an id that is taken
4214 * we expect both events to be extremely rare
4217 while (!napi->napi_id) {
4218 napi->napi_id = ++napi_gen_id;
4219 if (napi_by_id(napi->napi_id))
4223 hlist_add_head_rcu(&napi->napi_hash_node,
4224 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4226 spin_unlock(&napi_hash_lock);
4229 EXPORT_SYMBOL_GPL(napi_hash_add);
4231 /* Warning : caller is responsible to make sure rcu grace period
4232 * is respected before freeing memory containing @napi
4234 void napi_hash_del(struct napi_struct *napi)
4236 spin_lock(&napi_hash_lock);
4238 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4239 hlist_del_rcu(&napi->napi_hash_node);
4241 spin_unlock(&napi_hash_lock);
4243 EXPORT_SYMBOL_GPL(napi_hash_del);
4245 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4246 int (*poll)(struct napi_struct *, int), int weight)
4248 INIT_LIST_HEAD(&napi->poll_list);
4249 napi->gro_count = 0;
4250 napi->gro_list = NULL;
4253 if (weight > NAPI_POLL_WEIGHT)
4254 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4256 napi->weight = weight;
4257 list_add(&napi->dev_list, &dev->napi_list);
4259 #ifdef CONFIG_NETPOLL
4260 spin_lock_init(&napi->poll_lock);
4261 napi->poll_owner = -1;
4263 set_bit(NAPI_STATE_SCHED, &napi->state);
4265 EXPORT_SYMBOL(netif_napi_add);
4267 void netif_napi_del(struct napi_struct *napi)
4269 struct sk_buff *skb, *next;
4271 list_del_init(&napi->dev_list);
4272 napi_free_frags(napi);
4274 for (skb = napi->gro_list; skb; skb = next) {
4280 napi->gro_list = NULL;
4281 napi->gro_count = 0;
4283 EXPORT_SYMBOL(netif_napi_del);
4285 static void net_rx_action(struct softirq_action *h)
4287 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4288 unsigned long time_limit = jiffies + 2;
4289 int budget = netdev_budget;
4292 local_irq_disable();
4294 while (!list_empty(&sd->poll_list)) {
4295 struct napi_struct *n;
4298 /* If softirq window is exhuasted then punt.
4299 * Allow this to run for 2 jiffies since which will allow
4300 * an average latency of 1.5/HZ.
4302 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4307 /* Even though interrupts have been re-enabled, this
4308 * access is safe because interrupts can only add new
4309 * entries to the tail of this list, and only ->poll()
4310 * calls can remove this head entry from the list.
4312 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4314 have = netpoll_poll_lock(n);
4318 /* This NAPI_STATE_SCHED test is for avoiding a race
4319 * with netpoll's poll_napi(). Only the entity which
4320 * obtains the lock and sees NAPI_STATE_SCHED set will
4321 * actually make the ->poll() call. Therefore we avoid
4322 * accidentally calling ->poll() when NAPI is not scheduled.
4325 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4326 work = n->poll(n, weight);
4330 WARN_ON_ONCE(work > weight);
4334 local_irq_disable();
4336 /* Drivers must not modify the NAPI state if they
4337 * consume the entire weight. In such cases this code
4338 * still "owns" the NAPI instance and therefore can
4339 * move the instance around on the list at-will.
4341 if (unlikely(work == weight)) {
4342 if (unlikely(napi_disable_pending(n))) {
4345 local_irq_disable();
4348 /* flush too old packets
4349 * If HZ < 1000, flush all packets.
4352 napi_gro_flush(n, HZ >= 1000);
4353 local_irq_disable();
4355 list_move_tail(&n->poll_list, &sd->poll_list);
4359 netpoll_poll_unlock(have);
4362 net_rps_action_and_irq_enable(sd);
4364 #ifdef CONFIG_NET_DMA
4366 * There may not be any more sk_buffs coming right now, so push
4367 * any pending DMA copies to hardware
4369 dma_issue_pending_all();
4376 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4380 struct netdev_adjacent {
4381 struct net_device *dev;
4383 /* upper master flag, there can only be one master device per list */
4386 /* counter for the number of times this device was added to us */
4389 /* private field for the users */
4392 struct list_head list;
4393 struct rcu_head rcu;
4396 static struct netdev_adjacent *__netdev_find_adj_rcu(struct net_device *dev,
4397 struct net_device *adj_dev,
4398 struct list_head *adj_list)
4400 struct netdev_adjacent *adj;
4402 list_for_each_entry_rcu(adj, adj_list, list) {
4403 if (adj->dev == adj_dev)
4409 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4410 struct net_device *adj_dev,
4411 struct list_head *adj_list)
4413 struct netdev_adjacent *adj;
4415 list_for_each_entry(adj, adj_list, list) {
4416 if (adj->dev == adj_dev)
4423 * netdev_has_upper_dev - Check if device is linked to an upper device
4425 * @upper_dev: upper device to check
4427 * Find out if a device is linked to specified upper device and return true
4428 * in case it is. Note that this checks only immediate upper device,
4429 * not through a complete stack of devices. The caller must hold the RTNL lock.
4431 bool netdev_has_upper_dev(struct net_device *dev,
4432 struct net_device *upper_dev)
4436 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4438 EXPORT_SYMBOL(netdev_has_upper_dev);
4441 * netdev_has_any_upper_dev - Check if device is linked to some device
4444 * Find out if a device is linked to an upper device and return true in case
4445 * it is. The caller must hold the RTNL lock.
4447 bool netdev_has_any_upper_dev(struct net_device *dev)
4451 return !list_empty(&dev->all_adj_list.upper);
4453 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4456 * netdev_master_upper_dev_get - Get master upper device
4459 * Find a master upper device and return pointer to it or NULL in case
4460 * it's not there. The caller must hold the RTNL lock.
4462 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4464 struct netdev_adjacent *upper;
4468 if (list_empty(&dev->adj_list.upper))
4471 upper = list_first_entry(&dev->adj_list.upper,
4472 struct netdev_adjacent, list);
4473 if (likely(upper->master))
4477 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4479 void *netdev_adjacent_get_private(struct list_head *adj_list)
4481 struct netdev_adjacent *adj;
4483 adj = list_entry(adj_list, struct netdev_adjacent, list);
4485 return adj->private;
4487 EXPORT_SYMBOL(netdev_adjacent_get_private);
4490 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4492 * @iter: list_head ** of the current position
4494 * Gets the next device from the dev's upper list, starting from iter
4495 * position. The caller must hold RCU read lock.
4497 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4498 struct list_head **iter)
4500 struct netdev_adjacent *upper;
4502 WARN_ON_ONCE(!rcu_read_lock_held());
4504 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4506 if (&upper->list == &dev->all_adj_list.upper)
4509 *iter = &upper->list;
4513 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4516 * netdev_lower_get_next_private - Get the next ->private from the
4517 * lower neighbour list
4519 * @iter: list_head ** of the current position
4521 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4522 * list, starting from iter position. The caller must hold either hold the
4523 * RTNL lock or its own locking that guarantees that the neighbour lower
4524 * list will remain unchainged.
4526 void *netdev_lower_get_next_private(struct net_device *dev,
4527 struct list_head **iter)
4529 struct netdev_adjacent *lower;
4531 lower = list_entry(*iter, struct netdev_adjacent, list);
4533 if (&lower->list == &dev->adj_list.lower)
4537 *iter = lower->list.next;
4539 return lower->private;
4541 EXPORT_SYMBOL(netdev_lower_get_next_private);
4544 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4545 * lower neighbour list, RCU
4548 * @iter: list_head ** of the current position
4550 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4551 * list, starting from iter position. The caller must hold RCU read lock.
4553 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4554 struct list_head **iter)
4556 struct netdev_adjacent *lower;
4558 WARN_ON_ONCE(!rcu_read_lock_held());
4560 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4562 if (&lower->list == &dev->adj_list.lower)
4566 *iter = &lower->list;
4568 return lower->private;
4570 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4573 * netdev_master_upper_dev_get_rcu - Get master upper device
4576 * Find a master upper device and return pointer to it or NULL in case
4577 * it's not there. The caller must hold the RCU read lock.
4579 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4581 struct netdev_adjacent *upper;
4583 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4584 struct netdev_adjacent, list);
4585 if (upper && likely(upper->master))
4589 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4591 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4592 struct net_device *adj_dev,
4593 struct list_head *dev_list,
4594 void *private, bool master)
4596 struct netdev_adjacent *adj;
4597 char linkname[IFNAMSIZ+7];
4600 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4607 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4612 adj->master = master;
4614 adj->private = private;
4617 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4618 adj_dev->name, dev->name, adj_dev->name);
4620 if (dev_list == &dev->adj_list.lower) {
4621 sprintf(linkname, "lower_%s", adj_dev->name);
4622 ret = sysfs_create_link(&(dev->dev.kobj),
4623 &(adj_dev->dev.kobj), linkname);
4626 } else if (dev_list == &dev->adj_list.upper) {
4627 sprintf(linkname, "upper_%s", adj_dev->name);
4628 ret = sysfs_create_link(&(dev->dev.kobj),
4629 &(adj_dev->dev.kobj), linkname);
4634 /* Ensure that master link is always the first item in list. */
4636 ret = sysfs_create_link(&(dev->dev.kobj),
4637 &(adj_dev->dev.kobj), "master");
4639 goto remove_symlinks;
4641 list_add_rcu(&adj->list, dev_list);
4643 list_add_tail_rcu(&adj->list, dev_list);
4649 if (dev_list == &dev->adj_list.lower) {
4650 sprintf(linkname, "lower_%s", adj_dev->name);
4651 sysfs_remove_link(&(dev->dev.kobj), linkname);
4652 } else if (dev_list == &dev->adj_list.upper) {
4653 sprintf(linkname, "upper_%s", adj_dev->name);
4654 sysfs_remove_link(&(dev->dev.kobj), linkname);
4664 void __netdev_adjacent_dev_remove(struct net_device *dev,
4665 struct net_device *adj_dev,
4666 struct list_head *dev_list)
4668 struct netdev_adjacent *adj;
4669 char linkname[IFNAMSIZ+7];
4671 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4674 pr_err("tried to remove device %s from %s\n",
4675 dev->name, adj_dev->name);
4679 if (adj->ref_nr > 1) {
4680 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4687 sysfs_remove_link(&(dev->dev.kobj), "master");
4689 if (dev_list == &dev->adj_list.lower) {
4690 sprintf(linkname, "lower_%s", adj_dev->name);
4691 sysfs_remove_link(&(dev->dev.kobj), linkname);
4692 } else if (dev_list == &dev->adj_list.upper) {
4693 sprintf(linkname, "upper_%s", adj_dev->name);
4694 sysfs_remove_link(&(dev->dev.kobj), linkname);
4697 list_del_rcu(&adj->list);
4698 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4699 adj_dev->name, dev->name, adj_dev->name);
4701 kfree_rcu(adj, rcu);
4704 int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4705 struct net_device *upper_dev,
4706 struct list_head *up_list,
4707 struct list_head *down_list,
4708 void *private, bool master)
4712 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4717 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4720 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4727 int __netdev_adjacent_dev_link(struct net_device *dev,
4728 struct net_device *upper_dev)
4730 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4731 &dev->all_adj_list.upper,
4732 &upper_dev->all_adj_list.lower,
4736 void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4737 struct net_device *upper_dev,
4738 struct list_head *up_list,
4739 struct list_head *down_list)
4741 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4742 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4745 void __netdev_adjacent_dev_unlink(struct net_device *dev,
4746 struct net_device *upper_dev)
4748 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4749 &dev->all_adj_list.upper,
4750 &upper_dev->all_adj_list.lower);
4753 int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4754 struct net_device *upper_dev,
4755 void *private, bool master)
4757 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4762 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4763 &dev->adj_list.upper,
4764 &upper_dev->adj_list.lower,
4767 __netdev_adjacent_dev_unlink(dev, upper_dev);
4774 void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4775 struct net_device *upper_dev)
4777 __netdev_adjacent_dev_unlink(dev, upper_dev);
4778 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4779 &dev->adj_list.upper,
4780 &upper_dev->adj_list.lower);
4783 static int __netdev_upper_dev_link(struct net_device *dev,
4784 struct net_device *upper_dev, bool master,
4787 struct netdev_adjacent *i, *j, *to_i, *to_j;
4792 if (dev == upper_dev)
4795 /* To prevent loops, check if dev is not upper device to upper_dev. */
4796 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4799 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4802 if (master && netdev_master_upper_dev_get(dev))
4805 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4810 /* Now that we linked these devs, make all the upper_dev's
4811 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4812 * versa, and don't forget the devices itself. All of these
4813 * links are non-neighbours.
4815 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4816 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4817 pr_debug("Interlinking %s with %s, non-neighbour\n",
4818 i->dev->name, j->dev->name);
4819 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4825 /* add dev to every upper_dev's upper device */
4826 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4827 pr_debug("linking %s's upper device %s with %s\n",
4828 upper_dev->name, i->dev->name, dev->name);
4829 ret = __netdev_adjacent_dev_link(dev, i->dev);
4831 goto rollback_upper_mesh;
4834 /* add upper_dev to every dev's lower device */
4835 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4836 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4837 i->dev->name, upper_dev->name);
4838 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4840 goto rollback_lower_mesh;
4843 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4846 rollback_lower_mesh:
4848 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4851 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4856 rollback_upper_mesh:
4858 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4861 __netdev_adjacent_dev_unlink(dev, i->dev);
4869 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4870 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4871 if (i == to_i && j == to_j)
4873 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4879 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4885 * netdev_upper_dev_link - Add a link to the upper device
4887 * @upper_dev: new upper device
4889 * Adds a link to device which is upper to this one. The caller must hold
4890 * the RTNL lock. On a failure a negative errno code is returned.
4891 * On success the reference counts are adjusted and the function
4894 int netdev_upper_dev_link(struct net_device *dev,
4895 struct net_device *upper_dev)
4897 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4899 EXPORT_SYMBOL(netdev_upper_dev_link);
4902 * netdev_master_upper_dev_link - Add a master link to the upper device
4904 * @upper_dev: new upper device
4906 * Adds a link to device which is upper to this one. In this case, only
4907 * one master upper device can be linked, although other non-master devices
4908 * might be linked as well. The caller must hold the RTNL lock.
4909 * On a failure a negative errno code is returned. On success the reference
4910 * counts are adjusted and the function returns zero.
4912 int netdev_master_upper_dev_link(struct net_device *dev,
4913 struct net_device *upper_dev)
4915 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4917 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4919 int netdev_master_upper_dev_link_private(struct net_device *dev,
4920 struct net_device *upper_dev,
4923 return __netdev_upper_dev_link(dev, upper_dev, true, private);
4925 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
4928 * netdev_upper_dev_unlink - Removes a link to upper device
4930 * @upper_dev: new upper device
4932 * Removes a link to device which is upper to this one. The caller must hold
4935 void netdev_upper_dev_unlink(struct net_device *dev,
4936 struct net_device *upper_dev)
4938 struct netdev_adjacent *i, *j;
4941 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4943 /* Here is the tricky part. We must remove all dev's lower
4944 * devices from all upper_dev's upper devices and vice
4945 * versa, to maintain the graph relationship.
4947 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4948 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
4949 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4951 /* remove also the devices itself from lower/upper device
4954 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4955 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4957 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
4958 __netdev_adjacent_dev_unlink(dev, i->dev);
4960 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4962 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4964 void *netdev_lower_dev_get_private_rcu(struct net_device *dev,
4965 struct net_device *lower_dev)
4967 struct netdev_adjacent *lower;
4971 lower = __netdev_find_adj_rcu(dev, lower_dev, &dev->adj_list.lower);
4975 return lower->private;
4977 EXPORT_SYMBOL(netdev_lower_dev_get_private_rcu);
4979 void *netdev_lower_dev_get_private(struct net_device *dev,
4980 struct net_device *lower_dev)
4982 struct netdev_adjacent *lower;
4986 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
4990 return lower->private;
4992 EXPORT_SYMBOL(netdev_lower_dev_get_private);
4994 static void dev_change_rx_flags(struct net_device *dev, int flags)
4996 const struct net_device_ops *ops = dev->netdev_ops;
4998 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4999 ops->ndo_change_rx_flags(dev, flags);
5002 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5004 unsigned int old_flags = dev->flags;
5010 dev->flags |= IFF_PROMISC;
5011 dev->promiscuity += inc;
5012 if (dev->promiscuity == 0) {
5015 * If inc causes overflow, untouch promisc and return error.
5018 dev->flags &= ~IFF_PROMISC;
5020 dev->promiscuity -= inc;
5021 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5026 if (dev->flags != old_flags) {
5027 pr_info("device %s %s promiscuous mode\n",
5029 dev->flags & IFF_PROMISC ? "entered" : "left");
5030 if (audit_enabled) {
5031 current_uid_gid(&uid, &gid);
5032 audit_log(current->audit_context, GFP_ATOMIC,
5033 AUDIT_ANOM_PROMISCUOUS,
5034 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5035 dev->name, (dev->flags & IFF_PROMISC),
5036 (old_flags & IFF_PROMISC),
5037 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5038 from_kuid(&init_user_ns, uid),
5039 from_kgid(&init_user_ns, gid),
5040 audit_get_sessionid(current));
5043 dev_change_rx_flags(dev, IFF_PROMISC);
5046 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5051 * dev_set_promiscuity - update promiscuity count on a device
5055 * Add or remove promiscuity from a device. While the count in the device
5056 * remains above zero the interface remains promiscuous. Once it hits zero
5057 * the device reverts back to normal filtering operation. A negative inc
5058 * value is used to drop promiscuity on the device.
5059 * Return 0 if successful or a negative errno code on error.
5061 int dev_set_promiscuity(struct net_device *dev, int inc)
5063 unsigned int old_flags = dev->flags;
5066 err = __dev_set_promiscuity(dev, inc, true);
5069 if (dev->flags != old_flags)
5070 dev_set_rx_mode(dev);
5073 EXPORT_SYMBOL(dev_set_promiscuity);
5075 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5077 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5081 dev->flags |= IFF_ALLMULTI;
5082 dev->allmulti += inc;
5083 if (dev->allmulti == 0) {
5086 * If inc causes overflow, untouch allmulti and return error.
5089 dev->flags &= ~IFF_ALLMULTI;
5091 dev->allmulti -= inc;
5092 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5097 if (dev->flags ^ old_flags) {
5098 dev_change_rx_flags(dev, IFF_ALLMULTI);
5099 dev_set_rx_mode(dev);
5101 __dev_notify_flags(dev, old_flags,
5102 dev->gflags ^ old_gflags);
5108 * dev_set_allmulti - update allmulti count on a device
5112 * Add or remove reception of all multicast frames to a device. While the
5113 * count in the device remains above zero the interface remains listening
5114 * to all interfaces. Once it hits zero the device reverts back to normal
5115 * filtering operation. A negative @inc value is used to drop the counter
5116 * when releasing a resource needing all multicasts.
5117 * Return 0 if successful or a negative errno code on error.
5120 int dev_set_allmulti(struct net_device *dev, int inc)
5122 return __dev_set_allmulti(dev, inc, true);
5124 EXPORT_SYMBOL(dev_set_allmulti);
5127 * Upload unicast and multicast address lists to device and
5128 * configure RX filtering. When the device doesn't support unicast
5129 * filtering it is put in promiscuous mode while unicast addresses
5132 void __dev_set_rx_mode(struct net_device *dev)
5134 const struct net_device_ops *ops = dev->netdev_ops;
5136 /* dev_open will call this function so the list will stay sane. */
5137 if (!(dev->flags&IFF_UP))
5140 if (!netif_device_present(dev))
5143 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5144 /* Unicast addresses changes may only happen under the rtnl,
5145 * therefore calling __dev_set_promiscuity here is safe.
5147 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5148 __dev_set_promiscuity(dev, 1, false);
5149 dev->uc_promisc = true;
5150 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5151 __dev_set_promiscuity(dev, -1, false);
5152 dev->uc_promisc = false;
5156 if (ops->ndo_set_rx_mode)
5157 ops->ndo_set_rx_mode(dev);
5160 void dev_set_rx_mode(struct net_device *dev)
5162 netif_addr_lock_bh(dev);
5163 __dev_set_rx_mode(dev);
5164 netif_addr_unlock_bh(dev);
5168 * dev_get_flags - get flags reported to userspace
5171 * Get the combination of flag bits exported through APIs to userspace.
5173 unsigned int dev_get_flags(const struct net_device *dev)
5177 flags = (dev->flags & ~(IFF_PROMISC |
5182 (dev->gflags & (IFF_PROMISC |
5185 if (netif_running(dev)) {
5186 if (netif_oper_up(dev))
5187 flags |= IFF_RUNNING;
5188 if (netif_carrier_ok(dev))
5189 flags |= IFF_LOWER_UP;
5190 if (netif_dormant(dev))
5191 flags |= IFF_DORMANT;
5196 EXPORT_SYMBOL(dev_get_flags);
5198 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5200 unsigned int old_flags = dev->flags;
5206 * Set the flags on our device.
5209 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5210 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5212 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5216 * Load in the correct multicast list now the flags have changed.
5219 if ((old_flags ^ flags) & IFF_MULTICAST)
5220 dev_change_rx_flags(dev, IFF_MULTICAST);
5222 dev_set_rx_mode(dev);
5225 * Have we downed the interface. We handle IFF_UP ourselves
5226 * according to user attempts to set it, rather than blindly
5231 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5232 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5235 dev_set_rx_mode(dev);
5238 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5239 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5240 unsigned int old_flags = dev->flags;
5242 dev->gflags ^= IFF_PROMISC;
5244 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5245 if (dev->flags != old_flags)
5246 dev_set_rx_mode(dev);
5249 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5250 is important. Some (broken) drivers set IFF_PROMISC, when
5251 IFF_ALLMULTI is requested not asking us and not reporting.
5253 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5254 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5256 dev->gflags ^= IFF_ALLMULTI;
5257 __dev_set_allmulti(dev, inc, false);
5263 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5264 unsigned int gchanges)
5266 unsigned int changes = dev->flags ^ old_flags;
5269 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5271 if (changes & IFF_UP) {
5272 if (dev->flags & IFF_UP)
5273 call_netdevice_notifiers(NETDEV_UP, dev);
5275 call_netdevice_notifiers(NETDEV_DOWN, dev);
5278 if (dev->flags & IFF_UP &&
5279 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5280 struct netdev_notifier_change_info change_info;
5282 change_info.flags_changed = changes;
5283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5289 * dev_change_flags - change device settings
5291 * @flags: device state flags
5293 * Change settings on device based state flags. The flags are
5294 * in the userspace exported format.
5296 int dev_change_flags(struct net_device *dev, unsigned int flags)
5299 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5301 ret = __dev_change_flags(dev, flags);
5305 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5306 __dev_notify_flags(dev, old_flags, changes);
5309 EXPORT_SYMBOL(dev_change_flags);
5312 * dev_set_mtu - Change maximum transfer unit
5314 * @new_mtu: new transfer unit
5316 * Change the maximum transfer size of the network device.
5318 int dev_set_mtu(struct net_device *dev, int new_mtu)
5320 const struct net_device_ops *ops = dev->netdev_ops;
5323 if (new_mtu == dev->mtu)
5326 /* MTU must be positive. */
5330 if (!netif_device_present(dev))
5334 if (ops->ndo_change_mtu)
5335 err = ops->ndo_change_mtu(dev, new_mtu);
5340 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5343 EXPORT_SYMBOL(dev_set_mtu);
5346 * dev_set_group - Change group this device belongs to
5348 * @new_group: group this device should belong to
5350 void dev_set_group(struct net_device *dev, int new_group)
5352 dev->group = new_group;
5354 EXPORT_SYMBOL(dev_set_group);
5357 * dev_set_mac_address - Change Media Access Control Address
5361 * Change the hardware (MAC) address of the device
5363 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5365 const struct net_device_ops *ops = dev->netdev_ops;
5368 if (!ops->ndo_set_mac_address)
5370 if (sa->sa_family != dev->type)
5372 if (!netif_device_present(dev))
5374 err = ops->ndo_set_mac_address(dev, sa);
5377 dev->addr_assign_type = NET_ADDR_SET;
5378 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5379 add_device_randomness(dev->dev_addr, dev->addr_len);
5382 EXPORT_SYMBOL(dev_set_mac_address);
5385 * dev_change_carrier - Change device carrier
5387 * @new_carrier: new value
5389 * Change device carrier
5391 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5393 const struct net_device_ops *ops = dev->netdev_ops;
5395 if (!ops->ndo_change_carrier)
5397 if (!netif_device_present(dev))
5399 return ops->ndo_change_carrier(dev, new_carrier);
5401 EXPORT_SYMBOL(dev_change_carrier);
5404 * dev_get_phys_port_id - Get device physical port ID
5408 * Get device physical port ID
5410 int dev_get_phys_port_id(struct net_device *dev,
5411 struct netdev_phys_port_id *ppid)
5413 const struct net_device_ops *ops = dev->netdev_ops;
5415 if (!ops->ndo_get_phys_port_id)
5417 return ops->ndo_get_phys_port_id(dev, ppid);
5419 EXPORT_SYMBOL(dev_get_phys_port_id);
5422 * dev_new_index - allocate an ifindex
5423 * @net: the applicable net namespace
5425 * Returns a suitable unique value for a new device interface
5426 * number. The caller must hold the rtnl semaphore or the
5427 * dev_base_lock to be sure it remains unique.
5429 static int dev_new_index(struct net *net)
5431 int ifindex = net->ifindex;
5435 if (!__dev_get_by_index(net, ifindex))
5436 return net->ifindex = ifindex;
5440 /* Delayed registration/unregisteration */
5441 static LIST_HEAD(net_todo_list);
5442 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5444 static void net_set_todo(struct net_device *dev)
5446 list_add_tail(&dev->todo_list, &net_todo_list);
5447 dev_net(dev)->dev_unreg_count++;
5450 static void rollback_registered_many(struct list_head *head)
5452 struct net_device *dev, *tmp;
5453 LIST_HEAD(close_head);
5455 BUG_ON(dev_boot_phase);
5458 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5459 /* Some devices call without registering
5460 * for initialization unwind. Remove those
5461 * devices and proceed with the remaining.
5463 if (dev->reg_state == NETREG_UNINITIALIZED) {
5464 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5468 list_del(&dev->unreg_list);
5471 dev->dismantle = true;
5472 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5475 /* If device is running, close it first. */
5476 list_for_each_entry(dev, head, unreg_list)
5477 list_add_tail(&dev->close_list, &close_head);
5478 dev_close_many(&close_head);
5480 list_for_each_entry(dev, head, unreg_list) {
5481 /* And unlink it from device chain. */
5482 unlist_netdevice(dev);
5484 dev->reg_state = NETREG_UNREGISTERING;
5489 list_for_each_entry(dev, head, unreg_list) {
5490 /* Shutdown queueing discipline. */
5494 /* Notify protocols, that we are about to destroy
5495 this device. They should clean all the things.
5497 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5499 if (!dev->rtnl_link_ops ||
5500 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5501 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5504 * Flush the unicast and multicast chains
5509 if (dev->netdev_ops->ndo_uninit)
5510 dev->netdev_ops->ndo_uninit(dev);
5512 /* Notifier chain MUST detach us all upper devices. */
5513 WARN_ON(netdev_has_any_upper_dev(dev));
5515 /* Remove entries from kobject tree */
5516 netdev_unregister_kobject(dev);
5518 /* Remove XPS queueing entries */
5519 netif_reset_xps_queues_gt(dev, 0);
5525 list_for_each_entry(dev, head, unreg_list)
5529 static void rollback_registered(struct net_device *dev)
5533 list_add(&dev->unreg_list, &single);
5534 rollback_registered_many(&single);
5538 static netdev_features_t netdev_fix_features(struct net_device *dev,
5539 netdev_features_t features)
5541 /* Fix illegal checksum combinations */
5542 if ((features & NETIF_F_HW_CSUM) &&
5543 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5544 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5545 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5548 /* TSO requires that SG is present as well. */
5549 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5550 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5551 features &= ~NETIF_F_ALL_TSO;
5554 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5555 !(features & NETIF_F_IP_CSUM)) {
5556 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5557 features &= ~NETIF_F_TSO;
5558 features &= ~NETIF_F_TSO_ECN;
5561 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5562 !(features & NETIF_F_IPV6_CSUM)) {
5563 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5564 features &= ~NETIF_F_TSO6;
5567 /* TSO ECN requires that TSO is present as well. */
5568 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5569 features &= ~NETIF_F_TSO_ECN;
5571 /* Software GSO depends on SG. */
5572 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5573 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5574 features &= ~NETIF_F_GSO;
5577 /* UFO needs SG and checksumming */
5578 if (features & NETIF_F_UFO) {
5579 /* maybe split UFO into V4 and V6? */
5580 if (!((features & NETIF_F_GEN_CSUM) ||
5581 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5582 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5584 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5585 features &= ~NETIF_F_UFO;
5588 if (!(features & NETIF_F_SG)) {
5590 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5591 features &= ~NETIF_F_UFO;
5598 int __netdev_update_features(struct net_device *dev)
5600 netdev_features_t features;
5605 features = netdev_get_wanted_features(dev);
5607 if (dev->netdev_ops->ndo_fix_features)
5608 features = dev->netdev_ops->ndo_fix_features(dev, features);
5610 /* driver might be less strict about feature dependencies */
5611 features = netdev_fix_features(dev, features);
5613 if (dev->features == features)
5616 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5617 &dev->features, &features);
5619 if (dev->netdev_ops->ndo_set_features)
5620 err = dev->netdev_ops->ndo_set_features(dev, features);
5622 if (unlikely(err < 0)) {
5624 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5625 err, &features, &dev->features);
5630 dev->features = features;
5636 * netdev_update_features - recalculate device features
5637 * @dev: the device to check
5639 * Recalculate dev->features set and send notifications if it
5640 * has changed. Should be called after driver or hardware dependent
5641 * conditions might have changed that influence the features.
5643 void netdev_update_features(struct net_device *dev)
5645 if (__netdev_update_features(dev))
5646 netdev_features_change(dev);
5648 EXPORT_SYMBOL(netdev_update_features);
5651 * netdev_change_features - recalculate device features
5652 * @dev: the device to check
5654 * Recalculate dev->features set and send notifications even
5655 * if they have not changed. Should be called instead of
5656 * netdev_update_features() if also dev->vlan_features might
5657 * have changed to allow the changes to be propagated to stacked
5660 void netdev_change_features(struct net_device *dev)
5662 __netdev_update_features(dev);
5663 netdev_features_change(dev);
5665 EXPORT_SYMBOL(netdev_change_features);
5668 * netif_stacked_transfer_operstate - transfer operstate
5669 * @rootdev: the root or lower level device to transfer state from
5670 * @dev: the device to transfer operstate to
5672 * Transfer operational state from root to device. This is normally
5673 * called when a stacking relationship exists between the root
5674 * device and the device(a leaf device).
5676 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5677 struct net_device *dev)
5679 if (rootdev->operstate == IF_OPER_DORMANT)
5680 netif_dormant_on(dev);
5682 netif_dormant_off(dev);
5684 if (netif_carrier_ok(rootdev)) {
5685 if (!netif_carrier_ok(dev))
5686 netif_carrier_on(dev);
5688 if (netif_carrier_ok(dev))
5689 netif_carrier_off(dev);
5692 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5695 static int netif_alloc_rx_queues(struct net_device *dev)
5697 unsigned int i, count = dev->num_rx_queues;
5698 struct netdev_rx_queue *rx;
5702 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5708 for (i = 0; i < count; i++)
5714 static void netdev_init_one_queue(struct net_device *dev,
5715 struct netdev_queue *queue, void *_unused)
5717 /* Initialize queue lock */
5718 spin_lock_init(&queue->_xmit_lock);
5719 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5720 queue->xmit_lock_owner = -1;
5721 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5724 dql_init(&queue->dql, HZ);
5728 static void netif_free_tx_queues(struct net_device *dev)
5730 if (is_vmalloc_addr(dev->_tx))
5736 static int netif_alloc_netdev_queues(struct net_device *dev)
5738 unsigned int count = dev->num_tx_queues;
5739 struct netdev_queue *tx;
5740 size_t sz = count * sizeof(*tx);
5742 BUG_ON(count < 1 || count > 0xffff);
5744 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5752 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5753 spin_lock_init(&dev->tx_global_lock);
5759 * register_netdevice - register a network device
5760 * @dev: device to register
5762 * Take a completed network device structure and add it to the kernel
5763 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5764 * chain. 0 is returned on success. A negative errno code is returned
5765 * on a failure to set up the device, or if the name is a duplicate.
5767 * Callers must hold the rtnl semaphore. You may want
5768 * register_netdev() instead of this.
5771 * The locking appears insufficient to guarantee two parallel registers
5772 * will not get the same name.
5775 int register_netdevice(struct net_device *dev)
5778 struct net *net = dev_net(dev);
5780 BUG_ON(dev_boot_phase);
5785 /* When net_device's are persistent, this will be fatal. */
5786 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5789 spin_lock_init(&dev->addr_list_lock);
5790 netdev_set_addr_lockdep_class(dev);
5794 ret = dev_get_valid_name(net, dev, dev->name);
5798 /* Init, if this function is available */
5799 if (dev->netdev_ops->ndo_init) {
5800 ret = dev->netdev_ops->ndo_init(dev);
5808 if (((dev->hw_features | dev->features) &
5809 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5810 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5811 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5812 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5819 dev->ifindex = dev_new_index(net);
5820 else if (__dev_get_by_index(net, dev->ifindex))
5823 if (dev->iflink == -1)
5824 dev->iflink = dev->ifindex;
5826 /* Transfer changeable features to wanted_features and enable
5827 * software offloads (GSO and GRO).
5829 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5830 dev->features |= NETIF_F_SOFT_FEATURES;
5831 dev->wanted_features = dev->features & dev->hw_features;
5833 /* Turn on no cache copy if HW is doing checksum */
5834 if (!(dev->flags & IFF_LOOPBACK)) {
5835 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5836 if (dev->features & NETIF_F_ALL_CSUM) {
5837 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5838 dev->features |= NETIF_F_NOCACHE_COPY;
5842 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5844 dev->vlan_features |= NETIF_F_HIGHDMA;
5846 /* Make NETIF_F_SG inheritable to tunnel devices.
5848 dev->hw_enc_features |= NETIF_F_SG;
5850 /* Make NETIF_F_SG inheritable to MPLS.
5852 dev->mpls_features |= NETIF_F_SG;
5854 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5855 ret = notifier_to_errno(ret);
5859 ret = netdev_register_kobject(dev);
5862 dev->reg_state = NETREG_REGISTERED;
5864 __netdev_update_features(dev);
5867 * Default initial state at registry is that the
5868 * device is present.
5871 set_bit(__LINK_STATE_PRESENT, &dev->state);
5873 linkwatch_init_dev(dev);
5875 dev_init_scheduler(dev);
5877 list_netdevice(dev);
5878 add_device_randomness(dev->dev_addr, dev->addr_len);
5880 /* If the device has permanent device address, driver should
5881 * set dev_addr and also addr_assign_type should be set to
5882 * NET_ADDR_PERM (default value).
5884 if (dev->addr_assign_type == NET_ADDR_PERM)
5885 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5887 /* Notify protocols, that a new device appeared. */
5888 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5889 ret = notifier_to_errno(ret);
5891 rollback_registered(dev);
5892 dev->reg_state = NETREG_UNREGISTERED;
5895 * Prevent userspace races by waiting until the network
5896 * device is fully setup before sending notifications.
5898 if (!dev->rtnl_link_ops ||
5899 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5900 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
5906 if (dev->netdev_ops->ndo_uninit)
5907 dev->netdev_ops->ndo_uninit(dev);
5910 EXPORT_SYMBOL(register_netdevice);
5913 * init_dummy_netdev - init a dummy network device for NAPI
5914 * @dev: device to init
5916 * This takes a network device structure and initialize the minimum
5917 * amount of fields so it can be used to schedule NAPI polls without
5918 * registering a full blown interface. This is to be used by drivers
5919 * that need to tie several hardware interfaces to a single NAPI
5920 * poll scheduler due to HW limitations.
5922 int init_dummy_netdev(struct net_device *dev)
5924 /* Clear everything. Note we don't initialize spinlocks
5925 * are they aren't supposed to be taken by any of the
5926 * NAPI code and this dummy netdev is supposed to be
5927 * only ever used for NAPI polls
5929 memset(dev, 0, sizeof(struct net_device));
5931 /* make sure we BUG if trying to hit standard
5932 * register/unregister code path
5934 dev->reg_state = NETREG_DUMMY;
5936 /* NAPI wants this */
5937 INIT_LIST_HEAD(&dev->napi_list);
5939 /* a dummy interface is started by default */
5940 set_bit(__LINK_STATE_PRESENT, &dev->state);
5941 set_bit(__LINK_STATE_START, &dev->state);
5943 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5944 * because users of this 'device' dont need to change
5950 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5954 * register_netdev - register a network device
5955 * @dev: device to register
5957 * Take a completed network device structure and add it to the kernel
5958 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5959 * chain. 0 is returned on success. A negative errno code is returned
5960 * on a failure to set up the device, or if the name is a duplicate.
5962 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5963 * and expands the device name if you passed a format string to
5966 int register_netdev(struct net_device *dev)
5971 err = register_netdevice(dev);
5975 EXPORT_SYMBOL(register_netdev);
5977 int netdev_refcnt_read(const struct net_device *dev)
5981 for_each_possible_cpu(i)
5982 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5985 EXPORT_SYMBOL(netdev_refcnt_read);
5988 * netdev_wait_allrefs - wait until all references are gone.
5989 * @dev: target net_device
5991 * This is called when unregistering network devices.
5993 * Any protocol or device that holds a reference should register
5994 * for netdevice notification, and cleanup and put back the
5995 * reference if they receive an UNREGISTER event.
5996 * We can get stuck here if buggy protocols don't correctly
5999 static void netdev_wait_allrefs(struct net_device *dev)
6001 unsigned long rebroadcast_time, warning_time;
6004 linkwatch_forget_dev(dev);
6006 rebroadcast_time = warning_time = jiffies;
6007 refcnt = netdev_refcnt_read(dev);
6009 while (refcnt != 0) {
6010 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6013 /* Rebroadcast unregister notification */
6014 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6020 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6021 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6023 /* We must not have linkwatch events
6024 * pending on unregister. If this
6025 * happens, we simply run the queue
6026 * unscheduled, resulting in a noop
6029 linkwatch_run_queue();
6034 rebroadcast_time = jiffies;
6039 refcnt = netdev_refcnt_read(dev);
6041 if (time_after(jiffies, warning_time + 10 * HZ)) {
6042 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6044 warning_time = jiffies;
6053 * register_netdevice(x1);
6054 * register_netdevice(x2);
6056 * unregister_netdevice(y1);
6057 * unregister_netdevice(y2);
6063 * We are invoked by rtnl_unlock().
6064 * This allows us to deal with problems:
6065 * 1) We can delete sysfs objects which invoke hotplug
6066 * without deadlocking with linkwatch via keventd.
6067 * 2) Since we run with the RTNL semaphore not held, we can sleep
6068 * safely in order to wait for the netdev refcnt to drop to zero.
6070 * We must not return until all unregister events added during
6071 * the interval the lock was held have been completed.
6073 void netdev_run_todo(void)
6075 struct list_head list;
6077 /* Snapshot list, allow later requests */
6078 list_replace_init(&net_todo_list, &list);
6083 /* Wait for rcu callbacks to finish before next phase */
6084 if (!list_empty(&list))
6087 while (!list_empty(&list)) {
6088 struct net_device *dev
6089 = list_first_entry(&list, struct net_device, todo_list);
6090 list_del(&dev->todo_list);
6093 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6096 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6097 pr_err("network todo '%s' but state %d\n",
6098 dev->name, dev->reg_state);
6103 dev->reg_state = NETREG_UNREGISTERED;
6105 on_each_cpu(flush_backlog, dev, 1);
6107 netdev_wait_allrefs(dev);
6110 BUG_ON(netdev_refcnt_read(dev));
6111 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6112 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6113 WARN_ON(dev->dn_ptr);
6115 if (dev->destructor)
6116 dev->destructor(dev);
6118 /* Report a network device has been unregistered */
6120 dev_net(dev)->dev_unreg_count--;
6122 wake_up(&netdev_unregistering_wq);
6124 /* Free network device */
6125 kobject_put(&dev->dev.kobj);
6129 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6130 * fields in the same order, with only the type differing.
6132 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6133 const struct net_device_stats *netdev_stats)
6135 #if BITS_PER_LONG == 64
6136 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6137 memcpy(stats64, netdev_stats, sizeof(*stats64));
6139 size_t i, n = sizeof(*stats64) / sizeof(u64);
6140 const unsigned long *src = (const unsigned long *)netdev_stats;
6141 u64 *dst = (u64 *)stats64;
6143 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6144 sizeof(*stats64) / sizeof(u64));
6145 for (i = 0; i < n; i++)
6149 EXPORT_SYMBOL(netdev_stats_to_stats64);
6152 * dev_get_stats - get network device statistics
6153 * @dev: device to get statistics from
6154 * @storage: place to store stats
6156 * Get network statistics from device. Return @storage.
6157 * The device driver may provide its own method by setting
6158 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6159 * otherwise the internal statistics structure is used.
6161 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6162 struct rtnl_link_stats64 *storage)
6164 const struct net_device_ops *ops = dev->netdev_ops;
6166 if (ops->ndo_get_stats64) {
6167 memset(storage, 0, sizeof(*storage));
6168 ops->ndo_get_stats64(dev, storage);
6169 } else if (ops->ndo_get_stats) {
6170 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6172 netdev_stats_to_stats64(storage, &dev->stats);
6174 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6177 EXPORT_SYMBOL(dev_get_stats);
6179 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6181 struct netdev_queue *queue = dev_ingress_queue(dev);
6183 #ifdef CONFIG_NET_CLS_ACT
6186 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6189 netdev_init_one_queue(dev, queue, NULL);
6190 queue->qdisc = &noop_qdisc;
6191 queue->qdisc_sleeping = &noop_qdisc;
6192 rcu_assign_pointer(dev->ingress_queue, queue);
6197 static const struct ethtool_ops default_ethtool_ops;
6199 void netdev_set_default_ethtool_ops(struct net_device *dev,
6200 const struct ethtool_ops *ops)
6202 if (dev->ethtool_ops == &default_ethtool_ops)
6203 dev->ethtool_ops = ops;
6205 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6207 void netdev_freemem(struct net_device *dev)
6209 char *addr = (char *)dev - dev->padded;
6211 if (is_vmalloc_addr(addr))
6218 * alloc_netdev_mqs - allocate network device
6219 * @sizeof_priv: size of private data to allocate space for
6220 * @name: device name format string
6221 * @setup: callback to initialize device
6222 * @txqs: the number of TX subqueues to allocate
6223 * @rxqs: the number of RX subqueues to allocate
6225 * Allocates a struct net_device with private data area for driver use
6226 * and performs basic initialization. Also allocates subquue structs
6227 * for each queue on the device.
6229 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6230 void (*setup)(struct net_device *),
6231 unsigned int txqs, unsigned int rxqs)
6233 struct net_device *dev;
6235 struct net_device *p;
6237 BUG_ON(strlen(name) >= sizeof(dev->name));
6240 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6246 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6251 alloc_size = sizeof(struct net_device);
6253 /* ensure 32-byte alignment of private area */
6254 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6255 alloc_size += sizeof_priv;
6257 /* ensure 32-byte alignment of whole construct */
6258 alloc_size += NETDEV_ALIGN - 1;
6260 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6262 p = vzalloc(alloc_size);
6266 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6267 dev->padded = (char *)dev - (char *)p;
6269 dev->pcpu_refcnt = alloc_percpu(int);
6270 if (!dev->pcpu_refcnt)
6273 if (dev_addr_init(dev))
6279 dev_net_set(dev, &init_net);
6281 dev->gso_max_size = GSO_MAX_SIZE;
6282 dev->gso_max_segs = GSO_MAX_SEGS;
6284 INIT_LIST_HEAD(&dev->napi_list);
6285 INIT_LIST_HEAD(&dev->unreg_list);
6286 INIT_LIST_HEAD(&dev->close_list);
6287 INIT_LIST_HEAD(&dev->link_watch_list);
6288 INIT_LIST_HEAD(&dev->adj_list.upper);
6289 INIT_LIST_HEAD(&dev->adj_list.lower);
6290 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6291 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6292 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6295 dev->num_tx_queues = txqs;
6296 dev->real_num_tx_queues = txqs;
6297 if (netif_alloc_netdev_queues(dev))
6301 dev->num_rx_queues = rxqs;
6302 dev->real_num_rx_queues = rxqs;
6303 if (netif_alloc_rx_queues(dev))
6307 strcpy(dev->name, name);
6308 dev->group = INIT_NETDEV_GROUP;
6309 if (!dev->ethtool_ops)
6310 dev->ethtool_ops = &default_ethtool_ops;
6318 free_percpu(dev->pcpu_refcnt);
6319 netif_free_tx_queues(dev);
6325 netdev_freemem(dev);
6328 EXPORT_SYMBOL(alloc_netdev_mqs);
6331 * free_netdev - free network device
6334 * This function does the last stage of destroying an allocated device
6335 * interface. The reference to the device object is released.
6336 * If this is the last reference then it will be freed.
6338 void free_netdev(struct net_device *dev)
6340 struct napi_struct *p, *n;
6342 release_net(dev_net(dev));
6344 netif_free_tx_queues(dev);
6349 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6351 /* Flush device addresses */
6352 dev_addr_flush(dev);
6354 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6357 free_percpu(dev->pcpu_refcnt);
6358 dev->pcpu_refcnt = NULL;
6360 /* Compatibility with error handling in drivers */
6361 if (dev->reg_state == NETREG_UNINITIALIZED) {
6362 netdev_freemem(dev);
6366 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6367 dev->reg_state = NETREG_RELEASED;
6369 /* will free via device release */
6370 put_device(&dev->dev);
6372 EXPORT_SYMBOL(free_netdev);
6375 * synchronize_net - Synchronize with packet receive processing
6377 * Wait for packets currently being received to be done.
6378 * Does not block later packets from starting.
6380 void synchronize_net(void)
6383 if (rtnl_is_locked())
6384 synchronize_rcu_expedited();
6388 EXPORT_SYMBOL(synchronize_net);
6391 * unregister_netdevice_queue - remove device from the kernel
6395 * This function shuts down a device interface and removes it
6396 * from the kernel tables.
6397 * If head not NULL, device is queued to be unregistered later.
6399 * Callers must hold the rtnl semaphore. You may want
6400 * unregister_netdev() instead of this.
6403 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6408 list_move_tail(&dev->unreg_list, head);
6410 rollback_registered(dev);
6411 /* Finish processing unregister after unlock */
6415 EXPORT_SYMBOL(unregister_netdevice_queue);
6418 * unregister_netdevice_many - unregister many devices
6419 * @head: list of devices
6421 void unregister_netdevice_many(struct list_head *head)
6423 struct net_device *dev;
6425 if (!list_empty(head)) {
6426 rollback_registered_many(head);
6427 list_for_each_entry(dev, head, unreg_list)
6431 EXPORT_SYMBOL(unregister_netdevice_many);
6434 * unregister_netdev - remove device from the kernel
6437 * This function shuts down a device interface and removes it
6438 * from the kernel tables.
6440 * This is just a wrapper for unregister_netdevice that takes
6441 * the rtnl semaphore. In general you want to use this and not
6442 * unregister_netdevice.
6444 void unregister_netdev(struct net_device *dev)
6447 unregister_netdevice(dev);
6450 EXPORT_SYMBOL(unregister_netdev);
6453 * dev_change_net_namespace - move device to different nethost namespace
6455 * @net: network namespace
6456 * @pat: If not NULL name pattern to try if the current device name
6457 * is already taken in the destination network namespace.
6459 * This function shuts down a device interface and moves it
6460 * to a new network namespace. On success 0 is returned, on
6461 * a failure a netagive errno code is returned.
6463 * Callers must hold the rtnl semaphore.
6466 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6472 /* Don't allow namespace local devices to be moved. */
6474 if (dev->features & NETIF_F_NETNS_LOCAL)
6477 /* Ensure the device has been registrered */
6478 if (dev->reg_state != NETREG_REGISTERED)
6481 /* Get out if there is nothing todo */
6483 if (net_eq(dev_net(dev), net))
6486 /* Pick the destination device name, and ensure
6487 * we can use it in the destination network namespace.
6490 if (__dev_get_by_name(net, dev->name)) {
6491 /* We get here if we can't use the current device name */
6494 if (dev_get_valid_name(net, dev, pat) < 0)
6499 * And now a mini version of register_netdevice unregister_netdevice.
6502 /* If device is running close it first. */
6505 /* And unlink it from device chain */
6507 unlist_netdevice(dev);
6511 /* Shutdown queueing discipline. */
6514 /* Notify protocols, that we are about to destroy
6515 this device. They should clean all the things.
6517 Note that dev->reg_state stays at NETREG_REGISTERED.
6518 This is wanted because this way 8021q and macvlan know
6519 the device is just moving and can keep their slaves up.
6521 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6523 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6524 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6527 * Flush the unicast and multicast chains
6532 /* Send a netdev-removed uevent to the old namespace */
6533 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6535 /* Actually switch the network namespace */
6536 dev_net_set(dev, net);
6538 /* If there is an ifindex conflict assign a new one */
6539 if (__dev_get_by_index(net, dev->ifindex)) {
6540 int iflink = (dev->iflink == dev->ifindex);
6541 dev->ifindex = dev_new_index(net);
6543 dev->iflink = dev->ifindex;
6546 /* Send a netdev-add uevent to the new namespace */
6547 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6549 /* Fixup kobjects */
6550 err = device_rename(&dev->dev, dev->name);
6553 /* Add the device back in the hashes */
6554 list_netdevice(dev);
6556 /* Notify protocols, that a new device appeared. */
6557 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6560 * Prevent userspace races by waiting until the network
6561 * device is fully setup before sending notifications.
6563 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6570 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6572 static int dev_cpu_callback(struct notifier_block *nfb,
6573 unsigned long action,
6576 struct sk_buff **list_skb;
6577 struct sk_buff *skb;
6578 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6579 struct softnet_data *sd, *oldsd;
6581 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6584 local_irq_disable();
6585 cpu = smp_processor_id();
6586 sd = &per_cpu(softnet_data, cpu);
6587 oldsd = &per_cpu(softnet_data, oldcpu);
6589 /* Find end of our completion_queue. */
6590 list_skb = &sd->completion_queue;
6592 list_skb = &(*list_skb)->next;
6593 /* Append completion queue from offline CPU. */
6594 *list_skb = oldsd->completion_queue;
6595 oldsd->completion_queue = NULL;
6597 /* Append output queue from offline CPU. */
6598 if (oldsd->output_queue) {
6599 *sd->output_queue_tailp = oldsd->output_queue;
6600 sd->output_queue_tailp = oldsd->output_queue_tailp;
6601 oldsd->output_queue = NULL;
6602 oldsd->output_queue_tailp = &oldsd->output_queue;
6604 /* Append NAPI poll list from offline CPU. */
6605 if (!list_empty(&oldsd->poll_list)) {
6606 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6607 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6610 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6613 /* Process offline CPU's input_pkt_queue */
6614 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6616 input_queue_head_incr(oldsd);
6618 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6620 input_queue_head_incr(oldsd);
6628 * netdev_increment_features - increment feature set by one
6629 * @all: current feature set
6630 * @one: new feature set
6631 * @mask: mask feature set
6633 * Computes a new feature set after adding a device with feature set
6634 * @one to the master device with current feature set @all. Will not
6635 * enable anything that is off in @mask. Returns the new feature set.
6637 netdev_features_t netdev_increment_features(netdev_features_t all,
6638 netdev_features_t one, netdev_features_t mask)
6640 if (mask & NETIF_F_GEN_CSUM)
6641 mask |= NETIF_F_ALL_CSUM;
6642 mask |= NETIF_F_VLAN_CHALLENGED;
6644 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6645 all &= one | ~NETIF_F_ALL_FOR_ALL;
6647 /* If one device supports hw checksumming, set for all. */
6648 if (all & NETIF_F_GEN_CSUM)
6649 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6653 EXPORT_SYMBOL(netdev_increment_features);
6655 static struct hlist_head * __net_init netdev_create_hash(void)
6658 struct hlist_head *hash;
6660 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6662 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6663 INIT_HLIST_HEAD(&hash[i]);
6668 /* Initialize per network namespace state */
6669 static int __net_init netdev_init(struct net *net)
6671 if (net != &init_net)
6672 INIT_LIST_HEAD(&net->dev_base_head);
6674 net->dev_name_head = netdev_create_hash();
6675 if (net->dev_name_head == NULL)
6678 net->dev_index_head = netdev_create_hash();
6679 if (net->dev_index_head == NULL)
6685 kfree(net->dev_name_head);
6691 * netdev_drivername - network driver for the device
6692 * @dev: network device
6694 * Determine network driver for device.
6696 const char *netdev_drivername(const struct net_device *dev)
6698 const struct device_driver *driver;
6699 const struct device *parent;
6700 const char *empty = "";
6702 parent = dev->dev.parent;
6706 driver = parent->driver;
6707 if (driver && driver->name)
6708 return driver->name;
6712 static int __netdev_printk(const char *level, const struct net_device *dev,
6713 struct va_format *vaf)
6717 if (dev && dev->dev.parent) {
6718 r = dev_printk_emit(level[1] - '0',
6721 dev_driver_string(dev->dev.parent),
6722 dev_name(dev->dev.parent),
6723 netdev_name(dev), vaf);
6725 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6727 r = printk("%s(NULL net_device): %pV", level, vaf);
6733 int netdev_printk(const char *level, const struct net_device *dev,
6734 const char *format, ...)
6736 struct va_format vaf;
6740 va_start(args, format);
6745 r = __netdev_printk(level, dev, &vaf);
6751 EXPORT_SYMBOL(netdev_printk);
6753 #define define_netdev_printk_level(func, level) \
6754 int func(const struct net_device *dev, const char *fmt, ...) \
6757 struct va_format vaf; \
6760 va_start(args, fmt); \
6765 r = __netdev_printk(level, dev, &vaf); \
6771 EXPORT_SYMBOL(func);
6773 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6774 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6775 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6776 define_netdev_printk_level(netdev_err, KERN_ERR);
6777 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6778 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6779 define_netdev_printk_level(netdev_info, KERN_INFO);
6781 static void __net_exit netdev_exit(struct net *net)
6783 kfree(net->dev_name_head);
6784 kfree(net->dev_index_head);
6787 static struct pernet_operations __net_initdata netdev_net_ops = {
6788 .init = netdev_init,
6789 .exit = netdev_exit,
6792 static void __net_exit default_device_exit(struct net *net)
6794 struct net_device *dev, *aux;
6796 * Push all migratable network devices back to the
6797 * initial network namespace
6800 for_each_netdev_safe(net, dev, aux) {
6802 char fb_name[IFNAMSIZ];
6804 /* Ignore unmoveable devices (i.e. loopback) */
6805 if (dev->features & NETIF_F_NETNS_LOCAL)
6808 /* Leave virtual devices for the generic cleanup */
6809 if (dev->rtnl_link_ops)
6812 /* Push remaining network devices to init_net */
6813 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6814 err = dev_change_net_namespace(dev, &init_net, fb_name);
6816 pr_emerg("%s: failed to move %s to init_net: %d\n",
6817 __func__, dev->name, err);
6824 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6826 /* Return with the rtnl_lock held when there are no network
6827 * devices unregistering in any network namespace in net_list.
6834 prepare_to_wait(&netdev_unregistering_wq, &wait,
6835 TASK_UNINTERRUPTIBLE);
6836 unregistering = false;
6838 list_for_each_entry(net, net_list, exit_list) {
6839 if (net->dev_unreg_count > 0) {
6840 unregistering = true;
6849 finish_wait(&netdev_unregistering_wq, &wait);
6852 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6854 /* At exit all network devices most be removed from a network
6855 * namespace. Do this in the reverse order of registration.
6856 * Do this across as many network namespaces as possible to
6857 * improve batching efficiency.
6859 struct net_device *dev;
6861 LIST_HEAD(dev_kill_list);
6863 /* To prevent network device cleanup code from dereferencing
6864 * loopback devices or network devices that have been freed
6865 * wait here for all pending unregistrations to complete,
6866 * before unregistring the loopback device and allowing the
6867 * network namespace be freed.
6869 * The netdev todo list containing all network devices
6870 * unregistrations that happen in default_device_exit_batch
6871 * will run in the rtnl_unlock() at the end of
6872 * default_device_exit_batch.
6874 rtnl_lock_unregistering(net_list);
6875 list_for_each_entry(net, net_list, exit_list) {
6876 for_each_netdev_reverse(net, dev) {
6877 if (dev->rtnl_link_ops)
6878 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6880 unregister_netdevice_queue(dev, &dev_kill_list);
6883 unregister_netdevice_many(&dev_kill_list);
6884 list_del(&dev_kill_list);
6888 static struct pernet_operations __net_initdata default_device_ops = {
6889 .exit = default_device_exit,
6890 .exit_batch = default_device_exit_batch,
6894 * Initialize the DEV module. At boot time this walks the device list and
6895 * unhooks any devices that fail to initialise (normally hardware not
6896 * present) and leaves us with a valid list of present and active devices.
6901 * This is called single threaded during boot, so no need
6902 * to take the rtnl semaphore.
6904 static int __init net_dev_init(void)
6906 int i, rc = -ENOMEM;
6908 BUG_ON(!dev_boot_phase);
6910 if (dev_proc_init())
6913 if (netdev_kobject_init())
6916 INIT_LIST_HEAD(&ptype_all);
6917 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6918 INIT_LIST_HEAD(&ptype_base[i]);
6920 INIT_LIST_HEAD(&offload_base);
6922 if (register_pernet_subsys(&netdev_net_ops))
6926 * Initialise the packet receive queues.
6929 for_each_possible_cpu(i) {
6930 struct softnet_data *sd = &per_cpu(softnet_data, i);
6932 memset(sd, 0, sizeof(*sd));
6933 skb_queue_head_init(&sd->input_pkt_queue);
6934 skb_queue_head_init(&sd->process_queue);
6935 sd->completion_queue = NULL;
6936 INIT_LIST_HEAD(&sd->poll_list);
6937 sd->output_queue = NULL;
6938 sd->output_queue_tailp = &sd->output_queue;
6940 sd->csd.func = rps_trigger_softirq;
6946 sd->backlog.poll = process_backlog;
6947 sd->backlog.weight = weight_p;
6948 sd->backlog.gro_list = NULL;
6949 sd->backlog.gro_count = 0;
6951 #ifdef CONFIG_NET_FLOW_LIMIT
6952 sd->flow_limit = NULL;
6958 /* The loopback device is special if any other network devices
6959 * is present in a network namespace the loopback device must
6960 * be present. Since we now dynamically allocate and free the
6961 * loopback device ensure this invariant is maintained by
6962 * keeping the loopback device as the first device on the
6963 * list of network devices. Ensuring the loopback devices
6964 * is the first device that appears and the last network device
6967 if (register_pernet_device(&loopback_net_ops))
6970 if (register_pernet_device(&default_device_ops))
6973 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6974 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6976 hotcpu_notifier(dev_cpu_callback, 0);
6983 subsys_initcall(net_dev_init);