net-tc: convert tc_verd to integer bitfields
[platform/kernel/linux-rpi.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;       /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160                                          struct net_device *dev,
161                                          struct netdev_notifier_info *info);
162
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195         while (++net->dev_base_seq == 0);
196 }
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
201
202         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213         spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227         struct net *net = dev_net(dev);
228
229         ASSERT_RTNL();
230
231         write_lock_bh(&dev_base_lock);
232         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234         hlist_add_head_rcu(&dev->index_hlist,
235                            dev_index_hash(net, dev->ifindex));
236         write_unlock_bh(&dev_base_lock);
237
238         dev_base_seq_inc(net);
239 }
240
241 /* Device list removal
242  * caller must respect a RCU grace period before freeing/reusing dev
243  */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246         ASSERT_RTNL();
247
248         /* Unlink dev from the device chain */
249         write_lock_bh(&dev_base_lock);
250         list_del_rcu(&dev->dev_list);
251         hlist_del_rcu(&dev->name_hlist);
252         hlist_del_rcu(&dev->index_hlist);
253         write_unlock_bh(&dev_base_lock);
254
255         dev_base_seq_inc(dev_net(dev));
256 }
257
258 /*
259  *      Our notifier list
260  */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265  *      Device drivers call our routines to queue packets here. We empty the
266  *      queue in the local softnet handler.
267  */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275  * according to dev->type
276  */
277 static const unsigned short netdev_lock_type[] =
278         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316         int i;
317
318         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319                 if (netdev_lock_type[i] == dev_type)
320                         return i;
321         /* the last key is used by default */
322         return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326                                                  unsigned short dev_type)
327 {
328         int i;
329
330         i = netdev_lock_pos(dev_type);
331         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332                                    netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev->type);
340         lockdep_set_class_and_name(&dev->addr_list_lock,
341                                    &netdev_addr_lock_key[i],
342                                    netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346                                                  unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356                 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361  *      Add a protocol ID to the list. Now that the input handler is
362  *      smarter we can dispense with all the messy stuff that used to be
363  *      here.
364  *
365  *      BEWARE!!! Protocol handlers, mangling input packets,
366  *      MUST BE last in hash buckets and checking protocol handlers
367  *      MUST start from promiscuous ptype_all chain in net_bh.
368  *      It is true now, do not change it.
369  *      Explanation follows: if protocol handler, mangling packet, will
370  *      be the first on list, it is not able to sense, that packet
371  *      is cloned and should be copied-on-write, so that it will
372  *      change it and subsequent readers will get broken packet.
373  *                                                      --ANK (980803)
374  */
375
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378         if (pt->type == htons(ETH_P_ALL))
379                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380         else
381                 return pt->dev ? &pt->dev->ptype_specific :
382                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386  *      dev_add_pack - add packet handler
387  *      @pt: packet type declaration
388  *
389  *      Add a protocol handler to the networking stack. The passed &packet_type
390  *      is linked into kernel lists and may not be freed until it has been
391  *      removed from the kernel lists.
392  *
393  *      This call does not sleep therefore it can not
394  *      guarantee all CPU's that are in middle of receiving packets
395  *      will see the new packet type (until the next received packet).
396  */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400         struct list_head *head = ptype_head(pt);
401
402         spin_lock(&ptype_lock);
403         list_add_rcu(&pt->list, head);
404         spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409  *      __dev_remove_pack        - remove packet handler
410  *      @pt: packet type declaration
411  *
412  *      Remove a protocol handler that was previously added to the kernel
413  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *      from the kernel lists and can be freed or reused once this function
415  *      returns.
416  *
417  *      The packet type might still be in use by receivers
418  *      and must not be freed until after all the CPU's have gone
419  *      through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423         struct list_head *head = ptype_head(pt);
424         struct packet_type *pt1;
425
426         spin_lock(&ptype_lock);
427
428         list_for_each_entry(pt1, head, list) {
429                 if (pt == pt1) {
430                         list_del_rcu(&pt->list);
431                         goto out;
432                 }
433         }
434
435         pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437         spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442  *      dev_remove_pack  - remove packet handler
443  *      @pt: packet type declaration
444  *
445  *      Remove a protocol handler that was previously added to the kernel
446  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *      from the kernel lists and can be freed or reused once this function
448  *      returns.
449  *
450  *      This call sleeps to guarantee that no CPU is looking at the packet
451  *      type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455         __dev_remove_pack(pt);
456
457         synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461
462 /**
463  *      dev_add_offload - register offload handlers
464  *      @po: protocol offload declaration
465  *
466  *      Add protocol offload handlers to the networking stack. The passed
467  *      &proto_offload is linked into kernel lists and may not be freed until
468  *      it has been removed from the kernel lists.
469  *
470  *      This call does not sleep therefore it can not
471  *      guarantee all CPU's that are in middle of receiving packets
472  *      will see the new offload handlers (until the next received packet).
473  */
474 void dev_add_offload(struct packet_offload *po)
475 {
476         struct packet_offload *elem;
477
478         spin_lock(&offload_lock);
479         list_for_each_entry(elem, &offload_base, list) {
480                 if (po->priority < elem->priority)
481                         break;
482         }
483         list_add_rcu(&po->list, elem->list.prev);
484         spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487
488 /**
489  *      __dev_remove_offload     - remove offload handler
490  *      @po: packet offload declaration
491  *
492  *      Remove a protocol offload handler that was previously added to the
493  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
494  *      is removed from the kernel lists and can be freed or reused once this
495  *      function returns.
496  *
497  *      The packet type might still be in use by receivers
498  *      and must not be freed until after all the CPU's have gone
499  *      through a quiescent state.
500  */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503         struct list_head *head = &offload_base;
504         struct packet_offload *po1;
505
506         spin_lock(&offload_lock);
507
508         list_for_each_entry(po1, head, list) {
509                 if (po == po1) {
510                         list_del_rcu(&po->list);
511                         goto out;
512                 }
513         }
514
515         pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517         spin_unlock(&offload_lock);
518 }
519
520 /**
521  *      dev_remove_offload       - remove packet offload handler
522  *      @po: packet offload declaration
523  *
524  *      Remove a packet offload handler that was previously added to the kernel
525  *      offload handlers by dev_add_offload(). The passed &offload_type is
526  *      removed from the kernel lists and can be freed or reused once this
527  *      function returns.
528  *
529  *      This call sleeps to guarantee that no CPU is looking at the packet
530  *      type after return.
531  */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534         __dev_remove_offload(po);
535
536         synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539
540 /******************************************************************************
541
542                       Device Boot-time Settings Routines
543
544 *******************************************************************************/
545
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549 /**
550  *      netdev_boot_setup_add   - add new setup entry
551  *      @name: name of the device
552  *      @map: configured settings for the device
553  *
554  *      Adds new setup entry to the dev_boot_setup list.  The function
555  *      returns 0 on error and 1 on success.  This is a generic routine to
556  *      all netdevices.
557  */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560         struct netdev_boot_setup *s;
561         int i;
562
563         s = dev_boot_setup;
564         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566                         memset(s[i].name, 0, sizeof(s[i].name));
567                         strlcpy(s[i].name, name, IFNAMSIZ);
568                         memcpy(&s[i].map, map, sizeof(s[i].map));
569                         break;
570                 }
571         }
572
573         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575
576 /**
577  *      netdev_boot_setup_check - check boot time settings
578  *      @dev: the netdevice
579  *
580  *      Check boot time settings for the device.
581  *      The found settings are set for the device to be used
582  *      later in the device probing.
583  *      Returns 0 if no settings found, 1 if they are.
584  */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587         struct netdev_boot_setup *s = dev_boot_setup;
588         int i;
589
590         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592                     !strcmp(dev->name, s[i].name)) {
593                         dev->irq        = s[i].map.irq;
594                         dev->base_addr  = s[i].map.base_addr;
595                         dev->mem_start  = s[i].map.mem_start;
596                         dev->mem_end    = s[i].map.mem_end;
597                         return 1;
598                 }
599         }
600         return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603
604
605 /**
606  *      netdev_boot_base        - get address from boot time settings
607  *      @prefix: prefix for network device
608  *      @unit: id for network device
609  *
610  *      Check boot time settings for the base address of device.
611  *      The found settings are set for the device to be used
612  *      later in the device probing.
613  *      Returns 0 if no settings found.
614  */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617         const struct netdev_boot_setup *s = dev_boot_setup;
618         char name[IFNAMSIZ];
619         int i;
620
621         sprintf(name, "%s%d", prefix, unit);
622
623         /*
624          * If device already registered then return base of 1
625          * to indicate not to probe for this interface
626          */
627         if (__dev_get_by_name(&init_net, name))
628                 return 1;
629
630         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631                 if (!strcmp(name, s[i].name))
632                         return s[i].map.base_addr;
633         return 0;
634 }
635
636 /*
637  * Saves at boot time configured settings for any netdevice.
638  */
639 int __init netdev_boot_setup(char *str)
640 {
641         int ints[5];
642         struct ifmap map;
643
644         str = get_options(str, ARRAY_SIZE(ints), ints);
645         if (!str || !*str)
646                 return 0;
647
648         /* Save settings */
649         memset(&map, 0, sizeof(map));
650         if (ints[0] > 0)
651                 map.irq = ints[1];
652         if (ints[0] > 1)
653                 map.base_addr = ints[2];
654         if (ints[0] > 2)
655                 map.mem_start = ints[3];
656         if (ints[0] > 3)
657                 map.mem_end = ints[4];
658
659         /* Add new entry to the list */
660         return netdev_boot_setup_add(str, &map);
661 }
662
663 __setup("netdev=", netdev_boot_setup);
664
665 /*******************************************************************************
666
667                             Device Interface Subroutines
668
669 *******************************************************************************/
670
671 /**
672  *      dev_get_iflink  - get 'iflink' value of a interface
673  *      @dev: targeted interface
674  *
675  *      Indicates the ifindex the interface is linked to.
676  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
677  */
678
679 int dev_get_iflink(const struct net_device *dev)
680 {
681         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682                 return dev->netdev_ops->ndo_get_iflink(dev);
683
684         return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687
688 /**
689  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
690  *      @dev: targeted interface
691  *      @skb: The packet.
692  *
693  *      For better visibility of tunnel traffic OVS needs to retrieve
694  *      egress tunnel information for a packet. Following API allows
695  *      user to get this info.
696  */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699         struct ip_tunnel_info *info;
700
701         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
702                 return -EINVAL;
703
704         info = skb_tunnel_info_unclone(skb);
705         if (!info)
706                 return -ENOMEM;
707         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708                 return -EINVAL;
709
710         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
714 /**
715  *      __dev_get_by_name       - find a device by its name
716  *      @net: the applicable net namespace
717  *      @name: name to find
718  *
719  *      Find an interface by name. Must be called under RTNL semaphore
720  *      or @dev_base_lock. If the name is found a pointer to the device
721  *      is returned. If the name is not found then %NULL is returned. The
722  *      reference counters are not incremented so the caller must be
723  *      careful with locks.
724  */
725
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728         struct net_device *dev;
729         struct hlist_head *head = dev_name_hash(net, name);
730
731         hlist_for_each_entry(dev, head, name_hlist)
732                 if (!strncmp(dev->name, name, IFNAMSIZ))
733                         return dev;
734
735         return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738
739 /**
740  *      dev_get_by_name_rcu     - find a device by its name
741  *      @net: the applicable net namespace
742  *      @name: name to find
743  *
744  *      Find an interface by name.
745  *      If the name is found a pointer to the device is returned.
746  *      If the name is not found then %NULL is returned.
747  *      The reference counters are not incremented so the caller must be
748  *      careful with locks. The caller must hold RCU lock.
749  */
750
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753         struct net_device *dev;
754         struct hlist_head *head = dev_name_hash(net, name);
755
756         hlist_for_each_entry_rcu(dev, head, name_hlist)
757                 if (!strncmp(dev->name, name, IFNAMSIZ))
758                         return dev;
759
760         return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763
764 /**
765  *      dev_get_by_name         - find a device by its name
766  *      @net: the applicable net namespace
767  *      @name: name to find
768  *
769  *      Find an interface by name. This can be called from any
770  *      context and does its own locking. The returned handle has
771  *      the usage count incremented and the caller must use dev_put() to
772  *      release it when it is no longer needed. %NULL is returned if no
773  *      matching device is found.
774  */
775
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778         struct net_device *dev;
779
780         rcu_read_lock();
781         dev = dev_get_by_name_rcu(net, name);
782         if (dev)
783                 dev_hold(dev);
784         rcu_read_unlock();
785         return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788
789 /**
790  *      __dev_get_by_index - find a device by its ifindex
791  *      @net: the applicable net namespace
792  *      @ifindex: index of device
793  *
794  *      Search for an interface by index. Returns %NULL if the device
795  *      is not found or a pointer to the device. The device has not
796  *      had its reference counter increased so the caller must be careful
797  *      about locking. The caller must hold either the RTNL semaphore
798  *      or @dev_base_lock.
799  */
800
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803         struct net_device *dev;
804         struct hlist_head *head = dev_index_hash(net, ifindex);
805
806         hlist_for_each_entry(dev, head, index_hlist)
807                 if (dev->ifindex == ifindex)
808                         return dev;
809
810         return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813
814 /**
815  *      dev_get_by_index_rcu - find a device by its ifindex
816  *      @net: the applicable net namespace
817  *      @ifindex: index of device
818  *
819  *      Search for an interface by index. Returns %NULL if the device
820  *      is not found or a pointer to the device. The device has not
821  *      had its reference counter increased so the caller must be careful
822  *      about locking. The caller must hold RCU lock.
823  */
824
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827         struct net_device *dev;
828         struct hlist_head *head = dev_index_hash(net, ifindex);
829
830         hlist_for_each_entry_rcu(dev, head, index_hlist)
831                 if (dev->ifindex == ifindex)
832                         return dev;
833
834         return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837
838
839 /**
840  *      dev_get_by_index - find a device by its ifindex
841  *      @net: the applicable net namespace
842  *      @ifindex: index of device
843  *
844  *      Search for an interface by index. Returns NULL if the device
845  *      is not found or a pointer to the device. The device returned has
846  *      had a reference added and the pointer is safe until the user calls
847  *      dev_put to indicate they have finished with it.
848  */
849
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852         struct net_device *dev;
853
854         rcu_read_lock();
855         dev = dev_get_by_index_rcu(net, ifindex);
856         if (dev)
857                 dev_hold(dev);
858         rcu_read_unlock();
859         return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862
863 /**
864  *      netdev_get_name - get a netdevice name, knowing its ifindex.
865  *      @net: network namespace
866  *      @name: a pointer to the buffer where the name will be stored.
867  *      @ifindex: the ifindex of the interface to get the name from.
868  *
869  *      The use of raw_seqcount_begin() and cond_resched() before
870  *      retrying is required as we want to give the writers a chance
871  *      to complete when CONFIG_PREEMPT is not set.
872  */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875         struct net_device *dev;
876         unsigned int seq;
877
878 retry:
879         seq = raw_seqcount_begin(&devnet_rename_seq);
880         rcu_read_lock();
881         dev = dev_get_by_index_rcu(net, ifindex);
882         if (!dev) {
883                 rcu_read_unlock();
884                 return -ENODEV;
885         }
886
887         strcpy(name, dev->name);
888         rcu_read_unlock();
889         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890                 cond_resched();
891                 goto retry;
892         }
893
894         return 0;
895 }
896
897 /**
898  *      dev_getbyhwaddr_rcu - find a device by its hardware address
899  *      @net: the applicable net namespace
900  *      @type: media type of device
901  *      @ha: hardware address
902  *
903  *      Search for an interface by MAC address. Returns NULL if the device
904  *      is not found or a pointer to the device.
905  *      The caller must hold RCU or RTNL.
906  *      The returned device has not had its ref count increased
907  *      and the caller must therefore be careful about locking
908  *
909  */
910
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912                                        const char *ha)
913 {
914         struct net_device *dev;
915
916         for_each_netdev_rcu(net, dev)
917                 if (dev->type == type &&
918                     !memcmp(dev->dev_addr, ha, dev->addr_len))
919                         return dev;
920
921         return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927         struct net_device *dev;
928
929         ASSERT_RTNL();
930         for_each_netdev(net, dev)
931                 if (dev->type == type)
932                         return dev;
933
934         return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940         struct net_device *dev, *ret = NULL;
941
942         rcu_read_lock();
943         for_each_netdev_rcu(net, dev)
944                 if (dev->type == type) {
945                         dev_hold(dev);
946                         ret = dev;
947                         break;
948                 }
949         rcu_read_unlock();
950         return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954 /**
955  *      __dev_get_by_flags - find any device with given flags
956  *      @net: the applicable net namespace
957  *      @if_flags: IFF_* values
958  *      @mask: bitmask of bits in if_flags to check
959  *
960  *      Search for any interface with the given flags. Returns NULL if a device
961  *      is not found or a pointer to the device. Must be called inside
962  *      rtnl_lock(), and result refcount is unchanged.
963  */
964
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966                                       unsigned short mask)
967 {
968         struct net_device *dev, *ret;
969
970         ASSERT_RTNL();
971
972         ret = NULL;
973         for_each_netdev(net, dev) {
974                 if (((dev->flags ^ if_flags) & mask) == 0) {
975                         ret = dev;
976                         break;
977                 }
978         }
979         return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982
983 /**
984  *      dev_valid_name - check if name is okay for network device
985  *      @name: name string
986  *
987  *      Network device names need to be valid file names to
988  *      to allow sysfs to work.  We also disallow any kind of
989  *      whitespace.
990  */
991 bool dev_valid_name(const char *name)
992 {
993         if (*name == '\0')
994                 return false;
995         if (strlen(name) >= IFNAMSIZ)
996                 return false;
997         if (!strcmp(name, ".") || !strcmp(name, ".."))
998                 return false;
999
1000         while (*name) {
1001                 if (*name == '/' || *name == ':' || isspace(*name))
1002                         return false;
1003                 name++;
1004         }
1005         return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008
1009 /**
1010  *      __dev_alloc_name - allocate a name for a device
1011  *      @net: network namespace to allocate the device name in
1012  *      @name: name format string
1013  *      @buf:  scratch buffer and result name string
1014  *
1015  *      Passed a format string - eg "lt%d" it will try and find a suitable
1016  *      id. It scans list of devices to build up a free map, then chooses
1017  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1018  *      while allocating the name and adding the device in order to avoid
1019  *      duplicates.
1020  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021  *      Returns the number of the unit assigned or a negative errno code.
1022  */
1023
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026         int i = 0;
1027         const char *p;
1028         const int max_netdevices = 8*PAGE_SIZE;
1029         unsigned long *inuse;
1030         struct net_device *d;
1031
1032         p = strnchr(name, IFNAMSIZ-1, '%');
1033         if (p) {
1034                 /*
1035                  * Verify the string as this thing may have come from
1036                  * the user.  There must be either one "%d" and no other "%"
1037                  * characters.
1038                  */
1039                 if (p[1] != 'd' || strchr(p + 2, '%'))
1040                         return -EINVAL;
1041
1042                 /* Use one page as a bit array of possible slots */
1043                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044                 if (!inuse)
1045                         return -ENOMEM;
1046
1047                 for_each_netdev(net, d) {
1048                         if (!sscanf(d->name, name, &i))
1049                                 continue;
1050                         if (i < 0 || i >= max_netdevices)
1051                                 continue;
1052
1053                         /*  avoid cases where sscanf is not exact inverse of printf */
1054                         snprintf(buf, IFNAMSIZ, name, i);
1055                         if (!strncmp(buf, d->name, IFNAMSIZ))
1056                                 set_bit(i, inuse);
1057                 }
1058
1059                 i = find_first_zero_bit(inuse, max_netdevices);
1060                 free_page((unsigned long) inuse);
1061         }
1062
1063         if (buf != name)
1064                 snprintf(buf, IFNAMSIZ, name, i);
1065         if (!__dev_get_by_name(net, buf))
1066                 return i;
1067
1068         /* It is possible to run out of possible slots
1069          * when the name is long and there isn't enough space left
1070          * for the digits, or if all bits are used.
1071          */
1072         return -ENFILE;
1073 }
1074
1075 /**
1076  *      dev_alloc_name - allocate a name for a device
1077  *      @dev: device
1078  *      @name: name format string
1079  *
1080  *      Passed a format string - eg "lt%d" it will try and find a suitable
1081  *      id. It scans list of devices to build up a free map, then chooses
1082  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *      while allocating the name and adding the device in order to avoid
1084  *      duplicates.
1085  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *      Returns the number of the unit assigned or a negative errno code.
1087  */
1088
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091         char buf[IFNAMSIZ];
1092         struct net *net;
1093         int ret;
1094
1095         BUG_ON(!dev_net(dev));
1096         net = dev_net(dev);
1097         ret = __dev_alloc_name(net, name, buf);
1098         if (ret >= 0)
1099                 strlcpy(dev->name, buf, IFNAMSIZ);
1100         return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103
1104 static int dev_alloc_name_ns(struct net *net,
1105                              struct net_device *dev,
1106                              const char *name)
1107 {
1108         char buf[IFNAMSIZ];
1109         int ret;
1110
1111         ret = __dev_alloc_name(net, name, buf);
1112         if (ret >= 0)
1113                 strlcpy(dev->name, buf, IFNAMSIZ);
1114         return ret;
1115 }
1116
1117 static int dev_get_valid_name(struct net *net,
1118                               struct net_device *dev,
1119                               const char *name)
1120 {
1121         BUG_ON(!net);
1122
1123         if (!dev_valid_name(name))
1124                 return -EINVAL;
1125
1126         if (strchr(name, '%'))
1127                 return dev_alloc_name_ns(net, dev, name);
1128         else if (__dev_get_by_name(net, name))
1129                 return -EEXIST;
1130         else if (dev->name != name)
1131                 strlcpy(dev->name, name, IFNAMSIZ);
1132
1133         return 0;
1134 }
1135
1136 /**
1137  *      dev_change_name - change name of a device
1138  *      @dev: device
1139  *      @newname: name (or format string) must be at least IFNAMSIZ
1140  *
1141  *      Change name of a device, can pass format strings "eth%d".
1142  *      for wildcarding.
1143  */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146         unsigned char old_assign_type;
1147         char oldname[IFNAMSIZ];
1148         int err = 0;
1149         int ret;
1150         struct net *net;
1151
1152         ASSERT_RTNL();
1153         BUG_ON(!dev_net(dev));
1154
1155         net = dev_net(dev);
1156         if (dev->flags & IFF_UP)
1157                 return -EBUSY;
1158
1159         write_seqcount_begin(&devnet_rename_seq);
1160
1161         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162                 write_seqcount_end(&devnet_rename_seq);
1163                 return 0;
1164         }
1165
1166         memcpy(oldname, dev->name, IFNAMSIZ);
1167
1168         err = dev_get_valid_name(net, dev, newname);
1169         if (err < 0) {
1170                 write_seqcount_end(&devnet_rename_seq);
1171                 return err;
1172         }
1173
1174         if (oldname[0] && !strchr(oldname, '%'))
1175                 netdev_info(dev, "renamed from %s\n", oldname);
1176
1177         old_assign_type = dev->name_assign_type;
1178         dev->name_assign_type = NET_NAME_RENAMED;
1179
1180 rollback:
1181         ret = device_rename(&dev->dev, dev->name);
1182         if (ret) {
1183                 memcpy(dev->name, oldname, IFNAMSIZ);
1184                 dev->name_assign_type = old_assign_type;
1185                 write_seqcount_end(&devnet_rename_seq);
1186                 return ret;
1187         }
1188
1189         write_seqcount_end(&devnet_rename_seq);
1190
1191         netdev_adjacent_rename_links(dev, oldname);
1192
1193         write_lock_bh(&dev_base_lock);
1194         hlist_del_rcu(&dev->name_hlist);
1195         write_unlock_bh(&dev_base_lock);
1196
1197         synchronize_rcu();
1198
1199         write_lock_bh(&dev_base_lock);
1200         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201         write_unlock_bh(&dev_base_lock);
1202
1203         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204         ret = notifier_to_errno(ret);
1205
1206         if (ret) {
1207                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208                 if (err >= 0) {
1209                         err = ret;
1210                         write_seqcount_begin(&devnet_rename_seq);
1211                         memcpy(dev->name, oldname, IFNAMSIZ);
1212                         memcpy(oldname, newname, IFNAMSIZ);
1213                         dev->name_assign_type = old_assign_type;
1214                         old_assign_type = NET_NAME_RENAMED;
1215                         goto rollback;
1216                 } else {
1217                         pr_err("%s: name change rollback failed: %d\n",
1218                                dev->name, ret);
1219                 }
1220         }
1221
1222         return err;
1223 }
1224
1225 /**
1226  *      dev_set_alias - change ifalias of a device
1227  *      @dev: device
1228  *      @alias: name up to IFALIASZ
1229  *      @len: limit of bytes to copy from info
1230  *
1231  *      Set ifalias for a device,
1232  */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235         char *new_ifalias;
1236
1237         ASSERT_RTNL();
1238
1239         if (len >= IFALIASZ)
1240                 return -EINVAL;
1241
1242         if (!len) {
1243                 kfree(dev->ifalias);
1244                 dev->ifalias = NULL;
1245                 return 0;
1246         }
1247
1248         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249         if (!new_ifalias)
1250                 return -ENOMEM;
1251         dev->ifalias = new_ifalias;
1252
1253         strlcpy(dev->ifalias, alias, len+1);
1254         return len;
1255 }
1256
1257
1258 /**
1259  *      netdev_features_change - device changes features
1260  *      @dev: device to cause notification
1261  *
1262  *      Called to indicate a device has changed features.
1263  */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269
1270 /**
1271  *      netdev_state_change - device changes state
1272  *      @dev: device to cause notification
1273  *
1274  *      Called to indicate a device has changed state. This function calls
1275  *      the notifier chains for netdev_chain and sends a NEWLINK message
1276  *      to the routing socket.
1277  */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280         if (dev->flags & IFF_UP) {
1281                 struct netdev_notifier_change_info change_info;
1282
1283                 change_info.flags_changed = 0;
1284                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285                                               &change_info.info);
1286                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287         }
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290
1291 /**
1292  *      netdev_notify_peers - notify network peers about existence of @dev
1293  *      @dev: network device
1294  *
1295  * Generate traffic such that interested network peers are aware of
1296  * @dev, such as by generating a gratuitous ARP. This may be used when
1297  * a device wants to inform the rest of the network about some sort of
1298  * reconfiguration such as a failover event or virtual machine
1299  * migration.
1300  */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303         rtnl_lock();
1304         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305         rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308
1309 static int __dev_open(struct net_device *dev)
1310 {
1311         const struct net_device_ops *ops = dev->netdev_ops;
1312         int ret;
1313
1314         ASSERT_RTNL();
1315
1316         if (!netif_device_present(dev))
1317                 return -ENODEV;
1318
1319         /* Block netpoll from trying to do any rx path servicing.
1320          * If we don't do this there is a chance ndo_poll_controller
1321          * or ndo_poll may be running while we open the device
1322          */
1323         netpoll_poll_disable(dev);
1324
1325         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326         ret = notifier_to_errno(ret);
1327         if (ret)
1328                 return ret;
1329
1330         set_bit(__LINK_STATE_START, &dev->state);
1331
1332         if (ops->ndo_validate_addr)
1333                 ret = ops->ndo_validate_addr(dev);
1334
1335         if (!ret && ops->ndo_open)
1336                 ret = ops->ndo_open(dev);
1337
1338         netpoll_poll_enable(dev);
1339
1340         if (ret)
1341                 clear_bit(__LINK_STATE_START, &dev->state);
1342         else {
1343                 dev->flags |= IFF_UP;
1344                 dev_set_rx_mode(dev);
1345                 dev_activate(dev);
1346                 add_device_randomness(dev->dev_addr, dev->addr_len);
1347         }
1348
1349         return ret;
1350 }
1351
1352 /**
1353  *      dev_open        - prepare an interface for use.
1354  *      @dev:   device to open
1355  *
1356  *      Takes a device from down to up state. The device's private open
1357  *      function is invoked and then the multicast lists are loaded. Finally
1358  *      the device is moved into the up state and a %NETDEV_UP message is
1359  *      sent to the netdev notifier chain.
1360  *
1361  *      Calling this function on an active interface is a nop. On a failure
1362  *      a negative errno code is returned.
1363  */
1364 int dev_open(struct net_device *dev)
1365 {
1366         int ret;
1367
1368         if (dev->flags & IFF_UP)
1369                 return 0;
1370
1371         ret = __dev_open(dev);
1372         if (ret < 0)
1373                 return ret;
1374
1375         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376         call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378         return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384         struct net_device *dev;
1385
1386         ASSERT_RTNL();
1387         might_sleep();
1388
1389         list_for_each_entry(dev, head, close_list) {
1390                 /* Temporarily disable netpoll until the interface is down */
1391                 netpoll_poll_disable(dev);
1392
1393                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394
1395                 clear_bit(__LINK_STATE_START, &dev->state);
1396
1397                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398                  * can be even on different cpu. So just clear netif_running().
1399                  *
1400                  * dev->stop() will invoke napi_disable() on all of it's
1401                  * napi_struct instances on this device.
1402                  */
1403                 smp_mb__after_atomic(); /* Commit netif_running(). */
1404         }
1405
1406         dev_deactivate_many(head);
1407
1408         list_for_each_entry(dev, head, close_list) {
1409                 const struct net_device_ops *ops = dev->netdev_ops;
1410
1411                 /*
1412                  *      Call the device specific close. This cannot fail.
1413                  *      Only if device is UP
1414                  *
1415                  *      We allow it to be called even after a DETACH hot-plug
1416                  *      event.
1417                  */
1418                 if (ops->ndo_stop)
1419                         ops->ndo_stop(dev);
1420
1421                 dev->flags &= ~IFF_UP;
1422                 netpoll_poll_enable(dev);
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int __dev_close(struct net_device *dev)
1429 {
1430         int retval;
1431         LIST_HEAD(single);
1432
1433         list_add(&dev->close_list, &single);
1434         retval = __dev_close_many(&single);
1435         list_del(&single);
1436
1437         return retval;
1438 }
1439
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442         struct net_device *dev, *tmp;
1443
1444         /* Remove the devices that don't need to be closed */
1445         list_for_each_entry_safe(dev, tmp, head, close_list)
1446                 if (!(dev->flags & IFF_UP))
1447                         list_del_init(&dev->close_list);
1448
1449         __dev_close_many(head);
1450
1451         list_for_each_entry_safe(dev, tmp, head, close_list) {
1452                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1454                 if (unlink)
1455                         list_del_init(&dev->close_list);
1456         }
1457
1458         return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461
1462 /**
1463  *      dev_close - shutdown an interface.
1464  *      @dev: device to shutdown
1465  *
1466  *      This function moves an active device into down state. A
1467  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469  *      chain.
1470  */
1471 int dev_close(struct net_device *dev)
1472 {
1473         if (dev->flags & IFF_UP) {
1474                 LIST_HEAD(single);
1475
1476                 list_add(&dev->close_list, &single);
1477                 dev_close_many(&single, true);
1478                 list_del(&single);
1479         }
1480         return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483
1484
1485 /**
1486  *      dev_disable_lro - disable Large Receive Offload on a device
1487  *      @dev: device
1488  *
1489  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1490  *      called under RTNL.  This is needed if received packets may be
1491  *      forwarded to another interface.
1492  */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495         struct net_device *lower_dev;
1496         struct list_head *iter;
1497
1498         dev->wanted_features &= ~NETIF_F_LRO;
1499         netdev_update_features(dev);
1500
1501         if (unlikely(dev->features & NETIF_F_LRO))
1502                 netdev_WARN(dev, "failed to disable LRO!\n");
1503
1504         netdev_for_each_lower_dev(dev, lower_dev, iter)
1505                 dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510                                    struct net_device *dev)
1511 {
1512         struct netdev_notifier_info info;
1513
1514         netdev_notifier_info_init(&info, dev);
1515         return nb->notifier_call(nb, val, &info);
1516 }
1517
1518 static int dev_boot_phase = 1;
1519
1520 /**
1521  *      register_netdevice_notifier - register a network notifier block
1522  *      @nb: notifier
1523  *
1524  *      Register a notifier to be called when network device events occur.
1525  *      The notifier passed is linked into the kernel structures and must
1526  *      not be reused until it has been unregistered. A negative errno code
1527  *      is returned on a failure.
1528  *
1529  *      When registered all registration and up events are replayed
1530  *      to the new notifier to allow device to have a race free
1531  *      view of the network device list.
1532  */
1533
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536         struct net_device *dev;
1537         struct net_device *last;
1538         struct net *net;
1539         int err;
1540
1541         rtnl_lock();
1542         err = raw_notifier_chain_register(&netdev_chain, nb);
1543         if (err)
1544                 goto unlock;
1545         if (dev_boot_phase)
1546                 goto unlock;
1547         for_each_net(net) {
1548                 for_each_netdev(net, dev) {
1549                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550                         err = notifier_to_errno(err);
1551                         if (err)
1552                                 goto rollback;
1553
1554                         if (!(dev->flags & IFF_UP))
1555                                 continue;
1556
1557                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1558                 }
1559         }
1560
1561 unlock:
1562         rtnl_unlock();
1563         return err;
1564
1565 rollback:
1566         last = dev;
1567         for_each_net(net) {
1568                 for_each_netdev(net, dev) {
1569                         if (dev == last)
1570                                 goto outroll;
1571
1572                         if (dev->flags & IFF_UP) {
1573                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574                                                         dev);
1575                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576                         }
1577                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578                 }
1579         }
1580
1581 outroll:
1582         raw_notifier_chain_unregister(&netdev_chain, nb);
1583         goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586
1587 /**
1588  *      unregister_netdevice_notifier - unregister a network notifier block
1589  *      @nb: notifier
1590  *
1591  *      Unregister a notifier previously registered by
1592  *      register_netdevice_notifier(). The notifier is unlinked into the
1593  *      kernel structures and may then be reused. A negative errno code
1594  *      is returned on a failure.
1595  *
1596  *      After unregistering unregister and down device events are synthesized
1597  *      for all devices on the device list to the removed notifier to remove
1598  *      the need for special case cleanup code.
1599  */
1600
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603         struct net_device *dev;
1604         struct net *net;
1605         int err;
1606
1607         rtnl_lock();
1608         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609         if (err)
1610                 goto unlock;
1611
1612         for_each_net(net) {
1613                 for_each_netdev(net, dev) {
1614                         if (dev->flags & IFF_UP) {
1615                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616                                                         dev);
1617                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618                         }
1619                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620                 }
1621         }
1622 unlock:
1623         rtnl_unlock();
1624         return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627
1628 /**
1629  *      call_netdevice_notifiers_info - call all network notifier blocks
1630  *      @val: value passed unmodified to notifier function
1631  *      @dev: net_device pointer passed unmodified to notifier function
1632  *      @info: notifier information data
1633  *
1634  *      Call all network notifier blocks.  Parameters and return value
1635  *      are as for raw_notifier_call_chain().
1636  */
1637
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639                                          struct net_device *dev,
1640                                          struct netdev_notifier_info *info)
1641 {
1642         ASSERT_RTNL();
1643         netdev_notifier_info_init(info, dev);
1644         return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646
1647 /**
1648  *      call_netdevice_notifiers - call all network notifier blocks
1649  *      @val: value passed unmodified to notifier function
1650  *      @dev: net_device pointer passed unmodified to notifier function
1651  *
1652  *      Call all network notifier blocks.  Parameters and return value
1653  *      are as for raw_notifier_call_chain().
1654  */
1655
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658         struct netdev_notifier_info info;
1659
1660         return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666
1667 void net_inc_ingress_queue(void)
1668 {
1669         static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673 void net_dec_ingress_queue(void)
1674 {
1675         static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682
1683 void net_inc_egress_queue(void)
1684 {
1685         static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689 void net_dec_egress_queue(void)
1690 {
1691         static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699  * If net_disable_timestamp() is called from irq context, defer the
1700  * static_key_slow_dec() calls.
1701  */
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1704
1705 void net_enable_timestamp(void)
1706 {
1707 #ifdef HAVE_JUMP_LABEL
1708         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710         if (deferred) {
1711                 while (--deferred)
1712                         static_key_slow_dec(&netstamp_needed);
1713                 return;
1714         }
1715 #endif
1716         static_key_slow_inc(&netstamp_needed);
1717 }
1718 EXPORT_SYMBOL(net_enable_timestamp);
1719
1720 void net_disable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723         if (in_interrupt()) {
1724                 atomic_inc(&netstamp_needed_deferred);
1725                 return;
1726         }
1727 #endif
1728         static_key_slow_dec(&netstamp_needed);
1729 }
1730 EXPORT_SYMBOL(net_disable_timestamp);
1731
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1733 {
1734         skb->tstamp = 0;
1735         if (static_key_false(&netstamp_needed))
1736                 __net_timestamp(skb);
1737 }
1738
1739 #define net_timestamp_check(COND, SKB)                  \
1740         if (static_key_false(&netstamp_needed)) {               \
1741                 if ((COND) && !(SKB)->tstamp)   \
1742                         __net_timestamp(SKB);           \
1743         }                                               \
1744
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747         unsigned int len;
1748
1749         if (!(dev->flags & IFF_UP))
1750                 return false;
1751
1752         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753         if (skb->len <= len)
1754                 return true;
1755
1756         /* if TSO is enabled, we don't care about the length as the packet
1757          * could be forwarded without being segmented before
1758          */
1759         if (skb_is_gso(skb))
1760                 return true;
1761
1762         return false;
1763 }
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 {
1768         int ret = ____dev_forward_skb(dev, skb);
1769
1770         if (likely(!ret)) {
1771                 skb->protocol = eth_type_trans(skb, dev);
1772                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773         }
1774
1775         return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778
1779 /**
1780  * dev_forward_skb - loopback an skb to another netif
1781  *
1782  * @dev: destination network device
1783  * @skb: buffer to forward
1784  *
1785  * return values:
1786  *      NET_RX_SUCCESS  (no congestion)
1787  *      NET_RX_DROP     (packet was dropped, but freed)
1788  *
1789  * dev_forward_skb can be used for injecting an skb from the
1790  * start_xmit function of one device into the receive queue
1791  * of another device.
1792  *
1793  * The receiving device may be in another namespace, so
1794  * we have to clear all information in the skb that could
1795  * impact namespace isolation.
1796  */
1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798 {
1799         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1800 }
1801 EXPORT_SYMBOL_GPL(dev_forward_skb);
1802
1803 static inline int deliver_skb(struct sk_buff *skb,
1804                               struct packet_type *pt_prev,
1805                               struct net_device *orig_dev)
1806 {
1807         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808                 return -ENOMEM;
1809         atomic_inc(&skb->users);
1810         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811 }
1812
1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814                                           struct packet_type **pt,
1815                                           struct net_device *orig_dev,
1816                                           __be16 type,
1817                                           struct list_head *ptype_list)
1818 {
1819         struct packet_type *ptype, *pt_prev = *pt;
1820
1821         list_for_each_entry_rcu(ptype, ptype_list, list) {
1822                 if (ptype->type != type)
1823                         continue;
1824                 if (pt_prev)
1825                         deliver_skb(skb, pt_prev, orig_dev);
1826                 pt_prev = ptype;
1827         }
1828         *pt = pt_prev;
1829 }
1830
1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832 {
1833         if (!ptype->af_packet_priv || !skb->sk)
1834                 return false;
1835
1836         if (ptype->id_match)
1837                 return ptype->id_match(ptype, skb->sk);
1838         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839                 return true;
1840
1841         return false;
1842 }
1843
1844 /*
1845  *      Support routine. Sends outgoing frames to any network
1846  *      taps currently in use.
1847  */
1848
1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1850 {
1851         struct packet_type *ptype;
1852         struct sk_buff *skb2 = NULL;
1853         struct packet_type *pt_prev = NULL;
1854         struct list_head *ptype_list = &ptype_all;
1855
1856         rcu_read_lock();
1857 again:
1858         list_for_each_entry_rcu(ptype, ptype_list, list) {
1859                 /* Never send packets back to the socket
1860                  * they originated from - MvS (miquels@drinkel.ow.org)
1861                  */
1862                 if (skb_loop_sk(ptype, skb))
1863                         continue;
1864
1865                 if (pt_prev) {
1866                         deliver_skb(skb2, pt_prev, skb->dev);
1867                         pt_prev = ptype;
1868                         continue;
1869                 }
1870
1871                 /* need to clone skb, done only once */
1872                 skb2 = skb_clone(skb, GFP_ATOMIC);
1873                 if (!skb2)
1874                         goto out_unlock;
1875
1876                 net_timestamp_set(skb2);
1877
1878                 /* skb->nh should be correctly
1879                  * set by sender, so that the second statement is
1880                  * just protection against buggy protocols.
1881                  */
1882                 skb_reset_mac_header(skb2);
1883
1884                 if (skb_network_header(skb2) < skb2->data ||
1885                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887                                              ntohs(skb2->protocol),
1888                                              dev->name);
1889                         skb_reset_network_header(skb2);
1890                 }
1891
1892                 skb2->transport_header = skb2->network_header;
1893                 skb2->pkt_type = PACKET_OUTGOING;
1894                 pt_prev = ptype;
1895         }
1896
1897         if (ptype_list == &ptype_all) {
1898                 ptype_list = &dev->ptype_all;
1899                 goto again;
1900         }
1901 out_unlock:
1902         if (pt_prev)
1903                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1904         rcu_read_unlock();
1905 }
1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1907
1908 /**
1909  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1910  * @dev: Network device
1911  * @txq: number of queues available
1912  *
1913  * If real_num_tx_queues is changed the tc mappings may no longer be
1914  * valid. To resolve this verify the tc mapping remains valid and if
1915  * not NULL the mapping. With no priorities mapping to this
1916  * offset/count pair it will no longer be used. In the worst case TC0
1917  * is invalid nothing can be done so disable priority mappings. If is
1918  * expected that drivers will fix this mapping if they can before
1919  * calling netif_set_real_num_tx_queues.
1920  */
1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1922 {
1923         int i;
1924         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925
1926         /* If TC0 is invalidated disable TC mapping */
1927         if (tc->offset + tc->count > txq) {
1928                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1929                 dev->num_tc = 0;
1930                 return;
1931         }
1932
1933         /* Invalidated prio to tc mappings set to TC0 */
1934         for (i = 1; i < TC_BITMASK + 1; i++) {
1935                 int q = netdev_get_prio_tc_map(dev, i);
1936
1937                 tc = &dev->tc_to_txq[q];
1938                 if (tc->offset + tc->count > txq) {
1939                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940                                 i, q);
1941                         netdev_set_prio_tc_map(dev, i, 0);
1942                 }
1943         }
1944 }
1945
1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947 {
1948         if (dev->num_tc) {
1949                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950                 int i;
1951
1952                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953                         if ((txq - tc->offset) < tc->count)
1954                                 return i;
1955                 }
1956
1957                 return -1;
1958         }
1959
1960         return 0;
1961 }
1962
1963 #ifdef CONFIG_XPS
1964 static DEFINE_MUTEX(xps_map_mutex);
1965 #define xmap_dereference(P)             \
1966         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967
1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969                              int tci, u16 index)
1970 {
1971         struct xps_map *map = NULL;
1972         int pos;
1973
1974         if (dev_maps)
1975                 map = xmap_dereference(dev_maps->cpu_map[tci]);
1976         if (!map)
1977                 return false;
1978
1979         for (pos = map->len; pos--;) {
1980                 if (map->queues[pos] != index)
1981                         continue;
1982
1983                 if (map->len > 1) {
1984                         map->queues[pos] = map->queues[--map->len];
1985                         break;
1986                 }
1987
1988                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989                 kfree_rcu(map, rcu);
1990                 return false;
1991         }
1992
1993         return true;
1994 }
1995
1996 static bool remove_xps_queue_cpu(struct net_device *dev,
1997                                  struct xps_dev_maps *dev_maps,
1998                                  int cpu, u16 offset, u16 count)
1999 {
2000         int num_tc = dev->num_tc ? : 1;
2001         bool active = false;
2002         int tci;
2003
2004         for (tci = cpu * num_tc; num_tc--; tci++) {
2005                 int i, j;
2006
2007                 for (i = count, j = offset; i--; j++) {
2008                         if (!remove_xps_queue(dev_maps, cpu, j))
2009                                 break;
2010                 }
2011
2012                 active |= i < 0;
2013         }
2014
2015         return active;
2016 }
2017
2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019                                    u16 count)
2020 {
2021         struct xps_dev_maps *dev_maps;
2022         int cpu, i;
2023         bool active = false;
2024
2025         mutex_lock(&xps_map_mutex);
2026         dev_maps = xmap_dereference(dev->xps_maps);
2027
2028         if (!dev_maps)
2029                 goto out_no_maps;
2030
2031         for_each_possible_cpu(cpu)
2032                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033                                                offset, count);
2034
2035         if (!active) {
2036                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2037                 kfree_rcu(dev_maps, rcu);
2038         }
2039
2040         for (i = offset + (count - 1); count--; i--)
2041                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042                                              NUMA_NO_NODE);
2043
2044 out_no_maps:
2045         mutex_unlock(&xps_map_mutex);
2046 }
2047
2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049 {
2050         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051 }
2052
2053 static struct xps_map *expand_xps_map(struct xps_map *map,
2054                                       int cpu, u16 index)
2055 {
2056         struct xps_map *new_map;
2057         int alloc_len = XPS_MIN_MAP_ALLOC;
2058         int i, pos;
2059
2060         for (pos = 0; map && pos < map->len; pos++) {
2061                 if (map->queues[pos] != index)
2062                         continue;
2063                 return map;
2064         }
2065
2066         /* Need to add queue to this CPU's existing map */
2067         if (map) {
2068                 if (pos < map->alloc_len)
2069                         return map;
2070
2071                 alloc_len = map->alloc_len * 2;
2072         }
2073
2074         /* Need to allocate new map to store queue on this CPU's map */
2075         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076                                cpu_to_node(cpu));
2077         if (!new_map)
2078                 return NULL;
2079
2080         for (i = 0; i < pos; i++)
2081                 new_map->queues[i] = map->queues[i];
2082         new_map->alloc_len = alloc_len;
2083         new_map->len = pos;
2084
2085         return new_map;
2086 }
2087
2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089                         u16 index)
2090 {
2091         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2092         int i, cpu, tci, numa_node_id = -2;
2093         int maps_sz, num_tc = 1, tc = 0;
2094         struct xps_map *map, *new_map;
2095         bool active = false;
2096
2097         if (dev->num_tc) {
2098                 num_tc = dev->num_tc;
2099                 tc = netdev_txq_to_tc(dev, index);
2100                 if (tc < 0)
2101                         return -EINVAL;
2102         }
2103
2104         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105         if (maps_sz < L1_CACHE_BYTES)
2106                 maps_sz = L1_CACHE_BYTES;
2107
2108         mutex_lock(&xps_map_mutex);
2109
2110         dev_maps = xmap_dereference(dev->xps_maps);
2111
2112         /* allocate memory for queue storage */
2113         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2114                 if (!new_dev_maps)
2115                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2116                 if (!new_dev_maps) {
2117                         mutex_unlock(&xps_map_mutex);
2118                         return -ENOMEM;
2119                 }
2120
2121                 tci = cpu * num_tc + tc;
2122                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2123                                  NULL;
2124
2125                 map = expand_xps_map(map, cpu, index);
2126                 if (!map)
2127                         goto error;
2128
2129                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2130         }
2131
2132         if (!new_dev_maps)
2133                 goto out_no_new_maps;
2134
2135         for_each_possible_cpu(cpu) {
2136                 /* copy maps belonging to foreign traffic classes */
2137                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138                         /* fill in the new device map from the old device map */
2139                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2140                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141                 }
2142
2143                 /* We need to explicitly update tci as prevous loop
2144                  * could break out early if dev_maps is NULL.
2145                  */
2146                 tci = cpu * num_tc + tc;
2147
2148                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149                         /* add queue to CPU maps */
2150                         int pos = 0;
2151
2152                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2153                         while ((pos < map->len) && (map->queues[pos] != index))
2154                                 pos++;
2155
2156                         if (pos == map->len)
2157                                 map->queues[map->len++] = index;
2158 #ifdef CONFIG_NUMA
2159                         if (numa_node_id == -2)
2160                                 numa_node_id = cpu_to_node(cpu);
2161                         else if (numa_node_id != cpu_to_node(cpu))
2162                                 numa_node_id = -1;
2163 #endif
2164                 } else if (dev_maps) {
2165                         /* fill in the new device map from the old device map */
2166                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2167                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168                 }
2169
2170                 /* copy maps belonging to foreign traffic classes */
2171                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172                         /* fill in the new device map from the old device map */
2173                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2174                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175                 }
2176         }
2177
2178         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179
2180         /* Cleanup old maps */
2181         if (!dev_maps)
2182                 goto out_no_old_maps;
2183
2184         for_each_possible_cpu(cpu) {
2185                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2188                         if (map && map != new_map)
2189                                 kfree_rcu(map, rcu);
2190                 }
2191         }
2192
2193         kfree_rcu(dev_maps, rcu);
2194
2195 out_no_old_maps:
2196         dev_maps = new_dev_maps;
2197         active = true;
2198
2199 out_no_new_maps:
2200         /* update Tx queue numa node */
2201         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202                                      (numa_node_id >= 0) ? numa_node_id :
2203                                      NUMA_NO_NODE);
2204
2205         if (!dev_maps)
2206                 goto out_no_maps;
2207
2208         /* removes queue from unused CPUs */
2209         for_each_possible_cpu(cpu) {
2210                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2211                         active |= remove_xps_queue(dev_maps, tci, index);
2212                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213                         active |= remove_xps_queue(dev_maps, tci, index);
2214                 for (i = num_tc - tc, tci++; --i; tci++)
2215                         active |= remove_xps_queue(dev_maps, tci, index);
2216         }
2217
2218         /* free map if not active */
2219         if (!active) {
2220                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2221                 kfree_rcu(dev_maps, rcu);
2222         }
2223
2224 out_no_maps:
2225         mutex_unlock(&xps_map_mutex);
2226
2227         return 0;
2228 error:
2229         /* remove any maps that we added */
2230         for_each_possible_cpu(cpu) {
2231                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233                         map = dev_maps ?
2234                               xmap_dereference(dev_maps->cpu_map[tci]) :
2235                               NULL;
2236                         if (new_map && new_map != map)
2237                                 kfree(new_map);
2238                 }
2239         }
2240
2241         mutex_unlock(&xps_map_mutex);
2242
2243         kfree(new_dev_maps);
2244         return -ENOMEM;
2245 }
2246 EXPORT_SYMBOL(netif_set_xps_queue);
2247
2248 #endif
2249 void netdev_reset_tc(struct net_device *dev)
2250 {
2251 #ifdef CONFIG_XPS
2252         netif_reset_xps_queues_gt(dev, 0);
2253 #endif
2254         dev->num_tc = 0;
2255         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257 }
2258 EXPORT_SYMBOL(netdev_reset_tc);
2259
2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261 {
2262         if (tc >= dev->num_tc)
2263                 return -EINVAL;
2264
2265 #ifdef CONFIG_XPS
2266         netif_reset_xps_queues(dev, offset, count);
2267 #endif
2268         dev->tc_to_txq[tc].count = count;
2269         dev->tc_to_txq[tc].offset = offset;
2270         return 0;
2271 }
2272 EXPORT_SYMBOL(netdev_set_tc_queue);
2273
2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275 {
2276         if (num_tc > TC_MAX_QUEUE)
2277                 return -EINVAL;
2278
2279 #ifdef CONFIG_XPS
2280         netif_reset_xps_queues_gt(dev, 0);
2281 #endif
2282         dev->num_tc = num_tc;
2283         return 0;
2284 }
2285 EXPORT_SYMBOL(netdev_set_num_tc);
2286
2287 /*
2288  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290  */
2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2292 {
2293         int rc;
2294
2295         if (txq < 1 || txq > dev->num_tx_queues)
2296                 return -EINVAL;
2297
2298         if (dev->reg_state == NETREG_REGISTERED ||
2299             dev->reg_state == NETREG_UNREGISTERING) {
2300                 ASSERT_RTNL();
2301
2302                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303                                                   txq);
2304                 if (rc)
2305                         return rc;
2306
2307                 if (dev->num_tc)
2308                         netif_setup_tc(dev, txq);
2309
2310                 if (txq < dev->real_num_tx_queues) {
2311                         qdisc_reset_all_tx_gt(dev, txq);
2312 #ifdef CONFIG_XPS
2313                         netif_reset_xps_queues_gt(dev, txq);
2314 #endif
2315                 }
2316         }
2317
2318         dev->real_num_tx_queues = txq;
2319         return 0;
2320 }
2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2322
2323 #ifdef CONFIG_SYSFS
2324 /**
2325  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2326  *      @dev: Network device
2327  *      @rxq: Actual number of RX queues
2328  *
2329  *      This must be called either with the rtnl_lock held or before
2330  *      registration of the net device.  Returns 0 on success, or a
2331  *      negative error code.  If called before registration, it always
2332  *      succeeds.
2333  */
2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335 {
2336         int rc;
2337
2338         if (rxq < 1 || rxq > dev->num_rx_queues)
2339                 return -EINVAL;
2340
2341         if (dev->reg_state == NETREG_REGISTERED) {
2342                 ASSERT_RTNL();
2343
2344                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345                                                   rxq);
2346                 if (rc)
2347                         return rc;
2348         }
2349
2350         dev->real_num_rx_queues = rxq;
2351         return 0;
2352 }
2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354 #endif
2355
2356 /**
2357  * netif_get_num_default_rss_queues - default number of RSS queues
2358  *
2359  * This routine should set an upper limit on the number of RSS queues
2360  * used by default by multiqueue devices.
2361  */
2362 int netif_get_num_default_rss_queues(void)
2363 {
2364         return is_kdump_kernel() ?
2365                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2366 }
2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368
2369 static void __netif_reschedule(struct Qdisc *q)
2370 {
2371         struct softnet_data *sd;
2372         unsigned long flags;
2373
2374         local_irq_save(flags);
2375         sd = this_cpu_ptr(&softnet_data);
2376         q->next_sched = NULL;
2377         *sd->output_queue_tailp = q;
2378         sd->output_queue_tailp = &q->next_sched;
2379         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380         local_irq_restore(flags);
2381 }
2382
2383 void __netif_schedule(struct Qdisc *q)
2384 {
2385         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386                 __netif_reschedule(q);
2387 }
2388 EXPORT_SYMBOL(__netif_schedule);
2389
2390 struct dev_kfree_skb_cb {
2391         enum skb_free_reason reason;
2392 };
2393
2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2395 {
2396         return (struct dev_kfree_skb_cb *)skb->cb;
2397 }
2398
2399 void netif_schedule_queue(struct netdev_queue *txq)
2400 {
2401         rcu_read_lock();
2402         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2404
2405                 __netif_schedule(q);
2406         }
2407         rcu_read_unlock();
2408 }
2409 EXPORT_SYMBOL(netif_schedule_queue);
2410
2411 /**
2412  *      netif_wake_subqueue - allow sending packets on subqueue
2413  *      @dev: network device
2414  *      @queue_index: sub queue index
2415  *
2416  * Resume individual transmit queue of a device with multiple transmit queues.
2417  */
2418 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2419 {
2420         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2421
2422         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2423                 struct Qdisc *q;
2424
2425                 rcu_read_lock();
2426                 q = rcu_dereference(txq->qdisc);
2427                 __netif_schedule(q);
2428                 rcu_read_unlock();
2429         }
2430 }
2431 EXPORT_SYMBOL(netif_wake_subqueue);
2432
2433 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2434 {
2435         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2436                 struct Qdisc *q;
2437
2438                 rcu_read_lock();
2439                 q = rcu_dereference(dev_queue->qdisc);
2440                 __netif_schedule(q);
2441                 rcu_read_unlock();
2442         }
2443 }
2444 EXPORT_SYMBOL(netif_tx_wake_queue);
2445
2446 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2447 {
2448         unsigned long flags;
2449
2450         if (likely(atomic_read(&skb->users) == 1)) {
2451                 smp_rmb();
2452                 atomic_set(&skb->users, 0);
2453         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2454                 return;
2455         }
2456         get_kfree_skb_cb(skb)->reason = reason;
2457         local_irq_save(flags);
2458         skb->next = __this_cpu_read(softnet_data.completion_queue);
2459         __this_cpu_write(softnet_data.completion_queue, skb);
2460         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461         local_irq_restore(flags);
2462 }
2463 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2464
2465 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2466 {
2467         if (in_irq() || irqs_disabled())
2468                 __dev_kfree_skb_irq(skb, reason);
2469         else
2470                 dev_kfree_skb(skb);
2471 }
2472 EXPORT_SYMBOL(__dev_kfree_skb_any);
2473
2474
2475 /**
2476  * netif_device_detach - mark device as removed
2477  * @dev: network device
2478  *
2479  * Mark device as removed from system and therefore no longer available.
2480  */
2481 void netif_device_detach(struct net_device *dev)
2482 {
2483         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2484             netif_running(dev)) {
2485                 netif_tx_stop_all_queues(dev);
2486         }
2487 }
2488 EXPORT_SYMBOL(netif_device_detach);
2489
2490 /**
2491  * netif_device_attach - mark device as attached
2492  * @dev: network device
2493  *
2494  * Mark device as attached from system and restart if needed.
2495  */
2496 void netif_device_attach(struct net_device *dev)
2497 {
2498         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2499             netif_running(dev)) {
2500                 netif_tx_wake_all_queues(dev);
2501                 __netdev_watchdog_up(dev);
2502         }
2503 }
2504 EXPORT_SYMBOL(netif_device_attach);
2505
2506 /*
2507  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2508  * to be used as a distribution range.
2509  */
2510 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2511                   unsigned int num_tx_queues)
2512 {
2513         u32 hash;
2514         u16 qoffset = 0;
2515         u16 qcount = num_tx_queues;
2516
2517         if (skb_rx_queue_recorded(skb)) {
2518                 hash = skb_get_rx_queue(skb);
2519                 while (unlikely(hash >= num_tx_queues))
2520                         hash -= num_tx_queues;
2521                 return hash;
2522         }
2523
2524         if (dev->num_tc) {
2525                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2526                 qoffset = dev->tc_to_txq[tc].offset;
2527                 qcount = dev->tc_to_txq[tc].count;
2528         }
2529
2530         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2531 }
2532 EXPORT_SYMBOL(__skb_tx_hash);
2533
2534 static void skb_warn_bad_offload(const struct sk_buff *skb)
2535 {
2536         static const netdev_features_t null_features;
2537         struct net_device *dev = skb->dev;
2538         const char *name = "";
2539
2540         if (!net_ratelimit())
2541                 return;
2542
2543         if (dev) {
2544                 if (dev->dev.parent)
2545                         name = dev_driver_string(dev->dev.parent);
2546                 else
2547                         name = netdev_name(dev);
2548         }
2549         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2550              "gso_type=%d ip_summed=%d\n",
2551              name, dev ? &dev->features : &null_features,
2552              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2553              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2554              skb_shinfo(skb)->gso_type, skb->ip_summed);
2555 }
2556
2557 /*
2558  * Invalidate hardware checksum when packet is to be mangled, and
2559  * complete checksum manually on outgoing path.
2560  */
2561 int skb_checksum_help(struct sk_buff *skb)
2562 {
2563         __wsum csum;
2564         int ret = 0, offset;
2565
2566         if (skb->ip_summed == CHECKSUM_COMPLETE)
2567                 goto out_set_summed;
2568
2569         if (unlikely(skb_shinfo(skb)->gso_size)) {
2570                 skb_warn_bad_offload(skb);
2571                 return -EINVAL;
2572         }
2573
2574         /* Before computing a checksum, we should make sure no frag could
2575          * be modified by an external entity : checksum could be wrong.
2576          */
2577         if (skb_has_shared_frag(skb)) {
2578                 ret = __skb_linearize(skb);
2579                 if (ret)
2580                         goto out;
2581         }
2582
2583         offset = skb_checksum_start_offset(skb);
2584         BUG_ON(offset >= skb_headlen(skb));
2585         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2586
2587         offset += skb->csum_offset;
2588         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2589
2590         if (skb_cloned(skb) &&
2591             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2592                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2593                 if (ret)
2594                         goto out;
2595         }
2596
2597         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2598 out_set_summed:
2599         skb->ip_summed = CHECKSUM_NONE;
2600 out:
2601         return ret;
2602 }
2603 EXPORT_SYMBOL(skb_checksum_help);
2604
2605 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2606 {
2607         __be16 type = skb->protocol;
2608
2609         /* Tunnel gso handlers can set protocol to ethernet. */
2610         if (type == htons(ETH_P_TEB)) {
2611                 struct ethhdr *eth;
2612
2613                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2614                         return 0;
2615
2616                 eth = (struct ethhdr *)skb_mac_header(skb);
2617                 type = eth->h_proto;
2618         }
2619
2620         return __vlan_get_protocol(skb, type, depth);
2621 }
2622
2623 /**
2624  *      skb_mac_gso_segment - mac layer segmentation handler.
2625  *      @skb: buffer to segment
2626  *      @features: features for the output path (see dev->features)
2627  */
2628 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2629                                     netdev_features_t features)
2630 {
2631         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2632         struct packet_offload *ptype;
2633         int vlan_depth = skb->mac_len;
2634         __be16 type = skb_network_protocol(skb, &vlan_depth);
2635
2636         if (unlikely(!type))
2637                 return ERR_PTR(-EINVAL);
2638
2639         __skb_pull(skb, vlan_depth);
2640
2641         rcu_read_lock();
2642         list_for_each_entry_rcu(ptype, &offload_base, list) {
2643                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2644                         segs = ptype->callbacks.gso_segment(skb, features);
2645                         break;
2646                 }
2647         }
2648         rcu_read_unlock();
2649
2650         __skb_push(skb, skb->data - skb_mac_header(skb));
2651
2652         return segs;
2653 }
2654 EXPORT_SYMBOL(skb_mac_gso_segment);
2655
2656
2657 /* openvswitch calls this on rx path, so we need a different check.
2658  */
2659 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2660 {
2661         if (tx_path)
2662                 return skb->ip_summed != CHECKSUM_PARTIAL;
2663         else
2664                 return skb->ip_summed == CHECKSUM_NONE;
2665 }
2666
2667 /**
2668  *      __skb_gso_segment - Perform segmentation on skb.
2669  *      @skb: buffer to segment
2670  *      @features: features for the output path (see dev->features)
2671  *      @tx_path: whether it is called in TX path
2672  *
2673  *      This function segments the given skb and returns a list of segments.
2674  *
2675  *      It may return NULL if the skb requires no segmentation.  This is
2676  *      only possible when GSO is used for verifying header integrity.
2677  *
2678  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2679  */
2680 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2681                                   netdev_features_t features, bool tx_path)
2682 {
2683         if (unlikely(skb_needs_check(skb, tx_path))) {
2684                 int err;
2685
2686                 skb_warn_bad_offload(skb);
2687
2688                 err = skb_cow_head(skb, 0);
2689                 if (err < 0)
2690                         return ERR_PTR(err);
2691         }
2692
2693         /* Only report GSO partial support if it will enable us to
2694          * support segmentation on this frame without needing additional
2695          * work.
2696          */
2697         if (features & NETIF_F_GSO_PARTIAL) {
2698                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2699                 struct net_device *dev = skb->dev;
2700
2701                 partial_features |= dev->features & dev->gso_partial_features;
2702                 if (!skb_gso_ok(skb, features | partial_features))
2703                         features &= ~NETIF_F_GSO_PARTIAL;
2704         }
2705
2706         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2707                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2708
2709         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2710         SKB_GSO_CB(skb)->encap_level = 0;
2711
2712         skb_reset_mac_header(skb);
2713         skb_reset_mac_len(skb);
2714
2715         return skb_mac_gso_segment(skb, features);
2716 }
2717 EXPORT_SYMBOL(__skb_gso_segment);
2718
2719 /* Take action when hardware reception checksum errors are detected. */
2720 #ifdef CONFIG_BUG
2721 void netdev_rx_csum_fault(struct net_device *dev)
2722 {
2723         if (net_ratelimit()) {
2724                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2725                 dump_stack();
2726         }
2727 }
2728 EXPORT_SYMBOL(netdev_rx_csum_fault);
2729 #endif
2730
2731 /* Actually, we should eliminate this check as soon as we know, that:
2732  * 1. IOMMU is present and allows to map all the memory.
2733  * 2. No high memory really exists on this machine.
2734  */
2735
2736 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2737 {
2738 #ifdef CONFIG_HIGHMEM
2739         int i;
2740         if (!(dev->features & NETIF_F_HIGHDMA)) {
2741                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2742                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2743                         if (PageHighMem(skb_frag_page(frag)))
2744                                 return 1;
2745                 }
2746         }
2747
2748         if (PCI_DMA_BUS_IS_PHYS) {
2749                 struct device *pdev = dev->dev.parent;
2750
2751                 if (!pdev)
2752                         return 0;
2753                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2756                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2757                                 return 1;
2758                 }
2759         }
2760 #endif
2761         return 0;
2762 }
2763
2764 /* If MPLS offload request, verify we are testing hardware MPLS features
2765  * instead of standard features for the netdev.
2766  */
2767 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2768 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2769                                            netdev_features_t features,
2770                                            __be16 type)
2771 {
2772         if (eth_p_mpls(type))
2773                 features &= skb->dev->mpls_features;
2774
2775         return features;
2776 }
2777 #else
2778 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2779                                            netdev_features_t features,
2780                                            __be16 type)
2781 {
2782         return features;
2783 }
2784 #endif
2785
2786 static netdev_features_t harmonize_features(struct sk_buff *skb,
2787         netdev_features_t features)
2788 {
2789         int tmp;
2790         __be16 type;
2791
2792         type = skb_network_protocol(skb, &tmp);
2793         features = net_mpls_features(skb, features, type);
2794
2795         if (skb->ip_summed != CHECKSUM_NONE &&
2796             !can_checksum_protocol(features, type)) {
2797                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2798         } else if (illegal_highdma(skb->dev, skb)) {
2799                 features &= ~NETIF_F_SG;
2800         }
2801
2802         return features;
2803 }
2804
2805 netdev_features_t passthru_features_check(struct sk_buff *skb,
2806                                           struct net_device *dev,
2807                                           netdev_features_t features)
2808 {
2809         return features;
2810 }
2811 EXPORT_SYMBOL(passthru_features_check);
2812
2813 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2814                                              struct net_device *dev,
2815                                              netdev_features_t features)
2816 {
2817         return vlan_features_check(skb, features);
2818 }
2819
2820 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2821                                             struct net_device *dev,
2822                                             netdev_features_t features)
2823 {
2824         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2825
2826         if (gso_segs > dev->gso_max_segs)
2827                 return features & ~NETIF_F_GSO_MASK;
2828
2829         /* Support for GSO partial features requires software
2830          * intervention before we can actually process the packets
2831          * so we need to strip support for any partial features now
2832          * and we can pull them back in after we have partially
2833          * segmented the frame.
2834          */
2835         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2836                 features &= ~dev->gso_partial_features;
2837
2838         /* Make sure to clear the IPv4 ID mangling feature if the
2839          * IPv4 header has the potential to be fragmented.
2840          */
2841         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2842                 struct iphdr *iph = skb->encapsulation ?
2843                                     inner_ip_hdr(skb) : ip_hdr(skb);
2844
2845                 if (!(iph->frag_off & htons(IP_DF)))
2846                         features &= ~NETIF_F_TSO_MANGLEID;
2847         }
2848
2849         return features;
2850 }
2851
2852 netdev_features_t netif_skb_features(struct sk_buff *skb)
2853 {
2854         struct net_device *dev = skb->dev;
2855         netdev_features_t features = dev->features;
2856
2857         if (skb_is_gso(skb))
2858                 features = gso_features_check(skb, dev, features);
2859
2860         /* If encapsulation offload request, verify we are testing
2861          * hardware encapsulation features instead of standard
2862          * features for the netdev
2863          */
2864         if (skb->encapsulation)
2865                 features &= dev->hw_enc_features;
2866
2867         if (skb_vlan_tagged(skb))
2868                 features = netdev_intersect_features(features,
2869                                                      dev->vlan_features |
2870                                                      NETIF_F_HW_VLAN_CTAG_TX |
2871                                                      NETIF_F_HW_VLAN_STAG_TX);
2872
2873         if (dev->netdev_ops->ndo_features_check)
2874                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2875                                                                 features);
2876         else
2877                 features &= dflt_features_check(skb, dev, features);
2878
2879         return harmonize_features(skb, features);
2880 }
2881 EXPORT_SYMBOL(netif_skb_features);
2882
2883 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2884                     struct netdev_queue *txq, bool more)
2885 {
2886         unsigned int len;
2887         int rc;
2888
2889         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2890                 dev_queue_xmit_nit(skb, dev);
2891
2892         len = skb->len;
2893         trace_net_dev_start_xmit(skb, dev);
2894         rc = netdev_start_xmit(skb, dev, txq, more);
2895         trace_net_dev_xmit(skb, rc, dev, len);
2896
2897         return rc;
2898 }
2899
2900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2901                                     struct netdev_queue *txq, int *ret)
2902 {
2903         struct sk_buff *skb = first;
2904         int rc = NETDEV_TX_OK;
2905
2906         while (skb) {
2907                 struct sk_buff *next = skb->next;
2908
2909                 skb->next = NULL;
2910                 rc = xmit_one(skb, dev, txq, next != NULL);
2911                 if (unlikely(!dev_xmit_complete(rc))) {
2912                         skb->next = next;
2913                         goto out;
2914                 }
2915
2916                 skb = next;
2917                 if (netif_xmit_stopped(txq) && skb) {
2918                         rc = NETDEV_TX_BUSY;
2919                         break;
2920                 }
2921         }
2922
2923 out:
2924         *ret = rc;
2925         return skb;
2926 }
2927
2928 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2929                                           netdev_features_t features)
2930 {
2931         if (skb_vlan_tag_present(skb) &&
2932             !vlan_hw_offload_capable(features, skb->vlan_proto))
2933                 skb = __vlan_hwaccel_push_inside(skb);
2934         return skb;
2935 }
2936
2937 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2938 {
2939         netdev_features_t features;
2940
2941         features = netif_skb_features(skb);
2942         skb = validate_xmit_vlan(skb, features);
2943         if (unlikely(!skb))
2944                 goto out_null;
2945
2946         if (netif_needs_gso(skb, features)) {
2947                 struct sk_buff *segs;
2948
2949                 segs = skb_gso_segment(skb, features);
2950                 if (IS_ERR(segs)) {
2951                         goto out_kfree_skb;
2952                 } else if (segs) {
2953                         consume_skb(skb);
2954                         skb = segs;
2955                 }
2956         } else {
2957                 if (skb_needs_linearize(skb, features) &&
2958                     __skb_linearize(skb))
2959                         goto out_kfree_skb;
2960
2961                 /* If packet is not checksummed and device does not
2962                  * support checksumming for this protocol, complete
2963                  * checksumming here.
2964                  */
2965                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2966                         if (skb->encapsulation)
2967                                 skb_set_inner_transport_header(skb,
2968                                                                skb_checksum_start_offset(skb));
2969                         else
2970                                 skb_set_transport_header(skb,
2971                                                          skb_checksum_start_offset(skb));
2972                         if (!(features & NETIF_F_CSUM_MASK) &&
2973                             skb_checksum_help(skb))
2974                                 goto out_kfree_skb;
2975                 }
2976         }
2977
2978         return skb;
2979
2980 out_kfree_skb:
2981         kfree_skb(skb);
2982 out_null:
2983         atomic_long_inc(&dev->tx_dropped);
2984         return NULL;
2985 }
2986
2987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2988 {
2989         struct sk_buff *next, *head = NULL, *tail;
2990
2991         for (; skb != NULL; skb = next) {
2992                 next = skb->next;
2993                 skb->next = NULL;
2994
2995                 /* in case skb wont be segmented, point to itself */
2996                 skb->prev = skb;
2997
2998                 skb = validate_xmit_skb(skb, dev);
2999                 if (!skb)
3000                         continue;
3001
3002                 if (!head)
3003                         head = skb;
3004                 else
3005                         tail->next = skb;
3006                 /* If skb was segmented, skb->prev points to
3007                  * the last segment. If not, it still contains skb.
3008                  */
3009                 tail = skb->prev;
3010         }
3011         return head;
3012 }
3013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3014
3015 static void qdisc_pkt_len_init(struct sk_buff *skb)
3016 {
3017         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3018
3019         qdisc_skb_cb(skb)->pkt_len = skb->len;
3020
3021         /* To get more precise estimation of bytes sent on wire,
3022          * we add to pkt_len the headers size of all segments
3023          */
3024         if (shinfo->gso_size)  {
3025                 unsigned int hdr_len;
3026                 u16 gso_segs = shinfo->gso_segs;
3027
3028                 /* mac layer + network layer */
3029                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3030
3031                 /* + transport layer */
3032                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3033                         hdr_len += tcp_hdrlen(skb);
3034                 else
3035                         hdr_len += sizeof(struct udphdr);
3036
3037                 if (shinfo->gso_type & SKB_GSO_DODGY)
3038                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3039                                                 shinfo->gso_size);
3040
3041                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3042         }
3043 }
3044
3045 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3046                                  struct net_device *dev,
3047                                  struct netdev_queue *txq)
3048 {
3049         spinlock_t *root_lock = qdisc_lock(q);
3050         struct sk_buff *to_free = NULL;
3051         bool contended;
3052         int rc;
3053
3054         qdisc_calculate_pkt_len(skb, q);
3055         /*
3056          * Heuristic to force contended enqueues to serialize on a
3057          * separate lock before trying to get qdisc main lock.
3058          * This permits qdisc->running owner to get the lock more
3059          * often and dequeue packets faster.
3060          */
3061         contended = qdisc_is_running(q);
3062         if (unlikely(contended))
3063                 spin_lock(&q->busylock);
3064
3065         spin_lock(root_lock);
3066         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3067                 __qdisc_drop(skb, &to_free);
3068                 rc = NET_XMIT_DROP;
3069         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3070                    qdisc_run_begin(q)) {
3071                 /*
3072                  * This is a work-conserving queue; there are no old skbs
3073                  * waiting to be sent out; and the qdisc is not running -
3074                  * xmit the skb directly.
3075                  */
3076
3077                 qdisc_bstats_update(q, skb);
3078
3079                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3080                         if (unlikely(contended)) {
3081                                 spin_unlock(&q->busylock);
3082                                 contended = false;
3083                         }
3084                         __qdisc_run(q);
3085                 } else
3086                         qdisc_run_end(q);
3087
3088                 rc = NET_XMIT_SUCCESS;
3089         } else {
3090                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3091                 if (qdisc_run_begin(q)) {
3092                         if (unlikely(contended)) {
3093                                 spin_unlock(&q->busylock);
3094                                 contended = false;
3095                         }
3096                         __qdisc_run(q);
3097                 }
3098         }
3099         spin_unlock(root_lock);
3100         if (unlikely(to_free))
3101                 kfree_skb_list(to_free);
3102         if (unlikely(contended))
3103                 spin_unlock(&q->busylock);
3104         return rc;
3105 }
3106
3107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3108 static void skb_update_prio(struct sk_buff *skb)
3109 {
3110         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3111
3112         if (!skb->priority && skb->sk && map) {
3113                 unsigned int prioidx =
3114                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3115
3116                 if (prioidx < map->priomap_len)
3117                         skb->priority = map->priomap[prioidx];
3118         }
3119 }
3120 #else
3121 #define skb_update_prio(skb)
3122 #endif
3123
3124 DEFINE_PER_CPU(int, xmit_recursion);
3125 EXPORT_SYMBOL(xmit_recursion);
3126
3127 /**
3128  *      dev_loopback_xmit - loop back @skb
3129  *      @net: network namespace this loopback is happening in
3130  *      @sk:  sk needed to be a netfilter okfn
3131  *      @skb: buffer to transmit
3132  */
3133 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3134 {
3135         skb_reset_mac_header(skb);
3136         __skb_pull(skb, skb_network_offset(skb));
3137         skb->pkt_type = PACKET_LOOPBACK;
3138         skb->ip_summed = CHECKSUM_UNNECESSARY;
3139         WARN_ON(!skb_dst(skb));
3140         skb_dst_force(skb);
3141         netif_rx_ni(skb);
3142         return 0;
3143 }
3144 EXPORT_SYMBOL(dev_loopback_xmit);
3145
3146 #ifdef CONFIG_NET_EGRESS
3147 static struct sk_buff *
3148 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3149 {
3150         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3151         struct tcf_result cl_res;
3152
3153         if (!cl)
3154                 return skb;
3155
3156         /* skb->tc_at and qdisc_skb_cb(skb)->pkt_len were already set
3157          * earlier by the caller.
3158          */
3159         qdisc_bstats_cpu_update(cl->q, skb);
3160
3161         switch (tc_classify(skb, cl, &cl_res, false)) {
3162         case TC_ACT_OK:
3163         case TC_ACT_RECLASSIFY:
3164                 skb->tc_index = TC_H_MIN(cl_res.classid);
3165                 break;
3166         case TC_ACT_SHOT:
3167                 qdisc_qstats_cpu_drop(cl->q);
3168                 *ret = NET_XMIT_DROP;
3169                 kfree_skb(skb);
3170                 return NULL;
3171         case TC_ACT_STOLEN:
3172         case TC_ACT_QUEUED:
3173                 *ret = NET_XMIT_SUCCESS;
3174                 consume_skb(skb);
3175                 return NULL;
3176         case TC_ACT_REDIRECT:
3177                 /* No need to push/pop skb's mac_header here on egress! */
3178                 skb_do_redirect(skb);
3179                 *ret = NET_XMIT_SUCCESS;
3180                 return NULL;
3181         default:
3182                 break;
3183         }
3184
3185         return skb;
3186 }
3187 #endif /* CONFIG_NET_EGRESS */
3188
3189 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3190 {
3191 #ifdef CONFIG_XPS
3192         struct xps_dev_maps *dev_maps;
3193         struct xps_map *map;
3194         int queue_index = -1;
3195
3196         rcu_read_lock();
3197         dev_maps = rcu_dereference(dev->xps_maps);
3198         if (dev_maps) {
3199                 unsigned int tci = skb->sender_cpu - 1;
3200
3201                 if (dev->num_tc) {
3202                         tci *= dev->num_tc;
3203                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3204                 }
3205
3206                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3207                 if (map) {
3208                         if (map->len == 1)
3209                                 queue_index = map->queues[0];
3210                         else
3211                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3212                                                                            map->len)];
3213                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3214                                 queue_index = -1;
3215                 }
3216         }
3217         rcu_read_unlock();
3218
3219         return queue_index;
3220 #else
3221         return -1;
3222 #endif
3223 }
3224
3225 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3226 {
3227         struct sock *sk = skb->sk;
3228         int queue_index = sk_tx_queue_get(sk);
3229
3230         if (queue_index < 0 || skb->ooo_okay ||
3231             queue_index >= dev->real_num_tx_queues) {
3232                 int new_index = get_xps_queue(dev, skb);
3233                 if (new_index < 0)
3234                         new_index = skb_tx_hash(dev, skb);
3235
3236                 if (queue_index != new_index && sk &&
3237                     sk_fullsock(sk) &&
3238                     rcu_access_pointer(sk->sk_dst_cache))
3239                         sk_tx_queue_set(sk, new_index);
3240
3241                 queue_index = new_index;
3242         }
3243
3244         return queue_index;
3245 }
3246
3247 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3248                                     struct sk_buff *skb,
3249                                     void *accel_priv)
3250 {
3251         int queue_index = 0;
3252
3253 #ifdef CONFIG_XPS
3254         u32 sender_cpu = skb->sender_cpu - 1;
3255
3256         if (sender_cpu >= (u32)NR_CPUS)
3257                 skb->sender_cpu = raw_smp_processor_id() + 1;
3258 #endif
3259
3260         if (dev->real_num_tx_queues != 1) {
3261                 const struct net_device_ops *ops = dev->netdev_ops;
3262                 if (ops->ndo_select_queue)
3263                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3264                                                             __netdev_pick_tx);
3265                 else
3266                         queue_index = __netdev_pick_tx(dev, skb);
3267
3268                 if (!accel_priv)
3269                         queue_index = netdev_cap_txqueue(dev, queue_index);
3270         }
3271
3272         skb_set_queue_mapping(skb, queue_index);
3273         return netdev_get_tx_queue(dev, queue_index);
3274 }
3275
3276 /**
3277  *      __dev_queue_xmit - transmit a buffer
3278  *      @skb: buffer to transmit
3279  *      @accel_priv: private data used for L2 forwarding offload
3280  *
3281  *      Queue a buffer for transmission to a network device. The caller must
3282  *      have set the device and priority and built the buffer before calling
3283  *      this function. The function can be called from an interrupt.
3284  *
3285  *      A negative errno code is returned on a failure. A success does not
3286  *      guarantee the frame will be transmitted as it may be dropped due
3287  *      to congestion or traffic shaping.
3288  *
3289  * -----------------------------------------------------------------------------------
3290  *      I notice this method can also return errors from the queue disciplines,
3291  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3292  *      be positive.
3293  *
3294  *      Regardless of the return value, the skb is consumed, so it is currently
3295  *      difficult to retry a send to this method.  (You can bump the ref count
3296  *      before sending to hold a reference for retry if you are careful.)
3297  *
3298  *      When calling this method, interrupts MUST be enabled.  This is because
3299  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3300  *          --BLG
3301  */
3302 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3303 {
3304         struct net_device *dev = skb->dev;
3305         struct netdev_queue *txq;
3306         struct Qdisc *q;
3307         int rc = -ENOMEM;
3308
3309         skb_reset_mac_header(skb);
3310
3311         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3312                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3313
3314         /* Disable soft irqs for various locks below. Also
3315          * stops preemption for RCU.
3316          */
3317         rcu_read_lock_bh();
3318
3319         skb_update_prio(skb);
3320
3321         qdisc_pkt_len_init(skb);
3322 #ifdef CONFIG_NET_CLS_ACT
3323         skb->tc_at = AT_EGRESS;
3324 # ifdef CONFIG_NET_EGRESS
3325         if (static_key_false(&egress_needed)) {
3326                 skb = sch_handle_egress(skb, &rc, dev);
3327                 if (!skb)
3328                         goto out;
3329         }
3330 # endif
3331 #endif
3332         /* If device/qdisc don't need skb->dst, release it right now while
3333          * its hot in this cpu cache.
3334          */
3335         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3336                 skb_dst_drop(skb);
3337         else
3338                 skb_dst_force(skb);
3339
3340         txq = netdev_pick_tx(dev, skb, accel_priv);
3341         q = rcu_dereference_bh(txq->qdisc);
3342
3343         trace_net_dev_queue(skb);
3344         if (q->enqueue) {
3345                 rc = __dev_xmit_skb(skb, q, dev, txq);
3346                 goto out;
3347         }
3348
3349         /* The device has no queue. Common case for software devices:
3350            loopback, all the sorts of tunnels...
3351
3352            Really, it is unlikely that netif_tx_lock protection is necessary
3353            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3354            counters.)
3355            However, it is possible, that they rely on protection
3356            made by us here.
3357
3358            Check this and shot the lock. It is not prone from deadlocks.
3359            Either shot noqueue qdisc, it is even simpler 8)
3360          */
3361         if (dev->flags & IFF_UP) {
3362                 int cpu = smp_processor_id(); /* ok because BHs are off */
3363
3364                 if (txq->xmit_lock_owner != cpu) {
3365                         if (unlikely(__this_cpu_read(xmit_recursion) >
3366                                      XMIT_RECURSION_LIMIT))
3367                                 goto recursion_alert;
3368
3369                         skb = validate_xmit_skb(skb, dev);
3370                         if (!skb)
3371                                 goto out;
3372
3373                         HARD_TX_LOCK(dev, txq, cpu);
3374
3375                         if (!netif_xmit_stopped(txq)) {
3376                                 __this_cpu_inc(xmit_recursion);
3377                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3378                                 __this_cpu_dec(xmit_recursion);
3379                                 if (dev_xmit_complete(rc)) {
3380                                         HARD_TX_UNLOCK(dev, txq);
3381                                         goto out;
3382                                 }
3383                         }
3384                         HARD_TX_UNLOCK(dev, txq);
3385                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3386                                              dev->name);
3387                 } else {
3388                         /* Recursion is detected! It is possible,
3389                          * unfortunately
3390                          */
3391 recursion_alert:
3392                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3393                                              dev->name);
3394                 }
3395         }
3396
3397         rc = -ENETDOWN;
3398         rcu_read_unlock_bh();
3399
3400         atomic_long_inc(&dev->tx_dropped);
3401         kfree_skb_list(skb);
3402         return rc;
3403 out:
3404         rcu_read_unlock_bh();
3405         return rc;
3406 }
3407
3408 int dev_queue_xmit(struct sk_buff *skb)
3409 {
3410         return __dev_queue_xmit(skb, NULL);
3411 }
3412 EXPORT_SYMBOL(dev_queue_xmit);
3413
3414 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3415 {
3416         return __dev_queue_xmit(skb, accel_priv);
3417 }
3418 EXPORT_SYMBOL(dev_queue_xmit_accel);
3419
3420
3421 /*=======================================================================
3422                         Receiver routines
3423   =======================================================================*/
3424
3425 int netdev_max_backlog __read_mostly = 1000;
3426 EXPORT_SYMBOL(netdev_max_backlog);
3427
3428 int netdev_tstamp_prequeue __read_mostly = 1;
3429 int netdev_budget __read_mostly = 300;
3430 int weight_p __read_mostly = 64;           /* old backlog weight */
3431 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3432 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3433 int dev_rx_weight __read_mostly = 64;
3434 int dev_tx_weight __read_mostly = 64;
3435
3436 /* Called with irq disabled */
3437 static inline void ____napi_schedule(struct softnet_data *sd,
3438                                      struct napi_struct *napi)
3439 {
3440         list_add_tail(&napi->poll_list, &sd->poll_list);
3441         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3442 }
3443
3444 #ifdef CONFIG_RPS
3445
3446 /* One global table that all flow-based protocols share. */
3447 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3448 EXPORT_SYMBOL(rps_sock_flow_table);
3449 u32 rps_cpu_mask __read_mostly;
3450 EXPORT_SYMBOL(rps_cpu_mask);
3451
3452 struct static_key rps_needed __read_mostly;
3453 EXPORT_SYMBOL(rps_needed);
3454 struct static_key rfs_needed __read_mostly;
3455 EXPORT_SYMBOL(rfs_needed);
3456
3457 static struct rps_dev_flow *
3458 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3459             struct rps_dev_flow *rflow, u16 next_cpu)
3460 {
3461         if (next_cpu < nr_cpu_ids) {
3462 #ifdef CONFIG_RFS_ACCEL
3463                 struct netdev_rx_queue *rxqueue;
3464                 struct rps_dev_flow_table *flow_table;
3465                 struct rps_dev_flow *old_rflow;
3466                 u32 flow_id;
3467                 u16 rxq_index;
3468                 int rc;
3469
3470                 /* Should we steer this flow to a different hardware queue? */
3471                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3472                     !(dev->features & NETIF_F_NTUPLE))
3473                         goto out;
3474                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3475                 if (rxq_index == skb_get_rx_queue(skb))
3476                         goto out;
3477
3478                 rxqueue = dev->_rx + rxq_index;
3479                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3480                 if (!flow_table)
3481                         goto out;
3482                 flow_id = skb_get_hash(skb) & flow_table->mask;
3483                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3484                                                         rxq_index, flow_id);
3485                 if (rc < 0)
3486                         goto out;
3487                 old_rflow = rflow;
3488                 rflow = &flow_table->flows[flow_id];
3489                 rflow->filter = rc;
3490                 if (old_rflow->filter == rflow->filter)
3491                         old_rflow->filter = RPS_NO_FILTER;
3492         out:
3493 #endif
3494                 rflow->last_qtail =
3495                         per_cpu(softnet_data, next_cpu).input_queue_head;
3496         }
3497
3498         rflow->cpu = next_cpu;
3499         return rflow;
3500 }
3501
3502 /*
3503  * get_rps_cpu is called from netif_receive_skb and returns the target
3504  * CPU from the RPS map of the receiving queue for a given skb.
3505  * rcu_read_lock must be held on entry.
3506  */
3507 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3508                        struct rps_dev_flow **rflowp)
3509 {
3510         const struct rps_sock_flow_table *sock_flow_table;
3511         struct netdev_rx_queue *rxqueue = dev->_rx;
3512         struct rps_dev_flow_table *flow_table;
3513         struct rps_map *map;
3514         int cpu = -1;
3515         u32 tcpu;
3516         u32 hash;
3517
3518         if (skb_rx_queue_recorded(skb)) {
3519                 u16 index = skb_get_rx_queue(skb);
3520
3521                 if (unlikely(index >= dev->real_num_rx_queues)) {
3522                         WARN_ONCE(dev->real_num_rx_queues > 1,
3523                                   "%s received packet on queue %u, but number "
3524                                   "of RX queues is %u\n",
3525                                   dev->name, index, dev->real_num_rx_queues);
3526                         goto done;
3527                 }
3528                 rxqueue += index;
3529         }
3530
3531         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3532
3533         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3534         map = rcu_dereference(rxqueue->rps_map);
3535         if (!flow_table && !map)
3536                 goto done;
3537
3538         skb_reset_network_header(skb);
3539         hash = skb_get_hash(skb);
3540         if (!hash)
3541                 goto done;
3542
3543         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3544         if (flow_table && sock_flow_table) {
3545                 struct rps_dev_flow *rflow;
3546                 u32 next_cpu;
3547                 u32 ident;
3548
3549                 /* First check into global flow table if there is a match */
3550                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3551                 if ((ident ^ hash) & ~rps_cpu_mask)
3552                         goto try_rps;
3553
3554                 next_cpu = ident & rps_cpu_mask;
3555
3556                 /* OK, now we know there is a match,
3557                  * we can look at the local (per receive queue) flow table
3558                  */
3559                 rflow = &flow_table->flows[hash & flow_table->mask];
3560                 tcpu = rflow->cpu;
3561
3562                 /*
3563                  * If the desired CPU (where last recvmsg was done) is
3564                  * different from current CPU (one in the rx-queue flow
3565                  * table entry), switch if one of the following holds:
3566                  *   - Current CPU is unset (>= nr_cpu_ids).
3567                  *   - Current CPU is offline.
3568                  *   - The current CPU's queue tail has advanced beyond the
3569                  *     last packet that was enqueued using this table entry.
3570                  *     This guarantees that all previous packets for the flow
3571                  *     have been dequeued, thus preserving in order delivery.
3572                  */
3573                 if (unlikely(tcpu != next_cpu) &&
3574                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3575                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3576                       rflow->last_qtail)) >= 0)) {
3577                         tcpu = next_cpu;
3578                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3579                 }
3580
3581                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3582                         *rflowp = rflow;
3583                         cpu = tcpu;
3584                         goto done;
3585                 }
3586         }
3587
3588 try_rps:
3589
3590         if (map) {
3591                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3592                 if (cpu_online(tcpu)) {
3593                         cpu = tcpu;
3594                         goto done;
3595                 }
3596         }
3597
3598 done:
3599         return cpu;
3600 }
3601
3602 #ifdef CONFIG_RFS_ACCEL
3603
3604 /**
3605  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3606  * @dev: Device on which the filter was set
3607  * @rxq_index: RX queue index
3608  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3609  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3610  *
3611  * Drivers that implement ndo_rx_flow_steer() should periodically call
3612  * this function for each installed filter and remove the filters for
3613  * which it returns %true.
3614  */
3615 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3616                          u32 flow_id, u16 filter_id)
3617 {
3618         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3619         struct rps_dev_flow_table *flow_table;
3620         struct rps_dev_flow *rflow;
3621         bool expire = true;
3622         unsigned int cpu;
3623
3624         rcu_read_lock();
3625         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3626         if (flow_table && flow_id <= flow_table->mask) {
3627                 rflow = &flow_table->flows[flow_id];
3628                 cpu = ACCESS_ONCE(rflow->cpu);
3629                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3630                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3631                            rflow->last_qtail) <
3632                      (int)(10 * flow_table->mask)))
3633                         expire = false;
3634         }
3635         rcu_read_unlock();
3636         return expire;
3637 }
3638 EXPORT_SYMBOL(rps_may_expire_flow);
3639
3640 #endif /* CONFIG_RFS_ACCEL */
3641
3642 /* Called from hardirq (IPI) context */
3643 static void rps_trigger_softirq(void *data)
3644 {
3645         struct softnet_data *sd = data;
3646
3647         ____napi_schedule(sd, &sd->backlog);
3648         sd->received_rps++;
3649 }
3650
3651 #endif /* CONFIG_RPS */
3652
3653 /*
3654  * Check if this softnet_data structure is another cpu one
3655  * If yes, queue it to our IPI list and return 1
3656  * If no, return 0
3657  */
3658 static int rps_ipi_queued(struct softnet_data *sd)
3659 {
3660 #ifdef CONFIG_RPS
3661         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3662
3663         if (sd != mysd) {
3664                 sd->rps_ipi_next = mysd->rps_ipi_list;
3665                 mysd->rps_ipi_list = sd;
3666
3667                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3668                 return 1;
3669         }
3670 #endif /* CONFIG_RPS */
3671         return 0;
3672 }
3673
3674 #ifdef CONFIG_NET_FLOW_LIMIT
3675 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3676 #endif
3677
3678 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3679 {
3680 #ifdef CONFIG_NET_FLOW_LIMIT
3681         struct sd_flow_limit *fl;
3682         struct softnet_data *sd;
3683         unsigned int old_flow, new_flow;
3684
3685         if (qlen < (netdev_max_backlog >> 1))
3686                 return false;
3687
3688         sd = this_cpu_ptr(&softnet_data);
3689
3690         rcu_read_lock();
3691         fl = rcu_dereference(sd->flow_limit);
3692         if (fl) {
3693                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3694                 old_flow = fl->history[fl->history_head];
3695                 fl->history[fl->history_head] = new_flow;
3696
3697                 fl->history_head++;
3698                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3699
3700                 if (likely(fl->buckets[old_flow]))
3701                         fl->buckets[old_flow]--;
3702
3703                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3704                         fl->count++;
3705                         rcu_read_unlock();
3706                         return true;
3707                 }
3708         }
3709         rcu_read_unlock();
3710 #endif
3711         return false;
3712 }
3713
3714 /*
3715  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3716  * queue (may be a remote CPU queue).
3717  */
3718 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3719                               unsigned int *qtail)
3720 {
3721         struct softnet_data *sd;
3722         unsigned long flags;
3723         unsigned int qlen;
3724
3725         sd = &per_cpu(softnet_data, cpu);
3726
3727         local_irq_save(flags);
3728
3729         rps_lock(sd);
3730         if (!netif_running(skb->dev))
3731                 goto drop;
3732         qlen = skb_queue_len(&sd->input_pkt_queue);
3733         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3734                 if (qlen) {
3735 enqueue:
3736                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3737                         input_queue_tail_incr_save(sd, qtail);
3738                         rps_unlock(sd);
3739                         local_irq_restore(flags);
3740                         return NET_RX_SUCCESS;
3741                 }
3742
3743                 /* Schedule NAPI for backlog device
3744                  * We can use non atomic operation since we own the queue lock
3745                  */
3746                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3747                         if (!rps_ipi_queued(sd))
3748                                 ____napi_schedule(sd, &sd->backlog);
3749                 }
3750                 goto enqueue;
3751         }
3752
3753 drop:
3754         sd->dropped++;
3755         rps_unlock(sd);
3756
3757         local_irq_restore(flags);
3758
3759         atomic_long_inc(&skb->dev->rx_dropped);
3760         kfree_skb(skb);
3761         return NET_RX_DROP;
3762 }
3763
3764 static int netif_rx_internal(struct sk_buff *skb)
3765 {
3766         int ret;
3767
3768         net_timestamp_check(netdev_tstamp_prequeue, skb);
3769
3770         trace_netif_rx(skb);
3771 #ifdef CONFIG_RPS
3772         if (static_key_false(&rps_needed)) {
3773                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3774                 int cpu;
3775
3776                 preempt_disable();
3777                 rcu_read_lock();
3778
3779                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3780                 if (cpu < 0)
3781                         cpu = smp_processor_id();
3782
3783                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3784
3785                 rcu_read_unlock();
3786                 preempt_enable();
3787         } else
3788 #endif
3789         {
3790                 unsigned int qtail;
3791                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3792                 put_cpu();
3793         }
3794         return ret;
3795 }
3796
3797 /**
3798  *      netif_rx        -       post buffer to the network code
3799  *      @skb: buffer to post
3800  *
3801  *      This function receives a packet from a device driver and queues it for
3802  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3803  *      may be dropped during processing for congestion control or by the
3804  *      protocol layers.
3805  *
3806  *      return values:
3807  *      NET_RX_SUCCESS  (no congestion)
3808  *      NET_RX_DROP     (packet was dropped)
3809  *
3810  */
3811
3812 int netif_rx(struct sk_buff *skb)
3813 {
3814         trace_netif_rx_entry(skb);
3815
3816         return netif_rx_internal(skb);
3817 }
3818 EXPORT_SYMBOL(netif_rx);
3819
3820 int netif_rx_ni(struct sk_buff *skb)
3821 {
3822         int err;
3823
3824         trace_netif_rx_ni_entry(skb);
3825
3826         preempt_disable();
3827         err = netif_rx_internal(skb);
3828         if (local_softirq_pending())
3829                 do_softirq();
3830         preempt_enable();
3831
3832         return err;
3833 }
3834 EXPORT_SYMBOL(netif_rx_ni);
3835
3836 static __latent_entropy void net_tx_action(struct softirq_action *h)
3837 {
3838         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3839
3840         if (sd->completion_queue) {
3841                 struct sk_buff *clist;
3842
3843                 local_irq_disable();
3844                 clist = sd->completion_queue;
3845                 sd->completion_queue = NULL;
3846                 local_irq_enable();
3847
3848                 while (clist) {
3849                         struct sk_buff *skb = clist;
3850                         clist = clist->next;
3851
3852                         WARN_ON(atomic_read(&skb->users));
3853                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3854                                 trace_consume_skb(skb);
3855                         else
3856                                 trace_kfree_skb(skb, net_tx_action);
3857
3858                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3859                                 __kfree_skb(skb);
3860                         else
3861                                 __kfree_skb_defer(skb);
3862                 }
3863
3864                 __kfree_skb_flush();
3865         }
3866
3867         if (sd->output_queue) {
3868                 struct Qdisc *head;
3869
3870                 local_irq_disable();
3871                 head = sd->output_queue;
3872                 sd->output_queue = NULL;
3873                 sd->output_queue_tailp = &sd->output_queue;
3874                 local_irq_enable();
3875
3876                 while (head) {
3877                         struct Qdisc *q = head;
3878                         spinlock_t *root_lock;
3879
3880                         head = head->next_sched;
3881
3882                         root_lock = qdisc_lock(q);
3883                         spin_lock(root_lock);
3884                         /* We need to make sure head->next_sched is read
3885                          * before clearing __QDISC_STATE_SCHED
3886                          */
3887                         smp_mb__before_atomic();
3888                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3889                         qdisc_run(q);
3890                         spin_unlock(root_lock);
3891                 }
3892         }
3893 }
3894
3895 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3896 /* This hook is defined here for ATM LANE */
3897 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3898                              unsigned char *addr) __read_mostly;
3899 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3900 #endif
3901
3902 static inline struct sk_buff *
3903 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3904                    struct net_device *orig_dev)
3905 {
3906 #ifdef CONFIG_NET_CLS_ACT
3907         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3908         struct tcf_result cl_res;
3909
3910         /* If there's at least one ingress present somewhere (so
3911          * we get here via enabled static key), remaining devices
3912          * that are not configured with an ingress qdisc will bail
3913          * out here.
3914          */
3915         if (!cl)
3916                 return skb;
3917         if (*pt_prev) {
3918                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3919                 *pt_prev = NULL;
3920         }
3921
3922         qdisc_skb_cb(skb)->pkt_len = skb->len;
3923         skb->tc_at = AT_INGRESS;
3924         qdisc_bstats_cpu_update(cl->q, skb);
3925
3926         switch (tc_classify(skb, cl, &cl_res, false)) {
3927         case TC_ACT_OK:
3928         case TC_ACT_RECLASSIFY:
3929                 skb->tc_index = TC_H_MIN(cl_res.classid);
3930                 break;
3931         case TC_ACT_SHOT:
3932                 qdisc_qstats_cpu_drop(cl->q);
3933                 kfree_skb(skb);
3934                 return NULL;
3935         case TC_ACT_STOLEN:
3936         case TC_ACT_QUEUED:
3937                 consume_skb(skb);
3938                 return NULL;
3939         case TC_ACT_REDIRECT:
3940                 /* skb_mac_header check was done by cls/act_bpf, so
3941                  * we can safely push the L2 header back before
3942                  * redirecting to another netdev
3943                  */
3944                 __skb_push(skb, skb->mac_len);
3945                 skb_do_redirect(skb);
3946                 return NULL;
3947         default:
3948                 break;
3949         }
3950 #endif /* CONFIG_NET_CLS_ACT */
3951         return skb;
3952 }
3953
3954 /**
3955  *      netdev_is_rx_handler_busy - check if receive handler is registered
3956  *      @dev: device to check
3957  *
3958  *      Check if a receive handler is already registered for a given device.
3959  *      Return true if there one.
3960  *
3961  *      The caller must hold the rtnl_mutex.
3962  */
3963 bool netdev_is_rx_handler_busy(struct net_device *dev)
3964 {
3965         ASSERT_RTNL();
3966         return dev && rtnl_dereference(dev->rx_handler);
3967 }
3968 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3969
3970 /**
3971  *      netdev_rx_handler_register - register receive handler
3972  *      @dev: device to register a handler for
3973  *      @rx_handler: receive handler to register
3974  *      @rx_handler_data: data pointer that is used by rx handler
3975  *
3976  *      Register a receive handler for a device. This handler will then be
3977  *      called from __netif_receive_skb. A negative errno code is returned
3978  *      on a failure.
3979  *
3980  *      The caller must hold the rtnl_mutex.
3981  *
3982  *      For a general description of rx_handler, see enum rx_handler_result.
3983  */
3984 int netdev_rx_handler_register(struct net_device *dev,
3985                                rx_handler_func_t *rx_handler,
3986                                void *rx_handler_data)
3987 {
3988         ASSERT_RTNL();
3989
3990         if (dev->rx_handler)
3991                 return -EBUSY;
3992
3993         /* Note: rx_handler_data must be set before rx_handler */
3994         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3995         rcu_assign_pointer(dev->rx_handler, rx_handler);
3996
3997         return 0;
3998 }
3999 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4000
4001 /**
4002  *      netdev_rx_handler_unregister - unregister receive handler
4003  *      @dev: device to unregister a handler from
4004  *
4005  *      Unregister a receive handler from a device.
4006  *
4007  *      The caller must hold the rtnl_mutex.
4008  */
4009 void netdev_rx_handler_unregister(struct net_device *dev)
4010 {
4011
4012         ASSERT_RTNL();
4013         RCU_INIT_POINTER(dev->rx_handler, NULL);
4014         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4015          * section has a guarantee to see a non NULL rx_handler_data
4016          * as well.
4017          */
4018         synchronize_net();
4019         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4020 }
4021 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4022
4023 /*
4024  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4025  * the special handling of PFMEMALLOC skbs.
4026  */
4027 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4028 {
4029         switch (skb->protocol) {
4030         case htons(ETH_P_ARP):
4031         case htons(ETH_P_IP):
4032         case htons(ETH_P_IPV6):
4033         case htons(ETH_P_8021Q):
4034         case htons(ETH_P_8021AD):
4035                 return true;
4036         default:
4037                 return false;
4038         }
4039 }
4040
4041 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4042                              int *ret, struct net_device *orig_dev)
4043 {
4044 #ifdef CONFIG_NETFILTER_INGRESS
4045         if (nf_hook_ingress_active(skb)) {
4046                 int ingress_retval;
4047
4048                 if (*pt_prev) {
4049                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4050                         *pt_prev = NULL;
4051                 }
4052
4053                 rcu_read_lock();
4054                 ingress_retval = nf_hook_ingress(skb);
4055                 rcu_read_unlock();
4056                 return ingress_retval;
4057         }
4058 #endif /* CONFIG_NETFILTER_INGRESS */
4059         return 0;
4060 }
4061
4062 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4063 {
4064         struct packet_type *ptype, *pt_prev;
4065         rx_handler_func_t *rx_handler;
4066         struct net_device *orig_dev;
4067         bool deliver_exact = false;
4068         int ret = NET_RX_DROP;
4069         __be16 type;
4070
4071         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4072
4073         trace_netif_receive_skb(skb);
4074
4075         orig_dev = skb->dev;
4076
4077         skb_reset_network_header(skb);
4078         if (!skb_transport_header_was_set(skb))
4079                 skb_reset_transport_header(skb);
4080         skb_reset_mac_len(skb);
4081
4082         pt_prev = NULL;
4083
4084 another_round:
4085         skb->skb_iif = skb->dev->ifindex;
4086
4087         __this_cpu_inc(softnet_data.processed);
4088
4089         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4090             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4091                 skb = skb_vlan_untag(skb);
4092                 if (unlikely(!skb))
4093                         goto out;
4094         }
4095
4096         if (skb_skip_tc_classify(skb))
4097                 goto skip_classify;
4098
4099         if (pfmemalloc)
4100                 goto skip_taps;
4101
4102         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4103                 if (pt_prev)
4104                         ret = deliver_skb(skb, pt_prev, orig_dev);
4105                 pt_prev = ptype;
4106         }
4107
4108         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4109                 if (pt_prev)
4110                         ret = deliver_skb(skb, pt_prev, orig_dev);
4111                 pt_prev = ptype;
4112         }
4113
4114 skip_taps:
4115 #ifdef CONFIG_NET_INGRESS
4116         if (static_key_false(&ingress_needed)) {
4117                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4118                 if (!skb)
4119                         goto out;
4120
4121                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4122                         goto out;
4123         }
4124 #endif
4125         skb_reset_tc(skb);
4126 skip_classify:
4127         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4128                 goto drop;
4129
4130         if (skb_vlan_tag_present(skb)) {
4131                 if (pt_prev) {
4132                         ret = deliver_skb(skb, pt_prev, orig_dev);
4133                         pt_prev = NULL;
4134                 }
4135                 if (vlan_do_receive(&skb))
4136                         goto another_round;
4137                 else if (unlikely(!skb))
4138                         goto out;
4139         }
4140
4141         rx_handler = rcu_dereference(skb->dev->rx_handler);
4142         if (rx_handler) {
4143                 if (pt_prev) {
4144                         ret = deliver_skb(skb, pt_prev, orig_dev);
4145                         pt_prev = NULL;
4146                 }
4147                 switch (rx_handler(&skb)) {
4148                 case RX_HANDLER_CONSUMED:
4149                         ret = NET_RX_SUCCESS;
4150                         goto out;
4151                 case RX_HANDLER_ANOTHER:
4152                         goto another_round;
4153                 case RX_HANDLER_EXACT:
4154                         deliver_exact = true;
4155                 case RX_HANDLER_PASS:
4156                         break;
4157                 default:
4158                         BUG();
4159                 }
4160         }
4161
4162         if (unlikely(skb_vlan_tag_present(skb))) {
4163                 if (skb_vlan_tag_get_id(skb))
4164                         skb->pkt_type = PACKET_OTHERHOST;
4165                 /* Note: we might in the future use prio bits
4166                  * and set skb->priority like in vlan_do_receive()
4167                  * For the time being, just ignore Priority Code Point
4168                  */
4169                 skb->vlan_tci = 0;
4170         }
4171
4172         type = skb->protocol;
4173
4174         /* deliver only exact match when indicated */
4175         if (likely(!deliver_exact)) {
4176                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4177                                        &ptype_base[ntohs(type) &
4178                                                    PTYPE_HASH_MASK]);
4179         }
4180
4181         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4182                                &orig_dev->ptype_specific);
4183
4184         if (unlikely(skb->dev != orig_dev)) {
4185                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4186                                        &skb->dev->ptype_specific);
4187         }
4188
4189         if (pt_prev) {
4190                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4191                         goto drop;
4192                 else
4193                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4194         } else {
4195 drop:
4196                 if (!deliver_exact)
4197                         atomic_long_inc(&skb->dev->rx_dropped);
4198                 else
4199                         atomic_long_inc(&skb->dev->rx_nohandler);
4200                 kfree_skb(skb);
4201                 /* Jamal, now you will not able to escape explaining
4202                  * me how you were going to use this. :-)
4203                  */
4204                 ret = NET_RX_DROP;
4205         }
4206
4207 out:
4208         return ret;
4209 }
4210
4211 static int __netif_receive_skb(struct sk_buff *skb)
4212 {
4213         int ret;
4214
4215         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4216                 unsigned long pflags = current->flags;
4217
4218                 /*
4219                  * PFMEMALLOC skbs are special, they should
4220                  * - be delivered to SOCK_MEMALLOC sockets only
4221                  * - stay away from userspace
4222                  * - have bounded memory usage
4223                  *
4224                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4225                  * context down to all allocation sites.
4226                  */
4227                 current->flags |= PF_MEMALLOC;
4228                 ret = __netif_receive_skb_core(skb, true);
4229                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4230         } else
4231                 ret = __netif_receive_skb_core(skb, false);
4232
4233         return ret;
4234 }
4235
4236 static int netif_receive_skb_internal(struct sk_buff *skb)
4237 {
4238         int ret;
4239
4240         net_timestamp_check(netdev_tstamp_prequeue, skb);
4241
4242         if (skb_defer_rx_timestamp(skb))
4243                 return NET_RX_SUCCESS;
4244
4245         rcu_read_lock();
4246
4247 #ifdef CONFIG_RPS
4248         if (static_key_false(&rps_needed)) {
4249                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4250                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4251
4252                 if (cpu >= 0) {
4253                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4254                         rcu_read_unlock();
4255                         return ret;
4256                 }
4257         }
4258 #endif
4259         ret = __netif_receive_skb(skb);
4260         rcu_read_unlock();
4261         return ret;
4262 }
4263
4264 /**
4265  *      netif_receive_skb - process receive buffer from network
4266  *      @skb: buffer to process
4267  *
4268  *      netif_receive_skb() is the main receive data processing function.
4269  *      It always succeeds. The buffer may be dropped during processing
4270  *      for congestion control or by the protocol layers.
4271  *
4272  *      This function may only be called from softirq context and interrupts
4273  *      should be enabled.
4274  *
4275  *      Return values (usually ignored):
4276  *      NET_RX_SUCCESS: no congestion
4277  *      NET_RX_DROP: packet was dropped
4278  */
4279 int netif_receive_skb(struct sk_buff *skb)
4280 {
4281         trace_netif_receive_skb_entry(skb);
4282
4283         return netif_receive_skb_internal(skb);
4284 }
4285 EXPORT_SYMBOL(netif_receive_skb);
4286
4287 DEFINE_PER_CPU(struct work_struct, flush_works);
4288
4289 /* Network device is going away, flush any packets still pending */
4290 static void flush_backlog(struct work_struct *work)
4291 {
4292         struct sk_buff *skb, *tmp;
4293         struct softnet_data *sd;
4294
4295         local_bh_disable();
4296         sd = this_cpu_ptr(&softnet_data);
4297
4298         local_irq_disable();
4299         rps_lock(sd);
4300         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4301                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4302                         __skb_unlink(skb, &sd->input_pkt_queue);
4303                         kfree_skb(skb);
4304                         input_queue_head_incr(sd);
4305                 }
4306         }
4307         rps_unlock(sd);
4308         local_irq_enable();
4309
4310         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4311                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4312                         __skb_unlink(skb, &sd->process_queue);
4313                         kfree_skb(skb);
4314                         input_queue_head_incr(sd);
4315                 }
4316         }
4317         local_bh_enable();
4318 }
4319
4320 static void flush_all_backlogs(void)
4321 {
4322         unsigned int cpu;
4323
4324         get_online_cpus();
4325
4326         for_each_online_cpu(cpu)
4327                 queue_work_on(cpu, system_highpri_wq,
4328                               per_cpu_ptr(&flush_works, cpu));
4329
4330         for_each_online_cpu(cpu)
4331                 flush_work(per_cpu_ptr(&flush_works, cpu));
4332
4333         put_online_cpus();
4334 }
4335
4336 static int napi_gro_complete(struct sk_buff *skb)
4337 {
4338         struct packet_offload *ptype;
4339         __be16 type = skb->protocol;
4340         struct list_head *head = &offload_base;
4341         int err = -ENOENT;
4342
4343         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4344
4345         if (NAPI_GRO_CB(skb)->count == 1) {
4346                 skb_shinfo(skb)->gso_size = 0;
4347                 goto out;
4348         }
4349
4350         rcu_read_lock();
4351         list_for_each_entry_rcu(ptype, head, list) {
4352                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4353                         continue;
4354
4355                 err = ptype->callbacks.gro_complete(skb, 0);
4356                 break;
4357         }
4358         rcu_read_unlock();
4359
4360         if (err) {
4361                 WARN_ON(&ptype->list == head);
4362                 kfree_skb(skb);
4363                 return NET_RX_SUCCESS;
4364         }
4365
4366 out:
4367         return netif_receive_skb_internal(skb);
4368 }
4369
4370 /* napi->gro_list contains packets ordered by age.
4371  * youngest packets at the head of it.
4372  * Complete skbs in reverse order to reduce latencies.
4373  */
4374 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4375 {
4376         struct sk_buff *skb, *prev = NULL;
4377
4378         /* scan list and build reverse chain */
4379         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4380                 skb->prev = prev;
4381                 prev = skb;
4382         }
4383
4384         for (skb = prev; skb; skb = prev) {
4385                 skb->next = NULL;
4386
4387                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4388                         return;
4389
4390                 prev = skb->prev;
4391                 napi_gro_complete(skb);
4392                 napi->gro_count--;
4393         }
4394
4395         napi->gro_list = NULL;
4396 }
4397 EXPORT_SYMBOL(napi_gro_flush);
4398
4399 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4400 {
4401         struct sk_buff *p;
4402         unsigned int maclen = skb->dev->hard_header_len;
4403         u32 hash = skb_get_hash_raw(skb);
4404
4405         for (p = napi->gro_list; p; p = p->next) {
4406                 unsigned long diffs;
4407
4408                 NAPI_GRO_CB(p)->flush = 0;
4409
4410                 if (hash != skb_get_hash_raw(p)) {
4411                         NAPI_GRO_CB(p)->same_flow = 0;
4412                         continue;
4413                 }
4414
4415                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4416                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4417                 diffs |= skb_metadata_dst_cmp(p, skb);
4418                 if (maclen == ETH_HLEN)
4419                         diffs |= compare_ether_header(skb_mac_header(p),
4420                                                       skb_mac_header(skb));
4421                 else if (!diffs)
4422                         diffs = memcmp(skb_mac_header(p),
4423                                        skb_mac_header(skb),
4424                                        maclen);
4425                 NAPI_GRO_CB(p)->same_flow = !diffs;
4426         }
4427 }
4428
4429 static void skb_gro_reset_offset(struct sk_buff *skb)
4430 {
4431         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4432         const skb_frag_t *frag0 = &pinfo->frags[0];
4433
4434         NAPI_GRO_CB(skb)->data_offset = 0;
4435         NAPI_GRO_CB(skb)->frag0 = NULL;
4436         NAPI_GRO_CB(skb)->frag0_len = 0;
4437
4438         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4439             pinfo->nr_frags &&
4440             !PageHighMem(skb_frag_page(frag0))) {
4441                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4442                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4443         }
4444 }
4445
4446 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4447 {
4448         struct skb_shared_info *pinfo = skb_shinfo(skb);
4449
4450         BUG_ON(skb->end - skb->tail < grow);
4451
4452         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4453
4454         skb->data_len -= grow;
4455         skb->tail += grow;
4456
4457         pinfo->frags[0].page_offset += grow;
4458         skb_frag_size_sub(&pinfo->frags[0], grow);
4459
4460         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4461                 skb_frag_unref(skb, 0);
4462                 memmove(pinfo->frags, pinfo->frags + 1,
4463                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4464         }
4465 }
4466
4467 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4468 {
4469         struct sk_buff **pp = NULL;
4470         struct packet_offload *ptype;
4471         __be16 type = skb->protocol;
4472         struct list_head *head = &offload_base;
4473         int same_flow;
4474         enum gro_result ret;
4475         int grow;
4476
4477         if (!(skb->dev->features & NETIF_F_GRO))
4478                 goto normal;
4479
4480         if (skb->csum_bad)
4481                 goto normal;
4482
4483         gro_list_prepare(napi, skb);
4484
4485         rcu_read_lock();
4486         list_for_each_entry_rcu(ptype, head, list) {
4487                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4488                         continue;
4489
4490                 skb_set_network_header(skb, skb_gro_offset(skb));
4491                 skb_reset_mac_len(skb);
4492                 NAPI_GRO_CB(skb)->same_flow = 0;
4493                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4494                 NAPI_GRO_CB(skb)->free = 0;
4495                 NAPI_GRO_CB(skb)->encap_mark = 0;
4496                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4497                 NAPI_GRO_CB(skb)->is_fou = 0;
4498                 NAPI_GRO_CB(skb)->is_atomic = 1;
4499                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4500
4501                 /* Setup for GRO checksum validation */
4502                 switch (skb->ip_summed) {
4503                 case CHECKSUM_COMPLETE:
4504                         NAPI_GRO_CB(skb)->csum = skb->csum;
4505                         NAPI_GRO_CB(skb)->csum_valid = 1;
4506                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4507                         break;
4508                 case CHECKSUM_UNNECESSARY:
4509                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4510                         NAPI_GRO_CB(skb)->csum_valid = 0;
4511                         break;
4512                 default:
4513                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4514                         NAPI_GRO_CB(skb)->csum_valid = 0;
4515                 }
4516
4517                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4518                 break;
4519         }
4520         rcu_read_unlock();
4521
4522         if (&ptype->list == head)
4523                 goto normal;
4524
4525         same_flow = NAPI_GRO_CB(skb)->same_flow;
4526         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4527
4528         if (pp) {
4529                 struct sk_buff *nskb = *pp;
4530
4531                 *pp = nskb->next;
4532                 nskb->next = NULL;
4533                 napi_gro_complete(nskb);
4534                 napi->gro_count--;
4535         }
4536
4537         if (same_flow)
4538                 goto ok;
4539
4540         if (NAPI_GRO_CB(skb)->flush)
4541                 goto normal;
4542
4543         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4544                 struct sk_buff *nskb = napi->gro_list;
4545
4546                 /* locate the end of the list to select the 'oldest' flow */
4547                 while (nskb->next) {
4548                         pp = &nskb->next;
4549                         nskb = *pp;
4550                 }
4551                 *pp = NULL;
4552                 nskb->next = NULL;
4553                 napi_gro_complete(nskb);
4554         } else {
4555                 napi->gro_count++;
4556         }
4557         NAPI_GRO_CB(skb)->count = 1;
4558         NAPI_GRO_CB(skb)->age = jiffies;
4559         NAPI_GRO_CB(skb)->last = skb;
4560         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4561         skb->next = napi->gro_list;
4562         napi->gro_list = skb;
4563         ret = GRO_HELD;
4564
4565 pull:
4566         grow = skb_gro_offset(skb) - skb_headlen(skb);
4567         if (grow > 0)
4568                 gro_pull_from_frag0(skb, grow);
4569 ok:
4570         return ret;
4571
4572 normal:
4573         ret = GRO_NORMAL;
4574         goto pull;
4575 }
4576
4577 struct packet_offload *gro_find_receive_by_type(__be16 type)
4578 {
4579         struct list_head *offload_head = &offload_base;
4580         struct packet_offload *ptype;
4581
4582         list_for_each_entry_rcu(ptype, offload_head, list) {
4583                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4584                         continue;
4585                 return ptype;
4586         }
4587         return NULL;
4588 }
4589 EXPORT_SYMBOL(gro_find_receive_by_type);
4590
4591 struct packet_offload *gro_find_complete_by_type(__be16 type)
4592 {
4593         struct list_head *offload_head = &offload_base;
4594         struct packet_offload *ptype;
4595
4596         list_for_each_entry_rcu(ptype, offload_head, list) {
4597                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4598                         continue;
4599                 return ptype;
4600         }
4601         return NULL;
4602 }
4603 EXPORT_SYMBOL(gro_find_complete_by_type);
4604
4605 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4606 {
4607         switch (ret) {
4608         case GRO_NORMAL:
4609                 if (netif_receive_skb_internal(skb))
4610                         ret = GRO_DROP;
4611                 break;
4612
4613         case GRO_DROP:
4614                 kfree_skb(skb);
4615                 break;
4616
4617         case GRO_MERGED_FREE:
4618                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4619                         skb_dst_drop(skb);
4620                         kmem_cache_free(skbuff_head_cache, skb);
4621                 } else {
4622                         __kfree_skb(skb);
4623                 }
4624                 break;
4625
4626         case GRO_HELD:
4627         case GRO_MERGED:
4628                 break;
4629         }
4630
4631         return ret;
4632 }
4633
4634 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4635 {
4636         skb_mark_napi_id(skb, napi);
4637         trace_napi_gro_receive_entry(skb);
4638
4639         skb_gro_reset_offset(skb);
4640
4641         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4642 }
4643 EXPORT_SYMBOL(napi_gro_receive);
4644
4645 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4646 {
4647         if (unlikely(skb->pfmemalloc)) {
4648                 consume_skb(skb);
4649                 return;
4650         }
4651         __skb_pull(skb, skb_headlen(skb));
4652         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4653         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4654         skb->vlan_tci = 0;
4655         skb->dev = napi->dev;
4656         skb->skb_iif = 0;
4657         skb->encapsulation = 0;
4658         skb_shinfo(skb)->gso_type = 0;
4659         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4660
4661         napi->skb = skb;
4662 }
4663
4664 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4665 {
4666         struct sk_buff *skb = napi->skb;
4667
4668         if (!skb) {
4669                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4670                 if (skb) {
4671                         napi->skb = skb;
4672                         skb_mark_napi_id(skb, napi);
4673                 }
4674         }
4675         return skb;
4676 }
4677 EXPORT_SYMBOL(napi_get_frags);
4678
4679 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4680                                       struct sk_buff *skb,
4681                                       gro_result_t ret)
4682 {
4683         switch (ret) {
4684         case GRO_NORMAL:
4685         case GRO_HELD:
4686                 __skb_push(skb, ETH_HLEN);
4687                 skb->protocol = eth_type_trans(skb, skb->dev);
4688                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4689                         ret = GRO_DROP;
4690                 break;
4691
4692         case GRO_DROP:
4693         case GRO_MERGED_FREE:
4694                 napi_reuse_skb(napi, skb);
4695                 break;
4696
4697         case GRO_MERGED:
4698                 break;
4699         }
4700
4701         return ret;
4702 }
4703
4704 /* Upper GRO stack assumes network header starts at gro_offset=0
4705  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4706  * We copy ethernet header into skb->data to have a common layout.
4707  */
4708 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4709 {
4710         struct sk_buff *skb = napi->skb;
4711         const struct ethhdr *eth;
4712         unsigned int hlen = sizeof(*eth);
4713
4714         napi->skb = NULL;
4715
4716         skb_reset_mac_header(skb);
4717         skb_gro_reset_offset(skb);
4718
4719         eth = skb_gro_header_fast(skb, 0);
4720         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4721                 eth = skb_gro_header_slow(skb, hlen, 0);
4722                 if (unlikely(!eth)) {
4723                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4724                                              __func__, napi->dev->name);
4725                         napi_reuse_skb(napi, skb);
4726                         return NULL;
4727                 }
4728         } else {
4729                 gro_pull_from_frag0(skb, hlen);
4730                 NAPI_GRO_CB(skb)->frag0 += hlen;
4731                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4732         }
4733         __skb_pull(skb, hlen);
4734
4735         /*
4736          * This works because the only protocols we care about don't require
4737          * special handling.
4738          * We'll fix it up properly in napi_frags_finish()
4739          */
4740         skb->protocol = eth->h_proto;
4741
4742         return skb;
4743 }
4744
4745 gro_result_t napi_gro_frags(struct napi_struct *napi)
4746 {
4747         struct sk_buff *skb = napi_frags_skb(napi);
4748
4749         if (!skb)
4750                 return GRO_DROP;
4751
4752         trace_napi_gro_frags_entry(skb);
4753
4754         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4755 }
4756 EXPORT_SYMBOL(napi_gro_frags);
4757
4758 /* Compute the checksum from gro_offset and return the folded value
4759  * after adding in any pseudo checksum.
4760  */
4761 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4762 {
4763         __wsum wsum;
4764         __sum16 sum;
4765
4766         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4767
4768         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4769         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4770         if (likely(!sum)) {
4771                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4772                     !skb->csum_complete_sw)
4773                         netdev_rx_csum_fault(skb->dev);
4774         }
4775
4776         NAPI_GRO_CB(skb)->csum = wsum;
4777         NAPI_GRO_CB(skb)->csum_valid = 1;
4778
4779         return sum;
4780 }
4781 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4782
4783 /*
4784  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4785  * Note: called with local irq disabled, but exits with local irq enabled.
4786  */
4787 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4788 {
4789 #ifdef CONFIG_RPS
4790         struct softnet_data *remsd = sd->rps_ipi_list;
4791
4792         if (remsd) {
4793                 sd->rps_ipi_list = NULL;
4794
4795                 local_irq_enable();
4796
4797                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4798                 while (remsd) {
4799                         struct softnet_data *next = remsd->rps_ipi_next;
4800
4801                         if (cpu_online(remsd->cpu))
4802                                 smp_call_function_single_async(remsd->cpu,
4803                                                            &remsd->csd);
4804                         remsd = next;
4805                 }
4806         } else
4807 #endif
4808                 local_irq_enable();
4809 }
4810
4811 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4812 {
4813 #ifdef CONFIG_RPS
4814         return sd->rps_ipi_list != NULL;
4815 #else
4816         return false;
4817 #endif
4818 }
4819
4820 static int process_backlog(struct napi_struct *napi, int quota)
4821 {
4822         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4823         bool again = true;
4824         int work = 0;
4825
4826         /* Check if we have pending ipi, its better to send them now,
4827          * not waiting net_rx_action() end.
4828          */
4829         if (sd_has_rps_ipi_waiting(sd)) {
4830                 local_irq_disable();
4831                 net_rps_action_and_irq_enable(sd);
4832         }
4833
4834         napi->weight = dev_rx_weight;
4835         while (again) {
4836                 struct sk_buff *skb;
4837
4838                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4839                         rcu_read_lock();
4840                         __netif_receive_skb(skb);
4841                         rcu_read_unlock();
4842                         input_queue_head_incr(sd);
4843                         if (++work >= quota)
4844                                 return work;
4845
4846                 }
4847
4848                 local_irq_disable();
4849                 rps_lock(sd);
4850                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4851                         /*
4852                          * Inline a custom version of __napi_complete().
4853                          * only current cpu owns and manipulates this napi,
4854                          * and NAPI_STATE_SCHED is the only possible flag set
4855                          * on backlog.
4856                          * We can use a plain write instead of clear_bit(),
4857                          * and we dont need an smp_mb() memory barrier.
4858                          */
4859                         napi->state = 0;
4860                         again = false;
4861                 } else {
4862                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4863                                                    &sd->process_queue);
4864                 }
4865                 rps_unlock(sd);
4866                 local_irq_enable();
4867         }
4868
4869         return work;
4870 }
4871
4872 /**
4873  * __napi_schedule - schedule for receive
4874  * @n: entry to schedule
4875  *
4876  * The entry's receive function will be scheduled to run.
4877  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4878  */
4879 void __napi_schedule(struct napi_struct *n)
4880 {
4881         unsigned long flags;
4882
4883         local_irq_save(flags);
4884         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4885         local_irq_restore(flags);
4886 }
4887 EXPORT_SYMBOL(__napi_schedule);
4888
4889 /**
4890  * __napi_schedule_irqoff - schedule for receive
4891  * @n: entry to schedule
4892  *
4893  * Variant of __napi_schedule() assuming hard irqs are masked
4894  */
4895 void __napi_schedule_irqoff(struct napi_struct *n)
4896 {
4897         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4898 }
4899 EXPORT_SYMBOL(__napi_schedule_irqoff);
4900
4901 bool __napi_complete(struct napi_struct *n)
4902 {
4903         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4904
4905         /* Some drivers call us directly, instead of calling
4906          * napi_complete_done().
4907          */
4908         if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4909                 return false;
4910
4911         list_del_init(&n->poll_list);
4912         smp_mb__before_atomic();
4913         clear_bit(NAPI_STATE_SCHED, &n->state);
4914         return true;
4915 }
4916 EXPORT_SYMBOL(__napi_complete);
4917
4918 bool napi_complete_done(struct napi_struct *n, int work_done)
4919 {
4920         unsigned long flags;
4921
4922         /*
4923          * 1) Don't let napi dequeue from the cpu poll list
4924          *    just in case its running on a different cpu.
4925          * 2) If we are busy polling, do nothing here, we have
4926          *    the guarantee we will be called later.
4927          */
4928         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4929                                  NAPIF_STATE_IN_BUSY_POLL)))
4930                 return false;
4931
4932         if (n->gro_list) {
4933                 unsigned long timeout = 0;
4934
4935                 if (work_done)
4936                         timeout = n->dev->gro_flush_timeout;
4937
4938                 if (timeout)
4939                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4940                                       HRTIMER_MODE_REL_PINNED);
4941                 else
4942                         napi_gro_flush(n, false);
4943         }
4944         if (likely(list_empty(&n->poll_list))) {
4945                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4946         } else {
4947                 /* If n->poll_list is not empty, we need to mask irqs */
4948                 local_irq_save(flags);
4949                 __napi_complete(n);
4950                 local_irq_restore(flags);
4951         }
4952         return true;
4953 }
4954 EXPORT_SYMBOL(napi_complete_done);
4955
4956 /* must be called under rcu_read_lock(), as we dont take a reference */
4957 static struct napi_struct *napi_by_id(unsigned int napi_id)
4958 {
4959         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4960         struct napi_struct *napi;
4961
4962         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4963                 if (napi->napi_id == napi_id)
4964                         return napi;
4965
4966         return NULL;
4967 }
4968
4969 #if defined(CONFIG_NET_RX_BUSY_POLL)
4970
4971 #define BUSY_POLL_BUDGET 8
4972
4973 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4974 {
4975         int rc;
4976
4977         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4978
4979         local_bh_disable();
4980
4981         /* All we really want here is to re-enable device interrupts.
4982          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4983          */
4984         rc = napi->poll(napi, BUSY_POLL_BUDGET);
4985         netpoll_poll_unlock(have_poll_lock);
4986         if (rc == BUSY_POLL_BUDGET)
4987                 __napi_schedule(napi);
4988         local_bh_enable();
4989         if (local_softirq_pending())
4990                 do_softirq();
4991 }
4992
4993 bool sk_busy_loop(struct sock *sk, int nonblock)
4994 {
4995         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4996         int (*napi_poll)(struct napi_struct *napi, int budget);
4997         int (*busy_poll)(struct napi_struct *dev);
4998         void *have_poll_lock = NULL;
4999         struct napi_struct *napi;
5000         int rc;
5001
5002 restart:
5003         rc = false;
5004         napi_poll = NULL;
5005
5006         rcu_read_lock();
5007
5008         napi = napi_by_id(sk->sk_napi_id);
5009         if (!napi)
5010                 goto out;
5011
5012         /* Note: ndo_busy_poll method is optional in linux-4.5 */
5013         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
5014
5015         preempt_disable();
5016         for (;;) {
5017                 rc = 0;
5018                 local_bh_disable();
5019                 if (busy_poll) {
5020                         rc = busy_poll(napi);
5021                         goto count;
5022                 }
5023                 if (!napi_poll) {
5024                         unsigned long val = READ_ONCE(napi->state);
5025
5026                         /* If multiple threads are competing for this napi,
5027                          * we avoid dirtying napi->state as much as we can.
5028                          */
5029                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5030                                    NAPIF_STATE_IN_BUSY_POLL))
5031                                 goto count;
5032                         if (cmpxchg(&napi->state, val,
5033                                     val | NAPIF_STATE_IN_BUSY_POLL |
5034                                           NAPIF_STATE_SCHED) != val)
5035                                 goto count;
5036                         have_poll_lock = netpoll_poll_lock(napi);
5037                         napi_poll = napi->poll;
5038                 }
5039                 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5040                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5041 count:
5042                 if (rc > 0)
5043                         __NET_ADD_STATS(sock_net(sk),
5044                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5045                 local_bh_enable();
5046
5047                 if (rc == LL_FLUSH_FAILED)
5048                         break; /* permanent failure */
5049
5050                 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5051                     busy_loop_timeout(end_time))
5052                         break;
5053
5054                 if (unlikely(need_resched())) {
5055                         if (napi_poll)
5056                                 busy_poll_stop(napi, have_poll_lock);
5057                         preempt_enable();
5058                         rcu_read_unlock();
5059                         cond_resched();
5060                         rc = !skb_queue_empty(&sk->sk_receive_queue);
5061                         if (rc || busy_loop_timeout(end_time))
5062                                 return rc;
5063                         goto restart;
5064                 }
5065                 cpu_relax();
5066         }
5067         if (napi_poll)
5068                 busy_poll_stop(napi, have_poll_lock);
5069         preempt_enable();
5070         rc = !skb_queue_empty(&sk->sk_receive_queue);
5071 out:
5072         rcu_read_unlock();
5073         return rc;
5074 }
5075 EXPORT_SYMBOL(sk_busy_loop);
5076
5077 #endif /* CONFIG_NET_RX_BUSY_POLL */
5078
5079 static void napi_hash_add(struct napi_struct *napi)
5080 {
5081         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5082             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5083                 return;
5084
5085         spin_lock(&napi_hash_lock);
5086
5087         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5088         do {
5089                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5090                         napi_gen_id = NR_CPUS + 1;
5091         } while (napi_by_id(napi_gen_id));
5092         napi->napi_id = napi_gen_id;
5093
5094         hlist_add_head_rcu(&napi->napi_hash_node,
5095                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5096
5097         spin_unlock(&napi_hash_lock);
5098 }
5099
5100 /* Warning : caller is responsible to make sure rcu grace period
5101  * is respected before freeing memory containing @napi
5102  */
5103 bool napi_hash_del(struct napi_struct *napi)
5104 {
5105         bool rcu_sync_needed = false;
5106
5107         spin_lock(&napi_hash_lock);
5108
5109         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5110                 rcu_sync_needed = true;
5111                 hlist_del_rcu(&napi->napi_hash_node);
5112         }
5113         spin_unlock(&napi_hash_lock);
5114         return rcu_sync_needed;
5115 }
5116 EXPORT_SYMBOL_GPL(napi_hash_del);
5117
5118 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5119 {
5120         struct napi_struct *napi;
5121
5122         napi = container_of(timer, struct napi_struct, timer);
5123         if (napi->gro_list)
5124                 napi_schedule(napi);
5125
5126         return HRTIMER_NORESTART;
5127 }
5128
5129 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5130                     int (*poll)(struct napi_struct *, int), int weight)
5131 {
5132         INIT_LIST_HEAD(&napi->poll_list);
5133         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5134         napi->timer.function = napi_watchdog;
5135         napi->gro_count = 0;
5136         napi->gro_list = NULL;
5137         napi->skb = NULL;
5138         napi->poll = poll;
5139         if (weight > NAPI_POLL_WEIGHT)
5140                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5141                             weight, dev->name);
5142         napi->weight = weight;
5143         list_add(&napi->dev_list, &dev->napi_list);
5144         napi->dev = dev;
5145 #ifdef CONFIG_NETPOLL
5146         napi->poll_owner = -1;
5147 #endif
5148         set_bit(NAPI_STATE_SCHED, &napi->state);
5149         napi_hash_add(napi);
5150 }
5151 EXPORT_SYMBOL(netif_napi_add);
5152
5153 void napi_disable(struct napi_struct *n)
5154 {
5155         might_sleep();
5156         set_bit(NAPI_STATE_DISABLE, &n->state);
5157
5158         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5159                 msleep(1);
5160         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5161                 msleep(1);
5162
5163         hrtimer_cancel(&n->timer);
5164
5165         clear_bit(NAPI_STATE_DISABLE, &n->state);
5166 }
5167 EXPORT_SYMBOL(napi_disable);
5168
5169 /* Must be called in process context */
5170 void netif_napi_del(struct napi_struct *napi)
5171 {
5172         might_sleep();
5173         if (napi_hash_del(napi))
5174                 synchronize_net();
5175         list_del_init(&napi->dev_list);
5176         napi_free_frags(napi);
5177
5178         kfree_skb_list(napi->gro_list);
5179         napi->gro_list = NULL;
5180         napi->gro_count = 0;
5181 }
5182 EXPORT_SYMBOL(netif_napi_del);
5183
5184 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5185 {
5186         void *have;
5187         int work, weight;
5188
5189         list_del_init(&n->poll_list);
5190
5191         have = netpoll_poll_lock(n);
5192
5193         weight = n->weight;
5194
5195         /* This NAPI_STATE_SCHED test is for avoiding a race
5196          * with netpoll's poll_napi().  Only the entity which
5197          * obtains the lock and sees NAPI_STATE_SCHED set will
5198          * actually make the ->poll() call.  Therefore we avoid
5199          * accidentally calling ->poll() when NAPI is not scheduled.
5200          */
5201         work = 0;
5202         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5203                 work = n->poll(n, weight);
5204                 trace_napi_poll(n, work, weight);
5205         }
5206
5207         WARN_ON_ONCE(work > weight);
5208
5209         if (likely(work < weight))
5210                 goto out_unlock;
5211
5212         /* Drivers must not modify the NAPI state if they
5213          * consume the entire weight.  In such cases this code
5214          * still "owns" the NAPI instance and therefore can
5215          * move the instance around on the list at-will.
5216          */
5217         if (unlikely(napi_disable_pending(n))) {
5218                 napi_complete(n);
5219                 goto out_unlock;
5220         }
5221
5222         if (n->gro_list) {
5223                 /* flush too old packets
5224                  * If HZ < 1000, flush all packets.
5225                  */
5226                 napi_gro_flush(n, HZ >= 1000);
5227         }
5228
5229         /* Some drivers may have called napi_schedule
5230          * prior to exhausting their budget.
5231          */
5232         if (unlikely(!list_empty(&n->poll_list))) {
5233                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5234                              n->dev ? n->dev->name : "backlog");
5235                 goto out_unlock;
5236         }
5237
5238         list_add_tail(&n->poll_list, repoll);
5239
5240 out_unlock:
5241         netpoll_poll_unlock(have);
5242
5243         return work;
5244 }
5245
5246 static __latent_entropy void net_rx_action(struct softirq_action *h)
5247 {
5248         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5249         unsigned long time_limit = jiffies + 2;
5250         int budget = netdev_budget;
5251         LIST_HEAD(list);
5252         LIST_HEAD(repoll);
5253
5254         local_irq_disable();
5255         list_splice_init(&sd->poll_list, &list);
5256         local_irq_enable();
5257
5258         for (;;) {
5259                 struct napi_struct *n;
5260
5261                 if (list_empty(&list)) {
5262                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5263                                 goto out;
5264                         break;
5265                 }
5266
5267                 n = list_first_entry(&list, struct napi_struct, poll_list);
5268                 budget -= napi_poll(n, &repoll);
5269
5270                 /* If softirq window is exhausted then punt.
5271                  * Allow this to run for 2 jiffies since which will allow
5272                  * an average latency of 1.5/HZ.
5273                  */
5274                 if (unlikely(budget <= 0 ||
5275                              time_after_eq(jiffies, time_limit))) {
5276                         sd->time_squeeze++;
5277                         break;
5278                 }
5279         }
5280
5281         local_irq_disable();
5282
5283         list_splice_tail_init(&sd->poll_list, &list);
5284         list_splice_tail(&repoll, &list);
5285         list_splice(&list, &sd->poll_list);
5286         if (!list_empty(&sd->poll_list))
5287                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5288
5289         net_rps_action_and_irq_enable(sd);
5290 out:
5291         __kfree_skb_flush();
5292 }
5293
5294 struct netdev_adjacent {
5295         struct net_device *dev;
5296
5297         /* upper master flag, there can only be one master device per list */
5298         bool master;
5299
5300         /* counter for the number of times this device was added to us */
5301         u16 ref_nr;
5302
5303         /* private field for the users */
5304         void *private;
5305
5306         struct list_head list;
5307         struct rcu_head rcu;
5308 };
5309
5310 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5311                                                  struct list_head *adj_list)
5312 {
5313         struct netdev_adjacent *adj;
5314
5315         list_for_each_entry(adj, adj_list, list) {
5316                 if (adj->dev == adj_dev)
5317                         return adj;
5318         }
5319         return NULL;
5320 }
5321
5322 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5323 {
5324         struct net_device *dev = data;
5325
5326         return upper_dev == dev;
5327 }
5328
5329 /**
5330  * netdev_has_upper_dev - Check if device is linked to an upper device
5331  * @dev: device
5332  * @upper_dev: upper device to check
5333  *
5334  * Find out if a device is linked to specified upper device and return true
5335  * in case it is. Note that this checks only immediate upper device,
5336  * not through a complete stack of devices. The caller must hold the RTNL lock.
5337  */
5338 bool netdev_has_upper_dev(struct net_device *dev,
5339                           struct net_device *upper_dev)
5340 {
5341         ASSERT_RTNL();
5342
5343         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5344                                              upper_dev);
5345 }
5346 EXPORT_SYMBOL(netdev_has_upper_dev);
5347
5348 /**
5349  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5350  * @dev: device
5351  * @upper_dev: upper device to check
5352  *
5353  * Find out if a device is linked to specified upper device and return true
5354  * in case it is. Note that this checks the entire upper device chain.
5355  * The caller must hold rcu lock.
5356  */
5357
5358 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5359                                   struct net_device *upper_dev)
5360 {
5361         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5362                                                upper_dev);
5363 }
5364 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5365
5366 /**
5367  * netdev_has_any_upper_dev - Check if device is linked to some device
5368  * @dev: device
5369  *
5370  * Find out if a device is linked to an upper device and return true in case
5371  * it is. The caller must hold the RTNL lock.
5372  */
5373 static bool netdev_has_any_upper_dev(struct net_device *dev)
5374 {
5375         ASSERT_RTNL();
5376
5377         return !list_empty(&dev->adj_list.upper);
5378 }
5379
5380 /**
5381  * netdev_master_upper_dev_get - Get master upper device
5382  * @dev: device
5383  *
5384  * Find a master upper device and return pointer to it or NULL in case
5385  * it's not there. The caller must hold the RTNL lock.
5386  */
5387 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5388 {
5389         struct netdev_adjacent *upper;
5390
5391         ASSERT_RTNL();
5392
5393         if (list_empty(&dev->adj_list.upper))
5394                 return NULL;
5395
5396         upper = list_first_entry(&dev->adj_list.upper,
5397                                  struct netdev_adjacent, list);
5398         if (likely(upper->master))
5399                 return upper->dev;
5400         return NULL;
5401 }
5402 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5403
5404 /**
5405  * netdev_has_any_lower_dev - Check if device is linked to some device
5406  * @dev: device
5407  *
5408  * Find out if a device is linked to a lower device and return true in case
5409  * it is. The caller must hold the RTNL lock.
5410  */
5411 static bool netdev_has_any_lower_dev(struct net_device *dev)
5412 {
5413         ASSERT_RTNL();
5414
5415         return !list_empty(&dev->adj_list.lower);
5416 }
5417
5418 void *netdev_adjacent_get_private(struct list_head *adj_list)
5419 {
5420         struct netdev_adjacent *adj;
5421
5422         adj = list_entry(adj_list, struct netdev_adjacent, list);
5423
5424         return adj->private;
5425 }
5426 EXPORT_SYMBOL(netdev_adjacent_get_private);
5427
5428 /**
5429  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5430  * @dev: device
5431  * @iter: list_head ** of the current position
5432  *
5433  * Gets the next device from the dev's upper list, starting from iter
5434  * position. The caller must hold RCU read lock.
5435  */
5436 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5437                                                  struct list_head **iter)
5438 {
5439         struct netdev_adjacent *upper;
5440
5441         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5442
5443         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5444
5445         if (&upper->list == &dev->adj_list.upper)
5446                 return NULL;
5447
5448         *iter = &upper->list;
5449
5450         return upper->dev;
5451 }
5452 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5453
5454 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5455                                                     struct list_head **iter)
5456 {
5457         struct netdev_adjacent *upper;
5458
5459         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5460
5461         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5462
5463         if (&upper->list == &dev->adj_list.upper)
5464                 return NULL;
5465
5466         *iter = &upper->list;
5467
5468         return upper->dev;
5469 }
5470
5471 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5472                                   int (*fn)(struct net_device *dev,
5473                                             void *data),
5474                                   void *data)
5475 {
5476         struct net_device *udev;
5477         struct list_head *iter;
5478         int ret;
5479
5480         for (iter = &dev->adj_list.upper,
5481              udev = netdev_next_upper_dev_rcu(dev, &iter);
5482              udev;
5483              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5484                 /* first is the upper device itself */
5485                 ret = fn(udev, data);
5486                 if (ret)
5487                         return ret;
5488
5489                 /* then look at all of its upper devices */
5490                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5491                 if (ret)
5492                         return ret;
5493         }
5494
5495         return 0;
5496 }
5497 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5498
5499 /**
5500  * netdev_lower_get_next_private - Get the next ->private from the
5501  *                                 lower neighbour list
5502  * @dev: device
5503  * @iter: list_head ** of the current position
5504  *
5505  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5506  * list, starting from iter position. The caller must hold either hold the
5507  * RTNL lock or its own locking that guarantees that the neighbour lower
5508  * list will remain unchanged.
5509  */
5510 void *netdev_lower_get_next_private(struct net_device *dev,
5511                                     struct list_head **iter)
5512 {
5513         struct netdev_adjacent *lower;
5514
5515         lower = list_entry(*iter, struct netdev_adjacent, list);
5516
5517         if (&lower->list == &dev->adj_list.lower)
5518                 return NULL;
5519
5520         *iter = lower->list.next;
5521
5522         return lower->private;
5523 }
5524 EXPORT_SYMBOL(netdev_lower_get_next_private);
5525
5526 /**
5527  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5528  *                                     lower neighbour list, RCU
5529  *                                     variant
5530  * @dev: device
5531  * @iter: list_head ** of the current position
5532  *
5533  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5534  * list, starting from iter position. The caller must hold RCU read lock.
5535  */
5536 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5537                                         struct list_head **iter)
5538 {
5539         struct netdev_adjacent *lower;
5540
5541         WARN_ON_ONCE(!rcu_read_lock_held());
5542
5543         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5544
5545         if (&lower->list == &dev->adj_list.lower)
5546                 return NULL;
5547
5548         *iter = &lower->list;
5549
5550         return lower->private;
5551 }
5552 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5553
5554 /**
5555  * netdev_lower_get_next - Get the next device from the lower neighbour
5556  *                         list
5557  * @dev: device
5558  * @iter: list_head ** of the current position
5559  *
5560  * Gets the next netdev_adjacent from the dev's lower neighbour
5561  * list, starting from iter position. The caller must hold RTNL lock or
5562  * its own locking that guarantees that the neighbour lower
5563  * list will remain unchanged.
5564  */
5565 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5566 {
5567         struct netdev_adjacent *lower;
5568
5569         lower = list_entry(*iter, struct netdev_adjacent, list);
5570
5571         if (&lower->list == &dev->adj_list.lower)
5572                 return NULL;
5573
5574         *iter = lower->list.next;
5575
5576         return lower->dev;
5577 }
5578 EXPORT_SYMBOL(netdev_lower_get_next);
5579
5580 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5581                                                 struct list_head **iter)
5582 {
5583         struct netdev_adjacent *lower;
5584
5585         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5586
5587         if (&lower->list == &dev->adj_list.lower)
5588                 return NULL;
5589
5590         *iter = &lower->list;
5591
5592         return lower->dev;
5593 }
5594
5595 int netdev_walk_all_lower_dev(struct net_device *dev,
5596                               int (*fn)(struct net_device *dev,
5597                                         void *data),
5598                               void *data)
5599 {
5600         struct net_device *ldev;
5601         struct list_head *iter;
5602         int ret;
5603
5604         for (iter = &dev->adj_list.lower,
5605              ldev = netdev_next_lower_dev(dev, &iter);
5606              ldev;
5607              ldev = netdev_next_lower_dev(dev, &iter)) {
5608                 /* first is the lower device itself */
5609                 ret = fn(ldev, data);
5610                 if (ret)
5611                         return ret;
5612
5613                 /* then look at all of its lower devices */
5614                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5615                 if (ret)
5616                         return ret;
5617         }
5618
5619         return 0;
5620 }
5621 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5622
5623 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5624                                                     struct list_head **iter)
5625 {
5626         struct netdev_adjacent *lower;
5627
5628         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5629         if (&lower->list == &dev->adj_list.lower)
5630                 return NULL;
5631
5632         *iter = &lower->list;
5633
5634         return lower->dev;
5635 }
5636
5637 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5638                                   int (*fn)(struct net_device *dev,
5639                                             void *data),
5640                                   void *data)
5641 {
5642         struct net_device *ldev;
5643         struct list_head *iter;
5644         int ret;
5645
5646         for (iter = &dev->adj_list.lower,
5647              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5648              ldev;
5649              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5650                 /* first is the lower device itself */
5651                 ret = fn(ldev, data);
5652                 if (ret)
5653                         return ret;
5654
5655                 /* then look at all of its lower devices */
5656                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5657                 if (ret)
5658                         return ret;
5659         }
5660
5661         return 0;
5662 }
5663 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5664
5665 /**
5666  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5667  *                                     lower neighbour list, RCU
5668  *                                     variant
5669  * @dev: device
5670  *
5671  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5672  * list. The caller must hold RCU read lock.
5673  */
5674 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5675 {
5676         struct netdev_adjacent *lower;
5677
5678         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5679                         struct netdev_adjacent, list);
5680         if (lower)
5681                 return lower->private;
5682         return NULL;
5683 }
5684 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5685
5686 /**
5687  * netdev_master_upper_dev_get_rcu - Get master upper device
5688  * @dev: device
5689  *
5690  * Find a master upper device and return pointer to it or NULL in case
5691  * it's not there. The caller must hold the RCU read lock.
5692  */
5693 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5694 {
5695         struct netdev_adjacent *upper;
5696
5697         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5698                                        struct netdev_adjacent, list);
5699         if (upper && likely(upper->master))
5700                 return upper->dev;
5701         return NULL;
5702 }
5703 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5704
5705 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5706                               struct net_device *adj_dev,
5707                               struct list_head *dev_list)
5708 {
5709         char linkname[IFNAMSIZ+7];
5710         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5711                 "upper_%s" : "lower_%s", adj_dev->name);
5712         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5713                                  linkname);
5714 }
5715 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5716                                char *name,
5717                                struct list_head *dev_list)
5718 {
5719         char linkname[IFNAMSIZ+7];
5720         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5721                 "upper_%s" : "lower_%s", name);
5722         sysfs_remove_link(&(dev->dev.kobj), linkname);
5723 }
5724
5725 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5726                                                  struct net_device *adj_dev,
5727                                                  struct list_head *dev_list)
5728 {
5729         return (dev_list == &dev->adj_list.upper ||
5730                 dev_list == &dev->adj_list.lower) &&
5731                 net_eq(dev_net(dev), dev_net(adj_dev));
5732 }
5733
5734 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5735                                         struct net_device *adj_dev,
5736                                         struct list_head *dev_list,
5737                                         void *private, bool master)
5738 {
5739         struct netdev_adjacent *adj;
5740         int ret;
5741
5742         adj = __netdev_find_adj(adj_dev, dev_list);
5743
5744         if (adj) {
5745                 adj->ref_nr += 1;
5746                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5747                          dev->name, adj_dev->name, adj->ref_nr);
5748
5749                 return 0;
5750         }
5751
5752         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5753         if (!adj)
5754                 return -ENOMEM;
5755
5756         adj->dev = adj_dev;
5757         adj->master = master;
5758         adj->ref_nr = 1;
5759         adj->private = private;
5760         dev_hold(adj_dev);
5761
5762         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5763                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5764
5765         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5766                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5767                 if (ret)
5768                         goto free_adj;
5769         }
5770
5771         /* Ensure that master link is always the first item in list. */
5772         if (master) {
5773                 ret = sysfs_create_link(&(dev->dev.kobj),
5774                                         &(adj_dev->dev.kobj), "master");
5775                 if (ret)
5776                         goto remove_symlinks;
5777
5778                 list_add_rcu(&adj->list, dev_list);
5779         } else {
5780                 list_add_tail_rcu(&adj->list, dev_list);
5781         }
5782
5783         return 0;
5784
5785 remove_symlinks:
5786         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5787                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5788 free_adj:
5789         kfree(adj);
5790         dev_put(adj_dev);
5791
5792         return ret;
5793 }
5794
5795 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5796                                          struct net_device *adj_dev,
5797                                          u16 ref_nr,
5798                                          struct list_head *dev_list)
5799 {
5800         struct netdev_adjacent *adj;
5801
5802         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5803                  dev->name, adj_dev->name, ref_nr);
5804
5805         adj = __netdev_find_adj(adj_dev, dev_list);
5806
5807         if (!adj) {
5808                 pr_err("Adjacency does not exist for device %s from %s\n",
5809                        dev->name, adj_dev->name);
5810                 WARN_ON(1);
5811                 return;
5812         }
5813
5814         if (adj->ref_nr > ref_nr) {
5815                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5816                          dev->name, adj_dev->name, ref_nr,
5817                          adj->ref_nr - ref_nr);
5818                 adj->ref_nr -= ref_nr;
5819                 return;
5820         }
5821
5822         if (adj->master)
5823                 sysfs_remove_link(&(dev->dev.kobj), "master");
5824
5825         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5826                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5827
5828         list_del_rcu(&adj->list);
5829         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5830                  adj_dev->name, dev->name, adj_dev->name);
5831         dev_put(adj_dev);
5832         kfree_rcu(adj, rcu);
5833 }
5834
5835 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5836                                             struct net_device *upper_dev,
5837                                             struct list_head *up_list,
5838                                             struct list_head *down_list,
5839                                             void *private, bool master)
5840 {
5841         int ret;
5842
5843         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5844                                            private, master);
5845         if (ret)
5846                 return ret;
5847
5848         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5849                                            private, false);
5850         if (ret) {
5851                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5852                 return ret;
5853         }
5854
5855         return 0;
5856 }
5857
5858 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5859                                                struct net_device *upper_dev,
5860                                                u16 ref_nr,
5861                                                struct list_head *up_list,
5862                                                struct list_head *down_list)
5863 {
5864         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5865         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5866 }
5867
5868 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5869                                                 struct net_device *upper_dev,
5870                                                 void *private, bool master)
5871 {
5872         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5873                                                 &dev->adj_list.upper,
5874                                                 &upper_dev->adj_list.lower,
5875                                                 private, master);
5876 }
5877
5878 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5879                                                    struct net_device *upper_dev)
5880 {
5881         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5882                                            &dev->adj_list.upper,
5883                                            &upper_dev->adj_list.lower);
5884 }
5885
5886 static int __netdev_upper_dev_link(struct net_device *dev,
5887                                    struct net_device *upper_dev, bool master,
5888                                    void *upper_priv, void *upper_info)
5889 {
5890         struct netdev_notifier_changeupper_info changeupper_info;
5891         int ret = 0;
5892
5893         ASSERT_RTNL();
5894
5895         if (dev == upper_dev)
5896                 return -EBUSY;
5897
5898         /* To prevent loops, check if dev is not upper device to upper_dev. */
5899         if (netdev_has_upper_dev(upper_dev, dev))
5900                 return -EBUSY;
5901
5902         if (netdev_has_upper_dev(dev, upper_dev))
5903                 return -EEXIST;
5904
5905         if (master && netdev_master_upper_dev_get(dev))
5906                 return -EBUSY;
5907
5908         changeupper_info.upper_dev = upper_dev;
5909         changeupper_info.master = master;
5910         changeupper_info.linking = true;
5911         changeupper_info.upper_info = upper_info;
5912
5913         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5914                                             &changeupper_info.info);
5915         ret = notifier_to_errno(ret);
5916         if (ret)
5917                 return ret;
5918
5919         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5920                                                    master);
5921         if (ret)
5922                 return ret;
5923
5924         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5925                                             &changeupper_info.info);
5926         ret = notifier_to_errno(ret);
5927         if (ret)
5928                 goto rollback;
5929
5930         return 0;
5931
5932 rollback:
5933         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5934
5935         return ret;
5936 }
5937
5938 /**
5939  * netdev_upper_dev_link - Add a link to the upper device
5940  * @dev: device
5941  * @upper_dev: new upper device
5942  *
5943  * Adds a link to device which is upper to this one. The caller must hold
5944  * the RTNL lock. On a failure a negative errno code is returned.
5945  * On success the reference counts are adjusted and the function
5946  * returns zero.
5947  */
5948 int netdev_upper_dev_link(struct net_device *dev,
5949                           struct net_device *upper_dev)
5950 {
5951         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5952 }
5953 EXPORT_SYMBOL(netdev_upper_dev_link);
5954
5955 /**
5956  * netdev_master_upper_dev_link - Add a master link to the upper device
5957  * @dev: device
5958  * @upper_dev: new upper device
5959  * @upper_priv: upper device private
5960  * @upper_info: upper info to be passed down via notifier
5961  *
5962  * Adds a link to device which is upper to this one. In this case, only
5963  * one master upper device can be linked, although other non-master devices
5964  * might be linked as well. The caller must hold the RTNL lock.
5965  * On a failure a negative errno code is returned. On success the reference
5966  * counts are adjusted and the function returns zero.
5967  */
5968 int netdev_master_upper_dev_link(struct net_device *dev,
5969                                  struct net_device *upper_dev,
5970                                  void *upper_priv, void *upper_info)
5971 {
5972         return __netdev_upper_dev_link(dev, upper_dev, true,
5973                                        upper_priv, upper_info);
5974 }
5975 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5976
5977 /**
5978  * netdev_upper_dev_unlink - Removes a link to upper device
5979  * @dev: device
5980  * @upper_dev: new upper device
5981  *
5982  * Removes a link to device which is upper to this one. The caller must hold
5983  * the RTNL lock.
5984  */
5985 void netdev_upper_dev_unlink(struct net_device *dev,
5986                              struct net_device *upper_dev)
5987 {
5988         struct netdev_notifier_changeupper_info changeupper_info;
5989         ASSERT_RTNL();
5990
5991         changeupper_info.upper_dev = upper_dev;
5992         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5993         changeupper_info.linking = false;
5994
5995         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5996                                       &changeupper_info.info);
5997
5998         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5999
6000         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6001                                       &changeupper_info.info);
6002 }
6003 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6004
6005 /**
6006  * netdev_bonding_info_change - Dispatch event about slave change
6007  * @dev: device
6008  * @bonding_info: info to dispatch
6009  *
6010  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6011  * The caller must hold the RTNL lock.
6012  */
6013 void netdev_bonding_info_change(struct net_device *dev,
6014                                 struct netdev_bonding_info *bonding_info)
6015 {
6016         struct netdev_notifier_bonding_info     info;
6017
6018         memcpy(&info.bonding_info, bonding_info,
6019                sizeof(struct netdev_bonding_info));
6020         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6021                                       &info.info);
6022 }
6023 EXPORT_SYMBOL(netdev_bonding_info_change);
6024
6025 static void netdev_adjacent_add_links(struct net_device *dev)
6026 {
6027         struct netdev_adjacent *iter;
6028
6029         struct net *net = dev_net(dev);
6030
6031         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6032                 if (!net_eq(net, dev_net(iter->dev)))
6033                         continue;
6034                 netdev_adjacent_sysfs_add(iter->dev, dev,
6035                                           &iter->dev->adj_list.lower);
6036                 netdev_adjacent_sysfs_add(dev, iter->dev,
6037                                           &dev->adj_list.upper);
6038         }
6039
6040         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6041                 if (!net_eq(net, dev_net(iter->dev)))
6042                         continue;
6043                 netdev_adjacent_sysfs_add(iter->dev, dev,
6044                                           &iter->dev->adj_list.upper);
6045                 netdev_adjacent_sysfs_add(dev, iter->dev,
6046                                           &dev->adj_list.lower);
6047         }
6048 }
6049
6050 static void netdev_adjacent_del_links(struct net_device *dev)
6051 {
6052         struct netdev_adjacent *iter;
6053
6054         struct net *net = dev_net(dev);
6055
6056         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6057                 if (!net_eq(net, dev_net(iter->dev)))
6058                         continue;
6059                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6060                                           &iter->dev->adj_list.lower);
6061                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6062                                           &dev->adj_list.upper);
6063         }
6064
6065         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6066                 if (!net_eq(net, dev_net(iter->dev)))
6067                         continue;
6068                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6069                                           &iter->dev->adj_list.upper);
6070                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6071                                           &dev->adj_list.lower);
6072         }
6073 }
6074
6075 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6076 {
6077         struct netdev_adjacent *iter;
6078
6079         struct net *net = dev_net(dev);
6080
6081         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6082                 if (!net_eq(net, dev_net(iter->dev)))
6083                         continue;
6084                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6085                                           &iter->dev->adj_list.lower);
6086                 netdev_adjacent_sysfs_add(iter->dev, dev,
6087                                           &iter->dev->adj_list.lower);
6088         }
6089
6090         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6091                 if (!net_eq(net, dev_net(iter->dev)))
6092                         continue;
6093                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6094                                           &iter->dev->adj_list.upper);
6095                 netdev_adjacent_sysfs_add(iter->dev, dev,
6096                                           &iter->dev->adj_list.upper);
6097         }
6098 }
6099
6100 void *netdev_lower_dev_get_private(struct net_device *dev,
6101                                    struct net_device *lower_dev)
6102 {
6103         struct netdev_adjacent *lower;
6104
6105         if (!lower_dev)
6106                 return NULL;
6107         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6108         if (!lower)
6109                 return NULL;
6110
6111         return lower->private;
6112 }
6113 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6114
6115
6116 int dev_get_nest_level(struct net_device *dev)
6117 {
6118         struct net_device *lower = NULL;
6119         struct list_head *iter;
6120         int max_nest = -1;
6121         int nest;
6122
6123         ASSERT_RTNL();
6124
6125         netdev_for_each_lower_dev(dev, lower, iter) {
6126                 nest = dev_get_nest_level(lower);
6127                 if (max_nest < nest)
6128                         max_nest = nest;
6129         }
6130
6131         return max_nest + 1;
6132 }
6133 EXPORT_SYMBOL(dev_get_nest_level);
6134
6135 /**
6136  * netdev_lower_change - Dispatch event about lower device state change
6137  * @lower_dev: device
6138  * @lower_state_info: state to dispatch
6139  *
6140  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6141  * The caller must hold the RTNL lock.
6142  */
6143 void netdev_lower_state_changed(struct net_device *lower_dev,
6144                                 void *lower_state_info)
6145 {
6146         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6147
6148         ASSERT_RTNL();
6149         changelowerstate_info.lower_state_info = lower_state_info;
6150         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6151                                       &changelowerstate_info.info);
6152 }
6153 EXPORT_SYMBOL(netdev_lower_state_changed);
6154
6155 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6156                                            struct neighbour *n)
6157 {
6158         struct net_device *lower_dev, *stop_dev;
6159         struct list_head *iter;
6160         int err;
6161
6162         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6163                 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6164                         continue;
6165                 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6166                 if (err) {
6167                         stop_dev = lower_dev;
6168                         goto rollback;
6169                 }
6170         }
6171         return 0;
6172
6173 rollback:
6174         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6175                 if (lower_dev == stop_dev)
6176                         break;
6177                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6178                         continue;
6179                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6180         }
6181         return err;
6182 }
6183 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6184
6185 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6186                                           struct neighbour *n)
6187 {
6188         struct net_device *lower_dev;
6189         struct list_head *iter;
6190
6191         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6192                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6193                         continue;
6194                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6195         }
6196 }
6197 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6198
6199 static void dev_change_rx_flags(struct net_device *dev, int flags)
6200 {
6201         const struct net_device_ops *ops = dev->netdev_ops;
6202
6203         if (ops->ndo_change_rx_flags)
6204                 ops->ndo_change_rx_flags(dev, flags);
6205 }
6206
6207 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6208 {
6209         unsigned int old_flags = dev->flags;
6210         kuid_t uid;
6211         kgid_t gid;
6212
6213         ASSERT_RTNL();
6214
6215         dev->flags |= IFF_PROMISC;
6216         dev->promiscuity += inc;
6217         if (dev->promiscuity == 0) {
6218                 /*
6219                  * Avoid overflow.
6220                  * If inc causes overflow, untouch promisc and return error.
6221                  */
6222                 if (inc < 0)
6223                         dev->flags &= ~IFF_PROMISC;
6224                 else {
6225                         dev->promiscuity -= inc;
6226                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6227                                 dev->name);
6228                         return -EOVERFLOW;
6229                 }
6230         }
6231         if (dev->flags != old_flags) {
6232                 pr_info("device %s %s promiscuous mode\n",
6233                         dev->name,
6234                         dev->flags & IFF_PROMISC ? "entered" : "left");
6235                 if (audit_enabled) {
6236                         current_uid_gid(&uid, &gid);
6237                         audit_log(current->audit_context, GFP_ATOMIC,
6238                                 AUDIT_ANOM_PROMISCUOUS,
6239                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6240                                 dev->name, (dev->flags & IFF_PROMISC),
6241                                 (old_flags & IFF_PROMISC),
6242                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6243                                 from_kuid(&init_user_ns, uid),
6244                                 from_kgid(&init_user_ns, gid),
6245                                 audit_get_sessionid(current));
6246                 }
6247
6248                 dev_change_rx_flags(dev, IFF_PROMISC);
6249         }
6250         if (notify)
6251                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6252         return 0;
6253 }
6254
6255 /**
6256  *      dev_set_promiscuity     - update promiscuity count on a device
6257  *      @dev: device
6258  *      @inc: modifier
6259  *
6260  *      Add or remove promiscuity from a device. While the count in the device
6261  *      remains above zero the interface remains promiscuous. Once it hits zero
6262  *      the device reverts back to normal filtering operation. A negative inc
6263  *      value is used to drop promiscuity on the device.
6264  *      Return 0 if successful or a negative errno code on error.
6265  */
6266 int dev_set_promiscuity(struct net_device *dev, int inc)
6267 {
6268         unsigned int old_flags = dev->flags;
6269         int err;
6270
6271         err = __dev_set_promiscuity(dev, inc, true);
6272         if (err < 0)
6273                 return err;
6274         if (dev->flags != old_flags)
6275                 dev_set_rx_mode(dev);
6276         return err;
6277 }
6278 EXPORT_SYMBOL(dev_set_promiscuity);
6279
6280 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6281 {
6282         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6283
6284         ASSERT_RTNL();
6285
6286         dev->flags |= IFF_ALLMULTI;
6287         dev->allmulti += inc;
6288         if (dev->allmulti == 0) {
6289                 /*
6290                  * Avoid overflow.
6291                  * If inc causes overflow, untouch allmulti and return error.
6292                  */
6293                 if (inc < 0)
6294                         dev->flags &= ~IFF_ALLMULTI;
6295                 else {
6296                         dev->allmulti -= inc;
6297                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6298                                 dev->name);
6299                         return -EOVERFLOW;
6300                 }
6301         }
6302         if (dev->flags ^ old_flags) {
6303                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6304                 dev_set_rx_mode(dev);
6305                 if (notify)
6306                         __dev_notify_flags(dev, old_flags,
6307                                            dev->gflags ^ old_gflags);
6308         }
6309         return 0;
6310 }
6311
6312 /**
6313  *      dev_set_allmulti        - update allmulti count on a device
6314  *      @dev: device
6315  *      @inc: modifier
6316  *
6317  *      Add or remove reception of all multicast frames to a device. While the
6318  *      count in the device remains above zero the interface remains listening
6319  *      to all interfaces. Once it hits zero the device reverts back to normal
6320  *      filtering operation. A negative @inc value is used to drop the counter
6321  *      when releasing a resource needing all multicasts.
6322  *      Return 0 if successful or a negative errno code on error.
6323  */
6324
6325 int dev_set_allmulti(struct net_device *dev, int inc)
6326 {
6327         return __dev_set_allmulti(dev, inc, true);
6328 }
6329 EXPORT_SYMBOL(dev_set_allmulti);
6330
6331 /*
6332  *      Upload unicast and multicast address lists to device and
6333  *      configure RX filtering. When the device doesn't support unicast
6334  *      filtering it is put in promiscuous mode while unicast addresses
6335  *      are present.
6336  */
6337 void __dev_set_rx_mode(struct net_device *dev)
6338 {
6339         const struct net_device_ops *ops = dev->netdev_ops;
6340
6341         /* dev_open will call this function so the list will stay sane. */
6342         if (!(dev->flags&IFF_UP))
6343                 return;
6344
6345         if (!netif_device_present(dev))
6346                 return;
6347
6348         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6349                 /* Unicast addresses changes may only happen under the rtnl,
6350                  * therefore calling __dev_set_promiscuity here is safe.
6351                  */
6352                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6353                         __dev_set_promiscuity(dev, 1, false);
6354                         dev->uc_promisc = true;
6355                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6356                         __dev_set_promiscuity(dev, -1, false);
6357                         dev->uc_promisc = false;
6358                 }
6359         }
6360
6361         if (ops->ndo_set_rx_mode)
6362                 ops->ndo_set_rx_mode(dev);
6363 }
6364
6365 void dev_set_rx_mode(struct net_device *dev)
6366 {
6367         netif_addr_lock_bh(dev);
6368         __dev_set_rx_mode(dev);
6369         netif_addr_unlock_bh(dev);
6370 }
6371
6372 /**
6373  *      dev_get_flags - get flags reported to userspace
6374  *      @dev: device
6375  *
6376  *      Get the combination of flag bits exported through APIs to userspace.
6377  */
6378 unsigned int dev_get_flags(const struct net_device *dev)
6379 {
6380         unsigned int flags;
6381
6382         flags = (dev->flags & ~(IFF_PROMISC |
6383                                 IFF_ALLMULTI |
6384                                 IFF_RUNNING |
6385                                 IFF_LOWER_UP |
6386                                 IFF_DORMANT)) |
6387                 (dev->gflags & (IFF_PROMISC |
6388                                 IFF_ALLMULTI));
6389
6390         if (netif_running(dev)) {
6391                 if (netif_oper_up(dev))
6392                         flags |= IFF_RUNNING;
6393                 if (netif_carrier_ok(dev))
6394                         flags |= IFF_LOWER_UP;
6395                 if (netif_dormant(dev))
6396                         flags |= IFF_DORMANT;
6397         }
6398
6399         return flags;
6400 }
6401 EXPORT_SYMBOL(dev_get_flags);
6402
6403 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6404 {
6405         unsigned int old_flags = dev->flags;
6406         int ret;
6407
6408         ASSERT_RTNL();
6409
6410         /*
6411          *      Set the flags on our device.
6412          */
6413
6414         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6415                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6416                                IFF_AUTOMEDIA)) |
6417                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6418                                     IFF_ALLMULTI));
6419
6420         /*
6421          *      Load in the correct multicast list now the flags have changed.
6422          */
6423
6424         if ((old_flags ^ flags) & IFF_MULTICAST)
6425                 dev_change_rx_flags(dev, IFF_MULTICAST);
6426
6427         dev_set_rx_mode(dev);
6428
6429         /*
6430          *      Have we downed the interface. We handle IFF_UP ourselves
6431          *      according to user attempts to set it, rather than blindly
6432          *      setting it.
6433          */
6434
6435         ret = 0;
6436         if ((old_flags ^ flags) & IFF_UP)
6437                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6438
6439         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6440                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6441                 unsigned int old_flags = dev->flags;
6442
6443                 dev->gflags ^= IFF_PROMISC;
6444
6445                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6446                         if (dev->flags != old_flags)
6447                                 dev_set_rx_mode(dev);
6448         }
6449
6450         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6451            is important. Some (broken) drivers set IFF_PROMISC, when
6452            IFF_ALLMULTI is requested not asking us and not reporting.
6453          */
6454         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6455                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6456
6457                 dev->gflags ^= IFF_ALLMULTI;
6458                 __dev_set_allmulti(dev, inc, false);
6459         }
6460
6461         return ret;
6462 }
6463
6464 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6465                         unsigned int gchanges)
6466 {
6467         unsigned int changes = dev->flags ^ old_flags;
6468
6469         if (gchanges)
6470                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6471
6472         if (changes & IFF_UP) {
6473                 if (dev->flags & IFF_UP)
6474                         call_netdevice_notifiers(NETDEV_UP, dev);
6475                 else
6476                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6477         }
6478
6479         if (dev->flags & IFF_UP &&
6480             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6481                 struct netdev_notifier_change_info change_info;
6482
6483                 change_info.flags_changed = changes;
6484                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6485                                               &change_info.info);
6486         }
6487 }
6488
6489 /**
6490  *      dev_change_flags - change device settings
6491  *      @dev: device
6492  *      @flags: device state flags
6493  *
6494  *      Change settings on device based state flags. The flags are
6495  *      in the userspace exported format.
6496  */
6497 int dev_change_flags(struct net_device *dev, unsigned int flags)
6498 {
6499         int ret;
6500         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6501
6502         ret = __dev_change_flags(dev, flags);
6503         if (ret < 0)
6504                 return ret;
6505
6506         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6507         __dev_notify_flags(dev, old_flags, changes);
6508         return ret;
6509 }
6510 EXPORT_SYMBOL(dev_change_flags);
6511
6512 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6513 {
6514         const struct net_device_ops *ops = dev->netdev_ops;
6515
6516         if (ops->ndo_change_mtu)
6517                 return ops->ndo_change_mtu(dev, new_mtu);
6518
6519         dev->mtu = new_mtu;
6520         return 0;
6521 }
6522
6523 /**
6524  *      dev_set_mtu - Change maximum transfer unit
6525  *      @dev: device
6526  *      @new_mtu: new transfer unit
6527  *
6528  *      Change the maximum transfer size of the network device.
6529  */
6530 int dev_set_mtu(struct net_device *dev, int new_mtu)
6531 {
6532         int err, orig_mtu;
6533
6534         if (new_mtu == dev->mtu)
6535                 return 0;
6536
6537         /* MTU must be positive, and in range */
6538         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6539                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6540                                     dev->name, new_mtu, dev->min_mtu);
6541                 return -EINVAL;
6542         }
6543
6544         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6545                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6546                                     dev->name, new_mtu, dev->max_mtu);
6547                 return -EINVAL;
6548         }
6549
6550         if (!netif_device_present(dev))
6551                 return -ENODEV;
6552
6553         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6554         err = notifier_to_errno(err);
6555         if (err)
6556                 return err;
6557
6558         orig_mtu = dev->mtu;
6559         err = __dev_set_mtu(dev, new_mtu);
6560
6561         if (!err) {
6562                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6563                 err = notifier_to_errno(err);
6564                 if (err) {
6565                         /* setting mtu back and notifying everyone again,
6566                          * so that they have a chance to revert changes.
6567                          */
6568                         __dev_set_mtu(dev, orig_mtu);
6569                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6570                 }
6571         }
6572         return err;
6573 }
6574 EXPORT_SYMBOL(dev_set_mtu);
6575
6576 /**
6577  *      dev_set_group - Change group this device belongs to
6578  *      @dev: device
6579  *      @new_group: group this device should belong to
6580  */
6581 void dev_set_group(struct net_device *dev, int new_group)
6582 {
6583         dev->group = new_group;
6584 }
6585 EXPORT_SYMBOL(dev_set_group);
6586
6587 /**
6588  *      dev_set_mac_address - Change Media Access Control Address
6589  *      @dev: device
6590  *      @sa: new address
6591  *
6592  *      Change the hardware (MAC) address of the device
6593  */
6594 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6595 {
6596         const struct net_device_ops *ops = dev->netdev_ops;
6597         int err;
6598
6599         if (!ops->ndo_set_mac_address)
6600                 return -EOPNOTSUPP;
6601         if (sa->sa_family != dev->type)
6602                 return -EINVAL;
6603         if (!netif_device_present(dev))
6604                 return -ENODEV;
6605         err = ops->ndo_set_mac_address(dev, sa);
6606         if (err)
6607                 return err;
6608         dev->addr_assign_type = NET_ADDR_SET;
6609         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6610         add_device_randomness(dev->dev_addr, dev->addr_len);
6611         return 0;
6612 }
6613 EXPORT_SYMBOL(dev_set_mac_address);
6614
6615 /**
6616  *      dev_change_carrier - Change device carrier
6617  *      @dev: device
6618  *      @new_carrier: new value
6619  *
6620  *      Change device carrier
6621  */
6622 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6623 {
6624         const struct net_device_ops *ops = dev->netdev_ops;
6625
6626         if (!ops->ndo_change_carrier)
6627                 return -EOPNOTSUPP;
6628         if (!netif_device_present(dev))
6629                 return -ENODEV;
6630         return ops->ndo_change_carrier(dev, new_carrier);
6631 }
6632 EXPORT_SYMBOL(dev_change_carrier);
6633
6634 /**
6635  *      dev_get_phys_port_id - Get device physical port ID
6636  *      @dev: device
6637  *      @ppid: port ID
6638  *
6639  *      Get device physical port ID
6640  */
6641 int dev_get_phys_port_id(struct net_device *dev,
6642                          struct netdev_phys_item_id *ppid)
6643 {
6644         const struct net_device_ops *ops = dev->netdev_ops;
6645
6646         if (!ops->ndo_get_phys_port_id)
6647                 return -EOPNOTSUPP;
6648         return ops->ndo_get_phys_port_id(dev, ppid);
6649 }
6650 EXPORT_SYMBOL(dev_get_phys_port_id);
6651
6652 /**
6653  *      dev_get_phys_port_name - Get device physical port name
6654  *      @dev: device
6655  *      @name: port name
6656  *      @len: limit of bytes to copy to name
6657  *
6658  *      Get device physical port name
6659  */
6660 int dev_get_phys_port_name(struct net_device *dev,
6661                            char *name, size_t len)
6662 {
6663         const struct net_device_ops *ops = dev->netdev_ops;
6664
6665         if (!ops->ndo_get_phys_port_name)
6666                 return -EOPNOTSUPP;
6667         return ops->ndo_get_phys_port_name(dev, name, len);
6668 }
6669 EXPORT_SYMBOL(dev_get_phys_port_name);
6670
6671 /**
6672  *      dev_change_proto_down - update protocol port state information
6673  *      @dev: device
6674  *      @proto_down: new value
6675  *
6676  *      This info can be used by switch drivers to set the phys state of the
6677  *      port.
6678  */
6679 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6680 {
6681         const struct net_device_ops *ops = dev->netdev_ops;
6682
6683         if (!ops->ndo_change_proto_down)
6684                 return -EOPNOTSUPP;
6685         if (!netif_device_present(dev))
6686                 return -ENODEV;
6687         return ops->ndo_change_proto_down(dev, proto_down);
6688 }
6689 EXPORT_SYMBOL(dev_change_proto_down);
6690
6691 /**
6692  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6693  *      @dev: device
6694  *      @fd: new program fd or negative value to clear
6695  *      @flags: xdp-related flags
6696  *
6697  *      Set or clear a bpf program for a device
6698  */
6699 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6700 {
6701         const struct net_device_ops *ops = dev->netdev_ops;
6702         struct bpf_prog *prog = NULL;
6703         struct netdev_xdp xdp;
6704         int err;
6705
6706         ASSERT_RTNL();
6707
6708         if (!ops->ndo_xdp)
6709                 return -EOPNOTSUPP;
6710         if (fd >= 0) {
6711                 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6712                         memset(&xdp, 0, sizeof(xdp));
6713                         xdp.command = XDP_QUERY_PROG;
6714
6715                         err = ops->ndo_xdp(dev, &xdp);
6716                         if (err < 0)
6717                                 return err;
6718                         if (xdp.prog_attached)
6719                                 return -EBUSY;
6720                 }
6721
6722                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6723                 if (IS_ERR(prog))
6724                         return PTR_ERR(prog);
6725         }
6726
6727         memset(&xdp, 0, sizeof(xdp));
6728         xdp.command = XDP_SETUP_PROG;
6729         xdp.prog = prog;
6730
6731         err = ops->ndo_xdp(dev, &xdp);
6732         if (err < 0 && prog)
6733                 bpf_prog_put(prog);
6734
6735         return err;
6736 }
6737 EXPORT_SYMBOL(dev_change_xdp_fd);
6738
6739 /**
6740  *      dev_new_index   -       allocate an ifindex
6741  *      @net: the applicable net namespace
6742  *
6743  *      Returns a suitable unique value for a new device interface
6744  *      number.  The caller must hold the rtnl semaphore or the
6745  *      dev_base_lock to be sure it remains unique.
6746  */
6747 static int dev_new_index(struct net *net)
6748 {
6749         int ifindex = net->ifindex;
6750         for (;;) {
6751                 if (++ifindex <= 0)
6752                         ifindex = 1;
6753                 if (!__dev_get_by_index(net, ifindex))
6754                         return net->ifindex = ifindex;
6755         }
6756 }
6757
6758 /* Delayed registration/unregisteration */
6759 static LIST_HEAD(net_todo_list);
6760 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6761
6762 static void net_set_todo(struct net_device *dev)
6763 {
6764         list_add_tail(&dev->todo_list, &net_todo_list);
6765         dev_net(dev)->dev_unreg_count++;
6766 }
6767
6768 static void rollback_registered_many(struct list_head *head)
6769 {
6770         struct net_device *dev, *tmp;
6771         LIST_HEAD(close_head);
6772
6773         BUG_ON(dev_boot_phase);
6774         ASSERT_RTNL();
6775
6776         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6777                 /* Some devices call without registering
6778                  * for initialization unwind. Remove those
6779                  * devices and proceed with the remaining.
6780                  */
6781                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6782                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6783                                  dev->name, dev);
6784
6785                         WARN_ON(1);
6786                         list_del(&dev->unreg_list);
6787                         continue;
6788                 }
6789                 dev->dismantle = true;
6790                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6791         }
6792
6793         /* If device is running, close it first. */
6794         list_for_each_entry(dev, head, unreg_list)
6795                 list_add_tail(&dev->close_list, &close_head);
6796         dev_close_many(&close_head, true);
6797
6798         list_for_each_entry(dev, head, unreg_list) {
6799                 /* And unlink it from device chain. */
6800                 unlist_netdevice(dev);
6801
6802                 dev->reg_state = NETREG_UNREGISTERING;
6803         }
6804         flush_all_backlogs();
6805
6806         synchronize_net();
6807
6808         list_for_each_entry(dev, head, unreg_list) {
6809                 struct sk_buff *skb = NULL;
6810
6811                 /* Shutdown queueing discipline. */
6812                 dev_shutdown(dev);
6813
6814
6815                 /* Notify protocols, that we are about to destroy
6816                    this device. They should clean all the things.
6817                 */
6818                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6819
6820                 if (!dev->rtnl_link_ops ||
6821                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6822                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6823                                                      GFP_KERNEL);
6824
6825                 /*
6826                  *      Flush the unicast and multicast chains
6827                  */
6828                 dev_uc_flush(dev);
6829                 dev_mc_flush(dev);
6830
6831                 if (dev->netdev_ops->ndo_uninit)
6832                         dev->netdev_ops->ndo_uninit(dev);
6833
6834                 if (skb)
6835                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6836
6837                 /* Notifier chain MUST detach us all upper devices. */
6838                 WARN_ON(netdev_has_any_upper_dev(dev));
6839                 WARN_ON(netdev_has_any_lower_dev(dev));
6840
6841                 /* Remove entries from kobject tree */
6842                 netdev_unregister_kobject(dev);
6843 #ifdef CONFIG_XPS
6844                 /* Remove XPS queueing entries */
6845                 netif_reset_xps_queues_gt(dev, 0);
6846 #endif
6847         }
6848
6849         synchronize_net();
6850
6851         list_for_each_entry(dev, head, unreg_list)
6852                 dev_put(dev);
6853 }
6854
6855 static void rollback_registered(struct net_device *dev)
6856 {
6857         LIST_HEAD(single);
6858
6859         list_add(&dev->unreg_list, &single);
6860         rollback_registered_many(&single);
6861         list_del(&single);
6862 }
6863
6864 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6865         struct net_device *upper, netdev_features_t features)
6866 {
6867         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6868         netdev_features_t feature;
6869         int feature_bit;
6870
6871         for_each_netdev_feature(&upper_disables, feature_bit) {
6872                 feature = __NETIF_F_BIT(feature_bit);
6873                 if (!(upper->wanted_features & feature)
6874                     && (features & feature)) {
6875                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6876                                    &feature, upper->name);
6877                         features &= ~feature;
6878                 }
6879         }
6880
6881         return features;
6882 }
6883
6884 static void netdev_sync_lower_features(struct net_device *upper,
6885         struct net_device *lower, netdev_features_t features)
6886 {
6887         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6888         netdev_features_t feature;
6889         int feature_bit;
6890
6891         for_each_netdev_feature(&upper_disables, feature_bit) {
6892                 feature = __NETIF_F_BIT(feature_bit);
6893                 if (!(features & feature) && (lower->features & feature)) {
6894                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6895                                    &feature, lower->name);
6896                         lower->wanted_features &= ~feature;
6897                         netdev_update_features(lower);
6898
6899                         if (unlikely(lower->features & feature))
6900                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6901                                             &feature, lower->name);
6902                 }
6903         }
6904 }
6905
6906 static netdev_features_t netdev_fix_features(struct net_device *dev,
6907         netdev_features_t features)
6908 {
6909         /* Fix illegal checksum combinations */
6910         if ((features & NETIF_F_HW_CSUM) &&
6911             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6912                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6913                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6914         }
6915
6916         /* TSO requires that SG is present as well. */
6917         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6918                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6919                 features &= ~NETIF_F_ALL_TSO;
6920         }
6921
6922         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6923                                         !(features & NETIF_F_IP_CSUM)) {
6924                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6925                 features &= ~NETIF_F_TSO;
6926                 features &= ~NETIF_F_TSO_ECN;
6927         }
6928
6929         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6930                                          !(features & NETIF_F_IPV6_CSUM)) {
6931                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6932                 features &= ~NETIF_F_TSO6;
6933         }
6934
6935         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6936         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6937                 features &= ~NETIF_F_TSO_MANGLEID;
6938
6939         /* TSO ECN requires that TSO is present as well. */
6940         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6941                 features &= ~NETIF_F_TSO_ECN;
6942
6943         /* Software GSO depends on SG. */
6944         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6945                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6946                 features &= ~NETIF_F_GSO;
6947         }
6948
6949         /* UFO needs SG and checksumming */
6950         if (features & NETIF_F_UFO) {
6951                 /* maybe split UFO into V4 and V6? */
6952                 if (!(features & NETIF_F_HW_CSUM) &&
6953                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6954                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6955                         netdev_dbg(dev,
6956                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6957                         features &= ~NETIF_F_UFO;
6958                 }
6959
6960                 if (!(features & NETIF_F_SG)) {
6961                         netdev_dbg(dev,
6962                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6963                         features &= ~NETIF_F_UFO;
6964                 }
6965         }
6966
6967         /* GSO partial features require GSO partial be set */
6968         if ((features & dev->gso_partial_features) &&
6969             !(features & NETIF_F_GSO_PARTIAL)) {
6970                 netdev_dbg(dev,
6971                            "Dropping partially supported GSO features since no GSO partial.\n");
6972                 features &= ~dev->gso_partial_features;
6973         }
6974
6975 #ifdef CONFIG_NET_RX_BUSY_POLL
6976         if (dev->netdev_ops->ndo_busy_poll)
6977                 features |= NETIF_F_BUSY_POLL;
6978         else
6979 #endif
6980                 features &= ~NETIF_F_BUSY_POLL;
6981
6982         return features;
6983 }
6984
6985 int __netdev_update_features(struct net_device *dev)
6986 {
6987         struct net_device *upper, *lower;
6988         netdev_features_t features;
6989         struct list_head *iter;
6990         int err = -1;
6991
6992         ASSERT_RTNL();
6993
6994         features = netdev_get_wanted_features(dev);
6995
6996         if (dev->netdev_ops->ndo_fix_features)
6997                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6998
6999         /* driver might be less strict about feature dependencies */
7000         features = netdev_fix_features(dev, features);
7001
7002         /* some features can't be enabled if they're off an an upper device */
7003         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7004                 features = netdev_sync_upper_features(dev, upper, features);
7005
7006         if (dev->features == features)
7007                 goto sync_lower;
7008
7009         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7010                 &dev->features, &features);
7011
7012         if (dev->netdev_ops->ndo_set_features)
7013                 err = dev->netdev_ops->ndo_set_features(dev, features);
7014         else
7015                 err = 0;
7016
7017         if (unlikely(err < 0)) {
7018                 netdev_err(dev,
7019                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7020                         err, &features, &dev->features);
7021                 /* return non-0 since some features might have changed and
7022                  * it's better to fire a spurious notification than miss it
7023                  */
7024                 return -1;
7025         }
7026
7027 sync_lower:
7028         /* some features must be disabled on lower devices when disabled
7029          * on an upper device (think: bonding master or bridge)
7030          */
7031         netdev_for_each_lower_dev(dev, lower, iter)
7032                 netdev_sync_lower_features(dev, lower, features);
7033
7034         if (!err)
7035                 dev->features = features;
7036
7037         return err < 0 ? 0 : 1;
7038 }
7039
7040 /**
7041  *      netdev_update_features - recalculate device features
7042  *      @dev: the device to check
7043  *
7044  *      Recalculate dev->features set and send notifications if it
7045  *      has changed. Should be called after driver or hardware dependent
7046  *      conditions might have changed that influence the features.
7047  */
7048 void netdev_update_features(struct net_device *dev)
7049 {
7050         if (__netdev_update_features(dev))
7051                 netdev_features_change(dev);
7052 }
7053 EXPORT_SYMBOL(netdev_update_features);
7054
7055 /**
7056  *      netdev_change_features - recalculate device features
7057  *      @dev: the device to check
7058  *
7059  *      Recalculate dev->features set and send notifications even
7060  *      if they have not changed. Should be called instead of
7061  *      netdev_update_features() if also dev->vlan_features might
7062  *      have changed to allow the changes to be propagated to stacked
7063  *      VLAN devices.
7064  */
7065 void netdev_change_features(struct net_device *dev)
7066 {
7067         __netdev_update_features(dev);
7068         netdev_features_change(dev);
7069 }
7070 EXPORT_SYMBOL(netdev_change_features);
7071
7072 /**
7073  *      netif_stacked_transfer_operstate -      transfer operstate
7074  *      @rootdev: the root or lower level device to transfer state from
7075  *      @dev: the device to transfer operstate to
7076  *
7077  *      Transfer operational state from root to device. This is normally
7078  *      called when a stacking relationship exists between the root
7079  *      device and the device(a leaf device).
7080  */
7081 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7082                                         struct net_device *dev)
7083 {
7084         if (rootdev->operstate == IF_OPER_DORMANT)
7085                 netif_dormant_on(dev);
7086         else
7087                 netif_dormant_off(dev);
7088
7089         if (netif_carrier_ok(rootdev)) {
7090                 if (!netif_carrier_ok(dev))
7091                         netif_carrier_on(dev);
7092         } else {
7093                 if (netif_carrier_ok(dev))
7094                         netif_carrier_off(dev);
7095         }
7096 }
7097 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7098
7099 #ifdef CONFIG_SYSFS
7100 static int netif_alloc_rx_queues(struct net_device *dev)
7101 {
7102         unsigned int i, count = dev->num_rx_queues;
7103         struct netdev_rx_queue *rx;
7104         size_t sz = count * sizeof(*rx);
7105
7106         BUG_ON(count < 1);
7107
7108         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7109         if (!rx) {
7110                 rx = vzalloc(sz);
7111                 if (!rx)
7112                         return -ENOMEM;
7113         }
7114         dev->_rx = rx;
7115
7116         for (i = 0; i < count; i++)
7117                 rx[i].dev = dev;
7118         return 0;
7119 }
7120 #endif
7121
7122 static void netdev_init_one_queue(struct net_device *dev,
7123                                   struct netdev_queue *queue, void *_unused)
7124 {
7125         /* Initialize queue lock */
7126         spin_lock_init(&queue->_xmit_lock);
7127         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7128         queue->xmit_lock_owner = -1;
7129         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7130         queue->dev = dev;
7131 #ifdef CONFIG_BQL
7132         dql_init(&queue->dql, HZ);
7133 #endif
7134 }
7135
7136 static void netif_free_tx_queues(struct net_device *dev)
7137 {
7138         kvfree(dev->_tx);
7139 }
7140
7141 static int netif_alloc_netdev_queues(struct net_device *dev)
7142 {
7143         unsigned int count = dev->num_tx_queues;
7144         struct netdev_queue *tx;
7145         size_t sz = count * sizeof(*tx);
7146
7147         if (count < 1 || count > 0xffff)
7148                 return -EINVAL;
7149
7150         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7151         if (!tx) {
7152                 tx = vzalloc(sz);
7153                 if (!tx)
7154                         return -ENOMEM;
7155         }
7156         dev->_tx = tx;
7157
7158         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7159         spin_lock_init(&dev->tx_global_lock);
7160
7161         return 0;
7162 }
7163
7164 void netif_tx_stop_all_queues(struct net_device *dev)
7165 {
7166         unsigned int i;
7167
7168         for (i = 0; i < dev->num_tx_queues; i++) {
7169                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7170                 netif_tx_stop_queue(txq);
7171         }
7172 }
7173 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7174
7175 /**
7176  *      register_netdevice      - register a network device
7177  *      @dev: device to register
7178  *
7179  *      Take a completed network device structure and add it to the kernel
7180  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7181  *      chain. 0 is returned on success. A negative errno code is returned
7182  *      on a failure to set up the device, or if the name is a duplicate.
7183  *
7184  *      Callers must hold the rtnl semaphore. You may want
7185  *      register_netdev() instead of this.
7186  *
7187  *      BUGS:
7188  *      The locking appears insufficient to guarantee two parallel registers
7189  *      will not get the same name.
7190  */
7191
7192 int register_netdevice(struct net_device *dev)
7193 {
7194         int ret;
7195         struct net *net = dev_net(dev);
7196
7197         BUG_ON(dev_boot_phase);
7198         ASSERT_RTNL();
7199
7200         might_sleep();
7201
7202         /* When net_device's are persistent, this will be fatal. */
7203         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7204         BUG_ON(!net);
7205
7206         spin_lock_init(&dev->addr_list_lock);
7207         netdev_set_addr_lockdep_class(dev);
7208
7209         ret = dev_get_valid_name(net, dev, dev->name);
7210         if (ret < 0)
7211                 goto out;
7212
7213         /* Init, if this function is available */
7214         if (dev->netdev_ops->ndo_init) {
7215                 ret = dev->netdev_ops->ndo_init(dev);
7216                 if (ret) {
7217                         if (ret > 0)
7218                                 ret = -EIO;
7219                         goto out;
7220                 }
7221         }
7222
7223         if (((dev->hw_features | dev->features) &
7224              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7225             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7226              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7227                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7228                 ret = -EINVAL;
7229                 goto err_uninit;
7230         }
7231
7232         ret = -EBUSY;
7233         if (!dev->ifindex)
7234                 dev->ifindex = dev_new_index(net);
7235         else if (__dev_get_by_index(net, dev->ifindex))
7236                 goto err_uninit;
7237
7238         /* Transfer changeable features to wanted_features and enable
7239          * software offloads (GSO and GRO).
7240          */
7241         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7242         dev->features |= NETIF_F_SOFT_FEATURES;
7243         dev->wanted_features = dev->features & dev->hw_features;
7244
7245         if (!(dev->flags & IFF_LOOPBACK))
7246                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7247
7248         /* If IPv4 TCP segmentation offload is supported we should also
7249          * allow the device to enable segmenting the frame with the option
7250          * of ignoring a static IP ID value.  This doesn't enable the
7251          * feature itself but allows the user to enable it later.
7252          */
7253         if (dev->hw_features & NETIF_F_TSO)
7254                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7255         if (dev->vlan_features & NETIF_F_TSO)
7256                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7257         if (dev->mpls_features & NETIF_F_TSO)
7258                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7259         if (dev->hw_enc_features & NETIF_F_TSO)
7260                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7261
7262         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7263          */
7264         dev->vlan_features |= NETIF_F_HIGHDMA;
7265
7266         /* Make NETIF_F_SG inheritable to tunnel devices.
7267          */
7268         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7269
7270         /* Make NETIF_F_SG inheritable to MPLS.
7271          */
7272         dev->mpls_features |= NETIF_F_SG;
7273
7274         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7275         ret = notifier_to_errno(ret);
7276         if (ret)
7277                 goto err_uninit;
7278
7279         ret = netdev_register_kobject(dev);
7280         if (ret)
7281                 goto err_uninit;
7282         dev->reg_state = NETREG_REGISTERED;
7283
7284         __netdev_update_features(dev);
7285
7286         /*
7287          *      Default initial state at registry is that the
7288          *      device is present.
7289          */
7290
7291         set_bit(__LINK_STATE_PRESENT, &dev->state);
7292
7293         linkwatch_init_dev(dev);
7294
7295         dev_init_scheduler(dev);
7296         dev_hold(dev);
7297         list_netdevice(dev);
7298         add_device_randomness(dev->dev_addr, dev->addr_len);
7299
7300         /* If the device has permanent device address, driver should
7301          * set dev_addr and also addr_assign_type should be set to
7302          * NET_ADDR_PERM (default value).
7303          */
7304         if (dev->addr_assign_type == NET_ADDR_PERM)
7305                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7306
7307         /* Notify protocols, that a new device appeared. */
7308         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7309         ret = notifier_to_errno(ret);
7310         if (ret) {
7311                 rollback_registered(dev);
7312                 dev->reg_state = NETREG_UNREGISTERED;
7313         }
7314         /*
7315          *      Prevent userspace races by waiting until the network
7316          *      device is fully setup before sending notifications.
7317          */
7318         if (!dev->rtnl_link_ops ||
7319             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7320                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7321
7322 out:
7323         return ret;
7324
7325 err_uninit:
7326         if (dev->netdev_ops->ndo_uninit)
7327                 dev->netdev_ops->ndo_uninit(dev);
7328         goto out;
7329 }
7330 EXPORT_SYMBOL(register_netdevice);
7331
7332 /**
7333  *      init_dummy_netdev       - init a dummy network device for NAPI
7334  *      @dev: device to init
7335  *
7336  *      This takes a network device structure and initialize the minimum
7337  *      amount of fields so it can be used to schedule NAPI polls without
7338  *      registering a full blown interface. This is to be used by drivers
7339  *      that need to tie several hardware interfaces to a single NAPI
7340  *      poll scheduler due to HW limitations.
7341  */
7342 int init_dummy_netdev(struct net_device *dev)
7343 {
7344         /* Clear everything. Note we don't initialize spinlocks
7345          * are they aren't supposed to be taken by any of the
7346          * NAPI code and this dummy netdev is supposed to be
7347          * only ever used for NAPI polls
7348          */
7349         memset(dev, 0, sizeof(struct net_device));
7350
7351         /* make sure we BUG if trying to hit standard
7352          * register/unregister code path
7353          */
7354         dev->reg_state = NETREG_DUMMY;
7355
7356         /* NAPI wants this */
7357         INIT_LIST_HEAD(&dev->napi_list);
7358
7359         /* a dummy interface is started by default */
7360         set_bit(__LINK_STATE_PRESENT, &dev->state);
7361         set_bit(__LINK_STATE_START, &dev->state);
7362
7363         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7364          * because users of this 'device' dont need to change
7365          * its refcount.
7366          */
7367
7368         return 0;
7369 }
7370 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7371
7372
7373 /**
7374  *      register_netdev - register a network device
7375  *      @dev: device to register
7376  *
7377  *      Take a completed network device structure and add it to the kernel
7378  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7379  *      chain. 0 is returned on success. A negative errno code is returned
7380  *      on a failure to set up the device, or if the name is a duplicate.
7381  *
7382  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7383  *      and expands the device name if you passed a format string to
7384  *      alloc_netdev.
7385  */
7386 int register_netdev(struct net_device *dev)
7387 {
7388         int err;
7389
7390         rtnl_lock();
7391         err = register_netdevice(dev);
7392         rtnl_unlock();
7393         return err;
7394 }
7395 EXPORT_SYMBOL(register_netdev);
7396
7397 int netdev_refcnt_read(const struct net_device *dev)
7398 {
7399         int i, refcnt = 0;
7400
7401         for_each_possible_cpu(i)
7402                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7403         return refcnt;
7404 }
7405 EXPORT_SYMBOL(netdev_refcnt_read);
7406
7407 /**
7408  * netdev_wait_allrefs - wait until all references are gone.
7409  * @dev: target net_device
7410  *
7411  * This is called when unregistering network devices.
7412  *
7413  * Any protocol or device that holds a reference should register
7414  * for netdevice notification, and cleanup and put back the
7415  * reference if they receive an UNREGISTER event.
7416  * We can get stuck here if buggy protocols don't correctly
7417  * call dev_put.
7418  */
7419 static void netdev_wait_allrefs(struct net_device *dev)
7420 {
7421         unsigned long rebroadcast_time, warning_time;
7422         int refcnt;
7423
7424         linkwatch_forget_dev(dev);
7425
7426         rebroadcast_time = warning_time = jiffies;
7427         refcnt = netdev_refcnt_read(dev);
7428
7429         while (refcnt != 0) {
7430                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7431                         rtnl_lock();
7432
7433                         /* Rebroadcast unregister notification */
7434                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7435
7436                         __rtnl_unlock();
7437                         rcu_barrier();
7438                         rtnl_lock();
7439
7440                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7441                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7442                                      &dev->state)) {
7443                                 /* We must not have linkwatch events
7444                                  * pending on unregister. If this
7445                                  * happens, we simply run the queue
7446                                  * unscheduled, resulting in a noop
7447                                  * for this device.
7448                                  */
7449                                 linkwatch_run_queue();
7450                         }
7451
7452                         __rtnl_unlock();
7453
7454                         rebroadcast_time = jiffies;
7455                 }
7456
7457                 msleep(250);
7458
7459                 refcnt = netdev_refcnt_read(dev);
7460
7461                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7462                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7463                                  dev->name, refcnt);
7464                         warning_time = jiffies;
7465                 }
7466         }
7467 }
7468
7469 /* The sequence is:
7470  *
7471  *      rtnl_lock();
7472  *      ...
7473  *      register_netdevice(x1);
7474  *      register_netdevice(x2);
7475  *      ...
7476  *      unregister_netdevice(y1);
7477  *      unregister_netdevice(y2);
7478  *      ...
7479  *      rtnl_unlock();
7480  *      free_netdev(y1);
7481  *      free_netdev(y2);
7482  *
7483  * We are invoked by rtnl_unlock().
7484  * This allows us to deal with problems:
7485  * 1) We can delete sysfs objects which invoke hotplug
7486  *    without deadlocking with linkwatch via keventd.
7487  * 2) Since we run with the RTNL semaphore not held, we can sleep
7488  *    safely in order to wait for the netdev refcnt to drop to zero.
7489  *
7490  * We must not return until all unregister events added during
7491  * the interval the lock was held have been completed.
7492  */
7493 void netdev_run_todo(void)
7494 {
7495         struct list_head list;
7496
7497         /* Snapshot list, allow later requests */
7498         list_replace_init(&net_todo_list, &list);
7499
7500         __rtnl_unlock();
7501
7502
7503         /* Wait for rcu callbacks to finish before next phase */
7504         if (!list_empty(&list))
7505                 rcu_barrier();
7506
7507         while (!list_empty(&list)) {
7508                 struct net_device *dev
7509                         = list_first_entry(&list, struct net_device, todo_list);
7510                 list_del(&dev->todo_list);
7511
7512                 rtnl_lock();
7513                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7514                 __rtnl_unlock();
7515
7516                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7517                         pr_err("network todo '%s' but state %d\n",
7518                                dev->name, dev->reg_state);
7519                         dump_stack();
7520                         continue;
7521                 }
7522
7523                 dev->reg_state = NETREG_UNREGISTERED;
7524
7525                 netdev_wait_allrefs(dev);
7526
7527                 /* paranoia */
7528                 BUG_ON(netdev_refcnt_read(dev));
7529                 BUG_ON(!list_empty(&dev->ptype_all));
7530                 BUG_ON(!list_empty(&dev->ptype_specific));
7531                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7532                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7533                 WARN_ON(dev->dn_ptr);
7534
7535                 if (dev->destructor)
7536                         dev->destructor(dev);
7537
7538                 /* Report a network device has been unregistered */
7539                 rtnl_lock();
7540                 dev_net(dev)->dev_unreg_count--;
7541                 __rtnl_unlock();
7542                 wake_up(&netdev_unregistering_wq);
7543
7544                 /* Free network device */
7545                 kobject_put(&dev->dev.kobj);
7546         }
7547 }
7548
7549 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7550  * all the same fields in the same order as net_device_stats, with only
7551  * the type differing, but rtnl_link_stats64 may have additional fields
7552  * at the end for newer counters.
7553  */
7554 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7555                              const struct net_device_stats *netdev_stats)
7556 {
7557 #if BITS_PER_LONG == 64
7558         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7559         memcpy(stats64, netdev_stats, sizeof(*stats64));
7560         /* zero out counters that only exist in rtnl_link_stats64 */
7561         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7562                sizeof(*stats64) - sizeof(*netdev_stats));
7563 #else
7564         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7565         const unsigned long *src = (const unsigned long *)netdev_stats;
7566         u64 *dst = (u64 *)stats64;
7567
7568         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7569         for (i = 0; i < n; i++)
7570                 dst[i] = src[i];
7571         /* zero out counters that only exist in rtnl_link_stats64 */
7572         memset((char *)stats64 + n * sizeof(u64), 0,
7573                sizeof(*stats64) - n * sizeof(u64));
7574 #endif
7575 }
7576 EXPORT_SYMBOL(netdev_stats_to_stats64);
7577
7578 /**
7579  *      dev_get_stats   - get network device statistics
7580  *      @dev: device to get statistics from
7581  *      @storage: place to store stats
7582  *
7583  *      Get network statistics from device. Return @storage.
7584  *      The device driver may provide its own method by setting
7585  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7586  *      otherwise the internal statistics structure is used.
7587  */
7588 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7589                                         struct rtnl_link_stats64 *storage)
7590 {
7591         const struct net_device_ops *ops = dev->netdev_ops;
7592
7593         if (ops->ndo_get_stats64) {
7594                 memset(storage, 0, sizeof(*storage));
7595                 ops->ndo_get_stats64(dev, storage);
7596         } else if (ops->ndo_get_stats) {
7597                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7598         } else {
7599                 netdev_stats_to_stats64(storage, &dev->stats);
7600         }
7601         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7602         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7603         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7604         return storage;
7605 }
7606 EXPORT_SYMBOL(dev_get_stats);
7607
7608 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7609 {
7610         struct netdev_queue *queue = dev_ingress_queue(dev);
7611
7612 #ifdef CONFIG_NET_CLS_ACT
7613         if (queue)
7614                 return queue;
7615         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7616         if (!queue)
7617                 return NULL;
7618         netdev_init_one_queue(dev, queue, NULL);
7619         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7620         queue->qdisc_sleeping = &noop_qdisc;
7621         rcu_assign_pointer(dev->ingress_queue, queue);
7622 #endif
7623         return queue;
7624 }
7625
7626 static const struct ethtool_ops default_ethtool_ops;
7627
7628 void netdev_set_default_ethtool_ops(struct net_device *dev,
7629                                     const struct ethtool_ops *ops)
7630 {
7631         if (dev->ethtool_ops == &default_ethtool_ops)
7632                 dev->ethtool_ops = ops;
7633 }
7634 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7635
7636 void netdev_freemem(struct net_device *dev)
7637 {
7638         char *addr = (char *)dev - dev->padded;
7639
7640         kvfree(addr);
7641 }
7642
7643 /**
7644  *      alloc_netdev_mqs - allocate network device
7645  *      @sizeof_priv:           size of private data to allocate space for
7646  *      @name:                  device name format string
7647  *      @name_assign_type:      origin of device name
7648  *      @setup:                 callback to initialize device
7649  *      @txqs:                  the number of TX subqueues to allocate
7650  *      @rxqs:                  the number of RX subqueues to allocate
7651  *
7652  *      Allocates a struct net_device with private data area for driver use
7653  *      and performs basic initialization.  Also allocates subqueue structs
7654  *      for each queue on the device.
7655  */
7656 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7657                 unsigned char name_assign_type,
7658                 void (*setup)(struct net_device *),
7659                 unsigned int txqs, unsigned int rxqs)
7660 {
7661         struct net_device *dev;
7662         size_t alloc_size;
7663         struct net_device *p;
7664
7665         BUG_ON(strlen(name) >= sizeof(dev->name));
7666
7667         if (txqs < 1) {
7668                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7669                 return NULL;
7670         }
7671
7672 #ifdef CONFIG_SYSFS
7673         if (rxqs < 1) {
7674                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7675                 return NULL;
7676         }
7677 #endif
7678
7679         alloc_size = sizeof(struct net_device);
7680         if (sizeof_priv) {
7681                 /* ensure 32-byte alignment of private area */
7682                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7683                 alloc_size += sizeof_priv;
7684         }
7685         /* ensure 32-byte alignment of whole construct */
7686         alloc_size += NETDEV_ALIGN - 1;
7687
7688         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7689         if (!p)
7690                 p = vzalloc(alloc_size);
7691         if (!p)
7692                 return NULL;
7693
7694         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7695         dev->padded = (char *)dev - (char *)p;
7696
7697         dev->pcpu_refcnt = alloc_percpu(int);
7698         if (!dev->pcpu_refcnt)
7699                 goto free_dev;
7700
7701         if (dev_addr_init(dev))
7702                 goto free_pcpu;
7703
7704         dev_mc_init(dev);
7705         dev_uc_init(dev);
7706
7707         dev_net_set(dev, &init_net);
7708
7709         dev->gso_max_size = GSO_MAX_SIZE;
7710         dev->gso_max_segs = GSO_MAX_SEGS;
7711
7712         INIT_LIST_HEAD(&dev->napi_list);
7713         INIT_LIST_HEAD(&dev->unreg_list);
7714         INIT_LIST_HEAD(&dev->close_list);
7715         INIT_LIST_HEAD(&dev->link_watch_list);
7716         INIT_LIST_HEAD(&dev->adj_list.upper);
7717         INIT_LIST_HEAD(&dev->adj_list.lower);
7718         INIT_LIST_HEAD(&dev->ptype_all);
7719         INIT_LIST_HEAD(&dev->ptype_specific);
7720 #ifdef CONFIG_NET_SCHED
7721         hash_init(dev->qdisc_hash);
7722 #endif
7723         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7724         setup(dev);
7725
7726         if (!dev->tx_queue_len) {
7727                 dev->priv_flags |= IFF_NO_QUEUE;
7728                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7729         }
7730
7731         dev->num_tx_queues = txqs;
7732         dev->real_num_tx_queues = txqs;
7733         if (netif_alloc_netdev_queues(dev))
7734                 goto free_all;
7735
7736 #ifdef CONFIG_SYSFS
7737         dev->num_rx_queues = rxqs;
7738         dev->real_num_rx_queues = rxqs;
7739         if (netif_alloc_rx_queues(dev))
7740                 goto free_all;
7741 #endif
7742
7743         strcpy(dev->name, name);
7744         dev->name_assign_type = name_assign_type;
7745         dev->group = INIT_NETDEV_GROUP;
7746         if (!dev->ethtool_ops)
7747                 dev->ethtool_ops = &default_ethtool_ops;
7748
7749         nf_hook_ingress_init(dev);
7750
7751         return dev;
7752
7753 free_all:
7754         free_netdev(dev);
7755         return NULL;
7756
7757 free_pcpu:
7758         free_percpu(dev->pcpu_refcnt);
7759 free_dev:
7760         netdev_freemem(dev);
7761         return NULL;
7762 }
7763 EXPORT_SYMBOL(alloc_netdev_mqs);
7764
7765 /**
7766  *      free_netdev - free network device
7767  *      @dev: device
7768  *
7769  *      This function does the last stage of destroying an allocated device
7770  *      interface. The reference to the device object is released.
7771  *      If this is the last reference then it will be freed.
7772  *      Must be called in process context.
7773  */
7774 void free_netdev(struct net_device *dev)
7775 {
7776         struct napi_struct *p, *n;
7777
7778         might_sleep();
7779         netif_free_tx_queues(dev);
7780 #ifdef CONFIG_SYSFS
7781         kvfree(dev->_rx);
7782 #endif
7783
7784         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7785
7786         /* Flush device addresses */
7787         dev_addr_flush(dev);
7788
7789         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7790                 netif_napi_del(p);
7791
7792         free_percpu(dev->pcpu_refcnt);
7793         dev->pcpu_refcnt = NULL;
7794
7795         /*  Compatibility with error handling in drivers */
7796         if (dev->reg_state == NETREG_UNINITIALIZED) {
7797                 netdev_freemem(dev);
7798                 return;
7799         }
7800
7801         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7802         dev->reg_state = NETREG_RELEASED;
7803
7804         /* will free via device release */
7805         put_device(&dev->dev);
7806 }
7807 EXPORT_SYMBOL(free_netdev);
7808
7809 /**
7810  *      synchronize_net -  Synchronize with packet receive processing
7811  *
7812  *      Wait for packets currently being received to be done.
7813  *      Does not block later packets from starting.
7814  */
7815 void synchronize_net(void)
7816 {
7817         might_sleep();
7818         if (rtnl_is_locked())
7819                 synchronize_rcu_expedited();
7820         else
7821                 synchronize_rcu();
7822 }
7823 EXPORT_SYMBOL(synchronize_net);
7824
7825 /**
7826  *      unregister_netdevice_queue - remove device from the kernel
7827  *      @dev: device
7828  *      @head: list
7829  *
7830  *      This function shuts down a device interface and removes it
7831  *      from the kernel tables.
7832  *      If head not NULL, device is queued to be unregistered later.
7833  *
7834  *      Callers must hold the rtnl semaphore.  You may want
7835  *      unregister_netdev() instead of this.
7836  */
7837
7838 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7839 {
7840         ASSERT_RTNL();
7841
7842         if (head) {
7843                 list_move_tail(&dev->unreg_list, head);
7844         } else {
7845                 rollback_registered(dev);
7846                 /* Finish processing unregister after unlock */
7847                 net_set_todo(dev);
7848         }
7849 }
7850 EXPORT_SYMBOL(unregister_netdevice_queue);
7851
7852 /**
7853  *      unregister_netdevice_many - unregister many devices
7854  *      @head: list of devices
7855  *
7856  *  Note: As most callers use a stack allocated list_head,
7857  *  we force a list_del() to make sure stack wont be corrupted later.
7858  */
7859 void unregister_netdevice_many(struct list_head *head)
7860 {
7861         struct net_device *dev;
7862
7863         if (!list_empty(head)) {
7864                 rollback_registered_many(head);
7865                 list_for_each_entry(dev, head, unreg_list)
7866                         net_set_todo(dev);
7867                 list_del(head);
7868         }
7869 }
7870 EXPORT_SYMBOL(unregister_netdevice_many);
7871
7872 /**
7873  *      unregister_netdev - remove device from the kernel
7874  *      @dev: device
7875  *
7876  *      This function shuts down a device interface and removes it
7877  *      from the kernel tables.
7878  *
7879  *      This is just a wrapper for unregister_netdevice that takes
7880  *      the rtnl semaphore.  In general you want to use this and not
7881  *      unregister_netdevice.
7882  */
7883 void unregister_netdev(struct net_device *dev)
7884 {
7885         rtnl_lock();
7886         unregister_netdevice(dev);
7887         rtnl_unlock();
7888 }
7889 EXPORT_SYMBOL(unregister_netdev);
7890
7891 /**
7892  *      dev_change_net_namespace - move device to different nethost namespace
7893  *      @dev: device
7894  *      @net: network namespace
7895  *      @pat: If not NULL name pattern to try if the current device name
7896  *            is already taken in the destination network namespace.
7897  *
7898  *      This function shuts down a device interface and moves it
7899  *      to a new network namespace. On success 0 is returned, on
7900  *      a failure a netagive errno code is returned.
7901  *
7902  *      Callers must hold the rtnl semaphore.
7903  */
7904
7905 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7906 {
7907         int err;
7908
7909         ASSERT_RTNL();
7910
7911         /* Don't allow namespace local devices to be moved. */
7912         err = -EINVAL;
7913         if (dev->features & NETIF_F_NETNS_LOCAL)
7914                 goto out;
7915
7916         /* Ensure the device has been registrered */
7917         if (dev->reg_state != NETREG_REGISTERED)
7918                 goto out;
7919
7920         /* Get out if there is nothing todo */
7921         err = 0;
7922         if (net_eq(dev_net(dev), net))
7923                 goto out;
7924
7925         /* Pick the destination device name, and ensure
7926          * we can use it in the destination network namespace.
7927          */
7928         err = -EEXIST;
7929         if (__dev_get_by_name(net, dev->name)) {
7930                 /* We get here if we can't use the current device name */
7931                 if (!pat)
7932                         goto out;
7933                 if (dev_get_valid_name(net, dev, pat) < 0)
7934                         goto out;
7935         }
7936
7937         /*
7938          * And now a mini version of register_netdevice unregister_netdevice.
7939          */
7940
7941         /* If device is running close it first. */
7942         dev_close(dev);
7943
7944         /* And unlink it from device chain */
7945         err = -ENODEV;
7946         unlist_netdevice(dev);
7947
7948         synchronize_net();
7949
7950         /* Shutdown queueing discipline. */
7951         dev_shutdown(dev);
7952
7953         /* Notify protocols, that we are about to destroy
7954            this device. They should clean all the things.
7955
7956            Note that dev->reg_state stays at NETREG_REGISTERED.
7957            This is wanted because this way 8021q and macvlan know
7958            the device is just moving and can keep their slaves up.
7959         */
7960         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7961         rcu_barrier();
7962         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7963         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7964
7965         /*
7966          *      Flush the unicast and multicast chains
7967          */
7968         dev_uc_flush(dev);
7969         dev_mc_flush(dev);
7970
7971         /* Send a netdev-removed uevent to the old namespace */
7972         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7973         netdev_adjacent_del_links(dev);
7974
7975         /* Actually switch the network namespace */
7976         dev_net_set(dev, net);
7977
7978         /* If there is an ifindex conflict assign a new one */
7979         if (__dev_get_by_index(net, dev->ifindex))
7980                 dev->ifindex = dev_new_index(net);
7981
7982         /* Send a netdev-add uevent to the new namespace */
7983         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7984         netdev_adjacent_add_links(dev);
7985
7986         /* Fixup kobjects */
7987         err = device_rename(&dev->dev, dev->name);
7988         WARN_ON(err);
7989
7990         /* Add the device back in the hashes */
7991         list_netdevice(dev);
7992
7993         /* Notify protocols, that a new device appeared. */
7994         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7995
7996         /*
7997          *      Prevent userspace races by waiting until the network
7998          *      device is fully setup before sending notifications.
7999          */
8000         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8001
8002         synchronize_net();
8003         err = 0;
8004 out:
8005         return err;
8006 }
8007 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8008
8009 static int dev_cpu_dead(unsigned int oldcpu)
8010 {
8011         struct sk_buff **list_skb;
8012         struct sk_buff *skb;
8013         unsigned int cpu;
8014         struct softnet_data *sd, *oldsd;
8015
8016         local_irq_disable();
8017         cpu = smp_processor_id();
8018         sd = &per_cpu(softnet_data, cpu);
8019         oldsd = &per_cpu(softnet_data, oldcpu);
8020
8021         /* Find end of our completion_queue. */
8022         list_skb = &sd->completion_queue;
8023         while (*list_skb)
8024                 list_skb = &(*list_skb)->next;
8025         /* Append completion queue from offline CPU. */
8026         *list_skb = oldsd->completion_queue;
8027         oldsd->completion_queue = NULL;
8028
8029         /* Append output queue from offline CPU. */
8030         if (oldsd->output_queue) {
8031                 *sd->output_queue_tailp = oldsd->output_queue;
8032                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8033                 oldsd->output_queue = NULL;
8034                 oldsd->output_queue_tailp = &oldsd->output_queue;
8035         }
8036         /* Append NAPI poll list from offline CPU, with one exception :
8037          * process_backlog() must be called by cpu owning percpu backlog.
8038          * We properly handle process_queue & input_pkt_queue later.
8039          */
8040         while (!list_empty(&oldsd->poll_list)) {
8041                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8042                                                             struct napi_struct,
8043                                                             poll_list);
8044
8045                 list_del_init(&napi->poll_list);
8046                 if (napi->poll == process_backlog)
8047                         napi->state = 0;
8048                 else
8049                         ____napi_schedule(sd, napi);
8050         }
8051
8052         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8053         local_irq_enable();
8054
8055         /* Process offline CPU's input_pkt_queue */
8056         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8057                 netif_rx_ni(skb);
8058                 input_queue_head_incr(oldsd);
8059         }
8060         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8061                 netif_rx_ni(skb);
8062                 input_queue_head_incr(oldsd);
8063         }
8064
8065         return 0;
8066 }
8067
8068 /**
8069  *      netdev_increment_features - increment feature set by one
8070  *      @all: current feature set
8071  *      @one: new feature set
8072  *      @mask: mask feature set
8073  *
8074  *      Computes a new feature set after adding a device with feature set
8075  *      @one to the master device with current feature set @all.  Will not
8076  *      enable anything that is off in @mask. Returns the new feature set.
8077  */
8078 netdev_features_t netdev_increment_features(netdev_features_t all,
8079         netdev_features_t one, netdev_features_t mask)
8080 {
8081         if (mask & NETIF_F_HW_CSUM)
8082                 mask |= NETIF_F_CSUM_MASK;
8083         mask |= NETIF_F_VLAN_CHALLENGED;
8084
8085         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8086         all &= one | ~NETIF_F_ALL_FOR_ALL;
8087
8088         /* If one device supports hw checksumming, set for all. */
8089         if (all & NETIF_F_HW_CSUM)
8090                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8091
8092         return all;
8093 }
8094 EXPORT_SYMBOL(netdev_increment_features);
8095
8096 static struct hlist_head * __net_init netdev_create_hash(void)
8097 {
8098         int i;
8099         struct hlist_head *hash;
8100
8101         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8102         if (hash != NULL)
8103                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8104                         INIT_HLIST_HEAD(&hash[i]);
8105
8106         return hash;
8107 }
8108
8109 /* Initialize per network namespace state */
8110 static int __net_init netdev_init(struct net *net)
8111 {
8112         if (net != &init_net)
8113                 INIT_LIST_HEAD(&net->dev_base_head);
8114
8115         net->dev_name_head = netdev_create_hash();
8116         if (net->dev_name_head == NULL)
8117                 goto err_name;
8118
8119         net->dev_index_head = netdev_create_hash();
8120         if (net->dev_index_head == NULL)
8121                 goto err_idx;
8122
8123         return 0;
8124
8125 err_idx:
8126         kfree(net->dev_name_head);
8127 err_name:
8128         return -ENOMEM;
8129 }
8130
8131 /**
8132  *      netdev_drivername - network driver for the device
8133  *      @dev: network device
8134  *
8135  *      Determine network driver for device.
8136  */
8137 const char *netdev_drivername(const struct net_device *dev)
8138 {
8139         const struct device_driver *driver;
8140         const struct device *parent;
8141         const char *empty = "";
8142
8143         parent = dev->dev.parent;
8144         if (!parent)
8145                 return empty;
8146
8147         driver = parent->driver;
8148         if (driver && driver->name)
8149                 return driver->name;
8150         return empty;
8151 }
8152
8153 static void __netdev_printk(const char *level, const struct net_device *dev,
8154                             struct va_format *vaf)
8155 {
8156         if (dev && dev->dev.parent) {
8157                 dev_printk_emit(level[1] - '0',
8158                                 dev->dev.parent,
8159                                 "%s %s %s%s: %pV",
8160                                 dev_driver_string(dev->dev.parent),
8161                                 dev_name(dev->dev.parent),
8162                                 netdev_name(dev), netdev_reg_state(dev),
8163                                 vaf);
8164         } else if (dev) {
8165                 printk("%s%s%s: %pV",
8166                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8167         } else {
8168                 printk("%s(NULL net_device): %pV", level, vaf);
8169         }
8170 }
8171
8172 void netdev_printk(const char *level, const struct net_device *dev,
8173                    const char *format, ...)
8174 {
8175         struct va_format vaf;
8176         va_list args;
8177
8178         va_start(args, format);
8179
8180         vaf.fmt = format;
8181         vaf.va = &args;
8182
8183         __netdev_printk(level, dev, &vaf);
8184
8185         va_end(args);
8186 }
8187 EXPORT_SYMBOL(netdev_printk);
8188
8189 #define define_netdev_printk_level(func, level)                 \
8190 void func(const struct net_device *dev, const char *fmt, ...)   \
8191 {                                                               \
8192         struct va_format vaf;                                   \
8193         va_list args;                                           \
8194                                                                 \
8195         va_start(args, fmt);                                    \
8196                                                                 \
8197         vaf.fmt = fmt;                                          \
8198         vaf.va = &args;                                         \
8199                                                                 \
8200         __netdev_printk(level, dev, &vaf);                      \
8201                                                                 \
8202         va_end(args);                                           \
8203 }                                                               \
8204 EXPORT_SYMBOL(func);
8205
8206 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8207 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8208 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8209 define_netdev_printk_level(netdev_err, KERN_ERR);
8210 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8211 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8212 define_netdev_printk_level(netdev_info, KERN_INFO);
8213
8214 static void __net_exit netdev_exit(struct net *net)
8215 {
8216         kfree(net->dev_name_head);
8217         kfree(net->dev_index_head);
8218 }
8219
8220 static struct pernet_operations __net_initdata netdev_net_ops = {
8221         .init = netdev_init,
8222         .exit = netdev_exit,
8223 };
8224
8225 static void __net_exit default_device_exit(struct net *net)
8226 {
8227         struct net_device *dev, *aux;
8228         /*
8229          * Push all migratable network devices back to the
8230          * initial network namespace
8231          */
8232         rtnl_lock();
8233         for_each_netdev_safe(net, dev, aux) {
8234                 int err;
8235                 char fb_name[IFNAMSIZ];
8236
8237                 /* Ignore unmoveable devices (i.e. loopback) */
8238                 if (dev->features & NETIF_F_NETNS_LOCAL)
8239                         continue;
8240
8241                 /* Leave virtual devices for the generic cleanup */
8242                 if (dev->rtnl_link_ops)
8243                         continue;
8244
8245                 /* Push remaining network devices to init_net */
8246                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8247                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8248                 if (err) {
8249                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8250                                  __func__, dev->name, err);
8251                         BUG();
8252                 }
8253         }
8254         rtnl_unlock();
8255 }
8256
8257 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8258 {
8259         /* Return with the rtnl_lock held when there are no network
8260          * devices unregistering in any network namespace in net_list.
8261          */
8262         struct net *net;
8263         bool unregistering;
8264         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8265
8266         add_wait_queue(&netdev_unregistering_wq, &wait);
8267         for (;;) {
8268                 unregistering = false;
8269                 rtnl_lock();
8270                 list_for_each_entry(net, net_list, exit_list) {
8271                         if (net->dev_unreg_count > 0) {
8272                                 unregistering = true;
8273                                 break;
8274                         }
8275                 }
8276                 if (!unregistering)
8277                         break;
8278                 __rtnl_unlock();
8279
8280                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8281         }
8282         remove_wait_queue(&netdev_unregistering_wq, &wait);
8283 }
8284
8285 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8286 {
8287         /* At exit all network devices most be removed from a network
8288          * namespace.  Do this in the reverse order of registration.
8289          * Do this across as many network namespaces as possible to
8290          * improve batching efficiency.
8291          */
8292         struct net_device *dev;
8293         struct net *net;
8294         LIST_HEAD(dev_kill_list);
8295
8296         /* To prevent network device cleanup code from dereferencing
8297          * loopback devices or network devices that have been freed
8298          * wait here for all pending unregistrations to complete,
8299          * before unregistring the loopback device and allowing the
8300          * network namespace be freed.
8301          *
8302          * The netdev todo list containing all network devices
8303          * unregistrations that happen in default_device_exit_batch
8304          * will run in the rtnl_unlock() at the end of
8305          * default_device_exit_batch.
8306          */
8307         rtnl_lock_unregistering(net_list);
8308         list_for_each_entry(net, net_list, exit_list) {
8309                 for_each_netdev_reverse(net, dev) {
8310                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8311                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8312                         else
8313                                 unregister_netdevice_queue(dev, &dev_kill_list);
8314                 }
8315         }
8316         unregister_netdevice_many(&dev_kill_list);
8317         rtnl_unlock();
8318 }
8319
8320 static struct pernet_operations __net_initdata default_device_ops = {
8321         .exit = default_device_exit,
8322         .exit_batch = default_device_exit_batch,
8323 };
8324
8325 /*
8326  *      Initialize the DEV module. At boot time this walks the device list and
8327  *      unhooks any devices that fail to initialise (normally hardware not
8328  *      present) and leaves us with a valid list of present and active devices.
8329  *
8330  */
8331
8332 /*
8333  *       This is called single threaded during boot, so no need
8334  *       to take the rtnl semaphore.
8335  */
8336 static int __init net_dev_init(void)
8337 {
8338         int i, rc = -ENOMEM;
8339
8340         BUG_ON(!dev_boot_phase);
8341
8342         if (dev_proc_init())
8343                 goto out;
8344
8345         if (netdev_kobject_init())
8346                 goto out;
8347
8348         INIT_LIST_HEAD(&ptype_all);
8349         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8350                 INIT_LIST_HEAD(&ptype_base[i]);
8351
8352         INIT_LIST_HEAD(&offload_base);
8353
8354         if (register_pernet_subsys(&netdev_net_ops))
8355                 goto out;
8356
8357         /*
8358          *      Initialise the packet receive queues.
8359          */
8360
8361         for_each_possible_cpu(i) {
8362                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8363                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8364
8365                 INIT_WORK(flush, flush_backlog);
8366
8367                 skb_queue_head_init(&sd->input_pkt_queue);
8368                 skb_queue_head_init(&sd->process_queue);
8369                 INIT_LIST_HEAD(&sd->poll_list);
8370                 sd->output_queue_tailp = &sd->output_queue;
8371 #ifdef CONFIG_RPS
8372                 sd->csd.func = rps_trigger_softirq;
8373                 sd->csd.info = sd;
8374                 sd->cpu = i;
8375 #endif
8376
8377                 sd->backlog.poll = process_backlog;
8378                 sd->backlog.weight = weight_p;
8379         }
8380
8381         dev_boot_phase = 0;
8382
8383         /* The loopback device is special if any other network devices
8384          * is present in a network namespace the loopback device must
8385          * be present. Since we now dynamically allocate and free the
8386          * loopback device ensure this invariant is maintained by
8387          * keeping the loopback device as the first device on the
8388          * list of network devices.  Ensuring the loopback devices
8389          * is the first device that appears and the last network device
8390          * that disappears.
8391          */
8392         if (register_pernet_device(&loopback_net_ops))
8393                 goto out;
8394
8395         if (register_pernet_device(&default_device_ops))
8396                 goto out;
8397
8398         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8399         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8400
8401         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8402                                        NULL, dev_cpu_dead);
8403         WARN_ON(rc < 0);
8404         dst_subsys_init();
8405         rc = 0;
8406 out:
8407         return rc;
8408 }
8409
8410 subsys_initcall(net_dev_init);