2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
144 #include "net-sysfs.h"
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly; /* Taps */
156 static struct list_head offload_base __read_mostly;
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169 * Writers must hold the rtnl semaphore while they loop through the
170 * dev_base_head list, and hold dev_base_lock for writing when they do the
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191 static seqcount_t devnet_rename_seq;
193 static inline void dev_base_seq_inc(struct net *net)
195 while (++net->dev_base_seq == 0);
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 static inline void rps_lock(struct softnet_data *sd)
213 spin_lock(&sd->input_pkt_queue.lock);
217 static inline void rps_unlock(struct softnet_data *sd)
220 spin_unlock(&sd->input_pkt_queue.lock);
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
227 struct net *net = dev_net(dev);
231 write_lock_bh(&dev_base_lock);
232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
236 write_unlock_bh(&dev_base_lock);
238 dev_base_seq_inc(net);
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
244 static void unlist_netdevice(struct net_device *dev)
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
255 dev_base_seq_inc(dev_net(dev));
262 static RAW_NOTIFIER_HEAD(netdev_chain);
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
272 #ifdef CONFIG_LOCKDEP
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
354 /*******************************************************************************
356 Protocol management and registration routines
358 *******************************************************************************/
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 if (pt->type == htons(ETH_P_ALL))
379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
398 void dev_add_pack(struct packet_type *pt)
400 struct list_head *head = ptype_head(pt);
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
406 EXPORT_SYMBOL(dev_add_pack);
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
421 void __dev_remove_pack(struct packet_type *pt)
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
426 spin_lock(&ptype_lock);
428 list_for_each_entry(pt1, head, list) {
430 list_del_rcu(&pt->list);
435 pr_warn("dev_remove_pack: %p not found\n", pt);
437 spin_unlock(&ptype_lock);
439 EXPORT_SYMBOL(__dev_remove_pack);
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
450 * This call sleeps to guarantee that no CPU is looking at the packet
453 void dev_remove_pack(struct packet_type *pt)
455 __dev_remove_pack(pt);
459 EXPORT_SYMBOL(dev_remove_pack);
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
474 void dev_add_offload(struct packet_offload *po)
476 struct packet_offload *elem;
478 spin_lock(&offload_lock);
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
483 list_add_rcu(&po->list, elem->list.prev);
484 spin_unlock(&offload_lock);
486 EXPORT_SYMBOL(dev_add_offload);
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
501 static void __dev_remove_offload(struct packet_offload *po)
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
506 spin_lock(&offload_lock);
508 list_for_each_entry(po1, head, list) {
510 list_del_rcu(&po->list);
515 pr_warn("dev_remove_offload: %p not found\n", po);
517 spin_unlock(&offload_lock);
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
529 * This call sleeps to guarantee that no CPU is looking at the packet
532 void dev_remove_offload(struct packet_offload *po)
534 __dev_remove_offload(po);
538 EXPORT_SYMBOL(dev_remove_offload);
540 /******************************************************************************
542 Device Boot-time Settings Routines
544 *******************************************************************************/
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 struct netdev_boot_setup *s;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
567 strlcpy(s[i].name, name, IFNAMSIZ);
568 memcpy(&s[i].map, map, sizeof(s[i].map));
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
585 int netdev_boot_setup_check(struct net_device *dev)
587 struct netdev_boot_setup *s = dev_boot_setup;
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592 !strcmp(dev->name, s[i].name)) {
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
602 EXPORT_SYMBOL(netdev_boot_setup_check);
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
615 unsigned long netdev_boot_base(const char *prefix, int unit)
617 const struct netdev_boot_setup *s = dev_boot_setup;
621 sprintf(name, "%s%d", prefix, unit);
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
627 if (__dev_get_by_name(&init_net, name))
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
637 * Saves at boot time configured settings for any netdevice.
639 int __init netdev_boot_setup(char *str)
644 str = get_options(str, ARRAY_SIZE(ints), ints);
649 memset(&map, 0, sizeof(map));
653 map.base_addr = ints[2];
655 map.mem_start = ints[3];
657 map.mem_end = ints[4];
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
663 __setup("netdev=", netdev_boot_setup);
665 /*******************************************************************************
667 Device Interface Subroutines
669 *******************************************************************************/
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
679 int dev_get_iflink(const struct net_device *dev)
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
686 EXPORT_SYMBOL(dev_get_iflink);
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 struct ip_tunnel_info *info;
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
704 info = skb_tunnel_info_unclone(skb);
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
715 * __dev_get_by_name - find a device by its name
716 * @net: the applicable net namespace
717 * @name: name to find
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
731 hlist_for_each_entry(dev, head, name_hlist)
732 if (!strncmp(dev->name, name, IFNAMSIZ))
737 EXPORT_SYMBOL(__dev_get_by_name);
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
756 hlist_for_each_entry_rcu(dev, head, name_hlist)
757 if (!strncmp(dev->name, name, IFNAMSIZ))
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
765 * dev_get_by_name - find a device by its name
766 * @net: the applicable net namespace
767 * @name: name to find
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 struct net_device *dev;
781 dev = dev_get_by_name_rcu(net, name);
787 EXPORT_SYMBOL(dev_get_by_name);
790 * __dev_get_by_index - find a device by its ifindex
791 * @net: the applicable net namespace
792 * @ifindex: index of device
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
806 hlist_for_each_entry(dev, head, index_hlist)
807 if (dev->ifindex == ifindex)
812 EXPORT_SYMBOL(__dev_get_by_index);
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
830 hlist_for_each_entry_rcu(dev, head, index_hlist)
831 if (dev->ifindex == ifindex)
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
840 * dev_get_by_index - find a device by its ifindex
841 * @net: the applicable net namespace
842 * @ifindex: index of device
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 struct net_device *dev;
855 dev = dev_get_by_index_rcu(net, ifindex);
861 EXPORT_SYMBOL(dev_get_by_index);
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
873 int netdev_get_name(struct net *net, char *name, int ifindex)
875 struct net_device *dev;
879 seq = raw_seqcount_begin(&devnet_rename_seq);
881 dev = dev_get_by_index_rcu(net, ifindex);
887 strcpy(name, dev->name);
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
898 * dev_getbyhwaddr_rcu - find a device by its hardware address
899 * @net: the applicable net namespace
900 * @type: media type of device
901 * @ha: hardware address
903 * Search for an interface by MAC address. Returns NULL if the device
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
906 * The returned device has not had its ref count increased
907 * and the caller must therefore be careful about locking
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
914 struct net_device *dev;
916 for_each_netdev_rcu(net, dev)
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 struct net_device *dev;
930 for_each_netdev(net, dev)
931 if (dev->type == type)
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 struct net_device *dev, *ret = NULL;
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
955 * __dev_get_by_flags - find any device with given flags
956 * @net: the applicable net namespace
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
960 * Search for any interface with the given flags. Returns NULL if a device
961 * is not found or a pointer to the device. Must be called inside
962 * rtnl_lock(), and result refcount is unchanged.
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 struct net_device *dev, *ret;
973 for_each_netdev(net, dev) {
974 if (((dev->flags ^ if_flags) & mask) == 0) {
981 EXPORT_SYMBOL(__dev_get_by_flags);
984 * dev_valid_name - check if name is okay for network device
987 * Network device names need to be valid file names to
988 * to allow sysfs to work. We also disallow any kind of
991 bool dev_valid_name(const char *name)
995 if (strlen(name) >= IFNAMSIZ)
997 if (!strcmp(name, ".") || !strcmp(name, ".."))
1001 if (*name == '/' || *name == ':' || isspace(*name))
1007 EXPORT_SYMBOL(dev_valid_name);
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1012 * @name: name format string
1013 * @buf: scratch buffer and result name string
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1028 const int max_netdevices = 8*PAGE_SIZE;
1029 unsigned long *inuse;
1030 struct net_device *d;
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1042 /* Use one page as a bit array of possible slots */
1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1047 for_each_netdev(net, d) {
1048 if (!sscanf(d->name, name, &i))
1050 if (i < 0 || i >= max_netdevices)
1053 /* avoid cases where sscanf is not exact inverse of printf */
1054 snprintf(buf, IFNAMSIZ, name, i);
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1064 snprintf(buf, IFNAMSIZ, name, i);
1065 if (!__dev_get_by_name(net, buf))
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1076 * dev_alloc_name - allocate a name for a device
1078 * @name: name format string
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1095 BUG_ON(!dev_net(dev));
1097 ret = __dev_alloc_name(net, name, buf);
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1102 EXPORT_SYMBOL(dev_alloc_name);
1104 static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1111 ret = __dev_alloc_name(net, name, buf);
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1117 static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1123 if (!dev_valid_name(name))
1126 if (strchr(name, '%'))
1127 return dev_alloc_name_ns(net, dev, name);
1128 else if (__dev_get_by_name(net, name))
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
1137 * dev_change_name - change name of a device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1141 * Change name of a device, can pass format strings "eth%d".
1144 int dev_change_name(struct net_device *dev, const char *newname)
1146 unsigned char old_assign_type;
1147 char oldname[IFNAMSIZ];
1153 BUG_ON(!dev_net(dev));
1156 if (dev->flags & IFF_UP)
1159 write_seqcount_begin(&devnet_rename_seq);
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162 write_seqcount_end(&devnet_rename_seq);
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1168 err = dev_get_valid_name(net, dev, newname);
1170 write_seqcount_end(&devnet_rename_seq);
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1181 ret = device_rename(&dev->dev, dev->name);
1183 memcpy(dev->name, oldname, IFNAMSIZ);
1184 dev->name_assign_type = old_assign_type;
1185 write_seqcount_end(&devnet_rename_seq);
1189 write_seqcount_end(&devnet_rename_seq);
1191 netdev_adjacent_rename_links(dev, oldname);
1193 write_lock_bh(&dev_base_lock);
1194 hlist_del_rcu(&dev->name_hlist);
1195 write_unlock_bh(&dev_base_lock);
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201 write_unlock_bh(&dev_base_lock);
1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204 ret = notifier_to_errno(ret);
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1210 write_seqcount_begin(&devnet_rename_seq);
1211 memcpy(dev->name, oldname, IFNAMSIZ);
1212 memcpy(oldname, newname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
1217 pr_err("%s: name change rollback failed: %d\n",
1226 * dev_set_alias - change ifalias of a device
1228 * @alias: name up to IFALIASZ
1229 * @len: limit of bytes to copy from info
1231 * Set ifalias for a device,
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1239 if (len >= IFALIASZ)
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1251 dev->ifalias = new_ifalias;
1253 strlcpy(dev->ifalias, alias, len+1);
1259 * netdev_features_change - device changes features
1260 * @dev: device to cause notification
1262 * Called to indicate a device has changed features.
1264 void netdev_features_change(struct net_device *dev)
1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 EXPORT_SYMBOL(netdev_features_change);
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1278 void netdev_state_change(struct net_device *dev)
1280 if (dev->flags & IFF_UP) {
1281 struct netdev_notifier_change_info change_info;
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1289 EXPORT_SYMBOL(netdev_state_change);
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1301 void netdev_notify_peers(struct net_device *dev)
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1307 EXPORT_SYMBOL(netdev_notify_peers);
1309 static int __dev_open(struct net_device *dev)
1311 const struct net_device_ops *ops = dev->netdev_ops;
1316 if (!netif_device_present(dev))
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1323 netpoll_poll_disable(dev);
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1330 set_bit(__LINK_STATE_START, &dev->state);
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1338 netpoll_poll_enable(dev);
1341 clear_bit(__LINK_STATE_START, &dev->state);
1343 dev->flags |= IFF_UP;
1344 dev_set_rx_mode(dev);
1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1364 int dev_open(struct net_device *dev)
1368 if (dev->flags & IFF_UP)
1371 ret = __dev_open(dev);
1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1380 EXPORT_SYMBOL(dev_open);
1382 static int __dev_close_many(struct list_head *head)
1384 struct net_device *dev;
1389 list_for_each_entry(dev, head, close_list) {
1390 /* Temporarily disable netpoll until the interface is down */
1391 netpoll_poll_disable(dev);
1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395 clear_bit(__LINK_STATE_START, &dev->state);
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1403 smp_mb__after_atomic(); /* Commit netif_running(). */
1406 dev_deactivate_many(head);
1408 list_for_each_entry(dev, head, close_list) {
1409 const struct net_device_ops *ops = dev->netdev_ops;
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1415 * We allow it to be called even after a DETACH hot-plug
1421 dev->flags &= ~IFF_UP;
1422 netpoll_poll_enable(dev);
1428 static int __dev_close(struct net_device *dev)
1433 list_add(&dev->close_list, &single);
1434 retval = __dev_close_many(&single);
1440 int dev_close_many(struct list_head *head, bool unlink)
1442 struct net_device *dev, *tmp;
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
1446 if (!(dev->flags & IFF_UP))
1447 list_del_init(&dev->close_list);
1449 __dev_close_many(head);
1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
1455 list_del_init(&dev->close_list);
1460 EXPORT_SYMBOL(dev_close_many);
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1471 int dev_close(struct net_device *dev)
1473 if (dev->flags & IFF_UP) {
1476 list_add(&dev->close_list, &single);
1477 dev_close_many(&single, true);
1482 EXPORT_SYMBOL(dev_close);
1486 * dev_disable_lro - disable Large Receive Offload on a device
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1493 void dev_disable_lro(struct net_device *dev)
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
1507 EXPORT_SYMBOL(dev_disable_lro);
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1512 struct netdev_notifier_info info;
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1518 static int dev_boot_phase = 1;
1521 * register_netdevice_notifier - register a network notifier block
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1529 * When registered all registration and up events are replayed
1530 * to the new notifier to allow device to have a race free
1531 * view of the network device list.
1534 int register_netdevice_notifier(struct notifier_block *nb)
1536 struct net_device *dev;
1537 struct net_device *last;
1542 err = raw_notifier_chain_register(&netdev_chain, nb);
1548 for_each_netdev(net, dev) {
1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550 err = notifier_to_errno(err);
1554 if (!(dev->flags & IFF_UP))
1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
1568 for_each_netdev(net, dev) {
1572 if (dev->flags & IFF_UP) {
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1582 raw_notifier_chain_unregister(&netdev_chain, nb);
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1588 * unregister_netdevice_notifier - unregister a network notifier block
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 struct net_device *dev;
1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
1650 * @dev: net_device pointer passed unmodified to notifier function
1652 * Call all network notifier blocks. Parameters and return value
1653 * are as for raw_notifier_call_chain().
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 struct netdev_notifier_info info;
1660 return call_netdevice_notifiers_info(val, dev, &info);
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1667 void net_inc_ingress_queue(void)
1669 static_key_slow_inc(&ingress_needed);
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673 void net_dec_ingress_queue(void)
1675 static_key_slow_dec(&ingress_needed);
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1683 void net_inc_egress_queue(void)
1685 static_key_slow_inc(&egress_needed);
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689 void net_dec_egress_queue(void)
1691 static_key_slow_dec(&egress_needed);
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699 * If net_disable_timestamp() is called from irq context, defer the
1700 * static_key_slow_dec() calls.
1702 static atomic_t netstamp_needed_deferred;
1705 void net_enable_timestamp(void)
1707 #ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1712 static_key_slow_dec(&netstamp_needed);
1716 static_key_slow_inc(&netstamp_needed);
1718 EXPORT_SYMBOL(net_enable_timestamp);
1720 void net_disable_timestamp(void)
1722 #ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1728 static_key_slow_dec(&netstamp_needed);
1730 EXPORT_SYMBOL(net_disable_timestamp);
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1735 if (static_key_false(&netstamp_needed))
1736 __net_timestamp(skb);
1739 #define net_timestamp_check(COND, SKB) \
1740 if (static_key_false(&netstamp_needed)) { \
1741 if ((COND) && !(SKB)->tstamp) \
1742 __net_timestamp(SKB); \
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1749 if (!(dev->flags & IFF_UP))
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1759 if (skb_is_gso(skb))
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 int ret = ____dev_forward_skb(dev, skb);
1771 skb->protocol = eth_type_trans(skb, dev);
1772 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1777 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1780 * dev_forward_skb - loopback an skb to another netif
1782 * @dev: destination network device
1783 * @skb: buffer to forward
1786 * NET_RX_SUCCESS (no congestion)
1787 * NET_RX_DROP (packet was dropped, but freed)
1789 * dev_forward_skb can be used for injecting an skb from the
1790 * start_xmit function of one device into the receive queue
1791 * of another device.
1793 * The receiving device may be in another namespace, so
1794 * we have to clear all information in the skb that could
1795 * impact namespace isolation.
1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1799 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1801 EXPORT_SYMBOL_GPL(dev_forward_skb);
1803 static inline int deliver_skb(struct sk_buff *skb,
1804 struct packet_type *pt_prev,
1805 struct net_device *orig_dev)
1807 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1809 atomic_inc(&skb->users);
1810 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814 struct packet_type **pt,
1815 struct net_device *orig_dev,
1817 struct list_head *ptype_list)
1819 struct packet_type *ptype, *pt_prev = *pt;
1821 list_for_each_entry_rcu(ptype, ptype_list, list) {
1822 if (ptype->type != type)
1825 deliver_skb(skb, pt_prev, orig_dev);
1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1833 if (!ptype->af_packet_priv || !skb->sk)
1836 if (ptype->id_match)
1837 return ptype->id_match(ptype, skb->sk);
1838 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 * Support routine. Sends outgoing frames to any network
1846 * taps currently in use.
1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1851 struct packet_type *ptype;
1852 struct sk_buff *skb2 = NULL;
1853 struct packet_type *pt_prev = NULL;
1854 struct list_head *ptype_list = &ptype_all;
1858 list_for_each_entry_rcu(ptype, ptype_list, list) {
1859 /* Never send packets back to the socket
1860 * they originated from - MvS (miquels@drinkel.ow.org)
1862 if (skb_loop_sk(ptype, skb))
1866 deliver_skb(skb2, pt_prev, skb->dev);
1871 /* need to clone skb, done only once */
1872 skb2 = skb_clone(skb, GFP_ATOMIC);
1876 net_timestamp_set(skb2);
1878 /* skb->nh should be correctly
1879 * set by sender, so that the second statement is
1880 * just protection against buggy protocols.
1882 skb_reset_mac_header(skb2);
1884 if (skb_network_header(skb2) < skb2->data ||
1885 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887 ntohs(skb2->protocol),
1889 skb_reset_network_header(skb2);
1892 skb2->transport_header = skb2->network_header;
1893 skb2->pkt_type = PACKET_OUTGOING;
1897 if (ptype_list == &ptype_all) {
1898 ptype_list = &dev->ptype_all;
1903 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1909 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1910 * @dev: Network device
1911 * @txq: number of queues available
1913 * If real_num_tx_queues is changed the tc mappings may no longer be
1914 * valid. To resolve this verify the tc mapping remains valid and if
1915 * not NULL the mapping. With no priorities mapping to this
1916 * offset/count pair it will no longer be used. In the worst case TC0
1917 * is invalid nothing can be done so disable priority mappings. If is
1918 * expected that drivers will fix this mapping if they can before
1919 * calling netif_set_real_num_tx_queues.
1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1924 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1926 /* If TC0 is invalidated disable TC mapping */
1927 if (tc->offset + tc->count > txq) {
1928 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1933 /* Invalidated prio to tc mappings set to TC0 */
1934 for (i = 1; i < TC_BITMASK + 1; i++) {
1935 int q = netdev_get_prio_tc_map(dev, i);
1937 tc = &dev->tc_to_txq[q];
1938 if (tc->offset + tc->count > txq) {
1939 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1941 netdev_set_prio_tc_map(dev, i, 0);
1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1952 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953 if ((txq - tc->offset) < tc->count)
1964 static DEFINE_MUTEX(xps_map_mutex);
1965 #define xmap_dereference(P) \
1966 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1971 struct xps_map *map = NULL;
1975 map = xmap_dereference(dev_maps->cpu_map[tci]);
1979 for (pos = map->len; pos--;) {
1980 if (map->queues[pos] != index)
1984 map->queues[pos] = map->queues[--map->len];
1988 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989 kfree_rcu(map, rcu);
1996 static bool remove_xps_queue_cpu(struct net_device *dev,
1997 struct xps_dev_maps *dev_maps,
1998 int cpu, u16 offset, u16 count)
2000 int num_tc = dev->num_tc ? : 1;
2001 bool active = false;
2004 for (tci = cpu * num_tc; num_tc--; tci++) {
2007 for (i = count, j = offset; i--; j++) {
2008 if (!remove_xps_queue(dev_maps, cpu, j))
2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2021 struct xps_dev_maps *dev_maps;
2023 bool active = false;
2025 mutex_lock(&xps_map_mutex);
2026 dev_maps = xmap_dereference(dev->xps_maps);
2031 for_each_possible_cpu(cpu)
2032 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2036 RCU_INIT_POINTER(dev->xps_maps, NULL);
2037 kfree_rcu(dev_maps, rcu);
2040 for (i = offset + (count - 1); count--; i--)
2041 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2045 mutex_unlock(&xps_map_mutex);
2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2050 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2053 static struct xps_map *expand_xps_map(struct xps_map *map,
2056 struct xps_map *new_map;
2057 int alloc_len = XPS_MIN_MAP_ALLOC;
2060 for (pos = 0; map && pos < map->len; pos++) {
2061 if (map->queues[pos] != index)
2066 /* Need to add queue to this CPU's existing map */
2068 if (pos < map->alloc_len)
2071 alloc_len = map->alloc_len * 2;
2074 /* Need to allocate new map to store queue on this CPU's map */
2075 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2080 for (i = 0; i < pos; i++)
2081 new_map->queues[i] = map->queues[i];
2082 new_map->alloc_len = alloc_len;
2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2091 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2092 int i, cpu, tci, numa_node_id = -2;
2093 int maps_sz, num_tc = 1, tc = 0;
2094 struct xps_map *map, *new_map;
2095 bool active = false;
2098 num_tc = dev->num_tc;
2099 tc = netdev_txq_to_tc(dev, index);
2104 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105 if (maps_sz < L1_CACHE_BYTES)
2106 maps_sz = L1_CACHE_BYTES;
2108 mutex_lock(&xps_map_mutex);
2110 dev_maps = xmap_dereference(dev->xps_maps);
2112 /* allocate memory for queue storage */
2113 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2115 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2116 if (!new_dev_maps) {
2117 mutex_unlock(&xps_map_mutex);
2121 tci = cpu * num_tc + tc;
2122 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2125 map = expand_xps_map(map, cpu, index);
2129 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2133 goto out_no_new_maps;
2135 for_each_possible_cpu(cpu) {
2136 /* copy maps belonging to foreign traffic classes */
2137 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138 /* fill in the new device map from the old device map */
2139 map = xmap_dereference(dev_maps->cpu_map[tci]);
2140 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2143 /* We need to explicitly update tci as prevous loop
2144 * could break out early if dev_maps is NULL.
2146 tci = cpu * num_tc + tc;
2148 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149 /* add queue to CPU maps */
2152 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2153 while ((pos < map->len) && (map->queues[pos] != index))
2156 if (pos == map->len)
2157 map->queues[map->len++] = index;
2159 if (numa_node_id == -2)
2160 numa_node_id = cpu_to_node(cpu);
2161 else if (numa_node_id != cpu_to_node(cpu))
2164 } else if (dev_maps) {
2165 /* fill in the new device map from the old device map */
2166 map = xmap_dereference(dev_maps->cpu_map[tci]);
2167 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2170 /* copy maps belonging to foreign traffic classes */
2171 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172 /* fill in the new device map from the old device map */
2173 map = xmap_dereference(dev_maps->cpu_map[tci]);
2174 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2178 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2180 /* Cleanup old maps */
2182 goto out_no_old_maps;
2184 for_each_possible_cpu(cpu) {
2185 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187 map = xmap_dereference(dev_maps->cpu_map[tci]);
2188 if (map && map != new_map)
2189 kfree_rcu(map, rcu);
2193 kfree_rcu(dev_maps, rcu);
2196 dev_maps = new_dev_maps;
2200 /* update Tx queue numa node */
2201 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202 (numa_node_id >= 0) ? numa_node_id :
2208 /* removes queue from unused CPUs */
2209 for_each_possible_cpu(cpu) {
2210 for (i = tc, tci = cpu * num_tc; i--; tci++)
2211 active |= remove_xps_queue(dev_maps, tci, index);
2212 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213 active |= remove_xps_queue(dev_maps, tci, index);
2214 for (i = num_tc - tc, tci++; --i; tci++)
2215 active |= remove_xps_queue(dev_maps, tci, index);
2218 /* free map if not active */
2220 RCU_INIT_POINTER(dev->xps_maps, NULL);
2221 kfree_rcu(dev_maps, rcu);
2225 mutex_unlock(&xps_map_mutex);
2229 /* remove any maps that we added */
2230 for_each_possible_cpu(cpu) {
2231 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2234 xmap_dereference(dev_maps->cpu_map[tci]) :
2236 if (new_map && new_map != map)
2241 mutex_unlock(&xps_map_mutex);
2243 kfree(new_dev_maps);
2246 EXPORT_SYMBOL(netif_set_xps_queue);
2249 void netdev_reset_tc(struct net_device *dev)
2252 netif_reset_xps_queues_gt(dev, 0);
2255 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2258 EXPORT_SYMBOL(netdev_reset_tc);
2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2262 if (tc >= dev->num_tc)
2266 netif_reset_xps_queues(dev, offset, count);
2268 dev->tc_to_txq[tc].count = count;
2269 dev->tc_to_txq[tc].offset = offset;
2272 EXPORT_SYMBOL(netdev_set_tc_queue);
2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2276 if (num_tc > TC_MAX_QUEUE)
2280 netif_reset_xps_queues_gt(dev, 0);
2282 dev->num_tc = num_tc;
2285 EXPORT_SYMBOL(netdev_set_num_tc);
2288 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2295 if (txq < 1 || txq > dev->num_tx_queues)
2298 if (dev->reg_state == NETREG_REGISTERED ||
2299 dev->reg_state == NETREG_UNREGISTERING) {
2302 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2308 netif_setup_tc(dev, txq);
2310 if (txq < dev->real_num_tx_queues) {
2311 qdisc_reset_all_tx_gt(dev, txq);
2313 netif_reset_xps_queues_gt(dev, txq);
2318 dev->real_num_tx_queues = txq;
2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2325 * netif_set_real_num_rx_queues - set actual number of RX queues used
2326 * @dev: Network device
2327 * @rxq: Actual number of RX queues
2329 * This must be called either with the rtnl_lock held or before
2330 * registration of the net device. Returns 0 on success, or a
2331 * negative error code. If called before registration, it always
2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2338 if (rxq < 1 || rxq > dev->num_rx_queues)
2341 if (dev->reg_state == NETREG_REGISTERED) {
2344 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2350 dev->real_num_rx_queues = rxq;
2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2357 * netif_get_num_default_rss_queues - default number of RSS queues
2359 * This routine should set an upper limit on the number of RSS queues
2360 * used by default by multiqueue devices.
2362 int netif_get_num_default_rss_queues(void)
2364 return is_kdump_kernel() ?
2365 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2369 static void __netif_reschedule(struct Qdisc *q)
2371 struct softnet_data *sd;
2372 unsigned long flags;
2374 local_irq_save(flags);
2375 sd = this_cpu_ptr(&softnet_data);
2376 q->next_sched = NULL;
2377 *sd->output_queue_tailp = q;
2378 sd->output_queue_tailp = &q->next_sched;
2379 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380 local_irq_restore(flags);
2383 void __netif_schedule(struct Qdisc *q)
2385 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386 __netif_reschedule(q);
2388 EXPORT_SYMBOL(__netif_schedule);
2390 struct dev_kfree_skb_cb {
2391 enum skb_free_reason reason;
2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2396 return (struct dev_kfree_skb_cb *)skb->cb;
2399 void netif_schedule_queue(struct netdev_queue *txq)
2402 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403 struct Qdisc *q = rcu_dereference(txq->qdisc);
2405 __netif_schedule(q);
2409 EXPORT_SYMBOL(netif_schedule_queue);
2412 * netif_wake_subqueue - allow sending packets on subqueue
2413 * @dev: network device
2414 * @queue_index: sub queue index
2416 * Resume individual transmit queue of a device with multiple transmit queues.
2418 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2420 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2422 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2426 q = rcu_dereference(txq->qdisc);
2427 __netif_schedule(q);
2431 EXPORT_SYMBOL(netif_wake_subqueue);
2433 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2435 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2439 q = rcu_dereference(dev_queue->qdisc);
2440 __netif_schedule(q);
2444 EXPORT_SYMBOL(netif_tx_wake_queue);
2446 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2448 unsigned long flags;
2450 if (likely(atomic_read(&skb->users) == 1)) {
2452 atomic_set(&skb->users, 0);
2453 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2456 get_kfree_skb_cb(skb)->reason = reason;
2457 local_irq_save(flags);
2458 skb->next = __this_cpu_read(softnet_data.completion_queue);
2459 __this_cpu_write(softnet_data.completion_queue, skb);
2460 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461 local_irq_restore(flags);
2463 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2465 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2467 if (in_irq() || irqs_disabled())
2468 __dev_kfree_skb_irq(skb, reason);
2472 EXPORT_SYMBOL(__dev_kfree_skb_any);
2476 * netif_device_detach - mark device as removed
2477 * @dev: network device
2479 * Mark device as removed from system and therefore no longer available.
2481 void netif_device_detach(struct net_device *dev)
2483 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2484 netif_running(dev)) {
2485 netif_tx_stop_all_queues(dev);
2488 EXPORT_SYMBOL(netif_device_detach);
2491 * netif_device_attach - mark device as attached
2492 * @dev: network device
2494 * Mark device as attached from system and restart if needed.
2496 void netif_device_attach(struct net_device *dev)
2498 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2499 netif_running(dev)) {
2500 netif_tx_wake_all_queues(dev);
2501 __netdev_watchdog_up(dev);
2504 EXPORT_SYMBOL(netif_device_attach);
2507 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2508 * to be used as a distribution range.
2510 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2511 unsigned int num_tx_queues)
2515 u16 qcount = num_tx_queues;
2517 if (skb_rx_queue_recorded(skb)) {
2518 hash = skb_get_rx_queue(skb);
2519 while (unlikely(hash >= num_tx_queues))
2520 hash -= num_tx_queues;
2525 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2526 qoffset = dev->tc_to_txq[tc].offset;
2527 qcount = dev->tc_to_txq[tc].count;
2530 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2532 EXPORT_SYMBOL(__skb_tx_hash);
2534 static void skb_warn_bad_offload(const struct sk_buff *skb)
2536 static const netdev_features_t null_features;
2537 struct net_device *dev = skb->dev;
2538 const char *name = "";
2540 if (!net_ratelimit())
2544 if (dev->dev.parent)
2545 name = dev_driver_string(dev->dev.parent);
2547 name = netdev_name(dev);
2549 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2550 "gso_type=%d ip_summed=%d\n",
2551 name, dev ? &dev->features : &null_features,
2552 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2553 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2554 skb_shinfo(skb)->gso_type, skb->ip_summed);
2558 * Invalidate hardware checksum when packet is to be mangled, and
2559 * complete checksum manually on outgoing path.
2561 int skb_checksum_help(struct sk_buff *skb)
2564 int ret = 0, offset;
2566 if (skb->ip_summed == CHECKSUM_COMPLETE)
2567 goto out_set_summed;
2569 if (unlikely(skb_shinfo(skb)->gso_size)) {
2570 skb_warn_bad_offload(skb);
2574 /* Before computing a checksum, we should make sure no frag could
2575 * be modified by an external entity : checksum could be wrong.
2577 if (skb_has_shared_frag(skb)) {
2578 ret = __skb_linearize(skb);
2583 offset = skb_checksum_start_offset(skb);
2584 BUG_ON(offset >= skb_headlen(skb));
2585 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2587 offset += skb->csum_offset;
2588 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2590 if (skb_cloned(skb) &&
2591 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2592 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2597 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2599 skb->ip_summed = CHECKSUM_NONE;
2603 EXPORT_SYMBOL(skb_checksum_help);
2605 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2607 __be16 type = skb->protocol;
2609 /* Tunnel gso handlers can set protocol to ethernet. */
2610 if (type == htons(ETH_P_TEB)) {
2613 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2616 eth = (struct ethhdr *)skb_mac_header(skb);
2617 type = eth->h_proto;
2620 return __vlan_get_protocol(skb, type, depth);
2624 * skb_mac_gso_segment - mac layer segmentation handler.
2625 * @skb: buffer to segment
2626 * @features: features for the output path (see dev->features)
2628 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2629 netdev_features_t features)
2631 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2632 struct packet_offload *ptype;
2633 int vlan_depth = skb->mac_len;
2634 __be16 type = skb_network_protocol(skb, &vlan_depth);
2636 if (unlikely(!type))
2637 return ERR_PTR(-EINVAL);
2639 __skb_pull(skb, vlan_depth);
2642 list_for_each_entry_rcu(ptype, &offload_base, list) {
2643 if (ptype->type == type && ptype->callbacks.gso_segment) {
2644 segs = ptype->callbacks.gso_segment(skb, features);
2650 __skb_push(skb, skb->data - skb_mac_header(skb));
2654 EXPORT_SYMBOL(skb_mac_gso_segment);
2657 /* openvswitch calls this on rx path, so we need a different check.
2659 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2662 return skb->ip_summed != CHECKSUM_PARTIAL;
2664 return skb->ip_summed == CHECKSUM_NONE;
2668 * __skb_gso_segment - Perform segmentation on skb.
2669 * @skb: buffer to segment
2670 * @features: features for the output path (see dev->features)
2671 * @tx_path: whether it is called in TX path
2673 * This function segments the given skb and returns a list of segments.
2675 * It may return NULL if the skb requires no segmentation. This is
2676 * only possible when GSO is used for verifying header integrity.
2678 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2680 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2681 netdev_features_t features, bool tx_path)
2683 if (unlikely(skb_needs_check(skb, tx_path))) {
2686 skb_warn_bad_offload(skb);
2688 err = skb_cow_head(skb, 0);
2690 return ERR_PTR(err);
2693 /* Only report GSO partial support if it will enable us to
2694 * support segmentation on this frame without needing additional
2697 if (features & NETIF_F_GSO_PARTIAL) {
2698 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2699 struct net_device *dev = skb->dev;
2701 partial_features |= dev->features & dev->gso_partial_features;
2702 if (!skb_gso_ok(skb, features | partial_features))
2703 features &= ~NETIF_F_GSO_PARTIAL;
2706 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2707 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2709 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2710 SKB_GSO_CB(skb)->encap_level = 0;
2712 skb_reset_mac_header(skb);
2713 skb_reset_mac_len(skb);
2715 return skb_mac_gso_segment(skb, features);
2717 EXPORT_SYMBOL(__skb_gso_segment);
2719 /* Take action when hardware reception checksum errors are detected. */
2721 void netdev_rx_csum_fault(struct net_device *dev)
2723 if (net_ratelimit()) {
2724 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2728 EXPORT_SYMBOL(netdev_rx_csum_fault);
2731 /* Actually, we should eliminate this check as soon as we know, that:
2732 * 1. IOMMU is present and allows to map all the memory.
2733 * 2. No high memory really exists on this machine.
2736 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2738 #ifdef CONFIG_HIGHMEM
2740 if (!(dev->features & NETIF_F_HIGHDMA)) {
2741 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2742 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2743 if (PageHighMem(skb_frag_page(frag)))
2748 if (PCI_DMA_BUS_IS_PHYS) {
2749 struct device *pdev = dev->dev.parent;
2753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2756 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2764 /* If MPLS offload request, verify we are testing hardware MPLS features
2765 * instead of standard features for the netdev.
2767 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2768 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2769 netdev_features_t features,
2772 if (eth_p_mpls(type))
2773 features &= skb->dev->mpls_features;
2778 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2779 netdev_features_t features,
2786 static netdev_features_t harmonize_features(struct sk_buff *skb,
2787 netdev_features_t features)
2792 type = skb_network_protocol(skb, &tmp);
2793 features = net_mpls_features(skb, features, type);
2795 if (skb->ip_summed != CHECKSUM_NONE &&
2796 !can_checksum_protocol(features, type)) {
2797 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2798 } else if (illegal_highdma(skb->dev, skb)) {
2799 features &= ~NETIF_F_SG;
2805 netdev_features_t passthru_features_check(struct sk_buff *skb,
2806 struct net_device *dev,
2807 netdev_features_t features)
2811 EXPORT_SYMBOL(passthru_features_check);
2813 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2814 struct net_device *dev,
2815 netdev_features_t features)
2817 return vlan_features_check(skb, features);
2820 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2821 struct net_device *dev,
2822 netdev_features_t features)
2824 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2826 if (gso_segs > dev->gso_max_segs)
2827 return features & ~NETIF_F_GSO_MASK;
2829 /* Support for GSO partial features requires software
2830 * intervention before we can actually process the packets
2831 * so we need to strip support for any partial features now
2832 * and we can pull them back in after we have partially
2833 * segmented the frame.
2835 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2836 features &= ~dev->gso_partial_features;
2838 /* Make sure to clear the IPv4 ID mangling feature if the
2839 * IPv4 header has the potential to be fragmented.
2841 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2842 struct iphdr *iph = skb->encapsulation ?
2843 inner_ip_hdr(skb) : ip_hdr(skb);
2845 if (!(iph->frag_off & htons(IP_DF)))
2846 features &= ~NETIF_F_TSO_MANGLEID;
2852 netdev_features_t netif_skb_features(struct sk_buff *skb)
2854 struct net_device *dev = skb->dev;
2855 netdev_features_t features = dev->features;
2857 if (skb_is_gso(skb))
2858 features = gso_features_check(skb, dev, features);
2860 /* If encapsulation offload request, verify we are testing
2861 * hardware encapsulation features instead of standard
2862 * features for the netdev
2864 if (skb->encapsulation)
2865 features &= dev->hw_enc_features;
2867 if (skb_vlan_tagged(skb))
2868 features = netdev_intersect_features(features,
2869 dev->vlan_features |
2870 NETIF_F_HW_VLAN_CTAG_TX |
2871 NETIF_F_HW_VLAN_STAG_TX);
2873 if (dev->netdev_ops->ndo_features_check)
2874 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2877 features &= dflt_features_check(skb, dev, features);
2879 return harmonize_features(skb, features);
2881 EXPORT_SYMBOL(netif_skb_features);
2883 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2884 struct netdev_queue *txq, bool more)
2889 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2890 dev_queue_xmit_nit(skb, dev);
2893 trace_net_dev_start_xmit(skb, dev);
2894 rc = netdev_start_xmit(skb, dev, txq, more);
2895 trace_net_dev_xmit(skb, rc, dev, len);
2900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2901 struct netdev_queue *txq, int *ret)
2903 struct sk_buff *skb = first;
2904 int rc = NETDEV_TX_OK;
2907 struct sk_buff *next = skb->next;
2910 rc = xmit_one(skb, dev, txq, next != NULL);
2911 if (unlikely(!dev_xmit_complete(rc))) {
2917 if (netif_xmit_stopped(txq) && skb) {
2918 rc = NETDEV_TX_BUSY;
2928 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2929 netdev_features_t features)
2931 if (skb_vlan_tag_present(skb) &&
2932 !vlan_hw_offload_capable(features, skb->vlan_proto))
2933 skb = __vlan_hwaccel_push_inside(skb);
2937 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2939 netdev_features_t features;
2941 features = netif_skb_features(skb);
2942 skb = validate_xmit_vlan(skb, features);
2946 if (netif_needs_gso(skb, features)) {
2947 struct sk_buff *segs;
2949 segs = skb_gso_segment(skb, features);
2957 if (skb_needs_linearize(skb, features) &&
2958 __skb_linearize(skb))
2961 /* If packet is not checksummed and device does not
2962 * support checksumming for this protocol, complete
2963 * checksumming here.
2965 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2966 if (skb->encapsulation)
2967 skb_set_inner_transport_header(skb,
2968 skb_checksum_start_offset(skb));
2970 skb_set_transport_header(skb,
2971 skb_checksum_start_offset(skb));
2972 if (!(features & NETIF_F_CSUM_MASK) &&
2973 skb_checksum_help(skb))
2983 atomic_long_inc(&dev->tx_dropped);
2987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2989 struct sk_buff *next, *head = NULL, *tail;
2991 for (; skb != NULL; skb = next) {
2995 /* in case skb wont be segmented, point to itself */
2998 skb = validate_xmit_skb(skb, dev);
3006 /* If skb was segmented, skb->prev points to
3007 * the last segment. If not, it still contains skb.
3013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3015 static void qdisc_pkt_len_init(struct sk_buff *skb)
3017 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3019 qdisc_skb_cb(skb)->pkt_len = skb->len;
3021 /* To get more precise estimation of bytes sent on wire,
3022 * we add to pkt_len the headers size of all segments
3024 if (shinfo->gso_size) {
3025 unsigned int hdr_len;
3026 u16 gso_segs = shinfo->gso_segs;
3028 /* mac layer + network layer */
3029 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3031 /* + transport layer */
3032 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3033 hdr_len += tcp_hdrlen(skb);
3035 hdr_len += sizeof(struct udphdr);
3037 if (shinfo->gso_type & SKB_GSO_DODGY)
3038 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3041 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3045 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3046 struct net_device *dev,
3047 struct netdev_queue *txq)
3049 spinlock_t *root_lock = qdisc_lock(q);
3050 struct sk_buff *to_free = NULL;
3054 qdisc_calculate_pkt_len(skb, q);
3056 * Heuristic to force contended enqueues to serialize on a
3057 * separate lock before trying to get qdisc main lock.
3058 * This permits qdisc->running owner to get the lock more
3059 * often and dequeue packets faster.
3061 contended = qdisc_is_running(q);
3062 if (unlikely(contended))
3063 spin_lock(&q->busylock);
3065 spin_lock(root_lock);
3066 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3067 __qdisc_drop(skb, &to_free);
3069 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3070 qdisc_run_begin(q)) {
3072 * This is a work-conserving queue; there are no old skbs
3073 * waiting to be sent out; and the qdisc is not running -
3074 * xmit the skb directly.
3077 qdisc_bstats_update(q, skb);
3079 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3080 if (unlikely(contended)) {
3081 spin_unlock(&q->busylock);
3088 rc = NET_XMIT_SUCCESS;
3090 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3091 if (qdisc_run_begin(q)) {
3092 if (unlikely(contended)) {
3093 spin_unlock(&q->busylock);
3099 spin_unlock(root_lock);
3100 if (unlikely(to_free))
3101 kfree_skb_list(to_free);
3102 if (unlikely(contended))
3103 spin_unlock(&q->busylock);
3107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3108 static void skb_update_prio(struct sk_buff *skb)
3110 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3112 if (!skb->priority && skb->sk && map) {
3113 unsigned int prioidx =
3114 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3116 if (prioidx < map->priomap_len)
3117 skb->priority = map->priomap[prioidx];
3121 #define skb_update_prio(skb)
3124 DEFINE_PER_CPU(int, xmit_recursion);
3125 EXPORT_SYMBOL(xmit_recursion);
3128 * dev_loopback_xmit - loop back @skb
3129 * @net: network namespace this loopback is happening in
3130 * @sk: sk needed to be a netfilter okfn
3131 * @skb: buffer to transmit
3133 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3135 skb_reset_mac_header(skb);
3136 __skb_pull(skb, skb_network_offset(skb));
3137 skb->pkt_type = PACKET_LOOPBACK;
3138 skb->ip_summed = CHECKSUM_UNNECESSARY;
3139 WARN_ON(!skb_dst(skb));
3144 EXPORT_SYMBOL(dev_loopback_xmit);
3146 #ifdef CONFIG_NET_EGRESS
3147 static struct sk_buff *
3148 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3150 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3151 struct tcf_result cl_res;
3156 /* skb->tc_at and qdisc_skb_cb(skb)->pkt_len were already set
3157 * earlier by the caller.
3159 qdisc_bstats_cpu_update(cl->q, skb);
3161 switch (tc_classify(skb, cl, &cl_res, false)) {
3163 case TC_ACT_RECLASSIFY:
3164 skb->tc_index = TC_H_MIN(cl_res.classid);
3167 qdisc_qstats_cpu_drop(cl->q);
3168 *ret = NET_XMIT_DROP;
3173 *ret = NET_XMIT_SUCCESS;
3176 case TC_ACT_REDIRECT:
3177 /* No need to push/pop skb's mac_header here on egress! */
3178 skb_do_redirect(skb);
3179 *ret = NET_XMIT_SUCCESS;
3187 #endif /* CONFIG_NET_EGRESS */
3189 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3192 struct xps_dev_maps *dev_maps;
3193 struct xps_map *map;
3194 int queue_index = -1;
3197 dev_maps = rcu_dereference(dev->xps_maps);
3199 unsigned int tci = skb->sender_cpu - 1;
3203 tci += netdev_get_prio_tc_map(dev, skb->priority);
3206 map = rcu_dereference(dev_maps->cpu_map[tci]);
3209 queue_index = map->queues[0];
3211 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3213 if (unlikely(queue_index >= dev->real_num_tx_queues))
3225 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3227 struct sock *sk = skb->sk;
3228 int queue_index = sk_tx_queue_get(sk);
3230 if (queue_index < 0 || skb->ooo_okay ||
3231 queue_index >= dev->real_num_tx_queues) {
3232 int new_index = get_xps_queue(dev, skb);
3234 new_index = skb_tx_hash(dev, skb);
3236 if (queue_index != new_index && sk &&
3238 rcu_access_pointer(sk->sk_dst_cache))
3239 sk_tx_queue_set(sk, new_index);
3241 queue_index = new_index;
3247 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3248 struct sk_buff *skb,
3251 int queue_index = 0;
3254 u32 sender_cpu = skb->sender_cpu - 1;
3256 if (sender_cpu >= (u32)NR_CPUS)
3257 skb->sender_cpu = raw_smp_processor_id() + 1;
3260 if (dev->real_num_tx_queues != 1) {
3261 const struct net_device_ops *ops = dev->netdev_ops;
3262 if (ops->ndo_select_queue)
3263 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3266 queue_index = __netdev_pick_tx(dev, skb);
3269 queue_index = netdev_cap_txqueue(dev, queue_index);
3272 skb_set_queue_mapping(skb, queue_index);
3273 return netdev_get_tx_queue(dev, queue_index);
3277 * __dev_queue_xmit - transmit a buffer
3278 * @skb: buffer to transmit
3279 * @accel_priv: private data used for L2 forwarding offload
3281 * Queue a buffer for transmission to a network device. The caller must
3282 * have set the device and priority and built the buffer before calling
3283 * this function. The function can be called from an interrupt.
3285 * A negative errno code is returned on a failure. A success does not
3286 * guarantee the frame will be transmitted as it may be dropped due
3287 * to congestion or traffic shaping.
3289 * -----------------------------------------------------------------------------------
3290 * I notice this method can also return errors from the queue disciplines,
3291 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3294 * Regardless of the return value, the skb is consumed, so it is currently
3295 * difficult to retry a send to this method. (You can bump the ref count
3296 * before sending to hold a reference for retry if you are careful.)
3298 * When calling this method, interrupts MUST be enabled. This is because
3299 * the BH enable code must have IRQs enabled so that it will not deadlock.
3302 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3304 struct net_device *dev = skb->dev;
3305 struct netdev_queue *txq;
3309 skb_reset_mac_header(skb);
3311 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3312 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3314 /* Disable soft irqs for various locks below. Also
3315 * stops preemption for RCU.
3319 skb_update_prio(skb);
3321 qdisc_pkt_len_init(skb);
3322 #ifdef CONFIG_NET_CLS_ACT
3323 skb->tc_at = AT_EGRESS;
3324 # ifdef CONFIG_NET_EGRESS
3325 if (static_key_false(&egress_needed)) {
3326 skb = sch_handle_egress(skb, &rc, dev);
3332 /* If device/qdisc don't need skb->dst, release it right now while
3333 * its hot in this cpu cache.
3335 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3340 txq = netdev_pick_tx(dev, skb, accel_priv);
3341 q = rcu_dereference_bh(txq->qdisc);
3343 trace_net_dev_queue(skb);
3345 rc = __dev_xmit_skb(skb, q, dev, txq);
3349 /* The device has no queue. Common case for software devices:
3350 loopback, all the sorts of tunnels...
3352 Really, it is unlikely that netif_tx_lock protection is necessary
3353 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3355 However, it is possible, that they rely on protection
3358 Check this and shot the lock. It is not prone from deadlocks.
3359 Either shot noqueue qdisc, it is even simpler 8)
3361 if (dev->flags & IFF_UP) {
3362 int cpu = smp_processor_id(); /* ok because BHs are off */
3364 if (txq->xmit_lock_owner != cpu) {
3365 if (unlikely(__this_cpu_read(xmit_recursion) >
3366 XMIT_RECURSION_LIMIT))
3367 goto recursion_alert;
3369 skb = validate_xmit_skb(skb, dev);
3373 HARD_TX_LOCK(dev, txq, cpu);
3375 if (!netif_xmit_stopped(txq)) {
3376 __this_cpu_inc(xmit_recursion);
3377 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3378 __this_cpu_dec(xmit_recursion);
3379 if (dev_xmit_complete(rc)) {
3380 HARD_TX_UNLOCK(dev, txq);
3384 HARD_TX_UNLOCK(dev, txq);
3385 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3388 /* Recursion is detected! It is possible,
3392 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3398 rcu_read_unlock_bh();
3400 atomic_long_inc(&dev->tx_dropped);
3401 kfree_skb_list(skb);
3404 rcu_read_unlock_bh();
3408 int dev_queue_xmit(struct sk_buff *skb)
3410 return __dev_queue_xmit(skb, NULL);
3412 EXPORT_SYMBOL(dev_queue_xmit);
3414 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3416 return __dev_queue_xmit(skb, accel_priv);
3418 EXPORT_SYMBOL(dev_queue_xmit_accel);
3421 /*=======================================================================
3423 =======================================================================*/
3425 int netdev_max_backlog __read_mostly = 1000;
3426 EXPORT_SYMBOL(netdev_max_backlog);
3428 int netdev_tstamp_prequeue __read_mostly = 1;
3429 int netdev_budget __read_mostly = 300;
3430 int weight_p __read_mostly = 64; /* old backlog weight */
3431 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3432 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3433 int dev_rx_weight __read_mostly = 64;
3434 int dev_tx_weight __read_mostly = 64;
3436 /* Called with irq disabled */
3437 static inline void ____napi_schedule(struct softnet_data *sd,
3438 struct napi_struct *napi)
3440 list_add_tail(&napi->poll_list, &sd->poll_list);
3441 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3446 /* One global table that all flow-based protocols share. */
3447 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3448 EXPORT_SYMBOL(rps_sock_flow_table);
3449 u32 rps_cpu_mask __read_mostly;
3450 EXPORT_SYMBOL(rps_cpu_mask);
3452 struct static_key rps_needed __read_mostly;
3453 EXPORT_SYMBOL(rps_needed);
3454 struct static_key rfs_needed __read_mostly;
3455 EXPORT_SYMBOL(rfs_needed);
3457 static struct rps_dev_flow *
3458 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3459 struct rps_dev_flow *rflow, u16 next_cpu)
3461 if (next_cpu < nr_cpu_ids) {
3462 #ifdef CONFIG_RFS_ACCEL
3463 struct netdev_rx_queue *rxqueue;
3464 struct rps_dev_flow_table *flow_table;
3465 struct rps_dev_flow *old_rflow;
3470 /* Should we steer this flow to a different hardware queue? */
3471 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3472 !(dev->features & NETIF_F_NTUPLE))
3474 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3475 if (rxq_index == skb_get_rx_queue(skb))
3478 rxqueue = dev->_rx + rxq_index;
3479 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3482 flow_id = skb_get_hash(skb) & flow_table->mask;
3483 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3484 rxq_index, flow_id);
3488 rflow = &flow_table->flows[flow_id];
3490 if (old_rflow->filter == rflow->filter)
3491 old_rflow->filter = RPS_NO_FILTER;
3495 per_cpu(softnet_data, next_cpu).input_queue_head;
3498 rflow->cpu = next_cpu;
3503 * get_rps_cpu is called from netif_receive_skb and returns the target
3504 * CPU from the RPS map of the receiving queue for a given skb.
3505 * rcu_read_lock must be held on entry.
3507 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3508 struct rps_dev_flow **rflowp)
3510 const struct rps_sock_flow_table *sock_flow_table;
3511 struct netdev_rx_queue *rxqueue = dev->_rx;
3512 struct rps_dev_flow_table *flow_table;
3513 struct rps_map *map;
3518 if (skb_rx_queue_recorded(skb)) {
3519 u16 index = skb_get_rx_queue(skb);
3521 if (unlikely(index >= dev->real_num_rx_queues)) {
3522 WARN_ONCE(dev->real_num_rx_queues > 1,
3523 "%s received packet on queue %u, but number "
3524 "of RX queues is %u\n",
3525 dev->name, index, dev->real_num_rx_queues);
3531 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3533 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3534 map = rcu_dereference(rxqueue->rps_map);
3535 if (!flow_table && !map)
3538 skb_reset_network_header(skb);
3539 hash = skb_get_hash(skb);
3543 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3544 if (flow_table && sock_flow_table) {
3545 struct rps_dev_flow *rflow;
3549 /* First check into global flow table if there is a match */
3550 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3551 if ((ident ^ hash) & ~rps_cpu_mask)
3554 next_cpu = ident & rps_cpu_mask;
3556 /* OK, now we know there is a match,
3557 * we can look at the local (per receive queue) flow table
3559 rflow = &flow_table->flows[hash & flow_table->mask];
3563 * If the desired CPU (where last recvmsg was done) is
3564 * different from current CPU (one in the rx-queue flow
3565 * table entry), switch if one of the following holds:
3566 * - Current CPU is unset (>= nr_cpu_ids).
3567 * - Current CPU is offline.
3568 * - The current CPU's queue tail has advanced beyond the
3569 * last packet that was enqueued using this table entry.
3570 * This guarantees that all previous packets for the flow
3571 * have been dequeued, thus preserving in order delivery.
3573 if (unlikely(tcpu != next_cpu) &&
3574 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3575 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3576 rflow->last_qtail)) >= 0)) {
3578 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3581 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3591 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3592 if (cpu_online(tcpu)) {
3602 #ifdef CONFIG_RFS_ACCEL
3605 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3606 * @dev: Device on which the filter was set
3607 * @rxq_index: RX queue index
3608 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3609 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3611 * Drivers that implement ndo_rx_flow_steer() should periodically call
3612 * this function for each installed filter and remove the filters for
3613 * which it returns %true.
3615 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3616 u32 flow_id, u16 filter_id)
3618 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3619 struct rps_dev_flow_table *flow_table;
3620 struct rps_dev_flow *rflow;
3625 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3626 if (flow_table && flow_id <= flow_table->mask) {
3627 rflow = &flow_table->flows[flow_id];
3628 cpu = ACCESS_ONCE(rflow->cpu);
3629 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3630 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3631 rflow->last_qtail) <
3632 (int)(10 * flow_table->mask)))
3638 EXPORT_SYMBOL(rps_may_expire_flow);
3640 #endif /* CONFIG_RFS_ACCEL */
3642 /* Called from hardirq (IPI) context */
3643 static void rps_trigger_softirq(void *data)
3645 struct softnet_data *sd = data;
3647 ____napi_schedule(sd, &sd->backlog);
3651 #endif /* CONFIG_RPS */
3654 * Check if this softnet_data structure is another cpu one
3655 * If yes, queue it to our IPI list and return 1
3658 static int rps_ipi_queued(struct softnet_data *sd)
3661 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3664 sd->rps_ipi_next = mysd->rps_ipi_list;
3665 mysd->rps_ipi_list = sd;
3667 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3670 #endif /* CONFIG_RPS */
3674 #ifdef CONFIG_NET_FLOW_LIMIT
3675 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3678 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3680 #ifdef CONFIG_NET_FLOW_LIMIT
3681 struct sd_flow_limit *fl;
3682 struct softnet_data *sd;
3683 unsigned int old_flow, new_flow;
3685 if (qlen < (netdev_max_backlog >> 1))
3688 sd = this_cpu_ptr(&softnet_data);
3691 fl = rcu_dereference(sd->flow_limit);
3693 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3694 old_flow = fl->history[fl->history_head];
3695 fl->history[fl->history_head] = new_flow;
3698 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3700 if (likely(fl->buckets[old_flow]))
3701 fl->buckets[old_flow]--;
3703 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3715 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3716 * queue (may be a remote CPU queue).
3718 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3719 unsigned int *qtail)
3721 struct softnet_data *sd;
3722 unsigned long flags;
3725 sd = &per_cpu(softnet_data, cpu);
3727 local_irq_save(flags);
3730 if (!netif_running(skb->dev))
3732 qlen = skb_queue_len(&sd->input_pkt_queue);
3733 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3736 __skb_queue_tail(&sd->input_pkt_queue, skb);
3737 input_queue_tail_incr_save(sd, qtail);
3739 local_irq_restore(flags);
3740 return NET_RX_SUCCESS;
3743 /* Schedule NAPI for backlog device
3744 * We can use non atomic operation since we own the queue lock
3746 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3747 if (!rps_ipi_queued(sd))
3748 ____napi_schedule(sd, &sd->backlog);
3757 local_irq_restore(flags);
3759 atomic_long_inc(&skb->dev->rx_dropped);
3764 static int netif_rx_internal(struct sk_buff *skb)
3768 net_timestamp_check(netdev_tstamp_prequeue, skb);
3770 trace_netif_rx(skb);
3772 if (static_key_false(&rps_needed)) {
3773 struct rps_dev_flow voidflow, *rflow = &voidflow;
3779 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3781 cpu = smp_processor_id();
3783 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3791 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3798 * netif_rx - post buffer to the network code
3799 * @skb: buffer to post
3801 * This function receives a packet from a device driver and queues it for
3802 * the upper (protocol) levels to process. It always succeeds. The buffer
3803 * may be dropped during processing for congestion control or by the
3807 * NET_RX_SUCCESS (no congestion)
3808 * NET_RX_DROP (packet was dropped)
3812 int netif_rx(struct sk_buff *skb)
3814 trace_netif_rx_entry(skb);
3816 return netif_rx_internal(skb);
3818 EXPORT_SYMBOL(netif_rx);
3820 int netif_rx_ni(struct sk_buff *skb)
3824 trace_netif_rx_ni_entry(skb);
3827 err = netif_rx_internal(skb);
3828 if (local_softirq_pending())
3834 EXPORT_SYMBOL(netif_rx_ni);
3836 static __latent_entropy void net_tx_action(struct softirq_action *h)
3838 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3840 if (sd->completion_queue) {
3841 struct sk_buff *clist;
3843 local_irq_disable();
3844 clist = sd->completion_queue;
3845 sd->completion_queue = NULL;
3849 struct sk_buff *skb = clist;
3850 clist = clist->next;
3852 WARN_ON(atomic_read(&skb->users));
3853 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3854 trace_consume_skb(skb);
3856 trace_kfree_skb(skb, net_tx_action);
3858 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3861 __kfree_skb_defer(skb);
3864 __kfree_skb_flush();
3867 if (sd->output_queue) {
3870 local_irq_disable();
3871 head = sd->output_queue;
3872 sd->output_queue = NULL;
3873 sd->output_queue_tailp = &sd->output_queue;
3877 struct Qdisc *q = head;
3878 spinlock_t *root_lock;
3880 head = head->next_sched;
3882 root_lock = qdisc_lock(q);
3883 spin_lock(root_lock);
3884 /* We need to make sure head->next_sched is read
3885 * before clearing __QDISC_STATE_SCHED
3887 smp_mb__before_atomic();
3888 clear_bit(__QDISC_STATE_SCHED, &q->state);
3890 spin_unlock(root_lock);
3895 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3896 /* This hook is defined here for ATM LANE */
3897 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3898 unsigned char *addr) __read_mostly;
3899 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3902 static inline struct sk_buff *
3903 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3904 struct net_device *orig_dev)
3906 #ifdef CONFIG_NET_CLS_ACT
3907 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3908 struct tcf_result cl_res;
3910 /* If there's at least one ingress present somewhere (so
3911 * we get here via enabled static key), remaining devices
3912 * that are not configured with an ingress qdisc will bail
3918 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3922 qdisc_skb_cb(skb)->pkt_len = skb->len;
3923 skb->tc_at = AT_INGRESS;
3924 qdisc_bstats_cpu_update(cl->q, skb);
3926 switch (tc_classify(skb, cl, &cl_res, false)) {
3928 case TC_ACT_RECLASSIFY:
3929 skb->tc_index = TC_H_MIN(cl_res.classid);
3932 qdisc_qstats_cpu_drop(cl->q);
3939 case TC_ACT_REDIRECT:
3940 /* skb_mac_header check was done by cls/act_bpf, so
3941 * we can safely push the L2 header back before
3942 * redirecting to another netdev
3944 __skb_push(skb, skb->mac_len);
3945 skb_do_redirect(skb);
3950 #endif /* CONFIG_NET_CLS_ACT */
3955 * netdev_is_rx_handler_busy - check if receive handler is registered
3956 * @dev: device to check
3958 * Check if a receive handler is already registered for a given device.
3959 * Return true if there one.
3961 * The caller must hold the rtnl_mutex.
3963 bool netdev_is_rx_handler_busy(struct net_device *dev)
3966 return dev && rtnl_dereference(dev->rx_handler);
3968 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3971 * netdev_rx_handler_register - register receive handler
3972 * @dev: device to register a handler for
3973 * @rx_handler: receive handler to register
3974 * @rx_handler_data: data pointer that is used by rx handler
3976 * Register a receive handler for a device. This handler will then be
3977 * called from __netif_receive_skb. A negative errno code is returned
3980 * The caller must hold the rtnl_mutex.
3982 * For a general description of rx_handler, see enum rx_handler_result.
3984 int netdev_rx_handler_register(struct net_device *dev,
3985 rx_handler_func_t *rx_handler,
3986 void *rx_handler_data)
3990 if (dev->rx_handler)
3993 /* Note: rx_handler_data must be set before rx_handler */
3994 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3995 rcu_assign_pointer(dev->rx_handler, rx_handler);
3999 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4002 * netdev_rx_handler_unregister - unregister receive handler
4003 * @dev: device to unregister a handler from
4005 * Unregister a receive handler from a device.
4007 * The caller must hold the rtnl_mutex.
4009 void netdev_rx_handler_unregister(struct net_device *dev)
4013 RCU_INIT_POINTER(dev->rx_handler, NULL);
4014 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4015 * section has a guarantee to see a non NULL rx_handler_data
4019 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4021 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4024 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4025 * the special handling of PFMEMALLOC skbs.
4027 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4029 switch (skb->protocol) {
4030 case htons(ETH_P_ARP):
4031 case htons(ETH_P_IP):
4032 case htons(ETH_P_IPV6):
4033 case htons(ETH_P_8021Q):
4034 case htons(ETH_P_8021AD):
4041 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4042 int *ret, struct net_device *orig_dev)
4044 #ifdef CONFIG_NETFILTER_INGRESS
4045 if (nf_hook_ingress_active(skb)) {
4049 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4054 ingress_retval = nf_hook_ingress(skb);
4056 return ingress_retval;
4058 #endif /* CONFIG_NETFILTER_INGRESS */
4062 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4064 struct packet_type *ptype, *pt_prev;
4065 rx_handler_func_t *rx_handler;
4066 struct net_device *orig_dev;
4067 bool deliver_exact = false;
4068 int ret = NET_RX_DROP;
4071 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4073 trace_netif_receive_skb(skb);
4075 orig_dev = skb->dev;
4077 skb_reset_network_header(skb);
4078 if (!skb_transport_header_was_set(skb))
4079 skb_reset_transport_header(skb);
4080 skb_reset_mac_len(skb);
4085 skb->skb_iif = skb->dev->ifindex;
4087 __this_cpu_inc(softnet_data.processed);
4089 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4090 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4091 skb = skb_vlan_untag(skb);
4096 if (skb_skip_tc_classify(skb))
4102 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4104 ret = deliver_skb(skb, pt_prev, orig_dev);
4108 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4110 ret = deliver_skb(skb, pt_prev, orig_dev);
4115 #ifdef CONFIG_NET_INGRESS
4116 if (static_key_false(&ingress_needed)) {
4117 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4121 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4127 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4130 if (skb_vlan_tag_present(skb)) {
4132 ret = deliver_skb(skb, pt_prev, orig_dev);
4135 if (vlan_do_receive(&skb))
4137 else if (unlikely(!skb))
4141 rx_handler = rcu_dereference(skb->dev->rx_handler);
4144 ret = deliver_skb(skb, pt_prev, orig_dev);
4147 switch (rx_handler(&skb)) {
4148 case RX_HANDLER_CONSUMED:
4149 ret = NET_RX_SUCCESS;
4151 case RX_HANDLER_ANOTHER:
4153 case RX_HANDLER_EXACT:
4154 deliver_exact = true;
4155 case RX_HANDLER_PASS:
4162 if (unlikely(skb_vlan_tag_present(skb))) {
4163 if (skb_vlan_tag_get_id(skb))
4164 skb->pkt_type = PACKET_OTHERHOST;
4165 /* Note: we might in the future use prio bits
4166 * and set skb->priority like in vlan_do_receive()
4167 * For the time being, just ignore Priority Code Point
4172 type = skb->protocol;
4174 /* deliver only exact match when indicated */
4175 if (likely(!deliver_exact)) {
4176 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4177 &ptype_base[ntohs(type) &
4181 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4182 &orig_dev->ptype_specific);
4184 if (unlikely(skb->dev != orig_dev)) {
4185 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4186 &skb->dev->ptype_specific);
4190 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4193 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4197 atomic_long_inc(&skb->dev->rx_dropped);
4199 atomic_long_inc(&skb->dev->rx_nohandler);
4201 /* Jamal, now you will not able to escape explaining
4202 * me how you were going to use this. :-)
4211 static int __netif_receive_skb(struct sk_buff *skb)
4215 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4216 unsigned long pflags = current->flags;
4219 * PFMEMALLOC skbs are special, they should
4220 * - be delivered to SOCK_MEMALLOC sockets only
4221 * - stay away from userspace
4222 * - have bounded memory usage
4224 * Use PF_MEMALLOC as this saves us from propagating the allocation
4225 * context down to all allocation sites.
4227 current->flags |= PF_MEMALLOC;
4228 ret = __netif_receive_skb_core(skb, true);
4229 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4231 ret = __netif_receive_skb_core(skb, false);
4236 static int netif_receive_skb_internal(struct sk_buff *skb)
4240 net_timestamp_check(netdev_tstamp_prequeue, skb);
4242 if (skb_defer_rx_timestamp(skb))
4243 return NET_RX_SUCCESS;
4248 if (static_key_false(&rps_needed)) {
4249 struct rps_dev_flow voidflow, *rflow = &voidflow;
4250 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4253 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4259 ret = __netif_receive_skb(skb);
4265 * netif_receive_skb - process receive buffer from network
4266 * @skb: buffer to process
4268 * netif_receive_skb() is the main receive data processing function.
4269 * It always succeeds. The buffer may be dropped during processing
4270 * for congestion control or by the protocol layers.
4272 * This function may only be called from softirq context and interrupts
4273 * should be enabled.
4275 * Return values (usually ignored):
4276 * NET_RX_SUCCESS: no congestion
4277 * NET_RX_DROP: packet was dropped
4279 int netif_receive_skb(struct sk_buff *skb)
4281 trace_netif_receive_skb_entry(skb);
4283 return netif_receive_skb_internal(skb);
4285 EXPORT_SYMBOL(netif_receive_skb);
4287 DEFINE_PER_CPU(struct work_struct, flush_works);
4289 /* Network device is going away, flush any packets still pending */
4290 static void flush_backlog(struct work_struct *work)
4292 struct sk_buff *skb, *tmp;
4293 struct softnet_data *sd;
4296 sd = this_cpu_ptr(&softnet_data);
4298 local_irq_disable();
4300 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4301 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4302 __skb_unlink(skb, &sd->input_pkt_queue);
4304 input_queue_head_incr(sd);
4310 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4311 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4312 __skb_unlink(skb, &sd->process_queue);
4314 input_queue_head_incr(sd);
4320 static void flush_all_backlogs(void)
4326 for_each_online_cpu(cpu)
4327 queue_work_on(cpu, system_highpri_wq,
4328 per_cpu_ptr(&flush_works, cpu));
4330 for_each_online_cpu(cpu)
4331 flush_work(per_cpu_ptr(&flush_works, cpu));
4336 static int napi_gro_complete(struct sk_buff *skb)
4338 struct packet_offload *ptype;
4339 __be16 type = skb->protocol;
4340 struct list_head *head = &offload_base;
4343 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4345 if (NAPI_GRO_CB(skb)->count == 1) {
4346 skb_shinfo(skb)->gso_size = 0;
4351 list_for_each_entry_rcu(ptype, head, list) {
4352 if (ptype->type != type || !ptype->callbacks.gro_complete)
4355 err = ptype->callbacks.gro_complete(skb, 0);
4361 WARN_ON(&ptype->list == head);
4363 return NET_RX_SUCCESS;
4367 return netif_receive_skb_internal(skb);
4370 /* napi->gro_list contains packets ordered by age.
4371 * youngest packets at the head of it.
4372 * Complete skbs in reverse order to reduce latencies.
4374 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4376 struct sk_buff *skb, *prev = NULL;
4378 /* scan list and build reverse chain */
4379 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4384 for (skb = prev; skb; skb = prev) {
4387 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4391 napi_gro_complete(skb);
4395 napi->gro_list = NULL;
4397 EXPORT_SYMBOL(napi_gro_flush);
4399 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4402 unsigned int maclen = skb->dev->hard_header_len;
4403 u32 hash = skb_get_hash_raw(skb);
4405 for (p = napi->gro_list; p; p = p->next) {
4406 unsigned long diffs;
4408 NAPI_GRO_CB(p)->flush = 0;
4410 if (hash != skb_get_hash_raw(p)) {
4411 NAPI_GRO_CB(p)->same_flow = 0;
4415 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4416 diffs |= p->vlan_tci ^ skb->vlan_tci;
4417 diffs |= skb_metadata_dst_cmp(p, skb);
4418 if (maclen == ETH_HLEN)
4419 diffs |= compare_ether_header(skb_mac_header(p),
4420 skb_mac_header(skb));
4422 diffs = memcmp(skb_mac_header(p),
4423 skb_mac_header(skb),
4425 NAPI_GRO_CB(p)->same_flow = !diffs;
4429 static void skb_gro_reset_offset(struct sk_buff *skb)
4431 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4432 const skb_frag_t *frag0 = &pinfo->frags[0];
4434 NAPI_GRO_CB(skb)->data_offset = 0;
4435 NAPI_GRO_CB(skb)->frag0 = NULL;
4436 NAPI_GRO_CB(skb)->frag0_len = 0;
4438 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4440 !PageHighMem(skb_frag_page(frag0))) {
4441 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4442 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4446 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4448 struct skb_shared_info *pinfo = skb_shinfo(skb);
4450 BUG_ON(skb->end - skb->tail < grow);
4452 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4454 skb->data_len -= grow;
4457 pinfo->frags[0].page_offset += grow;
4458 skb_frag_size_sub(&pinfo->frags[0], grow);
4460 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4461 skb_frag_unref(skb, 0);
4462 memmove(pinfo->frags, pinfo->frags + 1,
4463 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4467 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4469 struct sk_buff **pp = NULL;
4470 struct packet_offload *ptype;
4471 __be16 type = skb->protocol;
4472 struct list_head *head = &offload_base;
4474 enum gro_result ret;
4477 if (!(skb->dev->features & NETIF_F_GRO))
4483 gro_list_prepare(napi, skb);
4486 list_for_each_entry_rcu(ptype, head, list) {
4487 if (ptype->type != type || !ptype->callbacks.gro_receive)
4490 skb_set_network_header(skb, skb_gro_offset(skb));
4491 skb_reset_mac_len(skb);
4492 NAPI_GRO_CB(skb)->same_flow = 0;
4493 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4494 NAPI_GRO_CB(skb)->free = 0;
4495 NAPI_GRO_CB(skb)->encap_mark = 0;
4496 NAPI_GRO_CB(skb)->recursion_counter = 0;
4497 NAPI_GRO_CB(skb)->is_fou = 0;
4498 NAPI_GRO_CB(skb)->is_atomic = 1;
4499 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4501 /* Setup for GRO checksum validation */
4502 switch (skb->ip_summed) {
4503 case CHECKSUM_COMPLETE:
4504 NAPI_GRO_CB(skb)->csum = skb->csum;
4505 NAPI_GRO_CB(skb)->csum_valid = 1;
4506 NAPI_GRO_CB(skb)->csum_cnt = 0;
4508 case CHECKSUM_UNNECESSARY:
4509 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4510 NAPI_GRO_CB(skb)->csum_valid = 0;
4513 NAPI_GRO_CB(skb)->csum_cnt = 0;
4514 NAPI_GRO_CB(skb)->csum_valid = 0;
4517 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4522 if (&ptype->list == head)
4525 same_flow = NAPI_GRO_CB(skb)->same_flow;
4526 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4529 struct sk_buff *nskb = *pp;
4533 napi_gro_complete(nskb);
4540 if (NAPI_GRO_CB(skb)->flush)
4543 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4544 struct sk_buff *nskb = napi->gro_list;
4546 /* locate the end of the list to select the 'oldest' flow */
4547 while (nskb->next) {
4553 napi_gro_complete(nskb);
4557 NAPI_GRO_CB(skb)->count = 1;
4558 NAPI_GRO_CB(skb)->age = jiffies;
4559 NAPI_GRO_CB(skb)->last = skb;
4560 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4561 skb->next = napi->gro_list;
4562 napi->gro_list = skb;
4566 grow = skb_gro_offset(skb) - skb_headlen(skb);
4568 gro_pull_from_frag0(skb, grow);
4577 struct packet_offload *gro_find_receive_by_type(__be16 type)
4579 struct list_head *offload_head = &offload_base;
4580 struct packet_offload *ptype;
4582 list_for_each_entry_rcu(ptype, offload_head, list) {
4583 if (ptype->type != type || !ptype->callbacks.gro_receive)
4589 EXPORT_SYMBOL(gro_find_receive_by_type);
4591 struct packet_offload *gro_find_complete_by_type(__be16 type)
4593 struct list_head *offload_head = &offload_base;
4594 struct packet_offload *ptype;
4596 list_for_each_entry_rcu(ptype, offload_head, list) {
4597 if (ptype->type != type || !ptype->callbacks.gro_complete)
4603 EXPORT_SYMBOL(gro_find_complete_by_type);
4605 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4609 if (netif_receive_skb_internal(skb))
4617 case GRO_MERGED_FREE:
4618 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4620 kmem_cache_free(skbuff_head_cache, skb);
4634 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4636 skb_mark_napi_id(skb, napi);
4637 trace_napi_gro_receive_entry(skb);
4639 skb_gro_reset_offset(skb);
4641 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4643 EXPORT_SYMBOL(napi_gro_receive);
4645 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4647 if (unlikely(skb->pfmemalloc)) {
4651 __skb_pull(skb, skb_headlen(skb));
4652 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4653 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4655 skb->dev = napi->dev;
4657 skb->encapsulation = 0;
4658 skb_shinfo(skb)->gso_type = 0;
4659 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4664 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4666 struct sk_buff *skb = napi->skb;
4669 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4672 skb_mark_napi_id(skb, napi);
4677 EXPORT_SYMBOL(napi_get_frags);
4679 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4680 struct sk_buff *skb,
4686 __skb_push(skb, ETH_HLEN);
4687 skb->protocol = eth_type_trans(skb, skb->dev);
4688 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4693 case GRO_MERGED_FREE:
4694 napi_reuse_skb(napi, skb);
4704 /* Upper GRO stack assumes network header starts at gro_offset=0
4705 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4706 * We copy ethernet header into skb->data to have a common layout.
4708 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4710 struct sk_buff *skb = napi->skb;
4711 const struct ethhdr *eth;
4712 unsigned int hlen = sizeof(*eth);
4716 skb_reset_mac_header(skb);
4717 skb_gro_reset_offset(skb);
4719 eth = skb_gro_header_fast(skb, 0);
4720 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4721 eth = skb_gro_header_slow(skb, hlen, 0);
4722 if (unlikely(!eth)) {
4723 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4724 __func__, napi->dev->name);
4725 napi_reuse_skb(napi, skb);
4729 gro_pull_from_frag0(skb, hlen);
4730 NAPI_GRO_CB(skb)->frag0 += hlen;
4731 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4733 __skb_pull(skb, hlen);
4736 * This works because the only protocols we care about don't require
4738 * We'll fix it up properly in napi_frags_finish()
4740 skb->protocol = eth->h_proto;
4745 gro_result_t napi_gro_frags(struct napi_struct *napi)
4747 struct sk_buff *skb = napi_frags_skb(napi);
4752 trace_napi_gro_frags_entry(skb);
4754 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4756 EXPORT_SYMBOL(napi_gro_frags);
4758 /* Compute the checksum from gro_offset and return the folded value
4759 * after adding in any pseudo checksum.
4761 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4766 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4768 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4769 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4771 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4772 !skb->csum_complete_sw)
4773 netdev_rx_csum_fault(skb->dev);
4776 NAPI_GRO_CB(skb)->csum = wsum;
4777 NAPI_GRO_CB(skb)->csum_valid = 1;
4781 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4784 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4785 * Note: called with local irq disabled, but exits with local irq enabled.
4787 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4790 struct softnet_data *remsd = sd->rps_ipi_list;
4793 sd->rps_ipi_list = NULL;
4797 /* Send pending IPI's to kick RPS processing on remote cpus. */
4799 struct softnet_data *next = remsd->rps_ipi_next;
4801 if (cpu_online(remsd->cpu))
4802 smp_call_function_single_async(remsd->cpu,
4811 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4814 return sd->rps_ipi_list != NULL;
4820 static int process_backlog(struct napi_struct *napi, int quota)
4822 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4826 /* Check if we have pending ipi, its better to send them now,
4827 * not waiting net_rx_action() end.
4829 if (sd_has_rps_ipi_waiting(sd)) {
4830 local_irq_disable();
4831 net_rps_action_and_irq_enable(sd);
4834 napi->weight = dev_rx_weight;
4836 struct sk_buff *skb;
4838 while ((skb = __skb_dequeue(&sd->process_queue))) {
4840 __netif_receive_skb(skb);
4842 input_queue_head_incr(sd);
4843 if (++work >= quota)
4848 local_irq_disable();
4850 if (skb_queue_empty(&sd->input_pkt_queue)) {
4852 * Inline a custom version of __napi_complete().
4853 * only current cpu owns and manipulates this napi,
4854 * and NAPI_STATE_SCHED is the only possible flag set
4856 * We can use a plain write instead of clear_bit(),
4857 * and we dont need an smp_mb() memory barrier.
4862 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4863 &sd->process_queue);
4873 * __napi_schedule - schedule for receive
4874 * @n: entry to schedule
4876 * The entry's receive function will be scheduled to run.
4877 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4879 void __napi_schedule(struct napi_struct *n)
4881 unsigned long flags;
4883 local_irq_save(flags);
4884 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4885 local_irq_restore(flags);
4887 EXPORT_SYMBOL(__napi_schedule);
4890 * __napi_schedule_irqoff - schedule for receive
4891 * @n: entry to schedule
4893 * Variant of __napi_schedule() assuming hard irqs are masked
4895 void __napi_schedule_irqoff(struct napi_struct *n)
4897 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4899 EXPORT_SYMBOL(__napi_schedule_irqoff);
4901 bool __napi_complete(struct napi_struct *n)
4903 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4905 /* Some drivers call us directly, instead of calling
4906 * napi_complete_done().
4908 if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4911 list_del_init(&n->poll_list);
4912 smp_mb__before_atomic();
4913 clear_bit(NAPI_STATE_SCHED, &n->state);
4916 EXPORT_SYMBOL(__napi_complete);
4918 bool napi_complete_done(struct napi_struct *n, int work_done)
4920 unsigned long flags;
4923 * 1) Don't let napi dequeue from the cpu poll list
4924 * just in case its running on a different cpu.
4925 * 2) If we are busy polling, do nothing here, we have
4926 * the guarantee we will be called later.
4928 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4929 NAPIF_STATE_IN_BUSY_POLL)))
4933 unsigned long timeout = 0;
4936 timeout = n->dev->gro_flush_timeout;
4939 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4940 HRTIMER_MODE_REL_PINNED);
4942 napi_gro_flush(n, false);
4944 if (likely(list_empty(&n->poll_list))) {
4945 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4947 /* If n->poll_list is not empty, we need to mask irqs */
4948 local_irq_save(flags);
4950 local_irq_restore(flags);
4954 EXPORT_SYMBOL(napi_complete_done);
4956 /* must be called under rcu_read_lock(), as we dont take a reference */
4957 static struct napi_struct *napi_by_id(unsigned int napi_id)
4959 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4960 struct napi_struct *napi;
4962 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4963 if (napi->napi_id == napi_id)
4969 #if defined(CONFIG_NET_RX_BUSY_POLL)
4971 #define BUSY_POLL_BUDGET 8
4973 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4977 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4981 /* All we really want here is to re-enable device interrupts.
4982 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4984 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4985 netpoll_poll_unlock(have_poll_lock);
4986 if (rc == BUSY_POLL_BUDGET)
4987 __napi_schedule(napi);
4989 if (local_softirq_pending())
4993 bool sk_busy_loop(struct sock *sk, int nonblock)
4995 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4996 int (*napi_poll)(struct napi_struct *napi, int budget);
4997 int (*busy_poll)(struct napi_struct *dev);
4998 void *have_poll_lock = NULL;
4999 struct napi_struct *napi;
5008 napi = napi_by_id(sk->sk_napi_id);
5012 /* Note: ndo_busy_poll method is optional in linux-4.5 */
5013 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
5020 rc = busy_poll(napi);
5024 unsigned long val = READ_ONCE(napi->state);
5026 /* If multiple threads are competing for this napi,
5027 * we avoid dirtying napi->state as much as we can.
5029 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5030 NAPIF_STATE_IN_BUSY_POLL))
5032 if (cmpxchg(&napi->state, val,
5033 val | NAPIF_STATE_IN_BUSY_POLL |
5034 NAPIF_STATE_SCHED) != val)
5036 have_poll_lock = netpoll_poll_lock(napi);
5037 napi_poll = napi->poll;
5039 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5040 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5043 __NET_ADD_STATS(sock_net(sk),
5044 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5047 if (rc == LL_FLUSH_FAILED)
5048 break; /* permanent failure */
5050 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5051 busy_loop_timeout(end_time))
5054 if (unlikely(need_resched())) {
5056 busy_poll_stop(napi, have_poll_lock);
5060 rc = !skb_queue_empty(&sk->sk_receive_queue);
5061 if (rc || busy_loop_timeout(end_time))
5068 busy_poll_stop(napi, have_poll_lock);
5070 rc = !skb_queue_empty(&sk->sk_receive_queue);
5075 EXPORT_SYMBOL(sk_busy_loop);
5077 #endif /* CONFIG_NET_RX_BUSY_POLL */
5079 static void napi_hash_add(struct napi_struct *napi)
5081 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5082 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5085 spin_lock(&napi_hash_lock);
5087 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5089 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5090 napi_gen_id = NR_CPUS + 1;
5091 } while (napi_by_id(napi_gen_id));
5092 napi->napi_id = napi_gen_id;
5094 hlist_add_head_rcu(&napi->napi_hash_node,
5095 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5097 spin_unlock(&napi_hash_lock);
5100 /* Warning : caller is responsible to make sure rcu grace period
5101 * is respected before freeing memory containing @napi
5103 bool napi_hash_del(struct napi_struct *napi)
5105 bool rcu_sync_needed = false;
5107 spin_lock(&napi_hash_lock);
5109 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5110 rcu_sync_needed = true;
5111 hlist_del_rcu(&napi->napi_hash_node);
5113 spin_unlock(&napi_hash_lock);
5114 return rcu_sync_needed;
5116 EXPORT_SYMBOL_GPL(napi_hash_del);
5118 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5120 struct napi_struct *napi;
5122 napi = container_of(timer, struct napi_struct, timer);
5124 napi_schedule(napi);
5126 return HRTIMER_NORESTART;
5129 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5130 int (*poll)(struct napi_struct *, int), int weight)
5132 INIT_LIST_HEAD(&napi->poll_list);
5133 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5134 napi->timer.function = napi_watchdog;
5135 napi->gro_count = 0;
5136 napi->gro_list = NULL;
5139 if (weight > NAPI_POLL_WEIGHT)
5140 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5142 napi->weight = weight;
5143 list_add(&napi->dev_list, &dev->napi_list);
5145 #ifdef CONFIG_NETPOLL
5146 napi->poll_owner = -1;
5148 set_bit(NAPI_STATE_SCHED, &napi->state);
5149 napi_hash_add(napi);
5151 EXPORT_SYMBOL(netif_napi_add);
5153 void napi_disable(struct napi_struct *n)
5156 set_bit(NAPI_STATE_DISABLE, &n->state);
5158 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5160 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5163 hrtimer_cancel(&n->timer);
5165 clear_bit(NAPI_STATE_DISABLE, &n->state);
5167 EXPORT_SYMBOL(napi_disable);
5169 /* Must be called in process context */
5170 void netif_napi_del(struct napi_struct *napi)
5173 if (napi_hash_del(napi))
5175 list_del_init(&napi->dev_list);
5176 napi_free_frags(napi);
5178 kfree_skb_list(napi->gro_list);
5179 napi->gro_list = NULL;
5180 napi->gro_count = 0;
5182 EXPORT_SYMBOL(netif_napi_del);
5184 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5189 list_del_init(&n->poll_list);
5191 have = netpoll_poll_lock(n);
5195 /* This NAPI_STATE_SCHED test is for avoiding a race
5196 * with netpoll's poll_napi(). Only the entity which
5197 * obtains the lock and sees NAPI_STATE_SCHED set will
5198 * actually make the ->poll() call. Therefore we avoid
5199 * accidentally calling ->poll() when NAPI is not scheduled.
5202 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5203 work = n->poll(n, weight);
5204 trace_napi_poll(n, work, weight);
5207 WARN_ON_ONCE(work > weight);
5209 if (likely(work < weight))
5212 /* Drivers must not modify the NAPI state if they
5213 * consume the entire weight. In such cases this code
5214 * still "owns" the NAPI instance and therefore can
5215 * move the instance around on the list at-will.
5217 if (unlikely(napi_disable_pending(n))) {
5223 /* flush too old packets
5224 * If HZ < 1000, flush all packets.
5226 napi_gro_flush(n, HZ >= 1000);
5229 /* Some drivers may have called napi_schedule
5230 * prior to exhausting their budget.
5232 if (unlikely(!list_empty(&n->poll_list))) {
5233 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5234 n->dev ? n->dev->name : "backlog");
5238 list_add_tail(&n->poll_list, repoll);
5241 netpoll_poll_unlock(have);
5246 static __latent_entropy void net_rx_action(struct softirq_action *h)
5248 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5249 unsigned long time_limit = jiffies + 2;
5250 int budget = netdev_budget;
5254 local_irq_disable();
5255 list_splice_init(&sd->poll_list, &list);
5259 struct napi_struct *n;
5261 if (list_empty(&list)) {
5262 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5267 n = list_first_entry(&list, struct napi_struct, poll_list);
5268 budget -= napi_poll(n, &repoll);
5270 /* If softirq window is exhausted then punt.
5271 * Allow this to run for 2 jiffies since which will allow
5272 * an average latency of 1.5/HZ.
5274 if (unlikely(budget <= 0 ||
5275 time_after_eq(jiffies, time_limit))) {
5281 local_irq_disable();
5283 list_splice_tail_init(&sd->poll_list, &list);
5284 list_splice_tail(&repoll, &list);
5285 list_splice(&list, &sd->poll_list);
5286 if (!list_empty(&sd->poll_list))
5287 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5289 net_rps_action_and_irq_enable(sd);
5291 __kfree_skb_flush();
5294 struct netdev_adjacent {
5295 struct net_device *dev;
5297 /* upper master flag, there can only be one master device per list */
5300 /* counter for the number of times this device was added to us */
5303 /* private field for the users */
5306 struct list_head list;
5307 struct rcu_head rcu;
5310 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5311 struct list_head *adj_list)
5313 struct netdev_adjacent *adj;
5315 list_for_each_entry(adj, adj_list, list) {
5316 if (adj->dev == adj_dev)
5322 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5324 struct net_device *dev = data;
5326 return upper_dev == dev;
5330 * netdev_has_upper_dev - Check if device is linked to an upper device
5332 * @upper_dev: upper device to check
5334 * Find out if a device is linked to specified upper device and return true
5335 * in case it is. Note that this checks only immediate upper device,
5336 * not through a complete stack of devices. The caller must hold the RTNL lock.
5338 bool netdev_has_upper_dev(struct net_device *dev,
5339 struct net_device *upper_dev)
5343 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5346 EXPORT_SYMBOL(netdev_has_upper_dev);
5349 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5351 * @upper_dev: upper device to check
5353 * Find out if a device is linked to specified upper device and return true
5354 * in case it is. Note that this checks the entire upper device chain.
5355 * The caller must hold rcu lock.
5358 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5359 struct net_device *upper_dev)
5361 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5364 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5367 * netdev_has_any_upper_dev - Check if device is linked to some device
5370 * Find out if a device is linked to an upper device and return true in case
5371 * it is. The caller must hold the RTNL lock.
5373 static bool netdev_has_any_upper_dev(struct net_device *dev)
5377 return !list_empty(&dev->adj_list.upper);
5381 * netdev_master_upper_dev_get - Get master upper device
5384 * Find a master upper device and return pointer to it or NULL in case
5385 * it's not there. The caller must hold the RTNL lock.
5387 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5389 struct netdev_adjacent *upper;
5393 if (list_empty(&dev->adj_list.upper))
5396 upper = list_first_entry(&dev->adj_list.upper,
5397 struct netdev_adjacent, list);
5398 if (likely(upper->master))
5402 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5405 * netdev_has_any_lower_dev - Check if device is linked to some device
5408 * Find out if a device is linked to a lower device and return true in case
5409 * it is. The caller must hold the RTNL lock.
5411 static bool netdev_has_any_lower_dev(struct net_device *dev)
5415 return !list_empty(&dev->adj_list.lower);
5418 void *netdev_adjacent_get_private(struct list_head *adj_list)
5420 struct netdev_adjacent *adj;
5422 adj = list_entry(adj_list, struct netdev_adjacent, list);
5424 return adj->private;
5426 EXPORT_SYMBOL(netdev_adjacent_get_private);
5429 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5431 * @iter: list_head ** of the current position
5433 * Gets the next device from the dev's upper list, starting from iter
5434 * position. The caller must hold RCU read lock.
5436 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5437 struct list_head **iter)
5439 struct netdev_adjacent *upper;
5441 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5443 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5445 if (&upper->list == &dev->adj_list.upper)
5448 *iter = &upper->list;
5452 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5454 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5455 struct list_head **iter)
5457 struct netdev_adjacent *upper;
5459 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5461 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5463 if (&upper->list == &dev->adj_list.upper)
5466 *iter = &upper->list;
5471 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5472 int (*fn)(struct net_device *dev,
5476 struct net_device *udev;
5477 struct list_head *iter;
5480 for (iter = &dev->adj_list.upper,
5481 udev = netdev_next_upper_dev_rcu(dev, &iter);
5483 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5484 /* first is the upper device itself */
5485 ret = fn(udev, data);
5489 /* then look at all of its upper devices */
5490 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5497 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5500 * netdev_lower_get_next_private - Get the next ->private from the
5501 * lower neighbour list
5503 * @iter: list_head ** of the current position
5505 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5506 * list, starting from iter position. The caller must hold either hold the
5507 * RTNL lock or its own locking that guarantees that the neighbour lower
5508 * list will remain unchanged.
5510 void *netdev_lower_get_next_private(struct net_device *dev,
5511 struct list_head **iter)
5513 struct netdev_adjacent *lower;
5515 lower = list_entry(*iter, struct netdev_adjacent, list);
5517 if (&lower->list == &dev->adj_list.lower)
5520 *iter = lower->list.next;
5522 return lower->private;
5524 EXPORT_SYMBOL(netdev_lower_get_next_private);
5527 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5528 * lower neighbour list, RCU
5531 * @iter: list_head ** of the current position
5533 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5534 * list, starting from iter position. The caller must hold RCU read lock.
5536 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5537 struct list_head **iter)
5539 struct netdev_adjacent *lower;
5541 WARN_ON_ONCE(!rcu_read_lock_held());
5543 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5545 if (&lower->list == &dev->adj_list.lower)
5548 *iter = &lower->list;
5550 return lower->private;
5552 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5555 * netdev_lower_get_next - Get the next device from the lower neighbour
5558 * @iter: list_head ** of the current position
5560 * Gets the next netdev_adjacent from the dev's lower neighbour
5561 * list, starting from iter position. The caller must hold RTNL lock or
5562 * its own locking that guarantees that the neighbour lower
5563 * list will remain unchanged.
5565 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5567 struct netdev_adjacent *lower;
5569 lower = list_entry(*iter, struct netdev_adjacent, list);
5571 if (&lower->list == &dev->adj_list.lower)
5574 *iter = lower->list.next;
5578 EXPORT_SYMBOL(netdev_lower_get_next);
5580 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5581 struct list_head **iter)
5583 struct netdev_adjacent *lower;
5585 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5587 if (&lower->list == &dev->adj_list.lower)
5590 *iter = &lower->list;
5595 int netdev_walk_all_lower_dev(struct net_device *dev,
5596 int (*fn)(struct net_device *dev,
5600 struct net_device *ldev;
5601 struct list_head *iter;
5604 for (iter = &dev->adj_list.lower,
5605 ldev = netdev_next_lower_dev(dev, &iter);
5607 ldev = netdev_next_lower_dev(dev, &iter)) {
5608 /* first is the lower device itself */
5609 ret = fn(ldev, data);
5613 /* then look at all of its lower devices */
5614 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5621 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5623 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5624 struct list_head **iter)
5626 struct netdev_adjacent *lower;
5628 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5629 if (&lower->list == &dev->adj_list.lower)
5632 *iter = &lower->list;
5637 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5638 int (*fn)(struct net_device *dev,
5642 struct net_device *ldev;
5643 struct list_head *iter;
5646 for (iter = &dev->adj_list.lower,
5647 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5649 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5650 /* first is the lower device itself */
5651 ret = fn(ldev, data);
5655 /* then look at all of its lower devices */
5656 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5663 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5666 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5667 * lower neighbour list, RCU
5671 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5672 * list. The caller must hold RCU read lock.
5674 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5676 struct netdev_adjacent *lower;
5678 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5679 struct netdev_adjacent, list);
5681 return lower->private;
5684 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5687 * netdev_master_upper_dev_get_rcu - Get master upper device
5690 * Find a master upper device and return pointer to it or NULL in case
5691 * it's not there. The caller must hold the RCU read lock.
5693 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5695 struct netdev_adjacent *upper;
5697 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5698 struct netdev_adjacent, list);
5699 if (upper && likely(upper->master))
5703 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5705 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5706 struct net_device *adj_dev,
5707 struct list_head *dev_list)
5709 char linkname[IFNAMSIZ+7];
5710 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5711 "upper_%s" : "lower_%s", adj_dev->name);
5712 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5715 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5717 struct list_head *dev_list)
5719 char linkname[IFNAMSIZ+7];
5720 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5721 "upper_%s" : "lower_%s", name);
5722 sysfs_remove_link(&(dev->dev.kobj), linkname);
5725 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5726 struct net_device *adj_dev,
5727 struct list_head *dev_list)
5729 return (dev_list == &dev->adj_list.upper ||
5730 dev_list == &dev->adj_list.lower) &&
5731 net_eq(dev_net(dev), dev_net(adj_dev));
5734 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5735 struct net_device *adj_dev,
5736 struct list_head *dev_list,
5737 void *private, bool master)
5739 struct netdev_adjacent *adj;
5742 adj = __netdev_find_adj(adj_dev, dev_list);
5746 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5747 dev->name, adj_dev->name, adj->ref_nr);
5752 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5757 adj->master = master;
5759 adj->private = private;
5762 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5763 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5765 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5766 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5771 /* Ensure that master link is always the first item in list. */
5773 ret = sysfs_create_link(&(dev->dev.kobj),
5774 &(adj_dev->dev.kobj), "master");
5776 goto remove_symlinks;
5778 list_add_rcu(&adj->list, dev_list);
5780 list_add_tail_rcu(&adj->list, dev_list);
5786 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5787 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5795 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5796 struct net_device *adj_dev,
5798 struct list_head *dev_list)
5800 struct netdev_adjacent *adj;
5802 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5803 dev->name, adj_dev->name, ref_nr);
5805 adj = __netdev_find_adj(adj_dev, dev_list);
5808 pr_err("Adjacency does not exist for device %s from %s\n",
5809 dev->name, adj_dev->name);
5814 if (adj->ref_nr > ref_nr) {
5815 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5816 dev->name, adj_dev->name, ref_nr,
5817 adj->ref_nr - ref_nr);
5818 adj->ref_nr -= ref_nr;
5823 sysfs_remove_link(&(dev->dev.kobj), "master");
5825 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5826 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5828 list_del_rcu(&adj->list);
5829 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5830 adj_dev->name, dev->name, adj_dev->name);
5832 kfree_rcu(adj, rcu);
5835 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5836 struct net_device *upper_dev,
5837 struct list_head *up_list,
5838 struct list_head *down_list,
5839 void *private, bool master)
5843 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5848 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5851 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5858 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5859 struct net_device *upper_dev,
5861 struct list_head *up_list,
5862 struct list_head *down_list)
5864 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5865 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5868 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5869 struct net_device *upper_dev,
5870 void *private, bool master)
5872 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5873 &dev->adj_list.upper,
5874 &upper_dev->adj_list.lower,
5878 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5879 struct net_device *upper_dev)
5881 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5882 &dev->adj_list.upper,
5883 &upper_dev->adj_list.lower);
5886 static int __netdev_upper_dev_link(struct net_device *dev,
5887 struct net_device *upper_dev, bool master,
5888 void *upper_priv, void *upper_info)
5890 struct netdev_notifier_changeupper_info changeupper_info;
5895 if (dev == upper_dev)
5898 /* To prevent loops, check if dev is not upper device to upper_dev. */
5899 if (netdev_has_upper_dev(upper_dev, dev))
5902 if (netdev_has_upper_dev(dev, upper_dev))
5905 if (master && netdev_master_upper_dev_get(dev))
5908 changeupper_info.upper_dev = upper_dev;
5909 changeupper_info.master = master;
5910 changeupper_info.linking = true;
5911 changeupper_info.upper_info = upper_info;
5913 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5914 &changeupper_info.info);
5915 ret = notifier_to_errno(ret);
5919 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5924 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5925 &changeupper_info.info);
5926 ret = notifier_to_errno(ret);
5933 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5939 * netdev_upper_dev_link - Add a link to the upper device
5941 * @upper_dev: new upper device
5943 * Adds a link to device which is upper to this one. The caller must hold
5944 * the RTNL lock. On a failure a negative errno code is returned.
5945 * On success the reference counts are adjusted and the function
5948 int netdev_upper_dev_link(struct net_device *dev,
5949 struct net_device *upper_dev)
5951 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5953 EXPORT_SYMBOL(netdev_upper_dev_link);
5956 * netdev_master_upper_dev_link - Add a master link to the upper device
5958 * @upper_dev: new upper device
5959 * @upper_priv: upper device private
5960 * @upper_info: upper info to be passed down via notifier
5962 * Adds a link to device which is upper to this one. In this case, only
5963 * one master upper device can be linked, although other non-master devices
5964 * might be linked as well. The caller must hold the RTNL lock.
5965 * On a failure a negative errno code is returned. On success the reference
5966 * counts are adjusted and the function returns zero.
5968 int netdev_master_upper_dev_link(struct net_device *dev,
5969 struct net_device *upper_dev,
5970 void *upper_priv, void *upper_info)
5972 return __netdev_upper_dev_link(dev, upper_dev, true,
5973 upper_priv, upper_info);
5975 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5978 * netdev_upper_dev_unlink - Removes a link to upper device
5980 * @upper_dev: new upper device
5982 * Removes a link to device which is upper to this one. The caller must hold
5985 void netdev_upper_dev_unlink(struct net_device *dev,
5986 struct net_device *upper_dev)
5988 struct netdev_notifier_changeupper_info changeupper_info;
5991 changeupper_info.upper_dev = upper_dev;
5992 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5993 changeupper_info.linking = false;
5995 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5996 &changeupper_info.info);
5998 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6000 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6001 &changeupper_info.info);
6003 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6006 * netdev_bonding_info_change - Dispatch event about slave change
6008 * @bonding_info: info to dispatch
6010 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6011 * The caller must hold the RTNL lock.
6013 void netdev_bonding_info_change(struct net_device *dev,
6014 struct netdev_bonding_info *bonding_info)
6016 struct netdev_notifier_bonding_info info;
6018 memcpy(&info.bonding_info, bonding_info,
6019 sizeof(struct netdev_bonding_info));
6020 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6023 EXPORT_SYMBOL(netdev_bonding_info_change);
6025 static void netdev_adjacent_add_links(struct net_device *dev)
6027 struct netdev_adjacent *iter;
6029 struct net *net = dev_net(dev);
6031 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6032 if (!net_eq(net, dev_net(iter->dev)))
6034 netdev_adjacent_sysfs_add(iter->dev, dev,
6035 &iter->dev->adj_list.lower);
6036 netdev_adjacent_sysfs_add(dev, iter->dev,
6037 &dev->adj_list.upper);
6040 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6041 if (!net_eq(net, dev_net(iter->dev)))
6043 netdev_adjacent_sysfs_add(iter->dev, dev,
6044 &iter->dev->adj_list.upper);
6045 netdev_adjacent_sysfs_add(dev, iter->dev,
6046 &dev->adj_list.lower);
6050 static void netdev_adjacent_del_links(struct net_device *dev)
6052 struct netdev_adjacent *iter;
6054 struct net *net = dev_net(dev);
6056 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6057 if (!net_eq(net, dev_net(iter->dev)))
6059 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6060 &iter->dev->adj_list.lower);
6061 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6062 &dev->adj_list.upper);
6065 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6066 if (!net_eq(net, dev_net(iter->dev)))
6068 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6069 &iter->dev->adj_list.upper);
6070 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6071 &dev->adj_list.lower);
6075 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6077 struct netdev_adjacent *iter;
6079 struct net *net = dev_net(dev);
6081 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6082 if (!net_eq(net, dev_net(iter->dev)))
6084 netdev_adjacent_sysfs_del(iter->dev, oldname,
6085 &iter->dev->adj_list.lower);
6086 netdev_adjacent_sysfs_add(iter->dev, dev,
6087 &iter->dev->adj_list.lower);
6090 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6091 if (!net_eq(net, dev_net(iter->dev)))
6093 netdev_adjacent_sysfs_del(iter->dev, oldname,
6094 &iter->dev->adj_list.upper);
6095 netdev_adjacent_sysfs_add(iter->dev, dev,
6096 &iter->dev->adj_list.upper);
6100 void *netdev_lower_dev_get_private(struct net_device *dev,
6101 struct net_device *lower_dev)
6103 struct netdev_adjacent *lower;
6107 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6111 return lower->private;
6113 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6116 int dev_get_nest_level(struct net_device *dev)
6118 struct net_device *lower = NULL;
6119 struct list_head *iter;
6125 netdev_for_each_lower_dev(dev, lower, iter) {
6126 nest = dev_get_nest_level(lower);
6127 if (max_nest < nest)
6131 return max_nest + 1;
6133 EXPORT_SYMBOL(dev_get_nest_level);
6136 * netdev_lower_change - Dispatch event about lower device state change
6137 * @lower_dev: device
6138 * @lower_state_info: state to dispatch
6140 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6141 * The caller must hold the RTNL lock.
6143 void netdev_lower_state_changed(struct net_device *lower_dev,
6144 void *lower_state_info)
6146 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6149 changelowerstate_info.lower_state_info = lower_state_info;
6150 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6151 &changelowerstate_info.info);
6153 EXPORT_SYMBOL(netdev_lower_state_changed);
6155 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6156 struct neighbour *n)
6158 struct net_device *lower_dev, *stop_dev;
6159 struct list_head *iter;
6162 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6163 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6165 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6167 stop_dev = lower_dev;
6174 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6175 if (lower_dev == stop_dev)
6177 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6179 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6183 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6185 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6186 struct neighbour *n)
6188 struct net_device *lower_dev;
6189 struct list_head *iter;
6191 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6192 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6194 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6197 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6199 static void dev_change_rx_flags(struct net_device *dev, int flags)
6201 const struct net_device_ops *ops = dev->netdev_ops;
6203 if (ops->ndo_change_rx_flags)
6204 ops->ndo_change_rx_flags(dev, flags);
6207 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6209 unsigned int old_flags = dev->flags;
6215 dev->flags |= IFF_PROMISC;
6216 dev->promiscuity += inc;
6217 if (dev->promiscuity == 0) {
6220 * If inc causes overflow, untouch promisc and return error.
6223 dev->flags &= ~IFF_PROMISC;
6225 dev->promiscuity -= inc;
6226 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6231 if (dev->flags != old_flags) {
6232 pr_info("device %s %s promiscuous mode\n",
6234 dev->flags & IFF_PROMISC ? "entered" : "left");
6235 if (audit_enabled) {
6236 current_uid_gid(&uid, &gid);
6237 audit_log(current->audit_context, GFP_ATOMIC,
6238 AUDIT_ANOM_PROMISCUOUS,
6239 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6240 dev->name, (dev->flags & IFF_PROMISC),
6241 (old_flags & IFF_PROMISC),
6242 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6243 from_kuid(&init_user_ns, uid),
6244 from_kgid(&init_user_ns, gid),
6245 audit_get_sessionid(current));
6248 dev_change_rx_flags(dev, IFF_PROMISC);
6251 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6256 * dev_set_promiscuity - update promiscuity count on a device
6260 * Add or remove promiscuity from a device. While the count in the device
6261 * remains above zero the interface remains promiscuous. Once it hits zero
6262 * the device reverts back to normal filtering operation. A negative inc
6263 * value is used to drop promiscuity on the device.
6264 * Return 0 if successful or a negative errno code on error.
6266 int dev_set_promiscuity(struct net_device *dev, int inc)
6268 unsigned int old_flags = dev->flags;
6271 err = __dev_set_promiscuity(dev, inc, true);
6274 if (dev->flags != old_flags)
6275 dev_set_rx_mode(dev);
6278 EXPORT_SYMBOL(dev_set_promiscuity);
6280 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6282 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6286 dev->flags |= IFF_ALLMULTI;
6287 dev->allmulti += inc;
6288 if (dev->allmulti == 0) {
6291 * If inc causes overflow, untouch allmulti and return error.
6294 dev->flags &= ~IFF_ALLMULTI;
6296 dev->allmulti -= inc;
6297 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6302 if (dev->flags ^ old_flags) {
6303 dev_change_rx_flags(dev, IFF_ALLMULTI);
6304 dev_set_rx_mode(dev);
6306 __dev_notify_flags(dev, old_flags,
6307 dev->gflags ^ old_gflags);
6313 * dev_set_allmulti - update allmulti count on a device
6317 * Add or remove reception of all multicast frames to a device. While the
6318 * count in the device remains above zero the interface remains listening
6319 * to all interfaces. Once it hits zero the device reverts back to normal
6320 * filtering operation. A negative @inc value is used to drop the counter
6321 * when releasing a resource needing all multicasts.
6322 * Return 0 if successful or a negative errno code on error.
6325 int dev_set_allmulti(struct net_device *dev, int inc)
6327 return __dev_set_allmulti(dev, inc, true);
6329 EXPORT_SYMBOL(dev_set_allmulti);
6332 * Upload unicast and multicast address lists to device and
6333 * configure RX filtering. When the device doesn't support unicast
6334 * filtering it is put in promiscuous mode while unicast addresses
6337 void __dev_set_rx_mode(struct net_device *dev)
6339 const struct net_device_ops *ops = dev->netdev_ops;
6341 /* dev_open will call this function so the list will stay sane. */
6342 if (!(dev->flags&IFF_UP))
6345 if (!netif_device_present(dev))
6348 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6349 /* Unicast addresses changes may only happen under the rtnl,
6350 * therefore calling __dev_set_promiscuity here is safe.
6352 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6353 __dev_set_promiscuity(dev, 1, false);
6354 dev->uc_promisc = true;
6355 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6356 __dev_set_promiscuity(dev, -1, false);
6357 dev->uc_promisc = false;
6361 if (ops->ndo_set_rx_mode)
6362 ops->ndo_set_rx_mode(dev);
6365 void dev_set_rx_mode(struct net_device *dev)
6367 netif_addr_lock_bh(dev);
6368 __dev_set_rx_mode(dev);
6369 netif_addr_unlock_bh(dev);
6373 * dev_get_flags - get flags reported to userspace
6376 * Get the combination of flag bits exported through APIs to userspace.
6378 unsigned int dev_get_flags(const struct net_device *dev)
6382 flags = (dev->flags & ~(IFF_PROMISC |
6387 (dev->gflags & (IFF_PROMISC |
6390 if (netif_running(dev)) {
6391 if (netif_oper_up(dev))
6392 flags |= IFF_RUNNING;
6393 if (netif_carrier_ok(dev))
6394 flags |= IFF_LOWER_UP;
6395 if (netif_dormant(dev))
6396 flags |= IFF_DORMANT;
6401 EXPORT_SYMBOL(dev_get_flags);
6403 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6405 unsigned int old_flags = dev->flags;
6411 * Set the flags on our device.
6414 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6415 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6417 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6421 * Load in the correct multicast list now the flags have changed.
6424 if ((old_flags ^ flags) & IFF_MULTICAST)
6425 dev_change_rx_flags(dev, IFF_MULTICAST);
6427 dev_set_rx_mode(dev);
6430 * Have we downed the interface. We handle IFF_UP ourselves
6431 * according to user attempts to set it, rather than blindly
6436 if ((old_flags ^ flags) & IFF_UP)
6437 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6439 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6440 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6441 unsigned int old_flags = dev->flags;
6443 dev->gflags ^= IFF_PROMISC;
6445 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6446 if (dev->flags != old_flags)
6447 dev_set_rx_mode(dev);
6450 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6451 is important. Some (broken) drivers set IFF_PROMISC, when
6452 IFF_ALLMULTI is requested not asking us and not reporting.
6454 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6455 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6457 dev->gflags ^= IFF_ALLMULTI;
6458 __dev_set_allmulti(dev, inc, false);
6464 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6465 unsigned int gchanges)
6467 unsigned int changes = dev->flags ^ old_flags;
6470 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6472 if (changes & IFF_UP) {
6473 if (dev->flags & IFF_UP)
6474 call_netdevice_notifiers(NETDEV_UP, dev);
6476 call_netdevice_notifiers(NETDEV_DOWN, dev);
6479 if (dev->flags & IFF_UP &&
6480 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6481 struct netdev_notifier_change_info change_info;
6483 change_info.flags_changed = changes;
6484 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6490 * dev_change_flags - change device settings
6492 * @flags: device state flags
6494 * Change settings on device based state flags. The flags are
6495 * in the userspace exported format.
6497 int dev_change_flags(struct net_device *dev, unsigned int flags)
6500 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6502 ret = __dev_change_flags(dev, flags);
6506 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6507 __dev_notify_flags(dev, old_flags, changes);
6510 EXPORT_SYMBOL(dev_change_flags);
6512 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6514 const struct net_device_ops *ops = dev->netdev_ops;
6516 if (ops->ndo_change_mtu)
6517 return ops->ndo_change_mtu(dev, new_mtu);
6524 * dev_set_mtu - Change maximum transfer unit
6526 * @new_mtu: new transfer unit
6528 * Change the maximum transfer size of the network device.
6530 int dev_set_mtu(struct net_device *dev, int new_mtu)
6534 if (new_mtu == dev->mtu)
6537 /* MTU must be positive, and in range */
6538 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6539 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6540 dev->name, new_mtu, dev->min_mtu);
6544 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6545 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6546 dev->name, new_mtu, dev->max_mtu);
6550 if (!netif_device_present(dev))
6553 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6554 err = notifier_to_errno(err);
6558 orig_mtu = dev->mtu;
6559 err = __dev_set_mtu(dev, new_mtu);
6562 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6563 err = notifier_to_errno(err);
6565 /* setting mtu back and notifying everyone again,
6566 * so that they have a chance to revert changes.
6568 __dev_set_mtu(dev, orig_mtu);
6569 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6574 EXPORT_SYMBOL(dev_set_mtu);
6577 * dev_set_group - Change group this device belongs to
6579 * @new_group: group this device should belong to
6581 void dev_set_group(struct net_device *dev, int new_group)
6583 dev->group = new_group;
6585 EXPORT_SYMBOL(dev_set_group);
6588 * dev_set_mac_address - Change Media Access Control Address
6592 * Change the hardware (MAC) address of the device
6594 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6596 const struct net_device_ops *ops = dev->netdev_ops;
6599 if (!ops->ndo_set_mac_address)
6601 if (sa->sa_family != dev->type)
6603 if (!netif_device_present(dev))
6605 err = ops->ndo_set_mac_address(dev, sa);
6608 dev->addr_assign_type = NET_ADDR_SET;
6609 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6610 add_device_randomness(dev->dev_addr, dev->addr_len);
6613 EXPORT_SYMBOL(dev_set_mac_address);
6616 * dev_change_carrier - Change device carrier
6618 * @new_carrier: new value
6620 * Change device carrier
6622 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6624 const struct net_device_ops *ops = dev->netdev_ops;
6626 if (!ops->ndo_change_carrier)
6628 if (!netif_device_present(dev))
6630 return ops->ndo_change_carrier(dev, new_carrier);
6632 EXPORT_SYMBOL(dev_change_carrier);
6635 * dev_get_phys_port_id - Get device physical port ID
6639 * Get device physical port ID
6641 int dev_get_phys_port_id(struct net_device *dev,
6642 struct netdev_phys_item_id *ppid)
6644 const struct net_device_ops *ops = dev->netdev_ops;
6646 if (!ops->ndo_get_phys_port_id)
6648 return ops->ndo_get_phys_port_id(dev, ppid);
6650 EXPORT_SYMBOL(dev_get_phys_port_id);
6653 * dev_get_phys_port_name - Get device physical port name
6656 * @len: limit of bytes to copy to name
6658 * Get device physical port name
6660 int dev_get_phys_port_name(struct net_device *dev,
6661 char *name, size_t len)
6663 const struct net_device_ops *ops = dev->netdev_ops;
6665 if (!ops->ndo_get_phys_port_name)
6667 return ops->ndo_get_phys_port_name(dev, name, len);
6669 EXPORT_SYMBOL(dev_get_phys_port_name);
6672 * dev_change_proto_down - update protocol port state information
6674 * @proto_down: new value
6676 * This info can be used by switch drivers to set the phys state of the
6679 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6681 const struct net_device_ops *ops = dev->netdev_ops;
6683 if (!ops->ndo_change_proto_down)
6685 if (!netif_device_present(dev))
6687 return ops->ndo_change_proto_down(dev, proto_down);
6689 EXPORT_SYMBOL(dev_change_proto_down);
6692 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6694 * @fd: new program fd or negative value to clear
6695 * @flags: xdp-related flags
6697 * Set or clear a bpf program for a device
6699 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6701 const struct net_device_ops *ops = dev->netdev_ops;
6702 struct bpf_prog *prog = NULL;
6703 struct netdev_xdp xdp;
6711 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6712 memset(&xdp, 0, sizeof(xdp));
6713 xdp.command = XDP_QUERY_PROG;
6715 err = ops->ndo_xdp(dev, &xdp);
6718 if (xdp.prog_attached)
6722 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6724 return PTR_ERR(prog);
6727 memset(&xdp, 0, sizeof(xdp));
6728 xdp.command = XDP_SETUP_PROG;
6731 err = ops->ndo_xdp(dev, &xdp);
6732 if (err < 0 && prog)
6737 EXPORT_SYMBOL(dev_change_xdp_fd);
6740 * dev_new_index - allocate an ifindex
6741 * @net: the applicable net namespace
6743 * Returns a suitable unique value for a new device interface
6744 * number. The caller must hold the rtnl semaphore or the
6745 * dev_base_lock to be sure it remains unique.
6747 static int dev_new_index(struct net *net)
6749 int ifindex = net->ifindex;
6753 if (!__dev_get_by_index(net, ifindex))
6754 return net->ifindex = ifindex;
6758 /* Delayed registration/unregisteration */
6759 static LIST_HEAD(net_todo_list);
6760 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6762 static void net_set_todo(struct net_device *dev)
6764 list_add_tail(&dev->todo_list, &net_todo_list);
6765 dev_net(dev)->dev_unreg_count++;
6768 static void rollback_registered_many(struct list_head *head)
6770 struct net_device *dev, *tmp;
6771 LIST_HEAD(close_head);
6773 BUG_ON(dev_boot_phase);
6776 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6777 /* Some devices call without registering
6778 * for initialization unwind. Remove those
6779 * devices and proceed with the remaining.
6781 if (dev->reg_state == NETREG_UNINITIALIZED) {
6782 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6786 list_del(&dev->unreg_list);
6789 dev->dismantle = true;
6790 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6793 /* If device is running, close it first. */
6794 list_for_each_entry(dev, head, unreg_list)
6795 list_add_tail(&dev->close_list, &close_head);
6796 dev_close_many(&close_head, true);
6798 list_for_each_entry(dev, head, unreg_list) {
6799 /* And unlink it from device chain. */
6800 unlist_netdevice(dev);
6802 dev->reg_state = NETREG_UNREGISTERING;
6804 flush_all_backlogs();
6808 list_for_each_entry(dev, head, unreg_list) {
6809 struct sk_buff *skb = NULL;
6811 /* Shutdown queueing discipline. */
6815 /* Notify protocols, that we are about to destroy
6816 this device. They should clean all the things.
6818 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6820 if (!dev->rtnl_link_ops ||
6821 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6822 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6826 * Flush the unicast and multicast chains
6831 if (dev->netdev_ops->ndo_uninit)
6832 dev->netdev_ops->ndo_uninit(dev);
6835 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6837 /* Notifier chain MUST detach us all upper devices. */
6838 WARN_ON(netdev_has_any_upper_dev(dev));
6839 WARN_ON(netdev_has_any_lower_dev(dev));
6841 /* Remove entries from kobject tree */
6842 netdev_unregister_kobject(dev);
6844 /* Remove XPS queueing entries */
6845 netif_reset_xps_queues_gt(dev, 0);
6851 list_for_each_entry(dev, head, unreg_list)
6855 static void rollback_registered(struct net_device *dev)
6859 list_add(&dev->unreg_list, &single);
6860 rollback_registered_many(&single);
6864 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6865 struct net_device *upper, netdev_features_t features)
6867 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6868 netdev_features_t feature;
6871 for_each_netdev_feature(&upper_disables, feature_bit) {
6872 feature = __NETIF_F_BIT(feature_bit);
6873 if (!(upper->wanted_features & feature)
6874 && (features & feature)) {
6875 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6876 &feature, upper->name);
6877 features &= ~feature;
6884 static void netdev_sync_lower_features(struct net_device *upper,
6885 struct net_device *lower, netdev_features_t features)
6887 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6888 netdev_features_t feature;
6891 for_each_netdev_feature(&upper_disables, feature_bit) {
6892 feature = __NETIF_F_BIT(feature_bit);
6893 if (!(features & feature) && (lower->features & feature)) {
6894 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6895 &feature, lower->name);
6896 lower->wanted_features &= ~feature;
6897 netdev_update_features(lower);
6899 if (unlikely(lower->features & feature))
6900 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6901 &feature, lower->name);
6906 static netdev_features_t netdev_fix_features(struct net_device *dev,
6907 netdev_features_t features)
6909 /* Fix illegal checksum combinations */
6910 if ((features & NETIF_F_HW_CSUM) &&
6911 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6912 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6913 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6916 /* TSO requires that SG is present as well. */
6917 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6918 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6919 features &= ~NETIF_F_ALL_TSO;
6922 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6923 !(features & NETIF_F_IP_CSUM)) {
6924 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6925 features &= ~NETIF_F_TSO;
6926 features &= ~NETIF_F_TSO_ECN;
6929 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6930 !(features & NETIF_F_IPV6_CSUM)) {
6931 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6932 features &= ~NETIF_F_TSO6;
6935 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6936 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6937 features &= ~NETIF_F_TSO_MANGLEID;
6939 /* TSO ECN requires that TSO is present as well. */
6940 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6941 features &= ~NETIF_F_TSO_ECN;
6943 /* Software GSO depends on SG. */
6944 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6945 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6946 features &= ~NETIF_F_GSO;
6949 /* UFO needs SG and checksumming */
6950 if (features & NETIF_F_UFO) {
6951 /* maybe split UFO into V4 and V6? */
6952 if (!(features & NETIF_F_HW_CSUM) &&
6953 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6954 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6956 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6957 features &= ~NETIF_F_UFO;
6960 if (!(features & NETIF_F_SG)) {
6962 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6963 features &= ~NETIF_F_UFO;
6967 /* GSO partial features require GSO partial be set */
6968 if ((features & dev->gso_partial_features) &&
6969 !(features & NETIF_F_GSO_PARTIAL)) {
6971 "Dropping partially supported GSO features since no GSO partial.\n");
6972 features &= ~dev->gso_partial_features;
6975 #ifdef CONFIG_NET_RX_BUSY_POLL
6976 if (dev->netdev_ops->ndo_busy_poll)
6977 features |= NETIF_F_BUSY_POLL;
6980 features &= ~NETIF_F_BUSY_POLL;
6985 int __netdev_update_features(struct net_device *dev)
6987 struct net_device *upper, *lower;
6988 netdev_features_t features;
6989 struct list_head *iter;
6994 features = netdev_get_wanted_features(dev);
6996 if (dev->netdev_ops->ndo_fix_features)
6997 features = dev->netdev_ops->ndo_fix_features(dev, features);
6999 /* driver might be less strict about feature dependencies */
7000 features = netdev_fix_features(dev, features);
7002 /* some features can't be enabled if they're off an an upper device */
7003 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7004 features = netdev_sync_upper_features(dev, upper, features);
7006 if (dev->features == features)
7009 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7010 &dev->features, &features);
7012 if (dev->netdev_ops->ndo_set_features)
7013 err = dev->netdev_ops->ndo_set_features(dev, features);
7017 if (unlikely(err < 0)) {
7019 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7020 err, &features, &dev->features);
7021 /* return non-0 since some features might have changed and
7022 * it's better to fire a spurious notification than miss it
7028 /* some features must be disabled on lower devices when disabled
7029 * on an upper device (think: bonding master or bridge)
7031 netdev_for_each_lower_dev(dev, lower, iter)
7032 netdev_sync_lower_features(dev, lower, features);
7035 dev->features = features;
7037 return err < 0 ? 0 : 1;
7041 * netdev_update_features - recalculate device features
7042 * @dev: the device to check
7044 * Recalculate dev->features set and send notifications if it
7045 * has changed. Should be called after driver or hardware dependent
7046 * conditions might have changed that influence the features.
7048 void netdev_update_features(struct net_device *dev)
7050 if (__netdev_update_features(dev))
7051 netdev_features_change(dev);
7053 EXPORT_SYMBOL(netdev_update_features);
7056 * netdev_change_features - recalculate device features
7057 * @dev: the device to check
7059 * Recalculate dev->features set and send notifications even
7060 * if they have not changed. Should be called instead of
7061 * netdev_update_features() if also dev->vlan_features might
7062 * have changed to allow the changes to be propagated to stacked
7065 void netdev_change_features(struct net_device *dev)
7067 __netdev_update_features(dev);
7068 netdev_features_change(dev);
7070 EXPORT_SYMBOL(netdev_change_features);
7073 * netif_stacked_transfer_operstate - transfer operstate
7074 * @rootdev: the root or lower level device to transfer state from
7075 * @dev: the device to transfer operstate to
7077 * Transfer operational state from root to device. This is normally
7078 * called when a stacking relationship exists between the root
7079 * device and the device(a leaf device).
7081 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7082 struct net_device *dev)
7084 if (rootdev->operstate == IF_OPER_DORMANT)
7085 netif_dormant_on(dev);
7087 netif_dormant_off(dev);
7089 if (netif_carrier_ok(rootdev)) {
7090 if (!netif_carrier_ok(dev))
7091 netif_carrier_on(dev);
7093 if (netif_carrier_ok(dev))
7094 netif_carrier_off(dev);
7097 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7100 static int netif_alloc_rx_queues(struct net_device *dev)
7102 unsigned int i, count = dev->num_rx_queues;
7103 struct netdev_rx_queue *rx;
7104 size_t sz = count * sizeof(*rx);
7108 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7116 for (i = 0; i < count; i++)
7122 static void netdev_init_one_queue(struct net_device *dev,
7123 struct netdev_queue *queue, void *_unused)
7125 /* Initialize queue lock */
7126 spin_lock_init(&queue->_xmit_lock);
7127 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7128 queue->xmit_lock_owner = -1;
7129 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7132 dql_init(&queue->dql, HZ);
7136 static void netif_free_tx_queues(struct net_device *dev)
7141 static int netif_alloc_netdev_queues(struct net_device *dev)
7143 unsigned int count = dev->num_tx_queues;
7144 struct netdev_queue *tx;
7145 size_t sz = count * sizeof(*tx);
7147 if (count < 1 || count > 0xffff)
7150 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7158 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7159 spin_lock_init(&dev->tx_global_lock);
7164 void netif_tx_stop_all_queues(struct net_device *dev)
7168 for (i = 0; i < dev->num_tx_queues; i++) {
7169 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7170 netif_tx_stop_queue(txq);
7173 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7176 * register_netdevice - register a network device
7177 * @dev: device to register
7179 * Take a completed network device structure and add it to the kernel
7180 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7181 * chain. 0 is returned on success. A negative errno code is returned
7182 * on a failure to set up the device, or if the name is a duplicate.
7184 * Callers must hold the rtnl semaphore. You may want
7185 * register_netdev() instead of this.
7188 * The locking appears insufficient to guarantee two parallel registers
7189 * will not get the same name.
7192 int register_netdevice(struct net_device *dev)
7195 struct net *net = dev_net(dev);
7197 BUG_ON(dev_boot_phase);
7202 /* When net_device's are persistent, this will be fatal. */
7203 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7206 spin_lock_init(&dev->addr_list_lock);
7207 netdev_set_addr_lockdep_class(dev);
7209 ret = dev_get_valid_name(net, dev, dev->name);
7213 /* Init, if this function is available */
7214 if (dev->netdev_ops->ndo_init) {
7215 ret = dev->netdev_ops->ndo_init(dev);
7223 if (((dev->hw_features | dev->features) &
7224 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7225 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7226 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7227 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7234 dev->ifindex = dev_new_index(net);
7235 else if (__dev_get_by_index(net, dev->ifindex))
7238 /* Transfer changeable features to wanted_features and enable
7239 * software offloads (GSO and GRO).
7241 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7242 dev->features |= NETIF_F_SOFT_FEATURES;
7243 dev->wanted_features = dev->features & dev->hw_features;
7245 if (!(dev->flags & IFF_LOOPBACK))
7246 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7248 /* If IPv4 TCP segmentation offload is supported we should also
7249 * allow the device to enable segmenting the frame with the option
7250 * of ignoring a static IP ID value. This doesn't enable the
7251 * feature itself but allows the user to enable it later.
7253 if (dev->hw_features & NETIF_F_TSO)
7254 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7255 if (dev->vlan_features & NETIF_F_TSO)
7256 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7257 if (dev->mpls_features & NETIF_F_TSO)
7258 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7259 if (dev->hw_enc_features & NETIF_F_TSO)
7260 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7262 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7264 dev->vlan_features |= NETIF_F_HIGHDMA;
7266 /* Make NETIF_F_SG inheritable to tunnel devices.
7268 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7270 /* Make NETIF_F_SG inheritable to MPLS.
7272 dev->mpls_features |= NETIF_F_SG;
7274 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7275 ret = notifier_to_errno(ret);
7279 ret = netdev_register_kobject(dev);
7282 dev->reg_state = NETREG_REGISTERED;
7284 __netdev_update_features(dev);
7287 * Default initial state at registry is that the
7288 * device is present.
7291 set_bit(__LINK_STATE_PRESENT, &dev->state);
7293 linkwatch_init_dev(dev);
7295 dev_init_scheduler(dev);
7297 list_netdevice(dev);
7298 add_device_randomness(dev->dev_addr, dev->addr_len);
7300 /* If the device has permanent device address, driver should
7301 * set dev_addr and also addr_assign_type should be set to
7302 * NET_ADDR_PERM (default value).
7304 if (dev->addr_assign_type == NET_ADDR_PERM)
7305 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7307 /* Notify protocols, that a new device appeared. */
7308 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7309 ret = notifier_to_errno(ret);
7311 rollback_registered(dev);
7312 dev->reg_state = NETREG_UNREGISTERED;
7315 * Prevent userspace races by waiting until the network
7316 * device is fully setup before sending notifications.
7318 if (!dev->rtnl_link_ops ||
7319 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7320 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7326 if (dev->netdev_ops->ndo_uninit)
7327 dev->netdev_ops->ndo_uninit(dev);
7330 EXPORT_SYMBOL(register_netdevice);
7333 * init_dummy_netdev - init a dummy network device for NAPI
7334 * @dev: device to init
7336 * This takes a network device structure and initialize the minimum
7337 * amount of fields so it can be used to schedule NAPI polls without
7338 * registering a full blown interface. This is to be used by drivers
7339 * that need to tie several hardware interfaces to a single NAPI
7340 * poll scheduler due to HW limitations.
7342 int init_dummy_netdev(struct net_device *dev)
7344 /* Clear everything. Note we don't initialize spinlocks
7345 * are they aren't supposed to be taken by any of the
7346 * NAPI code and this dummy netdev is supposed to be
7347 * only ever used for NAPI polls
7349 memset(dev, 0, sizeof(struct net_device));
7351 /* make sure we BUG if trying to hit standard
7352 * register/unregister code path
7354 dev->reg_state = NETREG_DUMMY;
7356 /* NAPI wants this */
7357 INIT_LIST_HEAD(&dev->napi_list);
7359 /* a dummy interface is started by default */
7360 set_bit(__LINK_STATE_PRESENT, &dev->state);
7361 set_bit(__LINK_STATE_START, &dev->state);
7363 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7364 * because users of this 'device' dont need to change
7370 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7374 * register_netdev - register a network device
7375 * @dev: device to register
7377 * Take a completed network device structure and add it to the kernel
7378 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7379 * chain. 0 is returned on success. A negative errno code is returned
7380 * on a failure to set up the device, or if the name is a duplicate.
7382 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7383 * and expands the device name if you passed a format string to
7386 int register_netdev(struct net_device *dev)
7391 err = register_netdevice(dev);
7395 EXPORT_SYMBOL(register_netdev);
7397 int netdev_refcnt_read(const struct net_device *dev)
7401 for_each_possible_cpu(i)
7402 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7405 EXPORT_SYMBOL(netdev_refcnt_read);
7408 * netdev_wait_allrefs - wait until all references are gone.
7409 * @dev: target net_device
7411 * This is called when unregistering network devices.
7413 * Any protocol or device that holds a reference should register
7414 * for netdevice notification, and cleanup and put back the
7415 * reference if they receive an UNREGISTER event.
7416 * We can get stuck here if buggy protocols don't correctly
7419 static void netdev_wait_allrefs(struct net_device *dev)
7421 unsigned long rebroadcast_time, warning_time;
7424 linkwatch_forget_dev(dev);
7426 rebroadcast_time = warning_time = jiffies;
7427 refcnt = netdev_refcnt_read(dev);
7429 while (refcnt != 0) {
7430 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7433 /* Rebroadcast unregister notification */
7434 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7440 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7441 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7443 /* We must not have linkwatch events
7444 * pending on unregister. If this
7445 * happens, we simply run the queue
7446 * unscheduled, resulting in a noop
7449 linkwatch_run_queue();
7454 rebroadcast_time = jiffies;
7459 refcnt = netdev_refcnt_read(dev);
7461 if (time_after(jiffies, warning_time + 10 * HZ)) {
7462 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7464 warning_time = jiffies;
7473 * register_netdevice(x1);
7474 * register_netdevice(x2);
7476 * unregister_netdevice(y1);
7477 * unregister_netdevice(y2);
7483 * We are invoked by rtnl_unlock().
7484 * This allows us to deal with problems:
7485 * 1) We can delete sysfs objects which invoke hotplug
7486 * without deadlocking with linkwatch via keventd.
7487 * 2) Since we run with the RTNL semaphore not held, we can sleep
7488 * safely in order to wait for the netdev refcnt to drop to zero.
7490 * We must not return until all unregister events added during
7491 * the interval the lock was held have been completed.
7493 void netdev_run_todo(void)
7495 struct list_head list;
7497 /* Snapshot list, allow later requests */
7498 list_replace_init(&net_todo_list, &list);
7503 /* Wait for rcu callbacks to finish before next phase */
7504 if (!list_empty(&list))
7507 while (!list_empty(&list)) {
7508 struct net_device *dev
7509 = list_first_entry(&list, struct net_device, todo_list);
7510 list_del(&dev->todo_list);
7513 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7516 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7517 pr_err("network todo '%s' but state %d\n",
7518 dev->name, dev->reg_state);
7523 dev->reg_state = NETREG_UNREGISTERED;
7525 netdev_wait_allrefs(dev);
7528 BUG_ON(netdev_refcnt_read(dev));
7529 BUG_ON(!list_empty(&dev->ptype_all));
7530 BUG_ON(!list_empty(&dev->ptype_specific));
7531 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7532 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7533 WARN_ON(dev->dn_ptr);
7535 if (dev->destructor)
7536 dev->destructor(dev);
7538 /* Report a network device has been unregistered */
7540 dev_net(dev)->dev_unreg_count--;
7542 wake_up(&netdev_unregistering_wq);
7544 /* Free network device */
7545 kobject_put(&dev->dev.kobj);
7549 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7550 * all the same fields in the same order as net_device_stats, with only
7551 * the type differing, but rtnl_link_stats64 may have additional fields
7552 * at the end for newer counters.
7554 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7555 const struct net_device_stats *netdev_stats)
7557 #if BITS_PER_LONG == 64
7558 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7559 memcpy(stats64, netdev_stats, sizeof(*stats64));
7560 /* zero out counters that only exist in rtnl_link_stats64 */
7561 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7562 sizeof(*stats64) - sizeof(*netdev_stats));
7564 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7565 const unsigned long *src = (const unsigned long *)netdev_stats;
7566 u64 *dst = (u64 *)stats64;
7568 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7569 for (i = 0; i < n; i++)
7571 /* zero out counters that only exist in rtnl_link_stats64 */
7572 memset((char *)stats64 + n * sizeof(u64), 0,
7573 sizeof(*stats64) - n * sizeof(u64));
7576 EXPORT_SYMBOL(netdev_stats_to_stats64);
7579 * dev_get_stats - get network device statistics
7580 * @dev: device to get statistics from
7581 * @storage: place to store stats
7583 * Get network statistics from device. Return @storage.
7584 * The device driver may provide its own method by setting
7585 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7586 * otherwise the internal statistics structure is used.
7588 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7589 struct rtnl_link_stats64 *storage)
7591 const struct net_device_ops *ops = dev->netdev_ops;
7593 if (ops->ndo_get_stats64) {
7594 memset(storage, 0, sizeof(*storage));
7595 ops->ndo_get_stats64(dev, storage);
7596 } else if (ops->ndo_get_stats) {
7597 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7599 netdev_stats_to_stats64(storage, &dev->stats);
7601 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7602 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7603 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7606 EXPORT_SYMBOL(dev_get_stats);
7608 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7610 struct netdev_queue *queue = dev_ingress_queue(dev);
7612 #ifdef CONFIG_NET_CLS_ACT
7615 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7618 netdev_init_one_queue(dev, queue, NULL);
7619 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7620 queue->qdisc_sleeping = &noop_qdisc;
7621 rcu_assign_pointer(dev->ingress_queue, queue);
7626 static const struct ethtool_ops default_ethtool_ops;
7628 void netdev_set_default_ethtool_ops(struct net_device *dev,
7629 const struct ethtool_ops *ops)
7631 if (dev->ethtool_ops == &default_ethtool_ops)
7632 dev->ethtool_ops = ops;
7634 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7636 void netdev_freemem(struct net_device *dev)
7638 char *addr = (char *)dev - dev->padded;
7644 * alloc_netdev_mqs - allocate network device
7645 * @sizeof_priv: size of private data to allocate space for
7646 * @name: device name format string
7647 * @name_assign_type: origin of device name
7648 * @setup: callback to initialize device
7649 * @txqs: the number of TX subqueues to allocate
7650 * @rxqs: the number of RX subqueues to allocate
7652 * Allocates a struct net_device with private data area for driver use
7653 * and performs basic initialization. Also allocates subqueue structs
7654 * for each queue on the device.
7656 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7657 unsigned char name_assign_type,
7658 void (*setup)(struct net_device *),
7659 unsigned int txqs, unsigned int rxqs)
7661 struct net_device *dev;
7663 struct net_device *p;
7665 BUG_ON(strlen(name) >= sizeof(dev->name));
7668 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7674 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7679 alloc_size = sizeof(struct net_device);
7681 /* ensure 32-byte alignment of private area */
7682 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7683 alloc_size += sizeof_priv;
7685 /* ensure 32-byte alignment of whole construct */
7686 alloc_size += NETDEV_ALIGN - 1;
7688 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7690 p = vzalloc(alloc_size);
7694 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7695 dev->padded = (char *)dev - (char *)p;
7697 dev->pcpu_refcnt = alloc_percpu(int);
7698 if (!dev->pcpu_refcnt)
7701 if (dev_addr_init(dev))
7707 dev_net_set(dev, &init_net);
7709 dev->gso_max_size = GSO_MAX_SIZE;
7710 dev->gso_max_segs = GSO_MAX_SEGS;
7712 INIT_LIST_HEAD(&dev->napi_list);
7713 INIT_LIST_HEAD(&dev->unreg_list);
7714 INIT_LIST_HEAD(&dev->close_list);
7715 INIT_LIST_HEAD(&dev->link_watch_list);
7716 INIT_LIST_HEAD(&dev->adj_list.upper);
7717 INIT_LIST_HEAD(&dev->adj_list.lower);
7718 INIT_LIST_HEAD(&dev->ptype_all);
7719 INIT_LIST_HEAD(&dev->ptype_specific);
7720 #ifdef CONFIG_NET_SCHED
7721 hash_init(dev->qdisc_hash);
7723 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7726 if (!dev->tx_queue_len) {
7727 dev->priv_flags |= IFF_NO_QUEUE;
7728 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7731 dev->num_tx_queues = txqs;
7732 dev->real_num_tx_queues = txqs;
7733 if (netif_alloc_netdev_queues(dev))
7737 dev->num_rx_queues = rxqs;
7738 dev->real_num_rx_queues = rxqs;
7739 if (netif_alloc_rx_queues(dev))
7743 strcpy(dev->name, name);
7744 dev->name_assign_type = name_assign_type;
7745 dev->group = INIT_NETDEV_GROUP;
7746 if (!dev->ethtool_ops)
7747 dev->ethtool_ops = &default_ethtool_ops;
7749 nf_hook_ingress_init(dev);
7758 free_percpu(dev->pcpu_refcnt);
7760 netdev_freemem(dev);
7763 EXPORT_SYMBOL(alloc_netdev_mqs);
7766 * free_netdev - free network device
7769 * This function does the last stage of destroying an allocated device
7770 * interface. The reference to the device object is released.
7771 * If this is the last reference then it will be freed.
7772 * Must be called in process context.
7774 void free_netdev(struct net_device *dev)
7776 struct napi_struct *p, *n;
7779 netif_free_tx_queues(dev);
7784 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7786 /* Flush device addresses */
7787 dev_addr_flush(dev);
7789 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7792 free_percpu(dev->pcpu_refcnt);
7793 dev->pcpu_refcnt = NULL;
7795 /* Compatibility with error handling in drivers */
7796 if (dev->reg_state == NETREG_UNINITIALIZED) {
7797 netdev_freemem(dev);
7801 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7802 dev->reg_state = NETREG_RELEASED;
7804 /* will free via device release */
7805 put_device(&dev->dev);
7807 EXPORT_SYMBOL(free_netdev);
7810 * synchronize_net - Synchronize with packet receive processing
7812 * Wait for packets currently being received to be done.
7813 * Does not block later packets from starting.
7815 void synchronize_net(void)
7818 if (rtnl_is_locked())
7819 synchronize_rcu_expedited();
7823 EXPORT_SYMBOL(synchronize_net);
7826 * unregister_netdevice_queue - remove device from the kernel
7830 * This function shuts down a device interface and removes it
7831 * from the kernel tables.
7832 * If head not NULL, device is queued to be unregistered later.
7834 * Callers must hold the rtnl semaphore. You may want
7835 * unregister_netdev() instead of this.
7838 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7843 list_move_tail(&dev->unreg_list, head);
7845 rollback_registered(dev);
7846 /* Finish processing unregister after unlock */
7850 EXPORT_SYMBOL(unregister_netdevice_queue);
7853 * unregister_netdevice_many - unregister many devices
7854 * @head: list of devices
7856 * Note: As most callers use a stack allocated list_head,
7857 * we force a list_del() to make sure stack wont be corrupted later.
7859 void unregister_netdevice_many(struct list_head *head)
7861 struct net_device *dev;
7863 if (!list_empty(head)) {
7864 rollback_registered_many(head);
7865 list_for_each_entry(dev, head, unreg_list)
7870 EXPORT_SYMBOL(unregister_netdevice_many);
7873 * unregister_netdev - remove device from the kernel
7876 * This function shuts down a device interface and removes it
7877 * from the kernel tables.
7879 * This is just a wrapper for unregister_netdevice that takes
7880 * the rtnl semaphore. In general you want to use this and not
7881 * unregister_netdevice.
7883 void unregister_netdev(struct net_device *dev)
7886 unregister_netdevice(dev);
7889 EXPORT_SYMBOL(unregister_netdev);
7892 * dev_change_net_namespace - move device to different nethost namespace
7894 * @net: network namespace
7895 * @pat: If not NULL name pattern to try if the current device name
7896 * is already taken in the destination network namespace.
7898 * This function shuts down a device interface and moves it
7899 * to a new network namespace. On success 0 is returned, on
7900 * a failure a netagive errno code is returned.
7902 * Callers must hold the rtnl semaphore.
7905 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7911 /* Don't allow namespace local devices to be moved. */
7913 if (dev->features & NETIF_F_NETNS_LOCAL)
7916 /* Ensure the device has been registrered */
7917 if (dev->reg_state != NETREG_REGISTERED)
7920 /* Get out if there is nothing todo */
7922 if (net_eq(dev_net(dev), net))
7925 /* Pick the destination device name, and ensure
7926 * we can use it in the destination network namespace.
7929 if (__dev_get_by_name(net, dev->name)) {
7930 /* We get here if we can't use the current device name */
7933 if (dev_get_valid_name(net, dev, pat) < 0)
7938 * And now a mini version of register_netdevice unregister_netdevice.
7941 /* If device is running close it first. */
7944 /* And unlink it from device chain */
7946 unlist_netdevice(dev);
7950 /* Shutdown queueing discipline. */
7953 /* Notify protocols, that we are about to destroy
7954 this device. They should clean all the things.
7956 Note that dev->reg_state stays at NETREG_REGISTERED.
7957 This is wanted because this way 8021q and macvlan know
7958 the device is just moving and can keep their slaves up.
7960 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7962 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7963 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7966 * Flush the unicast and multicast chains
7971 /* Send a netdev-removed uevent to the old namespace */
7972 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7973 netdev_adjacent_del_links(dev);
7975 /* Actually switch the network namespace */
7976 dev_net_set(dev, net);
7978 /* If there is an ifindex conflict assign a new one */
7979 if (__dev_get_by_index(net, dev->ifindex))
7980 dev->ifindex = dev_new_index(net);
7982 /* Send a netdev-add uevent to the new namespace */
7983 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7984 netdev_adjacent_add_links(dev);
7986 /* Fixup kobjects */
7987 err = device_rename(&dev->dev, dev->name);
7990 /* Add the device back in the hashes */
7991 list_netdevice(dev);
7993 /* Notify protocols, that a new device appeared. */
7994 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7997 * Prevent userspace races by waiting until the network
7998 * device is fully setup before sending notifications.
8000 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8007 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8009 static int dev_cpu_dead(unsigned int oldcpu)
8011 struct sk_buff **list_skb;
8012 struct sk_buff *skb;
8014 struct softnet_data *sd, *oldsd;
8016 local_irq_disable();
8017 cpu = smp_processor_id();
8018 sd = &per_cpu(softnet_data, cpu);
8019 oldsd = &per_cpu(softnet_data, oldcpu);
8021 /* Find end of our completion_queue. */
8022 list_skb = &sd->completion_queue;
8024 list_skb = &(*list_skb)->next;
8025 /* Append completion queue from offline CPU. */
8026 *list_skb = oldsd->completion_queue;
8027 oldsd->completion_queue = NULL;
8029 /* Append output queue from offline CPU. */
8030 if (oldsd->output_queue) {
8031 *sd->output_queue_tailp = oldsd->output_queue;
8032 sd->output_queue_tailp = oldsd->output_queue_tailp;
8033 oldsd->output_queue = NULL;
8034 oldsd->output_queue_tailp = &oldsd->output_queue;
8036 /* Append NAPI poll list from offline CPU, with one exception :
8037 * process_backlog() must be called by cpu owning percpu backlog.
8038 * We properly handle process_queue & input_pkt_queue later.
8040 while (!list_empty(&oldsd->poll_list)) {
8041 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8045 list_del_init(&napi->poll_list);
8046 if (napi->poll == process_backlog)
8049 ____napi_schedule(sd, napi);
8052 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8055 /* Process offline CPU's input_pkt_queue */
8056 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8058 input_queue_head_incr(oldsd);
8060 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8062 input_queue_head_incr(oldsd);
8069 * netdev_increment_features - increment feature set by one
8070 * @all: current feature set
8071 * @one: new feature set
8072 * @mask: mask feature set
8074 * Computes a new feature set after adding a device with feature set
8075 * @one to the master device with current feature set @all. Will not
8076 * enable anything that is off in @mask. Returns the new feature set.
8078 netdev_features_t netdev_increment_features(netdev_features_t all,
8079 netdev_features_t one, netdev_features_t mask)
8081 if (mask & NETIF_F_HW_CSUM)
8082 mask |= NETIF_F_CSUM_MASK;
8083 mask |= NETIF_F_VLAN_CHALLENGED;
8085 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8086 all &= one | ~NETIF_F_ALL_FOR_ALL;
8088 /* If one device supports hw checksumming, set for all. */
8089 if (all & NETIF_F_HW_CSUM)
8090 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8094 EXPORT_SYMBOL(netdev_increment_features);
8096 static struct hlist_head * __net_init netdev_create_hash(void)
8099 struct hlist_head *hash;
8101 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8103 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8104 INIT_HLIST_HEAD(&hash[i]);
8109 /* Initialize per network namespace state */
8110 static int __net_init netdev_init(struct net *net)
8112 if (net != &init_net)
8113 INIT_LIST_HEAD(&net->dev_base_head);
8115 net->dev_name_head = netdev_create_hash();
8116 if (net->dev_name_head == NULL)
8119 net->dev_index_head = netdev_create_hash();
8120 if (net->dev_index_head == NULL)
8126 kfree(net->dev_name_head);
8132 * netdev_drivername - network driver for the device
8133 * @dev: network device
8135 * Determine network driver for device.
8137 const char *netdev_drivername(const struct net_device *dev)
8139 const struct device_driver *driver;
8140 const struct device *parent;
8141 const char *empty = "";
8143 parent = dev->dev.parent;
8147 driver = parent->driver;
8148 if (driver && driver->name)
8149 return driver->name;
8153 static void __netdev_printk(const char *level, const struct net_device *dev,
8154 struct va_format *vaf)
8156 if (dev && dev->dev.parent) {
8157 dev_printk_emit(level[1] - '0',
8160 dev_driver_string(dev->dev.parent),
8161 dev_name(dev->dev.parent),
8162 netdev_name(dev), netdev_reg_state(dev),
8165 printk("%s%s%s: %pV",
8166 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8168 printk("%s(NULL net_device): %pV", level, vaf);
8172 void netdev_printk(const char *level, const struct net_device *dev,
8173 const char *format, ...)
8175 struct va_format vaf;
8178 va_start(args, format);
8183 __netdev_printk(level, dev, &vaf);
8187 EXPORT_SYMBOL(netdev_printk);
8189 #define define_netdev_printk_level(func, level) \
8190 void func(const struct net_device *dev, const char *fmt, ...) \
8192 struct va_format vaf; \
8195 va_start(args, fmt); \
8200 __netdev_printk(level, dev, &vaf); \
8204 EXPORT_SYMBOL(func);
8206 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8207 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8208 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8209 define_netdev_printk_level(netdev_err, KERN_ERR);
8210 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8211 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8212 define_netdev_printk_level(netdev_info, KERN_INFO);
8214 static void __net_exit netdev_exit(struct net *net)
8216 kfree(net->dev_name_head);
8217 kfree(net->dev_index_head);
8220 static struct pernet_operations __net_initdata netdev_net_ops = {
8221 .init = netdev_init,
8222 .exit = netdev_exit,
8225 static void __net_exit default_device_exit(struct net *net)
8227 struct net_device *dev, *aux;
8229 * Push all migratable network devices back to the
8230 * initial network namespace
8233 for_each_netdev_safe(net, dev, aux) {
8235 char fb_name[IFNAMSIZ];
8237 /* Ignore unmoveable devices (i.e. loopback) */
8238 if (dev->features & NETIF_F_NETNS_LOCAL)
8241 /* Leave virtual devices for the generic cleanup */
8242 if (dev->rtnl_link_ops)
8245 /* Push remaining network devices to init_net */
8246 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8247 err = dev_change_net_namespace(dev, &init_net, fb_name);
8249 pr_emerg("%s: failed to move %s to init_net: %d\n",
8250 __func__, dev->name, err);
8257 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8259 /* Return with the rtnl_lock held when there are no network
8260 * devices unregistering in any network namespace in net_list.
8264 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8266 add_wait_queue(&netdev_unregistering_wq, &wait);
8268 unregistering = false;
8270 list_for_each_entry(net, net_list, exit_list) {
8271 if (net->dev_unreg_count > 0) {
8272 unregistering = true;
8280 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8282 remove_wait_queue(&netdev_unregistering_wq, &wait);
8285 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8287 /* At exit all network devices most be removed from a network
8288 * namespace. Do this in the reverse order of registration.
8289 * Do this across as many network namespaces as possible to
8290 * improve batching efficiency.
8292 struct net_device *dev;
8294 LIST_HEAD(dev_kill_list);
8296 /* To prevent network device cleanup code from dereferencing
8297 * loopback devices or network devices that have been freed
8298 * wait here for all pending unregistrations to complete,
8299 * before unregistring the loopback device and allowing the
8300 * network namespace be freed.
8302 * The netdev todo list containing all network devices
8303 * unregistrations that happen in default_device_exit_batch
8304 * will run in the rtnl_unlock() at the end of
8305 * default_device_exit_batch.
8307 rtnl_lock_unregistering(net_list);
8308 list_for_each_entry(net, net_list, exit_list) {
8309 for_each_netdev_reverse(net, dev) {
8310 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8311 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8313 unregister_netdevice_queue(dev, &dev_kill_list);
8316 unregister_netdevice_many(&dev_kill_list);
8320 static struct pernet_operations __net_initdata default_device_ops = {
8321 .exit = default_device_exit,
8322 .exit_batch = default_device_exit_batch,
8326 * Initialize the DEV module. At boot time this walks the device list and
8327 * unhooks any devices that fail to initialise (normally hardware not
8328 * present) and leaves us with a valid list of present and active devices.
8333 * This is called single threaded during boot, so no need
8334 * to take the rtnl semaphore.
8336 static int __init net_dev_init(void)
8338 int i, rc = -ENOMEM;
8340 BUG_ON(!dev_boot_phase);
8342 if (dev_proc_init())
8345 if (netdev_kobject_init())
8348 INIT_LIST_HEAD(&ptype_all);
8349 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8350 INIT_LIST_HEAD(&ptype_base[i]);
8352 INIT_LIST_HEAD(&offload_base);
8354 if (register_pernet_subsys(&netdev_net_ops))
8358 * Initialise the packet receive queues.
8361 for_each_possible_cpu(i) {
8362 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8363 struct softnet_data *sd = &per_cpu(softnet_data, i);
8365 INIT_WORK(flush, flush_backlog);
8367 skb_queue_head_init(&sd->input_pkt_queue);
8368 skb_queue_head_init(&sd->process_queue);
8369 INIT_LIST_HEAD(&sd->poll_list);
8370 sd->output_queue_tailp = &sd->output_queue;
8372 sd->csd.func = rps_trigger_softirq;
8377 sd->backlog.poll = process_backlog;
8378 sd->backlog.weight = weight_p;
8383 /* The loopback device is special if any other network devices
8384 * is present in a network namespace the loopback device must
8385 * be present. Since we now dynamically allocate and free the
8386 * loopback device ensure this invariant is maintained by
8387 * keeping the loopback device as the first device on the
8388 * list of network devices. Ensuring the loopback devices
8389 * is the first device that appears and the last network device
8392 if (register_pernet_device(&loopback_net_ops))
8395 if (register_pernet_device(&default_device_ops))
8398 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8399 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8401 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8402 NULL, dev_cpu_dead);
8410 subsys_initcall(net_dev_init);