net: Add Software fallback infrastructure for socket dependent offloads
[platform/kernel/linux-rpi.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;       /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166                                          struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static seqcount_t devnet_rename_seq;
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222         spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229         spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236         struct net *net = dev_net(dev);
237
238         ASSERT_RTNL();
239
240         write_lock_bh(&dev_base_lock);
241         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243         hlist_add_head_rcu(&dev->index_hlist,
244                            dev_index_hash(net, dev->ifindex));
245         write_unlock_bh(&dev_base_lock);
246
247         dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255         ASSERT_RTNL();
256
257         /* Unlink dev from the device chain */
258         write_lock_bh(&dev_base_lock);
259         list_del_rcu(&dev->dev_list);
260         hlist_del_rcu(&dev->name_hlist);
261         hlist_del_rcu(&dev->index_hlist);
262         write_unlock_bh(&dev_base_lock);
263
264         dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268  *      Our notifier list
269  */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274  *      Device drivers call our routines to queue packets here. We empty the
275  *      queue in the local softnet handler.
276  */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303 static const char *const netdev_lock_name[] = {
304         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325         int i;
326
327         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328                 if (netdev_lock_type[i] == dev_type)
329                         return i;
330         /* the last key is used by default */
331         return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335                                                  unsigned short dev_type)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev_type);
340         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341                                    netdev_lock_name[i]);
342 }
343
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346         int i;
347
348         i = netdev_lock_pos(dev->type);
349         lockdep_set_class_and_name(&dev->addr_list_lock,
350                                    &netdev_addr_lock_key[i],
351                                    netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355                                                  unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362
363 /*******************************************************************************
364  *
365  *              Protocol management and registration routines
366  *
367  *******************************************************************************/
368
369
370 /*
371  *      Add a protocol ID to the list. Now that the input handler is
372  *      smarter we can dispense with all the messy stuff that used to be
373  *      here.
374  *
375  *      BEWARE!!! Protocol handlers, mangling input packets,
376  *      MUST BE last in hash buckets and checking protocol handlers
377  *      MUST start from promiscuous ptype_all chain in net_bh.
378  *      It is true now, do not change it.
379  *      Explanation follows: if protocol handler, mangling packet, will
380  *      be the first on list, it is not able to sense, that packet
381  *      is cloned and should be copied-on-write, so that it will
382  *      change it and subsequent readers will get broken packet.
383  *                                                      --ANK (980803)
384  */
385
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388         if (pt->type == htons(ETH_P_ALL))
389                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390         else
391                 return pt->dev ? &pt->dev->ptype_specific :
392                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394
395 /**
396  *      dev_add_pack - add packet handler
397  *      @pt: packet type declaration
398  *
399  *      Add a protocol handler to the networking stack. The passed &packet_type
400  *      is linked into kernel lists and may not be freed until it has been
401  *      removed from the kernel lists.
402  *
403  *      This call does not sleep therefore it can not
404  *      guarantee all CPU's that are in middle of receiving packets
405  *      will see the new packet type (until the next received packet).
406  */
407
408 void dev_add_pack(struct packet_type *pt)
409 {
410         struct list_head *head = ptype_head(pt);
411
412         spin_lock(&ptype_lock);
413         list_add_rcu(&pt->list, head);
414         spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417
418 /**
419  *      __dev_remove_pack        - remove packet handler
420  *      @pt: packet type declaration
421  *
422  *      Remove a protocol handler that was previously added to the kernel
423  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *      from the kernel lists and can be freed or reused once this function
425  *      returns.
426  *
427  *      The packet type might still be in use by receivers
428  *      and must not be freed until after all the CPU's have gone
429  *      through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433         struct list_head *head = ptype_head(pt);
434         struct packet_type *pt1;
435
436         spin_lock(&ptype_lock);
437
438         list_for_each_entry(pt1, head, list) {
439                 if (pt == pt1) {
440                         list_del_rcu(&pt->list);
441                         goto out;
442                 }
443         }
444
445         pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447         spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450
451 /**
452  *      dev_remove_pack  - remove packet handler
453  *      @pt: packet type declaration
454  *
455  *      Remove a protocol handler that was previously added to the kernel
456  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *      from the kernel lists and can be freed or reused once this function
458  *      returns.
459  *
460  *      This call sleeps to guarantee that no CPU is looking at the packet
461  *      type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465         __dev_remove_pack(pt);
466
467         synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470
471
472 /**
473  *      dev_add_offload - register offload handlers
474  *      @po: protocol offload declaration
475  *
476  *      Add protocol offload handlers to the networking stack. The passed
477  *      &proto_offload is linked into kernel lists and may not be freed until
478  *      it has been removed from the kernel lists.
479  *
480  *      This call does not sleep therefore it can not
481  *      guarantee all CPU's that are in middle of receiving packets
482  *      will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486         struct packet_offload *elem;
487
488         spin_lock(&offload_lock);
489         list_for_each_entry(elem, &offload_base, list) {
490                 if (po->priority < elem->priority)
491                         break;
492         }
493         list_add_rcu(&po->list, elem->list.prev);
494         spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499  *      __dev_remove_offload     - remove offload handler
500  *      @po: packet offload declaration
501  *
502  *      Remove a protocol offload handler that was previously added to the
503  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *      is removed from the kernel lists and can be freed or reused once this
505  *      function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *      and must not be freed until after all the CPU's have gone
509  *      through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513         struct list_head *head = &offload_base;
514         struct packet_offload *po1;
515
516         spin_lock(&offload_lock);
517
518         list_for_each_entry(po1, head, list) {
519                 if (po == po1) {
520                         list_del_rcu(&po->list);
521                         goto out;
522                 }
523         }
524
525         pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527         spin_unlock(&offload_lock);
528 }
529
530 /**
531  *      dev_remove_offload       - remove packet offload handler
532  *      @po: packet offload declaration
533  *
534  *      Remove a packet offload handler that was previously added to the kernel
535  *      offload handlers by dev_add_offload(). The passed &offload_type is
536  *      removed from the kernel lists and can be freed or reused once this
537  *      function returns.
538  *
539  *      This call sleeps to guarantee that no CPU is looking at the packet
540  *      type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544         __dev_remove_offload(po);
545
546         synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549
550 /******************************************************************************
551  *
552  *                    Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559 /**
560  *      netdev_boot_setup_add   - add new setup entry
561  *      @name: name of the device
562  *      @map: configured settings for the device
563  *
564  *      Adds new setup entry to the dev_boot_setup list.  The function
565  *      returns 0 on error and 1 on success.  This is a generic routine to
566  *      all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570         struct netdev_boot_setup *s;
571         int i;
572
573         s = dev_boot_setup;
574         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576                         memset(s[i].name, 0, sizeof(s[i].name));
577                         strlcpy(s[i].name, name, IFNAMSIZ);
578                         memcpy(&s[i].map, map, sizeof(s[i].map));
579                         break;
580                 }
581         }
582
583         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585
586 /**
587  * netdev_boot_setup_check      - check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597         struct netdev_boot_setup *s = dev_boot_setup;
598         int i;
599
600         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602                     !strcmp(dev->name, s[i].name)) {
603                         dev->irq = s[i].map.irq;
604                         dev->base_addr = s[i].map.base_addr;
605                         dev->mem_start = s[i].map.mem_start;
606                         dev->mem_end = s[i].map.mem_end;
607                         return 1;
608                 }
609         }
610         return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615 /**
616  * netdev_boot_base     - get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627         const struct netdev_boot_setup *s = dev_boot_setup;
628         char name[IFNAMSIZ];
629         int i;
630
631         sprintf(name, "%s%d", prefix, unit);
632
633         /*
634          * If device already registered then return base of 1
635          * to indicate not to probe for this interface
636          */
637         if (__dev_get_by_name(&init_net, name))
638                 return 1;
639
640         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641                 if (!strcmp(name, s[i].name))
642                         return s[i].map.base_addr;
643         return 0;
644 }
645
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651         int ints[5];
652         struct ifmap map;
653
654         str = get_options(str, ARRAY_SIZE(ints), ints);
655         if (!str || !*str)
656                 return 0;
657
658         /* Save settings */
659         memset(&map, 0, sizeof(map));
660         if (ints[0] > 0)
661                 map.irq = ints[1];
662         if (ints[0] > 1)
663                 map.base_addr = ints[2];
664         if (ints[0] > 2)
665                 map.mem_start = ints[3];
666         if (ints[0] > 3)
667                 map.mem_end = ints[4];
668
669         /* Add new entry to the list */
670         return netdev_boot_setup_add(str, &map);
671 }
672
673 __setup("netdev=", netdev_boot_setup);
674
675 /*******************************************************************************
676  *
677  *                          Device Interface Subroutines
678  *
679  *******************************************************************************/
680
681 /**
682  *      dev_get_iflink  - get 'iflink' value of a interface
683  *      @dev: targeted interface
684  *
685  *      Indicates the ifindex the interface is linked to.
686  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688
689 int dev_get_iflink(const struct net_device *dev)
690 {
691         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692                 return dev->netdev_ops->ndo_get_iflink(dev);
693
694         return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *      @dev: targeted interface
701  *      @skb: The packet.
702  *
703  *      For better visibility of tunnel traffic OVS needs to retrieve
704  *      egress tunnel information for a packet. Following API allows
705  *      user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709         struct ip_tunnel_info *info;
710
711         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712                 return -EINVAL;
713
714         info = skb_tunnel_info_unclone(skb);
715         if (!info)
716                 return -ENOMEM;
717         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718                 return -EINVAL;
719
720         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724 /**
725  *      __dev_get_by_name       - find a device by its name
726  *      @net: the applicable net namespace
727  *      @name: name to find
728  *
729  *      Find an interface by name. Must be called under RTNL semaphore
730  *      or @dev_base_lock. If the name is found a pointer to the device
731  *      is returned. If the name is not found then %NULL is returned. The
732  *      reference counters are not incremented so the caller must be
733  *      careful with locks.
734  */
735
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738         struct net_device *dev;
739         struct hlist_head *head = dev_name_hash(net, name);
740
741         hlist_for_each_entry(dev, head, name_hlist)
742                 if (!strncmp(dev->name, name, IFNAMSIZ))
743                         return dev;
744
745         return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748
749 /**
750  * dev_get_by_name_rcu  - find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763         struct net_device *dev;
764         struct hlist_head *head = dev_name_hash(net, name);
765
766         hlist_for_each_entry_rcu(dev, head, name_hlist)
767                 if (!strncmp(dev->name, name, IFNAMSIZ))
768                         return dev;
769
770         return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774 /**
775  *      dev_get_by_name         - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. This can be called from any
780  *      context and does its own locking. The returned handle has
781  *      the usage count incremented and the caller must use dev_put() to
782  *      release it when it is no longer needed. %NULL is returned if no
783  *      matching device is found.
784  */
785
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788         struct net_device *dev;
789
790         rcu_read_lock();
791         dev = dev_get_by_name_rcu(net, name);
792         if (dev)
793                 dev_hold(dev);
794         rcu_read_unlock();
795         return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800  *      __dev_get_by_index - find a device by its ifindex
801  *      @net: the applicable net namespace
802  *      @ifindex: index of device
803  *
804  *      Search for an interface by index. Returns %NULL if the device
805  *      is not found or a pointer to the device. The device has not
806  *      had its reference counter increased so the caller must be careful
807  *      about locking. The caller must hold either the RTNL semaphore
808  *      or @dev_base_lock.
809  */
810
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813         struct net_device *dev;
814         struct hlist_head *head = dev_index_hash(net, ifindex);
815
816         hlist_for_each_entry(dev, head, index_hlist)
817                 if (dev->ifindex == ifindex)
818                         return dev;
819
820         return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825  *      dev_get_by_index_rcu - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold RCU lock.
833  */
834
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837         struct net_device *dev;
838         struct hlist_head *head = dev_index_hash(net, ifindex);
839
840         hlist_for_each_entry_rcu(dev, head, index_hlist)
841                 if (dev->ifindex == ifindex)
842                         return dev;
843
844         return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849 /**
850  *      dev_get_by_index - find a device by its ifindex
851  *      @net: the applicable net namespace
852  *      @ifindex: index of device
853  *
854  *      Search for an interface by index. Returns NULL if the device
855  *      is not found or a pointer to the device. The device returned has
856  *      had a reference added and the pointer is safe until the user calls
857  *      dev_put to indicate they have finished with it.
858  */
859
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863
864         rcu_read_lock();
865         dev = dev_get_by_index_rcu(net, ifindex);
866         if (dev)
867                 dev_hold(dev);
868         rcu_read_unlock();
869         return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872
873 /**
874  *      dev_get_by_napi_id - find a device by napi_id
875  *      @napi_id: ID of the NAPI struct
876  *
877  *      Search for an interface by NAPI ID. Returns %NULL if the device
878  *      is not found or a pointer to the device. The device has not had
879  *      its reference counter increased so the caller must be careful
880  *      about locking. The caller must hold RCU lock.
881  */
882
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885         struct napi_struct *napi;
886
887         WARN_ON_ONCE(!rcu_read_lock_held());
888
889         if (napi_id < MIN_NAPI_ID)
890                 return NULL;
891
892         napi = napi_by_id(napi_id);
893
894         return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897
898 /**
899  *      netdev_get_name - get a netdevice name, knowing its ifindex.
900  *      @net: network namespace
901  *      @name: a pointer to the buffer where the name will be stored.
902  *      @ifindex: the ifindex of the interface to get the name from.
903  *
904  *      The use of raw_seqcount_begin() and cond_resched() before
905  *      retrying is required as we want to give the writers a chance
906  *      to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910         struct net_device *dev;
911         unsigned int seq;
912
913 retry:
914         seq = raw_seqcount_begin(&devnet_rename_seq);
915         rcu_read_lock();
916         dev = dev_get_by_index_rcu(net, ifindex);
917         if (!dev) {
918                 rcu_read_unlock();
919                 return -ENODEV;
920         }
921
922         strcpy(name, dev->name);
923         rcu_read_unlock();
924         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925                 cond_resched();
926                 goto retry;
927         }
928
929         return 0;
930 }
931
932 /**
933  *      dev_getbyhwaddr_rcu - find a device by its hardware address
934  *      @net: the applicable net namespace
935  *      @type: media type of device
936  *      @ha: hardware address
937  *
938  *      Search for an interface by MAC address. Returns NULL if the device
939  *      is not found or a pointer to the device.
940  *      The caller must hold RCU or RTNL.
941  *      The returned device has not had its ref count increased
942  *      and the caller must therefore be careful about locking
943  *
944  */
945
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947                                        const char *ha)
948 {
949         struct net_device *dev;
950
951         for_each_netdev_rcu(net, dev)
952                 if (dev->type == type &&
953                     !memcmp(dev->dev_addr, ha, dev->addr_len))
954                         return dev;
955
956         return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962         struct net_device *dev;
963
964         ASSERT_RTNL();
965         for_each_netdev(net, dev)
966                 if (dev->type == type)
967                         return dev;
968
969         return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975         struct net_device *dev, *ret = NULL;
976
977         rcu_read_lock();
978         for_each_netdev_rcu(net, dev)
979                 if (dev->type == type) {
980                         dev_hold(dev);
981                         ret = dev;
982                         break;
983                 }
984         rcu_read_unlock();
985         return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989 /**
990  *      __dev_get_by_flags - find any device with given flags
991  *      @net: the applicable net namespace
992  *      @if_flags: IFF_* values
993  *      @mask: bitmask of bits in if_flags to check
994  *
995  *      Search for any interface with the given flags. Returns NULL if a device
996  *      is not found or a pointer to the device. Must be called inside
997  *      rtnl_lock(), and result refcount is unchanged.
998  */
999
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001                                       unsigned short mask)
1002 {
1003         struct net_device *dev, *ret;
1004
1005         ASSERT_RTNL();
1006
1007         ret = NULL;
1008         for_each_netdev(net, dev) {
1009                 if (((dev->flags ^ if_flags) & mask) == 0) {
1010                         ret = dev;
1011                         break;
1012                 }
1013         }
1014         return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018 /**
1019  *      dev_valid_name - check if name is okay for network device
1020  *      @name: name string
1021  *
1022  *      Network device names need to be valid file names to
1023  *      to allow sysfs to work.  We also disallow any kind of
1024  *      whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028         if (*name == '\0')
1029                 return false;
1030         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031                 return false;
1032         if (!strcmp(name, ".") || !strcmp(name, ".."))
1033                 return false;
1034
1035         while (*name) {
1036                 if (*name == '/' || *name == ':' || isspace(*name))
1037                         return false;
1038                 name++;
1039         }
1040         return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043
1044 /**
1045  *      __dev_alloc_name - allocate a name for a device
1046  *      @net: network namespace to allocate the device name in
1047  *      @name: name format string
1048  *      @buf:  scratch buffer and result name string
1049  *
1050  *      Passed a format string - eg "lt%d" it will try and find a suitable
1051  *      id. It scans list of devices to build up a free map, then chooses
1052  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *      while allocating the name and adding the device in order to avoid
1054  *      duplicates.
1055  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *      Returns the number of the unit assigned or a negative errno code.
1057  */
1058
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061         int i = 0;
1062         const char *p;
1063         const int max_netdevices = 8*PAGE_SIZE;
1064         unsigned long *inuse;
1065         struct net_device *d;
1066
1067         if (!dev_valid_name(name))
1068                 return -EINVAL;
1069
1070         p = strchr(name, '%');
1071         if (p) {
1072                 /*
1073                  * Verify the string as this thing may have come from
1074                  * the user.  There must be either one "%d" and no other "%"
1075                  * characters.
1076                  */
1077                 if (p[1] != 'd' || strchr(p + 2, '%'))
1078                         return -EINVAL;
1079
1080                 /* Use one page as a bit array of possible slots */
1081                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082                 if (!inuse)
1083                         return -ENOMEM;
1084
1085                 for_each_netdev(net, d) {
1086                         if (!sscanf(d->name, name, &i))
1087                                 continue;
1088                         if (i < 0 || i >= max_netdevices)
1089                                 continue;
1090
1091                         /*  avoid cases where sscanf is not exact inverse of printf */
1092                         snprintf(buf, IFNAMSIZ, name, i);
1093                         if (!strncmp(buf, d->name, IFNAMSIZ))
1094                                 set_bit(i, inuse);
1095                 }
1096
1097                 i = find_first_zero_bit(inuse, max_netdevices);
1098                 free_page((unsigned long) inuse);
1099         }
1100
1101         snprintf(buf, IFNAMSIZ, name, i);
1102         if (!__dev_get_by_name(net, buf))
1103                 return i;
1104
1105         /* It is possible to run out of possible slots
1106          * when the name is long and there isn't enough space left
1107          * for the digits, or if all bits are used.
1108          */
1109         return -ENFILE;
1110 }
1111
1112 static int dev_alloc_name_ns(struct net *net,
1113                              struct net_device *dev,
1114                              const char *name)
1115 {
1116         char buf[IFNAMSIZ];
1117         int ret;
1118
1119         BUG_ON(!net);
1120         ret = __dev_alloc_name(net, name, buf);
1121         if (ret >= 0)
1122                 strlcpy(dev->name, buf, IFNAMSIZ);
1123         return ret;
1124 }
1125
1126 /**
1127  *      dev_alloc_name - allocate a name for a device
1128  *      @dev: device
1129  *      @name: name format string
1130  *
1131  *      Passed a format string - eg "lt%d" it will try and find a suitable
1132  *      id. It scans list of devices to build up a free map, then chooses
1133  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *      while allocating the name and adding the device in order to avoid
1135  *      duplicates.
1136  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *      Returns the number of the unit assigned or a negative errno code.
1138  */
1139
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142         return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147                        const char *name)
1148 {
1149         BUG_ON(!net);
1150
1151         if (!dev_valid_name(name))
1152                 return -EINVAL;
1153
1154         if (strchr(name, '%'))
1155                 return dev_alloc_name_ns(net, dev, name);
1156         else if (__dev_get_by_name(net, name))
1157                 return -EEXIST;
1158         else if (dev->name != name)
1159                 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161         return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164
1165 /**
1166  *      dev_change_name - change name of a device
1167  *      @dev: device
1168  *      @newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *      Change name of a device, can pass format strings "eth%d".
1171  *      for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175         unsigned char old_assign_type;
1176         char oldname[IFNAMSIZ];
1177         int err = 0;
1178         int ret;
1179         struct net *net;
1180
1181         ASSERT_RTNL();
1182         BUG_ON(!dev_net(dev));
1183
1184         net = dev_net(dev);
1185         if (dev->flags & IFF_UP)
1186                 return -EBUSY;
1187
1188         write_seqcount_begin(&devnet_rename_seq);
1189
1190         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191                 write_seqcount_end(&devnet_rename_seq);
1192                 return 0;
1193         }
1194
1195         memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197         err = dev_get_valid_name(net, dev, newname);
1198         if (err < 0) {
1199                 write_seqcount_end(&devnet_rename_seq);
1200                 return err;
1201         }
1202
1203         if (oldname[0] && !strchr(oldname, '%'))
1204                 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206         old_assign_type = dev->name_assign_type;
1207         dev->name_assign_type = NET_NAME_RENAMED;
1208
1209 rollback:
1210         ret = device_rename(&dev->dev, dev->name);
1211         if (ret) {
1212                 memcpy(dev->name, oldname, IFNAMSIZ);
1213                 dev->name_assign_type = old_assign_type;
1214                 write_seqcount_end(&devnet_rename_seq);
1215                 return ret;
1216         }
1217
1218         write_seqcount_end(&devnet_rename_seq);
1219
1220         netdev_adjacent_rename_links(dev, oldname);
1221
1222         write_lock_bh(&dev_base_lock);
1223         hlist_del_rcu(&dev->name_hlist);
1224         write_unlock_bh(&dev_base_lock);
1225
1226         synchronize_rcu();
1227
1228         write_lock_bh(&dev_base_lock);
1229         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230         write_unlock_bh(&dev_base_lock);
1231
1232         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233         ret = notifier_to_errno(ret);
1234
1235         if (ret) {
1236                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237                 if (err >= 0) {
1238                         err = ret;
1239                         write_seqcount_begin(&devnet_rename_seq);
1240                         memcpy(dev->name, oldname, IFNAMSIZ);
1241                         memcpy(oldname, newname, IFNAMSIZ);
1242                         dev->name_assign_type = old_assign_type;
1243                         old_assign_type = NET_NAME_RENAMED;
1244                         goto rollback;
1245                 } else {
1246                         pr_err("%s: name change rollback failed: %d\n",
1247                                dev->name, ret);
1248                 }
1249         }
1250
1251         return err;
1252 }
1253
1254 /**
1255  *      dev_set_alias - change ifalias of a device
1256  *      @dev: device
1257  *      @alias: name up to IFALIASZ
1258  *      @len: limit of bytes to copy from info
1259  *
1260  *      Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264         struct dev_ifalias *new_alias = NULL;
1265
1266         if (len >= IFALIASZ)
1267                 return -EINVAL;
1268
1269         if (len) {
1270                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271                 if (!new_alias)
1272                         return -ENOMEM;
1273
1274                 memcpy(new_alias->ifalias, alias, len);
1275                 new_alias->ifalias[len] = 0;
1276         }
1277
1278         mutex_lock(&ifalias_mutex);
1279         rcu_swap_protected(dev->ifalias, new_alias,
1280                            mutex_is_locked(&ifalias_mutex));
1281         mutex_unlock(&ifalias_mutex);
1282
1283         if (new_alias)
1284                 kfree_rcu(new_alias, rcuhead);
1285
1286         return len;
1287 }
1288 EXPORT_SYMBOL(dev_set_alias);
1289
1290 /**
1291  *      dev_get_alias - get ifalias of a device
1292  *      @dev: device
1293  *      @name: buffer to store name of ifalias
1294  *      @len: size of buffer
1295  *
1296  *      get ifalias for a device.  Caller must make sure dev cannot go
1297  *      away,  e.g. rcu read lock or own a reference count to device.
1298  */
1299 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1300 {
1301         const struct dev_ifalias *alias;
1302         int ret = 0;
1303
1304         rcu_read_lock();
1305         alias = rcu_dereference(dev->ifalias);
1306         if (alias)
1307                 ret = snprintf(name, len, "%s", alias->ifalias);
1308         rcu_read_unlock();
1309
1310         return ret;
1311 }
1312
1313 /**
1314  *      netdev_features_change - device changes features
1315  *      @dev: device to cause notification
1316  *
1317  *      Called to indicate a device has changed features.
1318  */
1319 void netdev_features_change(struct net_device *dev)
1320 {
1321         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1322 }
1323 EXPORT_SYMBOL(netdev_features_change);
1324
1325 /**
1326  *      netdev_state_change - device changes state
1327  *      @dev: device to cause notification
1328  *
1329  *      Called to indicate a device has changed state. This function calls
1330  *      the notifier chains for netdev_chain and sends a NEWLINK message
1331  *      to the routing socket.
1332  */
1333 void netdev_state_change(struct net_device *dev)
1334 {
1335         if (dev->flags & IFF_UP) {
1336                 struct netdev_notifier_change_info change_info = {
1337                         .info.dev = dev,
1338                 };
1339
1340                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1341                                               &change_info.info);
1342                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1343         }
1344 }
1345 EXPORT_SYMBOL(netdev_state_change);
1346
1347 /**
1348  * netdev_notify_peers - notify network peers about existence of @dev
1349  * @dev: network device
1350  *
1351  * Generate traffic such that interested network peers are aware of
1352  * @dev, such as by generating a gratuitous ARP. This may be used when
1353  * a device wants to inform the rest of the network about some sort of
1354  * reconfiguration such as a failover event or virtual machine
1355  * migration.
1356  */
1357 void netdev_notify_peers(struct net_device *dev)
1358 {
1359         rtnl_lock();
1360         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1361         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1362         rtnl_unlock();
1363 }
1364 EXPORT_SYMBOL(netdev_notify_peers);
1365
1366 static int __dev_open(struct net_device *dev)
1367 {
1368         const struct net_device_ops *ops = dev->netdev_ops;
1369         int ret;
1370
1371         ASSERT_RTNL();
1372
1373         if (!netif_device_present(dev))
1374                 return -ENODEV;
1375
1376         /* Block netpoll from trying to do any rx path servicing.
1377          * If we don't do this there is a chance ndo_poll_controller
1378          * or ndo_poll may be running while we open the device
1379          */
1380         netpoll_poll_disable(dev);
1381
1382         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1383         ret = notifier_to_errno(ret);
1384         if (ret)
1385                 return ret;
1386
1387         set_bit(__LINK_STATE_START, &dev->state);
1388
1389         if (ops->ndo_validate_addr)
1390                 ret = ops->ndo_validate_addr(dev);
1391
1392         if (!ret && ops->ndo_open)
1393                 ret = ops->ndo_open(dev);
1394
1395         netpoll_poll_enable(dev);
1396
1397         if (ret)
1398                 clear_bit(__LINK_STATE_START, &dev->state);
1399         else {
1400                 dev->flags |= IFF_UP;
1401                 dev_set_rx_mode(dev);
1402                 dev_activate(dev);
1403                 add_device_randomness(dev->dev_addr, dev->addr_len);
1404         }
1405
1406         return ret;
1407 }
1408
1409 /**
1410  *      dev_open        - prepare an interface for use.
1411  *      @dev:   device to open
1412  *
1413  *      Takes a device from down to up state. The device's private open
1414  *      function is invoked and then the multicast lists are loaded. Finally
1415  *      the device is moved into the up state and a %NETDEV_UP message is
1416  *      sent to the netdev notifier chain.
1417  *
1418  *      Calling this function on an active interface is a nop. On a failure
1419  *      a negative errno code is returned.
1420  */
1421 int dev_open(struct net_device *dev)
1422 {
1423         int ret;
1424
1425         if (dev->flags & IFF_UP)
1426                 return 0;
1427
1428         ret = __dev_open(dev);
1429         if (ret < 0)
1430                 return ret;
1431
1432         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1433         call_netdevice_notifiers(NETDEV_UP, dev);
1434
1435         return ret;
1436 }
1437 EXPORT_SYMBOL(dev_open);
1438
1439 static void __dev_close_many(struct list_head *head)
1440 {
1441         struct net_device *dev;
1442
1443         ASSERT_RTNL();
1444         might_sleep();
1445
1446         list_for_each_entry(dev, head, close_list) {
1447                 /* Temporarily disable netpoll until the interface is down */
1448                 netpoll_poll_disable(dev);
1449
1450                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1451
1452                 clear_bit(__LINK_STATE_START, &dev->state);
1453
1454                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1455                  * can be even on different cpu. So just clear netif_running().
1456                  *
1457                  * dev->stop() will invoke napi_disable() on all of it's
1458                  * napi_struct instances on this device.
1459                  */
1460                 smp_mb__after_atomic(); /* Commit netif_running(). */
1461         }
1462
1463         dev_deactivate_many(head);
1464
1465         list_for_each_entry(dev, head, close_list) {
1466                 const struct net_device_ops *ops = dev->netdev_ops;
1467
1468                 /*
1469                  *      Call the device specific close. This cannot fail.
1470                  *      Only if device is UP
1471                  *
1472                  *      We allow it to be called even after a DETACH hot-plug
1473                  *      event.
1474                  */
1475                 if (ops->ndo_stop)
1476                         ops->ndo_stop(dev);
1477
1478                 dev->flags &= ~IFF_UP;
1479                 netpoll_poll_enable(dev);
1480         }
1481 }
1482
1483 static void __dev_close(struct net_device *dev)
1484 {
1485         LIST_HEAD(single);
1486
1487         list_add(&dev->close_list, &single);
1488         __dev_close_many(&single);
1489         list_del(&single);
1490 }
1491
1492 void dev_close_many(struct list_head *head, bool unlink)
1493 {
1494         struct net_device *dev, *tmp;
1495
1496         /* Remove the devices that don't need to be closed */
1497         list_for_each_entry_safe(dev, tmp, head, close_list)
1498                 if (!(dev->flags & IFF_UP))
1499                         list_del_init(&dev->close_list);
1500
1501         __dev_close_many(head);
1502
1503         list_for_each_entry_safe(dev, tmp, head, close_list) {
1504                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1505                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1506                 if (unlink)
1507                         list_del_init(&dev->close_list);
1508         }
1509 }
1510 EXPORT_SYMBOL(dev_close_many);
1511
1512 /**
1513  *      dev_close - shutdown an interface.
1514  *      @dev: device to shutdown
1515  *
1516  *      This function moves an active device into down state. A
1517  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1518  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1519  *      chain.
1520  */
1521 void dev_close(struct net_device *dev)
1522 {
1523         if (dev->flags & IFF_UP) {
1524                 LIST_HEAD(single);
1525
1526                 list_add(&dev->close_list, &single);
1527                 dev_close_many(&single, true);
1528                 list_del(&single);
1529         }
1530 }
1531 EXPORT_SYMBOL(dev_close);
1532
1533
1534 /**
1535  *      dev_disable_lro - disable Large Receive Offload on a device
1536  *      @dev: device
1537  *
1538  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1539  *      called under RTNL.  This is needed if received packets may be
1540  *      forwarded to another interface.
1541  */
1542 void dev_disable_lro(struct net_device *dev)
1543 {
1544         struct net_device *lower_dev;
1545         struct list_head *iter;
1546
1547         dev->wanted_features &= ~NETIF_F_LRO;
1548         netdev_update_features(dev);
1549
1550         if (unlikely(dev->features & NETIF_F_LRO))
1551                 netdev_WARN(dev, "failed to disable LRO!\n");
1552
1553         netdev_for_each_lower_dev(dev, lower_dev, iter)
1554                 dev_disable_lro(lower_dev);
1555 }
1556 EXPORT_SYMBOL(dev_disable_lro);
1557
1558 /**
1559  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1560  *      @dev: device
1561  *
1562  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1563  *      called under RTNL.  This is needed if Generic XDP is installed on
1564  *      the device.
1565  */
1566 static void dev_disable_gro_hw(struct net_device *dev)
1567 {
1568         dev->wanted_features &= ~NETIF_F_GRO_HW;
1569         netdev_update_features(dev);
1570
1571         if (unlikely(dev->features & NETIF_F_GRO_HW))
1572                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1573 }
1574
1575 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1576 {
1577 #define N(val)                                          \
1578         case NETDEV_##val:                              \
1579                 return "NETDEV_" __stringify(val);
1580         switch (cmd) {
1581         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1582         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1583         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1584         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1585         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1586         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1587         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1588         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1589         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1590         }
1591 #undef N
1592         return "UNKNOWN_NETDEV_EVENT";
1593 }
1594 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1595
1596 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1597                                    struct net_device *dev)
1598 {
1599         struct netdev_notifier_info info = {
1600                 .dev = dev,
1601         };
1602
1603         return nb->notifier_call(nb, val, &info);
1604 }
1605
1606 static int dev_boot_phase = 1;
1607
1608 /**
1609  * register_netdevice_notifier - register a network notifier block
1610  * @nb: notifier
1611  *
1612  * Register a notifier to be called when network device events occur.
1613  * The notifier passed is linked into the kernel structures and must
1614  * not be reused until it has been unregistered. A negative errno code
1615  * is returned on a failure.
1616  *
1617  * When registered all registration and up events are replayed
1618  * to the new notifier to allow device to have a race free
1619  * view of the network device list.
1620  */
1621
1622 int register_netdevice_notifier(struct notifier_block *nb)
1623 {
1624         struct net_device *dev;
1625         struct net_device *last;
1626         struct net *net;
1627         int err;
1628
1629         /* Close race with setup_net() and cleanup_net() */
1630         down_write(&pernet_ops_rwsem);
1631         rtnl_lock();
1632         err = raw_notifier_chain_register(&netdev_chain, nb);
1633         if (err)
1634                 goto unlock;
1635         if (dev_boot_phase)
1636                 goto unlock;
1637         for_each_net(net) {
1638                 for_each_netdev(net, dev) {
1639                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640                         err = notifier_to_errno(err);
1641                         if (err)
1642                                 goto rollback;
1643
1644                         if (!(dev->flags & IFF_UP))
1645                                 continue;
1646
1647                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1648                 }
1649         }
1650
1651 unlock:
1652         rtnl_unlock();
1653         up_write(&pernet_ops_rwsem);
1654         return err;
1655
1656 rollback:
1657         last = dev;
1658         for_each_net(net) {
1659                 for_each_netdev(net, dev) {
1660                         if (dev == last)
1661                                 goto outroll;
1662
1663                         if (dev->flags & IFF_UP) {
1664                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665                                                         dev);
1666                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667                         }
1668                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1669                 }
1670         }
1671
1672 outroll:
1673         raw_notifier_chain_unregister(&netdev_chain, nb);
1674         goto unlock;
1675 }
1676 EXPORT_SYMBOL(register_netdevice_notifier);
1677
1678 /**
1679  * unregister_netdevice_notifier - unregister a network notifier block
1680  * @nb: notifier
1681  *
1682  * Unregister a notifier previously registered by
1683  * register_netdevice_notifier(). The notifier is unlinked into the
1684  * kernel structures and may then be reused. A negative errno code
1685  * is returned on a failure.
1686  *
1687  * After unregistering unregister and down device events are synthesized
1688  * for all devices on the device list to the removed notifier to remove
1689  * the need for special case cleanup code.
1690  */
1691
1692 int unregister_netdevice_notifier(struct notifier_block *nb)
1693 {
1694         struct net_device *dev;
1695         struct net *net;
1696         int err;
1697
1698         /* Close race with setup_net() and cleanup_net() */
1699         down_write(&pernet_ops_rwsem);
1700         rtnl_lock();
1701         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1702         if (err)
1703                 goto unlock;
1704
1705         for_each_net(net) {
1706                 for_each_netdev(net, dev) {
1707                         if (dev->flags & IFF_UP) {
1708                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1709                                                         dev);
1710                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1711                         }
1712                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1713                 }
1714         }
1715 unlock:
1716         rtnl_unlock();
1717         up_write(&pernet_ops_rwsem);
1718         return err;
1719 }
1720 EXPORT_SYMBOL(unregister_netdevice_notifier);
1721
1722 /**
1723  *      call_netdevice_notifiers_info - call all network notifier blocks
1724  *      @val: value passed unmodified to notifier function
1725  *      @info: notifier information data
1726  *
1727  *      Call all network notifier blocks.  Parameters and return value
1728  *      are as for raw_notifier_call_chain().
1729  */
1730
1731 static int call_netdevice_notifiers_info(unsigned long val,
1732                                          struct netdev_notifier_info *info)
1733 {
1734         ASSERT_RTNL();
1735         return raw_notifier_call_chain(&netdev_chain, val, info);
1736 }
1737
1738 /**
1739  *      call_netdevice_notifiers - call all network notifier blocks
1740  *      @val: value passed unmodified to notifier function
1741  *      @dev: net_device pointer passed unmodified to notifier function
1742  *
1743  *      Call all network notifier blocks.  Parameters and return value
1744  *      are as for raw_notifier_call_chain().
1745  */
1746
1747 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1748 {
1749         struct netdev_notifier_info info = {
1750                 .dev = dev,
1751         };
1752
1753         return call_netdevice_notifiers_info(val, &info);
1754 }
1755 EXPORT_SYMBOL(call_netdevice_notifiers);
1756
1757 #ifdef CONFIG_NET_INGRESS
1758 static struct static_key ingress_needed __read_mostly;
1759
1760 void net_inc_ingress_queue(void)
1761 {
1762         static_key_slow_inc(&ingress_needed);
1763 }
1764 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1765
1766 void net_dec_ingress_queue(void)
1767 {
1768         static_key_slow_dec(&ingress_needed);
1769 }
1770 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1771 #endif
1772
1773 #ifdef CONFIG_NET_EGRESS
1774 static struct static_key egress_needed __read_mostly;
1775
1776 void net_inc_egress_queue(void)
1777 {
1778         static_key_slow_inc(&egress_needed);
1779 }
1780 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1781
1782 void net_dec_egress_queue(void)
1783 {
1784         static_key_slow_dec(&egress_needed);
1785 }
1786 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1787 #endif
1788
1789 static struct static_key netstamp_needed __read_mostly;
1790 #ifdef HAVE_JUMP_LABEL
1791 static atomic_t netstamp_needed_deferred;
1792 static atomic_t netstamp_wanted;
1793 static void netstamp_clear(struct work_struct *work)
1794 {
1795         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1796         int wanted;
1797
1798         wanted = atomic_add_return(deferred, &netstamp_wanted);
1799         if (wanted > 0)
1800                 static_key_enable(&netstamp_needed);
1801         else
1802                 static_key_disable(&netstamp_needed);
1803 }
1804 static DECLARE_WORK(netstamp_work, netstamp_clear);
1805 #endif
1806
1807 void net_enable_timestamp(void)
1808 {
1809 #ifdef HAVE_JUMP_LABEL
1810         int wanted;
1811
1812         while (1) {
1813                 wanted = atomic_read(&netstamp_wanted);
1814                 if (wanted <= 0)
1815                         break;
1816                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1817                         return;
1818         }
1819         atomic_inc(&netstamp_needed_deferred);
1820         schedule_work(&netstamp_work);
1821 #else
1822         static_key_slow_inc(&netstamp_needed);
1823 #endif
1824 }
1825 EXPORT_SYMBOL(net_enable_timestamp);
1826
1827 void net_disable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830         int wanted;
1831
1832         while (1) {
1833                 wanted = atomic_read(&netstamp_wanted);
1834                 if (wanted <= 1)
1835                         break;
1836                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1837                         return;
1838         }
1839         atomic_dec(&netstamp_needed_deferred);
1840         schedule_work(&netstamp_work);
1841 #else
1842         static_key_slow_dec(&netstamp_needed);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_disable_timestamp);
1846
1847 static inline void net_timestamp_set(struct sk_buff *skb)
1848 {
1849         skb->tstamp = 0;
1850         if (static_key_false(&netstamp_needed))
1851                 __net_timestamp(skb);
1852 }
1853
1854 #define net_timestamp_check(COND, SKB)                  \
1855         if (static_key_false(&netstamp_needed)) {               \
1856                 if ((COND) && !(SKB)->tstamp)   \
1857                         __net_timestamp(SKB);           \
1858         }                                               \
1859
1860 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1861 {
1862         unsigned int len;
1863
1864         if (!(dev->flags & IFF_UP))
1865                 return false;
1866
1867         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1868         if (skb->len <= len)
1869                 return true;
1870
1871         /* if TSO is enabled, we don't care about the length as the packet
1872          * could be forwarded without being segmented before
1873          */
1874         if (skb_is_gso(skb))
1875                 return true;
1876
1877         return false;
1878 }
1879 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1880
1881 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1882 {
1883         int ret = ____dev_forward_skb(dev, skb);
1884
1885         if (likely(!ret)) {
1886                 skb->protocol = eth_type_trans(skb, dev);
1887                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1888         }
1889
1890         return ret;
1891 }
1892 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1893
1894 /**
1895  * dev_forward_skb - loopback an skb to another netif
1896  *
1897  * @dev: destination network device
1898  * @skb: buffer to forward
1899  *
1900  * return values:
1901  *      NET_RX_SUCCESS  (no congestion)
1902  *      NET_RX_DROP     (packet was dropped, but freed)
1903  *
1904  * dev_forward_skb can be used for injecting an skb from the
1905  * start_xmit function of one device into the receive queue
1906  * of another device.
1907  *
1908  * The receiving device may be in another namespace, so
1909  * we have to clear all information in the skb that could
1910  * impact namespace isolation.
1911  */
1912 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1913 {
1914         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1915 }
1916 EXPORT_SYMBOL_GPL(dev_forward_skb);
1917
1918 static inline int deliver_skb(struct sk_buff *skb,
1919                               struct packet_type *pt_prev,
1920                               struct net_device *orig_dev)
1921 {
1922         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1923                 return -ENOMEM;
1924         refcount_inc(&skb->users);
1925         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1926 }
1927
1928 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1929                                           struct packet_type **pt,
1930                                           struct net_device *orig_dev,
1931                                           __be16 type,
1932                                           struct list_head *ptype_list)
1933 {
1934         struct packet_type *ptype, *pt_prev = *pt;
1935
1936         list_for_each_entry_rcu(ptype, ptype_list, list) {
1937                 if (ptype->type != type)
1938                         continue;
1939                 if (pt_prev)
1940                         deliver_skb(skb, pt_prev, orig_dev);
1941                 pt_prev = ptype;
1942         }
1943         *pt = pt_prev;
1944 }
1945
1946 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1947 {
1948         if (!ptype->af_packet_priv || !skb->sk)
1949                 return false;
1950
1951         if (ptype->id_match)
1952                 return ptype->id_match(ptype, skb->sk);
1953         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1954                 return true;
1955
1956         return false;
1957 }
1958
1959 /*
1960  *      Support routine. Sends outgoing frames to any network
1961  *      taps currently in use.
1962  */
1963
1964 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1965 {
1966         struct packet_type *ptype;
1967         struct sk_buff *skb2 = NULL;
1968         struct packet_type *pt_prev = NULL;
1969         struct list_head *ptype_list = &ptype_all;
1970
1971         rcu_read_lock();
1972 again:
1973         list_for_each_entry_rcu(ptype, ptype_list, list) {
1974                 /* Never send packets back to the socket
1975                  * they originated from - MvS (miquels@drinkel.ow.org)
1976                  */
1977                 if (skb_loop_sk(ptype, skb))
1978                         continue;
1979
1980                 if (pt_prev) {
1981                         deliver_skb(skb2, pt_prev, skb->dev);
1982                         pt_prev = ptype;
1983                         continue;
1984                 }
1985
1986                 /* need to clone skb, done only once */
1987                 skb2 = skb_clone(skb, GFP_ATOMIC);
1988                 if (!skb2)
1989                         goto out_unlock;
1990
1991                 net_timestamp_set(skb2);
1992
1993                 /* skb->nh should be correctly
1994                  * set by sender, so that the second statement is
1995                  * just protection against buggy protocols.
1996                  */
1997                 skb_reset_mac_header(skb2);
1998
1999                 if (skb_network_header(skb2) < skb2->data ||
2000                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2001                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2002                                              ntohs(skb2->protocol),
2003                                              dev->name);
2004                         skb_reset_network_header(skb2);
2005                 }
2006
2007                 skb2->transport_header = skb2->network_header;
2008                 skb2->pkt_type = PACKET_OUTGOING;
2009                 pt_prev = ptype;
2010         }
2011
2012         if (ptype_list == &ptype_all) {
2013                 ptype_list = &dev->ptype_all;
2014                 goto again;
2015         }
2016 out_unlock:
2017         if (pt_prev) {
2018                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2019                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2020                 else
2021                         kfree_skb(skb2);
2022         }
2023         rcu_read_unlock();
2024 }
2025 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2026
2027 /**
2028  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2029  * @dev: Network device
2030  * @txq: number of queues available
2031  *
2032  * If real_num_tx_queues is changed the tc mappings may no longer be
2033  * valid. To resolve this verify the tc mapping remains valid and if
2034  * not NULL the mapping. With no priorities mapping to this
2035  * offset/count pair it will no longer be used. In the worst case TC0
2036  * is invalid nothing can be done so disable priority mappings. If is
2037  * expected that drivers will fix this mapping if they can before
2038  * calling netif_set_real_num_tx_queues.
2039  */
2040 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2041 {
2042         int i;
2043         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2044
2045         /* If TC0 is invalidated disable TC mapping */
2046         if (tc->offset + tc->count > txq) {
2047                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2048                 dev->num_tc = 0;
2049                 return;
2050         }
2051
2052         /* Invalidated prio to tc mappings set to TC0 */
2053         for (i = 1; i < TC_BITMASK + 1; i++) {
2054                 int q = netdev_get_prio_tc_map(dev, i);
2055
2056                 tc = &dev->tc_to_txq[q];
2057                 if (tc->offset + tc->count > txq) {
2058                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2059                                 i, q);
2060                         netdev_set_prio_tc_map(dev, i, 0);
2061                 }
2062         }
2063 }
2064
2065 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2066 {
2067         if (dev->num_tc) {
2068                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2069                 int i;
2070
2071                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072                         if ((txq - tc->offset) < tc->count)
2073                                 return i;
2074                 }
2075
2076                 return -1;
2077         }
2078
2079         return 0;
2080 }
2081 EXPORT_SYMBOL(netdev_txq_to_tc);
2082
2083 #ifdef CONFIG_XPS
2084 static DEFINE_MUTEX(xps_map_mutex);
2085 #define xmap_dereference(P)             \
2086         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2087
2088 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2089                              int tci, u16 index)
2090 {
2091         struct xps_map *map = NULL;
2092         int pos;
2093
2094         if (dev_maps)
2095                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2096         if (!map)
2097                 return false;
2098
2099         for (pos = map->len; pos--;) {
2100                 if (map->queues[pos] != index)
2101                         continue;
2102
2103                 if (map->len > 1) {
2104                         map->queues[pos] = map->queues[--map->len];
2105                         break;
2106                 }
2107
2108                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2109                 kfree_rcu(map, rcu);
2110                 return false;
2111         }
2112
2113         return true;
2114 }
2115
2116 static bool remove_xps_queue_cpu(struct net_device *dev,
2117                                  struct xps_dev_maps *dev_maps,
2118                                  int cpu, u16 offset, u16 count)
2119 {
2120         int num_tc = dev->num_tc ? : 1;
2121         bool active = false;
2122         int tci;
2123
2124         for (tci = cpu * num_tc; num_tc--; tci++) {
2125                 int i, j;
2126
2127                 for (i = count, j = offset; i--; j++) {
2128                         if (!remove_xps_queue(dev_maps, cpu, j))
2129                                 break;
2130                 }
2131
2132                 active |= i < 0;
2133         }
2134
2135         return active;
2136 }
2137
2138 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2139                                    u16 count)
2140 {
2141         struct xps_dev_maps *dev_maps;
2142         int cpu, i;
2143         bool active = false;
2144
2145         mutex_lock(&xps_map_mutex);
2146         dev_maps = xmap_dereference(dev->xps_maps);
2147
2148         if (!dev_maps)
2149                 goto out_no_maps;
2150
2151         for_each_possible_cpu(cpu)
2152                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2153                                                offset, count);
2154
2155         if (!active) {
2156                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2157                 kfree_rcu(dev_maps, rcu);
2158         }
2159
2160         for (i = offset + (count - 1); count--; i--)
2161                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2162                                              NUMA_NO_NODE);
2163
2164 out_no_maps:
2165         mutex_unlock(&xps_map_mutex);
2166 }
2167
2168 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2169 {
2170         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2171 }
2172
2173 static struct xps_map *expand_xps_map(struct xps_map *map,
2174                                       int cpu, u16 index)
2175 {
2176         struct xps_map *new_map;
2177         int alloc_len = XPS_MIN_MAP_ALLOC;
2178         int i, pos;
2179
2180         for (pos = 0; map && pos < map->len; pos++) {
2181                 if (map->queues[pos] != index)
2182                         continue;
2183                 return map;
2184         }
2185
2186         /* Need to add queue to this CPU's existing map */
2187         if (map) {
2188                 if (pos < map->alloc_len)
2189                         return map;
2190
2191                 alloc_len = map->alloc_len * 2;
2192         }
2193
2194         /* Need to allocate new map to store queue on this CPU's map */
2195         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2196                                cpu_to_node(cpu));
2197         if (!new_map)
2198                 return NULL;
2199
2200         for (i = 0; i < pos; i++)
2201                 new_map->queues[i] = map->queues[i];
2202         new_map->alloc_len = alloc_len;
2203         new_map->len = pos;
2204
2205         return new_map;
2206 }
2207
2208 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2209                         u16 index)
2210 {
2211         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2212         int i, cpu, tci, numa_node_id = -2;
2213         int maps_sz, num_tc = 1, tc = 0;
2214         struct xps_map *map, *new_map;
2215         bool active = false;
2216
2217         if (dev->num_tc) {
2218                 num_tc = dev->num_tc;
2219                 tc = netdev_txq_to_tc(dev, index);
2220                 if (tc < 0)
2221                         return -EINVAL;
2222         }
2223
2224         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2225         if (maps_sz < L1_CACHE_BYTES)
2226                 maps_sz = L1_CACHE_BYTES;
2227
2228         mutex_lock(&xps_map_mutex);
2229
2230         dev_maps = xmap_dereference(dev->xps_maps);
2231
2232         /* allocate memory for queue storage */
2233         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2234                 if (!new_dev_maps)
2235                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2236                 if (!new_dev_maps) {
2237                         mutex_unlock(&xps_map_mutex);
2238                         return -ENOMEM;
2239                 }
2240
2241                 tci = cpu * num_tc + tc;
2242                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2243                                  NULL;
2244
2245                 map = expand_xps_map(map, cpu, index);
2246                 if (!map)
2247                         goto error;
2248
2249                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2250         }
2251
2252         if (!new_dev_maps)
2253                 goto out_no_new_maps;
2254
2255         for_each_possible_cpu(cpu) {
2256                 /* copy maps belonging to foreign traffic classes */
2257                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2258                         /* fill in the new device map from the old device map */
2259                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2260                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2261                 }
2262
2263                 /* We need to explicitly update tci as prevous loop
2264                  * could break out early if dev_maps is NULL.
2265                  */
2266                 tci = cpu * num_tc + tc;
2267
2268                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2269                         /* add queue to CPU maps */
2270                         int pos = 0;
2271
2272                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2273                         while ((pos < map->len) && (map->queues[pos] != index))
2274                                 pos++;
2275
2276                         if (pos == map->len)
2277                                 map->queues[map->len++] = index;
2278 #ifdef CONFIG_NUMA
2279                         if (numa_node_id == -2)
2280                                 numa_node_id = cpu_to_node(cpu);
2281                         else if (numa_node_id != cpu_to_node(cpu))
2282                                 numa_node_id = -1;
2283 #endif
2284                 } else if (dev_maps) {
2285                         /* fill in the new device map from the old device map */
2286                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2287                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2288                 }
2289
2290                 /* copy maps belonging to foreign traffic classes */
2291                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2292                         /* fill in the new device map from the old device map */
2293                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2294                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2295                 }
2296         }
2297
2298         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2299
2300         /* Cleanup old maps */
2301         if (!dev_maps)
2302                 goto out_no_old_maps;
2303
2304         for_each_possible_cpu(cpu) {
2305                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2306                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2307                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2308                         if (map && map != new_map)
2309                                 kfree_rcu(map, rcu);
2310                 }
2311         }
2312
2313         kfree_rcu(dev_maps, rcu);
2314
2315 out_no_old_maps:
2316         dev_maps = new_dev_maps;
2317         active = true;
2318
2319 out_no_new_maps:
2320         /* update Tx queue numa node */
2321         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2322                                      (numa_node_id >= 0) ? numa_node_id :
2323                                      NUMA_NO_NODE);
2324
2325         if (!dev_maps)
2326                 goto out_no_maps;
2327
2328         /* removes queue from unused CPUs */
2329         for_each_possible_cpu(cpu) {
2330                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2331                         active |= remove_xps_queue(dev_maps, tci, index);
2332                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2333                         active |= remove_xps_queue(dev_maps, tci, index);
2334                 for (i = num_tc - tc, tci++; --i; tci++)
2335                         active |= remove_xps_queue(dev_maps, tci, index);
2336         }
2337
2338         /* free map if not active */
2339         if (!active) {
2340                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2341                 kfree_rcu(dev_maps, rcu);
2342         }
2343
2344 out_no_maps:
2345         mutex_unlock(&xps_map_mutex);
2346
2347         return 0;
2348 error:
2349         /* remove any maps that we added */
2350         for_each_possible_cpu(cpu) {
2351                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2352                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2353                         map = dev_maps ?
2354                               xmap_dereference(dev_maps->cpu_map[tci]) :
2355                               NULL;
2356                         if (new_map && new_map != map)
2357                                 kfree(new_map);
2358                 }
2359         }
2360
2361         mutex_unlock(&xps_map_mutex);
2362
2363         kfree(new_dev_maps);
2364         return -ENOMEM;
2365 }
2366 EXPORT_SYMBOL(netif_set_xps_queue);
2367
2368 #endif
2369 void netdev_reset_tc(struct net_device *dev)
2370 {
2371 #ifdef CONFIG_XPS
2372         netif_reset_xps_queues_gt(dev, 0);
2373 #endif
2374         dev->num_tc = 0;
2375         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2376         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2377 }
2378 EXPORT_SYMBOL(netdev_reset_tc);
2379
2380 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2381 {
2382         if (tc >= dev->num_tc)
2383                 return -EINVAL;
2384
2385 #ifdef CONFIG_XPS
2386         netif_reset_xps_queues(dev, offset, count);
2387 #endif
2388         dev->tc_to_txq[tc].count = count;
2389         dev->tc_to_txq[tc].offset = offset;
2390         return 0;
2391 }
2392 EXPORT_SYMBOL(netdev_set_tc_queue);
2393
2394 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2395 {
2396         if (num_tc > TC_MAX_QUEUE)
2397                 return -EINVAL;
2398
2399 #ifdef CONFIG_XPS
2400         netif_reset_xps_queues_gt(dev, 0);
2401 #endif
2402         dev->num_tc = num_tc;
2403         return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_set_num_tc);
2406
2407 /*
2408  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2409  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2410  */
2411 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2412 {
2413         bool disabling;
2414         int rc;
2415
2416         disabling = txq < dev->real_num_tx_queues;
2417
2418         if (txq < 1 || txq > dev->num_tx_queues)
2419                 return -EINVAL;
2420
2421         if (dev->reg_state == NETREG_REGISTERED ||
2422             dev->reg_state == NETREG_UNREGISTERING) {
2423                 ASSERT_RTNL();
2424
2425                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2426                                                   txq);
2427                 if (rc)
2428                         return rc;
2429
2430                 if (dev->num_tc)
2431                         netif_setup_tc(dev, txq);
2432
2433                 dev->real_num_tx_queues = txq;
2434
2435                 if (disabling) {
2436                         synchronize_net();
2437                         qdisc_reset_all_tx_gt(dev, txq);
2438 #ifdef CONFIG_XPS
2439                         netif_reset_xps_queues_gt(dev, txq);
2440 #endif
2441                 }
2442         } else {
2443                 dev->real_num_tx_queues = txq;
2444         }
2445
2446         return 0;
2447 }
2448 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2449
2450 #ifdef CONFIG_SYSFS
2451 /**
2452  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2453  *      @dev: Network device
2454  *      @rxq: Actual number of RX queues
2455  *
2456  *      This must be called either with the rtnl_lock held or before
2457  *      registration of the net device.  Returns 0 on success, or a
2458  *      negative error code.  If called before registration, it always
2459  *      succeeds.
2460  */
2461 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2462 {
2463         int rc;
2464
2465         if (rxq < 1 || rxq > dev->num_rx_queues)
2466                 return -EINVAL;
2467
2468         if (dev->reg_state == NETREG_REGISTERED) {
2469                 ASSERT_RTNL();
2470
2471                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2472                                                   rxq);
2473                 if (rc)
2474                         return rc;
2475         }
2476
2477         dev->real_num_rx_queues = rxq;
2478         return 0;
2479 }
2480 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2481 #endif
2482
2483 /**
2484  * netif_get_num_default_rss_queues - default number of RSS queues
2485  *
2486  * This routine should set an upper limit on the number of RSS queues
2487  * used by default by multiqueue devices.
2488  */
2489 int netif_get_num_default_rss_queues(void)
2490 {
2491         return is_kdump_kernel() ?
2492                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2493 }
2494 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2495
2496 static void __netif_reschedule(struct Qdisc *q)
2497 {
2498         struct softnet_data *sd;
2499         unsigned long flags;
2500
2501         local_irq_save(flags);
2502         sd = this_cpu_ptr(&softnet_data);
2503         q->next_sched = NULL;
2504         *sd->output_queue_tailp = q;
2505         sd->output_queue_tailp = &q->next_sched;
2506         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2507         local_irq_restore(flags);
2508 }
2509
2510 void __netif_schedule(struct Qdisc *q)
2511 {
2512         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2513                 __netif_reschedule(q);
2514 }
2515 EXPORT_SYMBOL(__netif_schedule);
2516
2517 struct dev_kfree_skb_cb {
2518         enum skb_free_reason reason;
2519 };
2520
2521 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2522 {
2523         return (struct dev_kfree_skb_cb *)skb->cb;
2524 }
2525
2526 void netif_schedule_queue(struct netdev_queue *txq)
2527 {
2528         rcu_read_lock();
2529         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2530                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2531
2532                 __netif_schedule(q);
2533         }
2534         rcu_read_unlock();
2535 }
2536 EXPORT_SYMBOL(netif_schedule_queue);
2537
2538 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2539 {
2540         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2541                 struct Qdisc *q;
2542
2543                 rcu_read_lock();
2544                 q = rcu_dereference(dev_queue->qdisc);
2545                 __netif_schedule(q);
2546                 rcu_read_unlock();
2547         }
2548 }
2549 EXPORT_SYMBOL(netif_tx_wake_queue);
2550
2551 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2552 {
2553         unsigned long flags;
2554
2555         if (unlikely(!skb))
2556                 return;
2557
2558         if (likely(refcount_read(&skb->users) == 1)) {
2559                 smp_rmb();
2560                 refcount_set(&skb->users, 0);
2561         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2562                 return;
2563         }
2564         get_kfree_skb_cb(skb)->reason = reason;
2565         local_irq_save(flags);
2566         skb->next = __this_cpu_read(softnet_data.completion_queue);
2567         __this_cpu_write(softnet_data.completion_queue, skb);
2568         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2569         local_irq_restore(flags);
2570 }
2571 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2572
2573 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2574 {
2575         if (in_irq() || irqs_disabled())
2576                 __dev_kfree_skb_irq(skb, reason);
2577         else
2578                 dev_kfree_skb(skb);
2579 }
2580 EXPORT_SYMBOL(__dev_kfree_skb_any);
2581
2582
2583 /**
2584  * netif_device_detach - mark device as removed
2585  * @dev: network device
2586  *
2587  * Mark device as removed from system and therefore no longer available.
2588  */
2589 void netif_device_detach(struct net_device *dev)
2590 {
2591         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2592             netif_running(dev)) {
2593                 netif_tx_stop_all_queues(dev);
2594         }
2595 }
2596 EXPORT_SYMBOL(netif_device_detach);
2597
2598 /**
2599  * netif_device_attach - mark device as attached
2600  * @dev: network device
2601  *
2602  * Mark device as attached from system and restart if needed.
2603  */
2604 void netif_device_attach(struct net_device *dev)
2605 {
2606         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2607             netif_running(dev)) {
2608                 netif_tx_wake_all_queues(dev);
2609                 __netdev_watchdog_up(dev);
2610         }
2611 }
2612 EXPORT_SYMBOL(netif_device_attach);
2613
2614 /*
2615  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2616  * to be used as a distribution range.
2617  */
2618 static u16 skb_tx_hash(const struct net_device *dev, struct sk_buff *skb)
2619 {
2620         u32 hash;
2621         u16 qoffset = 0;
2622         u16 qcount = dev->real_num_tx_queues;
2623
2624         if (skb_rx_queue_recorded(skb)) {
2625                 hash = skb_get_rx_queue(skb);
2626                 while (unlikely(hash >= qcount))
2627                         hash -= qcount;
2628                 return hash;
2629         }
2630
2631         if (dev->num_tc) {
2632                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2633
2634                 qoffset = dev->tc_to_txq[tc].offset;
2635                 qcount = dev->tc_to_txq[tc].count;
2636         }
2637
2638         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2639 }
2640
2641 static void skb_warn_bad_offload(const struct sk_buff *skb)
2642 {
2643         static const netdev_features_t null_features;
2644         struct net_device *dev = skb->dev;
2645         const char *name = "";
2646
2647         if (!net_ratelimit())
2648                 return;
2649
2650         if (dev) {
2651                 if (dev->dev.parent)
2652                         name = dev_driver_string(dev->dev.parent);
2653                 else
2654                         name = netdev_name(dev);
2655         }
2656         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2657              "gso_type=%d ip_summed=%d\n",
2658              name, dev ? &dev->features : &null_features,
2659              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2660              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2661              skb_shinfo(skb)->gso_type, skb->ip_summed);
2662 }
2663
2664 /*
2665  * Invalidate hardware checksum when packet is to be mangled, and
2666  * complete checksum manually on outgoing path.
2667  */
2668 int skb_checksum_help(struct sk_buff *skb)
2669 {
2670         __wsum csum;
2671         int ret = 0, offset;
2672
2673         if (skb->ip_summed == CHECKSUM_COMPLETE)
2674                 goto out_set_summed;
2675
2676         if (unlikely(skb_shinfo(skb)->gso_size)) {
2677                 skb_warn_bad_offload(skb);
2678                 return -EINVAL;
2679         }
2680
2681         /* Before computing a checksum, we should make sure no frag could
2682          * be modified by an external entity : checksum could be wrong.
2683          */
2684         if (skb_has_shared_frag(skb)) {
2685                 ret = __skb_linearize(skb);
2686                 if (ret)
2687                         goto out;
2688         }
2689
2690         offset = skb_checksum_start_offset(skb);
2691         BUG_ON(offset >= skb_headlen(skb));
2692         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2693
2694         offset += skb->csum_offset;
2695         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2696
2697         if (skb_cloned(skb) &&
2698             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2699                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2700                 if (ret)
2701                         goto out;
2702         }
2703
2704         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2705 out_set_summed:
2706         skb->ip_summed = CHECKSUM_NONE;
2707 out:
2708         return ret;
2709 }
2710 EXPORT_SYMBOL(skb_checksum_help);
2711
2712 int skb_crc32c_csum_help(struct sk_buff *skb)
2713 {
2714         __le32 crc32c_csum;
2715         int ret = 0, offset, start;
2716
2717         if (skb->ip_summed != CHECKSUM_PARTIAL)
2718                 goto out;
2719
2720         if (unlikely(skb_is_gso(skb)))
2721                 goto out;
2722
2723         /* Before computing a checksum, we should make sure no frag could
2724          * be modified by an external entity : checksum could be wrong.
2725          */
2726         if (unlikely(skb_has_shared_frag(skb))) {
2727                 ret = __skb_linearize(skb);
2728                 if (ret)
2729                         goto out;
2730         }
2731         start = skb_checksum_start_offset(skb);
2732         offset = start + offsetof(struct sctphdr, checksum);
2733         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2734                 ret = -EINVAL;
2735                 goto out;
2736         }
2737         if (skb_cloned(skb) &&
2738             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2739                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2740                 if (ret)
2741                         goto out;
2742         }
2743         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2744                                                   skb->len - start, ~(__u32)0,
2745                                                   crc32c_csum_stub));
2746         *(__le32 *)(skb->data + offset) = crc32c_csum;
2747         skb->ip_summed = CHECKSUM_NONE;
2748         skb->csum_not_inet = 0;
2749 out:
2750         return ret;
2751 }
2752
2753 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2754 {
2755         __be16 type = skb->protocol;
2756
2757         /* Tunnel gso handlers can set protocol to ethernet. */
2758         if (type == htons(ETH_P_TEB)) {
2759                 struct ethhdr *eth;
2760
2761                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2762                         return 0;
2763
2764                 eth = (struct ethhdr *)skb->data;
2765                 type = eth->h_proto;
2766         }
2767
2768         return __vlan_get_protocol(skb, type, depth);
2769 }
2770
2771 /**
2772  *      skb_mac_gso_segment - mac layer segmentation handler.
2773  *      @skb: buffer to segment
2774  *      @features: features for the output path (see dev->features)
2775  */
2776 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2777                                     netdev_features_t features)
2778 {
2779         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2780         struct packet_offload *ptype;
2781         int vlan_depth = skb->mac_len;
2782         __be16 type = skb_network_protocol(skb, &vlan_depth);
2783
2784         if (unlikely(!type))
2785                 return ERR_PTR(-EINVAL);
2786
2787         __skb_pull(skb, vlan_depth);
2788
2789         rcu_read_lock();
2790         list_for_each_entry_rcu(ptype, &offload_base, list) {
2791                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2792                         segs = ptype->callbacks.gso_segment(skb, features);
2793                         break;
2794                 }
2795         }
2796         rcu_read_unlock();
2797
2798         __skb_push(skb, skb->data - skb_mac_header(skb));
2799
2800         return segs;
2801 }
2802 EXPORT_SYMBOL(skb_mac_gso_segment);
2803
2804
2805 /* openvswitch calls this on rx path, so we need a different check.
2806  */
2807 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2808 {
2809         if (tx_path)
2810                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2811                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2812
2813         return skb->ip_summed == CHECKSUM_NONE;
2814 }
2815
2816 /**
2817  *      __skb_gso_segment - Perform segmentation on skb.
2818  *      @skb: buffer to segment
2819  *      @features: features for the output path (see dev->features)
2820  *      @tx_path: whether it is called in TX path
2821  *
2822  *      This function segments the given skb and returns a list of segments.
2823  *
2824  *      It may return NULL if the skb requires no segmentation.  This is
2825  *      only possible when GSO is used for verifying header integrity.
2826  *
2827  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2828  */
2829 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2830                                   netdev_features_t features, bool tx_path)
2831 {
2832         struct sk_buff *segs;
2833
2834         if (unlikely(skb_needs_check(skb, tx_path))) {
2835                 int err;
2836
2837                 /* We're going to init ->check field in TCP or UDP header */
2838                 err = skb_cow_head(skb, 0);
2839                 if (err < 0)
2840                         return ERR_PTR(err);
2841         }
2842
2843         /* Only report GSO partial support if it will enable us to
2844          * support segmentation on this frame without needing additional
2845          * work.
2846          */
2847         if (features & NETIF_F_GSO_PARTIAL) {
2848                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2849                 struct net_device *dev = skb->dev;
2850
2851                 partial_features |= dev->features & dev->gso_partial_features;
2852                 if (!skb_gso_ok(skb, features | partial_features))
2853                         features &= ~NETIF_F_GSO_PARTIAL;
2854         }
2855
2856         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2857                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2858
2859         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2860         SKB_GSO_CB(skb)->encap_level = 0;
2861
2862         skb_reset_mac_header(skb);
2863         skb_reset_mac_len(skb);
2864
2865         segs = skb_mac_gso_segment(skb, features);
2866
2867         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2868                 skb_warn_bad_offload(skb);
2869
2870         return segs;
2871 }
2872 EXPORT_SYMBOL(__skb_gso_segment);
2873
2874 /* Take action when hardware reception checksum errors are detected. */
2875 #ifdef CONFIG_BUG
2876 void netdev_rx_csum_fault(struct net_device *dev)
2877 {
2878         if (net_ratelimit()) {
2879                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2880                 dump_stack();
2881         }
2882 }
2883 EXPORT_SYMBOL(netdev_rx_csum_fault);
2884 #endif
2885
2886 /* Actually, we should eliminate this check as soon as we know, that:
2887  * 1. IOMMU is present and allows to map all the memory.
2888  * 2. No high memory really exists on this machine.
2889  */
2890
2891 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2892 {
2893 #ifdef CONFIG_HIGHMEM
2894         int i;
2895
2896         if (!(dev->features & NETIF_F_HIGHDMA)) {
2897                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2898                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2899
2900                         if (PageHighMem(skb_frag_page(frag)))
2901                                 return 1;
2902                 }
2903         }
2904
2905         if (PCI_DMA_BUS_IS_PHYS) {
2906                 struct device *pdev = dev->dev.parent;
2907
2908                 if (!pdev)
2909                         return 0;
2910                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2911                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2912                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2913
2914                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2915                                 return 1;
2916                 }
2917         }
2918 #endif
2919         return 0;
2920 }
2921
2922 /* If MPLS offload request, verify we are testing hardware MPLS features
2923  * instead of standard features for the netdev.
2924  */
2925 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2926 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2927                                            netdev_features_t features,
2928                                            __be16 type)
2929 {
2930         if (eth_p_mpls(type))
2931                 features &= skb->dev->mpls_features;
2932
2933         return features;
2934 }
2935 #else
2936 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2937                                            netdev_features_t features,
2938                                            __be16 type)
2939 {
2940         return features;
2941 }
2942 #endif
2943
2944 static netdev_features_t harmonize_features(struct sk_buff *skb,
2945         netdev_features_t features)
2946 {
2947         int tmp;
2948         __be16 type;
2949
2950         type = skb_network_protocol(skb, &tmp);
2951         features = net_mpls_features(skb, features, type);
2952
2953         if (skb->ip_summed != CHECKSUM_NONE &&
2954             !can_checksum_protocol(features, type)) {
2955                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2956         }
2957         if (illegal_highdma(skb->dev, skb))
2958                 features &= ~NETIF_F_SG;
2959
2960         return features;
2961 }
2962
2963 netdev_features_t passthru_features_check(struct sk_buff *skb,
2964                                           struct net_device *dev,
2965                                           netdev_features_t features)
2966 {
2967         return features;
2968 }
2969 EXPORT_SYMBOL(passthru_features_check);
2970
2971 static netdev_features_t dflt_features_check(struct sk_buff *skb,
2972                                              struct net_device *dev,
2973                                              netdev_features_t features)
2974 {
2975         return vlan_features_check(skb, features);
2976 }
2977
2978 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2979                                             struct net_device *dev,
2980                                             netdev_features_t features)
2981 {
2982         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2983
2984         if (gso_segs > dev->gso_max_segs)
2985                 return features & ~NETIF_F_GSO_MASK;
2986
2987         /* Support for GSO partial features requires software
2988          * intervention before we can actually process the packets
2989          * so we need to strip support for any partial features now
2990          * and we can pull them back in after we have partially
2991          * segmented the frame.
2992          */
2993         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2994                 features &= ~dev->gso_partial_features;
2995
2996         /* Make sure to clear the IPv4 ID mangling feature if the
2997          * IPv4 header has the potential to be fragmented.
2998          */
2999         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3000                 struct iphdr *iph = skb->encapsulation ?
3001                                     inner_ip_hdr(skb) : ip_hdr(skb);
3002
3003                 if (!(iph->frag_off & htons(IP_DF)))
3004                         features &= ~NETIF_F_TSO_MANGLEID;
3005         }
3006
3007         return features;
3008 }
3009
3010 netdev_features_t netif_skb_features(struct sk_buff *skb)
3011 {
3012         struct net_device *dev = skb->dev;
3013         netdev_features_t features = dev->features;
3014
3015         if (skb_is_gso(skb))
3016                 features = gso_features_check(skb, dev, features);
3017
3018         /* If encapsulation offload request, verify we are testing
3019          * hardware encapsulation features instead of standard
3020          * features for the netdev
3021          */
3022         if (skb->encapsulation)
3023                 features &= dev->hw_enc_features;
3024
3025         if (skb_vlan_tagged(skb))
3026                 features = netdev_intersect_features(features,
3027                                                      dev->vlan_features |
3028                                                      NETIF_F_HW_VLAN_CTAG_TX |
3029                                                      NETIF_F_HW_VLAN_STAG_TX);
3030
3031         if (dev->netdev_ops->ndo_features_check)
3032                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3033                                                                 features);
3034         else
3035                 features &= dflt_features_check(skb, dev, features);
3036
3037         return harmonize_features(skb, features);
3038 }
3039 EXPORT_SYMBOL(netif_skb_features);
3040
3041 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3042                     struct netdev_queue *txq, bool more)
3043 {
3044         unsigned int len;
3045         int rc;
3046
3047         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3048                 dev_queue_xmit_nit(skb, dev);
3049
3050         len = skb->len;
3051         trace_net_dev_start_xmit(skb, dev);
3052         rc = netdev_start_xmit(skb, dev, txq, more);
3053         trace_net_dev_xmit(skb, rc, dev, len);
3054
3055         return rc;
3056 }
3057
3058 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3059                                     struct netdev_queue *txq, int *ret)
3060 {
3061         struct sk_buff *skb = first;
3062         int rc = NETDEV_TX_OK;
3063
3064         while (skb) {
3065                 struct sk_buff *next = skb->next;
3066
3067                 skb->next = NULL;
3068                 rc = xmit_one(skb, dev, txq, next != NULL);
3069                 if (unlikely(!dev_xmit_complete(rc))) {
3070                         skb->next = next;
3071                         goto out;
3072                 }
3073
3074                 skb = next;
3075                 if (netif_xmit_stopped(txq) && skb) {
3076                         rc = NETDEV_TX_BUSY;
3077                         break;
3078                 }
3079         }
3080
3081 out:
3082         *ret = rc;
3083         return skb;
3084 }
3085
3086 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3087                                           netdev_features_t features)
3088 {
3089         if (skb_vlan_tag_present(skb) &&
3090             !vlan_hw_offload_capable(features, skb->vlan_proto))
3091                 skb = __vlan_hwaccel_push_inside(skb);
3092         return skb;
3093 }
3094
3095 int skb_csum_hwoffload_help(struct sk_buff *skb,
3096                             const netdev_features_t features)
3097 {
3098         if (unlikely(skb->csum_not_inet))
3099                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3100                         skb_crc32c_csum_help(skb);
3101
3102         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3103 }
3104 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3105
3106 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3107 {
3108         netdev_features_t features;
3109
3110         features = netif_skb_features(skb);
3111         skb = validate_xmit_vlan(skb, features);
3112         if (unlikely(!skb))
3113                 goto out_null;
3114
3115         skb = sk_validate_xmit_skb(skb, dev);
3116         if (unlikely(!skb))
3117                 goto out_null;
3118
3119         if (netif_needs_gso(skb, features)) {
3120                 struct sk_buff *segs;
3121
3122                 segs = skb_gso_segment(skb, features);
3123                 if (IS_ERR(segs)) {
3124                         goto out_kfree_skb;
3125                 } else if (segs) {
3126                         consume_skb(skb);
3127                         skb = segs;
3128                 }
3129         } else {
3130                 if (skb_needs_linearize(skb, features) &&
3131                     __skb_linearize(skb))
3132                         goto out_kfree_skb;
3133
3134                 /* If packet is not checksummed and device does not
3135                  * support checksumming for this protocol, complete
3136                  * checksumming here.
3137                  */
3138                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3139                         if (skb->encapsulation)
3140                                 skb_set_inner_transport_header(skb,
3141                                                                skb_checksum_start_offset(skb));
3142                         else
3143                                 skb_set_transport_header(skb,
3144                                                          skb_checksum_start_offset(skb));
3145                         if (skb_csum_hwoffload_help(skb, features))
3146                                 goto out_kfree_skb;
3147                 }
3148         }
3149
3150         skb = validate_xmit_xfrm(skb, features, again);
3151
3152         return skb;
3153
3154 out_kfree_skb:
3155         kfree_skb(skb);
3156 out_null:
3157         atomic_long_inc(&dev->tx_dropped);
3158         return NULL;
3159 }
3160
3161 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3162 {
3163         struct sk_buff *next, *head = NULL, *tail;
3164
3165         for (; skb != NULL; skb = next) {
3166                 next = skb->next;
3167                 skb->next = NULL;
3168
3169                 /* in case skb wont be segmented, point to itself */
3170                 skb->prev = skb;
3171
3172                 skb = validate_xmit_skb(skb, dev, again);
3173                 if (!skb)
3174                         continue;
3175
3176                 if (!head)
3177                         head = skb;
3178                 else
3179                         tail->next = skb;
3180                 /* If skb was segmented, skb->prev points to
3181                  * the last segment. If not, it still contains skb.
3182                  */
3183                 tail = skb->prev;
3184         }
3185         return head;
3186 }
3187 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3188
3189 static void qdisc_pkt_len_init(struct sk_buff *skb)
3190 {
3191         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3192
3193         qdisc_skb_cb(skb)->pkt_len = skb->len;
3194
3195         /* To get more precise estimation of bytes sent on wire,
3196          * we add to pkt_len the headers size of all segments
3197          */
3198         if (shinfo->gso_size)  {
3199                 unsigned int hdr_len;
3200                 u16 gso_segs = shinfo->gso_segs;
3201
3202                 /* mac layer + network layer */
3203                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3204
3205                 /* + transport layer */
3206                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3207                         const struct tcphdr *th;
3208                         struct tcphdr _tcphdr;
3209
3210                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3211                                                 sizeof(_tcphdr), &_tcphdr);
3212                         if (likely(th))
3213                                 hdr_len += __tcp_hdrlen(th);
3214                 } else {
3215                         struct udphdr _udphdr;
3216
3217                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3218                                                sizeof(_udphdr), &_udphdr))
3219                                 hdr_len += sizeof(struct udphdr);
3220                 }
3221
3222                 if (shinfo->gso_type & SKB_GSO_DODGY)
3223                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3224                                                 shinfo->gso_size);
3225
3226                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3227         }
3228 }
3229
3230 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3231                                  struct net_device *dev,
3232                                  struct netdev_queue *txq)
3233 {
3234         spinlock_t *root_lock = qdisc_lock(q);
3235         struct sk_buff *to_free = NULL;
3236         bool contended;
3237         int rc;
3238
3239         qdisc_calculate_pkt_len(skb, q);
3240
3241         if (q->flags & TCQ_F_NOLOCK) {
3242                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3243                         __qdisc_drop(skb, &to_free);
3244                         rc = NET_XMIT_DROP;
3245                 } else {
3246                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3247                         __qdisc_run(q);
3248                 }
3249
3250                 if (unlikely(to_free))
3251                         kfree_skb_list(to_free);
3252                 return rc;
3253         }
3254
3255         /*
3256          * Heuristic to force contended enqueues to serialize on a
3257          * separate lock before trying to get qdisc main lock.
3258          * This permits qdisc->running owner to get the lock more
3259          * often and dequeue packets faster.
3260          */
3261         contended = qdisc_is_running(q);
3262         if (unlikely(contended))
3263                 spin_lock(&q->busylock);
3264
3265         spin_lock(root_lock);
3266         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3267                 __qdisc_drop(skb, &to_free);
3268                 rc = NET_XMIT_DROP;
3269         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3270                    qdisc_run_begin(q)) {
3271                 /*
3272                  * This is a work-conserving queue; there are no old skbs
3273                  * waiting to be sent out; and the qdisc is not running -
3274                  * xmit the skb directly.
3275                  */
3276
3277                 qdisc_bstats_update(q, skb);
3278
3279                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3280                         if (unlikely(contended)) {
3281                                 spin_unlock(&q->busylock);
3282                                 contended = false;
3283                         }
3284                         __qdisc_run(q);
3285                 }
3286
3287                 qdisc_run_end(q);
3288                 rc = NET_XMIT_SUCCESS;
3289         } else {
3290                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3291                 if (qdisc_run_begin(q)) {
3292                         if (unlikely(contended)) {
3293                                 spin_unlock(&q->busylock);
3294                                 contended = false;
3295                         }
3296                         __qdisc_run(q);
3297                         qdisc_run_end(q);
3298                 }
3299         }
3300         spin_unlock(root_lock);
3301         if (unlikely(to_free))
3302                 kfree_skb_list(to_free);
3303         if (unlikely(contended))
3304                 spin_unlock(&q->busylock);
3305         return rc;
3306 }
3307
3308 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3309 static void skb_update_prio(struct sk_buff *skb)
3310 {
3311         const struct netprio_map *map;
3312         const struct sock *sk;
3313         unsigned int prioidx;
3314
3315         if (skb->priority)
3316                 return;
3317         map = rcu_dereference_bh(skb->dev->priomap);
3318         if (!map)
3319                 return;
3320         sk = skb_to_full_sk(skb);
3321         if (!sk)
3322                 return;
3323
3324         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3325
3326         if (prioidx < map->priomap_len)
3327                 skb->priority = map->priomap[prioidx];
3328 }
3329 #else
3330 #define skb_update_prio(skb)
3331 #endif
3332
3333 DEFINE_PER_CPU(int, xmit_recursion);
3334 EXPORT_SYMBOL(xmit_recursion);
3335
3336 /**
3337  *      dev_loopback_xmit - loop back @skb
3338  *      @net: network namespace this loopback is happening in
3339  *      @sk:  sk needed to be a netfilter okfn
3340  *      @skb: buffer to transmit
3341  */
3342 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3343 {
3344         skb_reset_mac_header(skb);
3345         __skb_pull(skb, skb_network_offset(skb));
3346         skb->pkt_type = PACKET_LOOPBACK;
3347         skb->ip_summed = CHECKSUM_UNNECESSARY;
3348         WARN_ON(!skb_dst(skb));
3349         skb_dst_force(skb);
3350         netif_rx_ni(skb);
3351         return 0;
3352 }
3353 EXPORT_SYMBOL(dev_loopback_xmit);
3354
3355 #ifdef CONFIG_NET_EGRESS
3356 static struct sk_buff *
3357 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3358 {
3359         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3360         struct tcf_result cl_res;
3361
3362         if (!miniq)
3363                 return skb;
3364
3365         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3366         mini_qdisc_bstats_cpu_update(miniq, skb);
3367
3368         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3369         case TC_ACT_OK:
3370         case TC_ACT_RECLASSIFY:
3371                 skb->tc_index = TC_H_MIN(cl_res.classid);
3372                 break;
3373         case TC_ACT_SHOT:
3374                 mini_qdisc_qstats_cpu_drop(miniq);
3375                 *ret = NET_XMIT_DROP;
3376                 kfree_skb(skb);
3377                 return NULL;
3378         case TC_ACT_STOLEN:
3379         case TC_ACT_QUEUED:
3380         case TC_ACT_TRAP:
3381                 *ret = NET_XMIT_SUCCESS;
3382                 consume_skb(skb);
3383                 return NULL;
3384         case TC_ACT_REDIRECT:
3385                 /* No need to push/pop skb's mac_header here on egress! */
3386                 skb_do_redirect(skb);
3387                 *ret = NET_XMIT_SUCCESS;
3388                 return NULL;
3389         default:
3390                 break;
3391         }
3392
3393         return skb;
3394 }
3395 #endif /* CONFIG_NET_EGRESS */
3396
3397 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3398 {
3399 #ifdef CONFIG_XPS
3400         struct xps_dev_maps *dev_maps;
3401         struct xps_map *map;
3402         int queue_index = -1;
3403
3404         rcu_read_lock();
3405         dev_maps = rcu_dereference(dev->xps_maps);
3406         if (dev_maps) {
3407                 unsigned int tci = skb->sender_cpu - 1;
3408
3409                 if (dev->num_tc) {
3410                         tci *= dev->num_tc;
3411                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3412                 }
3413
3414                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3415                 if (map) {
3416                         if (map->len == 1)
3417                                 queue_index = map->queues[0];
3418                         else
3419                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3420                                                                            map->len)];
3421                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3422                                 queue_index = -1;
3423                 }
3424         }
3425         rcu_read_unlock();
3426
3427         return queue_index;
3428 #else
3429         return -1;
3430 #endif
3431 }
3432
3433 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3434 {
3435         struct sock *sk = skb->sk;
3436         int queue_index = sk_tx_queue_get(sk);
3437
3438         if (queue_index < 0 || skb->ooo_okay ||
3439             queue_index >= dev->real_num_tx_queues) {
3440                 int new_index = get_xps_queue(dev, skb);
3441
3442                 if (new_index < 0)
3443                         new_index = skb_tx_hash(dev, skb);
3444
3445                 if (queue_index != new_index && sk &&
3446                     sk_fullsock(sk) &&
3447                     rcu_access_pointer(sk->sk_dst_cache))
3448                         sk_tx_queue_set(sk, new_index);
3449
3450                 queue_index = new_index;
3451         }
3452
3453         return queue_index;
3454 }
3455
3456 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3457                                     struct sk_buff *skb,
3458                                     void *accel_priv)
3459 {
3460         int queue_index = 0;
3461
3462 #ifdef CONFIG_XPS
3463         u32 sender_cpu = skb->sender_cpu - 1;
3464
3465         if (sender_cpu >= (u32)NR_CPUS)
3466                 skb->sender_cpu = raw_smp_processor_id() + 1;
3467 #endif
3468
3469         if (dev->real_num_tx_queues != 1) {
3470                 const struct net_device_ops *ops = dev->netdev_ops;
3471
3472                 if (ops->ndo_select_queue)
3473                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3474                                                             __netdev_pick_tx);
3475                 else
3476                         queue_index = __netdev_pick_tx(dev, skb);
3477
3478                 queue_index = netdev_cap_txqueue(dev, queue_index);
3479         }
3480
3481         skb_set_queue_mapping(skb, queue_index);
3482         return netdev_get_tx_queue(dev, queue_index);
3483 }
3484
3485 /**
3486  *      __dev_queue_xmit - transmit a buffer
3487  *      @skb: buffer to transmit
3488  *      @accel_priv: private data used for L2 forwarding offload
3489  *
3490  *      Queue a buffer for transmission to a network device. The caller must
3491  *      have set the device and priority and built the buffer before calling
3492  *      this function. The function can be called from an interrupt.
3493  *
3494  *      A negative errno code is returned on a failure. A success does not
3495  *      guarantee the frame will be transmitted as it may be dropped due
3496  *      to congestion or traffic shaping.
3497  *
3498  * -----------------------------------------------------------------------------------
3499  *      I notice this method can also return errors from the queue disciplines,
3500  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3501  *      be positive.
3502  *
3503  *      Regardless of the return value, the skb is consumed, so it is currently
3504  *      difficult to retry a send to this method.  (You can bump the ref count
3505  *      before sending to hold a reference for retry if you are careful.)
3506  *
3507  *      When calling this method, interrupts MUST be enabled.  This is because
3508  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3509  *          --BLG
3510  */
3511 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3512 {
3513         struct net_device *dev = skb->dev;
3514         struct netdev_queue *txq;
3515         struct Qdisc *q;
3516         int rc = -ENOMEM;
3517         bool again = false;
3518
3519         skb_reset_mac_header(skb);
3520
3521         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3522                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3523
3524         /* Disable soft irqs for various locks below. Also
3525          * stops preemption for RCU.
3526          */
3527         rcu_read_lock_bh();
3528
3529         skb_update_prio(skb);
3530
3531         qdisc_pkt_len_init(skb);
3532 #ifdef CONFIG_NET_CLS_ACT
3533         skb->tc_at_ingress = 0;
3534 # ifdef CONFIG_NET_EGRESS
3535         if (static_key_false(&egress_needed)) {
3536                 skb = sch_handle_egress(skb, &rc, dev);
3537                 if (!skb)
3538                         goto out;
3539         }
3540 # endif
3541 #endif
3542         /* If device/qdisc don't need skb->dst, release it right now while
3543          * its hot in this cpu cache.
3544          */
3545         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3546                 skb_dst_drop(skb);
3547         else
3548                 skb_dst_force(skb);
3549
3550         txq = netdev_pick_tx(dev, skb, accel_priv);
3551         q = rcu_dereference_bh(txq->qdisc);
3552
3553         trace_net_dev_queue(skb);
3554         if (q->enqueue) {
3555                 rc = __dev_xmit_skb(skb, q, dev, txq);
3556                 goto out;
3557         }
3558
3559         /* The device has no queue. Common case for software devices:
3560          * loopback, all the sorts of tunnels...
3561
3562          * Really, it is unlikely that netif_tx_lock protection is necessary
3563          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3564          * counters.)
3565          * However, it is possible, that they rely on protection
3566          * made by us here.
3567
3568          * Check this and shot the lock. It is not prone from deadlocks.
3569          *Either shot noqueue qdisc, it is even simpler 8)
3570          */
3571         if (dev->flags & IFF_UP) {
3572                 int cpu = smp_processor_id(); /* ok because BHs are off */
3573
3574                 if (txq->xmit_lock_owner != cpu) {
3575                         if (unlikely(__this_cpu_read(xmit_recursion) >
3576                                      XMIT_RECURSION_LIMIT))
3577                                 goto recursion_alert;
3578
3579                         skb = validate_xmit_skb(skb, dev, &again);
3580                         if (!skb)
3581                                 goto out;
3582
3583                         HARD_TX_LOCK(dev, txq, cpu);
3584
3585                         if (!netif_xmit_stopped(txq)) {
3586                                 __this_cpu_inc(xmit_recursion);
3587                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3588                                 __this_cpu_dec(xmit_recursion);
3589                                 if (dev_xmit_complete(rc)) {
3590                                         HARD_TX_UNLOCK(dev, txq);
3591                                         goto out;
3592                                 }
3593                         }
3594                         HARD_TX_UNLOCK(dev, txq);
3595                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3596                                              dev->name);
3597                 } else {
3598                         /* Recursion is detected! It is possible,
3599                          * unfortunately
3600                          */
3601 recursion_alert:
3602                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3603                                              dev->name);
3604                 }
3605         }
3606
3607         rc = -ENETDOWN;
3608         rcu_read_unlock_bh();
3609
3610         atomic_long_inc(&dev->tx_dropped);
3611         kfree_skb_list(skb);
3612         return rc;
3613 out:
3614         rcu_read_unlock_bh();
3615         return rc;
3616 }
3617
3618 int dev_queue_xmit(struct sk_buff *skb)
3619 {
3620         return __dev_queue_xmit(skb, NULL);
3621 }
3622 EXPORT_SYMBOL(dev_queue_xmit);
3623
3624 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3625 {
3626         return __dev_queue_xmit(skb, accel_priv);
3627 }
3628 EXPORT_SYMBOL(dev_queue_xmit_accel);
3629
3630
3631 /*************************************************************************
3632  *                      Receiver routines
3633  *************************************************************************/
3634
3635 int netdev_max_backlog __read_mostly = 1000;
3636 EXPORT_SYMBOL(netdev_max_backlog);
3637
3638 int netdev_tstamp_prequeue __read_mostly = 1;
3639 int netdev_budget __read_mostly = 300;
3640 unsigned int __read_mostly netdev_budget_usecs = 2000;
3641 int weight_p __read_mostly = 64;           /* old backlog weight */
3642 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3643 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3644 int dev_rx_weight __read_mostly = 64;
3645 int dev_tx_weight __read_mostly = 64;
3646
3647 /* Called with irq disabled */
3648 static inline void ____napi_schedule(struct softnet_data *sd,
3649                                      struct napi_struct *napi)
3650 {
3651         list_add_tail(&napi->poll_list, &sd->poll_list);
3652         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3653 }
3654
3655 #ifdef CONFIG_RPS
3656
3657 /* One global table that all flow-based protocols share. */
3658 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3659 EXPORT_SYMBOL(rps_sock_flow_table);
3660 u32 rps_cpu_mask __read_mostly;
3661 EXPORT_SYMBOL(rps_cpu_mask);
3662
3663 struct static_key rps_needed __read_mostly;
3664 EXPORT_SYMBOL(rps_needed);
3665 struct static_key rfs_needed __read_mostly;
3666 EXPORT_SYMBOL(rfs_needed);
3667
3668 static struct rps_dev_flow *
3669 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3670             struct rps_dev_flow *rflow, u16 next_cpu)
3671 {
3672         if (next_cpu < nr_cpu_ids) {
3673 #ifdef CONFIG_RFS_ACCEL
3674                 struct netdev_rx_queue *rxqueue;
3675                 struct rps_dev_flow_table *flow_table;
3676                 struct rps_dev_flow *old_rflow;
3677                 u32 flow_id;
3678                 u16 rxq_index;
3679                 int rc;
3680
3681                 /* Should we steer this flow to a different hardware queue? */
3682                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3683                     !(dev->features & NETIF_F_NTUPLE))
3684                         goto out;
3685                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3686                 if (rxq_index == skb_get_rx_queue(skb))
3687                         goto out;
3688
3689                 rxqueue = dev->_rx + rxq_index;
3690                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3691                 if (!flow_table)
3692                         goto out;
3693                 flow_id = skb_get_hash(skb) & flow_table->mask;
3694                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3695                                                         rxq_index, flow_id);
3696                 if (rc < 0)
3697                         goto out;
3698                 old_rflow = rflow;
3699                 rflow = &flow_table->flows[flow_id];
3700                 rflow->filter = rc;
3701                 if (old_rflow->filter == rflow->filter)
3702                         old_rflow->filter = RPS_NO_FILTER;
3703         out:
3704 #endif
3705                 rflow->last_qtail =
3706                         per_cpu(softnet_data, next_cpu).input_queue_head;
3707         }
3708
3709         rflow->cpu = next_cpu;
3710         return rflow;
3711 }
3712
3713 /*
3714  * get_rps_cpu is called from netif_receive_skb and returns the target
3715  * CPU from the RPS map of the receiving queue for a given skb.
3716  * rcu_read_lock must be held on entry.
3717  */
3718 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3719                        struct rps_dev_flow **rflowp)
3720 {
3721         const struct rps_sock_flow_table *sock_flow_table;
3722         struct netdev_rx_queue *rxqueue = dev->_rx;
3723         struct rps_dev_flow_table *flow_table;
3724         struct rps_map *map;
3725         int cpu = -1;
3726         u32 tcpu;
3727         u32 hash;
3728
3729         if (skb_rx_queue_recorded(skb)) {
3730                 u16 index = skb_get_rx_queue(skb);
3731
3732                 if (unlikely(index >= dev->real_num_rx_queues)) {
3733                         WARN_ONCE(dev->real_num_rx_queues > 1,
3734                                   "%s received packet on queue %u, but number "
3735                                   "of RX queues is %u\n",
3736                                   dev->name, index, dev->real_num_rx_queues);
3737                         goto done;
3738                 }
3739                 rxqueue += index;
3740         }
3741
3742         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3743
3744         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3745         map = rcu_dereference(rxqueue->rps_map);
3746         if (!flow_table && !map)
3747                 goto done;
3748
3749         skb_reset_network_header(skb);
3750         hash = skb_get_hash(skb);
3751         if (!hash)
3752                 goto done;
3753
3754         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3755         if (flow_table && sock_flow_table) {
3756                 struct rps_dev_flow *rflow;
3757                 u32 next_cpu;
3758                 u32 ident;
3759
3760                 /* First check into global flow table if there is a match */
3761                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3762                 if ((ident ^ hash) & ~rps_cpu_mask)
3763                         goto try_rps;
3764
3765                 next_cpu = ident & rps_cpu_mask;
3766
3767                 /* OK, now we know there is a match,
3768                  * we can look at the local (per receive queue) flow table
3769                  */
3770                 rflow = &flow_table->flows[hash & flow_table->mask];
3771                 tcpu = rflow->cpu;
3772
3773                 /*
3774                  * If the desired CPU (where last recvmsg was done) is
3775                  * different from current CPU (one in the rx-queue flow
3776                  * table entry), switch if one of the following holds:
3777                  *   - Current CPU is unset (>= nr_cpu_ids).
3778                  *   - Current CPU is offline.
3779                  *   - The current CPU's queue tail has advanced beyond the
3780                  *     last packet that was enqueued using this table entry.
3781                  *     This guarantees that all previous packets for the flow
3782                  *     have been dequeued, thus preserving in order delivery.
3783                  */
3784                 if (unlikely(tcpu != next_cpu) &&
3785                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3786                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3787                       rflow->last_qtail)) >= 0)) {
3788                         tcpu = next_cpu;
3789                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3790                 }
3791
3792                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3793                         *rflowp = rflow;
3794                         cpu = tcpu;
3795                         goto done;
3796                 }
3797         }
3798
3799 try_rps:
3800
3801         if (map) {
3802                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3803                 if (cpu_online(tcpu)) {
3804                         cpu = tcpu;
3805                         goto done;
3806                 }
3807         }
3808
3809 done:
3810         return cpu;
3811 }
3812
3813 #ifdef CONFIG_RFS_ACCEL
3814
3815 /**
3816  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3817  * @dev: Device on which the filter was set
3818  * @rxq_index: RX queue index
3819  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3820  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3821  *
3822  * Drivers that implement ndo_rx_flow_steer() should periodically call
3823  * this function for each installed filter and remove the filters for
3824  * which it returns %true.
3825  */
3826 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3827                          u32 flow_id, u16 filter_id)
3828 {
3829         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3830         struct rps_dev_flow_table *flow_table;
3831         struct rps_dev_flow *rflow;
3832         bool expire = true;
3833         unsigned int cpu;
3834
3835         rcu_read_lock();
3836         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3837         if (flow_table && flow_id <= flow_table->mask) {
3838                 rflow = &flow_table->flows[flow_id];
3839                 cpu = READ_ONCE(rflow->cpu);
3840                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3841                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3842                            rflow->last_qtail) <
3843                      (int)(10 * flow_table->mask)))
3844                         expire = false;
3845         }
3846         rcu_read_unlock();
3847         return expire;
3848 }
3849 EXPORT_SYMBOL(rps_may_expire_flow);
3850
3851 #endif /* CONFIG_RFS_ACCEL */
3852
3853 /* Called from hardirq (IPI) context */
3854 static void rps_trigger_softirq(void *data)
3855 {
3856         struct softnet_data *sd = data;
3857
3858         ____napi_schedule(sd, &sd->backlog);
3859         sd->received_rps++;
3860 }
3861
3862 #endif /* CONFIG_RPS */
3863
3864 /*
3865  * Check if this softnet_data structure is another cpu one
3866  * If yes, queue it to our IPI list and return 1
3867  * If no, return 0
3868  */
3869 static int rps_ipi_queued(struct softnet_data *sd)
3870 {
3871 #ifdef CONFIG_RPS
3872         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3873
3874         if (sd != mysd) {
3875                 sd->rps_ipi_next = mysd->rps_ipi_list;
3876                 mysd->rps_ipi_list = sd;
3877
3878                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3879                 return 1;
3880         }
3881 #endif /* CONFIG_RPS */
3882         return 0;
3883 }
3884
3885 #ifdef CONFIG_NET_FLOW_LIMIT
3886 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3887 #endif
3888
3889 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3890 {
3891 #ifdef CONFIG_NET_FLOW_LIMIT
3892         struct sd_flow_limit *fl;
3893         struct softnet_data *sd;
3894         unsigned int old_flow, new_flow;
3895
3896         if (qlen < (netdev_max_backlog >> 1))
3897                 return false;
3898
3899         sd = this_cpu_ptr(&softnet_data);
3900
3901         rcu_read_lock();
3902         fl = rcu_dereference(sd->flow_limit);
3903         if (fl) {
3904                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3905                 old_flow = fl->history[fl->history_head];
3906                 fl->history[fl->history_head] = new_flow;
3907
3908                 fl->history_head++;
3909                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3910
3911                 if (likely(fl->buckets[old_flow]))
3912                         fl->buckets[old_flow]--;
3913
3914                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3915                         fl->count++;
3916                         rcu_read_unlock();
3917                         return true;
3918                 }
3919         }
3920         rcu_read_unlock();
3921 #endif
3922         return false;
3923 }
3924
3925 /*
3926  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3927  * queue (may be a remote CPU queue).
3928  */
3929 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3930                               unsigned int *qtail)
3931 {
3932         struct softnet_data *sd;
3933         unsigned long flags;
3934         unsigned int qlen;
3935
3936         sd = &per_cpu(softnet_data, cpu);
3937
3938         local_irq_save(flags);
3939
3940         rps_lock(sd);
3941         if (!netif_running(skb->dev))
3942                 goto drop;
3943         qlen = skb_queue_len(&sd->input_pkt_queue);
3944         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3945                 if (qlen) {
3946 enqueue:
3947                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3948                         input_queue_tail_incr_save(sd, qtail);
3949                         rps_unlock(sd);
3950                         local_irq_restore(flags);
3951                         return NET_RX_SUCCESS;
3952                 }
3953
3954                 /* Schedule NAPI for backlog device
3955                  * We can use non atomic operation since we own the queue lock
3956                  */
3957                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3958                         if (!rps_ipi_queued(sd))
3959                                 ____napi_schedule(sd, &sd->backlog);
3960                 }
3961                 goto enqueue;
3962         }
3963
3964 drop:
3965         sd->dropped++;
3966         rps_unlock(sd);
3967
3968         local_irq_restore(flags);
3969
3970         atomic_long_inc(&skb->dev->rx_dropped);
3971         kfree_skb(skb);
3972         return NET_RX_DROP;
3973 }
3974
3975 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3976 {
3977         struct net_device *dev = skb->dev;
3978         struct netdev_rx_queue *rxqueue;
3979
3980         rxqueue = dev->_rx;
3981
3982         if (skb_rx_queue_recorded(skb)) {
3983                 u16 index = skb_get_rx_queue(skb);
3984
3985                 if (unlikely(index >= dev->real_num_rx_queues)) {
3986                         WARN_ONCE(dev->real_num_rx_queues > 1,
3987                                   "%s received packet on queue %u, but number "
3988                                   "of RX queues is %u\n",
3989                                   dev->name, index, dev->real_num_rx_queues);
3990
3991                         return rxqueue; /* Return first rxqueue */
3992                 }
3993                 rxqueue += index;
3994         }
3995         return rxqueue;
3996 }
3997
3998 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3999                                      struct bpf_prog *xdp_prog)
4000 {
4001         struct netdev_rx_queue *rxqueue;
4002         void *orig_data, *orig_data_end;
4003         u32 metalen, act = XDP_DROP;
4004         struct xdp_buff xdp;
4005         int hlen, off;
4006         u32 mac_len;
4007
4008         /* Reinjected packets coming from act_mirred or similar should
4009          * not get XDP generic processing.
4010          */
4011         if (skb_cloned(skb))
4012                 return XDP_PASS;
4013
4014         /* XDP packets must be linear and must have sufficient headroom
4015          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4016          * native XDP provides, thus we need to do it here as well.
4017          */
4018         if (skb_is_nonlinear(skb) ||
4019             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4020                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4021                 int troom = skb->tail + skb->data_len - skb->end;
4022
4023                 /* In case we have to go down the path and also linearize,
4024                  * then lets do the pskb_expand_head() work just once here.
4025                  */
4026                 if (pskb_expand_head(skb,
4027                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4028                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4029                         goto do_drop;
4030                 if (skb_linearize(skb))
4031                         goto do_drop;
4032         }
4033
4034         /* The XDP program wants to see the packet starting at the MAC
4035          * header.
4036          */
4037         mac_len = skb->data - skb_mac_header(skb);
4038         hlen = skb_headlen(skb) + mac_len;
4039         xdp.data = skb->data - mac_len;
4040         xdp.data_meta = xdp.data;
4041         xdp.data_end = xdp.data + hlen;
4042         xdp.data_hard_start = skb->data - skb_headroom(skb);
4043         orig_data_end = xdp.data_end;
4044         orig_data = xdp.data;
4045
4046         rxqueue = netif_get_rxqueue(skb);
4047         xdp.rxq = &rxqueue->xdp_rxq;
4048
4049         act = bpf_prog_run_xdp(xdp_prog, &xdp);
4050
4051         off = xdp.data - orig_data;
4052         if (off > 0)
4053                 __skb_pull(skb, off);
4054         else if (off < 0)
4055                 __skb_push(skb, -off);
4056         skb->mac_header += off;
4057
4058         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4059          * pckt.
4060          */
4061         off = orig_data_end - xdp.data_end;
4062         if (off != 0) {
4063                 skb_set_tail_pointer(skb, xdp.data_end - xdp.data);
4064                 skb->len -= off;
4065         }
4066
4067         switch (act) {
4068         case XDP_REDIRECT:
4069         case XDP_TX:
4070                 __skb_push(skb, mac_len);
4071                 break;
4072         case XDP_PASS:
4073                 metalen = xdp.data - xdp.data_meta;
4074                 if (metalen)
4075                         skb_metadata_set(skb, metalen);
4076                 break;
4077         default:
4078                 bpf_warn_invalid_xdp_action(act);
4079                 /* fall through */
4080         case XDP_ABORTED:
4081                 trace_xdp_exception(skb->dev, xdp_prog, act);
4082                 /* fall through */
4083         case XDP_DROP:
4084         do_drop:
4085                 kfree_skb(skb);
4086                 break;
4087         }
4088
4089         return act;
4090 }
4091
4092 /* When doing generic XDP we have to bypass the qdisc layer and the
4093  * network taps in order to match in-driver-XDP behavior.
4094  */
4095 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4096 {
4097         struct net_device *dev = skb->dev;
4098         struct netdev_queue *txq;
4099         bool free_skb = true;
4100         int cpu, rc;
4101
4102         txq = netdev_pick_tx(dev, skb, NULL);
4103         cpu = smp_processor_id();
4104         HARD_TX_LOCK(dev, txq, cpu);
4105         if (!netif_xmit_stopped(txq)) {
4106                 rc = netdev_start_xmit(skb, dev, txq, 0);
4107                 if (dev_xmit_complete(rc))
4108                         free_skb = false;
4109         }
4110         HARD_TX_UNLOCK(dev, txq);
4111         if (free_skb) {
4112                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4113                 kfree_skb(skb);
4114         }
4115 }
4116 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4117
4118 static struct static_key generic_xdp_needed __read_mostly;
4119
4120 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4121 {
4122         if (xdp_prog) {
4123                 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4124                 int err;
4125
4126                 if (act != XDP_PASS) {
4127                         switch (act) {
4128                         case XDP_REDIRECT:
4129                                 err = xdp_do_generic_redirect(skb->dev, skb,
4130                                                               xdp_prog);
4131                                 if (err)
4132                                         goto out_redir;
4133                         /* fallthru to submit skb */
4134                         case XDP_TX:
4135                                 generic_xdp_tx(skb, xdp_prog);
4136                                 break;
4137                         }
4138                         return XDP_DROP;
4139                 }
4140         }
4141         return XDP_PASS;
4142 out_redir:
4143         kfree_skb(skb);
4144         return XDP_DROP;
4145 }
4146 EXPORT_SYMBOL_GPL(do_xdp_generic);
4147
4148 static int netif_rx_internal(struct sk_buff *skb)
4149 {
4150         int ret;
4151
4152         net_timestamp_check(netdev_tstamp_prequeue, skb);
4153
4154         trace_netif_rx(skb);
4155
4156         if (static_key_false(&generic_xdp_needed)) {
4157                 int ret;
4158
4159                 preempt_disable();
4160                 rcu_read_lock();
4161                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4162                 rcu_read_unlock();
4163                 preempt_enable();
4164
4165                 /* Consider XDP consuming the packet a success from
4166                  * the netdev point of view we do not want to count
4167                  * this as an error.
4168                  */
4169                 if (ret != XDP_PASS)
4170                         return NET_RX_SUCCESS;
4171         }
4172
4173 #ifdef CONFIG_RPS
4174         if (static_key_false(&rps_needed)) {
4175                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4176                 int cpu;
4177
4178                 preempt_disable();
4179                 rcu_read_lock();
4180
4181                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4182                 if (cpu < 0)
4183                         cpu = smp_processor_id();
4184
4185                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4186
4187                 rcu_read_unlock();
4188                 preempt_enable();
4189         } else
4190 #endif
4191         {
4192                 unsigned int qtail;
4193
4194                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4195                 put_cpu();
4196         }
4197         return ret;
4198 }
4199
4200 /**
4201  *      netif_rx        -       post buffer to the network code
4202  *      @skb: buffer to post
4203  *
4204  *      This function receives a packet from a device driver and queues it for
4205  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4206  *      may be dropped during processing for congestion control or by the
4207  *      protocol layers.
4208  *
4209  *      return values:
4210  *      NET_RX_SUCCESS  (no congestion)
4211  *      NET_RX_DROP     (packet was dropped)
4212  *
4213  */
4214
4215 int netif_rx(struct sk_buff *skb)
4216 {
4217         trace_netif_rx_entry(skb);
4218
4219         return netif_rx_internal(skb);
4220 }
4221 EXPORT_SYMBOL(netif_rx);
4222
4223 int netif_rx_ni(struct sk_buff *skb)
4224 {
4225         int err;
4226
4227         trace_netif_rx_ni_entry(skb);
4228
4229         preempt_disable();
4230         err = netif_rx_internal(skb);
4231         if (local_softirq_pending())
4232                 do_softirq();
4233         preempt_enable();
4234
4235         return err;
4236 }
4237 EXPORT_SYMBOL(netif_rx_ni);
4238
4239 static __latent_entropy void net_tx_action(struct softirq_action *h)
4240 {
4241         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4242
4243         if (sd->completion_queue) {
4244                 struct sk_buff *clist;
4245
4246                 local_irq_disable();
4247                 clist = sd->completion_queue;
4248                 sd->completion_queue = NULL;
4249                 local_irq_enable();
4250
4251                 while (clist) {
4252                         struct sk_buff *skb = clist;
4253
4254                         clist = clist->next;
4255
4256                         WARN_ON(refcount_read(&skb->users));
4257                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4258                                 trace_consume_skb(skb);
4259                         else
4260                                 trace_kfree_skb(skb, net_tx_action);
4261
4262                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4263                                 __kfree_skb(skb);
4264                         else
4265                                 __kfree_skb_defer(skb);
4266                 }
4267
4268                 __kfree_skb_flush();
4269         }
4270
4271         if (sd->output_queue) {
4272                 struct Qdisc *head;
4273
4274                 local_irq_disable();
4275                 head = sd->output_queue;
4276                 sd->output_queue = NULL;
4277                 sd->output_queue_tailp = &sd->output_queue;
4278                 local_irq_enable();
4279
4280                 while (head) {
4281                         struct Qdisc *q = head;
4282                         spinlock_t *root_lock = NULL;
4283
4284                         head = head->next_sched;
4285
4286                         if (!(q->flags & TCQ_F_NOLOCK)) {
4287                                 root_lock = qdisc_lock(q);
4288                                 spin_lock(root_lock);
4289                         }
4290                         /* We need to make sure head->next_sched is read
4291                          * before clearing __QDISC_STATE_SCHED
4292                          */
4293                         smp_mb__before_atomic();
4294                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4295                         qdisc_run(q);
4296                         if (root_lock)
4297                                 spin_unlock(root_lock);
4298                 }
4299         }
4300
4301         xfrm_dev_backlog(sd);
4302 }
4303
4304 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4305 /* This hook is defined here for ATM LANE */
4306 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4307                              unsigned char *addr) __read_mostly;
4308 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4309 #endif
4310
4311 static inline struct sk_buff *
4312 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4313                    struct net_device *orig_dev)
4314 {
4315 #ifdef CONFIG_NET_CLS_ACT
4316         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4317         struct tcf_result cl_res;
4318
4319         /* If there's at least one ingress present somewhere (so
4320          * we get here via enabled static key), remaining devices
4321          * that are not configured with an ingress qdisc will bail
4322          * out here.
4323          */
4324         if (!miniq)
4325                 return skb;
4326
4327         if (*pt_prev) {
4328                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4329                 *pt_prev = NULL;
4330         }
4331
4332         qdisc_skb_cb(skb)->pkt_len = skb->len;
4333         skb->tc_at_ingress = 1;
4334         mini_qdisc_bstats_cpu_update(miniq, skb);
4335
4336         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4337         case TC_ACT_OK:
4338         case TC_ACT_RECLASSIFY:
4339                 skb->tc_index = TC_H_MIN(cl_res.classid);
4340                 break;
4341         case TC_ACT_SHOT:
4342                 mini_qdisc_qstats_cpu_drop(miniq);
4343                 kfree_skb(skb);
4344                 return NULL;
4345         case TC_ACT_STOLEN:
4346         case TC_ACT_QUEUED:
4347         case TC_ACT_TRAP:
4348                 consume_skb(skb);
4349                 return NULL;
4350         case TC_ACT_REDIRECT:
4351                 /* skb_mac_header check was done by cls/act_bpf, so
4352                  * we can safely push the L2 header back before
4353                  * redirecting to another netdev
4354                  */
4355                 __skb_push(skb, skb->mac_len);
4356                 skb_do_redirect(skb);
4357                 return NULL;
4358         default:
4359                 break;
4360         }
4361 #endif /* CONFIG_NET_CLS_ACT */
4362         return skb;
4363 }
4364
4365 /**
4366  *      netdev_is_rx_handler_busy - check if receive handler is registered
4367  *      @dev: device to check
4368  *
4369  *      Check if a receive handler is already registered for a given device.
4370  *      Return true if there one.
4371  *
4372  *      The caller must hold the rtnl_mutex.
4373  */
4374 bool netdev_is_rx_handler_busy(struct net_device *dev)
4375 {
4376         ASSERT_RTNL();
4377         return dev && rtnl_dereference(dev->rx_handler);
4378 }
4379 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4380
4381 /**
4382  *      netdev_rx_handler_register - register receive handler
4383  *      @dev: device to register a handler for
4384  *      @rx_handler: receive handler to register
4385  *      @rx_handler_data: data pointer that is used by rx handler
4386  *
4387  *      Register a receive handler for a device. This handler will then be
4388  *      called from __netif_receive_skb. A negative errno code is returned
4389  *      on a failure.
4390  *
4391  *      The caller must hold the rtnl_mutex.
4392  *
4393  *      For a general description of rx_handler, see enum rx_handler_result.
4394  */
4395 int netdev_rx_handler_register(struct net_device *dev,
4396                                rx_handler_func_t *rx_handler,
4397                                void *rx_handler_data)
4398 {
4399         if (netdev_is_rx_handler_busy(dev))
4400                 return -EBUSY;
4401
4402         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4403                 return -EINVAL;
4404
4405         /* Note: rx_handler_data must be set before rx_handler */
4406         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4407         rcu_assign_pointer(dev->rx_handler, rx_handler);
4408
4409         return 0;
4410 }
4411 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4412
4413 /**
4414  *      netdev_rx_handler_unregister - unregister receive handler
4415  *      @dev: device to unregister a handler from
4416  *
4417  *      Unregister a receive handler from a device.
4418  *
4419  *      The caller must hold the rtnl_mutex.
4420  */
4421 void netdev_rx_handler_unregister(struct net_device *dev)
4422 {
4423
4424         ASSERT_RTNL();
4425         RCU_INIT_POINTER(dev->rx_handler, NULL);
4426         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4427          * section has a guarantee to see a non NULL rx_handler_data
4428          * as well.
4429          */
4430         synchronize_net();
4431         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4432 }
4433 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4434
4435 /*
4436  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4437  * the special handling of PFMEMALLOC skbs.
4438  */
4439 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4440 {
4441         switch (skb->protocol) {
4442         case htons(ETH_P_ARP):
4443         case htons(ETH_P_IP):
4444         case htons(ETH_P_IPV6):
4445         case htons(ETH_P_8021Q):
4446         case htons(ETH_P_8021AD):
4447                 return true;
4448         default:
4449                 return false;
4450         }
4451 }
4452
4453 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4454                              int *ret, struct net_device *orig_dev)
4455 {
4456 #ifdef CONFIG_NETFILTER_INGRESS
4457         if (nf_hook_ingress_active(skb)) {
4458                 int ingress_retval;
4459
4460                 if (*pt_prev) {
4461                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4462                         *pt_prev = NULL;
4463                 }
4464
4465                 rcu_read_lock();
4466                 ingress_retval = nf_hook_ingress(skb);
4467                 rcu_read_unlock();
4468                 return ingress_retval;
4469         }
4470 #endif /* CONFIG_NETFILTER_INGRESS */
4471         return 0;
4472 }
4473
4474 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4475 {
4476         struct packet_type *ptype, *pt_prev;
4477         rx_handler_func_t *rx_handler;
4478         struct net_device *orig_dev;
4479         bool deliver_exact = false;
4480         int ret = NET_RX_DROP;
4481         __be16 type;
4482
4483         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4484
4485         trace_netif_receive_skb(skb);
4486
4487         orig_dev = skb->dev;
4488
4489         skb_reset_network_header(skb);
4490         if (!skb_transport_header_was_set(skb))
4491                 skb_reset_transport_header(skb);
4492         skb_reset_mac_len(skb);
4493
4494         pt_prev = NULL;
4495
4496 another_round:
4497         skb->skb_iif = skb->dev->ifindex;
4498
4499         __this_cpu_inc(softnet_data.processed);
4500
4501         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4502             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4503                 skb = skb_vlan_untag(skb);
4504                 if (unlikely(!skb))
4505                         goto out;
4506         }
4507
4508         if (skb_skip_tc_classify(skb))
4509                 goto skip_classify;
4510
4511         if (pfmemalloc)
4512                 goto skip_taps;
4513
4514         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4515                 if (pt_prev)
4516                         ret = deliver_skb(skb, pt_prev, orig_dev);
4517                 pt_prev = ptype;
4518         }
4519
4520         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4521                 if (pt_prev)
4522                         ret = deliver_skb(skb, pt_prev, orig_dev);
4523                 pt_prev = ptype;
4524         }
4525
4526 skip_taps:
4527 #ifdef CONFIG_NET_INGRESS
4528         if (static_key_false(&ingress_needed)) {
4529                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4530                 if (!skb)
4531                         goto out;
4532
4533                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4534                         goto out;
4535         }
4536 #endif
4537         skb_reset_tc(skb);
4538 skip_classify:
4539         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4540                 goto drop;
4541
4542         if (skb_vlan_tag_present(skb)) {
4543                 if (pt_prev) {
4544                         ret = deliver_skb(skb, pt_prev, orig_dev);
4545                         pt_prev = NULL;
4546                 }
4547                 if (vlan_do_receive(&skb))
4548                         goto another_round;
4549                 else if (unlikely(!skb))
4550                         goto out;
4551         }
4552
4553         rx_handler = rcu_dereference(skb->dev->rx_handler);
4554         if (rx_handler) {
4555                 if (pt_prev) {
4556                         ret = deliver_skb(skb, pt_prev, orig_dev);
4557                         pt_prev = NULL;
4558                 }
4559                 switch (rx_handler(&skb)) {
4560                 case RX_HANDLER_CONSUMED:
4561                         ret = NET_RX_SUCCESS;
4562                         goto out;
4563                 case RX_HANDLER_ANOTHER:
4564                         goto another_round;
4565                 case RX_HANDLER_EXACT:
4566                         deliver_exact = true;
4567                 case RX_HANDLER_PASS:
4568                         break;
4569                 default:
4570                         BUG();
4571                 }
4572         }
4573
4574         if (unlikely(skb_vlan_tag_present(skb))) {
4575                 if (skb_vlan_tag_get_id(skb))
4576                         skb->pkt_type = PACKET_OTHERHOST;
4577                 /* Note: we might in the future use prio bits
4578                  * and set skb->priority like in vlan_do_receive()
4579                  * For the time being, just ignore Priority Code Point
4580                  */
4581                 skb->vlan_tci = 0;
4582         }
4583
4584         type = skb->protocol;
4585
4586         /* deliver only exact match when indicated */
4587         if (likely(!deliver_exact)) {
4588                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4589                                        &ptype_base[ntohs(type) &
4590                                                    PTYPE_HASH_MASK]);
4591         }
4592
4593         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4594                                &orig_dev->ptype_specific);
4595
4596         if (unlikely(skb->dev != orig_dev)) {
4597                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4598                                        &skb->dev->ptype_specific);
4599         }
4600
4601         if (pt_prev) {
4602                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4603                         goto drop;
4604                 else
4605                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4606         } else {
4607 drop:
4608                 if (!deliver_exact)
4609                         atomic_long_inc(&skb->dev->rx_dropped);
4610                 else
4611                         atomic_long_inc(&skb->dev->rx_nohandler);
4612                 kfree_skb(skb);
4613                 /* Jamal, now you will not able to escape explaining
4614                  * me how you were going to use this. :-)
4615                  */
4616                 ret = NET_RX_DROP;
4617         }
4618
4619 out:
4620         return ret;
4621 }
4622
4623 /**
4624  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4625  *      @skb: buffer to process
4626  *
4627  *      More direct receive version of netif_receive_skb().  It should
4628  *      only be used by callers that have a need to skip RPS and Generic XDP.
4629  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4630  *
4631  *      This function may only be called from softirq context and interrupts
4632  *      should be enabled.
4633  *
4634  *      Return values (usually ignored):
4635  *      NET_RX_SUCCESS: no congestion
4636  *      NET_RX_DROP: packet was dropped
4637  */
4638 int netif_receive_skb_core(struct sk_buff *skb)
4639 {
4640         int ret;
4641
4642         rcu_read_lock();
4643         ret = __netif_receive_skb_core(skb, false);
4644         rcu_read_unlock();
4645
4646         return ret;
4647 }
4648 EXPORT_SYMBOL(netif_receive_skb_core);
4649
4650 static int __netif_receive_skb(struct sk_buff *skb)
4651 {
4652         int ret;
4653
4654         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4655                 unsigned int noreclaim_flag;
4656
4657                 /*
4658                  * PFMEMALLOC skbs are special, they should
4659                  * - be delivered to SOCK_MEMALLOC sockets only
4660                  * - stay away from userspace
4661                  * - have bounded memory usage
4662                  *
4663                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4664                  * context down to all allocation sites.
4665                  */
4666                 noreclaim_flag = memalloc_noreclaim_save();
4667                 ret = __netif_receive_skb_core(skb, true);
4668                 memalloc_noreclaim_restore(noreclaim_flag);
4669         } else
4670                 ret = __netif_receive_skb_core(skb, false);
4671
4672         return ret;
4673 }
4674
4675 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4676 {
4677         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4678         struct bpf_prog *new = xdp->prog;
4679         int ret = 0;
4680
4681         switch (xdp->command) {
4682         case XDP_SETUP_PROG:
4683                 rcu_assign_pointer(dev->xdp_prog, new);
4684                 if (old)
4685                         bpf_prog_put(old);
4686
4687                 if (old && !new) {
4688                         static_key_slow_dec(&generic_xdp_needed);
4689                 } else if (new && !old) {
4690                         static_key_slow_inc(&generic_xdp_needed);
4691                         dev_disable_lro(dev);
4692                         dev_disable_gro_hw(dev);
4693                 }
4694                 break;
4695
4696         case XDP_QUERY_PROG:
4697                 xdp->prog_attached = !!old;
4698                 xdp->prog_id = old ? old->aux->id : 0;
4699                 break;
4700
4701         default:
4702                 ret = -EINVAL;
4703                 break;
4704         }
4705
4706         return ret;
4707 }
4708
4709 static int netif_receive_skb_internal(struct sk_buff *skb)
4710 {
4711         int ret;
4712
4713         net_timestamp_check(netdev_tstamp_prequeue, skb);
4714
4715         if (skb_defer_rx_timestamp(skb))
4716                 return NET_RX_SUCCESS;
4717
4718         if (static_key_false(&generic_xdp_needed)) {
4719                 int ret;
4720
4721                 preempt_disable();
4722                 rcu_read_lock();
4723                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4724                 rcu_read_unlock();
4725                 preempt_enable();
4726
4727                 if (ret != XDP_PASS)
4728                         return NET_RX_DROP;
4729         }
4730
4731         rcu_read_lock();
4732 #ifdef CONFIG_RPS
4733         if (static_key_false(&rps_needed)) {
4734                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4735                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4736
4737                 if (cpu >= 0) {
4738                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4739                         rcu_read_unlock();
4740                         return ret;
4741                 }
4742         }
4743 #endif
4744         ret = __netif_receive_skb(skb);
4745         rcu_read_unlock();
4746         return ret;
4747 }
4748
4749 /**
4750  *      netif_receive_skb - process receive buffer from network
4751  *      @skb: buffer to process
4752  *
4753  *      netif_receive_skb() is the main receive data processing function.
4754  *      It always succeeds. The buffer may be dropped during processing
4755  *      for congestion control or by the protocol layers.
4756  *
4757  *      This function may only be called from softirq context and interrupts
4758  *      should be enabled.
4759  *
4760  *      Return values (usually ignored):
4761  *      NET_RX_SUCCESS: no congestion
4762  *      NET_RX_DROP: packet was dropped
4763  */
4764 int netif_receive_skb(struct sk_buff *skb)
4765 {
4766         trace_netif_receive_skb_entry(skb);
4767
4768         return netif_receive_skb_internal(skb);
4769 }
4770 EXPORT_SYMBOL(netif_receive_skb);
4771
4772 DEFINE_PER_CPU(struct work_struct, flush_works);
4773
4774 /* Network device is going away, flush any packets still pending */
4775 static void flush_backlog(struct work_struct *work)
4776 {
4777         struct sk_buff *skb, *tmp;
4778         struct softnet_data *sd;
4779
4780         local_bh_disable();
4781         sd = this_cpu_ptr(&softnet_data);
4782
4783         local_irq_disable();
4784         rps_lock(sd);
4785         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4786                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4787                         __skb_unlink(skb, &sd->input_pkt_queue);
4788                         kfree_skb(skb);
4789                         input_queue_head_incr(sd);
4790                 }
4791         }
4792         rps_unlock(sd);
4793         local_irq_enable();
4794
4795         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4796                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4797                         __skb_unlink(skb, &sd->process_queue);
4798                         kfree_skb(skb);
4799                         input_queue_head_incr(sd);
4800                 }
4801         }
4802         local_bh_enable();
4803 }
4804
4805 static void flush_all_backlogs(void)
4806 {
4807         unsigned int cpu;
4808
4809         get_online_cpus();
4810
4811         for_each_online_cpu(cpu)
4812                 queue_work_on(cpu, system_highpri_wq,
4813                               per_cpu_ptr(&flush_works, cpu));
4814
4815         for_each_online_cpu(cpu)
4816                 flush_work(per_cpu_ptr(&flush_works, cpu));
4817
4818         put_online_cpus();
4819 }
4820
4821 static int napi_gro_complete(struct sk_buff *skb)
4822 {
4823         struct packet_offload *ptype;
4824         __be16 type = skb->protocol;
4825         struct list_head *head = &offload_base;
4826         int err = -ENOENT;
4827
4828         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4829
4830         if (NAPI_GRO_CB(skb)->count == 1) {
4831                 skb_shinfo(skb)->gso_size = 0;
4832                 goto out;
4833         }
4834
4835         rcu_read_lock();
4836         list_for_each_entry_rcu(ptype, head, list) {
4837                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4838                         continue;
4839
4840                 err = ptype->callbacks.gro_complete(skb, 0);
4841                 break;
4842         }
4843         rcu_read_unlock();
4844
4845         if (err) {
4846                 WARN_ON(&ptype->list == head);
4847                 kfree_skb(skb);
4848                 return NET_RX_SUCCESS;
4849         }
4850
4851 out:
4852         return netif_receive_skb_internal(skb);
4853 }
4854
4855 /* napi->gro_list contains packets ordered by age.
4856  * youngest packets at the head of it.
4857  * Complete skbs in reverse order to reduce latencies.
4858  */
4859 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4860 {
4861         struct sk_buff *skb, *prev = NULL;
4862
4863         /* scan list and build reverse chain */
4864         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4865                 skb->prev = prev;
4866                 prev = skb;
4867         }
4868
4869         for (skb = prev; skb; skb = prev) {
4870                 skb->next = NULL;
4871
4872                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4873                         return;
4874
4875                 prev = skb->prev;
4876                 napi_gro_complete(skb);
4877                 napi->gro_count--;
4878         }
4879
4880         napi->gro_list = NULL;
4881 }
4882 EXPORT_SYMBOL(napi_gro_flush);
4883
4884 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4885 {
4886         struct sk_buff *p;
4887         unsigned int maclen = skb->dev->hard_header_len;
4888         u32 hash = skb_get_hash_raw(skb);
4889
4890         for (p = napi->gro_list; p; p = p->next) {
4891                 unsigned long diffs;
4892
4893                 NAPI_GRO_CB(p)->flush = 0;
4894
4895                 if (hash != skb_get_hash_raw(p)) {
4896                         NAPI_GRO_CB(p)->same_flow = 0;
4897                         continue;
4898                 }
4899
4900                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4901                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4902                 diffs |= skb_metadata_dst_cmp(p, skb);
4903                 diffs |= skb_metadata_differs(p, skb);
4904                 if (maclen == ETH_HLEN)
4905                         diffs |= compare_ether_header(skb_mac_header(p),
4906                                                       skb_mac_header(skb));
4907                 else if (!diffs)
4908                         diffs = memcmp(skb_mac_header(p),
4909                                        skb_mac_header(skb),
4910                                        maclen);
4911                 NAPI_GRO_CB(p)->same_flow = !diffs;
4912         }
4913 }
4914
4915 static void skb_gro_reset_offset(struct sk_buff *skb)
4916 {
4917         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4918         const skb_frag_t *frag0 = &pinfo->frags[0];
4919
4920         NAPI_GRO_CB(skb)->data_offset = 0;
4921         NAPI_GRO_CB(skb)->frag0 = NULL;
4922         NAPI_GRO_CB(skb)->frag0_len = 0;
4923
4924         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4925             pinfo->nr_frags &&
4926             !PageHighMem(skb_frag_page(frag0))) {
4927                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4928                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4929                                                     skb_frag_size(frag0),
4930                                                     skb->end - skb->tail);
4931         }
4932 }
4933
4934 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4935 {
4936         struct skb_shared_info *pinfo = skb_shinfo(skb);
4937
4938         BUG_ON(skb->end - skb->tail < grow);
4939
4940         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4941
4942         skb->data_len -= grow;
4943         skb->tail += grow;
4944
4945         pinfo->frags[0].page_offset += grow;
4946         skb_frag_size_sub(&pinfo->frags[0], grow);
4947
4948         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4949                 skb_frag_unref(skb, 0);
4950                 memmove(pinfo->frags, pinfo->frags + 1,
4951                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4952         }
4953 }
4954
4955 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4956 {
4957         struct sk_buff **pp = NULL;
4958         struct packet_offload *ptype;
4959         __be16 type = skb->protocol;
4960         struct list_head *head = &offload_base;
4961         int same_flow;
4962         enum gro_result ret;
4963         int grow;
4964
4965         if (netif_elide_gro(skb->dev))
4966                 goto normal;
4967
4968         gro_list_prepare(napi, skb);
4969
4970         rcu_read_lock();
4971         list_for_each_entry_rcu(ptype, head, list) {
4972                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4973                         continue;
4974
4975                 skb_set_network_header(skb, skb_gro_offset(skb));
4976                 skb_reset_mac_len(skb);
4977                 NAPI_GRO_CB(skb)->same_flow = 0;
4978                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4979                 NAPI_GRO_CB(skb)->free = 0;
4980                 NAPI_GRO_CB(skb)->encap_mark = 0;
4981                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4982                 NAPI_GRO_CB(skb)->is_fou = 0;
4983                 NAPI_GRO_CB(skb)->is_atomic = 1;
4984                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4985
4986                 /* Setup for GRO checksum validation */
4987                 switch (skb->ip_summed) {
4988                 case CHECKSUM_COMPLETE:
4989                         NAPI_GRO_CB(skb)->csum = skb->csum;
4990                         NAPI_GRO_CB(skb)->csum_valid = 1;
4991                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4992                         break;
4993                 case CHECKSUM_UNNECESSARY:
4994                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4995                         NAPI_GRO_CB(skb)->csum_valid = 0;
4996                         break;
4997                 default:
4998                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4999                         NAPI_GRO_CB(skb)->csum_valid = 0;
5000                 }
5001
5002                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
5003                 break;
5004         }
5005         rcu_read_unlock();
5006
5007         if (&ptype->list == head)
5008                 goto normal;
5009
5010         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5011                 ret = GRO_CONSUMED;
5012                 goto ok;
5013         }
5014
5015         same_flow = NAPI_GRO_CB(skb)->same_flow;
5016         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5017
5018         if (pp) {
5019                 struct sk_buff *nskb = *pp;
5020
5021                 *pp = nskb->next;
5022                 nskb->next = NULL;
5023                 napi_gro_complete(nskb);
5024                 napi->gro_count--;
5025         }
5026
5027         if (same_flow)
5028                 goto ok;
5029
5030         if (NAPI_GRO_CB(skb)->flush)
5031                 goto normal;
5032
5033         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5034                 struct sk_buff *nskb = napi->gro_list;
5035
5036                 /* locate the end of the list to select the 'oldest' flow */
5037                 while (nskb->next) {
5038                         pp = &nskb->next;
5039                         nskb = *pp;
5040                 }
5041                 *pp = NULL;
5042                 nskb->next = NULL;
5043                 napi_gro_complete(nskb);
5044         } else {
5045                 napi->gro_count++;
5046         }
5047         NAPI_GRO_CB(skb)->count = 1;
5048         NAPI_GRO_CB(skb)->age = jiffies;
5049         NAPI_GRO_CB(skb)->last = skb;
5050         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5051         skb->next = napi->gro_list;
5052         napi->gro_list = skb;
5053         ret = GRO_HELD;
5054
5055 pull:
5056         grow = skb_gro_offset(skb) - skb_headlen(skb);
5057         if (grow > 0)
5058                 gro_pull_from_frag0(skb, grow);
5059 ok:
5060         return ret;
5061
5062 normal:
5063         ret = GRO_NORMAL;
5064         goto pull;
5065 }
5066
5067 struct packet_offload *gro_find_receive_by_type(__be16 type)
5068 {
5069         struct list_head *offload_head = &offload_base;
5070         struct packet_offload *ptype;
5071
5072         list_for_each_entry_rcu(ptype, offload_head, list) {
5073                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5074                         continue;
5075                 return ptype;
5076         }
5077         return NULL;
5078 }
5079 EXPORT_SYMBOL(gro_find_receive_by_type);
5080
5081 struct packet_offload *gro_find_complete_by_type(__be16 type)
5082 {
5083         struct list_head *offload_head = &offload_base;
5084         struct packet_offload *ptype;
5085
5086         list_for_each_entry_rcu(ptype, offload_head, list) {
5087                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5088                         continue;
5089                 return ptype;
5090         }
5091         return NULL;
5092 }
5093 EXPORT_SYMBOL(gro_find_complete_by_type);
5094
5095 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5096 {
5097         skb_dst_drop(skb);
5098         secpath_reset(skb);
5099         kmem_cache_free(skbuff_head_cache, skb);
5100 }
5101
5102 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5103 {
5104         switch (ret) {
5105         case GRO_NORMAL:
5106                 if (netif_receive_skb_internal(skb))
5107                         ret = GRO_DROP;
5108                 break;
5109
5110         case GRO_DROP:
5111                 kfree_skb(skb);
5112                 break;
5113
5114         case GRO_MERGED_FREE:
5115                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5116                         napi_skb_free_stolen_head(skb);
5117                 else
5118                         __kfree_skb(skb);
5119                 break;
5120
5121         case GRO_HELD:
5122         case GRO_MERGED:
5123         case GRO_CONSUMED:
5124                 break;
5125         }
5126
5127         return ret;
5128 }
5129
5130 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5131 {
5132         skb_mark_napi_id(skb, napi);
5133         trace_napi_gro_receive_entry(skb);
5134
5135         skb_gro_reset_offset(skb);
5136
5137         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5138 }
5139 EXPORT_SYMBOL(napi_gro_receive);
5140
5141 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5142 {
5143         if (unlikely(skb->pfmemalloc)) {
5144                 consume_skb(skb);
5145                 return;
5146         }
5147         __skb_pull(skb, skb_headlen(skb));
5148         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5149         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5150         skb->vlan_tci = 0;
5151         skb->dev = napi->dev;
5152         skb->skb_iif = 0;
5153         skb->encapsulation = 0;
5154         skb_shinfo(skb)->gso_type = 0;
5155         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5156         secpath_reset(skb);
5157
5158         napi->skb = skb;
5159 }
5160
5161 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5162 {
5163         struct sk_buff *skb = napi->skb;
5164
5165         if (!skb) {
5166                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5167                 if (skb) {
5168                         napi->skb = skb;
5169                         skb_mark_napi_id(skb, napi);
5170                 }
5171         }
5172         return skb;
5173 }
5174 EXPORT_SYMBOL(napi_get_frags);
5175
5176 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5177                                       struct sk_buff *skb,
5178                                       gro_result_t ret)
5179 {
5180         switch (ret) {
5181         case GRO_NORMAL:
5182         case GRO_HELD:
5183                 __skb_push(skb, ETH_HLEN);
5184                 skb->protocol = eth_type_trans(skb, skb->dev);
5185                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5186                         ret = GRO_DROP;
5187                 break;
5188
5189         case GRO_DROP:
5190                 napi_reuse_skb(napi, skb);
5191                 break;
5192
5193         case GRO_MERGED_FREE:
5194                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5195                         napi_skb_free_stolen_head(skb);
5196                 else
5197                         napi_reuse_skb(napi, skb);
5198                 break;
5199
5200         case GRO_MERGED:
5201         case GRO_CONSUMED:
5202                 break;
5203         }
5204
5205         return ret;
5206 }
5207
5208 /* Upper GRO stack assumes network header starts at gro_offset=0
5209  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5210  * We copy ethernet header into skb->data to have a common layout.
5211  */
5212 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5213 {
5214         struct sk_buff *skb = napi->skb;
5215         const struct ethhdr *eth;
5216         unsigned int hlen = sizeof(*eth);
5217
5218         napi->skb = NULL;
5219
5220         skb_reset_mac_header(skb);
5221         skb_gro_reset_offset(skb);
5222
5223         eth = skb_gro_header_fast(skb, 0);
5224         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5225                 eth = skb_gro_header_slow(skb, hlen, 0);
5226                 if (unlikely(!eth)) {
5227                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5228                                              __func__, napi->dev->name);
5229                         napi_reuse_skb(napi, skb);
5230                         return NULL;
5231                 }
5232         } else {
5233                 gro_pull_from_frag0(skb, hlen);
5234                 NAPI_GRO_CB(skb)->frag0 += hlen;
5235                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5236         }
5237         __skb_pull(skb, hlen);
5238
5239         /*
5240          * This works because the only protocols we care about don't require
5241          * special handling.
5242          * We'll fix it up properly in napi_frags_finish()
5243          */
5244         skb->protocol = eth->h_proto;
5245
5246         return skb;
5247 }
5248
5249 gro_result_t napi_gro_frags(struct napi_struct *napi)
5250 {
5251         struct sk_buff *skb = napi_frags_skb(napi);
5252
5253         if (!skb)
5254                 return GRO_DROP;
5255
5256         trace_napi_gro_frags_entry(skb);
5257
5258         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5259 }
5260 EXPORT_SYMBOL(napi_gro_frags);
5261
5262 /* Compute the checksum from gro_offset and return the folded value
5263  * after adding in any pseudo checksum.
5264  */
5265 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5266 {
5267         __wsum wsum;
5268         __sum16 sum;
5269
5270         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5271
5272         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5273         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5274         if (likely(!sum)) {
5275                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5276                     !skb->csum_complete_sw)
5277                         netdev_rx_csum_fault(skb->dev);
5278         }
5279
5280         NAPI_GRO_CB(skb)->csum = wsum;
5281         NAPI_GRO_CB(skb)->csum_valid = 1;
5282
5283         return sum;
5284 }
5285 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5286
5287 static void net_rps_send_ipi(struct softnet_data *remsd)
5288 {
5289 #ifdef CONFIG_RPS
5290         while (remsd) {
5291                 struct softnet_data *next = remsd->rps_ipi_next;
5292
5293                 if (cpu_online(remsd->cpu))
5294                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5295                 remsd = next;
5296         }
5297 #endif
5298 }
5299
5300 /*
5301  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5302  * Note: called with local irq disabled, but exits with local irq enabled.
5303  */
5304 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5305 {
5306 #ifdef CONFIG_RPS
5307         struct softnet_data *remsd = sd->rps_ipi_list;
5308
5309         if (remsd) {
5310                 sd->rps_ipi_list = NULL;
5311
5312                 local_irq_enable();
5313
5314                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5315                 net_rps_send_ipi(remsd);
5316         } else
5317 #endif
5318                 local_irq_enable();
5319 }
5320
5321 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5322 {
5323 #ifdef CONFIG_RPS
5324         return sd->rps_ipi_list != NULL;
5325 #else
5326         return false;
5327 #endif
5328 }
5329
5330 static int process_backlog(struct napi_struct *napi, int quota)
5331 {
5332         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5333         bool again = true;
5334         int work = 0;
5335
5336         /* Check if we have pending ipi, its better to send them now,
5337          * not waiting net_rx_action() end.
5338          */
5339         if (sd_has_rps_ipi_waiting(sd)) {
5340                 local_irq_disable();
5341                 net_rps_action_and_irq_enable(sd);
5342         }
5343
5344         napi->weight = dev_rx_weight;
5345         while (again) {
5346                 struct sk_buff *skb;
5347
5348                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5349                         rcu_read_lock();
5350                         __netif_receive_skb(skb);
5351                         rcu_read_unlock();
5352                         input_queue_head_incr(sd);
5353                         if (++work >= quota)
5354                                 return work;
5355
5356                 }
5357
5358                 local_irq_disable();
5359                 rps_lock(sd);
5360                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5361                         /*
5362                          * Inline a custom version of __napi_complete().
5363                          * only current cpu owns and manipulates this napi,
5364                          * and NAPI_STATE_SCHED is the only possible flag set
5365                          * on backlog.
5366                          * We can use a plain write instead of clear_bit(),
5367                          * and we dont need an smp_mb() memory barrier.
5368                          */
5369                         napi->state = 0;
5370                         again = false;
5371                 } else {
5372                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5373                                                    &sd->process_queue);
5374                 }
5375                 rps_unlock(sd);
5376                 local_irq_enable();
5377         }
5378
5379         return work;
5380 }
5381
5382 /**
5383  * __napi_schedule - schedule for receive
5384  * @n: entry to schedule
5385  *
5386  * The entry's receive function will be scheduled to run.
5387  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5388  */
5389 void __napi_schedule(struct napi_struct *n)
5390 {
5391         unsigned long flags;
5392
5393         local_irq_save(flags);
5394         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5395         local_irq_restore(flags);
5396 }
5397 EXPORT_SYMBOL(__napi_schedule);
5398
5399 /**
5400  *      napi_schedule_prep - check if napi can be scheduled
5401  *      @n: napi context
5402  *
5403  * Test if NAPI routine is already running, and if not mark
5404  * it as running.  This is used as a condition variable
5405  * insure only one NAPI poll instance runs.  We also make
5406  * sure there is no pending NAPI disable.
5407  */
5408 bool napi_schedule_prep(struct napi_struct *n)
5409 {
5410         unsigned long val, new;
5411
5412         do {
5413                 val = READ_ONCE(n->state);
5414                 if (unlikely(val & NAPIF_STATE_DISABLE))
5415                         return false;
5416                 new = val | NAPIF_STATE_SCHED;
5417
5418                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5419                  * This was suggested by Alexander Duyck, as compiler
5420                  * emits better code than :
5421                  * if (val & NAPIF_STATE_SCHED)
5422                  *     new |= NAPIF_STATE_MISSED;
5423                  */
5424                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5425                                                    NAPIF_STATE_MISSED;
5426         } while (cmpxchg(&n->state, val, new) != val);
5427
5428         return !(val & NAPIF_STATE_SCHED);
5429 }
5430 EXPORT_SYMBOL(napi_schedule_prep);
5431
5432 /**
5433  * __napi_schedule_irqoff - schedule for receive
5434  * @n: entry to schedule
5435  *
5436  * Variant of __napi_schedule() assuming hard irqs are masked
5437  */
5438 void __napi_schedule_irqoff(struct napi_struct *n)
5439 {
5440         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5441 }
5442 EXPORT_SYMBOL(__napi_schedule_irqoff);
5443
5444 bool napi_complete_done(struct napi_struct *n, int work_done)
5445 {
5446         unsigned long flags, val, new;
5447
5448         /*
5449          * 1) Don't let napi dequeue from the cpu poll list
5450          *    just in case its running on a different cpu.
5451          * 2) If we are busy polling, do nothing here, we have
5452          *    the guarantee we will be called later.
5453          */
5454         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5455                                  NAPIF_STATE_IN_BUSY_POLL)))
5456                 return false;
5457
5458         if (n->gro_list) {
5459                 unsigned long timeout = 0;
5460
5461                 if (work_done)
5462                         timeout = n->dev->gro_flush_timeout;
5463
5464                 if (timeout)
5465                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5466                                       HRTIMER_MODE_REL_PINNED);
5467                 else
5468                         napi_gro_flush(n, false);
5469         }
5470         if (unlikely(!list_empty(&n->poll_list))) {
5471                 /* If n->poll_list is not empty, we need to mask irqs */
5472                 local_irq_save(flags);
5473                 list_del_init(&n->poll_list);
5474                 local_irq_restore(flags);
5475         }
5476
5477         do {
5478                 val = READ_ONCE(n->state);
5479
5480                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5481
5482                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5483
5484                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5485                  * because we will call napi->poll() one more time.
5486                  * This C code was suggested by Alexander Duyck to help gcc.
5487                  */
5488                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5489                                                     NAPIF_STATE_SCHED;
5490         } while (cmpxchg(&n->state, val, new) != val);
5491
5492         if (unlikely(val & NAPIF_STATE_MISSED)) {
5493                 __napi_schedule(n);
5494                 return false;
5495         }
5496
5497         return true;
5498 }
5499 EXPORT_SYMBOL(napi_complete_done);
5500
5501 /* must be called under rcu_read_lock(), as we dont take a reference */
5502 static struct napi_struct *napi_by_id(unsigned int napi_id)
5503 {
5504         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5505         struct napi_struct *napi;
5506
5507         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5508                 if (napi->napi_id == napi_id)
5509                         return napi;
5510
5511         return NULL;
5512 }
5513
5514 #if defined(CONFIG_NET_RX_BUSY_POLL)
5515
5516 #define BUSY_POLL_BUDGET 8
5517
5518 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5519 {
5520         int rc;
5521
5522         /* Busy polling means there is a high chance device driver hard irq
5523          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5524          * set in napi_schedule_prep().
5525          * Since we are about to call napi->poll() once more, we can safely
5526          * clear NAPI_STATE_MISSED.
5527          *
5528          * Note: x86 could use a single "lock and ..." instruction
5529          * to perform these two clear_bit()
5530          */
5531         clear_bit(NAPI_STATE_MISSED, &napi->state);
5532         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5533
5534         local_bh_disable();
5535
5536         /* All we really want here is to re-enable device interrupts.
5537          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5538          */
5539         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5540         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5541         netpoll_poll_unlock(have_poll_lock);
5542         if (rc == BUSY_POLL_BUDGET)
5543                 __napi_schedule(napi);
5544         local_bh_enable();
5545 }
5546
5547 void napi_busy_loop(unsigned int napi_id,
5548                     bool (*loop_end)(void *, unsigned long),
5549                     void *loop_end_arg)
5550 {
5551         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5552         int (*napi_poll)(struct napi_struct *napi, int budget);
5553         void *have_poll_lock = NULL;
5554         struct napi_struct *napi;
5555
5556 restart:
5557         napi_poll = NULL;
5558
5559         rcu_read_lock();
5560
5561         napi = napi_by_id(napi_id);
5562         if (!napi)
5563                 goto out;
5564
5565         preempt_disable();
5566         for (;;) {
5567                 int work = 0;
5568
5569                 local_bh_disable();
5570                 if (!napi_poll) {
5571                         unsigned long val = READ_ONCE(napi->state);
5572
5573                         /* If multiple threads are competing for this napi,
5574                          * we avoid dirtying napi->state as much as we can.
5575                          */
5576                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5577                                    NAPIF_STATE_IN_BUSY_POLL))
5578                                 goto count;
5579                         if (cmpxchg(&napi->state, val,
5580                                     val | NAPIF_STATE_IN_BUSY_POLL |
5581                                           NAPIF_STATE_SCHED) != val)
5582                                 goto count;
5583                         have_poll_lock = netpoll_poll_lock(napi);
5584                         napi_poll = napi->poll;
5585                 }
5586                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5587                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5588 count:
5589                 if (work > 0)
5590                         __NET_ADD_STATS(dev_net(napi->dev),
5591                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5592                 local_bh_enable();
5593
5594                 if (!loop_end || loop_end(loop_end_arg, start_time))
5595                         break;
5596
5597                 if (unlikely(need_resched())) {
5598                         if (napi_poll)
5599                                 busy_poll_stop(napi, have_poll_lock);
5600                         preempt_enable();
5601                         rcu_read_unlock();
5602                         cond_resched();
5603                         if (loop_end(loop_end_arg, start_time))
5604                                 return;
5605                         goto restart;
5606                 }
5607                 cpu_relax();
5608         }
5609         if (napi_poll)
5610                 busy_poll_stop(napi, have_poll_lock);
5611         preempt_enable();
5612 out:
5613         rcu_read_unlock();
5614 }
5615 EXPORT_SYMBOL(napi_busy_loop);
5616
5617 #endif /* CONFIG_NET_RX_BUSY_POLL */
5618
5619 static void napi_hash_add(struct napi_struct *napi)
5620 {
5621         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5622             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5623                 return;
5624
5625         spin_lock(&napi_hash_lock);
5626
5627         /* 0..NR_CPUS range is reserved for sender_cpu use */
5628         do {
5629                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5630                         napi_gen_id = MIN_NAPI_ID;
5631         } while (napi_by_id(napi_gen_id));
5632         napi->napi_id = napi_gen_id;
5633
5634         hlist_add_head_rcu(&napi->napi_hash_node,
5635                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5636
5637         spin_unlock(&napi_hash_lock);
5638 }
5639
5640 /* Warning : caller is responsible to make sure rcu grace period
5641  * is respected before freeing memory containing @napi
5642  */
5643 bool napi_hash_del(struct napi_struct *napi)
5644 {
5645         bool rcu_sync_needed = false;
5646
5647         spin_lock(&napi_hash_lock);
5648
5649         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5650                 rcu_sync_needed = true;
5651                 hlist_del_rcu(&napi->napi_hash_node);
5652         }
5653         spin_unlock(&napi_hash_lock);
5654         return rcu_sync_needed;
5655 }
5656 EXPORT_SYMBOL_GPL(napi_hash_del);
5657
5658 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5659 {
5660         struct napi_struct *napi;
5661
5662         napi = container_of(timer, struct napi_struct, timer);
5663
5664         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5665          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5666          */
5667         if (napi->gro_list && !napi_disable_pending(napi) &&
5668             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5669                 __napi_schedule_irqoff(napi);
5670
5671         return HRTIMER_NORESTART;
5672 }
5673
5674 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5675                     int (*poll)(struct napi_struct *, int), int weight)
5676 {
5677         INIT_LIST_HEAD(&napi->poll_list);
5678         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5679         napi->timer.function = napi_watchdog;
5680         napi->gro_count = 0;
5681         napi->gro_list = NULL;
5682         napi->skb = NULL;
5683         napi->poll = poll;
5684         if (weight > NAPI_POLL_WEIGHT)
5685                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5686                             weight, dev->name);
5687         napi->weight = weight;
5688         list_add(&napi->dev_list, &dev->napi_list);
5689         napi->dev = dev;
5690 #ifdef CONFIG_NETPOLL
5691         napi->poll_owner = -1;
5692 #endif
5693         set_bit(NAPI_STATE_SCHED, &napi->state);
5694         napi_hash_add(napi);
5695 }
5696 EXPORT_SYMBOL(netif_napi_add);
5697
5698 void napi_disable(struct napi_struct *n)
5699 {
5700         might_sleep();
5701         set_bit(NAPI_STATE_DISABLE, &n->state);
5702
5703         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5704                 msleep(1);
5705         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5706                 msleep(1);
5707
5708         hrtimer_cancel(&n->timer);
5709
5710         clear_bit(NAPI_STATE_DISABLE, &n->state);
5711 }
5712 EXPORT_SYMBOL(napi_disable);
5713
5714 /* Must be called in process context */
5715 void netif_napi_del(struct napi_struct *napi)
5716 {
5717         might_sleep();
5718         if (napi_hash_del(napi))
5719                 synchronize_net();
5720         list_del_init(&napi->dev_list);
5721         napi_free_frags(napi);
5722
5723         kfree_skb_list(napi->gro_list);
5724         napi->gro_list = NULL;
5725         napi->gro_count = 0;
5726 }
5727 EXPORT_SYMBOL(netif_napi_del);
5728
5729 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5730 {
5731         void *have;
5732         int work, weight;
5733
5734         list_del_init(&n->poll_list);
5735
5736         have = netpoll_poll_lock(n);
5737
5738         weight = n->weight;
5739
5740         /* This NAPI_STATE_SCHED test is for avoiding a race
5741          * with netpoll's poll_napi().  Only the entity which
5742          * obtains the lock and sees NAPI_STATE_SCHED set will
5743          * actually make the ->poll() call.  Therefore we avoid
5744          * accidentally calling ->poll() when NAPI is not scheduled.
5745          */
5746         work = 0;
5747         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5748                 work = n->poll(n, weight);
5749                 trace_napi_poll(n, work, weight);
5750         }
5751
5752         WARN_ON_ONCE(work > weight);
5753
5754         if (likely(work < weight))
5755                 goto out_unlock;
5756
5757         /* Drivers must not modify the NAPI state if they
5758          * consume the entire weight.  In such cases this code
5759          * still "owns" the NAPI instance and therefore can
5760          * move the instance around on the list at-will.
5761          */
5762         if (unlikely(napi_disable_pending(n))) {
5763                 napi_complete(n);
5764                 goto out_unlock;
5765         }
5766
5767         if (n->gro_list) {
5768                 /* flush too old packets
5769                  * If HZ < 1000, flush all packets.
5770                  */
5771                 napi_gro_flush(n, HZ >= 1000);
5772         }
5773
5774         /* Some drivers may have called napi_schedule
5775          * prior to exhausting their budget.
5776          */
5777         if (unlikely(!list_empty(&n->poll_list))) {
5778                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5779                              n->dev ? n->dev->name : "backlog");
5780                 goto out_unlock;
5781         }
5782
5783         list_add_tail(&n->poll_list, repoll);
5784
5785 out_unlock:
5786         netpoll_poll_unlock(have);
5787
5788         return work;
5789 }
5790
5791 static __latent_entropy void net_rx_action(struct softirq_action *h)
5792 {
5793         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5794         unsigned long time_limit = jiffies +
5795                 usecs_to_jiffies(netdev_budget_usecs);
5796         int budget = netdev_budget;
5797         LIST_HEAD(list);
5798         LIST_HEAD(repoll);
5799
5800         local_irq_disable();
5801         list_splice_init(&sd->poll_list, &list);
5802         local_irq_enable();
5803
5804         for (;;) {
5805                 struct napi_struct *n;
5806
5807                 if (list_empty(&list)) {
5808                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5809                                 goto out;
5810                         break;
5811                 }
5812
5813                 n = list_first_entry(&list, struct napi_struct, poll_list);
5814                 budget -= napi_poll(n, &repoll);
5815
5816                 /* If softirq window is exhausted then punt.
5817                  * Allow this to run for 2 jiffies since which will allow
5818                  * an average latency of 1.5/HZ.
5819                  */
5820                 if (unlikely(budget <= 0 ||
5821                              time_after_eq(jiffies, time_limit))) {
5822                         sd->time_squeeze++;
5823                         break;
5824                 }
5825         }
5826
5827         local_irq_disable();
5828
5829         list_splice_tail_init(&sd->poll_list, &list);
5830         list_splice_tail(&repoll, &list);
5831         list_splice(&list, &sd->poll_list);
5832         if (!list_empty(&sd->poll_list))
5833                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5834
5835         net_rps_action_and_irq_enable(sd);
5836 out:
5837         __kfree_skb_flush();
5838 }
5839
5840 struct netdev_adjacent {
5841         struct net_device *dev;
5842
5843         /* upper master flag, there can only be one master device per list */
5844         bool master;
5845
5846         /* counter for the number of times this device was added to us */
5847         u16 ref_nr;
5848
5849         /* private field for the users */
5850         void *private;
5851
5852         struct list_head list;
5853         struct rcu_head rcu;
5854 };
5855
5856 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5857                                                  struct list_head *adj_list)
5858 {
5859         struct netdev_adjacent *adj;
5860
5861         list_for_each_entry(adj, adj_list, list) {
5862                 if (adj->dev == adj_dev)
5863                         return adj;
5864         }
5865         return NULL;
5866 }
5867
5868 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5869 {
5870         struct net_device *dev = data;
5871
5872         return upper_dev == dev;
5873 }
5874
5875 /**
5876  * netdev_has_upper_dev - Check if device is linked to an upper device
5877  * @dev: device
5878  * @upper_dev: upper device to check
5879  *
5880  * Find out if a device is linked to specified upper device and return true
5881  * in case it is. Note that this checks only immediate upper device,
5882  * not through a complete stack of devices. The caller must hold the RTNL lock.
5883  */
5884 bool netdev_has_upper_dev(struct net_device *dev,
5885                           struct net_device *upper_dev)
5886 {
5887         ASSERT_RTNL();
5888
5889         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5890                                              upper_dev);
5891 }
5892 EXPORT_SYMBOL(netdev_has_upper_dev);
5893
5894 /**
5895  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5896  * @dev: device
5897  * @upper_dev: upper device to check
5898  *
5899  * Find out if a device is linked to specified upper device and return true
5900  * in case it is. Note that this checks the entire upper device chain.
5901  * The caller must hold rcu lock.
5902  */
5903
5904 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5905                                   struct net_device *upper_dev)
5906 {
5907         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5908                                                upper_dev);
5909 }
5910 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5911
5912 /**
5913  * netdev_has_any_upper_dev - Check if device is linked to some device
5914  * @dev: device
5915  *
5916  * Find out if a device is linked to an upper device and return true in case
5917  * it is. The caller must hold the RTNL lock.
5918  */
5919 bool netdev_has_any_upper_dev(struct net_device *dev)
5920 {
5921         ASSERT_RTNL();
5922
5923         return !list_empty(&dev->adj_list.upper);
5924 }
5925 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5926
5927 /**
5928  * netdev_master_upper_dev_get - Get master upper device
5929  * @dev: device
5930  *
5931  * Find a master upper device and return pointer to it or NULL in case
5932  * it's not there. The caller must hold the RTNL lock.
5933  */
5934 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5935 {
5936         struct netdev_adjacent *upper;
5937
5938         ASSERT_RTNL();
5939
5940         if (list_empty(&dev->adj_list.upper))
5941                 return NULL;
5942
5943         upper = list_first_entry(&dev->adj_list.upper,
5944                                  struct netdev_adjacent, list);
5945         if (likely(upper->master))
5946                 return upper->dev;
5947         return NULL;
5948 }
5949 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5950
5951 /**
5952  * netdev_has_any_lower_dev - Check if device is linked to some device
5953  * @dev: device
5954  *
5955  * Find out if a device is linked to a lower device and return true in case
5956  * it is. The caller must hold the RTNL lock.
5957  */
5958 static bool netdev_has_any_lower_dev(struct net_device *dev)
5959 {
5960         ASSERT_RTNL();
5961
5962         return !list_empty(&dev->adj_list.lower);
5963 }
5964
5965 void *netdev_adjacent_get_private(struct list_head *adj_list)
5966 {
5967         struct netdev_adjacent *adj;
5968
5969         adj = list_entry(adj_list, struct netdev_adjacent, list);
5970
5971         return adj->private;
5972 }
5973 EXPORT_SYMBOL(netdev_adjacent_get_private);
5974
5975 /**
5976  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5977  * @dev: device
5978  * @iter: list_head ** of the current position
5979  *
5980  * Gets the next device from the dev's upper list, starting from iter
5981  * position. The caller must hold RCU read lock.
5982  */
5983 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5984                                                  struct list_head **iter)
5985 {
5986         struct netdev_adjacent *upper;
5987
5988         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5989
5990         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5991
5992         if (&upper->list == &dev->adj_list.upper)
5993                 return NULL;
5994
5995         *iter = &upper->list;
5996
5997         return upper->dev;
5998 }
5999 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6000
6001 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6002                                                     struct list_head **iter)
6003 {
6004         struct netdev_adjacent *upper;
6005
6006         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6007
6008         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6009
6010         if (&upper->list == &dev->adj_list.upper)
6011                 return NULL;
6012
6013         *iter = &upper->list;
6014
6015         return upper->dev;
6016 }
6017
6018 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6019                                   int (*fn)(struct net_device *dev,
6020                                             void *data),
6021                                   void *data)
6022 {
6023         struct net_device *udev;
6024         struct list_head *iter;
6025         int ret;
6026
6027         for (iter = &dev->adj_list.upper,
6028              udev = netdev_next_upper_dev_rcu(dev, &iter);
6029              udev;
6030              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6031                 /* first is the upper device itself */
6032                 ret = fn(udev, data);
6033                 if (ret)
6034                         return ret;
6035
6036                 /* then look at all of its upper devices */
6037                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6038                 if (ret)
6039                         return ret;
6040         }
6041
6042         return 0;
6043 }
6044 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6045
6046 /**
6047  * netdev_lower_get_next_private - Get the next ->private from the
6048  *                                 lower neighbour list
6049  * @dev: device
6050  * @iter: list_head ** of the current position
6051  *
6052  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6053  * list, starting from iter position. The caller must hold either hold the
6054  * RTNL lock or its own locking that guarantees that the neighbour lower
6055  * list will remain unchanged.
6056  */
6057 void *netdev_lower_get_next_private(struct net_device *dev,
6058                                     struct list_head **iter)
6059 {
6060         struct netdev_adjacent *lower;
6061
6062         lower = list_entry(*iter, struct netdev_adjacent, list);
6063
6064         if (&lower->list == &dev->adj_list.lower)
6065                 return NULL;
6066
6067         *iter = lower->list.next;
6068
6069         return lower->private;
6070 }
6071 EXPORT_SYMBOL(netdev_lower_get_next_private);
6072
6073 /**
6074  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6075  *                                     lower neighbour list, RCU
6076  *                                     variant
6077  * @dev: device
6078  * @iter: list_head ** of the current position
6079  *
6080  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6081  * list, starting from iter position. The caller must hold RCU read lock.
6082  */
6083 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6084                                         struct list_head **iter)
6085 {
6086         struct netdev_adjacent *lower;
6087
6088         WARN_ON_ONCE(!rcu_read_lock_held());
6089
6090         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6091
6092         if (&lower->list == &dev->adj_list.lower)
6093                 return NULL;
6094
6095         *iter = &lower->list;
6096
6097         return lower->private;
6098 }
6099 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6100
6101 /**
6102  * netdev_lower_get_next - Get the next device from the lower neighbour
6103  *                         list
6104  * @dev: device
6105  * @iter: list_head ** of the current position
6106  *
6107  * Gets the next netdev_adjacent from the dev's lower neighbour
6108  * list, starting from iter position. The caller must hold RTNL lock or
6109  * its own locking that guarantees that the neighbour lower
6110  * list will remain unchanged.
6111  */
6112 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6113 {
6114         struct netdev_adjacent *lower;
6115
6116         lower = list_entry(*iter, struct netdev_adjacent, list);
6117
6118         if (&lower->list == &dev->adj_list.lower)
6119                 return NULL;
6120
6121         *iter = lower->list.next;
6122
6123         return lower->dev;
6124 }
6125 EXPORT_SYMBOL(netdev_lower_get_next);
6126
6127 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6128                                                 struct list_head **iter)
6129 {
6130         struct netdev_adjacent *lower;
6131
6132         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6133
6134         if (&lower->list == &dev->adj_list.lower)
6135                 return NULL;
6136
6137         *iter = &lower->list;
6138
6139         return lower->dev;
6140 }
6141
6142 int netdev_walk_all_lower_dev(struct net_device *dev,
6143                               int (*fn)(struct net_device *dev,
6144                                         void *data),
6145                               void *data)
6146 {
6147         struct net_device *ldev;
6148         struct list_head *iter;
6149         int ret;
6150
6151         for (iter = &dev->adj_list.lower,
6152              ldev = netdev_next_lower_dev(dev, &iter);
6153              ldev;
6154              ldev = netdev_next_lower_dev(dev, &iter)) {
6155                 /* first is the lower device itself */
6156                 ret = fn(ldev, data);
6157                 if (ret)
6158                         return ret;
6159
6160                 /* then look at all of its lower devices */
6161                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6162                 if (ret)
6163                         return ret;
6164         }
6165
6166         return 0;
6167 }
6168 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6169
6170 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6171                                                     struct list_head **iter)
6172 {
6173         struct netdev_adjacent *lower;
6174
6175         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6176         if (&lower->list == &dev->adj_list.lower)
6177                 return NULL;
6178
6179         *iter = &lower->list;
6180
6181         return lower->dev;
6182 }
6183
6184 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6185                                   int (*fn)(struct net_device *dev,
6186                                             void *data),
6187                                   void *data)
6188 {
6189         struct net_device *ldev;
6190         struct list_head *iter;
6191         int ret;
6192
6193         for (iter = &dev->adj_list.lower,
6194              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6195              ldev;
6196              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6197                 /* first is the lower device itself */
6198                 ret = fn(ldev, data);
6199                 if (ret)
6200                         return ret;
6201
6202                 /* then look at all of its lower devices */
6203                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6204                 if (ret)
6205                         return ret;
6206         }
6207
6208         return 0;
6209 }
6210 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6211
6212 /**
6213  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6214  *                                     lower neighbour list, RCU
6215  *                                     variant
6216  * @dev: device
6217  *
6218  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6219  * list. The caller must hold RCU read lock.
6220  */
6221 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6222 {
6223         struct netdev_adjacent *lower;
6224
6225         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6226                         struct netdev_adjacent, list);
6227         if (lower)
6228                 return lower->private;
6229         return NULL;
6230 }
6231 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6232
6233 /**
6234  * netdev_master_upper_dev_get_rcu - Get master upper device
6235  * @dev: device
6236  *
6237  * Find a master upper device and return pointer to it or NULL in case
6238  * it's not there. The caller must hold the RCU read lock.
6239  */
6240 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6241 {
6242         struct netdev_adjacent *upper;
6243
6244         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6245                                        struct netdev_adjacent, list);
6246         if (upper && likely(upper->master))
6247                 return upper->dev;
6248         return NULL;
6249 }
6250 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6251
6252 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6253                               struct net_device *adj_dev,
6254                               struct list_head *dev_list)
6255 {
6256         char linkname[IFNAMSIZ+7];
6257
6258         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6259                 "upper_%s" : "lower_%s", adj_dev->name);
6260         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6261                                  linkname);
6262 }
6263 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6264                                char *name,
6265                                struct list_head *dev_list)
6266 {
6267         char linkname[IFNAMSIZ+7];
6268
6269         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6270                 "upper_%s" : "lower_%s", name);
6271         sysfs_remove_link(&(dev->dev.kobj), linkname);
6272 }
6273
6274 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6275                                                  struct net_device *adj_dev,
6276                                                  struct list_head *dev_list)
6277 {
6278         return (dev_list == &dev->adj_list.upper ||
6279                 dev_list == &dev->adj_list.lower) &&
6280                 net_eq(dev_net(dev), dev_net(adj_dev));
6281 }
6282
6283 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6284                                         struct net_device *adj_dev,
6285                                         struct list_head *dev_list,
6286                                         void *private, bool master)
6287 {
6288         struct netdev_adjacent *adj;
6289         int ret;
6290
6291         adj = __netdev_find_adj(adj_dev, dev_list);
6292
6293         if (adj) {
6294                 adj->ref_nr += 1;
6295                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6296                          dev->name, adj_dev->name, adj->ref_nr);
6297
6298                 return 0;
6299         }
6300
6301         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6302         if (!adj)
6303                 return -ENOMEM;
6304
6305         adj->dev = adj_dev;
6306         adj->master = master;
6307         adj->ref_nr = 1;
6308         adj->private = private;
6309         dev_hold(adj_dev);
6310
6311         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6312                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6313
6314         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6315                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6316                 if (ret)
6317                         goto free_adj;
6318         }
6319
6320         /* Ensure that master link is always the first item in list. */
6321         if (master) {
6322                 ret = sysfs_create_link(&(dev->dev.kobj),
6323                                         &(adj_dev->dev.kobj), "master");
6324                 if (ret)
6325                         goto remove_symlinks;
6326
6327                 list_add_rcu(&adj->list, dev_list);
6328         } else {
6329                 list_add_tail_rcu(&adj->list, dev_list);
6330         }
6331
6332         return 0;
6333
6334 remove_symlinks:
6335         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6336                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6337 free_adj:
6338         kfree(adj);
6339         dev_put(adj_dev);
6340
6341         return ret;
6342 }
6343
6344 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6345                                          struct net_device *adj_dev,
6346                                          u16 ref_nr,
6347                                          struct list_head *dev_list)
6348 {
6349         struct netdev_adjacent *adj;
6350
6351         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6352                  dev->name, adj_dev->name, ref_nr);
6353
6354         adj = __netdev_find_adj(adj_dev, dev_list);
6355
6356         if (!adj) {
6357                 pr_err("Adjacency does not exist for device %s from %s\n",
6358                        dev->name, adj_dev->name);
6359                 WARN_ON(1);
6360                 return;
6361         }
6362
6363         if (adj->ref_nr > ref_nr) {
6364                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6365                          dev->name, adj_dev->name, ref_nr,
6366                          adj->ref_nr - ref_nr);
6367                 adj->ref_nr -= ref_nr;
6368                 return;
6369         }
6370
6371         if (adj->master)
6372                 sysfs_remove_link(&(dev->dev.kobj), "master");
6373
6374         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6375                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6376
6377         list_del_rcu(&adj->list);
6378         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6379                  adj_dev->name, dev->name, adj_dev->name);
6380         dev_put(adj_dev);
6381         kfree_rcu(adj, rcu);
6382 }
6383
6384 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6385                                             struct net_device *upper_dev,
6386                                             struct list_head *up_list,
6387                                             struct list_head *down_list,
6388                                             void *private, bool master)
6389 {
6390         int ret;
6391
6392         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6393                                            private, master);
6394         if (ret)
6395                 return ret;
6396
6397         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6398                                            private, false);
6399         if (ret) {
6400                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6401                 return ret;
6402         }
6403
6404         return 0;
6405 }
6406
6407 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6408                                                struct net_device *upper_dev,
6409                                                u16 ref_nr,
6410                                                struct list_head *up_list,
6411                                                struct list_head *down_list)
6412 {
6413         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6414         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6415 }
6416
6417 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6418                                                 struct net_device *upper_dev,
6419                                                 void *private, bool master)
6420 {
6421         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6422                                                 &dev->adj_list.upper,
6423                                                 &upper_dev->adj_list.lower,
6424                                                 private, master);
6425 }
6426
6427 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6428                                                    struct net_device *upper_dev)
6429 {
6430         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6431                                            &dev->adj_list.upper,
6432                                            &upper_dev->adj_list.lower);
6433 }
6434
6435 static int __netdev_upper_dev_link(struct net_device *dev,
6436                                    struct net_device *upper_dev, bool master,
6437                                    void *upper_priv, void *upper_info,
6438                                    struct netlink_ext_ack *extack)
6439 {
6440         struct netdev_notifier_changeupper_info changeupper_info = {
6441                 .info = {
6442                         .dev = dev,
6443                         .extack = extack,
6444                 },
6445                 .upper_dev = upper_dev,
6446                 .master = master,
6447                 .linking = true,
6448                 .upper_info = upper_info,
6449         };
6450         struct net_device *master_dev;
6451         int ret = 0;
6452
6453         ASSERT_RTNL();
6454
6455         if (dev == upper_dev)
6456                 return -EBUSY;
6457
6458         /* To prevent loops, check if dev is not upper device to upper_dev. */
6459         if (netdev_has_upper_dev(upper_dev, dev))
6460                 return -EBUSY;
6461
6462         if (!master) {
6463                 if (netdev_has_upper_dev(dev, upper_dev))
6464                         return -EEXIST;
6465         } else {
6466                 master_dev = netdev_master_upper_dev_get(dev);
6467                 if (master_dev)
6468                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
6469         }
6470
6471         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6472                                             &changeupper_info.info);
6473         ret = notifier_to_errno(ret);
6474         if (ret)
6475                 return ret;
6476
6477         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6478                                                    master);
6479         if (ret)
6480                 return ret;
6481
6482         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6483                                             &changeupper_info.info);
6484         ret = notifier_to_errno(ret);
6485         if (ret)
6486                 goto rollback;
6487
6488         return 0;
6489
6490 rollback:
6491         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6492
6493         return ret;
6494 }
6495
6496 /**
6497  * netdev_upper_dev_link - Add a link to the upper device
6498  * @dev: device
6499  * @upper_dev: new upper device
6500  * @extack: netlink extended ack
6501  *
6502  * Adds a link to device which is upper to this one. The caller must hold
6503  * the RTNL lock. On a failure a negative errno code is returned.
6504  * On success the reference counts are adjusted and the function
6505  * returns zero.
6506  */
6507 int netdev_upper_dev_link(struct net_device *dev,
6508                           struct net_device *upper_dev,
6509                           struct netlink_ext_ack *extack)
6510 {
6511         return __netdev_upper_dev_link(dev, upper_dev, false,
6512                                        NULL, NULL, extack);
6513 }
6514 EXPORT_SYMBOL(netdev_upper_dev_link);
6515
6516 /**
6517  * netdev_master_upper_dev_link - Add a master link to the upper device
6518  * @dev: device
6519  * @upper_dev: new upper device
6520  * @upper_priv: upper device private
6521  * @upper_info: upper info to be passed down via notifier
6522  * @extack: netlink extended ack
6523  *
6524  * Adds a link to device which is upper to this one. In this case, only
6525  * one master upper device can be linked, although other non-master devices
6526  * might be linked as well. The caller must hold the RTNL lock.
6527  * On a failure a negative errno code is returned. On success the reference
6528  * counts are adjusted and the function returns zero.
6529  */
6530 int netdev_master_upper_dev_link(struct net_device *dev,
6531                                  struct net_device *upper_dev,
6532                                  void *upper_priv, void *upper_info,
6533                                  struct netlink_ext_ack *extack)
6534 {
6535         return __netdev_upper_dev_link(dev, upper_dev, true,
6536                                        upper_priv, upper_info, extack);
6537 }
6538 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6539
6540 /**
6541  * netdev_upper_dev_unlink - Removes a link to upper device
6542  * @dev: device
6543  * @upper_dev: new upper device
6544  *
6545  * Removes a link to device which is upper to this one. The caller must hold
6546  * the RTNL lock.
6547  */
6548 void netdev_upper_dev_unlink(struct net_device *dev,
6549                              struct net_device *upper_dev)
6550 {
6551         struct netdev_notifier_changeupper_info changeupper_info = {
6552                 .info = {
6553                         .dev = dev,
6554                 },
6555                 .upper_dev = upper_dev,
6556                 .linking = false,
6557         };
6558
6559         ASSERT_RTNL();
6560
6561         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6562
6563         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6564                                       &changeupper_info.info);
6565
6566         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6567
6568         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6569                                       &changeupper_info.info);
6570 }
6571 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6572
6573 /**
6574  * netdev_bonding_info_change - Dispatch event about slave change
6575  * @dev: device
6576  * @bonding_info: info to dispatch
6577  *
6578  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6579  * The caller must hold the RTNL lock.
6580  */
6581 void netdev_bonding_info_change(struct net_device *dev,
6582                                 struct netdev_bonding_info *bonding_info)
6583 {
6584         struct netdev_notifier_bonding_info info = {
6585                 .info.dev = dev,
6586         };
6587
6588         memcpy(&info.bonding_info, bonding_info,
6589                sizeof(struct netdev_bonding_info));
6590         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6591                                       &info.info);
6592 }
6593 EXPORT_SYMBOL(netdev_bonding_info_change);
6594
6595 static void netdev_adjacent_add_links(struct net_device *dev)
6596 {
6597         struct netdev_adjacent *iter;
6598
6599         struct net *net = dev_net(dev);
6600
6601         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6602                 if (!net_eq(net, dev_net(iter->dev)))
6603                         continue;
6604                 netdev_adjacent_sysfs_add(iter->dev, dev,
6605                                           &iter->dev->adj_list.lower);
6606                 netdev_adjacent_sysfs_add(dev, iter->dev,
6607                                           &dev->adj_list.upper);
6608         }
6609
6610         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6611                 if (!net_eq(net, dev_net(iter->dev)))
6612                         continue;
6613                 netdev_adjacent_sysfs_add(iter->dev, dev,
6614                                           &iter->dev->adj_list.upper);
6615                 netdev_adjacent_sysfs_add(dev, iter->dev,
6616                                           &dev->adj_list.lower);
6617         }
6618 }
6619
6620 static void netdev_adjacent_del_links(struct net_device *dev)
6621 {
6622         struct netdev_adjacent *iter;
6623
6624         struct net *net = dev_net(dev);
6625
6626         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6627                 if (!net_eq(net, dev_net(iter->dev)))
6628                         continue;
6629                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6630                                           &iter->dev->adj_list.lower);
6631                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6632                                           &dev->adj_list.upper);
6633         }
6634
6635         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6636                 if (!net_eq(net, dev_net(iter->dev)))
6637                         continue;
6638                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6639                                           &iter->dev->adj_list.upper);
6640                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6641                                           &dev->adj_list.lower);
6642         }
6643 }
6644
6645 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6646 {
6647         struct netdev_adjacent *iter;
6648
6649         struct net *net = dev_net(dev);
6650
6651         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6652                 if (!net_eq(net, dev_net(iter->dev)))
6653                         continue;
6654                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6655                                           &iter->dev->adj_list.lower);
6656                 netdev_adjacent_sysfs_add(iter->dev, dev,
6657                                           &iter->dev->adj_list.lower);
6658         }
6659
6660         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6661                 if (!net_eq(net, dev_net(iter->dev)))
6662                         continue;
6663                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6664                                           &iter->dev->adj_list.upper);
6665                 netdev_adjacent_sysfs_add(iter->dev, dev,
6666                                           &iter->dev->adj_list.upper);
6667         }
6668 }
6669
6670 void *netdev_lower_dev_get_private(struct net_device *dev,
6671                                    struct net_device *lower_dev)
6672 {
6673         struct netdev_adjacent *lower;
6674
6675         if (!lower_dev)
6676                 return NULL;
6677         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6678         if (!lower)
6679                 return NULL;
6680
6681         return lower->private;
6682 }
6683 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6684
6685
6686 int dev_get_nest_level(struct net_device *dev)
6687 {
6688         struct net_device *lower = NULL;
6689         struct list_head *iter;
6690         int max_nest = -1;
6691         int nest;
6692
6693         ASSERT_RTNL();
6694
6695         netdev_for_each_lower_dev(dev, lower, iter) {
6696                 nest = dev_get_nest_level(lower);
6697                 if (max_nest < nest)
6698                         max_nest = nest;
6699         }
6700
6701         return max_nest + 1;
6702 }
6703 EXPORT_SYMBOL(dev_get_nest_level);
6704
6705 /**
6706  * netdev_lower_change - Dispatch event about lower device state change
6707  * @lower_dev: device
6708  * @lower_state_info: state to dispatch
6709  *
6710  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6711  * The caller must hold the RTNL lock.
6712  */
6713 void netdev_lower_state_changed(struct net_device *lower_dev,
6714                                 void *lower_state_info)
6715 {
6716         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6717                 .info.dev = lower_dev,
6718         };
6719
6720         ASSERT_RTNL();
6721         changelowerstate_info.lower_state_info = lower_state_info;
6722         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6723                                       &changelowerstate_info.info);
6724 }
6725 EXPORT_SYMBOL(netdev_lower_state_changed);
6726
6727 static void dev_change_rx_flags(struct net_device *dev, int flags)
6728 {
6729         const struct net_device_ops *ops = dev->netdev_ops;
6730
6731         if (ops->ndo_change_rx_flags)
6732                 ops->ndo_change_rx_flags(dev, flags);
6733 }
6734
6735 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6736 {
6737         unsigned int old_flags = dev->flags;
6738         kuid_t uid;
6739         kgid_t gid;
6740
6741         ASSERT_RTNL();
6742
6743         dev->flags |= IFF_PROMISC;
6744         dev->promiscuity += inc;
6745         if (dev->promiscuity == 0) {
6746                 /*
6747                  * Avoid overflow.
6748                  * If inc causes overflow, untouch promisc and return error.
6749                  */
6750                 if (inc < 0)
6751                         dev->flags &= ~IFF_PROMISC;
6752                 else {
6753                         dev->promiscuity -= inc;
6754                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6755                                 dev->name);
6756                         return -EOVERFLOW;
6757                 }
6758         }
6759         if (dev->flags != old_flags) {
6760                 pr_info("device %s %s promiscuous mode\n",
6761                         dev->name,
6762                         dev->flags & IFF_PROMISC ? "entered" : "left");
6763                 if (audit_enabled) {
6764                         current_uid_gid(&uid, &gid);
6765                         audit_log(current->audit_context, GFP_ATOMIC,
6766                                 AUDIT_ANOM_PROMISCUOUS,
6767                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6768                                 dev->name, (dev->flags & IFF_PROMISC),
6769                                 (old_flags & IFF_PROMISC),
6770                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6771                                 from_kuid(&init_user_ns, uid),
6772                                 from_kgid(&init_user_ns, gid),
6773                                 audit_get_sessionid(current));
6774                 }
6775
6776                 dev_change_rx_flags(dev, IFF_PROMISC);
6777         }
6778         if (notify)
6779                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6780         return 0;
6781 }
6782
6783 /**
6784  *      dev_set_promiscuity     - update promiscuity count on a device
6785  *      @dev: device
6786  *      @inc: modifier
6787  *
6788  *      Add or remove promiscuity from a device. While the count in the device
6789  *      remains above zero the interface remains promiscuous. Once it hits zero
6790  *      the device reverts back to normal filtering operation. A negative inc
6791  *      value is used to drop promiscuity on the device.
6792  *      Return 0 if successful or a negative errno code on error.
6793  */
6794 int dev_set_promiscuity(struct net_device *dev, int inc)
6795 {
6796         unsigned int old_flags = dev->flags;
6797         int err;
6798
6799         err = __dev_set_promiscuity(dev, inc, true);
6800         if (err < 0)
6801                 return err;
6802         if (dev->flags != old_flags)
6803                 dev_set_rx_mode(dev);
6804         return err;
6805 }
6806 EXPORT_SYMBOL(dev_set_promiscuity);
6807
6808 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6809 {
6810         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6811
6812         ASSERT_RTNL();
6813
6814         dev->flags |= IFF_ALLMULTI;
6815         dev->allmulti += inc;
6816         if (dev->allmulti == 0) {
6817                 /*
6818                  * Avoid overflow.
6819                  * If inc causes overflow, untouch allmulti and return error.
6820                  */
6821                 if (inc < 0)
6822                         dev->flags &= ~IFF_ALLMULTI;
6823                 else {
6824                         dev->allmulti -= inc;
6825                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6826                                 dev->name);
6827                         return -EOVERFLOW;
6828                 }
6829         }
6830         if (dev->flags ^ old_flags) {
6831                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6832                 dev_set_rx_mode(dev);
6833                 if (notify)
6834                         __dev_notify_flags(dev, old_flags,
6835                                            dev->gflags ^ old_gflags);
6836         }
6837         return 0;
6838 }
6839
6840 /**
6841  *      dev_set_allmulti        - update allmulti count on a device
6842  *      @dev: device
6843  *      @inc: modifier
6844  *
6845  *      Add or remove reception of all multicast frames to a device. While the
6846  *      count in the device remains above zero the interface remains listening
6847  *      to all interfaces. Once it hits zero the device reverts back to normal
6848  *      filtering operation. A negative @inc value is used to drop the counter
6849  *      when releasing a resource needing all multicasts.
6850  *      Return 0 if successful or a negative errno code on error.
6851  */
6852
6853 int dev_set_allmulti(struct net_device *dev, int inc)
6854 {
6855         return __dev_set_allmulti(dev, inc, true);
6856 }
6857 EXPORT_SYMBOL(dev_set_allmulti);
6858
6859 /*
6860  *      Upload unicast and multicast address lists to device and
6861  *      configure RX filtering. When the device doesn't support unicast
6862  *      filtering it is put in promiscuous mode while unicast addresses
6863  *      are present.
6864  */
6865 void __dev_set_rx_mode(struct net_device *dev)
6866 {
6867         const struct net_device_ops *ops = dev->netdev_ops;
6868
6869         /* dev_open will call this function so the list will stay sane. */
6870         if (!(dev->flags&IFF_UP))
6871                 return;
6872
6873         if (!netif_device_present(dev))
6874                 return;
6875
6876         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6877                 /* Unicast addresses changes may only happen under the rtnl,
6878                  * therefore calling __dev_set_promiscuity here is safe.
6879                  */
6880                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6881                         __dev_set_promiscuity(dev, 1, false);
6882                         dev->uc_promisc = true;
6883                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6884                         __dev_set_promiscuity(dev, -1, false);
6885                         dev->uc_promisc = false;
6886                 }
6887         }
6888
6889         if (ops->ndo_set_rx_mode)
6890                 ops->ndo_set_rx_mode(dev);
6891 }
6892
6893 void dev_set_rx_mode(struct net_device *dev)
6894 {
6895         netif_addr_lock_bh(dev);
6896         __dev_set_rx_mode(dev);
6897         netif_addr_unlock_bh(dev);
6898 }
6899
6900 /**
6901  *      dev_get_flags - get flags reported to userspace
6902  *      @dev: device
6903  *
6904  *      Get the combination of flag bits exported through APIs to userspace.
6905  */
6906 unsigned int dev_get_flags(const struct net_device *dev)
6907 {
6908         unsigned int flags;
6909
6910         flags = (dev->flags & ~(IFF_PROMISC |
6911                                 IFF_ALLMULTI |
6912                                 IFF_RUNNING |
6913                                 IFF_LOWER_UP |
6914                                 IFF_DORMANT)) |
6915                 (dev->gflags & (IFF_PROMISC |
6916                                 IFF_ALLMULTI));
6917
6918         if (netif_running(dev)) {
6919                 if (netif_oper_up(dev))
6920                         flags |= IFF_RUNNING;
6921                 if (netif_carrier_ok(dev))
6922                         flags |= IFF_LOWER_UP;
6923                 if (netif_dormant(dev))
6924                         flags |= IFF_DORMANT;
6925         }
6926
6927         return flags;
6928 }
6929 EXPORT_SYMBOL(dev_get_flags);
6930
6931 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6932 {
6933         unsigned int old_flags = dev->flags;
6934         int ret;
6935
6936         ASSERT_RTNL();
6937
6938         /*
6939          *      Set the flags on our device.
6940          */
6941
6942         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6943                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6944                                IFF_AUTOMEDIA)) |
6945                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6946                                     IFF_ALLMULTI));
6947
6948         /*
6949          *      Load in the correct multicast list now the flags have changed.
6950          */
6951
6952         if ((old_flags ^ flags) & IFF_MULTICAST)
6953                 dev_change_rx_flags(dev, IFF_MULTICAST);
6954
6955         dev_set_rx_mode(dev);
6956
6957         /*
6958          *      Have we downed the interface. We handle IFF_UP ourselves
6959          *      according to user attempts to set it, rather than blindly
6960          *      setting it.
6961          */
6962
6963         ret = 0;
6964         if ((old_flags ^ flags) & IFF_UP) {
6965                 if (old_flags & IFF_UP)
6966                         __dev_close(dev);
6967                 else
6968                         ret = __dev_open(dev);
6969         }
6970
6971         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6972                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6973                 unsigned int old_flags = dev->flags;
6974
6975                 dev->gflags ^= IFF_PROMISC;
6976
6977                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6978                         if (dev->flags != old_flags)
6979                                 dev_set_rx_mode(dev);
6980         }
6981
6982         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6983          * is important. Some (broken) drivers set IFF_PROMISC, when
6984          * IFF_ALLMULTI is requested not asking us and not reporting.
6985          */
6986         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6987                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6988
6989                 dev->gflags ^= IFF_ALLMULTI;
6990                 __dev_set_allmulti(dev, inc, false);
6991         }
6992
6993         return ret;
6994 }
6995
6996 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6997                         unsigned int gchanges)
6998 {
6999         unsigned int changes = dev->flags ^ old_flags;
7000
7001         if (gchanges)
7002                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7003
7004         if (changes & IFF_UP) {
7005                 if (dev->flags & IFF_UP)
7006                         call_netdevice_notifiers(NETDEV_UP, dev);
7007                 else
7008                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7009         }
7010
7011         if (dev->flags & IFF_UP &&
7012             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7013                 struct netdev_notifier_change_info change_info = {
7014                         .info = {
7015                                 .dev = dev,
7016                         },
7017                         .flags_changed = changes,
7018                 };
7019
7020                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7021         }
7022 }
7023
7024 /**
7025  *      dev_change_flags - change device settings
7026  *      @dev: device
7027  *      @flags: device state flags
7028  *
7029  *      Change settings on device based state flags. The flags are
7030  *      in the userspace exported format.
7031  */
7032 int dev_change_flags(struct net_device *dev, unsigned int flags)
7033 {
7034         int ret;
7035         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7036
7037         ret = __dev_change_flags(dev, flags);
7038         if (ret < 0)
7039                 return ret;
7040
7041         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7042         __dev_notify_flags(dev, old_flags, changes);
7043         return ret;
7044 }
7045 EXPORT_SYMBOL(dev_change_flags);
7046
7047 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7048 {
7049         const struct net_device_ops *ops = dev->netdev_ops;
7050
7051         if (ops->ndo_change_mtu)
7052                 return ops->ndo_change_mtu(dev, new_mtu);
7053
7054         dev->mtu = new_mtu;
7055         return 0;
7056 }
7057 EXPORT_SYMBOL(__dev_set_mtu);
7058
7059 /**
7060  *      dev_set_mtu - Change maximum transfer unit
7061  *      @dev: device
7062  *      @new_mtu: new transfer unit
7063  *
7064  *      Change the maximum transfer size of the network device.
7065  */
7066 int dev_set_mtu(struct net_device *dev, int new_mtu)
7067 {
7068         int err, orig_mtu;
7069
7070         if (new_mtu == dev->mtu)
7071                 return 0;
7072
7073         /* MTU must be positive, and in range */
7074         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7075                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7076                                     dev->name, new_mtu, dev->min_mtu);
7077                 return -EINVAL;
7078         }
7079
7080         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7081                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7082                                     dev->name, new_mtu, dev->max_mtu);
7083                 return -EINVAL;
7084         }
7085
7086         if (!netif_device_present(dev))
7087                 return -ENODEV;
7088
7089         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7090         err = notifier_to_errno(err);
7091         if (err)
7092                 return err;
7093
7094         orig_mtu = dev->mtu;
7095         err = __dev_set_mtu(dev, new_mtu);
7096
7097         if (!err) {
7098                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7099                 err = notifier_to_errno(err);
7100                 if (err) {
7101                         /* setting mtu back and notifying everyone again,
7102                          * so that they have a chance to revert changes.
7103                          */
7104                         __dev_set_mtu(dev, orig_mtu);
7105                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7106                 }
7107         }
7108         return err;
7109 }
7110 EXPORT_SYMBOL(dev_set_mtu);
7111
7112 /**
7113  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7114  *      @dev: device
7115  *      @new_len: new tx queue length
7116  */
7117 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7118 {
7119         unsigned int orig_len = dev->tx_queue_len;
7120         int res;
7121
7122         if (new_len != (unsigned int)new_len)
7123                 return -ERANGE;
7124
7125         if (new_len != orig_len) {
7126                 dev->tx_queue_len = new_len;
7127                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7128                 res = notifier_to_errno(res);
7129                 if (res) {
7130                         netdev_err(dev,
7131                                    "refused to change device tx_queue_len\n");
7132                         dev->tx_queue_len = orig_len;
7133                         return res;
7134                 }
7135                 return dev_qdisc_change_tx_queue_len(dev);
7136         }
7137
7138         return 0;
7139 }
7140
7141 /**
7142  *      dev_set_group - Change group this device belongs to
7143  *      @dev: device
7144  *      @new_group: group this device should belong to
7145  */
7146 void dev_set_group(struct net_device *dev, int new_group)
7147 {
7148         dev->group = new_group;
7149 }
7150 EXPORT_SYMBOL(dev_set_group);
7151
7152 /**
7153  *      dev_set_mac_address - Change Media Access Control Address
7154  *      @dev: device
7155  *      @sa: new address
7156  *
7157  *      Change the hardware (MAC) address of the device
7158  */
7159 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7160 {
7161         const struct net_device_ops *ops = dev->netdev_ops;
7162         int err;
7163
7164         if (!ops->ndo_set_mac_address)
7165                 return -EOPNOTSUPP;
7166         if (sa->sa_family != dev->type)
7167                 return -EINVAL;
7168         if (!netif_device_present(dev))
7169                 return -ENODEV;
7170         err = ops->ndo_set_mac_address(dev, sa);
7171         if (err)
7172                 return err;
7173         dev->addr_assign_type = NET_ADDR_SET;
7174         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7175         add_device_randomness(dev->dev_addr, dev->addr_len);
7176         return 0;
7177 }
7178 EXPORT_SYMBOL(dev_set_mac_address);
7179
7180 /**
7181  *      dev_change_carrier - Change device carrier
7182  *      @dev: device
7183  *      @new_carrier: new value
7184  *
7185  *      Change device carrier
7186  */
7187 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7188 {
7189         const struct net_device_ops *ops = dev->netdev_ops;
7190
7191         if (!ops->ndo_change_carrier)
7192                 return -EOPNOTSUPP;
7193         if (!netif_device_present(dev))
7194                 return -ENODEV;
7195         return ops->ndo_change_carrier(dev, new_carrier);
7196 }
7197 EXPORT_SYMBOL(dev_change_carrier);
7198
7199 /**
7200  *      dev_get_phys_port_id - Get device physical port ID
7201  *      @dev: device
7202  *      @ppid: port ID
7203  *
7204  *      Get device physical port ID
7205  */
7206 int dev_get_phys_port_id(struct net_device *dev,
7207                          struct netdev_phys_item_id *ppid)
7208 {
7209         const struct net_device_ops *ops = dev->netdev_ops;
7210
7211         if (!ops->ndo_get_phys_port_id)
7212                 return -EOPNOTSUPP;
7213         return ops->ndo_get_phys_port_id(dev, ppid);
7214 }
7215 EXPORT_SYMBOL(dev_get_phys_port_id);
7216
7217 /**
7218  *      dev_get_phys_port_name - Get device physical port name
7219  *      @dev: device
7220  *      @name: port name
7221  *      @len: limit of bytes to copy to name
7222  *
7223  *      Get device physical port name
7224  */
7225 int dev_get_phys_port_name(struct net_device *dev,
7226                            char *name, size_t len)
7227 {
7228         const struct net_device_ops *ops = dev->netdev_ops;
7229
7230         if (!ops->ndo_get_phys_port_name)
7231                 return -EOPNOTSUPP;
7232         return ops->ndo_get_phys_port_name(dev, name, len);
7233 }
7234 EXPORT_SYMBOL(dev_get_phys_port_name);
7235
7236 /**
7237  *      dev_change_proto_down - update protocol port state information
7238  *      @dev: device
7239  *      @proto_down: new value
7240  *
7241  *      This info can be used by switch drivers to set the phys state of the
7242  *      port.
7243  */
7244 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7245 {
7246         const struct net_device_ops *ops = dev->netdev_ops;
7247
7248         if (!ops->ndo_change_proto_down)
7249                 return -EOPNOTSUPP;
7250         if (!netif_device_present(dev))
7251                 return -ENODEV;
7252         return ops->ndo_change_proto_down(dev, proto_down);
7253 }
7254 EXPORT_SYMBOL(dev_change_proto_down);
7255
7256 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7257                      struct netdev_bpf *xdp)
7258 {
7259         memset(xdp, 0, sizeof(*xdp));
7260         xdp->command = XDP_QUERY_PROG;
7261
7262         /* Query must always succeed. */
7263         WARN_ON(bpf_op(dev, xdp) < 0);
7264 }
7265
7266 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7267 {
7268         struct netdev_bpf xdp;
7269
7270         __dev_xdp_query(dev, bpf_op, &xdp);
7271
7272         return xdp.prog_attached;
7273 }
7274
7275 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7276                            struct netlink_ext_ack *extack, u32 flags,
7277                            struct bpf_prog *prog)
7278 {
7279         struct netdev_bpf xdp;
7280
7281         memset(&xdp, 0, sizeof(xdp));
7282         if (flags & XDP_FLAGS_HW_MODE)
7283                 xdp.command = XDP_SETUP_PROG_HW;
7284         else
7285                 xdp.command = XDP_SETUP_PROG;
7286         xdp.extack = extack;
7287         xdp.flags = flags;
7288         xdp.prog = prog;
7289
7290         return bpf_op(dev, &xdp);
7291 }
7292
7293 static void dev_xdp_uninstall(struct net_device *dev)
7294 {
7295         struct netdev_bpf xdp;
7296         bpf_op_t ndo_bpf;
7297
7298         /* Remove generic XDP */
7299         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7300
7301         /* Remove from the driver */
7302         ndo_bpf = dev->netdev_ops->ndo_bpf;
7303         if (!ndo_bpf)
7304                 return;
7305
7306         __dev_xdp_query(dev, ndo_bpf, &xdp);
7307         if (xdp.prog_attached == XDP_ATTACHED_NONE)
7308                 return;
7309
7310         /* Program removal should always succeed */
7311         WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7312 }
7313
7314 /**
7315  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7316  *      @dev: device
7317  *      @extack: netlink extended ack
7318  *      @fd: new program fd or negative value to clear
7319  *      @flags: xdp-related flags
7320  *
7321  *      Set or clear a bpf program for a device
7322  */
7323 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7324                       int fd, u32 flags)
7325 {
7326         const struct net_device_ops *ops = dev->netdev_ops;
7327         struct bpf_prog *prog = NULL;
7328         bpf_op_t bpf_op, bpf_chk;
7329         int err;
7330
7331         ASSERT_RTNL();
7332
7333         bpf_op = bpf_chk = ops->ndo_bpf;
7334         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7335                 return -EOPNOTSUPP;
7336         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7337                 bpf_op = generic_xdp_install;
7338         if (bpf_op == bpf_chk)
7339                 bpf_chk = generic_xdp_install;
7340
7341         if (fd >= 0) {
7342                 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7343                         return -EEXIST;
7344                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7345                     __dev_xdp_attached(dev, bpf_op))
7346                         return -EBUSY;
7347
7348                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7349                                              bpf_op == ops->ndo_bpf);
7350                 if (IS_ERR(prog))
7351                         return PTR_ERR(prog);
7352
7353                 if (!(flags & XDP_FLAGS_HW_MODE) &&
7354                     bpf_prog_is_dev_bound(prog->aux)) {
7355                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7356                         bpf_prog_put(prog);
7357                         return -EINVAL;
7358                 }
7359         }
7360
7361         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7362         if (err < 0 && prog)
7363                 bpf_prog_put(prog);
7364
7365         return err;
7366 }
7367
7368 /**
7369  *      dev_new_index   -       allocate an ifindex
7370  *      @net: the applicable net namespace
7371  *
7372  *      Returns a suitable unique value for a new device interface
7373  *      number.  The caller must hold the rtnl semaphore or the
7374  *      dev_base_lock to be sure it remains unique.
7375  */
7376 static int dev_new_index(struct net *net)
7377 {
7378         int ifindex = net->ifindex;
7379
7380         for (;;) {
7381                 if (++ifindex <= 0)
7382                         ifindex = 1;
7383                 if (!__dev_get_by_index(net, ifindex))
7384                         return net->ifindex = ifindex;
7385         }
7386 }
7387
7388 /* Delayed registration/unregisteration */
7389 static LIST_HEAD(net_todo_list);
7390 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7391
7392 static void net_set_todo(struct net_device *dev)
7393 {
7394         list_add_tail(&dev->todo_list, &net_todo_list);
7395         dev_net(dev)->dev_unreg_count++;
7396 }
7397
7398 static void rollback_registered_many(struct list_head *head)
7399 {
7400         struct net_device *dev, *tmp;
7401         LIST_HEAD(close_head);
7402
7403         BUG_ON(dev_boot_phase);
7404         ASSERT_RTNL();
7405
7406         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7407                 /* Some devices call without registering
7408                  * for initialization unwind. Remove those
7409                  * devices and proceed with the remaining.
7410                  */
7411                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7412                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7413                                  dev->name, dev);
7414
7415                         WARN_ON(1);
7416                         list_del(&dev->unreg_list);
7417                         continue;
7418                 }
7419                 dev->dismantle = true;
7420                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7421         }
7422
7423         /* If device is running, close it first. */
7424         list_for_each_entry(dev, head, unreg_list)
7425                 list_add_tail(&dev->close_list, &close_head);
7426         dev_close_many(&close_head, true);
7427
7428         list_for_each_entry(dev, head, unreg_list) {
7429                 /* And unlink it from device chain. */
7430                 unlist_netdevice(dev);
7431
7432                 dev->reg_state = NETREG_UNREGISTERING;
7433         }
7434         flush_all_backlogs();
7435
7436         synchronize_net();
7437
7438         list_for_each_entry(dev, head, unreg_list) {
7439                 struct sk_buff *skb = NULL;
7440
7441                 /* Shutdown queueing discipline. */
7442                 dev_shutdown(dev);
7443
7444                 dev_xdp_uninstall(dev);
7445
7446                 /* Notify protocols, that we are about to destroy
7447                  * this device. They should clean all the things.
7448                  */
7449                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7450
7451                 if (!dev->rtnl_link_ops ||
7452                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7453                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7454                                                      GFP_KERNEL, NULL, 0);
7455
7456                 /*
7457                  *      Flush the unicast and multicast chains
7458                  */
7459                 dev_uc_flush(dev);
7460                 dev_mc_flush(dev);
7461
7462                 if (dev->netdev_ops->ndo_uninit)
7463                         dev->netdev_ops->ndo_uninit(dev);
7464
7465                 if (skb)
7466                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7467
7468                 /* Notifier chain MUST detach us all upper devices. */
7469                 WARN_ON(netdev_has_any_upper_dev(dev));
7470                 WARN_ON(netdev_has_any_lower_dev(dev));
7471
7472                 /* Remove entries from kobject tree */
7473                 netdev_unregister_kobject(dev);
7474 #ifdef CONFIG_XPS
7475                 /* Remove XPS queueing entries */
7476                 netif_reset_xps_queues_gt(dev, 0);
7477 #endif
7478         }
7479
7480         synchronize_net();
7481
7482         list_for_each_entry(dev, head, unreg_list)
7483                 dev_put(dev);
7484 }
7485
7486 static void rollback_registered(struct net_device *dev)
7487 {
7488         LIST_HEAD(single);
7489
7490         list_add(&dev->unreg_list, &single);
7491         rollback_registered_many(&single);
7492         list_del(&single);
7493 }
7494
7495 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7496         struct net_device *upper, netdev_features_t features)
7497 {
7498         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7499         netdev_features_t feature;
7500         int feature_bit;
7501
7502         for_each_netdev_feature(&upper_disables, feature_bit) {
7503                 feature = __NETIF_F_BIT(feature_bit);
7504                 if (!(upper->wanted_features & feature)
7505                     && (features & feature)) {
7506                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7507                                    &feature, upper->name);
7508                         features &= ~feature;
7509                 }
7510         }
7511
7512         return features;
7513 }
7514
7515 static void netdev_sync_lower_features(struct net_device *upper,
7516         struct net_device *lower, netdev_features_t features)
7517 {
7518         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7519         netdev_features_t feature;
7520         int feature_bit;
7521
7522         for_each_netdev_feature(&upper_disables, feature_bit) {
7523                 feature = __NETIF_F_BIT(feature_bit);
7524                 if (!(features & feature) && (lower->features & feature)) {
7525                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7526                                    &feature, lower->name);
7527                         lower->wanted_features &= ~feature;
7528                         netdev_update_features(lower);
7529
7530                         if (unlikely(lower->features & feature))
7531                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7532                                             &feature, lower->name);
7533                 }
7534         }
7535 }
7536
7537 static netdev_features_t netdev_fix_features(struct net_device *dev,
7538         netdev_features_t features)
7539 {
7540         /* Fix illegal checksum combinations */
7541         if ((features & NETIF_F_HW_CSUM) &&
7542             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7543                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7544                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7545         }
7546
7547         /* TSO requires that SG is present as well. */
7548         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7549                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7550                 features &= ~NETIF_F_ALL_TSO;
7551         }
7552
7553         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7554                                         !(features & NETIF_F_IP_CSUM)) {
7555                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7556                 features &= ~NETIF_F_TSO;
7557                 features &= ~NETIF_F_TSO_ECN;
7558         }
7559
7560         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7561                                          !(features & NETIF_F_IPV6_CSUM)) {
7562                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7563                 features &= ~NETIF_F_TSO6;
7564         }
7565
7566         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7567         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7568                 features &= ~NETIF_F_TSO_MANGLEID;
7569
7570         /* TSO ECN requires that TSO is present as well. */
7571         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7572                 features &= ~NETIF_F_TSO_ECN;
7573
7574         /* Software GSO depends on SG. */
7575         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7576                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7577                 features &= ~NETIF_F_GSO;
7578         }
7579
7580         /* GSO partial features require GSO partial be set */
7581         if ((features & dev->gso_partial_features) &&
7582             !(features & NETIF_F_GSO_PARTIAL)) {
7583                 netdev_dbg(dev,
7584                            "Dropping partially supported GSO features since no GSO partial.\n");
7585                 features &= ~dev->gso_partial_features;
7586         }
7587
7588         if (!(features & NETIF_F_RXCSUM)) {
7589                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7590                  * successfully merged by hardware must also have the
7591                  * checksum verified by hardware.  If the user does not
7592                  * want to enable RXCSUM, logically, we should disable GRO_HW.
7593                  */
7594                 if (features & NETIF_F_GRO_HW) {
7595                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7596                         features &= ~NETIF_F_GRO_HW;
7597                 }
7598         }
7599
7600         /* LRO/HW-GRO features cannot be combined with RX-FCS */
7601         if (features & NETIF_F_RXFCS) {
7602                 if (features & NETIF_F_LRO) {
7603                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7604                         features &= ~NETIF_F_LRO;
7605                 }
7606
7607                 if (features & NETIF_F_GRO_HW) {
7608                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7609                         features &= ~NETIF_F_GRO_HW;
7610                 }
7611         }
7612
7613         return features;
7614 }
7615
7616 int __netdev_update_features(struct net_device *dev)
7617 {
7618         struct net_device *upper, *lower;
7619         netdev_features_t features;
7620         struct list_head *iter;
7621         int err = -1;
7622
7623         ASSERT_RTNL();
7624
7625         features = netdev_get_wanted_features(dev);
7626
7627         if (dev->netdev_ops->ndo_fix_features)
7628                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7629
7630         /* driver might be less strict about feature dependencies */
7631         features = netdev_fix_features(dev, features);
7632
7633         /* some features can't be enabled if they're off an an upper device */
7634         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7635                 features = netdev_sync_upper_features(dev, upper, features);
7636
7637         if (dev->features == features)
7638                 goto sync_lower;
7639
7640         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7641                 &dev->features, &features);
7642
7643         if (dev->netdev_ops->ndo_set_features)
7644                 err = dev->netdev_ops->ndo_set_features(dev, features);
7645         else
7646                 err = 0;
7647
7648         if (unlikely(err < 0)) {
7649                 netdev_err(dev,
7650                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7651                         err, &features, &dev->features);
7652                 /* return non-0 since some features might have changed and
7653                  * it's better to fire a spurious notification than miss it
7654                  */
7655                 return -1;
7656         }
7657
7658 sync_lower:
7659         /* some features must be disabled on lower devices when disabled
7660          * on an upper device (think: bonding master or bridge)
7661          */
7662         netdev_for_each_lower_dev(dev, lower, iter)
7663                 netdev_sync_lower_features(dev, lower, features);
7664
7665         if (!err) {
7666                 netdev_features_t diff = features ^ dev->features;
7667
7668                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7669                         /* udp_tunnel_{get,drop}_rx_info both need
7670                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7671                          * device, or they won't do anything.
7672                          * Thus we need to update dev->features
7673                          * *before* calling udp_tunnel_get_rx_info,
7674                          * but *after* calling udp_tunnel_drop_rx_info.
7675                          */
7676                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7677                                 dev->features = features;
7678                                 udp_tunnel_get_rx_info(dev);
7679                         } else {
7680                                 udp_tunnel_drop_rx_info(dev);
7681                         }
7682                 }
7683
7684                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
7685                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
7686                                 dev->features = features;
7687                                 err |= vlan_get_rx_ctag_filter_info(dev);
7688                         } else {
7689                                 vlan_drop_rx_ctag_filter_info(dev);
7690                         }
7691                 }
7692
7693                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
7694                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
7695                                 dev->features = features;
7696                                 err |= vlan_get_rx_stag_filter_info(dev);
7697                         } else {
7698                                 vlan_drop_rx_stag_filter_info(dev);
7699                         }
7700                 }
7701
7702                 dev->features = features;
7703         }
7704
7705         return err < 0 ? 0 : 1;
7706 }
7707
7708 /**
7709  *      netdev_update_features - recalculate device features
7710  *      @dev: the device to check
7711  *
7712  *      Recalculate dev->features set and send notifications if it
7713  *      has changed. Should be called after driver or hardware dependent
7714  *      conditions might have changed that influence the features.
7715  */
7716 void netdev_update_features(struct net_device *dev)
7717 {
7718         if (__netdev_update_features(dev))
7719                 netdev_features_change(dev);
7720 }
7721 EXPORT_SYMBOL(netdev_update_features);
7722
7723 /**
7724  *      netdev_change_features - recalculate device features
7725  *      @dev: the device to check
7726  *
7727  *      Recalculate dev->features set and send notifications even
7728  *      if they have not changed. Should be called instead of
7729  *      netdev_update_features() if also dev->vlan_features might
7730  *      have changed to allow the changes to be propagated to stacked
7731  *      VLAN devices.
7732  */
7733 void netdev_change_features(struct net_device *dev)
7734 {
7735         __netdev_update_features(dev);
7736         netdev_features_change(dev);
7737 }
7738 EXPORT_SYMBOL(netdev_change_features);
7739
7740 /**
7741  *      netif_stacked_transfer_operstate -      transfer operstate
7742  *      @rootdev: the root or lower level device to transfer state from
7743  *      @dev: the device to transfer operstate to
7744  *
7745  *      Transfer operational state from root to device. This is normally
7746  *      called when a stacking relationship exists between the root
7747  *      device and the device(a leaf device).
7748  */
7749 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7750                                         struct net_device *dev)
7751 {
7752         if (rootdev->operstate == IF_OPER_DORMANT)
7753                 netif_dormant_on(dev);
7754         else
7755                 netif_dormant_off(dev);
7756
7757         if (netif_carrier_ok(rootdev))
7758                 netif_carrier_on(dev);
7759         else
7760                 netif_carrier_off(dev);
7761 }
7762 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7763
7764 static int netif_alloc_rx_queues(struct net_device *dev)
7765 {
7766         unsigned int i, count = dev->num_rx_queues;
7767         struct netdev_rx_queue *rx;
7768         size_t sz = count * sizeof(*rx);
7769         int err = 0;
7770
7771         BUG_ON(count < 1);
7772
7773         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7774         if (!rx)
7775                 return -ENOMEM;
7776
7777         dev->_rx = rx;
7778
7779         for (i = 0; i < count; i++) {
7780                 rx[i].dev = dev;
7781
7782                 /* XDP RX-queue setup */
7783                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7784                 if (err < 0)
7785                         goto err_rxq_info;
7786         }
7787         return 0;
7788
7789 err_rxq_info:
7790         /* Rollback successful reg's and free other resources */
7791         while (i--)
7792                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7793         kvfree(dev->_rx);
7794         dev->_rx = NULL;
7795         return err;
7796 }
7797
7798 static void netif_free_rx_queues(struct net_device *dev)
7799 {
7800         unsigned int i, count = dev->num_rx_queues;
7801
7802         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7803         if (!dev->_rx)
7804                 return;
7805
7806         for (i = 0; i < count; i++)
7807                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7808
7809         kvfree(dev->_rx);
7810 }
7811
7812 static void netdev_init_one_queue(struct net_device *dev,
7813                                   struct netdev_queue *queue, void *_unused)
7814 {
7815         /* Initialize queue lock */
7816         spin_lock_init(&queue->_xmit_lock);
7817         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7818         queue->xmit_lock_owner = -1;
7819         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7820         queue->dev = dev;
7821 #ifdef CONFIG_BQL
7822         dql_init(&queue->dql, HZ);
7823 #endif
7824 }
7825
7826 static void netif_free_tx_queues(struct net_device *dev)
7827 {
7828         kvfree(dev->_tx);
7829 }
7830
7831 static int netif_alloc_netdev_queues(struct net_device *dev)
7832 {
7833         unsigned int count = dev->num_tx_queues;
7834         struct netdev_queue *tx;
7835         size_t sz = count * sizeof(*tx);
7836
7837         if (count < 1 || count > 0xffff)
7838                 return -EINVAL;
7839
7840         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7841         if (!tx)
7842                 return -ENOMEM;
7843
7844         dev->_tx = tx;
7845
7846         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7847         spin_lock_init(&dev->tx_global_lock);
7848
7849         return 0;
7850 }
7851
7852 void netif_tx_stop_all_queues(struct net_device *dev)
7853 {
7854         unsigned int i;
7855
7856         for (i = 0; i < dev->num_tx_queues; i++) {
7857                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7858
7859                 netif_tx_stop_queue(txq);
7860         }
7861 }
7862 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7863
7864 /**
7865  *      register_netdevice      - register a network device
7866  *      @dev: device to register
7867  *
7868  *      Take a completed network device structure and add it to the kernel
7869  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7870  *      chain. 0 is returned on success. A negative errno code is returned
7871  *      on a failure to set up the device, or if the name is a duplicate.
7872  *
7873  *      Callers must hold the rtnl semaphore. You may want
7874  *      register_netdev() instead of this.
7875  *
7876  *      BUGS:
7877  *      The locking appears insufficient to guarantee two parallel registers
7878  *      will not get the same name.
7879  */
7880
7881 int register_netdevice(struct net_device *dev)
7882 {
7883         int ret;
7884         struct net *net = dev_net(dev);
7885
7886         netdev_features_size_check();
7887         BUG_ON(dev_boot_phase);
7888         ASSERT_RTNL();
7889
7890         might_sleep();
7891
7892         /* When net_device's are persistent, this will be fatal. */
7893         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7894         BUG_ON(!net);
7895
7896         spin_lock_init(&dev->addr_list_lock);
7897         netdev_set_addr_lockdep_class(dev);
7898
7899         ret = dev_get_valid_name(net, dev, dev->name);
7900         if (ret < 0)
7901                 goto out;
7902
7903         /* Init, if this function is available */
7904         if (dev->netdev_ops->ndo_init) {
7905                 ret = dev->netdev_ops->ndo_init(dev);
7906                 if (ret) {
7907                         if (ret > 0)
7908                                 ret = -EIO;
7909                         goto out;
7910                 }
7911         }
7912
7913         if (((dev->hw_features | dev->features) &
7914              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7915             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7916              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7917                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7918                 ret = -EINVAL;
7919                 goto err_uninit;
7920         }
7921
7922         ret = -EBUSY;
7923         if (!dev->ifindex)
7924                 dev->ifindex = dev_new_index(net);
7925         else if (__dev_get_by_index(net, dev->ifindex))
7926                 goto err_uninit;
7927
7928         /* Transfer changeable features to wanted_features and enable
7929          * software offloads (GSO and GRO).
7930          */
7931         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7932         dev->features |= NETIF_F_SOFT_FEATURES;
7933
7934         if (dev->netdev_ops->ndo_udp_tunnel_add) {
7935                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7936                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7937         }
7938
7939         dev->wanted_features = dev->features & dev->hw_features;
7940
7941         if (!(dev->flags & IFF_LOOPBACK))
7942                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7943
7944         /* If IPv4 TCP segmentation offload is supported we should also
7945          * allow the device to enable segmenting the frame with the option
7946          * of ignoring a static IP ID value.  This doesn't enable the
7947          * feature itself but allows the user to enable it later.
7948          */
7949         if (dev->hw_features & NETIF_F_TSO)
7950                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7951         if (dev->vlan_features & NETIF_F_TSO)
7952                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7953         if (dev->mpls_features & NETIF_F_TSO)
7954                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7955         if (dev->hw_enc_features & NETIF_F_TSO)
7956                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7957
7958         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7959          */
7960         dev->vlan_features |= NETIF_F_HIGHDMA;
7961
7962         /* Make NETIF_F_SG inheritable to tunnel devices.
7963          */
7964         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7965
7966         /* Make NETIF_F_SG inheritable to MPLS.
7967          */
7968         dev->mpls_features |= NETIF_F_SG;
7969
7970         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7971         ret = notifier_to_errno(ret);
7972         if (ret)
7973                 goto err_uninit;
7974
7975         ret = netdev_register_kobject(dev);
7976         if (ret)
7977                 goto err_uninit;
7978         dev->reg_state = NETREG_REGISTERED;
7979
7980         __netdev_update_features(dev);
7981
7982         /*
7983          *      Default initial state at registry is that the
7984          *      device is present.
7985          */
7986
7987         set_bit(__LINK_STATE_PRESENT, &dev->state);
7988
7989         linkwatch_init_dev(dev);
7990
7991         dev_init_scheduler(dev);
7992         dev_hold(dev);
7993         list_netdevice(dev);
7994         add_device_randomness(dev->dev_addr, dev->addr_len);
7995
7996         /* If the device has permanent device address, driver should
7997          * set dev_addr and also addr_assign_type should be set to
7998          * NET_ADDR_PERM (default value).
7999          */
8000         if (dev->addr_assign_type == NET_ADDR_PERM)
8001                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8002
8003         /* Notify protocols, that a new device appeared. */
8004         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8005         ret = notifier_to_errno(ret);
8006         if (ret) {
8007                 rollback_registered(dev);
8008                 dev->reg_state = NETREG_UNREGISTERED;
8009         }
8010         /*
8011          *      Prevent userspace races by waiting until the network
8012          *      device is fully setup before sending notifications.
8013          */
8014         if (!dev->rtnl_link_ops ||
8015             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8016                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8017
8018 out:
8019         return ret;
8020
8021 err_uninit:
8022         if (dev->netdev_ops->ndo_uninit)
8023                 dev->netdev_ops->ndo_uninit(dev);
8024         if (dev->priv_destructor)
8025                 dev->priv_destructor(dev);
8026         goto out;
8027 }
8028 EXPORT_SYMBOL(register_netdevice);
8029
8030 /**
8031  *      init_dummy_netdev       - init a dummy network device for NAPI
8032  *      @dev: device to init
8033  *
8034  *      This takes a network device structure and initialize the minimum
8035  *      amount of fields so it can be used to schedule NAPI polls without
8036  *      registering a full blown interface. This is to be used by drivers
8037  *      that need to tie several hardware interfaces to a single NAPI
8038  *      poll scheduler due to HW limitations.
8039  */
8040 int init_dummy_netdev(struct net_device *dev)
8041 {
8042         /* Clear everything. Note we don't initialize spinlocks
8043          * are they aren't supposed to be taken by any of the
8044          * NAPI code and this dummy netdev is supposed to be
8045          * only ever used for NAPI polls
8046          */
8047         memset(dev, 0, sizeof(struct net_device));
8048
8049         /* make sure we BUG if trying to hit standard
8050          * register/unregister code path
8051          */
8052         dev->reg_state = NETREG_DUMMY;
8053
8054         /* NAPI wants this */
8055         INIT_LIST_HEAD(&dev->napi_list);
8056
8057         /* a dummy interface is started by default */
8058         set_bit(__LINK_STATE_PRESENT, &dev->state);
8059         set_bit(__LINK_STATE_START, &dev->state);
8060
8061         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8062          * because users of this 'device' dont need to change
8063          * its refcount.
8064          */
8065
8066         return 0;
8067 }
8068 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8069
8070
8071 /**
8072  *      register_netdev - register a network device
8073  *      @dev: device to register
8074  *
8075  *      Take a completed network device structure and add it to the kernel
8076  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8077  *      chain. 0 is returned on success. A negative errno code is returned
8078  *      on a failure to set up the device, or if the name is a duplicate.
8079  *
8080  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8081  *      and expands the device name if you passed a format string to
8082  *      alloc_netdev.
8083  */
8084 int register_netdev(struct net_device *dev)
8085 {
8086         int err;
8087
8088         if (rtnl_lock_killable())
8089                 return -EINTR;
8090         err = register_netdevice(dev);
8091         rtnl_unlock();
8092         return err;
8093 }
8094 EXPORT_SYMBOL(register_netdev);
8095
8096 int netdev_refcnt_read(const struct net_device *dev)
8097 {
8098         int i, refcnt = 0;
8099
8100         for_each_possible_cpu(i)
8101                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8102         return refcnt;
8103 }
8104 EXPORT_SYMBOL(netdev_refcnt_read);
8105
8106 /**
8107  * netdev_wait_allrefs - wait until all references are gone.
8108  * @dev: target net_device
8109  *
8110  * This is called when unregistering network devices.
8111  *
8112  * Any protocol or device that holds a reference should register
8113  * for netdevice notification, and cleanup and put back the
8114  * reference if they receive an UNREGISTER event.
8115  * We can get stuck here if buggy protocols don't correctly
8116  * call dev_put.
8117  */
8118 static void netdev_wait_allrefs(struct net_device *dev)
8119 {
8120         unsigned long rebroadcast_time, warning_time;
8121         int refcnt;
8122
8123         linkwatch_forget_dev(dev);
8124
8125         rebroadcast_time = warning_time = jiffies;
8126         refcnt = netdev_refcnt_read(dev);
8127
8128         while (refcnt != 0) {
8129                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8130                         rtnl_lock();
8131
8132                         /* Rebroadcast unregister notification */
8133                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8134
8135                         __rtnl_unlock();
8136                         rcu_barrier();
8137                         rtnl_lock();
8138
8139                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8140                                      &dev->state)) {
8141                                 /* We must not have linkwatch events
8142                                  * pending on unregister. If this
8143                                  * happens, we simply run the queue
8144                                  * unscheduled, resulting in a noop
8145                                  * for this device.
8146                                  */
8147                                 linkwatch_run_queue();
8148                         }
8149
8150                         __rtnl_unlock();
8151
8152                         rebroadcast_time = jiffies;
8153                 }
8154
8155                 msleep(250);
8156
8157                 refcnt = netdev_refcnt_read(dev);
8158
8159                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8160                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8161                                  dev->name, refcnt);
8162                         warning_time = jiffies;
8163                 }
8164         }
8165 }
8166
8167 /* The sequence is:
8168  *
8169  *      rtnl_lock();
8170  *      ...
8171  *      register_netdevice(x1);
8172  *      register_netdevice(x2);
8173  *      ...
8174  *      unregister_netdevice(y1);
8175  *      unregister_netdevice(y2);
8176  *      ...
8177  *      rtnl_unlock();
8178  *      free_netdev(y1);
8179  *      free_netdev(y2);
8180  *
8181  * We are invoked by rtnl_unlock().
8182  * This allows us to deal with problems:
8183  * 1) We can delete sysfs objects which invoke hotplug
8184  *    without deadlocking with linkwatch via keventd.
8185  * 2) Since we run with the RTNL semaphore not held, we can sleep
8186  *    safely in order to wait for the netdev refcnt to drop to zero.
8187  *
8188  * We must not return until all unregister events added during
8189  * the interval the lock was held have been completed.
8190  */
8191 void netdev_run_todo(void)
8192 {
8193         struct list_head list;
8194
8195         /* Snapshot list, allow later requests */
8196         list_replace_init(&net_todo_list, &list);
8197
8198         __rtnl_unlock();
8199
8200
8201         /* Wait for rcu callbacks to finish before next phase */
8202         if (!list_empty(&list))
8203                 rcu_barrier();
8204
8205         while (!list_empty(&list)) {
8206                 struct net_device *dev
8207                         = list_first_entry(&list, struct net_device, todo_list);
8208                 list_del(&dev->todo_list);
8209
8210                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8211                         pr_err("network todo '%s' but state %d\n",
8212                                dev->name, dev->reg_state);
8213                         dump_stack();
8214                         continue;
8215                 }
8216
8217                 dev->reg_state = NETREG_UNREGISTERED;
8218
8219                 netdev_wait_allrefs(dev);
8220
8221                 /* paranoia */
8222                 BUG_ON(netdev_refcnt_read(dev));
8223                 BUG_ON(!list_empty(&dev->ptype_all));
8224                 BUG_ON(!list_empty(&dev->ptype_specific));
8225                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8226                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8227 #if IS_ENABLED(CONFIG_DECNET)
8228                 WARN_ON(dev->dn_ptr);
8229 #endif
8230                 if (dev->priv_destructor)
8231                         dev->priv_destructor(dev);
8232                 if (dev->needs_free_netdev)
8233                         free_netdev(dev);
8234
8235                 /* Report a network device has been unregistered */
8236                 rtnl_lock();
8237                 dev_net(dev)->dev_unreg_count--;
8238                 __rtnl_unlock();
8239                 wake_up(&netdev_unregistering_wq);
8240
8241                 /* Free network device */
8242                 kobject_put(&dev->dev.kobj);
8243         }
8244 }
8245
8246 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8247  * all the same fields in the same order as net_device_stats, with only
8248  * the type differing, but rtnl_link_stats64 may have additional fields
8249  * at the end for newer counters.
8250  */
8251 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8252                              const struct net_device_stats *netdev_stats)
8253 {
8254 #if BITS_PER_LONG == 64
8255         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8256         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8257         /* zero out counters that only exist in rtnl_link_stats64 */
8258         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8259                sizeof(*stats64) - sizeof(*netdev_stats));
8260 #else
8261         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8262         const unsigned long *src = (const unsigned long *)netdev_stats;
8263         u64 *dst = (u64 *)stats64;
8264
8265         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8266         for (i = 0; i < n; i++)
8267                 dst[i] = src[i];
8268         /* zero out counters that only exist in rtnl_link_stats64 */
8269         memset((char *)stats64 + n * sizeof(u64), 0,
8270                sizeof(*stats64) - n * sizeof(u64));
8271 #endif
8272 }
8273 EXPORT_SYMBOL(netdev_stats_to_stats64);
8274
8275 /**
8276  *      dev_get_stats   - get network device statistics
8277  *      @dev: device to get statistics from
8278  *      @storage: place to store stats
8279  *
8280  *      Get network statistics from device. Return @storage.
8281  *      The device driver may provide its own method by setting
8282  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8283  *      otherwise the internal statistics structure is used.
8284  */
8285 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8286                                         struct rtnl_link_stats64 *storage)
8287 {
8288         const struct net_device_ops *ops = dev->netdev_ops;
8289
8290         if (ops->ndo_get_stats64) {
8291                 memset(storage, 0, sizeof(*storage));
8292                 ops->ndo_get_stats64(dev, storage);
8293         } else if (ops->ndo_get_stats) {
8294                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8295         } else {
8296                 netdev_stats_to_stats64(storage, &dev->stats);
8297         }
8298         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8299         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8300         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8301         return storage;
8302 }
8303 EXPORT_SYMBOL(dev_get_stats);
8304
8305 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8306 {
8307         struct netdev_queue *queue = dev_ingress_queue(dev);
8308
8309 #ifdef CONFIG_NET_CLS_ACT
8310         if (queue)
8311                 return queue;
8312         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8313         if (!queue)
8314                 return NULL;
8315         netdev_init_one_queue(dev, queue, NULL);
8316         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8317         queue->qdisc_sleeping = &noop_qdisc;
8318         rcu_assign_pointer(dev->ingress_queue, queue);
8319 #endif
8320         return queue;
8321 }
8322
8323 static const struct ethtool_ops default_ethtool_ops;
8324
8325 void netdev_set_default_ethtool_ops(struct net_device *dev,
8326                                     const struct ethtool_ops *ops)
8327 {
8328         if (dev->ethtool_ops == &default_ethtool_ops)
8329                 dev->ethtool_ops = ops;
8330 }
8331 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8332
8333 void netdev_freemem(struct net_device *dev)
8334 {
8335         char *addr = (char *)dev - dev->padded;
8336
8337         kvfree(addr);
8338 }
8339
8340 /**
8341  * alloc_netdev_mqs - allocate network device
8342  * @sizeof_priv: size of private data to allocate space for
8343  * @name: device name format string
8344  * @name_assign_type: origin of device name
8345  * @setup: callback to initialize device
8346  * @txqs: the number of TX subqueues to allocate
8347  * @rxqs: the number of RX subqueues to allocate
8348  *
8349  * Allocates a struct net_device with private data area for driver use
8350  * and performs basic initialization.  Also allocates subqueue structs
8351  * for each queue on the device.
8352  */
8353 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8354                 unsigned char name_assign_type,
8355                 void (*setup)(struct net_device *),
8356                 unsigned int txqs, unsigned int rxqs)
8357 {
8358         struct net_device *dev;
8359         unsigned int alloc_size;
8360         struct net_device *p;
8361
8362         BUG_ON(strlen(name) >= sizeof(dev->name));
8363
8364         if (txqs < 1) {
8365                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8366                 return NULL;
8367         }
8368
8369         if (rxqs < 1) {
8370                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8371                 return NULL;
8372         }
8373
8374         alloc_size = sizeof(struct net_device);
8375         if (sizeof_priv) {
8376                 /* ensure 32-byte alignment of private area */
8377                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8378                 alloc_size += sizeof_priv;
8379         }
8380         /* ensure 32-byte alignment of whole construct */
8381         alloc_size += NETDEV_ALIGN - 1;
8382
8383         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8384         if (!p)
8385                 return NULL;
8386
8387         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8388         dev->padded = (char *)dev - (char *)p;
8389
8390         dev->pcpu_refcnt = alloc_percpu(int);
8391         if (!dev->pcpu_refcnt)
8392                 goto free_dev;
8393
8394         if (dev_addr_init(dev))
8395                 goto free_pcpu;
8396
8397         dev_mc_init(dev);
8398         dev_uc_init(dev);
8399
8400         dev_net_set(dev, &init_net);
8401
8402         dev->gso_max_size = GSO_MAX_SIZE;
8403         dev->gso_max_segs = GSO_MAX_SEGS;
8404
8405         INIT_LIST_HEAD(&dev->napi_list);
8406         INIT_LIST_HEAD(&dev->unreg_list);
8407         INIT_LIST_HEAD(&dev->close_list);
8408         INIT_LIST_HEAD(&dev->link_watch_list);
8409         INIT_LIST_HEAD(&dev->adj_list.upper);
8410         INIT_LIST_HEAD(&dev->adj_list.lower);
8411         INIT_LIST_HEAD(&dev->ptype_all);
8412         INIT_LIST_HEAD(&dev->ptype_specific);
8413 #ifdef CONFIG_NET_SCHED
8414         hash_init(dev->qdisc_hash);
8415 #endif
8416         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8417         setup(dev);
8418
8419         if (!dev->tx_queue_len) {
8420                 dev->priv_flags |= IFF_NO_QUEUE;
8421                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8422         }
8423
8424         dev->num_tx_queues = txqs;
8425         dev->real_num_tx_queues = txqs;
8426         if (netif_alloc_netdev_queues(dev))
8427                 goto free_all;
8428
8429         dev->num_rx_queues = rxqs;
8430         dev->real_num_rx_queues = rxqs;
8431         if (netif_alloc_rx_queues(dev))
8432                 goto free_all;
8433
8434         strcpy(dev->name, name);
8435         dev->name_assign_type = name_assign_type;
8436         dev->group = INIT_NETDEV_GROUP;
8437         if (!dev->ethtool_ops)
8438                 dev->ethtool_ops = &default_ethtool_ops;
8439
8440         nf_hook_ingress_init(dev);
8441
8442         return dev;
8443
8444 free_all:
8445         free_netdev(dev);
8446         return NULL;
8447
8448 free_pcpu:
8449         free_percpu(dev->pcpu_refcnt);
8450 free_dev:
8451         netdev_freemem(dev);
8452         return NULL;
8453 }
8454 EXPORT_SYMBOL(alloc_netdev_mqs);
8455
8456 /**
8457  * free_netdev - free network device
8458  * @dev: device
8459  *
8460  * This function does the last stage of destroying an allocated device
8461  * interface. The reference to the device object is released. If this
8462  * is the last reference then it will be freed.Must be called in process
8463  * context.
8464  */
8465 void free_netdev(struct net_device *dev)
8466 {
8467         struct napi_struct *p, *n;
8468
8469         might_sleep();
8470         netif_free_tx_queues(dev);
8471         netif_free_rx_queues(dev);
8472
8473         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8474
8475         /* Flush device addresses */
8476         dev_addr_flush(dev);
8477
8478         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8479                 netif_napi_del(p);
8480
8481         free_percpu(dev->pcpu_refcnt);
8482         dev->pcpu_refcnt = NULL;
8483
8484         /*  Compatibility with error handling in drivers */
8485         if (dev->reg_state == NETREG_UNINITIALIZED) {
8486                 netdev_freemem(dev);
8487                 return;
8488         }
8489
8490         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8491         dev->reg_state = NETREG_RELEASED;
8492
8493         /* will free via device release */
8494         put_device(&dev->dev);
8495 }
8496 EXPORT_SYMBOL(free_netdev);
8497
8498 /**
8499  *      synchronize_net -  Synchronize with packet receive processing
8500  *
8501  *      Wait for packets currently being received to be done.
8502  *      Does not block later packets from starting.
8503  */
8504 void synchronize_net(void)
8505 {
8506         might_sleep();
8507         if (rtnl_is_locked())
8508                 synchronize_rcu_expedited();
8509         else
8510                 synchronize_rcu();
8511 }
8512 EXPORT_SYMBOL(synchronize_net);
8513
8514 /**
8515  *      unregister_netdevice_queue - remove device from the kernel
8516  *      @dev: device
8517  *      @head: list
8518  *
8519  *      This function shuts down a device interface and removes it
8520  *      from the kernel tables.
8521  *      If head not NULL, device is queued to be unregistered later.
8522  *
8523  *      Callers must hold the rtnl semaphore.  You may want
8524  *      unregister_netdev() instead of this.
8525  */
8526
8527 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8528 {
8529         ASSERT_RTNL();
8530
8531         if (head) {
8532                 list_move_tail(&dev->unreg_list, head);
8533         } else {
8534                 rollback_registered(dev);
8535                 /* Finish processing unregister after unlock */
8536                 net_set_todo(dev);
8537         }
8538 }
8539 EXPORT_SYMBOL(unregister_netdevice_queue);
8540
8541 /**
8542  *      unregister_netdevice_many - unregister many devices
8543  *      @head: list of devices
8544  *
8545  *  Note: As most callers use a stack allocated list_head,
8546  *  we force a list_del() to make sure stack wont be corrupted later.
8547  */
8548 void unregister_netdevice_many(struct list_head *head)
8549 {
8550         struct net_device *dev;
8551
8552         if (!list_empty(head)) {
8553                 rollback_registered_many(head);
8554                 list_for_each_entry(dev, head, unreg_list)
8555                         net_set_todo(dev);
8556                 list_del(head);
8557         }
8558 }
8559 EXPORT_SYMBOL(unregister_netdevice_many);
8560
8561 /**
8562  *      unregister_netdev - remove device from the kernel
8563  *      @dev: device
8564  *
8565  *      This function shuts down a device interface and removes it
8566  *      from the kernel tables.
8567  *
8568  *      This is just a wrapper for unregister_netdevice that takes
8569  *      the rtnl semaphore.  In general you want to use this and not
8570  *      unregister_netdevice.
8571  */
8572 void unregister_netdev(struct net_device *dev)
8573 {
8574         rtnl_lock();
8575         unregister_netdevice(dev);
8576         rtnl_unlock();
8577 }
8578 EXPORT_SYMBOL(unregister_netdev);
8579
8580 /**
8581  *      dev_change_net_namespace - move device to different nethost namespace
8582  *      @dev: device
8583  *      @net: network namespace
8584  *      @pat: If not NULL name pattern to try if the current device name
8585  *            is already taken in the destination network namespace.
8586  *
8587  *      This function shuts down a device interface and moves it
8588  *      to a new network namespace. On success 0 is returned, on
8589  *      a failure a netagive errno code is returned.
8590  *
8591  *      Callers must hold the rtnl semaphore.
8592  */
8593
8594 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8595 {
8596         int err, new_nsid, new_ifindex;
8597
8598         ASSERT_RTNL();
8599
8600         /* Don't allow namespace local devices to be moved. */
8601         err = -EINVAL;
8602         if (dev->features & NETIF_F_NETNS_LOCAL)
8603                 goto out;
8604
8605         /* Ensure the device has been registrered */
8606         if (dev->reg_state != NETREG_REGISTERED)
8607                 goto out;
8608
8609         /* Get out if there is nothing todo */
8610         err = 0;
8611         if (net_eq(dev_net(dev), net))
8612                 goto out;
8613
8614         /* Pick the destination device name, and ensure
8615          * we can use it in the destination network namespace.
8616          */
8617         err = -EEXIST;
8618         if (__dev_get_by_name(net, dev->name)) {
8619                 /* We get here if we can't use the current device name */
8620                 if (!pat)
8621                         goto out;
8622                 if (dev_get_valid_name(net, dev, pat) < 0)
8623                         goto out;
8624         }
8625
8626         /*
8627          * And now a mini version of register_netdevice unregister_netdevice.
8628          */
8629
8630         /* If device is running close it first. */
8631         dev_close(dev);
8632
8633         /* And unlink it from device chain */
8634         err = -ENODEV;
8635         unlist_netdevice(dev);
8636
8637         synchronize_net();
8638
8639         /* Shutdown queueing discipline. */
8640         dev_shutdown(dev);
8641
8642         /* Notify protocols, that we are about to destroy
8643          * this device. They should clean all the things.
8644          *
8645          * Note that dev->reg_state stays at NETREG_REGISTERED.
8646          * This is wanted because this way 8021q and macvlan know
8647          * the device is just moving and can keep their slaves up.
8648          */
8649         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8650         rcu_barrier();
8651
8652         new_nsid = peernet2id_alloc(dev_net(dev), net);
8653         /* If there is an ifindex conflict assign a new one */
8654         if (__dev_get_by_index(net, dev->ifindex))
8655                 new_ifindex = dev_new_index(net);
8656         else
8657                 new_ifindex = dev->ifindex;
8658
8659         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8660                             new_ifindex);
8661
8662         /*
8663          *      Flush the unicast and multicast chains
8664          */
8665         dev_uc_flush(dev);
8666         dev_mc_flush(dev);
8667
8668         /* Send a netdev-removed uevent to the old namespace */
8669         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8670         netdev_adjacent_del_links(dev);
8671
8672         /* Actually switch the network namespace */
8673         dev_net_set(dev, net);
8674         dev->ifindex = new_ifindex;
8675
8676         /* Send a netdev-add uevent to the new namespace */
8677         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8678         netdev_adjacent_add_links(dev);
8679
8680         /* Fixup kobjects */
8681         err = device_rename(&dev->dev, dev->name);
8682         WARN_ON(err);
8683
8684         /* Add the device back in the hashes */
8685         list_netdevice(dev);
8686
8687         /* Notify protocols, that a new device appeared. */
8688         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8689
8690         /*
8691          *      Prevent userspace races by waiting until the network
8692          *      device is fully setup before sending notifications.
8693          */
8694         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8695
8696         synchronize_net();
8697         err = 0;
8698 out:
8699         return err;
8700 }
8701 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8702
8703 static int dev_cpu_dead(unsigned int oldcpu)
8704 {
8705         struct sk_buff **list_skb;
8706         struct sk_buff *skb;
8707         unsigned int cpu;
8708         struct softnet_data *sd, *oldsd, *remsd = NULL;
8709
8710         local_irq_disable();
8711         cpu = smp_processor_id();
8712         sd = &per_cpu(softnet_data, cpu);
8713         oldsd = &per_cpu(softnet_data, oldcpu);
8714
8715         /* Find end of our completion_queue. */
8716         list_skb = &sd->completion_queue;
8717         while (*list_skb)
8718                 list_skb = &(*list_skb)->next;
8719         /* Append completion queue from offline CPU. */
8720         *list_skb = oldsd->completion_queue;
8721         oldsd->completion_queue = NULL;
8722
8723         /* Append output queue from offline CPU. */
8724         if (oldsd->output_queue) {
8725                 *sd->output_queue_tailp = oldsd->output_queue;
8726                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8727                 oldsd->output_queue = NULL;
8728                 oldsd->output_queue_tailp = &oldsd->output_queue;
8729         }
8730         /* Append NAPI poll list from offline CPU, with one exception :
8731          * process_backlog() must be called by cpu owning percpu backlog.
8732          * We properly handle process_queue & input_pkt_queue later.
8733          */
8734         while (!list_empty(&oldsd->poll_list)) {
8735                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8736                                                             struct napi_struct,
8737                                                             poll_list);
8738
8739                 list_del_init(&napi->poll_list);
8740                 if (napi->poll == process_backlog)
8741                         napi->state = 0;
8742                 else
8743                         ____napi_schedule(sd, napi);
8744         }
8745
8746         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8747         local_irq_enable();
8748
8749 #ifdef CONFIG_RPS
8750         remsd = oldsd->rps_ipi_list;
8751         oldsd->rps_ipi_list = NULL;
8752 #endif
8753         /* send out pending IPI's on offline CPU */
8754         net_rps_send_ipi(remsd);
8755
8756         /* Process offline CPU's input_pkt_queue */
8757         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8758                 netif_rx_ni(skb);
8759                 input_queue_head_incr(oldsd);
8760         }
8761         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8762                 netif_rx_ni(skb);
8763                 input_queue_head_incr(oldsd);
8764         }
8765
8766         return 0;
8767 }
8768
8769 /**
8770  *      netdev_increment_features - increment feature set by one
8771  *      @all: current feature set
8772  *      @one: new feature set
8773  *      @mask: mask feature set
8774  *
8775  *      Computes a new feature set after adding a device with feature set
8776  *      @one to the master device with current feature set @all.  Will not
8777  *      enable anything that is off in @mask. Returns the new feature set.
8778  */
8779 netdev_features_t netdev_increment_features(netdev_features_t all,
8780         netdev_features_t one, netdev_features_t mask)
8781 {
8782         if (mask & NETIF_F_HW_CSUM)
8783                 mask |= NETIF_F_CSUM_MASK;
8784         mask |= NETIF_F_VLAN_CHALLENGED;
8785
8786         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8787         all &= one | ~NETIF_F_ALL_FOR_ALL;
8788
8789         /* If one device supports hw checksumming, set for all. */
8790         if (all & NETIF_F_HW_CSUM)
8791                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8792
8793         return all;
8794 }
8795 EXPORT_SYMBOL(netdev_increment_features);
8796
8797 static struct hlist_head * __net_init netdev_create_hash(void)
8798 {
8799         int i;
8800         struct hlist_head *hash;
8801
8802         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8803         if (hash != NULL)
8804                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8805                         INIT_HLIST_HEAD(&hash[i]);
8806
8807         return hash;
8808 }
8809
8810 /* Initialize per network namespace state */
8811 static int __net_init netdev_init(struct net *net)
8812 {
8813         if (net != &init_net)
8814                 INIT_LIST_HEAD(&net->dev_base_head);
8815
8816         net->dev_name_head = netdev_create_hash();
8817         if (net->dev_name_head == NULL)
8818                 goto err_name;
8819
8820         net->dev_index_head = netdev_create_hash();
8821         if (net->dev_index_head == NULL)
8822                 goto err_idx;
8823
8824         return 0;
8825
8826 err_idx:
8827         kfree(net->dev_name_head);
8828 err_name:
8829         return -ENOMEM;
8830 }
8831
8832 /**
8833  *      netdev_drivername - network driver for the device
8834  *      @dev: network device
8835  *
8836  *      Determine network driver for device.
8837  */
8838 const char *netdev_drivername(const struct net_device *dev)
8839 {
8840         const struct device_driver *driver;
8841         const struct device *parent;
8842         const char *empty = "";
8843
8844         parent = dev->dev.parent;
8845         if (!parent)
8846                 return empty;
8847
8848         driver = parent->driver;
8849         if (driver && driver->name)
8850                 return driver->name;
8851         return empty;
8852 }
8853
8854 static void __netdev_printk(const char *level, const struct net_device *dev,
8855                             struct va_format *vaf)
8856 {
8857         if (dev && dev->dev.parent) {
8858                 dev_printk_emit(level[1] - '0',
8859                                 dev->dev.parent,
8860                                 "%s %s %s%s: %pV",
8861                                 dev_driver_string(dev->dev.parent),
8862                                 dev_name(dev->dev.parent),
8863                                 netdev_name(dev), netdev_reg_state(dev),
8864                                 vaf);
8865         } else if (dev) {
8866                 printk("%s%s%s: %pV",
8867                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8868         } else {
8869                 printk("%s(NULL net_device): %pV", level, vaf);
8870         }
8871 }
8872
8873 void netdev_printk(const char *level, const struct net_device *dev,
8874                    const char *format, ...)
8875 {
8876         struct va_format vaf;
8877         va_list args;
8878
8879         va_start(args, format);
8880
8881         vaf.fmt = format;
8882         vaf.va = &args;
8883
8884         __netdev_printk(level, dev, &vaf);
8885
8886         va_end(args);
8887 }
8888 EXPORT_SYMBOL(netdev_printk);
8889
8890 #define define_netdev_printk_level(func, level)                 \
8891 void func(const struct net_device *dev, const char *fmt, ...)   \
8892 {                                                               \
8893         struct va_format vaf;                                   \
8894         va_list args;                                           \
8895                                                                 \
8896         va_start(args, fmt);                                    \
8897                                                                 \
8898         vaf.fmt = fmt;                                          \
8899         vaf.va = &args;                                         \
8900                                                                 \
8901         __netdev_printk(level, dev, &vaf);                      \
8902                                                                 \
8903         va_end(args);                                           \
8904 }                                                               \
8905 EXPORT_SYMBOL(func);
8906
8907 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8908 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8909 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8910 define_netdev_printk_level(netdev_err, KERN_ERR);
8911 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8912 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8913 define_netdev_printk_level(netdev_info, KERN_INFO);
8914
8915 static void __net_exit netdev_exit(struct net *net)
8916 {
8917         kfree(net->dev_name_head);
8918         kfree(net->dev_index_head);
8919         if (net != &init_net)
8920                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8921 }
8922
8923 static struct pernet_operations __net_initdata netdev_net_ops = {
8924         .init = netdev_init,
8925         .exit = netdev_exit,
8926 };
8927
8928 static void __net_exit default_device_exit(struct net *net)
8929 {
8930         struct net_device *dev, *aux;
8931         /*
8932          * Push all migratable network devices back to the
8933          * initial network namespace
8934          */
8935         rtnl_lock();
8936         for_each_netdev_safe(net, dev, aux) {
8937                 int err;
8938                 char fb_name[IFNAMSIZ];
8939
8940                 /* Ignore unmoveable devices (i.e. loopback) */
8941                 if (dev->features & NETIF_F_NETNS_LOCAL)
8942                         continue;
8943
8944                 /* Leave virtual devices for the generic cleanup */
8945                 if (dev->rtnl_link_ops)
8946                         continue;
8947
8948                 /* Push remaining network devices to init_net */
8949                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8950                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8951                 if (err) {
8952                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8953                                  __func__, dev->name, err);
8954                         BUG();
8955                 }
8956         }
8957         rtnl_unlock();
8958 }
8959
8960 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8961 {
8962         /* Return with the rtnl_lock held when there are no network
8963          * devices unregistering in any network namespace in net_list.
8964          */
8965         struct net *net;
8966         bool unregistering;
8967         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8968
8969         add_wait_queue(&netdev_unregistering_wq, &wait);
8970         for (;;) {
8971                 unregistering = false;
8972                 rtnl_lock();
8973                 list_for_each_entry(net, net_list, exit_list) {
8974                         if (net->dev_unreg_count > 0) {
8975                                 unregistering = true;
8976                                 break;
8977                         }
8978                 }
8979                 if (!unregistering)
8980                         break;
8981                 __rtnl_unlock();
8982
8983                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8984         }
8985         remove_wait_queue(&netdev_unregistering_wq, &wait);
8986 }
8987
8988 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8989 {
8990         /* At exit all network devices most be removed from a network
8991          * namespace.  Do this in the reverse order of registration.
8992          * Do this across as many network namespaces as possible to
8993          * improve batching efficiency.
8994          */
8995         struct net_device *dev;
8996         struct net *net;
8997         LIST_HEAD(dev_kill_list);
8998
8999         /* To prevent network device cleanup code from dereferencing
9000          * loopback devices or network devices that have been freed
9001          * wait here for all pending unregistrations to complete,
9002          * before unregistring the loopback device and allowing the
9003          * network namespace be freed.
9004          *
9005          * The netdev todo list containing all network devices
9006          * unregistrations that happen in default_device_exit_batch
9007          * will run in the rtnl_unlock() at the end of
9008          * default_device_exit_batch.
9009          */
9010         rtnl_lock_unregistering(net_list);
9011         list_for_each_entry(net, net_list, exit_list) {
9012                 for_each_netdev_reverse(net, dev) {
9013                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9014                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9015                         else
9016                                 unregister_netdevice_queue(dev, &dev_kill_list);
9017                 }
9018         }
9019         unregister_netdevice_many(&dev_kill_list);
9020         rtnl_unlock();
9021 }
9022
9023 static struct pernet_operations __net_initdata default_device_ops = {
9024         .exit = default_device_exit,
9025         .exit_batch = default_device_exit_batch,
9026 };
9027
9028 /*
9029  *      Initialize the DEV module. At boot time this walks the device list and
9030  *      unhooks any devices that fail to initialise (normally hardware not
9031  *      present) and leaves us with a valid list of present and active devices.
9032  *
9033  */
9034
9035 /*
9036  *       This is called single threaded during boot, so no need
9037  *       to take the rtnl semaphore.
9038  */
9039 static int __init net_dev_init(void)
9040 {
9041         int i, rc = -ENOMEM;
9042
9043         BUG_ON(!dev_boot_phase);
9044
9045         if (dev_proc_init())
9046                 goto out;
9047
9048         if (netdev_kobject_init())
9049                 goto out;
9050
9051         INIT_LIST_HEAD(&ptype_all);
9052         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9053                 INIT_LIST_HEAD(&ptype_base[i]);
9054
9055         INIT_LIST_HEAD(&offload_base);
9056
9057         if (register_pernet_subsys(&netdev_net_ops))
9058                 goto out;
9059
9060         /*
9061          *      Initialise the packet receive queues.
9062          */
9063
9064         for_each_possible_cpu(i) {
9065                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9066                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9067
9068                 INIT_WORK(flush, flush_backlog);
9069
9070                 skb_queue_head_init(&sd->input_pkt_queue);
9071                 skb_queue_head_init(&sd->process_queue);
9072 #ifdef CONFIG_XFRM_OFFLOAD
9073                 skb_queue_head_init(&sd->xfrm_backlog);
9074 #endif
9075                 INIT_LIST_HEAD(&sd->poll_list);
9076                 sd->output_queue_tailp = &sd->output_queue;
9077 #ifdef CONFIG_RPS
9078                 sd->csd.func = rps_trigger_softirq;
9079                 sd->csd.info = sd;
9080                 sd->cpu = i;
9081 #endif
9082
9083                 sd->backlog.poll = process_backlog;
9084                 sd->backlog.weight = weight_p;
9085         }
9086
9087         dev_boot_phase = 0;
9088
9089         /* The loopback device is special if any other network devices
9090          * is present in a network namespace the loopback device must
9091          * be present. Since we now dynamically allocate and free the
9092          * loopback device ensure this invariant is maintained by
9093          * keeping the loopback device as the first device on the
9094          * list of network devices.  Ensuring the loopback devices
9095          * is the first device that appears and the last network device
9096          * that disappears.
9097          */
9098         if (register_pernet_device(&loopback_net_ops))
9099                 goto out;
9100
9101         if (register_pernet_device(&default_device_ops))
9102                 goto out;
9103
9104         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9105         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9106
9107         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9108                                        NULL, dev_cpu_dead);
9109         WARN_ON(rc < 0);
9110         rc = 0;
9111 out:
9112         return rc;
9113 }
9114
9115 subsys_initcall(net_dev_init);