Merge branches 'acpi-tables', 'acpi-soc', 'acpi-apei' and 'acpi-misc'
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148
149 #include "net-sysfs.h"
150
151 #define MAX_GRO_SKBS 8
152
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;       /* Taps */
160 static struct list_head offload_base __read_mostly;
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234         struct net *net = dev_net(dev);
235
236         ASSERT_RTNL();
237
238         write_lock_bh(&dev_base_lock);
239         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241         hlist_add_head_rcu(&dev->index_hlist,
242                            dev_index_hash(net, dev->ifindex));
243         write_unlock_bh(&dev_base_lock);
244
245         dev_base_seq_inc(net);
246 }
247
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253         ASSERT_RTNL();
254
255         /* Unlink dev from the device chain */
256         write_lock_bh(&dev_base_lock);
257         list_del_rcu(&dev->dev_list);
258         hlist_del_rcu(&dev->name_hlist);
259         hlist_del_rcu(&dev->index_hlist);
260         write_unlock_bh(&dev_base_lock);
261
262         dev_base_seq_inc(dev_net(dev));
263 }
264
265 /*
266  *      Our notifier list
267  */
268
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270
271 /*
272  *      Device drivers call our routines to queue packets here. We empty the
273  *      queue in the local softnet handler.
274  */
275
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301 static const char *const netdev_lock_name[] = {
302         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323         int i;
324
325         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326                 if (netdev_lock_type[i] == dev_type)
327                         return i;
328         /* the last key is used by default */
329         return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333                                                  unsigned short dev_type)
334 {
335         int i;
336
337         i = netdev_lock_pos(dev_type);
338         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344         int i;
345
346         i = netdev_lock_pos(dev->type);
347         lockdep_set_class_and_name(&dev->addr_list_lock,
348                                    &netdev_addr_lock_key[i],
349                                    netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353                                                  unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360
361 /*******************************************************************************
362  *
363  *              Protocol management and registration routines
364  *
365  *******************************************************************************/
366
367
368 /*
369  *      Add a protocol ID to the list. Now that the input handler is
370  *      smarter we can dispense with all the messy stuff that used to be
371  *      here.
372  *
373  *      BEWARE!!! Protocol handlers, mangling input packets,
374  *      MUST BE last in hash buckets and checking protocol handlers
375  *      MUST start from promiscuous ptype_all chain in net_bh.
376  *      It is true now, do not change it.
377  *      Explanation follows: if protocol handler, mangling packet, will
378  *      be the first on list, it is not able to sense, that packet
379  *      is cloned and should be copied-on-write, so that it will
380  *      change it and subsequent readers will get broken packet.
381  *                                                      --ANK (980803)
382  */
383
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386         if (pt->type == htons(ETH_P_ALL))
387                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388         else
389                 return pt->dev ? &pt->dev->ptype_specific :
390                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392
393 /**
394  *      dev_add_pack - add packet handler
395  *      @pt: packet type declaration
396  *
397  *      Add a protocol handler to the networking stack. The passed &packet_type
398  *      is linked into kernel lists and may not be freed until it has been
399  *      removed from the kernel lists.
400  *
401  *      This call does not sleep therefore it can not
402  *      guarantee all CPU's that are in middle of receiving packets
403  *      will see the new packet type (until the next received packet).
404  */
405
406 void dev_add_pack(struct packet_type *pt)
407 {
408         struct list_head *head = ptype_head(pt);
409
410         spin_lock(&ptype_lock);
411         list_add_rcu(&pt->list, head);
412         spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415
416 /**
417  *      __dev_remove_pack        - remove packet handler
418  *      @pt: packet type declaration
419  *
420  *      Remove a protocol handler that was previously added to the kernel
421  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *      from the kernel lists and can be freed or reused once this function
423  *      returns.
424  *
425  *      The packet type might still be in use by receivers
426  *      and must not be freed until after all the CPU's have gone
427  *      through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431         struct list_head *head = ptype_head(pt);
432         struct packet_type *pt1;
433
434         spin_lock(&ptype_lock);
435
436         list_for_each_entry(pt1, head, list) {
437                 if (pt == pt1) {
438                         list_del_rcu(&pt->list);
439                         goto out;
440                 }
441         }
442
443         pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445         spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448
449 /**
450  *      dev_remove_pack  - remove packet handler
451  *      @pt: packet type declaration
452  *
453  *      Remove a protocol handler that was previously added to the kernel
454  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *      from the kernel lists and can be freed or reused once this function
456  *      returns.
457  *
458  *      This call sleeps to guarantee that no CPU is looking at the packet
459  *      type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463         __dev_remove_pack(pt);
464
465         synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468
469
470 /**
471  *      dev_add_offload - register offload handlers
472  *      @po: protocol offload declaration
473  *
474  *      Add protocol offload handlers to the networking stack. The passed
475  *      &proto_offload is linked into kernel lists and may not be freed until
476  *      it has been removed from the kernel lists.
477  *
478  *      This call does not sleep therefore it can not
479  *      guarantee all CPU's that are in middle of receiving packets
480  *      will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484         struct packet_offload *elem;
485
486         spin_lock(&offload_lock);
487         list_for_each_entry(elem, &offload_base, list) {
488                 if (po->priority < elem->priority)
489                         break;
490         }
491         list_add_rcu(&po->list, elem->list.prev);
492         spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495
496 /**
497  *      __dev_remove_offload     - remove offload handler
498  *      @po: packet offload declaration
499  *
500  *      Remove a protocol offload handler that was previously added to the
501  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *      is removed from the kernel lists and can be freed or reused once this
503  *      function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *      and must not be freed until after all the CPU's have gone
507  *      through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511         struct list_head *head = &offload_base;
512         struct packet_offload *po1;
513
514         spin_lock(&offload_lock);
515
516         list_for_each_entry(po1, head, list) {
517                 if (po == po1) {
518                         list_del_rcu(&po->list);
519                         goto out;
520                 }
521         }
522
523         pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525         spin_unlock(&offload_lock);
526 }
527
528 /**
529  *      dev_remove_offload       - remove packet offload handler
530  *      @po: packet offload declaration
531  *
532  *      Remove a packet offload handler that was previously added to the kernel
533  *      offload handlers by dev_add_offload(). The passed &offload_type is
534  *      removed from the kernel lists and can be freed or reused once this
535  *      function returns.
536  *
537  *      This call sleeps to guarantee that no CPU is looking at the packet
538  *      type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542         __dev_remove_offload(po);
543
544         synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547
548 /******************************************************************************
549  *
550  *                    Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557 /**
558  *      netdev_boot_setup_add   - add new setup entry
559  *      @name: name of the device
560  *      @map: configured settings for the device
561  *
562  *      Adds new setup entry to the dev_boot_setup list.  The function
563  *      returns 0 on error and 1 on success.  This is a generic routine to
564  *      all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568         struct netdev_boot_setup *s;
569         int i;
570
571         s = dev_boot_setup;
572         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574                         memset(s[i].name, 0, sizeof(s[i].name));
575                         strlcpy(s[i].name, name, IFNAMSIZ);
576                         memcpy(&s[i].map, map, sizeof(s[i].map));
577                         break;
578                 }
579         }
580
581         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583
584 /**
585  * netdev_boot_setup_check      - check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595         struct netdev_boot_setup *s = dev_boot_setup;
596         int i;
597
598         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600                     !strcmp(dev->name, s[i].name)) {
601                         dev->irq = s[i].map.irq;
602                         dev->base_addr = s[i].map.base_addr;
603                         dev->mem_start = s[i].map.mem_start;
604                         dev->mem_end = s[i].map.mem_end;
605                         return 1;
606                 }
607         }
608         return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613 /**
614  * netdev_boot_base     - get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625         const struct netdev_boot_setup *s = dev_boot_setup;
626         char name[IFNAMSIZ];
627         int i;
628
629         sprintf(name, "%s%d", prefix, unit);
630
631         /*
632          * If device already registered then return base of 1
633          * to indicate not to probe for this interface
634          */
635         if (__dev_get_by_name(&init_net, name))
636                 return 1;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639                 if (!strcmp(name, s[i].name))
640                         return s[i].map.base_addr;
641         return 0;
642 }
643
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649         int ints[5];
650         struct ifmap map;
651
652         str = get_options(str, ARRAY_SIZE(ints), ints);
653         if (!str || !*str)
654                 return 0;
655
656         /* Save settings */
657         memset(&map, 0, sizeof(map));
658         if (ints[0] > 0)
659                 map.irq = ints[1];
660         if (ints[0] > 1)
661                 map.base_addr = ints[2];
662         if (ints[0] > 2)
663                 map.mem_start = ints[3];
664         if (ints[0] > 3)
665                 map.mem_end = ints[4];
666
667         /* Add new entry to the list */
668         return netdev_boot_setup_add(str, &map);
669 }
670
671 __setup("netdev=", netdev_boot_setup);
672
673 /*******************************************************************************
674  *
675  *                          Device Interface Subroutines
676  *
677  *******************************************************************************/
678
679 /**
680  *      dev_get_iflink  - get 'iflink' value of a interface
681  *      @dev: targeted interface
682  *
683  *      Indicates the ifindex the interface is linked to.
684  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686
687 int dev_get_iflink(const struct net_device *dev)
688 {
689         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690                 return dev->netdev_ops->ndo_get_iflink(dev);
691
692         return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *      @dev: targeted interface
699  *      @skb: The packet.
700  *
701  *      For better visibility of tunnel traffic OVS needs to retrieve
702  *      egress tunnel information for a packet. Following API allows
703  *      user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707         struct ip_tunnel_info *info;
708
709         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710                 return -EINVAL;
711
712         info = skb_tunnel_info_unclone(skb);
713         if (!info)
714                 return -ENOMEM;
715         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716                 return -EINVAL;
717
718         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722 /**
723  *      __dev_get_by_name       - find a device by its name
724  *      @net: the applicable net namespace
725  *      @name: name to find
726  *
727  *      Find an interface by name. Must be called under RTNL semaphore
728  *      or @dev_base_lock. If the name is found a pointer to the device
729  *      is returned. If the name is not found then %NULL is returned. The
730  *      reference counters are not incremented so the caller must be
731  *      careful with locks.
732  */
733
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736         struct net_device *dev;
737         struct hlist_head *head = dev_name_hash(net, name);
738
739         hlist_for_each_entry(dev, head, name_hlist)
740                 if (!strncmp(dev->name, name, IFNAMSIZ))
741                         return dev;
742
743         return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746
747 /**
748  * dev_get_by_name_rcu  - find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761         struct net_device *dev;
762         struct hlist_head *head = dev_name_hash(net, name);
763
764         hlist_for_each_entry_rcu(dev, head, name_hlist)
765                 if (!strncmp(dev->name, name, IFNAMSIZ))
766                         return dev;
767
768         return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772 /**
773  *      dev_get_by_name         - find a device by its name
774  *      @net: the applicable net namespace
775  *      @name: name to find
776  *
777  *      Find an interface by name. This can be called from any
778  *      context and does its own locking. The returned handle has
779  *      the usage count incremented and the caller must use dev_put() to
780  *      release it when it is no longer needed. %NULL is returned if no
781  *      matching device is found.
782  */
783
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786         struct net_device *dev;
787
788         rcu_read_lock();
789         dev = dev_get_by_name_rcu(net, name);
790         if (dev)
791                 dev_hold(dev);
792         rcu_read_unlock();
793         return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796
797 /**
798  *      __dev_get_by_index - find a device by its ifindex
799  *      @net: the applicable net namespace
800  *      @ifindex: index of device
801  *
802  *      Search for an interface by index. Returns %NULL if the device
803  *      is not found or a pointer to the device. The device has not
804  *      had its reference counter increased so the caller must be careful
805  *      about locking. The caller must hold either the RTNL semaphore
806  *      or @dev_base_lock.
807  */
808
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811         struct net_device *dev;
812         struct hlist_head *head = dev_index_hash(net, ifindex);
813
814         hlist_for_each_entry(dev, head, index_hlist)
815                 if (dev->ifindex == ifindex)
816                         return dev;
817
818         return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821
822 /**
823  *      dev_get_by_index_rcu - find a device by its ifindex
824  *      @net: the applicable net namespace
825  *      @ifindex: index of device
826  *
827  *      Search for an interface by index. Returns %NULL if the device
828  *      is not found or a pointer to the device. The device has not
829  *      had its reference counter increased so the caller must be careful
830  *      about locking. The caller must hold RCU lock.
831  */
832
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835         struct net_device *dev;
836         struct hlist_head *head = dev_index_hash(net, ifindex);
837
838         hlist_for_each_entry_rcu(dev, head, index_hlist)
839                 if (dev->ifindex == ifindex)
840                         return dev;
841
842         return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847 /**
848  *      dev_get_by_index - find a device by its ifindex
849  *      @net: the applicable net namespace
850  *      @ifindex: index of device
851  *
852  *      Search for an interface by index. Returns NULL if the device
853  *      is not found or a pointer to the device. The device returned has
854  *      had a reference added and the pointer is safe until the user calls
855  *      dev_put to indicate they have finished with it.
856  */
857
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861
862         rcu_read_lock();
863         dev = dev_get_by_index_rcu(net, ifindex);
864         if (dev)
865                 dev_hold(dev);
866         rcu_read_unlock();
867         return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870
871 /**
872  *      dev_get_by_napi_id - find a device by napi_id
873  *      @napi_id: ID of the NAPI struct
874  *
875  *      Search for an interface by NAPI ID. Returns %NULL if the device
876  *      is not found or a pointer to the device. The device has not had
877  *      its reference counter increased so the caller must be careful
878  *      about locking. The caller must hold RCU lock.
879  */
880
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883         struct napi_struct *napi;
884
885         WARN_ON_ONCE(!rcu_read_lock_held());
886
887         if (napi_id < MIN_NAPI_ID)
888                 return NULL;
889
890         napi = napi_by_id(napi_id);
891
892         return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895
896 /**
897  *      netdev_get_name - get a netdevice name, knowing its ifindex.
898  *      @net: network namespace
899  *      @name: a pointer to the buffer where the name will be stored.
900  *      @ifindex: the ifindex of the interface to get the name from.
901  *
902  *      The use of raw_seqcount_begin() and cond_resched() before
903  *      retrying is required as we want to give the writers a chance
904  *      to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908         struct net_device *dev;
909         unsigned int seq;
910
911 retry:
912         seq = raw_seqcount_begin(&devnet_rename_seq);
913         rcu_read_lock();
914         dev = dev_get_by_index_rcu(net, ifindex);
915         if (!dev) {
916                 rcu_read_unlock();
917                 return -ENODEV;
918         }
919
920         strcpy(name, dev->name);
921         rcu_read_unlock();
922         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923                 cond_resched();
924                 goto retry;
925         }
926
927         return 0;
928 }
929
930 /**
931  *      dev_getbyhwaddr_rcu - find a device by its hardware address
932  *      @net: the applicable net namespace
933  *      @type: media type of device
934  *      @ha: hardware address
935  *
936  *      Search for an interface by MAC address. Returns NULL if the device
937  *      is not found or a pointer to the device.
938  *      The caller must hold RCU or RTNL.
939  *      The returned device has not had its ref count increased
940  *      and the caller must therefore be careful about locking
941  *
942  */
943
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945                                        const char *ha)
946 {
947         struct net_device *dev;
948
949         for_each_netdev_rcu(net, dev)
950                 if (dev->type == type &&
951                     !memcmp(dev->dev_addr, ha, dev->addr_len))
952                         return dev;
953
954         return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960         struct net_device *dev;
961
962         ASSERT_RTNL();
963         for_each_netdev(net, dev)
964                 if (dev->type == type)
965                         return dev;
966
967         return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973         struct net_device *dev, *ret = NULL;
974
975         rcu_read_lock();
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type) {
978                         dev_hold(dev);
979                         ret = dev;
980                         break;
981                 }
982         rcu_read_unlock();
983         return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987 /**
988  *      __dev_get_by_flags - find any device with given flags
989  *      @net: the applicable net namespace
990  *      @if_flags: IFF_* values
991  *      @mask: bitmask of bits in if_flags to check
992  *
993  *      Search for any interface with the given flags. Returns NULL if a device
994  *      is not found or a pointer to the device. Must be called inside
995  *      rtnl_lock(), and result refcount is unchanged.
996  */
997
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999                                       unsigned short mask)
1000 {
1001         struct net_device *dev, *ret;
1002
1003         ASSERT_RTNL();
1004
1005         ret = NULL;
1006         for_each_netdev(net, dev) {
1007                 if (((dev->flags ^ if_flags) & mask) == 0) {
1008                         ret = dev;
1009                         break;
1010                 }
1011         }
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016 /**
1017  *      dev_valid_name - check if name is okay for network device
1018  *      @name: name string
1019  *
1020  *      Network device names need to be valid file names to
1021  *      to allow sysfs to work.  We also disallow any kind of
1022  *      whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026         if (*name == '\0')
1027                 return false;
1028         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029                 return false;
1030         if (!strcmp(name, ".") || !strcmp(name, ".."))
1031                 return false;
1032
1033         while (*name) {
1034                 if (*name == '/' || *name == ':' || isspace(*name))
1035                         return false;
1036                 name++;
1037         }
1038         return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041
1042 /**
1043  *      __dev_alloc_name - allocate a name for a device
1044  *      @net: network namespace to allocate the device name in
1045  *      @name: name format string
1046  *      @buf:  scratch buffer and result name string
1047  *
1048  *      Passed a format string - eg "lt%d" it will try and find a suitable
1049  *      id. It scans list of devices to build up a free map, then chooses
1050  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *      while allocating the name and adding the device in order to avoid
1052  *      duplicates.
1053  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *      Returns the number of the unit assigned or a negative errno code.
1055  */
1056
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059         int i = 0;
1060         const char *p;
1061         const int max_netdevices = 8*PAGE_SIZE;
1062         unsigned long *inuse;
1063         struct net_device *d;
1064
1065         if (!dev_valid_name(name))
1066                 return -EINVAL;
1067
1068         p = strchr(name, '%');
1069         if (p) {
1070                 /*
1071                  * Verify the string as this thing may have come from
1072                  * the user.  There must be either one "%d" and no other "%"
1073                  * characters.
1074                  */
1075                 if (p[1] != 'd' || strchr(p + 2, '%'))
1076                         return -EINVAL;
1077
1078                 /* Use one page as a bit array of possible slots */
1079                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080                 if (!inuse)
1081                         return -ENOMEM;
1082
1083                 for_each_netdev(net, d) {
1084                         if (!sscanf(d->name, name, &i))
1085                                 continue;
1086                         if (i < 0 || i >= max_netdevices)
1087                                 continue;
1088
1089                         /*  avoid cases where sscanf is not exact inverse of printf */
1090                         snprintf(buf, IFNAMSIZ, name, i);
1091                         if (!strncmp(buf, d->name, IFNAMSIZ))
1092                                 set_bit(i, inuse);
1093                 }
1094
1095                 i = find_first_zero_bit(inuse, max_netdevices);
1096                 free_page((unsigned long) inuse);
1097         }
1098
1099         snprintf(buf, IFNAMSIZ, name, i);
1100         if (!__dev_get_by_name(net, buf))
1101                 return i;
1102
1103         /* It is possible to run out of possible slots
1104          * when the name is long and there isn't enough space left
1105          * for the digits, or if all bits are used.
1106          */
1107         return -ENFILE;
1108 }
1109
1110 static int dev_alloc_name_ns(struct net *net,
1111                              struct net_device *dev,
1112                              const char *name)
1113 {
1114         char buf[IFNAMSIZ];
1115         int ret;
1116
1117         BUG_ON(!net);
1118         ret = __dev_alloc_name(net, name, buf);
1119         if (ret >= 0)
1120                 strlcpy(dev->name, buf, IFNAMSIZ);
1121         return ret;
1122 }
1123
1124 /**
1125  *      dev_alloc_name - allocate a name for a device
1126  *      @dev: device
1127  *      @name: name format string
1128  *
1129  *      Passed a format string - eg "lt%d" it will try and find a suitable
1130  *      id. It scans list of devices to build up a free map, then chooses
1131  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *      while allocating the name and adding the device in order to avoid
1133  *      duplicates.
1134  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *      Returns the number of the unit assigned or a negative errno code.
1136  */
1137
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140         return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145                        const char *name)
1146 {
1147         BUG_ON(!net);
1148
1149         if (!dev_valid_name(name))
1150                 return -EINVAL;
1151
1152         if (strchr(name, '%'))
1153                 return dev_alloc_name_ns(net, dev, name);
1154         else if (__dev_get_by_name(net, name))
1155                 return -EEXIST;
1156         else if (dev->name != name)
1157                 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159         return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162
1163 /**
1164  *      dev_change_name - change name of a device
1165  *      @dev: device
1166  *      @newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *      Change name of a device, can pass format strings "eth%d".
1169  *      for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173         unsigned char old_assign_type;
1174         char oldname[IFNAMSIZ];
1175         int err = 0;
1176         int ret;
1177         struct net *net;
1178
1179         ASSERT_RTNL();
1180         BUG_ON(!dev_net(dev));
1181
1182         net = dev_net(dev);
1183         if (dev->flags & IFF_UP)
1184                 return -EBUSY;
1185
1186         write_seqcount_begin(&devnet_rename_seq);
1187
1188         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189                 write_seqcount_end(&devnet_rename_seq);
1190                 return 0;
1191         }
1192
1193         memcpy(oldname, dev->name, IFNAMSIZ);
1194
1195         err = dev_get_valid_name(net, dev, newname);
1196         if (err < 0) {
1197                 write_seqcount_end(&devnet_rename_seq);
1198                 return err;
1199         }
1200
1201         if (oldname[0] && !strchr(oldname, '%'))
1202                 netdev_info(dev, "renamed from %s\n", oldname);
1203
1204         old_assign_type = dev->name_assign_type;
1205         dev->name_assign_type = NET_NAME_RENAMED;
1206
1207 rollback:
1208         ret = device_rename(&dev->dev, dev->name);
1209         if (ret) {
1210                 memcpy(dev->name, oldname, IFNAMSIZ);
1211                 dev->name_assign_type = old_assign_type;
1212                 write_seqcount_end(&devnet_rename_seq);
1213                 return ret;
1214         }
1215
1216         write_seqcount_end(&devnet_rename_seq);
1217
1218         netdev_adjacent_rename_links(dev, oldname);
1219
1220         write_lock_bh(&dev_base_lock);
1221         hlist_del_rcu(&dev->name_hlist);
1222         write_unlock_bh(&dev_base_lock);
1223
1224         synchronize_rcu();
1225
1226         write_lock_bh(&dev_base_lock);
1227         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228         write_unlock_bh(&dev_base_lock);
1229
1230         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231         ret = notifier_to_errno(ret);
1232
1233         if (ret) {
1234                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1235                 if (err >= 0) {
1236                         err = ret;
1237                         write_seqcount_begin(&devnet_rename_seq);
1238                         memcpy(dev->name, oldname, IFNAMSIZ);
1239                         memcpy(oldname, newname, IFNAMSIZ);
1240                         dev->name_assign_type = old_assign_type;
1241                         old_assign_type = NET_NAME_RENAMED;
1242                         goto rollback;
1243                 } else {
1244                         pr_err("%s: name change rollback failed: %d\n",
1245                                dev->name, ret);
1246                 }
1247         }
1248
1249         return err;
1250 }
1251
1252 /**
1253  *      dev_set_alias - change ifalias of a device
1254  *      @dev: device
1255  *      @alias: name up to IFALIASZ
1256  *      @len: limit of bytes to copy from info
1257  *
1258  *      Set ifalias for a device,
1259  */
1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261 {
1262         struct dev_ifalias *new_alias = NULL;
1263
1264         if (len >= IFALIASZ)
1265                 return -EINVAL;
1266
1267         if (len) {
1268                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269                 if (!new_alias)
1270                         return -ENOMEM;
1271
1272                 memcpy(new_alias->ifalias, alias, len);
1273                 new_alias->ifalias[len] = 0;
1274         }
1275
1276         mutex_lock(&ifalias_mutex);
1277         rcu_swap_protected(dev->ifalias, new_alias,
1278                            mutex_is_locked(&ifalias_mutex));
1279         mutex_unlock(&ifalias_mutex);
1280
1281         if (new_alias)
1282                 kfree_rcu(new_alias, rcuhead);
1283
1284         return len;
1285 }
1286 EXPORT_SYMBOL(dev_set_alias);
1287
1288 /**
1289  *      dev_get_alias - get ifalias of a device
1290  *      @dev: device
1291  *      @name: buffer to store name of ifalias
1292  *      @len: size of buffer
1293  *
1294  *      get ifalias for a device.  Caller must make sure dev cannot go
1295  *      away,  e.g. rcu read lock or own a reference count to device.
1296  */
1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298 {
1299         const struct dev_ifalias *alias;
1300         int ret = 0;
1301
1302         rcu_read_lock();
1303         alias = rcu_dereference(dev->ifalias);
1304         if (alias)
1305                 ret = snprintf(name, len, "%s", alias->ifalias);
1306         rcu_read_unlock();
1307
1308         return ret;
1309 }
1310
1311 /**
1312  *      netdev_features_change - device changes features
1313  *      @dev: device to cause notification
1314  *
1315  *      Called to indicate a device has changed features.
1316  */
1317 void netdev_features_change(struct net_device *dev)
1318 {
1319         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320 }
1321 EXPORT_SYMBOL(netdev_features_change);
1322
1323 /**
1324  *      netdev_state_change - device changes state
1325  *      @dev: device to cause notification
1326  *
1327  *      Called to indicate a device has changed state. This function calls
1328  *      the notifier chains for netdev_chain and sends a NEWLINK message
1329  *      to the routing socket.
1330  */
1331 void netdev_state_change(struct net_device *dev)
1332 {
1333         if (dev->flags & IFF_UP) {
1334                 struct netdev_notifier_change_info change_info = {
1335                         .info.dev = dev,
1336                 };
1337
1338                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1339                                               &change_info.info);
1340                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341         }
1342 }
1343 EXPORT_SYMBOL(netdev_state_change);
1344
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357         rtnl_lock();
1358         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360         rtnl_unlock();
1361 }
1362 EXPORT_SYMBOL(netdev_notify_peers);
1363
1364 static int __dev_open(struct net_device *dev)
1365 {
1366         const struct net_device_ops *ops = dev->netdev_ops;
1367         int ret;
1368
1369         ASSERT_RTNL();
1370
1371         if (!netif_device_present(dev))
1372                 return -ENODEV;
1373
1374         /* Block netpoll from trying to do any rx path servicing.
1375          * If we don't do this there is a chance ndo_poll_controller
1376          * or ndo_poll may be running while we open the device
1377          */
1378         netpoll_poll_disable(dev);
1379
1380         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381         ret = notifier_to_errno(ret);
1382         if (ret)
1383                 return ret;
1384
1385         set_bit(__LINK_STATE_START, &dev->state);
1386
1387         if (ops->ndo_validate_addr)
1388                 ret = ops->ndo_validate_addr(dev);
1389
1390         if (!ret && ops->ndo_open)
1391                 ret = ops->ndo_open(dev);
1392
1393         netpoll_poll_enable(dev);
1394
1395         if (ret)
1396                 clear_bit(__LINK_STATE_START, &dev->state);
1397         else {
1398                 dev->flags |= IFF_UP;
1399                 dev_set_rx_mode(dev);
1400                 dev_activate(dev);
1401                 add_device_randomness(dev->dev_addr, dev->addr_len);
1402         }
1403
1404         return ret;
1405 }
1406
1407 /**
1408  *      dev_open        - prepare an interface for use.
1409  *      @dev:   device to open
1410  *
1411  *      Takes a device from down to up state. The device's private open
1412  *      function is invoked and then the multicast lists are loaded. Finally
1413  *      the device is moved into the up state and a %NETDEV_UP message is
1414  *      sent to the netdev notifier chain.
1415  *
1416  *      Calling this function on an active interface is a nop. On a failure
1417  *      a negative errno code is returned.
1418  */
1419 int dev_open(struct net_device *dev)
1420 {
1421         int ret;
1422
1423         if (dev->flags & IFF_UP)
1424                 return 0;
1425
1426         ret = __dev_open(dev);
1427         if (ret < 0)
1428                 return ret;
1429
1430         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431         call_netdevice_notifiers(NETDEV_UP, dev);
1432
1433         return ret;
1434 }
1435 EXPORT_SYMBOL(dev_open);
1436
1437 static void __dev_close_many(struct list_head *head)
1438 {
1439         struct net_device *dev;
1440
1441         ASSERT_RTNL();
1442         might_sleep();
1443
1444         list_for_each_entry(dev, head, close_list) {
1445                 /* Temporarily disable netpoll until the interface is down */
1446                 netpoll_poll_disable(dev);
1447
1448                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449
1450                 clear_bit(__LINK_STATE_START, &dev->state);
1451
1452                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1453                  * can be even on different cpu. So just clear netif_running().
1454                  *
1455                  * dev->stop() will invoke napi_disable() on all of it's
1456                  * napi_struct instances on this device.
1457                  */
1458                 smp_mb__after_atomic(); /* Commit netif_running(). */
1459         }
1460
1461         dev_deactivate_many(head);
1462
1463         list_for_each_entry(dev, head, close_list) {
1464                 const struct net_device_ops *ops = dev->netdev_ops;
1465
1466                 /*
1467                  *      Call the device specific close. This cannot fail.
1468                  *      Only if device is UP
1469                  *
1470                  *      We allow it to be called even after a DETACH hot-plug
1471                  *      event.
1472                  */
1473                 if (ops->ndo_stop)
1474                         ops->ndo_stop(dev);
1475
1476                 dev->flags &= ~IFF_UP;
1477                 netpoll_poll_enable(dev);
1478         }
1479 }
1480
1481 static void __dev_close(struct net_device *dev)
1482 {
1483         LIST_HEAD(single);
1484
1485         list_add(&dev->close_list, &single);
1486         __dev_close_many(&single);
1487         list_del(&single);
1488 }
1489
1490 void dev_close_many(struct list_head *head, bool unlink)
1491 {
1492         struct net_device *dev, *tmp;
1493
1494         /* Remove the devices that don't need to be closed */
1495         list_for_each_entry_safe(dev, tmp, head, close_list)
1496                 if (!(dev->flags & IFF_UP))
1497                         list_del_init(&dev->close_list);
1498
1499         __dev_close_many(head);
1500
1501         list_for_each_entry_safe(dev, tmp, head, close_list) {
1502                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1504                 if (unlink)
1505                         list_del_init(&dev->close_list);
1506         }
1507 }
1508 EXPORT_SYMBOL(dev_close_many);
1509
1510 /**
1511  *      dev_close - shutdown an interface.
1512  *      @dev: device to shutdown
1513  *
1514  *      This function moves an active device into down state. A
1515  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517  *      chain.
1518  */
1519 void dev_close(struct net_device *dev)
1520 {
1521         if (dev->flags & IFF_UP) {
1522                 LIST_HEAD(single);
1523
1524                 list_add(&dev->close_list, &single);
1525                 dev_close_many(&single, true);
1526                 list_del(&single);
1527         }
1528 }
1529 EXPORT_SYMBOL(dev_close);
1530
1531
1532 /**
1533  *      dev_disable_lro - disable Large Receive Offload on a device
1534  *      @dev: device
1535  *
1536  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1537  *      called under RTNL.  This is needed if received packets may be
1538  *      forwarded to another interface.
1539  */
1540 void dev_disable_lro(struct net_device *dev)
1541 {
1542         struct net_device *lower_dev;
1543         struct list_head *iter;
1544
1545         dev->wanted_features &= ~NETIF_F_LRO;
1546         netdev_update_features(dev);
1547
1548         if (unlikely(dev->features & NETIF_F_LRO))
1549                 netdev_WARN(dev, "failed to disable LRO!\n");
1550
1551         netdev_for_each_lower_dev(dev, lower_dev, iter)
1552                 dev_disable_lro(lower_dev);
1553 }
1554 EXPORT_SYMBOL(dev_disable_lro);
1555
1556 /**
1557  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558  *      @dev: device
1559  *
1560  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1561  *      called under RTNL.  This is needed if Generic XDP is installed on
1562  *      the device.
1563  */
1564 static void dev_disable_gro_hw(struct net_device *dev)
1565 {
1566         dev->wanted_features &= ~NETIF_F_GRO_HW;
1567         netdev_update_features(dev);
1568
1569         if (unlikely(dev->features & NETIF_F_GRO_HW))
1570                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571 }
1572
1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574 {
1575 #define N(val)                                          \
1576         case NETDEV_##val:                              \
1577                 return "NETDEV_" __stringify(val);
1578         switch (cmd) {
1579         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588         }
1589 #undef N
1590         return "UNKNOWN_NETDEV_EVENT";
1591 }
1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593
1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595                                    struct net_device *dev)
1596 {
1597         struct netdev_notifier_info info = {
1598                 .dev = dev,
1599         };
1600
1601         return nb->notifier_call(nb, val, &info);
1602 }
1603
1604 static int dev_boot_phase = 1;
1605
1606 /**
1607  * register_netdevice_notifier - register a network notifier block
1608  * @nb: notifier
1609  *
1610  * Register a notifier to be called when network device events occur.
1611  * The notifier passed is linked into the kernel structures and must
1612  * not be reused until it has been unregistered. A negative errno code
1613  * is returned on a failure.
1614  *
1615  * When registered all registration and up events are replayed
1616  * to the new notifier to allow device to have a race free
1617  * view of the network device list.
1618  */
1619
1620 int register_netdevice_notifier(struct notifier_block *nb)
1621 {
1622         struct net_device *dev;
1623         struct net_device *last;
1624         struct net *net;
1625         int err;
1626
1627         /* Close race with setup_net() and cleanup_net() */
1628         down_write(&pernet_ops_rwsem);
1629         rtnl_lock();
1630         err = raw_notifier_chain_register(&netdev_chain, nb);
1631         if (err)
1632                 goto unlock;
1633         if (dev_boot_phase)
1634                 goto unlock;
1635         for_each_net(net) {
1636                 for_each_netdev(net, dev) {
1637                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638                         err = notifier_to_errno(err);
1639                         if (err)
1640                                 goto rollback;
1641
1642                         if (!(dev->flags & IFF_UP))
1643                                 continue;
1644
1645                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1646                 }
1647         }
1648
1649 unlock:
1650         rtnl_unlock();
1651         up_write(&pernet_ops_rwsem);
1652         return err;
1653
1654 rollback:
1655         last = dev;
1656         for_each_net(net) {
1657                 for_each_netdev(net, dev) {
1658                         if (dev == last)
1659                                 goto outroll;
1660
1661                         if (dev->flags & IFF_UP) {
1662                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663                                                         dev);
1664                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665                         }
1666                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667                 }
1668         }
1669
1670 outroll:
1671         raw_notifier_chain_unregister(&netdev_chain, nb);
1672         goto unlock;
1673 }
1674 EXPORT_SYMBOL(register_netdevice_notifier);
1675
1676 /**
1677  * unregister_netdevice_notifier - unregister a network notifier block
1678  * @nb: notifier
1679  *
1680  * Unregister a notifier previously registered by
1681  * register_netdevice_notifier(). The notifier is unlinked into the
1682  * kernel structures and may then be reused. A negative errno code
1683  * is returned on a failure.
1684  *
1685  * After unregistering unregister and down device events are synthesized
1686  * for all devices on the device list to the removed notifier to remove
1687  * the need for special case cleanup code.
1688  */
1689
1690 int unregister_netdevice_notifier(struct notifier_block *nb)
1691 {
1692         struct net_device *dev;
1693         struct net *net;
1694         int err;
1695
1696         /* Close race with setup_net() and cleanup_net() */
1697         down_write(&pernet_ops_rwsem);
1698         rtnl_lock();
1699         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700         if (err)
1701                 goto unlock;
1702
1703         for_each_net(net) {
1704                 for_each_netdev(net, dev) {
1705                         if (dev->flags & IFF_UP) {
1706                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707                                                         dev);
1708                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709                         }
1710                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711                 }
1712         }
1713 unlock:
1714         rtnl_unlock();
1715         up_write(&pernet_ops_rwsem);
1716         return err;
1717 }
1718 EXPORT_SYMBOL(unregister_netdevice_notifier);
1719
1720 /**
1721  *      call_netdevice_notifiers_info - call all network notifier blocks
1722  *      @val: value passed unmodified to notifier function
1723  *      @info: notifier information data
1724  *
1725  *      Call all network notifier blocks.  Parameters and return value
1726  *      are as for raw_notifier_call_chain().
1727  */
1728
1729 static int call_netdevice_notifiers_info(unsigned long val,
1730                                          struct netdev_notifier_info *info)
1731 {
1732         ASSERT_RTNL();
1733         return raw_notifier_call_chain(&netdev_chain, val, info);
1734 }
1735
1736 /**
1737  *      call_netdevice_notifiers - call all network notifier blocks
1738  *      @val: value passed unmodified to notifier function
1739  *      @dev: net_device pointer passed unmodified to notifier function
1740  *
1741  *      Call all network notifier blocks.  Parameters and return value
1742  *      are as for raw_notifier_call_chain().
1743  */
1744
1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746 {
1747         struct netdev_notifier_info info = {
1748                 .dev = dev,
1749         };
1750
1751         return call_netdevice_notifiers_info(val, &info);
1752 }
1753 EXPORT_SYMBOL(call_netdevice_notifiers);
1754
1755 /**
1756  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1757  *      @val: value passed unmodified to notifier function
1758  *      @dev: net_device pointer passed unmodified to notifier function
1759  *      @arg: additional u32 argument passed to the notifier function
1760  *
1761  *      Call all network notifier blocks.  Parameters and return value
1762  *      are as for raw_notifier_call_chain().
1763  */
1764 static int call_netdevice_notifiers_mtu(unsigned long val,
1765                                         struct net_device *dev, u32 arg)
1766 {
1767         struct netdev_notifier_info_ext info = {
1768                 .info.dev = dev,
1769                 .ext.mtu = arg,
1770         };
1771
1772         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1773
1774         return call_netdevice_notifiers_info(val, &info.info);
1775 }
1776
1777 #ifdef CONFIG_NET_INGRESS
1778 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1779
1780 void net_inc_ingress_queue(void)
1781 {
1782         static_branch_inc(&ingress_needed_key);
1783 }
1784 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1785
1786 void net_dec_ingress_queue(void)
1787 {
1788         static_branch_dec(&ingress_needed_key);
1789 }
1790 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1791 #endif
1792
1793 #ifdef CONFIG_NET_EGRESS
1794 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1795
1796 void net_inc_egress_queue(void)
1797 {
1798         static_branch_inc(&egress_needed_key);
1799 }
1800 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1801
1802 void net_dec_egress_queue(void)
1803 {
1804         static_branch_dec(&egress_needed_key);
1805 }
1806 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1807 #endif
1808
1809 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1810 #ifdef HAVE_JUMP_LABEL
1811 static atomic_t netstamp_needed_deferred;
1812 static atomic_t netstamp_wanted;
1813 static void netstamp_clear(struct work_struct *work)
1814 {
1815         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1816         int wanted;
1817
1818         wanted = atomic_add_return(deferred, &netstamp_wanted);
1819         if (wanted > 0)
1820                 static_branch_enable(&netstamp_needed_key);
1821         else
1822                 static_branch_disable(&netstamp_needed_key);
1823 }
1824 static DECLARE_WORK(netstamp_work, netstamp_clear);
1825 #endif
1826
1827 void net_enable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830         int wanted;
1831
1832         while (1) {
1833                 wanted = atomic_read(&netstamp_wanted);
1834                 if (wanted <= 0)
1835                         break;
1836                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1837                         return;
1838         }
1839         atomic_inc(&netstamp_needed_deferred);
1840         schedule_work(&netstamp_work);
1841 #else
1842         static_branch_inc(&netstamp_needed_key);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_enable_timestamp);
1846
1847 void net_disable_timestamp(void)
1848 {
1849 #ifdef HAVE_JUMP_LABEL
1850         int wanted;
1851
1852         while (1) {
1853                 wanted = atomic_read(&netstamp_wanted);
1854                 if (wanted <= 1)
1855                         break;
1856                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1857                         return;
1858         }
1859         atomic_dec(&netstamp_needed_deferred);
1860         schedule_work(&netstamp_work);
1861 #else
1862         static_branch_dec(&netstamp_needed_key);
1863 #endif
1864 }
1865 EXPORT_SYMBOL(net_disable_timestamp);
1866
1867 static inline void net_timestamp_set(struct sk_buff *skb)
1868 {
1869         skb->tstamp = 0;
1870         if (static_branch_unlikely(&netstamp_needed_key))
1871                 __net_timestamp(skb);
1872 }
1873
1874 #define net_timestamp_check(COND, SKB)                          \
1875         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1876                 if ((COND) && !(SKB)->tstamp)                   \
1877                         __net_timestamp(SKB);                   \
1878         }                                                       \
1879
1880 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1881 {
1882         unsigned int len;
1883
1884         if (!(dev->flags & IFF_UP))
1885                 return false;
1886
1887         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1888         if (skb->len <= len)
1889                 return true;
1890
1891         /* if TSO is enabled, we don't care about the length as the packet
1892          * could be forwarded without being segmented before
1893          */
1894         if (skb_is_gso(skb))
1895                 return true;
1896
1897         return false;
1898 }
1899 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1900
1901 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1902 {
1903         int ret = ____dev_forward_skb(dev, skb);
1904
1905         if (likely(!ret)) {
1906                 skb->protocol = eth_type_trans(skb, dev);
1907                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1908         }
1909
1910         return ret;
1911 }
1912 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1913
1914 /**
1915  * dev_forward_skb - loopback an skb to another netif
1916  *
1917  * @dev: destination network device
1918  * @skb: buffer to forward
1919  *
1920  * return values:
1921  *      NET_RX_SUCCESS  (no congestion)
1922  *      NET_RX_DROP     (packet was dropped, but freed)
1923  *
1924  * dev_forward_skb can be used for injecting an skb from the
1925  * start_xmit function of one device into the receive queue
1926  * of another device.
1927  *
1928  * The receiving device may be in another namespace, so
1929  * we have to clear all information in the skb that could
1930  * impact namespace isolation.
1931  */
1932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1933 {
1934         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1935 }
1936 EXPORT_SYMBOL_GPL(dev_forward_skb);
1937
1938 static inline int deliver_skb(struct sk_buff *skb,
1939                               struct packet_type *pt_prev,
1940                               struct net_device *orig_dev)
1941 {
1942         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1943                 return -ENOMEM;
1944         refcount_inc(&skb->users);
1945         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1946 }
1947
1948 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1949                                           struct packet_type **pt,
1950                                           struct net_device *orig_dev,
1951                                           __be16 type,
1952                                           struct list_head *ptype_list)
1953 {
1954         struct packet_type *ptype, *pt_prev = *pt;
1955
1956         list_for_each_entry_rcu(ptype, ptype_list, list) {
1957                 if (ptype->type != type)
1958                         continue;
1959                 if (pt_prev)
1960                         deliver_skb(skb, pt_prev, orig_dev);
1961                 pt_prev = ptype;
1962         }
1963         *pt = pt_prev;
1964 }
1965
1966 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1967 {
1968         if (!ptype->af_packet_priv || !skb->sk)
1969                 return false;
1970
1971         if (ptype->id_match)
1972                 return ptype->id_match(ptype, skb->sk);
1973         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1974                 return true;
1975
1976         return false;
1977 }
1978
1979 /**
1980  * dev_nit_active - return true if any network interface taps are in use
1981  *
1982  * @dev: network device to check for the presence of taps
1983  */
1984 bool dev_nit_active(struct net_device *dev)
1985 {
1986         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1987 }
1988 EXPORT_SYMBOL_GPL(dev_nit_active);
1989
1990 /*
1991  *      Support routine. Sends outgoing frames to any network
1992  *      taps currently in use.
1993  */
1994
1995 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1996 {
1997         struct packet_type *ptype;
1998         struct sk_buff *skb2 = NULL;
1999         struct packet_type *pt_prev = NULL;
2000         struct list_head *ptype_list = &ptype_all;
2001
2002         rcu_read_lock();
2003 again:
2004         list_for_each_entry_rcu(ptype, ptype_list, list) {
2005                 if (ptype->ignore_outgoing)
2006                         continue;
2007
2008                 /* Never send packets back to the socket
2009                  * they originated from - MvS (miquels@drinkel.ow.org)
2010                  */
2011                 if (skb_loop_sk(ptype, skb))
2012                         continue;
2013
2014                 if (pt_prev) {
2015                         deliver_skb(skb2, pt_prev, skb->dev);
2016                         pt_prev = ptype;
2017                         continue;
2018                 }
2019
2020                 /* need to clone skb, done only once */
2021                 skb2 = skb_clone(skb, GFP_ATOMIC);
2022                 if (!skb2)
2023                         goto out_unlock;
2024
2025                 net_timestamp_set(skb2);
2026
2027                 /* skb->nh should be correctly
2028                  * set by sender, so that the second statement is
2029                  * just protection against buggy protocols.
2030                  */
2031                 skb_reset_mac_header(skb2);
2032
2033                 if (skb_network_header(skb2) < skb2->data ||
2034                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2035                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2036                                              ntohs(skb2->protocol),
2037                                              dev->name);
2038                         skb_reset_network_header(skb2);
2039                 }
2040
2041                 skb2->transport_header = skb2->network_header;
2042                 skb2->pkt_type = PACKET_OUTGOING;
2043                 pt_prev = ptype;
2044         }
2045
2046         if (ptype_list == &ptype_all) {
2047                 ptype_list = &dev->ptype_all;
2048                 goto again;
2049         }
2050 out_unlock:
2051         if (pt_prev) {
2052                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2053                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2054                 else
2055                         kfree_skb(skb2);
2056         }
2057         rcu_read_unlock();
2058 }
2059 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2060
2061 /**
2062  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2063  * @dev: Network device
2064  * @txq: number of queues available
2065  *
2066  * If real_num_tx_queues is changed the tc mappings may no longer be
2067  * valid. To resolve this verify the tc mapping remains valid and if
2068  * not NULL the mapping. With no priorities mapping to this
2069  * offset/count pair it will no longer be used. In the worst case TC0
2070  * is invalid nothing can be done so disable priority mappings. If is
2071  * expected that drivers will fix this mapping if they can before
2072  * calling netif_set_real_num_tx_queues.
2073  */
2074 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2075 {
2076         int i;
2077         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2078
2079         /* If TC0 is invalidated disable TC mapping */
2080         if (tc->offset + tc->count > txq) {
2081                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2082                 dev->num_tc = 0;
2083                 return;
2084         }
2085
2086         /* Invalidated prio to tc mappings set to TC0 */
2087         for (i = 1; i < TC_BITMASK + 1; i++) {
2088                 int q = netdev_get_prio_tc_map(dev, i);
2089
2090                 tc = &dev->tc_to_txq[q];
2091                 if (tc->offset + tc->count > txq) {
2092                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2093                                 i, q);
2094                         netdev_set_prio_tc_map(dev, i, 0);
2095                 }
2096         }
2097 }
2098
2099 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2100 {
2101         if (dev->num_tc) {
2102                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2103                 int i;
2104
2105                 /* walk through the TCs and see if it falls into any of them */
2106                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2107                         if ((txq - tc->offset) < tc->count)
2108                                 return i;
2109                 }
2110
2111                 /* didn't find it, just return -1 to indicate no match */
2112                 return -1;
2113         }
2114
2115         return 0;
2116 }
2117 EXPORT_SYMBOL(netdev_txq_to_tc);
2118
2119 #ifdef CONFIG_XPS
2120 struct static_key xps_needed __read_mostly;
2121 EXPORT_SYMBOL(xps_needed);
2122 struct static_key xps_rxqs_needed __read_mostly;
2123 EXPORT_SYMBOL(xps_rxqs_needed);
2124 static DEFINE_MUTEX(xps_map_mutex);
2125 #define xmap_dereference(P)             \
2126         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2127
2128 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2129                              int tci, u16 index)
2130 {
2131         struct xps_map *map = NULL;
2132         int pos;
2133
2134         if (dev_maps)
2135                 map = xmap_dereference(dev_maps->attr_map[tci]);
2136         if (!map)
2137                 return false;
2138
2139         for (pos = map->len; pos--;) {
2140                 if (map->queues[pos] != index)
2141                         continue;
2142
2143                 if (map->len > 1) {
2144                         map->queues[pos] = map->queues[--map->len];
2145                         break;
2146                 }
2147
2148                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2149                 kfree_rcu(map, rcu);
2150                 return false;
2151         }
2152
2153         return true;
2154 }
2155
2156 static bool remove_xps_queue_cpu(struct net_device *dev,
2157                                  struct xps_dev_maps *dev_maps,
2158                                  int cpu, u16 offset, u16 count)
2159 {
2160         int num_tc = dev->num_tc ? : 1;
2161         bool active = false;
2162         int tci;
2163
2164         for (tci = cpu * num_tc; num_tc--; tci++) {
2165                 int i, j;
2166
2167                 for (i = count, j = offset; i--; j++) {
2168                         if (!remove_xps_queue(dev_maps, tci, j))
2169                                 break;
2170                 }
2171
2172                 active |= i < 0;
2173         }
2174
2175         return active;
2176 }
2177
2178 static void reset_xps_maps(struct net_device *dev,
2179                            struct xps_dev_maps *dev_maps,
2180                            bool is_rxqs_map)
2181 {
2182         if (is_rxqs_map) {
2183                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2184                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2185         } else {
2186                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2187         }
2188         static_key_slow_dec_cpuslocked(&xps_needed);
2189         kfree_rcu(dev_maps, rcu);
2190 }
2191
2192 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2193                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2194                            u16 offset, u16 count, bool is_rxqs_map)
2195 {
2196         bool active = false;
2197         int i, j;
2198
2199         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2200              j < nr_ids;)
2201                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2202                                                count);
2203         if (!active)
2204                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2205
2206         if (!is_rxqs_map) {
2207                 for (i = offset + (count - 1); count--; i--) {
2208                         netdev_queue_numa_node_write(
2209                                 netdev_get_tx_queue(dev, i),
2210                                 NUMA_NO_NODE);
2211                 }
2212         }
2213 }
2214
2215 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2216                                    u16 count)
2217 {
2218         const unsigned long *possible_mask = NULL;
2219         struct xps_dev_maps *dev_maps;
2220         unsigned int nr_ids;
2221
2222         if (!static_key_false(&xps_needed))
2223                 return;
2224
2225         cpus_read_lock();
2226         mutex_lock(&xps_map_mutex);
2227
2228         if (static_key_false(&xps_rxqs_needed)) {
2229                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2230                 if (dev_maps) {
2231                         nr_ids = dev->num_rx_queues;
2232                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2233                                        offset, count, true);
2234                 }
2235         }
2236
2237         dev_maps = xmap_dereference(dev->xps_cpus_map);
2238         if (!dev_maps)
2239                 goto out_no_maps;
2240
2241         if (num_possible_cpus() > 1)
2242                 possible_mask = cpumask_bits(cpu_possible_mask);
2243         nr_ids = nr_cpu_ids;
2244         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2245                        false);
2246
2247 out_no_maps:
2248         mutex_unlock(&xps_map_mutex);
2249         cpus_read_unlock();
2250 }
2251
2252 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2253 {
2254         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2255 }
2256
2257 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2258                                       u16 index, bool is_rxqs_map)
2259 {
2260         struct xps_map *new_map;
2261         int alloc_len = XPS_MIN_MAP_ALLOC;
2262         int i, pos;
2263
2264         for (pos = 0; map && pos < map->len; pos++) {
2265                 if (map->queues[pos] != index)
2266                         continue;
2267                 return map;
2268         }
2269
2270         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2271         if (map) {
2272                 if (pos < map->alloc_len)
2273                         return map;
2274
2275                 alloc_len = map->alloc_len * 2;
2276         }
2277
2278         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2279          *  map
2280          */
2281         if (is_rxqs_map)
2282                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2283         else
2284                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2285                                        cpu_to_node(attr_index));
2286         if (!new_map)
2287                 return NULL;
2288
2289         for (i = 0; i < pos; i++)
2290                 new_map->queues[i] = map->queues[i];
2291         new_map->alloc_len = alloc_len;
2292         new_map->len = pos;
2293
2294         return new_map;
2295 }
2296
2297 /* Must be called under cpus_read_lock */
2298 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2299                           u16 index, bool is_rxqs_map)
2300 {
2301         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2302         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2303         int i, j, tci, numa_node_id = -2;
2304         int maps_sz, num_tc = 1, tc = 0;
2305         struct xps_map *map, *new_map;
2306         bool active = false;
2307         unsigned int nr_ids;
2308
2309         if (dev->num_tc) {
2310                 /* Do not allow XPS on subordinate device directly */
2311                 num_tc = dev->num_tc;
2312                 if (num_tc < 0)
2313                         return -EINVAL;
2314
2315                 /* If queue belongs to subordinate dev use its map */
2316                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2317
2318                 tc = netdev_txq_to_tc(dev, index);
2319                 if (tc < 0)
2320                         return -EINVAL;
2321         }
2322
2323         mutex_lock(&xps_map_mutex);
2324         if (is_rxqs_map) {
2325                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2326                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2327                 nr_ids = dev->num_rx_queues;
2328         } else {
2329                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2330                 if (num_possible_cpus() > 1) {
2331                         online_mask = cpumask_bits(cpu_online_mask);
2332                         possible_mask = cpumask_bits(cpu_possible_mask);
2333                 }
2334                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2335                 nr_ids = nr_cpu_ids;
2336         }
2337
2338         if (maps_sz < L1_CACHE_BYTES)
2339                 maps_sz = L1_CACHE_BYTES;
2340
2341         /* allocate memory for queue storage */
2342         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2343              j < nr_ids;) {
2344                 if (!new_dev_maps)
2345                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2346                 if (!new_dev_maps) {
2347                         mutex_unlock(&xps_map_mutex);
2348                         return -ENOMEM;
2349                 }
2350
2351                 tci = j * num_tc + tc;
2352                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2353                                  NULL;
2354
2355                 map = expand_xps_map(map, j, index, is_rxqs_map);
2356                 if (!map)
2357                         goto error;
2358
2359                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2360         }
2361
2362         if (!new_dev_maps)
2363                 goto out_no_new_maps;
2364
2365         if (!dev_maps) {
2366                 /* Increment static keys at most once per type */
2367                 static_key_slow_inc_cpuslocked(&xps_needed);
2368                 if (is_rxqs_map)
2369                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2370         }
2371
2372         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2373              j < nr_ids;) {
2374                 /* copy maps belonging to foreign traffic classes */
2375                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2376                         /* fill in the new device map from the old device map */
2377                         map = xmap_dereference(dev_maps->attr_map[tci]);
2378                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2379                 }
2380
2381                 /* We need to explicitly update tci as prevous loop
2382                  * could break out early if dev_maps is NULL.
2383                  */
2384                 tci = j * num_tc + tc;
2385
2386                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2387                     netif_attr_test_online(j, online_mask, nr_ids)) {
2388                         /* add tx-queue to CPU/rx-queue maps */
2389                         int pos = 0;
2390
2391                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2392                         while ((pos < map->len) && (map->queues[pos] != index))
2393                                 pos++;
2394
2395                         if (pos == map->len)
2396                                 map->queues[map->len++] = index;
2397 #ifdef CONFIG_NUMA
2398                         if (!is_rxqs_map) {
2399                                 if (numa_node_id == -2)
2400                                         numa_node_id = cpu_to_node(j);
2401                                 else if (numa_node_id != cpu_to_node(j))
2402                                         numa_node_id = -1;
2403                         }
2404 #endif
2405                 } else if (dev_maps) {
2406                         /* fill in the new device map from the old device map */
2407                         map = xmap_dereference(dev_maps->attr_map[tci]);
2408                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2409                 }
2410
2411                 /* copy maps belonging to foreign traffic classes */
2412                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2413                         /* fill in the new device map from the old device map */
2414                         map = xmap_dereference(dev_maps->attr_map[tci]);
2415                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2416                 }
2417         }
2418
2419         if (is_rxqs_map)
2420                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2421         else
2422                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2423
2424         /* Cleanup old maps */
2425         if (!dev_maps)
2426                 goto out_no_old_maps;
2427
2428         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2429              j < nr_ids;) {
2430                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2431                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2432                         map = xmap_dereference(dev_maps->attr_map[tci]);
2433                         if (map && map != new_map)
2434                                 kfree_rcu(map, rcu);
2435                 }
2436         }
2437
2438         kfree_rcu(dev_maps, rcu);
2439
2440 out_no_old_maps:
2441         dev_maps = new_dev_maps;
2442         active = true;
2443
2444 out_no_new_maps:
2445         if (!is_rxqs_map) {
2446                 /* update Tx queue numa node */
2447                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2448                                              (numa_node_id >= 0) ?
2449                                              numa_node_id : NUMA_NO_NODE);
2450         }
2451
2452         if (!dev_maps)
2453                 goto out_no_maps;
2454
2455         /* removes tx-queue from unused CPUs/rx-queues */
2456         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2457              j < nr_ids;) {
2458                 for (i = tc, tci = j * num_tc; i--; tci++)
2459                         active |= remove_xps_queue(dev_maps, tci, index);
2460                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2461                     !netif_attr_test_online(j, online_mask, nr_ids))
2462                         active |= remove_xps_queue(dev_maps, tci, index);
2463                 for (i = num_tc - tc, tci++; --i; tci++)
2464                         active |= remove_xps_queue(dev_maps, tci, index);
2465         }
2466
2467         /* free map if not active */
2468         if (!active)
2469                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2470
2471 out_no_maps:
2472         mutex_unlock(&xps_map_mutex);
2473
2474         return 0;
2475 error:
2476         /* remove any maps that we added */
2477         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2478              j < nr_ids;) {
2479                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2480                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2481                         map = dev_maps ?
2482                               xmap_dereference(dev_maps->attr_map[tci]) :
2483                               NULL;
2484                         if (new_map && new_map != map)
2485                                 kfree(new_map);
2486                 }
2487         }
2488
2489         mutex_unlock(&xps_map_mutex);
2490
2491         kfree(new_dev_maps);
2492         return -ENOMEM;
2493 }
2494 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2495
2496 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2497                         u16 index)
2498 {
2499         int ret;
2500
2501         cpus_read_lock();
2502         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2503         cpus_read_unlock();
2504
2505         return ret;
2506 }
2507 EXPORT_SYMBOL(netif_set_xps_queue);
2508
2509 #endif
2510 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2511 {
2512         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2513
2514         /* Unbind any subordinate channels */
2515         while (txq-- != &dev->_tx[0]) {
2516                 if (txq->sb_dev)
2517                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2518         }
2519 }
2520
2521 void netdev_reset_tc(struct net_device *dev)
2522 {
2523 #ifdef CONFIG_XPS
2524         netif_reset_xps_queues_gt(dev, 0);
2525 #endif
2526         netdev_unbind_all_sb_channels(dev);
2527
2528         /* Reset TC configuration of device */
2529         dev->num_tc = 0;
2530         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2531         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2532 }
2533 EXPORT_SYMBOL(netdev_reset_tc);
2534
2535 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2536 {
2537         if (tc >= dev->num_tc)
2538                 return -EINVAL;
2539
2540 #ifdef CONFIG_XPS
2541         netif_reset_xps_queues(dev, offset, count);
2542 #endif
2543         dev->tc_to_txq[tc].count = count;
2544         dev->tc_to_txq[tc].offset = offset;
2545         return 0;
2546 }
2547 EXPORT_SYMBOL(netdev_set_tc_queue);
2548
2549 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2550 {
2551         if (num_tc > TC_MAX_QUEUE)
2552                 return -EINVAL;
2553
2554 #ifdef CONFIG_XPS
2555         netif_reset_xps_queues_gt(dev, 0);
2556 #endif
2557         netdev_unbind_all_sb_channels(dev);
2558
2559         dev->num_tc = num_tc;
2560         return 0;
2561 }
2562 EXPORT_SYMBOL(netdev_set_num_tc);
2563
2564 void netdev_unbind_sb_channel(struct net_device *dev,
2565                               struct net_device *sb_dev)
2566 {
2567         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2568
2569 #ifdef CONFIG_XPS
2570         netif_reset_xps_queues_gt(sb_dev, 0);
2571 #endif
2572         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2573         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2574
2575         while (txq-- != &dev->_tx[0]) {
2576                 if (txq->sb_dev == sb_dev)
2577                         txq->sb_dev = NULL;
2578         }
2579 }
2580 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2581
2582 int netdev_bind_sb_channel_queue(struct net_device *dev,
2583                                  struct net_device *sb_dev,
2584                                  u8 tc, u16 count, u16 offset)
2585 {
2586         /* Make certain the sb_dev and dev are already configured */
2587         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2588                 return -EINVAL;
2589
2590         /* We cannot hand out queues we don't have */
2591         if ((offset + count) > dev->real_num_tx_queues)
2592                 return -EINVAL;
2593
2594         /* Record the mapping */
2595         sb_dev->tc_to_txq[tc].count = count;
2596         sb_dev->tc_to_txq[tc].offset = offset;
2597
2598         /* Provide a way for Tx queue to find the tc_to_txq map or
2599          * XPS map for itself.
2600          */
2601         while (count--)
2602                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2603
2604         return 0;
2605 }
2606 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2607
2608 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2609 {
2610         /* Do not use a multiqueue device to represent a subordinate channel */
2611         if (netif_is_multiqueue(dev))
2612                 return -ENODEV;
2613
2614         /* We allow channels 1 - 32767 to be used for subordinate channels.
2615          * Channel 0 is meant to be "native" mode and used only to represent
2616          * the main root device. We allow writing 0 to reset the device back
2617          * to normal mode after being used as a subordinate channel.
2618          */
2619         if (channel > S16_MAX)
2620                 return -EINVAL;
2621
2622         dev->num_tc = -channel;
2623
2624         return 0;
2625 }
2626 EXPORT_SYMBOL(netdev_set_sb_channel);
2627
2628 /*
2629  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2630  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2631  */
2632 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2633 {
2634         bool disabling;
2635         int rc;
2636
2637         disabling = txq < dev->real_num_tx_queues;
2638
2639         if (txq < 1 || txq > dev->num_tx_queues)
2640                 return -EINVAL;
2641
2642         if (dev->reg_state == NETREG_REGISTERED ||
2643             dev->reg_state == NETREG_UNREGISTERING) {
2644                 ASSERT_RTNL();
2645
2646                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2647                                                   txq);
2648                 if (rc)
2649                         return rc;
2650
2651                 if (dev->num_tc)
2652                         netif_setup_tc(dev, txq);
2653
2654                 dev->real_num_tx_queues = txq;
2655
2656                 if (disabling) {
2657                         synchronize_net();
2658                         qdisc_reset_all_tx_gt(dev, txq);
2659 #ifdef CONFIG_XPS
2660                         netif_reset_xps_queues_gt(dev, txq);
2661 #endif
2662                 }
2663         } else {
2664                 dev->real_num_tx_queues = txq;
2665         }
2666
2667         return 0;
2668 }
2669 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2670
2671 #ifdef CONFIG_SYSFS
2672 /**
2673  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2674  *      @dev: Network device
2675  *      @rxq: Actual number of RX queues
2676  *
2677  *      This must be called either with the rtnl_lock held or before
2678  *      registration of the net device.  Returns 0 on success, or a
2679  *      negative error code.  If called before registration, it always
2680  *      succeeds.
2681  */
2682 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2683 {
2684         int rc;
2685
2686         if (rxq < 1 || rxq > dev->num_rx_queues)
2687                 return -EINVAL;
2688
2689         if (dev->reg_state == NETREG_REGISTERED) {
2690                 ASSERT_RTNL();
2691
2692                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2693                                                   rxq);
2694                 if (rc)
2695                         return rc;
2696         }
2697
2698         dev->real_num_rx_queues = rxq;
2699         return 0;
2700 }
2701 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2702 #endif
2703
2704 /**
2705  * netif_get_num_default_rss_queues - default number of RSS queues
2706  *
2707  * This routine should set an upper limit on the number of RSS queues
2708  * used by default by multiqueue devices.
2709  */
2710 int netif_get_num_default_rss_queues(void)
2711 {
2712         return is_kdump_kernel() ?
2713                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2714 }
2715 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2716
2717 static void __netif_reschedule(struct Qdisc *q)
2718 {
2719         struct softnet_data *sd;
2720         unsigned long flags;
2721
2722         local_irq_save(flags);
2723         sd = this_cpu_ptr(&softnet_data);
2724         q->next_sched = NULL;
2725         *sd->output_queue_tailp = q;
2726         sd->output_queue_tailp = &q->next_sched;
2727         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2728         local_irq_restore(flags);
2729 }
2730
2731 void __netif_schedule(struct Qdisc *q)
2732 {
2733         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2734                 __netif_reschedule(q);
2735 }
2736 EXPORT_SYMBOL(__netif_schedule);
2737
2738 struct dev_kfree_skb_cb {
2739         enum skb_free_reason reason;
2740 };
2741
2742 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2743 {
2744         return (struct dev_kfree_skb_cb *)skb->cb;
2745 }
2746
2747 void netif_schedule_queue(struct netdev_queue *txq)
2748 {
2749         rcu_read_lock();
2750         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2751                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2752
2753                 __netif_schedule(q);
2754         }
2755         rcu_read_unlock();
2756 }
2757 EXPORT_SYMBOL(netif_schedule_queue);
2758
2759 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2760 {
2761         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2762                 struct Qdisc *q;
2763
2764                 rcu_read_lock();
2765                 q = rcu_dereference(dev_queue->qdisc);
2766                 __netif_schedule(q);
2767                 rcu_read_unlock();
2768         }
2769 }
2770 EXPORT_SYMBOL(netif_tx_wake_queue);
2771
2772 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2773 {
2774         unsigned long flags;
2775
2776         if (unlikely(!skb))
2777                 return;
2778
2779         if (likely(refcount_read(&skb->users) == 1)) {
2780                 smp_rmb();
2781                 refcount_set(&skb->users, 0);
2782         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2783                 return;
2784         }
2785         get_kfree_skb_cb(skb)->reason = reason;
2786         local_irq_save(flags);
2787         skb->next = __this_cpu_read(softnet_data.completion_queue);
2788         __this_cpu_write(softnet_data.completion_queue, skb);
2789         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2790         local_irq_restore(flags);
2791 }
2792 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2793
2794 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2795 {
2796         if (in_irq() || irqs_disabled())
2797                 __dev_kfree_skb_irq(skb, reason);
2798         else
2799                 dev_kfree_skb(skb);
2800 }
2801 EXPORT_SYMBOL(__dev_kfree_skb_any);
2802
2803
2804 /**
2805  * netif_device_detach - mark device as removed
2806  * @dev: network device
2807  *
2808  * Mark device as removed from system and therefore no longer available.
2809  */
2810 void netif_device_detach(struct net_device *dev)
2811 {
2812         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2813             netif_running(dev)) {
2814                 netif_tx_stop_all_queues(dev);
2815         }
2816 }
2817 EXPORT_SYMBOL(netif_device_detach);
2818
2819 /**
2820  * netif_device_attach - mark device as attached
2821  * @dev: network device
2822  *
2823  * Mark device as attached from system and restart if needed.
2824  */
2825 void netif_device_attach(struct net_device *dev)
2826 {
2827         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2828             netif_running(dev)) {
2829                 netif_tx_wake_all_queues(dev);
2830                 __netdev_watchdog_up(dev);
2831         }
2832 }
2833 EXPORT_SYMBOL(netif_device_attach);
2834
2835 /*
2836  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2837  * to be used as a distribution range.
2838  */
2839 static u16 skb_tx_hash(const struct net_device *dev,
2840                        const struct net_device *sb_dev,
2841                        struct sk_buff *skb)
2842 {
2843         u32 hash;
2844         u16 qoffset = 0;
2845         u16 qcount = dev->real_num_tx_queues;
2846
2847         if (dev->num_tc) {
2848                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2849
2850                 qoffset = sb_dev->tc_to_txq[tc].offset;
2851                 qcount = sb_dev->tc_to_txq[tc].count;
2852         }
2853
2854         if (skb_rx_queue_recorded(skb)) {
2855                 hash = skb_get_rx_queue(skb);
2856                 while (unlikely(hash >= qcount))
2857                         hash -= qcount;
2858                 return hash + qoffset;
2859         }
2860
2861         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2862 }
2863
2864 static void skb_warn_bad_offload(const struct sk_buff *skb)
2865 {
2866         static const netdev_features_t null_features;
2867         struct net_device *dev = skb->dev;
2868         const char *name = "";
2869
2870         if (!net_ratelimit())
2871                 return;
2872
2873         if (dev) {
2874                 if (dev->dev.parent)
2875                         name = dev_driver_string(dev->dev.parent);
2876                 else
2877                         name = netdev_name(dev);
2878         }
2879         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2880              "gso_type=%d ip_summed=%d\n",
2881              name, dev ? &dev->features : &null_features,
2882              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2883              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2884              skb_shinfo(skb)->gso_type, skb->ip_summed);
2885 }
2886
2887 /*
2888  * Invalidate hardware checksum when packet is to be mangled, and
2889  * complete checksum manually on outgoing path.
2890  */
2891 int skb_checksum_help(struct sk_buff *skb)
2892 {
2893         __wsum csum;
2894         int ret = 0, offset;
2895
2896         if (skb->ip_summed == CHECKSUM_COMPLETE)
2897                 goto out_set_summed;
2898
2899         if (unlikely(skb_shinfo(skb)->gso_size)) {
2900                 skb_warn_bad_offload(skb);
2901                 return -EINVAL;
2902         }
2903
2904         /* Before computing a checksum, we should make sure no frag could
2905          * be modified by an external entity : checksum could be wrong.
2906          */
2907         if (skb_has_shared_frag(skb)) {
2908                 ret = __skb_linearize(skb);
2909                 if (ret)
2910                         goto out;
2911         }
2912
2913         offset = skb_checksum_start_offset(skb);
2914         BUG_ON(offset >= skb_headlen(skb));
2915         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2916
2917         offset += skb->csum_offset;
2918         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2919
2920         if (skb_cloned(skb) &&
2921             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2922                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2923                 if (ret)
2924                         goto out;
2925         }
2926
2927         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2928 out_set_summed:
2929         skb->ip_summed = CHECKSUM_NONE;
2930 out:
2931         return ret;
2932 }
2933 EXPORT_SYMBOL(skb_checksum_help);
2934
2935 int skb_crc32c_csum_help(struct sk_buff *skb)
2936 {
2937         __le32 crc32c_csum;
2938         int ret = 0, offset, start;
2939
2940         if (skb->ip_summed != CHECKSUM_PARTIAL)
2941                 goto out;
2942
2943         if (unlikely(skb_is_gso(skb)))
2944                 goto out;
2945
2946         /* Before computing a checksum, we should make sure no frag could
2947          * be modified by an external entity : checksum could be wrong.
2948          */
2949         if (unlikely(skb_has_shared_frag(skb))) {
2950                 ret = __skb_linearize(skb);
2951                 if (ret)
2952                         goto out;
2953         }
2954         start = skb_checksum_start_offset(skb);
2955         offset = start + offsetof(struct sctphdr, checksum);
2956         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2957                 ret = -EINVAL;
2958                 goto out;
2959         }
2960         if (skb_cloned(skb) &&
2961             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2962                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2963                 if (ret)
2964                         goto out;
2965         }
2966         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2967                                                   skb->len - start, ~(__u32)0,
2968                                                   crc32c_csum_stub));
2969         *(__le32 *)(skb->data + offset) = crc32c_csum;
2970         skb->ip_summed = CHECKSUM_NONE;
2971         skb->csum_not_inet = 0;
2972 out:
2973         return ret;
2974 }
2975
2976 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2977 {
2978         __be16 type = skb->protocol;
2979
2980         /* Tunnel gso handlers can set protocol to ethernet. */
2981         if (type == htons(ETH_P_TEB)) {
2982                 struct ethhdr *eth;
2983
2984                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2985                         return 0;
2986
2987                 eth = (struct ethhdr *)skb->data;
2988                 type = eth->h_proto;
2989         }
2990
2991         return __vlan_get_protocol(skb, type, depth);
2992 }
2993
2994 /**
2995  *      skb_mac_gso_segment - mac layer segmentation handler.
2996  *      @skb: buffer to segment
2997  *      @features: features for the output path (see dev->features)
2998  */
2999 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3000                                     netdev_features_t features)
3001 {
3002         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3003         struct packet_offload *ptype;
3004         int vlan_depth = skb->mac_len;
3005         __be16 type = skb_network_protocol(skb, &vlan_depth);
3006
3007         if (unlikely(!type))
3008                 return ERR_PTR(-EINVAL);
3009
3010         __skb_pull(skb, vlan_depth);
3011
3012         rcu_read_lock();
3013         list_for_each_entry_rcu(ptype, &offload_base, list) {
3014                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3015                         segs = ptype->callbacks.gso_segment(skb, features);
3016                         break;
3017                 }
3018         }
3019         rcu_read_unlock();
3020
3021         __skb_push(skb, skb->data - skb_mac_header(skb));
3022
3023         return segs;
3024 }
3025 EXPORT_SYMBOL(skb_mac_gso_segment);
3026
3027
3028 /* openvswitch calls this on rx path, so we need a different check.
3029  */
3030 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3031 {
3032         if (tx_path)
3033                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3034                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3035
3036         return skb->ip_summed == CHECKSUM_NONE;
3037 }
3038
3039 /**
3040  *      __skb_gso_segment - Perform segmentation on skb.
3041  *      @skb: buffer to segment
3042  *      @features: features for the output path (see dev->features)
3043  *      @tx_path: whether it is called in TX path
3044  *
3045  *      This function segments the given skb and returns a list of segments.
3046  *
3047  *      It may return NULL if the skb requires no segmentation.  This is
3048  *      only possible when GSO is used for verifying header integrity.
3049  *
3050  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3051  */
3052 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3053                                   netdev_features_t features, bool tx_path)
3054 {
3055         struct sk_buff *segs;
3056
3057         if (unlikely(skb_needs_check(skb, tx_path))) {
3058                 int err;
3059
3060                 /* We're going to init ->check field in TCP or UDP header */
3061                 err = skb_cow_head(skb, 0);
3062                 if (err < 0)
3063                         return ERR_PTR(err);
3064         }
3065
3066         /* Only report GSO partial support if it will enable us to
3067          * support segmentation on this frame without needing additional
3068          * work.
3069          */
3070         if (features & NETIF_F_GSO_PARTIAL) {
3071                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3072                 struct net_device *dev = skb->dev;
3073
3074                 partial_features |= dev->features & dev->gso_partial_features;
3075                 if (!skb_gso_ok(skb, features | partial_features))
3076                         features &= ~NETIF_F_GSO_PARTIAL;
3077         }
3078
3079         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3080                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3081
3082         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3083         SKB_GSO_CB(skb)->encap_level = 0;
3084
3085         skb_reset_mac_header(skb);
3086         skb_reset_mac_len(skb);
3087
3088         segs = skb_mac_gso_segment(skb, features);
3089
3090         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3091                 skb_warn_bad_offload(skb);
3092
3093         return segs;
3094 }
3095 EXPORT_SYMBOL(__skb_gso_segment);
3096
3097 /* Take action when hardware reception checksum errors are detected. */
3098 #ifdef CONFIG_BUG
3099 void netdev_rx_csum_fault(struct net_device *dev)
3100 {
3101         if (net_ratelimit()) {
3102                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3103                 dump_stack();
3104         }
3105 }
3106 EXPORT_SYMBOL(netdev_rx_csum_fault);
3107 #endif
3108
3109 /* XXX: check that highmem exists at all on the given machine. */
3110 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3111 {
3112 #ifdef CONFIG_HIGHMEM
3113         int i;
3114
3115         if (!(dev->features & NETIF_F_HIGHDMA)) {
3116                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3117                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3118
3119                         if (PageHighMem(skb_frag_page(frag)))
3120                                 return 1;
3121                 }
3122         }
3123 #endif
3124         return 0;
3125 }
3126
3127 /* If MPLS offload request, verify we are testing hardware MPLS features
3128  * instead of standard features for the netdev.
3129  */
3130 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3131 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3132                                            netdev_features_t features,
3133                                            __be16 type)
3134 {
3135         if (eth_p_mpls(type))
3136                 features &= skb->dev->mpls_features;
3137
3138         return features;
3139 }
3140 #else
3141 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3142                                            netdev_features_t features,
3143                                            __be16 type)
3144 {
3145         return features;
3146 }
3147 #endif
3148
3149 static netdev_features_t harmonize_features(struct sk_buff *skb,
3150         netdev_features_t features)
3151 {
3152         int tmp;
3153         __be16 type;
3154
3155         type = skb_network_protocol(skb, &tmp);
3156         features = net_mpls_features(skb, features, type);
3157
3158         if (skb->ip_summed != CHECKSUM_NONE &&
3159             !can_checksum_protocol(features, type)) {
3160                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3161         }
3162         if (illegal_highdma(skb->dev, skb))
3163                 features &= ~NETIF_F_SG;
3164
3165         return features;
3166 }
3167
3168 netdev_features_t passthru_features_check(struct sk_buff *skb,
3169                                           struct net_device *dev,
3170                                           netdev_features_t features)
3171 {
3172         return features;
3173 }
3174 EXPORT_SYMBOL(passthru_features_check);
3175
3176 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3177                                              struct net_device *dev,
3178                                              netdev_features_t features)
3179 {
3180         return vlan_features_check(skb, features);
3181 }
3182
3183 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3184                                             struct net_device *dev,
3185                                             netdev_features_t features)
3186 {
3187         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3188
3189         if (gso_segs > dev->gso_max_segs)
3190                 return features & ~NETIF_F_GSO_MASK;
3191
3192         /* Support for GSO partial features requires software
3193          * intervention before we can actually process the packets
3194          * so we need to strip support for any partial features now
3195          * and we can pull them back in after we have partially
3196          * segmented the frame.
3197          */
3198         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3199                 features &= ~dev->gso_partial_features;
3200
3201         /* Make sure to clear the IPv4 ID mangling feature if the
3202          * IPv4 header has the potential to be fragmented.
3203          */
3204         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3205                 struct iphdr *iph = skb->encapsulation ?
3206                                     inner_ip_hdr(skb) : ip_hdr(skb);
3207
3208                 if (!(iph->frag_off & htons(IP_DF)))
3209                         features &= ~NETIF_F_TSO_MANGLEID;
3210         }
3211
3212         return features;
3213 }
3214
3215 netdev_features_t netif_skb_features(struct sk_buff *skb)
3216 {
3217         struct net_device *dev = skb->dev;
3218         netdev_features_t features = dev->features;
3219
3220         if (skb_is_gso(skb))
3221                 features = gso_features_check(skb, dev, features);
3222
3223         /* If encapsulation offload request, verify we are testing
3224          * hardware encapsulation features instead of standard
3225          * features for the netdev
3226          */
3227         if (skb->encapsulation)
3228                 features &= dev->hw_enc_features;
3229
3230         if (skb_vlan_tagged(skb))
3231                 features = netdev_intersect_features(features,
3232                                                      dev->vlan_features |
3233                                                      NETIF_F_HW_VLAN_CTAG_TX |
3234                                                      NETIF_F_HW_VLAN_STAG_TX);
3235
3236         if (dev->netdev_ops->ndo_features_check)
3237                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3238                                                                 features);
3239         else
3240                 features &= dflt_features_check(skb, dev, features);
3241
3242         return harmonize_features(skb, features);
3243 }
3244 EXPORT_SYMBOL(netif_skb_features);
3245
3246 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3247                     struct netdev_queue *txq, bool more)
3248 {
3249         unsigned int len;
3250         int rc;
3251
3252         if (dev_nit_active(dev))
3253                 dev_queue_xmit_nit(skb, dev);
3254
3255         len = skb->len;
3256         trace_net_dev_start_xmit(skb, dev);
3257         rc = netdev_start_xmit(skb, dev, txq, more);
3258         trace_net_dev_xmit(skb, rc, dev, len);
3259
3260         return rc;
3261 }
3262
3263 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3264                                     struct netdev_queue *txq, int *ret)
3265 {
3266         struct sk_buff *skb = first;
3267         int rc = NETDEV_TX_OK;
3268
3269         while (skb) {
3270                 struct sk_buff *next = skb->next;
3271
3272                 skb_mark_not_on_list(skb);
3273                 rc = xmit_one(skb, dev, txq, next != NULL);
3274                 if (unlikely(!dev_xmit_complete(rc))) {
3275                         skb->next = next;
3276                         goto out;
3277                 }
3278
3279                 skb = next;
3280                 if (netif_tx_queue_stopped(txq) && skb) {
3281                         rc = NETDEV_TX_BUSY;
3282                         break;
3283                 }
3284         }
3285
3286 out:
3287         *ret = rc;
3288         return skb;
3289 }
3290
3291 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3292                                           netdev_features_t features)
3293 {
3294         if (skb_vlan_tag_present(skb) &&
3295             !vlan_hw_offload_capable(features, skb->vlan_proto))
3296                 skb = __vlan_hwaccel_push_inside(skb);
3297         return skb;
3298 }
3299
3300 int skb_csum_hwoffload_help(struct sk_buff *skb,
3301                             const netdev_features_t features)
3302 {
3303         if (unlikely(skb->csum_not_inet))
3304                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3305                         skb_crc32c_csum_help(skb);
3306
3307         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3308 }
3309 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3310
3311 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3312 {
3313         netdev_features_t features;
3314
3315         features = netif_skb_features(skb);
3316         skb = validate_xmit_vlan(skb, features);
3317         if (unlikely(!skb))
3318                 goto out_null;
3319
3320         skb = sk_validate_xmit_skb(skb, dev);
3321         if (unlikely(!skb))
3322                 goto out_null;
3323
3324         if (netif_needs_gso(skb, features)) {
3325                 struct sk_buff *segs;
3326
3327                 segs = skb_gso_segment(skb, features);
3328                 if (IS_ERR(segs)) {
3329                         goto out_kfree_skb;
3330                 } else if (segs) {
3331                         consume_skb(skb);
3332                         skb = segs;
3333                 }
3334         } else {
3335                 if (skb_needs_linearize(skb, features) &&
3336                     __skb_linearize(skb))
3337                         goto out_kfree_skb;
3338
3339                 /* If packet is not checksummed and device does not
3340                  * support checksumming for this protocol, complete
3341                  * checksumming here.
3342                  */
3343                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3344                         if (skb->encapsulation)
3345                                 skb_set_inner_transport_header(skb,
3346                                                                skb_checksum_start_offset(skb));
3347                         else
3348                                 skb_set_transport_header(skb,
3349                                                          skb_checksum_start_offset(skb));
3350                         if (skb_csum_hwoffload_help(skb, features))
3351                                 goto out_kfree_skb;
3352                 }
3353         }
3354
3355         skb = validate_xmit_xfrm(skb, features, again);
3356
3357         return skb;
3358
3359 out_kfree_skb:
3360         kfree_skb(skb);
3361 out_null:
3362         atomic_long_inc(&dev->tx_dropped);
3363         return NULL;
3364 }
3365
3366 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3367 {
3368         struct sk_buff *next, *head = NULL, *tail;
3369
3370         for (; skb != NULL; skb = next) {
3371                 next = skb->next;
3372                 skb_mark_not_on_list(skb);
3373
3374                 /* in case skb wont be segmented, point to itself */
3375                 skb->prev = skb;
3376
3377                 skb = validate_xmit_skb(skb, dev, again);
3378                 if (!skb)
3379                         continue;
3380
3381                 if (!head)
3382                         head = skb;
3383                 else
3384                         tail->next = skb;
3385                 /* If skb was segmented, skb->prev points to
3386                  * the last segment. If not, it still contains skb.
3387                  */
3388                 tail = skb->prev;
3389         }
3390         return head;
3391 }
3392 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3393
3394 static void qdisc_pkt_len_init(struct sk_buff *skb)
3395 {
3396         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3397
3398         qdisc_skb_cb(skb)->pkt_len = skb->len;
3399
3400         /* To get more precise estimation of bytes sent on wire,
3401          * we add to pkt_len the headers size of all segments
3402          */
3403         if (shinfo->gso_size)  {
3404                 unsigned int hdr_len;
3405                 u16 gso_segs = shinfo->gso_segs;
3406
3407                 /* mac layer + network layer */
3408                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3409
3410                 /* + transport layer */
3411                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3412                         const struct tcphdr *th;
3413                         struct tcphdr _tcphdr;
3414
3415                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3416                                                 sizeof(_tcphdr), &_tcphdr);
3417                         if (likely(th))
3418                                 hdr_len += __tcp_hdrlen(th);
3419                 } else {
3420                         struct udphdr _udphdr;
3421
3422                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3423                                                sizeof(_udphdr), &_udphdr))
3424                                 hdr_len += sizeof(struct udphdr);
3425                 }
3426
3427                 if (shinfo->gso_type & SKB_GSO_DODGY)
3428                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3429                                                 shinfo->gso_size);
3430
3431                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3432         }
3433 }
3434
3435 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3436                                  struct net_device *dev,
3437                                  struct netdev_queue *txq)
3438 {
3439         spinlock_t *root_lock = qdisc_lock(q);
3440         struct sk_buff *to_free = NULL;
3441         bool contended;
3442         int rc;
3443
3444         qdisc_calculate_pkt_len(skb, q);
3445
3446         if (q->flags & TCQ_F_NOLOCK) {
3447                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3448                         __qdisc_drop(skb, &to_free);
3449                         rc = NET_XMIT_DROP;
3450                 } else {
3451                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3452                         qdisc_run(q);
3453                 }
3454
3455                 if (unlikely(to_free))
3456                         kfree_skb_list(to_free);
3457                 return rc;
3458         }
3459
3460         /*
3461          * Heuristic to force contended enqueues to serialize on a
3462          * separate lock before trying to get qdisc main lock.
3463          * This permits qdisc->running owner to get the lock more
3464          * often and dequeue packets faster.
3465          */
3466         contended = qdisc_is_running(q);
3467         if (unlikely(contended))
3468                 spin_lock(&q->busylock);
3469
3470         spin_lock(root_lock);
3471         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3472                 __qdisc_drop(skb, &to_free);
3473                 rc = NET_XMIT_DROP;
3474         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3475                    qdisc_run_begin(q)) {
3476                 /*
3477                  * This is a work-conserving queue; there are no old skbs
3478                  * waiting to be sent out; and the qdisc is not running -
3479                  * xmit the skb directly.
3480                  */
3481
3482                 qdisc_bstats_update(q, skb);
3483
3484                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3485                         if (unlikely(contended)) {
3486                                 spin_unlock(&q->busylock);
3487                                 contended = false;
3488                         }
3489                         __qdisc_run(q);
3490                 }
3491
3492                 qdisc_run_end(q);
3493                 rc = NET_XMIT_SUCCESS;
3494         } else {
3495                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3496                 if (qdisc_run_begin(q)) {
3497                         if (unlikely(contended)) {
3498                                 spin_unlock(&q->busylock);
3499                                 contended = false;
3500                         }
3501                         __qdisc_run(q);
3502                         qdisc_run_end(q);
3503                 }
3504         }
3505         spin_unlock(root_lock);
3506         if (unlikely(to_free))
3507                 kfree_skb_list(to_free);
3508         if (unlikely(contended))
3509                 spin_unlock(&q->busylock);
3510         return rc;
3511 }
3512
3513 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3514 static void skb_update_prio(struct sk_buff *skb)
3515 {
3516         const struct netprio_map *map;
3517         const struct sock *sk;
3518         unsigned int prioidx;
3519
3520         if (skb->priority)
3521                 return;
3522         map = rcu_dereference_bh(skb->dev->priomap);
3523         if (!map)
3524                 return;
3525         sk = skb_to_full_sk(skb);
3526         if (!sk)
3527                 return;
3528
3529         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3530
3531         if (prioidx < map->priomap_len)
3532                 skb->priority = map->priomap[prioidx];
3533 }
3534 #else
3535 #define skb_update_prio(skb)
3536 #endif
3537
3538 DEFINE_PER_CPU(int, xmit_recursion);
3539 EXPORT_SYMBOL(xmit_recursion);
3540
3541 /**
3542  *      dev_loopback_xmit - loop back @skb
3543  *      @net: network namespace this loopback is happening in
3544  *      @sk:  sk needed to be a netfilter okfn
3545  *      @skb: buffer to transmit
3546  */
3547 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3548 {
3549         skb_reset_mac_header(skb);
3550         __skb_pull(skb, skb_network_offset(skb));
3551         skb->pkt_type = PACKET_LOOPBACK;
3552         skb->ip_summed = CHECKSUM_UNNECESSARY;
3553         WARN_ON(!skb_dst(skb));
3554         skb_dst_force(skb);
3555         netif_rx_ni(skb);
3556         return 0;
3557 }
3558 EXPORT_SYMBOL(dev_loopback_xmit);
3559
3560 #ifdef CONFIG_NET_EGRESS
3561 static struct sk_buff *
3562 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3563 {
3564         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3565         struct tcf_result cl_res;
3566
3567         if (!miniq)
3568                 return skb;
3569
3570         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3571         mini_qdisc_bstats_cpu_update(miniq, skb);
3572
3573         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3574         case TC_ACT_OK:
3575         case TC_ACT_RECLASSIFY:
3576                 skb->tc_index = TC_H_MIN(cl_res.classid);
3577                 break;
3578         case TC_ACT_SHOT:
3579                 mini_qdisc_qstats_cpu_drop(miniq);
3580                 *ret = NET_XMIT_DROP;
3581                 kfree_skb(skb);
3582                 return NULL;
3583         case TC_ACT_STOLEN:
3584         case TC_ACT_QUEUED:
3585         case TC_ACT_TRAP:
3586                 *ret = NET_XMIT_SUCCESS;
3587                 consume_skb(skb);
3588                 return NULL;
3589         case TC_ACT_REDIRECT:
3590                 /* No need to push/pop skb's mac_header here on egress! */
3591                 skb_do_redirect(skb);
3592                 *ret = NET_XMIT_SUCCESS;
3593                 return NULL;
3594         default:
3595                 break;
3596         }
3597
3598         return skb;
3599 }
3600 #endif /* CONFIG_NET_EGRESS */
3601
3602 #ifdef CONFIG_XPS
3603 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3604                                struct xps_dev_maps *dev_maps, unsigned int tci)
3605 {
3606         struct xps_map *map;
3607         int queue_index = -1;
3608
3609         if (dev->num_tc) {
3610                 tci *= dev->num_tc;
3611                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3612         }
3613
3614         map = rcu_dereference(dev_maps->attr_map[tci]);
3615         if (map) {
3616                 if (map->len == 1)
3617                         queue_index = map->queues[0];
3618                 else
3619                         queue_index = map->queues[reciprocal_scale(
3620                                                 skb_get_hash(skb), map->len)];
3621                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3622                         queue_index = -1;
3623         }
3624         return queue_index;
3625 }
3626 #endif
3627
3628 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3629                          struct sk_buff *skb)
3630 {
3631 #ifdef CONFIG_XPS
3632         struct xps_dev_maps *dev_maps;
3633         struct sock *sk = skb->sk;
3634         int queue_index = -1;
3635
3636         if (!static_key_false(&xps_needed))
3637                 return -1;
3638
3639         rcu_read_lock();
3640         if (!static_key_false(&xps_rxqs_needed))
3641                 goto get_cpus_map;
3642
3643         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3644         if (dev_maps) {
3645                 int tci = sk_rx_queue_get(sk);
3646
3647                 if (tci >= 0 && tci < dev->num_rx_queues)
3648                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3649                                                           tci);
3650         }
3651
3652 get_cpus_map:
3653         if (queue_index < 0) {
3654                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3655                 if (dev_maps) {
3656                         unsigned int tci = skb->sender_cpu - 1;
3657
3658                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3659                                                           tci);
3660                 }
3661         }
3662         rcu_read_unlock();
3663
3664         return queue_index;
3665 #else
3666         return -1;
3667 #endif
3668 }
3669
3670 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3671                      struct net_device *sb_dev,
3672                      select_queue_fallback_t fallback)
3673 {
3674         return 0;
3675 }
3676 EXPORT_SYMBOL(dev_pick_tx_zero);
3677
3678 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3679                        struct net_device *sb_dev,
3680                        select_queue_fallback_t fallback)
3681 {
3682         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3683 }
3684 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3685
3686 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3687                             struct net_device *sb_dev)
3688 {
3689         struct sock *sk = skb->sk;
3690         int queue_index = sk_tx_queue_get(sk);
3691
3692         sb_dev = sb_dev ? : dev;
3693
3694         if (queue_index < 0 || skb->ooo_okay ||
3695             queue_index >= dev->real_num_tx_queues) {
3696                 int new_index = get_xps_queue(dev, sb_dev, skb);
3697
3698                 if (new_index < 0)
3699                         new_index = skb_tx_hash(dev, sb_dev, skb);
3700
3701                 if (queue_index != new_index && sk &&
3702                     sk_fullsock(sk) &&
3703                     rcu_access_pointer(sk->sk_dst_cache))
3704                         sk_tx_queue_set(sk, new_index);
3705
3706                 queue_index = new_index;
3707         }
3708
3709         return queue_index;
3710 }
3711
3712 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3713                                     struct sk_buff *skb,
3714                                     struct net_device *sb_dev)
3715 {
3716         int queue_index = 0;
3717
3718 #ifdef CONFIG_XPS
3719         u32 sender_cpu = skb->sender_cpu - 1;
3720
3721         if (sender_cpu >= (u32)NR_CPUS)
3722                 skb->sender_cpu = raw_smp_processor_id() + 1;
3723 #endif
3724
3725         if (dev->real_num_tx_queues != 1) {
3726                 const struct net_device_ops *ops = dev->netdev_ops;
3727
3728                 if (ops->ndo_select_queue)
3729                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3730                                                             __netdev_pick_tx);
3731                 else
3732                         queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3733
3734                 queue_index = netdev_cap_txqueue(dev, queue_index);
3735         }
3736
3737         skb_set_queue_mapping(skb, queue_index);
3738         return netdev_get_tx_queue(dev, queue_index);
3739 }
3740
3741 /**
3742  *      __dev_queue_xmit - transmit a buffer
3743  *      @skb: buffer to transmit
3744  *      @sb_dev: suboordinate device used for L2 forwarding offload
3745  *
3746  *      Queue a buffer for transmission to a network device. The caller must
3747  *      have set the device and priority and built the buffer before calling
3748  *      this function. The function can be called from an interrupt.
3749  *
3750  *      A negative errno code is returned on a failure. A success does not
3751  *      guarantee the frame will be transmitted as it may be dropped due
3752  *      to congestion or traffic shaping.
3753  *
3754  * -----------------------------------------------------------------------------------
3755  *      I notice this method can also return errors from the queue disciplines,
3756  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3757  *      be positive.
3758  *
3759  *      Regardless of the return value, the skb is consumed, so it is currently
3760  *      difficult to retry a send to this method.  (You can bump the ref count
3761  *      before sending to hold a reference for retry if you are careful.)
3762  *
3763  *      When calling this method, interrupts MUST be enabled.  This is because
3764  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3765  *          --BLG
3766  */
3767 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3768 {
3769         struct net_device *dev = skb->dev;
3770         struct netdev_queue *txq;
3771         struct Qdisc *q;
3772         int rc = -ENOMEM;
3773         bool again = false;
3774
3775         skb_reset_mac_header(skb);
3776
3777         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3778                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3779
3780         /* Disable soft irqs for various locks below. Also
3781          * stops preemption for RCU.
3782          */
3783         rcu_read_lock_bh();
3784
3785         skb_update_prio(skb);
3786
3787         qdisc_pkt_len_init(skb);
3788 #ifdef CONFIG_NET_CLS_ACT
3789         skb->tc_at_ingress = 0;
3790 # ifdef CONFIG_NET_EGRESS
3791         if (static_branch_unlikely(&egress_needed_key)) {
3792                 skb = sch_handle_egress(skb, &rc, dev);
3793                 if (!skb)
3794                         goto out;
3795         }
3796 # endif
3797 #endif
3798         /* If device/qdisc don't need skb->dst, release it right now while
3799          * its hot in this cpu cache.
3800          */
3801         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3802                 skb_dst_drop(skb);
3803         else
3804                 skb_dst_force(skb);
3805
3806         txq = netdev_pick_tx(dev, skb, sb_dev);
3807         q = rcu_dereference_bh(txq->qdisc);
3808
3809         trace_net_dev_queue(skb);
3810         if (q->enqueue) {
3811                 rc = __dev_xmit_skb(skb, q, dev, txq);
3812                 goto out;
3813         }
3814
3815         /* The device has no queue. Common case for software devices:
3816          * loopback, all the sorts of tunnels...
3817
3818          * Really, it is unlikely that netif_tx_lock protection is necessary
3819          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3820          * counters.)
3821          * However, it is possible, that they rely on protection
3822          * made by us here.
3823
3824          * Check this and shot the lock. It is not prone from deadlocks.
3825          *Either shot noqueue qdisc, it is even simpler 8)
3826          */
3827         if (dev->flags & IFF_UP) {
3828                 int cpu = smp_processor_id(); /* ok because BHs are off */
3829
3830                 if (txq->xmit_lock_owner != cpu) {
3831                         if (unlikely(__this_cpu_read(xmit_recursion) >
3832                                      XMIT_RECURSION_LIMIT))
3833                                 goto recursion_alert;
3834
3835                         skb = validate_xmit_skb(skb, dev, &again);
3836                         if (!skb)
3837                                 goto out;
3838
3839                         HARD_TX_LOCK(dev, txq, cpu);
3840
3841                         if (!netif_xmit_stopped(txq)) {
3842                                 __this_cpu_inc(xmit_recursion);
3843                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3844                                 __this_cpu_dec(xmit_recursion);
3845                                 if (dev_xmit_complete(rc)) {
3846                                         HARD_TX_UNLOCK(dev, txq);
3847                                         goto out;
3848                                 }
3849                         }
3850                         HARD_TX_UNLOCK(dev, txq);
3851                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3852                                              dev->name);
3853                 } else {
3854                         /* Recursion is detected! It is possible,
3855                          * unfortunately
3856                          */
3857 recursion_alert:
3858                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3859                                              dev->name);
3860                 }
3861         }
3862
3863         rc = -ENETDOWN;
3864         rcu_read_unlock_bh();
3865
3866         atomic_long_inc(&dev->tx_dropped);
3867         kfree_skb_list(skb);
3868         return rc;
3869 out:
3870         rcu_read_unlock_bh();
3871         return rc;
3872 }
3873
3874 int dev_queue_xmit(struct sk_buff *skb)
3875 {
3876         return __dev_queue_xmit(skb, NULL);
3877 }
3878 EXPORT_SYMBOL(dev_queue_xmit);
3879
3880 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3881 {
3882         return __dev_queue_xmit(skb, sb_dev);
3883 }
3884 EXPORT_SYMBOL(dev_queue_xmit_accel);
3885
3886 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3887 {
3888         struct net_device *dev = skb->dev;
3889         struct sk_buff *orig_skb = skb;
3890         struct netdev_queue *txq;
3891         int ret = NETDEV_TX_BUSY;
3892         bool again = false;
3893
3894         if (unlikely(!netif_running(dev) ||
3895                      !netif_carrier_ok(dev)))
3896                 goto drop;
3897
3898         skb = validate_xmit_skb_list(skb, dev, &again);
3899         if (skb != orig_skb)
3900                 goto drop;
3901
3902         skb_set_queue_mapping(skb, queue_id);
3903         txq = skb_get_tx_queue(dev, skb);
3904
3905         local_bh_disable();
3906
3907         HARD_TX_LOCK(dev, txq, smp_processor_id());
3908         if (!netif_xmit_frozen_or_drv_stopped(txq))
3909                 ret = netdev_start_xmit(skb, dev, txq, false);
3910         HARD_TX_UNLOCK(dev, txq);
3911
3912         local_bh_enable();
3913
3914         if (!dev_xmit_complete(ret))
3915                 kfree_skb(skb);
3916
3917         return ret;
3918 drop:
3919         atomic_long_inc(&dev->tx_dropped);
3920         kfree_skb_list(skb);
3921         return NET_XMIT_DROP;
3922 }
3923 EXPORT_SYMBOL(dev_direct_xmit);
3924
3925 /*************************************************************************
3926  *                      Receiver routines
3927  *************************************************************************/
3928
3929 int netdev_max_backlog __read_mostly = 1000;
3930 EXPORT_SYMBOL(netdev_max_backlog);
3931
3932 int netdev_tstamp_prequeue __read_mostly = 1;
3933 int netdev_budget __read_mostly = 300;
3934 unsigned int __read_mostly netdev_budget_usecs = 2000;
3935 int weight_p __read_mostly = 64;           /* old backlog weight */
3936 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3937 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3938 int dev_rx_weight __read_mostly = 64;
3939 int dev_tx_weight __read_mostly = 64;
3940
3941 /* Called with irq disabled */
3942 static inline void ____napi_schedule(struct softnet_data *sd,
3943                                      struct napi_struct *napi)
3944 {
3945         list_add_tail(&napi->poll_list, &sd->poll_list);
3946         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3947 }
3948
3949 #ifdef CONFIG_RPS
3950
3951 /* One global table that all flow-based protocols share. */
3952 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3953 EXPORT_SYMBOL(rps_sock_flow_table);
3954 u32 rps_cpu_mask __read_mostly;
3955 EXPORT_SYMBOL(rps_cpu_mask);
3956
3957 struct static_key rps_needed __read_mostly;
3958 EXPORT_SYMBOL(rps_needed);
3959 struct static_key rfs_needed __read_mostly;
3960 EXPORT_SYMBOL(rfs_needed);
3961
3962 static struct rps_dev_flow *
3963 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3964             struct rps_dev_flow *rflow, u16 next_cpu)
3965 {
3966         if (next_cpu < nr_cpu_ids) {
3967 #ifdef CONFIG_RFS_ACCEL
3968                 struct netdev_rx_queue *rxqueue;
3969                 struct rps_dev_flow_table *flow_table;
3970                 struct rps_dev_flow *old_rflow;
3971                 u32 flow_id;
3972                 u16 rxq_index;
3973                 int rc;
3974
3975                 /* Should we steer this flow to a different hardware queue? */
3976                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3977                     !(dev->features & NETIF_F_NTUPLE))
3978                         goto out;
3979                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3980                 if (rxq_index == skb_get_rx_queue(skb))
3981                         goto out;
3982
3983                 rxqueue = dev->_rx + rxq_index;
3984                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3985                 if (!flow_table)
3986                         goto out;
3987                 flow_id = skb_get_hash(skb) & flow_table->mask;
3988                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3989                                                         rxq_index, flow_id);
3990                 if (rc < 0)
3991                         goto out;
3992                 old_rflow = rflow;
3993                 rflow = &flow_table->flows[flow_id];
3994                 rflow->filter = rc;
3995                 if (old_rflow->filter == rflow->filter)
3996                         old_rflow->filter = RPS_NO_FILTER;
3997         out:
3998 #endif
3999                 rflow->last_qtail =
4000                         per_cpu(softnet_data, next_cpu).input_queue_head;
4001         }
4002
4003         rflow->cpu = next_cpu;
4004         return rflow;
4005 }
4006
4007 /*
4008  * get_rps_cpu is called from netif_receive_skb and returns the target
4009  * CPU from the RPS map of the receiving queue for a given skb.
4010  * rcu_read_lock must be held on entry.
4011  */
4012 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4013                        struct rps_dev_flow **rflowp)
4014 {
4015         const struct rps_sock_flow_table *sock_flow_table;
4016         struct netdev_rx_queue *rxqueue = dev->_rx;
4017         struct rps_dev_flow_table *flow_table;
4018         struct rps_map *map;
4019         int cpu = -1;
4020         u32 tcpu;
4021         u32 hash;
4022
4023         if (skb_rx_queue_recorded(skb)) {
4024                 u16 index = skb_get_rx_queue(skb);
4025
4026                 if (unlikely(index >= dev->real_num_rx_queues)) {
4027                         WARN_ONCE(dev->real_num_rx_queues > 1,
4028                                   "%s received packet on queue %u, but number "
4029                                   "of RX queues is %u\n",
4030                                   dev->name, index, dev->real_num_rx_queues);
4031                         goto done;
4032                 }
4033                 rxqueue += index;
4034         }
4035
4036         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4037
4038         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4039         map = rcu_dereference(rxqueue->rps_map);
4040         if (!flow_table && !map)
4041                 goto done;
4042
4043         skb_reset_network_header(skb);
4044         hash = skb_get_hash(skb);
4045         if (!hash)
4046                 goto done;
4047
4048         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4049         if (flow_table && sock_flow_table) {
4050                 struct rps_dev_flow *rflow;
4051                 u32 next_cpu;
4052                 u32 ident;
4053
4054                 /* First check into global flow table if there is a match */
4055                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4056                 if ((ident ^ hash) & ~rps_cpu_mask)
4057                         goto try_rps;
4058
4059                 next_cpu = ident & rps_cpu_mask;
4060
4061                 /* OK, now we know there is a match,
4062                  * we can look at the local (per receive queue) flow table
4063                  */
4064                 rflow = &flow_table->flows[hash & flow_table->mask];
4065                 tcpu = rflow->cpu;
4066
4067                 /*
4068                  * If the desired CPU (where last recvmsg was done) is
4069                  * different from current CPU (one in the rx-queue flow
4070                  * table entry), switch if one of the following holds:
4071                  *   - Current CPU is unset (>= nr_cpu_ids).
4072                  *   - Current CPU is offline.
4073                  *   - The current CPU's queue tail has advanced beyond the
4074                  *     last packet that was enqueued using this table entry.
4075                  *     This guarantees that all previous packets for the flow
4076                  *     have been dequeued, thus preserving in order delivery.
4077                  */
4078                 if (unlikely(tcpu != next_cpu) &&
4079                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4080                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4081                       rflow->last_qtail)) >= 0)) {
4082                         tcpu = next_cpu;
4083                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4084                 }
4085
4086                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4087                         *rflowp = rflow;
4088                         cpu = tcpu;
4089                         goto done;
4090                 }
4091         }
4092
4093 try_rps:
4094
4095         if (map) {
4096                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4097                 if (cpu_online(tcpu)) {
4098                         cpu = tcpu;
4099                         goto done;
4100                 }
4101         }
4102
4103 done:
4104         return cpu;
4105 }
4106
4107 #ifdef CONFIG_RFS_ACCEL
4108
4109 /**
4110  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4111  * @dev: Device on which the filter was set
4112  * @rxq_index: RX queue index
4113  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4114  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4115  *
4116  * Drivers that implement ndo_rx_flow_steer() should periodically call
4117  * this function for each installed filter and remove the filters for
4118  * which it returns %true.
4119  */
4120 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4121                          u32 flow_id, u16 filter_id)
4122 {
4123         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4124         struct rps_dev_flow_table *flow_table;
4125         struct rps_dev_flow *rflow;
4126         bool expire = true;
4127         unsigned int cpu;
4128
4129         rcu_read_lock();
4130         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4131         if (flow_table && flow_id <= flow_table->mask) {
4132                 rflow = &flow_table->flows[flow_id];
4133                 cpu = READ_ONCE(rflow->cpu);
4134                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4135                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4136                            rflow->last_qtail) <
4137                      (int)(10 * flow_table->mask)))
4138                         expire = false;
4139         }
4140         rcu_read_unlock();
4141         return expire;
4142 }
4143 EXPORT_SYMBOL(rps_may_expire_flow);
4144
4145 #endif /* CONFIG_RFS_ACCEL */
4146
4147 /* Called from hardirq (IPI) context */
4148 static void rps_trigger_softirq(void *data)
4149 {
4150         struct softnet_data *sd = data;
4151
4152         ____napi_schedule(sd, &sd->backlog);
4153         sd->received_rps++;
4154 }
4155
4156 #endif /* CONFIG_RPS */
4157
4158 /*
4159  * Check if this softnet_data structure is another cpu one
4160  * If yes, queue it to our IPI list and return 1
4161  * If no, return 0
4162  */
4163 static int rps_ipi_queued(struct softnet_data *sd)
4164 {
4165 #ifdef CONFIG_RPS
4166         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4167
4168         if (sd != mysd) {
4169                 sd->rps_ipi_next = mysd->rps_ipi_list;
4170                 mysd->rps_ipi_list = sd;
4171
4172                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4173                 return 1;
4174         }
4175 #endif /* CONFIG_RPS */
4176         return 0;
4177 }
4178
4179 #ifdef CONFIG_NET_FLOW_LIMIT
4180 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4181 #endif
4182
4183 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4184 {
4185 #ifdef CONFIG_NET_FLOW_LIMIT
4186         struct sd_flow_limit *fl;
4187         struct softnet_data *sd;
4188         unsigned int old_flow, new_flow;
4189
4190         if (qlen < (netdev_max_backlog >> 1))
4191                 return false;
4192
4193         sd = this_cpu_ptr(&softnet_data);
4194
4195         rcu_read_lock();
4196         fl = rcu_dereference(sd->flow_limit);
4197         if (fl) {
4198                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4199                 old_flow = fl->history[fl->history_head];
4200                 fl->history[fl->history_head] = new_flow;
4201
4202                 fl->history_head++;
4203                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4204
4205                 if (likely(fl->buckets[old_flow]))
4206                         fl->buckets[old_flow]--;
4207
4208                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4209                         fl->count++;
4210                         rcu_read_unlock();
4211                         return true;
4212                 }
4213         }
4214         rcu_read_unlock();
4215 #endif
4216         return false;
4217 }
4218
4219 /*
4220  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4221  * queue (may be a remote CPU queue).
4222  */
4223 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4224                               unsigned int *qtail)
4225 {
4226         struct softnet_data *sd;
4227         unsigned long flags;
4228         unsigned int qlen;
4229
4230         sd = &per_cpu(softnet_data, cpu);
4231
4232         local_irq_save(flags);
4233
4234         rps_lock(sd);
4235         if (!netif_running(skb->dev))
4236                 goto drop;
4237         qlen = skb_queue_len(&sd->input_pkt_queue);
4238         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4239                 if (qlen) {
4240 enqueue:
4241                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4242                         input_queue_tail_incr_save(sd, qtail);
4243                         rps_unlock(sd);
4244                         local_irq_restore(flags);
4245                         return NET_RX_SUCCESS;
4246                 }
4247
4248                 /* Schedule NAPI for backlog device
4249                  * We can use non atomic operation since we own the queue lock
4250                  */
4251                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4252                         if (!rps_ipi_queued(sd))
4253                                 ____napi_schedule(sd, &sd->backlog);
4254                 }
4255                 goto enqueue;
4256         }
4257
4258 drop:
4259         sd->dropped++;
4260         rps_unlock(sd);
4261
4262         local_irq_restore(flags);
4263
4264         atomic_long_inc(&skb->dev->rx_dropped);
4265         kfree_skb(skb);
4266         return NET_RX_DROP;
4267 }
4268
4269 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4270 {
4271         struct net_device *dev = skb->dev;
4272         struct netdev_rx_queue *rxqueue;
4273
4274         rxqueue = dev->_rx;
4275
4276         if (skb_rx_queue_recorded(skb)) {
4277                 u16 index = skb_get_rx_queue(skb);
4278
4279                 if (unlikely(index >= dev->real_num_rx_queues)) {
4280                         WARN_ONCE(dev->real_num_rx_queues > 1,
4281                                   "%s received packet on queue %u, but number "
4282                                   "of RX queues is %u\n",
4283                                   dev->name, index, dev->real_num_rx_queues);
4284
4285                         return rxqueue; /* Return first rxqueue */
4286                 }
4287                 rxqueue += index;
4288         }
4289         return rxqueue;
4290 }
4291
4292 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4293                                      struct xdp_buff *xdp,
4294                                      struct bpf_prog *xdp_prog)
4295 {
4296         struct netdev_rx_queue *rxqueue;
4297         void *orig_data, *orig_data_end;
4298         u32 metalen, act = XDP_DROP;
4299         __be16 orig_eth_type;
4300         struct ethhdr *eth;
4301         bool orig_bcast;
4302         int hlen, off;
4303         u32 mac_len;
4304
4305         /* Reinjected packets coming from act_mirred or similar should
4306          * not get XDP generic processing.
4307          */
4308         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4309                 return XDP_PASS;
4310
4311         /* XDP packets must be linear and must have sufficient headroom
4312          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4313          * native XDP provides, thus we need to do it here as well.
4314          */
4315         if (skb_is_nonlinear(skb) ||
4316             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4317                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4318                 int troom = skb->tail + skb->data_len - skb->end;
4319
4320                 /* In case we have to go down the path and also linearize,
4321                  * then lets do the pskb_expand_head() work just once here.
4322                  */
4323                 if (pskb_expand_head(skb,
4324                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4325                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4326                         goto do_drop;
4327                 if (skb_linearize(skb))
4328                         goto do_drop;
4329         }
4330
4331         /* The XDP program wants to see the packet starting at the MAC
4332          * header.
4333          */
4334         mac_len = skb->data - skb_mac_header(skb);
4335         hlen = skb_headlen(skb) + mac_len;
4336         xdp->data = skb->data - mac_len;
4337         xdp->data_meta = xdp->data;
4338         xdp->data_end = xdp->data + hlen;
4339         xdp->data_hard_start = skb->data - skb_headroom(skb);
4340         orig_data_end = xdp->data_end;
4341         orig_data = xdp->data;
4342         eth = (struct ethhdr *)xdp->data;
4343         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4344         orig_eth_type = eth->h_proto;
4345
4346         rxqueue = netif_get_rxqueue(skb);
4347         xdp->rxq = &rxqueue->xdp_rxq;
4348
4349         act = bpf_prog_run_xdp(xdp_prog, xdp);
4350
4351         off = xdp->data - orig_data;
4352         if (off > 0)
4353                 __skb_pull(skb, off);
4354         else if (off < 0)
4355                 __skb_push(skb, -off);
4356         skb->mac_header += off;
4357
4358         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4359          * pckt.
4360          */
4361         off = orig_data_end - xdp->data_end;
4362         if (off != 0) {
4363                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4364                 skb->len -= off;
4365
4366         }
4367
4368         /* check if XDP changed eth hdr such SKB needs update */
4369         eth = (struct ethhdr *)xdp->data;
4370         if ((orig_eth_type != eth->h_proto) ||
4371             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4372                 __skb_push(skb, ETH_HLEN);
4373                 skb->protocol = eth_type_trans(skb, skb->dev);
4374         }
4375
4376         switch (act) {
4377         case XDP_REDIRECT:
4378         case XDP_TX:
4379                 __skb_push(skb, mac_len);
4380                 break;
4381         case XDP_PASS:
4382                 metalen = xdp->data - xdp->data_meta;
4383                 if (metalen)
4384                         skb_metadata_set(skb, metalen);
4385                 break;
4386         default:
4387                 bpf_warn_invalid_xdp_action(act);
4388                 /* fall through */
4389         case XDP_ABORTED:
4390                 trace_xdp_exception(skb->dev, xdp_prog, act);
4391                 /* fall through */
4392         case XDP_DROP:
4393         do_drop:
4394                 kfree_skb(skb);
4395                 break;
4396         }
4397
4398         return act;
4399 }
4400
4401 /* When doing generic XDP we have to bypass the qdisc layer and the
4402  * network taps in order to match in-driver-XDP behavior.
4403  */
4404 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4405 {
4406         struct net_device *dev = skb->dev;
4407         struct netdev_queue *txq;
4408         bool free_skb = true;
4409         int cpu, rc;
4410
4411         txq = netdev_pick_tx(dev, skb, NULL);
4412         cpu = smp_processor_id();
4413         HARD_TX_LOCK(dev, txq, cpu);
4414         if (!netif_xmit_stopped(txq)) {
4415                 rc = netdev_start_xmit(skb, dev, txq, 0);
4416                 if (dev_xmit_complete(rc))
4417                         free_skb = false;
4418         }
4419         HARD_TX_UNLOCK(dev, txq);
4420         if (free_skb) {
4421                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4422                 kfree_skb(skb);
4423         }
4424 }
4425 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4426
4427 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4428
4429 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4430 {
4431         if (xdp_prog) {
4432                 struct xdp_buff xdp;
4433                 u32 act;
4434                 int err;
4435
4436                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4437                 if (act != XDP_PASS) {
4438                         switch (act) {
4439                         case XDP_REDIRECT:
4440                                 err = xdp_do_generic_redirect(skb->dev, skb,
4441                                                               &xdp, xdp_prog);
4442                                 if (err)
4443                                         goto out_redir;
4444                                 break;
4445                         case XDP_TX:
4446                                 generic_xdp_tx(skb, xdp_prog);
4447                                 break;
4448                         }
4449                         return XDP_DROP;
4450                 }
4451         }
4452         return XDP_PASS;
4453 out_redir:
4454         kfree_skb(skb);
4455         return XDP_DROP;
4456 }
4457 EXPORT_SYMBOL_GPL(do_xdp_generic);
4458
4459 static int netif_rx_internal(struct sk_buff *skb)
4460 {
4461         int ret;
4462
4463         net_timestamp_check(netdev_tstamp_prequeue, skb);
4464
4465         trace_netif_rx(skb);
4466
4467         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4468                 int ret;
4469
4470                 preempt_disable();
4471                 rcu_read_lock();
4472                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4473                 rcu_read_unlock();
4474                 preempt_enable();
4475
4476                 /* Consider XDP consuming the packet a success from
4477                  * the netdev point of view we do not want to count
4478                  * this as an error.
4479                  */
4480                 if (ret != XDP_PASS)
4481                         return NET_RX_SUCCESS;
4482         }
4483
4484 #ifdef CONFIG_RPS
4485         if (static_key_false(&rps_needed)) {
4486                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4487                 int cpu;
4488
4489                 preempt_disable();
4490                 rcu_read_lock();
4491
4492                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4493                 if (cpu < 0)
4494                         cpu = smp_processor_id();
4495
4496                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4497
4498                 rcu_read_unlock();
4499                 preempt_enable();
4500         } else
4501 #endif
4502         {
4503                 unsigned int qtail;
4504
4505                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4506                 put_cpu();
4507         }
4508         return ret;
4509 }
4510
4511 /**
4512  *      netif_rx        -       post buffer to the network code
4513  *      @skb: buffer to post
4514  *
4515  *      This function receives a packet from a device driver and queues it for
4516  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4517  *      may be dropped during processing for congestion control or by the
4518  *      protocol layers.
4519  *
4520  *      return values:
4521  *      NET_RX_SUCCESS  (no congestion)
4522  *      NET_RX_DROP     (packet was dropped)
4523  *
4524  */
4525
4526 int netif_rx(struct sk_buff *skb)
4527 {
4528         trace_netif_rx_entry(skb);
4529
4530         return netif_rx_internal(skb);
4531 }
4532 EXPORT_SYMBOL(netif_rx);
4533
4534 int netif_rx_ni(struct sk_buff *skb)
4535 {
4536         int err;
4537
4538         trace_netif_rx_ni_entry(skb);
4539
4540         preempt_disable();
4541         err = netif_rx_internal(skb);
4542         if (local_softirq_pending())
4543                 do_softirq();
4544         preempt_enable();
4545
4546         return err;
4547 }
4548 EXPORT_SYMBOL(netif_rx_ni);
4549
4550 static __latent_entropy void net_tx_action(struct softirq_action *h)
4551 {
4552         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4553
4554         if (sd->completion_queue) {
4555                 struct sk_buff *clist;
4556
4557                 local_irq_disable();
4558                 clist = sd->completion_queue;
4559                 sd->completion_queue = NULL;
4560                 local_irq_enable();
4561
4562                 while (clist) {
4563                         struct sk_buff *skb = clist;
4564
4565                         clist = clist->next;
4566
4567                         WARN_ON(refcount_read(&skb->users));
4568                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4569                                 trace_consume_skb(skb);
4570                         else
4571                                 trace_kfree_skb(skb, net_tx_action);
4572
4573                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4574                                 __kfree_skb(skb);
4575                         else
4576                                 __kfree_skb_defer(skb);
4577                 }
4578
4579                 __kfree_skb_flush();
4580         }
4581
4582         if (sd->output_queue) {
4583                 struct Qdisc *head;
4584
4585                 local_irq_disable();
4586                 head = sd->output_queue;
4587                 sd->output_queue = NULL;
4588                 sd->output_queue_tailp = &sd->output_queue;
4589                 local_irq_enable();
4590
4591                 while (head) {
4592                         struct Qdisc *q = head;
4593                         spinlock_t *root_lock = NULL;
4594
4595                         head = head->next_sched;
4596
4597                         if (!(q->flags & TCQ_F_NOLOCK)) {
4598                                 root_lock = qdisc_lock(q);
4599                                 spin_lock(root_lock);
4600                         }
4601                         /* We need to make sure head->next_sched is read
4602                          * before clearing __QDISC_STATE_SCHED
4603                          */
4604                         smp_mb__before_atomic();
4605                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4606                         qdisc_run(q);
4607                         if (root_lock)
4608                                 spin_unlock(root_lock);
4609                 }
4610         }
4611
4612         xfrm_dev_backlog(sd);
4613 }
4614
4615 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4616 /* This hook is defined here for ATM LANE */
4617 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4618                              unsigned char *addr) __read_mostly;
4619 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4620 #endif
4621
4622 static inline struct sk_buff *
4623 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4624                    struct net_device *orig_dev)
4625 {
4626 #ifdef CONFIG_NET_CLS_ACT
4627         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4628         struct tcf_result cl_res;
4629
4630         /* If there's at least one ingress present somewhere (so
4631          * we get here via enabled static key), remaining devices
4632          * that are not configured with an ingress qdisc will bail
4633          * out here.
4634          */
4635         if (!miniq)
4636                 return skb;
4637
4638         if (*pt_prev) {
4639                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4640                 *pt_prev = NULL;
4641         }
4642
4643         qdisc_skb_cb(skb)->pkt_len = skb->len;
4644         skb->tc_at_ingress = 1;
4645         mini_qdisc_bstats_cpu_update(miniq, skb);
4646
4647         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4648         case TC_ACT_OK:
4649         case TC_ACT_RECLASSIFY:
4650                 skb->tc_index = TC_H_MIN(cl_res.classid);
4651                 break;
4652         case TC_ACT_SHOT:
4653                 mini_qdisc_qstats_cpu_drop(miniq);
4654                 kfree_skb(skb);
4655                 return NULL;
4656         case TC_ACT_STOLEN:
4657         case TC_ACT_QUEUED:
4658         case TC_ACT_TRAP:
4659                 consume_skb(skb);
4660                 return NULL;
4661         case TC_ACT_REDIRECT:
4662                 /* skb_mac_header check was done by cls/act_bpf, so
4663                  * we can safely push the L2 header back before
4664                  * redirecting to another netdev
4665                  */
4666                 __skb_push(skb, skb->mac_len);
4667                 skb_do_redirect(skb);
4668                 return NULL;
4669         case TC_ACT_REINSERT:
4670                 /* this does not scrub the packet, and updates stats on error */
4671                 skb_tc_reinsert(skb, &cl_res);
4672                 return NULL;
4673         default:
4674                 break;
4675         }
4676 #endif /* CONFIG_NET_CLS_ACT */
4677         return skb;
4678 }
4679
4680 /**
4681  *      netdev_is_rx_handler_busy - check if receive handler is registered
4682  *      @dev: device to check
4683  *
4684  *      Check if a receive handler is already registered for a given device.
4685  *      Return true if there one.
4686  *
4687  *      The caller must hold the rtnl_mutex.
4688  */
4689 bool netdev_is_rx_handler_busy(struct net_device *dev)
4690 {
4691         ASSERT_RTNL();
4692         return dev && rtnl_dereference(dev->rx_handler);
4693 }
4694 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4695
4696 /**
4697  *      netdev_rx_handler_register - register receive handler
4698  *      @dev: device to register a handler for
4699  *      @rx_handler: receive handler to register
4700  *      @rx_handler_data: data pointer that is used by rx handler
4701  *
4702  *      Register a receive handler for a device. This handler will then be
4703  *      called from __netif_receive_skb. A negative errno code is returned
4704  *      on a failure.
4705  *
4706  *      The caller must hold the rtnl_mutex.
4707  *
4708  *      For a general description of rx_handler, see enum rx_handler_result.
4709  */
4710 int netdev_rx_handler_register(struct net_device *dev,
4711                                rx_handler_func_t *rx_handler,
4712                                void *rx_handler_data)
4713 {
4714         if (netdev_is_rx_handler_busy(dev))
4715                 return -EBUSY;
4716
4717         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4718                 return -EINVAL;
4719
4720         /* Note: rx_handler_data must be set before rx_handler */
4721         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4722         rcu_assign_pointer(dev->rx_handler, rx_handler);
4723
4724         return 0;
4725 }
4726 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4727
4728 /**
4729  *      netdev_rx_handler_unregister - unregister receive handler
4730  *      @dev: device to unregister a handler from
4731  *
4732  *      Unregister a receive handler from a device.
4733  *
4734  *      The caller must hold the rtnl_mutex.
4735  */
4736 void netdev_rx_handler_unregister(struct net_device *dev)
4737 {
4738
4739         ASSERT_RTNL();
4740         RCU_INIT_POINTER(dev->rx_handler, NULL);
4741         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4742          * section has a guarantee to see a non NULL rx_handler_data
4743          * as well.
4744          */
4745         synchronize_net();
4746         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4747 }
4748 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4749
4750 /*
4751  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4752  * the special handling of PFMEMALLOC skbs.
4753  */
4754 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4755 {
4756         switch (skb->protocol) {
4757         case htons(ETH_P_ARP):
4758         case htons(ETH_P_IP):
4759         case htons(ETH_P_IPV6):
4760         case htons(ETH_P_8021Q):
4761         case htons(ETH_P_8021AD):
4762                 return true;
4763         default:
4764                 return false;
4765         }
4766 }
4767
4768 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4769                              int *ret, struct net_device *orig_dev)
4770 {
4771 #ifdef CONFIG_NETFILTER_INGRESS
4772         if (nf_hook_ingress_active(skb)) {
4773                 int ingress_retval;
4774
4775                 if (*pt_prev) {
4776                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4777                         *pt_prev = NULL;
4778                 }
4779
4780                 rcu_read_lock();
4781                 ingress_retval = nf_hook_ingress(skb);
4782                 rcu_read_unlock();
4783                 return ingress_retval;
4784         }
4785 #endif /* CONFIG_NETFILTER_INGRESS */
4786         return 0;
4787 }
4788
4789 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4790                                     struct packet_type **ppt_prev)
4791 {
4792         struct packet_type *ptype, *pt_prev;
4793         rx_handler_func_t *rx_handler;
4794         struct net_device *orig_dev;
4795         bool deliver_exact = false;
4796         int ret = NET_RX_DROP;
4797         __be16 type;
4798
4799         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4800
4801         trace_netif_receive_skb(skb);
4802
4803         orig_dev = skb->dev;
4804
4805         skb_reset_network_header(skb);
4806         if (!skb_transport_header_was_set(skb))
4807                 skb_reset_transport_header(skb);
4808         skb_reset_mac_len(skb);
4809
4810         pt_prev = NULL;
4811
4812 another_round:
4813         skb->skb_iif = skb->dev->ifindex;
4814
4815         __this_cpu_inc(softnet_data.processed);
4816
4817         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4818             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4819                 skb = skb_vlan_untag(skb);
4820                 if (unlikely(!skb))
4821                         goto out;
4822         }
4823
4824         if (skb_skip_tc_classify(skb))
4825                 goto skip_classify;
4826
4827         if (pfmemalloc)
4828                 goto skip_taps;
4829
4830         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4831                 if (pt_prev)
4832                         ret = deliver_skb(skb, pt_prev, orig_dev);
4833                 pt_prev = ptype;
4834         }
4835
4836         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4837                 if (pt_prev)
4838                         ret = deliver_skb(skb, pt_prev, orig_dev);
4839                 pt_prev = ptype;
4840         }
4841
4842 skip_taps:
4843 #ifdef CONFIG_NET_INGRESS
4844         if (static_branch_unlikely(&ingress_needed_key)) {
4845                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4846                 if (!skb)
4847                         goto out;
4848
4849                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4850                         goto out;
4851         }
4852 #endif
4853         skb_reset_tc(skb);
4854 skip_classify:
4855         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4856                 goto drop;
4857
4858         if (skb_vlan_tag_present(skb)) {
4859                 if (pt_prev) {
4860                         ret = deliver_skb(skb, pt_prev, orig_dev);
4861                         pt_prev = NULL;
4862                 }
4863                 if (vlan_do_receive(&skb))
4864                         goto another_round;
4865                 else if (unlikely(!skb))
4866                         goto out;
4867         }
4868
4869         rx_handler = rcu_dereference(skb->dev->rx_handler);
4870         if (rx_handler) {
4871                 if (pt_prev) {
4872                         ret = deliver_skb(skb, pt_prev, orig_dev);
4873                         pt_prev = NULL;
4874                 }
4875                 switch (rx_handler(&skb)) {
4876                 case RX_HANDLER_CONSUMED:
4877                         ret = NET_RX_SUCCESS;
4878                         goto out;
4879                 case RX_HANDLER_ANOTHER:
4880                         goto another_round;
4881                 case RX_HANDLER_EXACT:
4882                         deliver_exact = true;
4883                 case RX_HANDLER_PASS:
4884                         break;
4885                 default:
4886                         BUG();
4887                 }
4888         }
4889
4890         if (unlikely(skb_vlan_tag_present(skb))) {
4891                 if (skb_vlan_tag_get_id(skb))
4892                         skb->pkt_type = PACKET_OTHERHOST;
4893                 /* Note: we might in the future use prio bits
4894                  * and set skb->priority like in vlan_do_receive()
4895                  * For the time being, just ignore Priority Code Point
4896                  */
4897                 skb->vlan_tci = 0;
4898         }
4899
4900         type = skb->protocol;
4901
4902         /* deliver only exact match when indicated */
4903         if (likely(!deliver_exact)) {
4904                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4905                                        &ptype_base[ntohs(type) &
4906                                                    PTYPE_HASH_MASK]);
4907         }
4908
4909         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4910                                &orig_dev->ptype_specific);
4911
4912         if (unlikely(skb->dev != orig_dev)) {
4913                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4914                                        &skb->dev->ptype_specific);
4915         }
4916
4917         if (pt_prev) {
4918                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4919                         goto drop;
4920                 *ppt_prev = pt_prev;
4921         } else {
4922 drop:
4923                 if (!deliver_exact)
4924                         atomic_long_inc(&skb->dev->rx_dropped);
4925                 else
4926                         atomic_long_inc(&skb->dev->rx_nohandler);
4927                 kfree_skb(skb);
4928                 /* Jamal, now you will not able to escape explaining
4929                  * me how you were going to use this. :-)
4930                  */
4931                 ret = NET_RX_DROP;
4932         }
4933
4934 out:
4935         return ret;
4936 }
4937
4938 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4939 {
4940         struct net_device *orig_dev = skb->dev;
4941         struct packet_type *pt_prev = NULL;
4942         int ret;
4943
4944         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4945         if (pt_prev)
4946                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4947         return ret;
4948 }
4949
4950 /**
4951  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4952  *      @skb: buffer to process
4953  *
4954  *      More direct receive version of netif_receive_skb().  It should
4955  *      only be used by callers that have a need to skip RPS and Generic XDP.
4956  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4957  *
4958  *      This function may only be called from softirq context and interrupts
4959  *      should be enabled.
4960  *
4961  *      Return values (usually ignored):
4962  *      NET_RX_SUCCESS: no congestion
4963  *      NET_RX_DROP: packet was dropped
4964  */
4965 int netif_receive_skb_core(struct sk_buff *skb)
4966 {
4967         int ret;
4968
4969         rcu_read_lock();
4970         ret = __netif_receive_skb_one_core(skb, false);
4971         rcu_read_unlock();
4972
4973         return ret;
4974 }
4975 EXPORT_SYMBOL(netif_receive_skb_core);
4976
4977 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4978                                                   struct packet_type *pt_prev,
4979                                                   struct net_device *orig_dev)
4980 {
4981         struct sk_buff *skb, *next;
4982
4983         if (!pt_prev)
4984                 return;
4985         if (list_empty(head))
4986                 return;
4987         if (pt_prev->list_func != NULL)
4988                 pt_prev->list_func(head, pt_prev, orig_dev);
4989         else
4990                 list_for_each_entry_safe(skb, next, head, list)
4991                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4992 }
4993
4994 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4995 {
4996         /* Fast-path assumptions:
4997          * - There is no RX handler.
4998          * - Only one packet_type matches.
4999          * If either of these fails, we will end up doing some per-packet
5000          * processing in-line, then handling the 'last ptype' for the whole
5001          * sublist.  This can't cause out-of-order delivery to any single ptype,
5002          * because the 'last ptype' must be constant across the sublist, and all
5003          * other ptypes are handled per-packet.
5004          */
5005         /* Current (common) ptype of sublist */
5006         struct packet_type *pt_curr = NULL;
5007         /* Current (common) orig_dev of sublist */
5008         struct net_device *od_curr = NULL;
5009         struct list_head sublist;
5010         struct sk_buff *skb, *next;
5011
5012         INIT_LIST_HEAD(&sublist);
5013         list_for_each_entry_safe(skb, next, head, list) {
5014                 struct net_device *orig_dev = skb->dev;
5015                 struct packet_type *pt_prev = NULL;
5016
5017                 skb_list_del_init(skb);
5018                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5019                 if (!pt_prev)
5020                         continue;
5021                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5022                         /* dispatch old sublist */
5023                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5024                         /* start new sublist */
5025                         INIT_LIST_HEAD(&sublist);
5026                         pt_curr = pt_prev;
5027                         od_curr = orig_dev;
5028                 }
5029                 list_add_tail(&skb->list, &sublist);
5030         }
5031
5032         /* dispatch final sublist */
5033         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5034 }
5035
5036 static int __netif_receive_skb(struct sk_buff *skb)
5037 {
5038         int ret;
5039
5040         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5041                 unsigned int noreclaim_flag;
5042
5043                 /*
5044                  * PFMEMALLOC skbs are special, they should
5045                  * - be delivered to SOCK_MEMALLOC sockets only
5046                  * - stay away from userspace
5047                  * - have bounded memory usage
5048                  *
5049                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5050                  * context down to all allocation sites.
5051                  */
5052                 noreclaim_flag = memalloc_noreclaim_save();
5053                 ret = __netif_receive_skb_one_core(skb, true);
5054                 memalloc_noreclaim_restore(noreclaim_flag);
5055         } else
5056                 ret = __netif_receive_skb_one_core(skb, false);
5057
5058         return ret;
5059 }
5060
5061 static void __netif_receive_skb_list(struct list_head *head)
5062 {
5063         unsigned long noreclaim_flag = 0;
5064         struct sk_buff *skb, *next;
5065         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5066
5067         list_for_each_entry_safe(skb, next, head, list) {
5068                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5069                         struct list_head sublist;
5070
5071                         /* Handle the previous sublist */
5072                         list_cut_before(&sublist, head, &skb->list);
5073                         if (!list_empty(&sublist))
5074                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5075                         pfmemalloc = !pfmemalloc;
5076                         /* See comments in __netif_receive_skb */
5077                         if (pfmemalloc)
5078                                 noreclaim_flag = memalloc_noreclaim_save();
5079                         else
5080                                 memalloc_noreclaim_restore(noreclaim_flag);
5081                 }
5082         }
5083         /* Handle the remaining sublist */
5084         if (!list_empty(head))
5085                 __netif_receive_skb_list_core(head, pfmemalloc);
5086         /* Restore pflags */
5087         if (pfmemalloc)
5088                 memalloc_noreclaim_restore(noreclaim_flag);
5089 }
5090
5091 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5092 {
5093         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5094         struct bpf_prog *new = xdp->prog;
5095         int ret = 0;
5096
5097         switch (xdp->command) {
5098         case XDP_SETUP_PROG:
5099                 rcu_assign_pointer(dev->xdp_prog, new);
5100                 if (old)
5101                         bpf_prog_put(old);
5102
5103                 if (old && !new) {
5104                         static_branch_dec(&generic_xdp_needed_key);
5105                 } else if (new && !old) {
5106                         static_branch_inc(&generic_xdp_needed_key);
5107                         dev_disable_lro(dev);
5108                         dev_disable_gro_hw(dev);
5109                 }
5110                 break;
5111
5112         case XDP_QUERY_PROG:
5113                 xdp->prog_id = old ? old->aux->id : 0;
5114                 break;
5115
5116         default:
5117                 ret = -EINVAL;
5118                 break;
5119         }
5120
5121         return ret;
5122 }
5123
5124 static int netif_receive_skb_internal(struct sk_buff *skb)
5125 {
5126         int ret;
5127
5128         net_timestamp_check(netdev_tstamp_prequeue, skb);
5129
5130         if (skb_defer_rx_timestamp(skb))
5131                 return NET_RX_SUCCESS;
5132
5133         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5134                 int ret;
5135
5136                 preempt_disable();
5137                 rcu_read_lock();
5138                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5139                 rcu_read_unlock();
5140                 preempt_enable();
5141
5142                 if (ret != XDP_PASS)
5143                         return NET_RX_DROP;
5144         }
5145
5146         rcu_read_lock();
5147 #ifdef CONFIG_RPS
5148         if (static_key_false(&rps_needed)) {
5149                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5150                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5151
5152                 if (cpu >= 0) {
5153                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5154                         rcu_read_unlock();
5155                         return ret;
5156                 }
5157         }
5158 #endif
5159         ret = __netif_receive_skb(skb);
5160         rcu_read_unlock();
5161         return ret;
5162 }
5163
5164 static void netif_receive_skb_list_internal(struct list_head *head)
5165 {
5166         struct bpf_prog *xdp_prog = NULL;
5167         struct sk_buff *skb, *next;
5168         struct list_head sublist;
5169
5170         INIT_LIST_HEAD(&sublist);
5171         list_for_each_entry_safe(skb, next, head, list) {
5172                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5173                 skb_list_del_init(skb);
5174                 if (!skb_defer_rx_timestamp(skb))
5175                         list_add_tail(&skb->list, &sublist);
5176         }
5177         list_splice_init(&sublist, head);
5178
5179         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5180                 preempt_disable();
5181                 rcu_read_lock();
5182                 list_for_each_entry_safe(skb, next, head, list) {
5183                         xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5184                         skb_list_del_init(skb);
5185                         if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5186                                 list_add_tail(&skb->list, &sublist);
5187                 }
5188                 rcu_read_unlock();
5189                 preempt_enable();
5190                 /* Put passed packets back on main list */
5191                 list_splice_init(&sublist, head);
5192         }
5193
5194         rcu_read_lock();
5195 #ifdef CONFIG_RPS
5196         if (static_key_false(&rps_needed)) {
5197                 list_for_each_entry_safe(skb, next, head, list) {
5198                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5199                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5200
5201                         if (cpu >= 0) {
5202                                 /* Will be handled, remove from list */
5203                                 skb_list_del_init(skb);
5204                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5205                         }
5206                 }
5207         }
5208 #endif
5209         __netif_receive_skb_list(head);
5210         rcu_read_unlock();
5211 }
5212
5213 /**
5214  *      netif_receive_skb - process receive buffer from network
5215  *      @skb: buffer to process
5216  *
5217  *      netif_receive_skb() is the main receive data processing function.
5218  *      It always succeeds. The buffer may be dropped during processing
5219  *      for congestion control or by the protocol layers.
5220  *
5221  *      This function may only be called from softirq context and interrupts
5222  *      should be enabled.
5223  *
5224  *      Return values (usually ignored):
5225  *      NET_RX_SUCCESS: no congestion
5226  *      NET_RX_DROP: packet was dropped
5227  */
5228 int netif_receive_skb(struct sk_buff *skb)
5229 {
5230         trace_netif_receive_skb_entry(skb);
5231
5232         return netif_receive_skb_internal(skb);
5233 }
5234 EXPORT_SYMBOL(netif_receive_skb);
5235
5236 /**
5237  *      netif_receive_skb_list - process many receive buffers from network
5238  *      @head: list of skbs to process.
5239  *
5240  *      Since return value of netif_receive_skb() is normally ignored, and
5241  *      wouldn't be meaningful for a list, this function returns void.
5242  *
5243  *      This function may only be called from softirq context and interrupts
5244  *      should be enabled.
5245  */
5246 void netif_receive_skb_list(struct list_head *head)
5247 {
5248         struct sk_buff *skb;
5249
5250         if (list_empty(head))
5251                 return;
5252         list_for_each_entry(skb, head, list)
5253                 trace_netif_receive_skb_list_entry(skb);
5254         netif_receive_skb_list_internal(head);
5255 }
5256 EXPORT_SYMBOL(netif_receive_skb_list);
5257
5258 DEFINE_PER_CPU(struct work_struct, flush_works);
5259
5260 /* Network device is going away, flush any packets still pending */
5261 static void flush_backlog(struct work_struct *work)
5262 {
5263         struct sk_buff *skb, *tmp;
5264         struct softnet_data *sd;
5265
5266         local_bh_disable();
5267         sd = this_cpu_ptr(&softnet_data);
5268
5269         local_irq_disable();
5270         rps_lock(sd);
5271         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5272                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5273                         __skb_unlink(skb, &sd->input_pkt_queue);
5274                         kfree_skb(skb);
5275                         input_queue_head_incr(sd);
5276                 }
5277         }
5278         rps_unlock(sd);
5279         local_irq_enable();
5280
5281         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5282                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5283                         __skb_unlink(skb, &sd->process_queue);
5284                         kfree_skb(skb);
5285                         input_queue_head_incr(sd);
5286                 }
5287         }
5288         local_bh_enable();
5289 }
5290
5291 static void flush_all_backlogs(void)
5292 {
5293         unsigned int cpu;
5294
5295         get_online_cpus();
5296
5297         for_each_online_cpu(cpu)
5298                 queue_work_on(cpu, system_highpri_wq,
5299                               per_cpu_ptr(&flush_works, cpu));
5300
5301         for_each_online_cpu(cpu)
5302                 flush_work(per_cpu_ptr(&flush_works, cpu));
5303
5304         put_online_cpus();
5305 }
5306
5307 static int napi_gro_complete(struct sk_buff *skb)
5308 {
5309         struct packet_offload *ptype;
5310         __be16 type = skb->protocol;
5311         struct list_head *head = &offload_base;
5312         int err = -ENOENT;
5313
5314         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5315
5316         if (NAPI_GRO_CB(skb)->count == 1) {
5317                 skb_shinfo(skb)->gso_size = 0;
5318                 goto out;
5319         }
5320
5321         rcu_read_lock();
5322         list_for_each_entry_rcu(ptype, head, list) {
5323                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5324                         continue;
5325
5326                 err = ptype->callbacks.gro_complete(skb, 0);
5327                 break;
5328         }
5329         rcu_read_unlock();
5330
5331         if (err) {
5332                 WARN_ON(&ptype->list == head);
5333                 kfree_skb(skb);
5334                 return NET_RX_SUCCESS;
5335         }
5336
5337 out:
5338         return netif_receive_skb_internal(skb);
5339 }
5340
5341 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5342                                    bool flush_old)
5343 {
5344         struct list_head *head = &napi->gro_hash[index].list;
5345         struct sk_buff *skb, *p;
5346
5347         list_for_each_entry_safe_reverse(skb, p, head, list) {
5348                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5349                         return;
5350                 skb_list_del_init(skb);
5351                 napi_gro_complete(skb);
5352                 napi->gro_hash[index].count--;
5353         }
5354
5355         if (!napi->gro_hash[index].count)
5356                 __clear_bit(index, &napi->gro_bitmask);
5357 }
5358
5359 /* napi->gro_hash[].list contains packets ordered by age.
5360  * youngest packets at the head of it.
5361  * Complete skbs in reverse order to reduce latencies.
5362  */
5363 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5364 {
5365         u32 i;
5366
5367         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5368                 if (test_bit(i, &napi->gro_bitmask))
5369                         __napi_gro_flush_chain(napi, i, flush_old);
5370         }
5371 }
5372 EXPORT_SYMBOL(napi_gro_flush);
5373
5374 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5375                                           struct sk_buff *skb)
5376 {
5377         unsigned int maclen = skb->dev->hard_header_len;
5378         u32 hash = skb_get_hash_raw(skb);
5379         struct list_head *head;
5380         struct sk_buff *p;
5381
5382         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5383         list_for_each_entry(p, head, list) {
5384                 unsigned long diffs;
5385
5386                 NAPI_GRO_CB(p)->flush = 0;
5387
5388                 if (hash != skb_get_hash_raw(p)) {
5389                         NAPI_GRO_CB(p)->same_flow = 0;
5390                         continue;
5391                 }
5392
5393                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5394                 diffs |= p->vlan_tci ^ skb->vlan_tci;
5395                 diffs |= skb_metadata_dst_cmp(p, skb);
5396                 diffs |= skb_metadata_differs(p, skb);
5397                 if (maclen == ETH_HLEN)
5398                         diffs |= compare_ether_header(skb_mac_header(p),
5399                                                       skb_mac_header(skb));
5400                 else if (!diffs)
5401                         diffs = memcmp(skb_mac_header(p),
5402                                        skb_mac_header(skb),
5403                                        maclen);
5404                 NAPI_GRO_CB(p)->same_flow = !diffs;
5405         }
5406
5407         return head;
5408 }
5409
5410 static void skb_gro_reset_offset(struct sk_buff *skb)
5411 {
5412         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5413         const skb_frag_t *frag0 = &pinfo->frags[0];
5414
5415         NAPI_GRO_CB(skb)->data_offset = 0;
5416         NAPI_GRO_CB(skb)->frag0 = NULL;
5417         NAPI_GRO_CB(skb)->frag0_len = 0;
5418
5419         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5420             pinfo->nr_frags &&
5421             !PageHighMem(skb_frag_page(frag0))) {
5422                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5423                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5424                                                     skb_frag_size(frag0),
5425                                                     skb->end - skb->tail);
5426         }
5427 }
5428
5429 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5430 {
5431         struct skb_shared_info *pinfo = skb_shinfo(skb);
5432
5433         BUG_ON(skb->end - skb->tail < grow);
5434
5435         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5436
5437         skb->data_len -= grow;
5438         skb->tail += grow;
5439
5440         pinfo->frags[0].page_offset += grow;
5441         skb_frag_size_sub(&pinfo->frags[0], grow);
5442
5443         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5444                 skb_frag_unref(skb, 0);
5445                 memmove(pinfo->frags, pinfo->frags + 1,
5446                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5447         }
5448 }
5449
5450 static void gro_flush_oldest(struct list_head *head)
5451 {
5452         struct sk_buff *oldest;
5453
5454         oldest = list_last_entry(head, struct sk_buff, list);
5455
5456         /* We are called with head length >= MAX_GRO_SKBS, so this is
5457          * impossible.
5458          */
5459         if (WARN_ON_ONCE(!oldest))
5460                 return;
5461
5462         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5463          * SKB to the chain.
5464          */
5465         skb_list_del_init(oldest);
5466         napi_gro_complete(oldest);
5467 }
5468
5469 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5470 {
5471         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5472         struct list_head *head = &offload_base;
5473         struct packet_offload *ptype;
5474         __be16 type = skb->protocol;
5475         struct list_head *gro_head;
5476         struct sk_buff *pp = NULL;
5477         enum gro_result ret;
5478         int same_flow;
5479         int grow;
5480
5481         if (netif_elide_gro(skb->dev))
5482                 goto normal;
5483
5484         gro_head = gro_list_prepare(napi, skb);
5485
5486         rcu_read_lock();
5487         list_for_each_entry_rcu(ptype, head, list) {
5488                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5489                         continue;
5490
5491                 skb_set_network_header(skb, skb_gro_offset(skb));
5492                 skb_reset_mac_len(skb);
5493                 NAPI_GRO_CB(skb)->same_flow = 0;
5494                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5495                 NAPI_GRO_CB(skb)->free = 0;
5496                 NAPI_GRO_CB(skb)->encap_mark = 0;
5497                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5498                 NAPI_GRO_CB(skb)->is_fou = 0;
5499                 NAPI_GRO_CB(skb)->is_atomic = 1;
5500                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5501
5502                 /* Setup for GRO checksum validation */
5503                 switch (skb->ip_summed) {
5504                 case CHECKSUM_COMPLETE:
5505                         NAPI_GRO_CB(skb)->csum = skb->csum;
5506                         NAPI_GRO_CB(skb)->csum_valid = 1;
5507                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5508                         break;
5509                 case CHECKSUM_UNNECESSARY:
5510                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5511                         NAPI_GRO_CB(skb)->csum_valid = 0;
5512                         break;
5513                 default:
5514                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5515                         NAPI_GRO_CB(skb)->csum_valid = 0;
5516                 }
5517
5518                 pp = ptype->callbacks.gro_receive(gro_head, skb);
5519                 break;
5520         }
5521         rcu_read_unlock();
5522
5523         if (&ptype->list == head)
5524                 goto normal;
5525
5526         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5527                 ret = GRO_CONSUMED;
5528                 goto ok;
5529         }
5530
5531         same_flow = NAPI_GRO_CB(skb)->same_flow;
5532         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5533
5534         if (pp) {
5535                 skb_list_del_init(pp);
5536                 napi_gro_complete(pp);
5537                 napi->gro_hash[hash].count--;
5538         }
5539
5540         if (same_flow)
5541                 goto ok;
5542
5543         if (NAPI_GRO_CB(skb)->flush)
5544                 goto normal;
5545
5546         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5547                 gro_flush_oldest(gro_head);
5548         } else {
5549                 napi->gro_hash[hash].count++;
5550         }
5551         NAPI_GRO_CB(skb)->count = 1;
5552         NAPI_GRO_CB(skb)->age = jiffies;
5553         NAPI_GRO_CB(skb)->last = skb;
5554         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5555         list_add(&skb->list, gro_head);
5556         ret = GRO_HELD;
5557
5558 pull:
5559         grow = skb_gro_offset(skb) - skb_headlen(skb);
5560         if (grow > 0)
5561                 gro_pull_from_frag0(skb, grow);
5562 ok:
5563         if (napi->gro_hash[hash].count) {
5564                 if (!test_bit(hash, &napi->gro_bitmask))
5565                         __set_bit(hash, &napi->gro_bitmask);
5566         } else if (test_bit(hash, &napi->gro_bitmask)) {
5567                 __clear_bit(hash, &napi->gro_bitmask);
5568         }
5569
5570         return ret;
5571
5572 normal:
5573         ret = GRO_NORMAL;
5574         goto pull;
5575 }
5576
5577 struct packet_offload *gro_find_receive_by_type(__be16 type)
5578 {
5579         struct list_head *offload_head = &offload_base;
5580         struct packet_offload *ptype;
5581
5582         list_for_each_entry_rcu(ptype, offload_head, list) {
5583                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5584                         continue;
5585                 return ptype;
5586         }
5587         return NULL;
5588 }
5589 EXPORT_SYMBOL(gro_find_receive_by_type);
5590
5591 struct packet_offload *gro_find_complete_by_type(__be16 type)
5592 {
5593         struct list_head *offload_head = &offload_base;
5594         struct packet_offload *ptype;
5595
5596         list_for_each_entry_rcu(ptype, offload_head, list) {
5597                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5598                         continue;
5599                 return ptype;
5600         }
5601         return NULL;
5602 }
5603 EXPORT_SYMBOL(gro_find_complete_by_type);
5604
5605 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5606 {
5607         skb_dst_drop(skb);
5608         secpath_reset(skb);
5609         kmem_cache_free(skbuff_head_cache, skb);
5610 }
5611
5612 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5613 {
5614         switch (ret) {
5615         case GRO_NORMAL:
5616                 if (netif_receive_skb_internal(skb))
5617                         ret = GRO_DROP;
5618                 break;
5619
5620         case GRO_DROP:
5621                 kfree_skb(skb);
5622                 break;
5623
5624         case GRO_MERGED_FREE:
5625                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5626                         napi_skb_free_stolen_head(skb);
5627                 else
5628                         __kfree_skb(skb);
5629                 break;
5630
5631         case GRO_HELD:
5632         case GRO_MERGED:
5633         case GRO_CONSUMED:
5634                 break;
5635         }
5636
5637         return ret;
5638 }
5639
5640 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5641 {
5642         skb_mark_napi_id(skb, napi);
5643         trace_napi_gro_receive_entry(skb);
5644
5645         skb_gro_reset_offset(skb);
5646
5647         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5648 }
5649 EXPORT_SYMBOL(napi_gro_receive);
5650
5651 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5652 {
5653         if (unlikely(skb->pfmemalloc)) {
5654                 consume_skb(skb);
5655                 return;
5656         }
5657         __skb_pull(skb, skb_headlen(skb));
5658         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5659         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5660         skb->vlan_tci = 0;
5661         skb->dev = napi->dev;
5662         skb->skb_iif = 0;
5663
5664         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5665         skb->pkt_type = PACKET_HOST;
5666
5667         skb->encapsulation = 0;
5668         skb_shinfo(skb)->gso_type = 0;
5669         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5670         secpath_reset(skb);
5671
5672         napi->skb = skb;
5673 }
5674
5675 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5676 {
5677         struct sk_buff *skb = napi->skb;
5678
5679         if (!skb) {
5680                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5681                 if (skb) {
5682                         napi->skb = skb;
5683                         skb_mark_napi_id(skb, napi);
5684                 }
5685         }
5686         return skb;
5687 }
5688 EXPORT_SYMBOL(napi_get_frags);
5689
5690 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5691                                       struct sk_buff *skb,
5692                                       gro_result_t ret)
5693 {
5694         switch (ret) {
5695         case GRO_NORMAL:
5696         case GRO_HELD:
5697                 __skb_push(skb, ETH_HLEN);
5698                 skb->protocol = eth_type_trans(skb, skb->dev);
5699                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5700                         ret = GRO_DROP;
5701                 break;
5702
5703         case GRO_DROP:
5704                 napi_reuse_skb(napi, skb);
5705                 break;
5706
5707         case GRO_MERGED_FREE:
5708                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5709                         napi_skb_free_stolen_head(skb);
5710                 else
5711                         napi_reuse_skb(napi, skb);
5712                 break;
5713
5714         case GRO_MERGED:
5715         case GRO_CONSUMED:
5716                 break;
5717         }
5718
5719         return ret;
5720 }
5721
5722 /* Upper GRO stack assumes network header starts at gro_offset=0
5723  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5724  * We copy ethernet header into skb->data to have a common layout.
5725  */
5726 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5727 {
5728         struct sk_buff *skb = napi->skb;
5729         const struct ethhdr *eth;
5730         unsigned int hlen = sizeof(*eth);
5731
5732         napi->skb = NULL;
5733
5734         skb_reset_mac_header(skb);
5735         skb_gro_reset_offset(skb);
5736
5737         eth = skb_gro_header_fast(skb, 0);
5738         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5739                 eth = skb_gro_header_slow(skb, hlen, 0);
5740                 if (unlikely(!eth)) {
5741                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5742                                              __func__, napi->dev->name);
5743                         napi_reuse_skb(napi, skb);
5744                         return NULL;
5745                 }
5746         } else {
5747                 gro_pull_from_frag0(skb, hlen);
5748                 NAPI_GRO_CB(skb)->frag0 += hlen;
5749                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5750         }
5751         __skb_pull(skb, hlen);
5752
5753         /*
5754          * This works because the only protocols we care about don't require
5755          * special handling.
5756          * We'll fix it up properly in napi_frags_finish()
5757          */
5758         skb->protocol = eth->h_proto;
5759
5760         return skb;
5761 }
5762
5763 gro_result_t napi_gro_frags(struct napi_struct *napi)
5764 {
5765         struct sk_buff *skb = napi_frags_skb(napi);
5766
5767         if (!skb)
5768                 return GRO_DROP;
5769
5770         trace_napi_gro_frags_entry(skb);
5771
5772         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5773 }
5774 EXPORT_SYMBOL(napi_gro_frags);
5775
5776 /* Compute the checksum from gro_offset and return the folded value
5777  * after adding in any pseudo checksum.
5778  */
5779 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5780 {
5781         __wsum wsum;
5782         __sum16 sum;
5783
5784         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5785
5786         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5787         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5788         if (likely(!sum)) {
5789                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5790                     !skb->csum_complete_sw)
5791                         netdev_rx_csum_fault(skb->dev);
5792         }
5793
5794         NAPI_GRO_CB(skb)->csum = wsum;
5795         NAPI_GRO_CB(skb)->csum_valid = 1;
5796
5797         return sum;
5798 }
5799 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5800
5801 static void net_rps_send_ipi(struct softnet_data *remsd)
5802 {
5803 #ifdef CONFIG_RPS
5804         while (remsd) {
5805                 struct softnet_data *next = remsd->rps_ipi_next;
5806
5807                 if (cpu_online(remsd->cpu))
5808                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5809                 remsd = next;
5810         }
5811 #endif
5812 }
5813
5814 /*
5815  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5816  * Note: called with local irq disabled, but exits with local irq enabled.
5817  */
5818 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5819 {
5820 #ifdef CONFIG_RPS
5821         struct softnet_data *remsd = sd->rps_ipi_list;
5822
5823         if (remsd) {
5824                 sd->rps_ipi_list = NULL;
5825
5826                 local_irq_enable();
5827
5828                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5829                 net_rps_send_ipi(remsd);
5830         } else
5831 #endif
5832                 local_irq_enable();
5833 }
5834
5835 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5836 {
5837 #ifdef CONFIG_RPS
5838         return sd->rps_ipi_list != NULL;
5839 #else
5840         return false;
5841 #endif
5842 }
5843
5844 static int process_backlog(struct napi_struct *napi, int quota)
5845 {
5846         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5847         bool again = true;
5848         int work = 0;
5849
5850         /* Check if we have pending ipi, its better to send them now,
5851          * not waiting net_rx_action() end.
5852          */
5853         if (sd_has_rps_ipi_waiting(sd)) {
5854                 local_irq_disable();
5855                 net_rps_action_and_irq_enable(sd);
5856         }
5857
5858         napi->weight = dev_rx_weight;
5859         while (again) {
5860                 struct sk_buff *skb;
5861
5862                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5863                         rcu_read_lock();
5864                         __netif_receive_skb(skb);
5865                         rcu_read_unlock();
5866                         input_queue_head_incr(sd);
5867                         if (++work >= quota)
5868                                 return work;
5869
5870                 }
5871
5872                 local_irq_disable();
5873                 rps_lock(sd);
5874                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5875                         /*
5876                          * Inline a custom version of __napi_complete().
5877                          * only current cpu owns and manipulates this napi,
5878                          * and NAPI_STATE_SCHED is the only possible flag set
5879                          * on backlog.
5880                          * We can use a plain write instead of clear_bit(),
5881                          * and we dont need an smp_mb() memory barrier.
5882                          */
5883                         napi->state = 0;
5884                         again = false;
5885                 } else {
5886                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5887                                                    &sd->process_queue);
5888                 }
5889                 rps_unlock(sd);
5890                 local_irq_enable();
5891         }
5892
5893         return work;
5894 }
5895
5896 /**
5897  * __napi_schedule - schedule for receive
5898  * @n: entry to schedule
5899  *
5900  * The entry's receive function will be scheduled to run.
5901  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5902  */
5903 void __napi_schedule(struct napi_struct *n)
5904 {
5905         unsigned long flags;
5906
5907         local_irq_save(flags);
5908         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5909         local_irq_restore(flags);
5910 }
5911 EXPORT_SYMBOL(__napi_schedule);
5912
5913 /**
5914  *      napi_schedule_prep - check if napi can be scheduled
5915  *      @n: napi context
5916  *
5917  * Test if NAPI routine is already running, and if not mark
5918  * it as running.  This is used as a condition variable
5919  * insure only one NAPI poll instance runs.  We also make
5920  * sure there is no pending NAPI disable.
5921  */
5922 bool napi_schedule_prep(struct napi_struct *n)
5923 {
5924         unsigned long val, new;
5925
5926         do {
5927                 val = READ_ONCE(n->state);
5928                 if (unlikely(val & NAPIF_STATE_DISABLE))
5929                         return false;
5930                 new = val | NAPIF_STATE_SCHED;
5931
5932                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5933                  * This was suggested by Alexander Duyck, as compiler
5934                  * emits better code than :
5935                  * if (val & NAPIF_STATE_SCHED)
5936                  *     new |= NAPIF_STATE_MISSED;
5937                  */
5938                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5939                                                    NAPIF_STATE_MISSED;
5940         } while (cmpxchg(&n->state, val, new) != val);
5941
5942         return !(val & NAPIF_STATE_SCHED);
5943 }
5944 EXPORT_SYMBOL(napi_schedule_prep);
5945
5946 /**
5947  * __napi_schedule_irqoff - schedule for receive
5948  * @n: entry to schedule
5949  *
5950  * Variant of __napi_schedule() assuming hard irqs are masked
5951  */
5952 void __napi_schedule_irqoff(struct napi_struct *n)
5953 {
5954         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5955 }
5956 EXPORT_SYMBOL(__napi_schedule_irqoff);
5957
5958 bool napi_complete_done(struct napi_struct *n, int work_done)
5959 {
5960         unsigned long flags, val, new;
5961
5962         /*
5963          * 1) Don't let napi dequeue from the cpu poll list
5964          *    just in case its running on a different cpu.
5965          * 2) If we are busy polling, do nothing here, we have
5966          *    the guarantee we will be called later.
5967          */
5968         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5969                                  NAPIF_STATE_IN_BUSY_POLL)))
5970                 return false;
5971
5972         if (n->gro_bitmask) {
5973                 unsigned long timeout = 0;
5974
5975                 if (work_done)
5976                         timeout = n->dev->gro_flush_timeout;
5977
5978                 /* When the NAPI instance uses a timeout and keeps postponing
5979                  * it, we need to bound somehow the time packets are kept in
5980                  * the GRO layer
5981                  */
5982                 napi_gro_flush(n, !!timeout);
5983                 if (timeout)
5984                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5985                                       HRTIMER_MODE_REL_PINNED);
5986         }
5987         if (unlikely(!list_empty(&n->poll_list))) {
5988                 /* If n->poll_list is not empty, we need to mask irqs */
5989                 local_irq_save(flags);
5990                 list_del_init(&n->poll_list);
5991                 local_irq_restore(flags);
5992         }
5993
5994         do {
5995                 val = READ_ONCE(n->state);
5996
5997                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5998
5999                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6000
6001                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6002                  * because we will call napi->poll() one more time.
6003                  * This C code was suggested by Alexander Duyck to help gcc.
6004                  */
6005                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6006                                                     NAPIF_STATE_SCHED;
6007         } while (cmpxchg(&n->state, val, new) != val);
6008
6009         if (unlikely(val & NAPIF_STATE_MISSED)) {
6010                 __napi_schedule(n);
6011                 return false;
6012         }
6013
6014         return true;
6015 }
6016 EXPORT_SYMBOL(napi_complete_done);
6017
6018 /* must be called under rcu_read_lock(), as we dont take a reference */
6019 static struct napi_struct *napi_by_id(unsigned int napi_id)
6020 {
6021         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6022         struct napi_struct *napi;
6023
6024         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6025                 if (napi->napi_id == napi_id)
6026                         return napi;
6027
6028         return NULL;
6029 }
6030
6031 #if defined(CONFIG_NET_RX_BUSY_POLL)
6032
6033 #define BUSY_POLL_BUDGET 8
6034
6035 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6036 {
6037         int rc;
6038
6039         /* Busy polling means there is a high chance device driver hard irq
6040          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6041          * set in napi_schedule_prep().
6042          * Since we are about to call napi->poll() once more, we can safely
6043          * clear NAPI_STATE_MISSED.
6044          *
6045          * Note: x86 could use a single "lock and ..." instruction
6046          * to perform these two clear_bit()
6047          */
6048         clear_bit(NAPI_STATE_MISSED, &napi->state);
6049         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6050
6051         local_bh_disable();
6052
6053         /* All we really want here is to re-enable device interrupts.
6054          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6055          */
6056         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6057         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6058         netpoll_poll_unlock(have_poll_lock);
6059         if (rc == BUSY_POLL_BUDGET)
6060                 __napi_schedule(napi);
6061         local_bh_enable();
6062 }
6063
6064 void napi_busy_loop(unsigned int napi_id,
6065                     bool (*loop_end)(void *, unsigned long),
6066                     void *loop_end_arg)
6067 {
6068         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6069         int (*napi_poll)(struct napi_struct *napi, int budget);
6070         void *have_poll_lock = NULL;
6071         struct napi_struct *napi;
6072
6073 restart:
6074         napi_poll = NULL;
6075
6076         rcu_read_lock();
6077
6078         napi = napi_by_id(napi_id);
6079         if (!napi)
6080                 goto out;
6081
6082         preempt_disable();
6083         for (;;) {
6084                 int work = 0;
6085
6086                 local_bh_disable();
6087                 if (!napi_poll) {
6088                         unsigned long val = READ_ONCE(napi->state);
6089
6090                         /* If multiple threads are competing for this napi,
6091                          * we avoid dirtying napi->state as much as we can.
6092                          */
6093                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6094                                    NAPIF_STATE_IN_BUSY_POLL))
6095                                 goto count;
6096                         if (cmpxchg(&napi->state, val,
6097                                     val | NAPIF_STATE_IN_BUSY_POLL |
6098                                           NAPIF_STATE_SCHED) != val)
6099                                 goto count;
6100                         have_poll_lock = netpoll_poll_lock(napi);
6101                         napi_poll = napi->poll;
6102                 }
6103                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6104                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6105 count:
6106                 if (work > 0)
6107                         __NET_ADD_STATS(dev_net(napi->dev),
6108                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6109                 local_bh_enable();
6110
6111                 if (!loop_end || loop_end(loop_end_arg, start_time))
6112                         break;
6113
6114                 if (unlikely(need_resched())) {
6115                         if (napi_poll)
6116                                 busy_poll_stop(napi, have_poll_lock);
6117                         preempt_enable();
6118                         rcu_read_unlock();
6119                         cond_resched();
6120                         if (loop_end(loop_end_arg, start_time))
6121                                 return;
6122                         goto restart;
6123                 }
6124                 cpu_relax();
6125         }
6126         if (napi_poll)
6127                 busy_poll_stop(napi, have_poll_lock);
6128         preempt_enable();
6129 out:
6130         rcu_read_unlock();
6131 }
6132 EXPORT_SYMBOL(napi_busy_loop);
6133
6134 #endif /* CONFIG_NET_RX_BUSY_POLL */
6135
6136 static void napi_hash_add(struct napi_struct *napi)
6137 {
6138         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6139             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6140                 return;
6141
6142         spin_lock(&napi_hash_lock);
6143
6144         /* 0..NR_CPUS range is reserved for sender_cpu use */
6145         do {
6146                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6147                         napi_gen_id = MIN_NAPI_ID;
6148         } while (napi_by_id(napi_gen_id));
6149         napi->napi_id = napi_gen_id;
6150
6151         hlist_add_head_rcu(&napi->napi_hash_node,
6152                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6153
6154         spin_unlock(&napi_hash_lock);
6155 }
6156
6157 /* Warning : caller is responsible to make sure rcu grace period
6158  * is respected before freeing memory containing @napi
6159  */
6160 bool napi_hash_del(struct napi_struct *napi)
6161 {
6162         bool rcu_sync_needed = false;
6163
6164         spin_lock(&napi_hash_lock);
6165
6166         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6167                 rcu_sync_needed = true;
6168                 hlist_del_rcu(&napi->napi_hash_node);
6169         }
6170         spin_unlock(&napi_hash_lock);
6171         return rcu_sync_needed;
6172 }
6173 EXPORT_SYMBOL_GPL(napi_hash_del);
6174
6175 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6176 {
6177         struct napi_struct *napi;
6178
6179         napi = container_of(timer, struct napi_struct, timer);
6180
6181         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6182          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6183          */
6184         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6185             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6186                 __napi_schedule_irqoff(napi);
6187
6188         return HRTIMER_NORESTART;
6189 }
6190
6191 static void init_gro_hash(struct napi_struct *napi)
6192 {
6193         int i;
6194
6195         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6196                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6197                 napi->gro_hash[i].count = 0;
6198         }
6199         napi->gro_bitmask = 0;
6200 }
6201
6202 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6203                     int (*poll)(struct napi_struct *, int), int weight)
6204 {
6205         INIT_LIST_HEAD(&napi->poll_list);
6206         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6207         napi->timer.function = napi_watchdog;
6208         init_gro_hash(napi);
6209         napi->skb = NULL;
6210         napi->poll = poll;
6211         if (weight > NAPI_POLL_WEIGHT)
6212                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6213                                 weight);
6214         napi->weight = weight;
6215         list_add(&napi->dev_list, &dev->napi_list);
6216         napi->dev = dev;
6217 #ifdef CONFIG_NETPOLL
6218         napi->poll_owner = -1;
6219 #endif
6220         set_bit(NAPI_STATE_SCHED, &napi->state);
6221         napi_hash_add(napi);
6222 }
6223 EXPORT_SYMBOL(netif_napi_add);
6224
6225 void napi_disable(struct napi_struct *n)
6226 {
6227         might_sleep();
6228         set_bit(NAPI_STATE_DISABLE, &n->state);
6229
6230         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6231                 msleep(1);
6232         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6233                 msleep(1);
6234
6235         hrtimer_cancel(&n->timer);
6236
6237         clear_bit(NAPI_STATE_DISABLE, &n->state);
6238 }
6239 EXPORT_SYMBOL(napi_disable);
6240
6241 static void flush_gro_hash(struct napi_struct *napi)
6242 {
6243         int i;
6244
6245         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6246                 struct sk_buff *skb, *n;
6247
6248                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6249                         kfree_skb(skb);
6250                 napi->gro_hash[i].count = 0;
6251         }
6252 }
6253
6254 /* Must be called in process context */
6255 void netif_napi_del(struct napi_struct *napi)
6256 {
6257         might_sleep();
6258         if (napi_hash_del(napi))
6259                 synchronize_net();
6260         list_del_init(&napi->dev_list);
6261         napi_free_frags(napi);
6262
6263         flush_gro_hash(napi);
6264         napi->gro_bitmask = 0;
6265 }
6266 EXPORT_SYMBOL(netif_napi_del);
6267
6268 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6269 {
6270         void *have;
6271         int work, weight;
6272
6273         list_del_init(&n->poll_list);
6274
6275         have = netpoll_poll_lock(n);
6276
6277         weight = n->weight;
6278
6279         /* This NAPI_STATE_SCHED test is for avoiding a race
6280          * with netpoll's poll_napi().  Only the entity which
6281          * obtains the lock and sees NAPI_STATE_SCHED set will
6282          * actually make the ->poll() call.  Therefore we avoid
6283          * accidentally calling ->poll() when NAPI is not scheduled.
6284          */
6285         work = 0;
6286         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6287                 work = n->poll(n, weight);
6288                 trace_napi_poll(n, work, weight);
6289         }
6290
6291         WARN_ON_ONCE(work > weight);
6292
6293         if (likely(work < weight))
6294                 goto out_unlock;
6295
6296         /* Drivers must not modify the NAPI state if they
6297          * consume the entire weight.  In such cases this code
6298          * still "owns" the NAPI instance and therefore can
6299          * move the instance around on the list at-will.
6300          */
6301         if (unlikely(napi_disable_pending(n))) {
6302                 napi_complete(n);
6303                 goto out_unlock;
6304         }
6305
6306         if (n->gro_bitmask) {
6307                 /* flush too old packets
6308                  * If HZ < 1000, flush all packets.
6309                  */
6310                 napi_gro_flush(n, HZ >= 1000);
6311         }
6312
6313         /* Some drivers may have called napi_schedule
6314          * prior to exhausting their budget.
6315          */
6316         if (unlikely(!list_empty(&n->poll_list))) {
6317                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6318                              n->dev ? n->dev->name : "backlog");
6319                 goto out_unlock;
6320         }
6321
6322         list_add_tail(&n->poll_list, repoll);
6323
6324 out_unlock:
6325         netpoll_poll_unlock(have);
6326
6327         return work;
6328 }
6329
6330 static __latent_entropy void net_rx_action(struct softirq_action *h)
6331 {
6332         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6333         unsigned long time_limit = jiffies +
6334                 usecs_to_jiffies(netdev_budget_usecs);
6335         int budget = netdev_budget;
6336         LIST_HEAD(list);
6337         LIST_HEAD(repoll);
6338
6339         local_irq_disable();
6340         list_splice_init(&sd->poll_list, &list);
6341         local_irq_enable();
6342
6343         for (;;) {
6344                 struct napi_struct *n;
6345
6346                 if (list_empty(&list)) {
6347                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6348                                 goto out;
6349                         break;
6350                 }
6351
6352                 n = list_first_entry(&list, struct napi_struct, poll_list);
6353                 budget -= napi_poll(n, &repoll);
6354
6355                 /* If softirq window is exhausted then punt.
6356                  * Allow this to run for 2 jiffies since which will allow
6357                  * an average latency of 1.5/HZ.
6358                  */
6359                 if (unlikely(budget <= 0 ||
6360                              time_after_eq(jiffies, time_limit))) {
6361                         sd->time_squeeze++;
6362                         break;
6363                 }
6364         }
6365
6366         local_irq_disable();
6367
6368         list_splice_tail_init(&sd->poll_list, &list);
6369         list_splice_tail(&repoll, &list);
6370         list_splice(&list, &sd->poll_list);
6371         if (!list_empty(&sd->poll_list))
6372                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6373
6374         net_rps_action_and_irq_enable(sd);
6375 out:
6376         __kfree_skb_flush();
6377 }
6378
6379 struct netdev_adjacent {
6380         struct net_device *dev;
6381
6382         /* upper master flag, there can only be one master device per list */
6383         bool master;
6384
6385         /* counter for the number of times this device was added to us */
6386         u16 ref_nr;
6387
6388         /* private field for the users */
6389         void *private;
6390
6391         struct list_head list;
6392         struct rcu_head rcu;
6393 };
6394
6395 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6396                                                  struct list_head *adj_list)
6397 {
6398         struct netdev_adjacent *adj;
6399
6400         list_for_each_entry(adj, adj_list, list) {
6401                 if (adj->dev == adj_dev)
6402                         return adj;
6403         }
6404         return NULL;
6405 }
6406
6407 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6408 {
6409         struct net_device *dev = data;
6410
6411         return upper_dev == dev;
6412 }
6413
6414 /**
6415  * netdev_has_upper_dev - Check if device is linked to an upper device
6416  * @dev: device
6417  * @upper_dev: upper device to check
6418  *
6419  * Find out if a device is linked to specified upper device and return true
6420  * in case it is. Note that this checks only immediate upper device,
6421  * not through a complete stack of devices. The caller must hold the RTNL lock.
6422  */
6423 bool netdev_has_upper_dev(struct net_device *dev,
6424                           struct net_device *upper_dev)
6425 {
6426         ASSERT_RTNL();
6427
6428         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6429                                              upper_dev);
6430 }
6431 EXPORT_SYMBOL(netdev_has_upper_dev);
6432
6433 /**
6434  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6435  * @dev: device
6436  * @upper_dev: upper device to check
6437  *
6438  * Find out if a device is linked to specified upper device and return true
6439  * in case it is. Note that this checks the entire upper device chain.
6440  * The caller must hold rcu lock.
6441  */
6442
6443 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6444                                   struct net_device *upper_dev)
6445 {
6446         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6447                                                upper_dev);
6448 }
6449 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6450
6451 /**
6452  * netdev_has_any_upper_dev - Check if device is linked to some device
6453  * @dev: device
6454  *
6455  * Find out if a device is linked to an upper device and return true in case
6456  * it is. The caller must hold the RTNL lock.
6457  */
6458 bool netdev_has_any_upper_dev(struct net_device *dev)
6459 {
6460         ASSERT_RTNL();
6461
6462         return !list_empty(&dev->adj_list.upper);
6463 }
6464 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6465
6466 /**
6467  * netdev_master_upper_dev_get - Get master upper device
6468  * @dev: device
6469  *
6470  * Find a master upper device and return pointer to it or NULL in case
6471  * it's not there. The caller must hold the RTNL lock.
6472  */
6473 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6474 {
6475         struct netdev_adjacent *upper;
6476
6477         ASSERT_RTNL();
6478
6479         if (list_empty(&dev->adj_list.upper))
6480                 return NULL;
6481
6482         upper = list_first_entry(&dev->adj_list.upper,
6483                                  struct netdev_adjacent, list);
6484         if (likely(upper->master))
6485                 return upper->dev;
6486         return NULL;
6487 }
6488 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6489
6490 /**
6491  * netdev_has_any_lower_dev - Check if device is linked to some device
6492  * @dev: device
6493  *
6494  * Find out if a device is linked to a lower device and return true in case
6495  * it is. The caller must hold the RTNL lock.
6496  */
6497 static bool netdev_has_any_lower_dev(struct net_device *dev)
6498 {
6499         ASSERT_RTNL();
6500
6501         return !list_empty(&dev->adj_list.lower);
6502 }
6503
6504 void *netdev_adjacent_get_private(struct list_head *adj_list)
6505 {
6506         struct netdev_adjacent *adj;
6507
6508         adj = list_entry(adj_list, struct netdev_adjacent, list);
6509
6510         return adj->private;
6511 }
6512 EXPORT_SYMBOL(netdev_adjacent_get_private);
6513
6514 /**
6515  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6516  * @dev: device
6517  * @iter: list_head ** of the current position
6518  *
6519  * Gets the next device from the dev's upper list, starting from iter
6520  * position. The caller must hold RCU read lock.
6521  */
6522 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6523                                                  struct list_head **iter)
6524 {
6525         struct netdev_adjacent *upper;
6526
6527         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6528
6529         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6530
6531         if (&upper->list == &dev->adj_list.upper)
6532                 return NULL;
6533
6534         *iter = &upper->list;
6535
6536         return upper->dev;
6537 }
6538 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6539
6540 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6541                                                     struct list_head **iter)
6542 {
6543         struct netdev_adjacent *upper;
6544
6545         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6546
6547         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6548
6549         if (&upper->list == &dev->adj_list.upper)
6550                 return NULL;
6551
6552         *iter = &upper->list;
6553
6554         return upper->dev;
6555 }
6556
6557 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6558                                   int (*fn)(struct net_device *dev,
6559                                             void *data),
6560                                   void *data)
6561 {
6562         struct net_device *udev;
6563         struct list_head *iter;
6564         int ret;
6565
6566         for (iter = &dev->adj_list.upper,
6567              udev = netdev_next_upper_dev_rcu(dev, &iter);
6568              udev;
6569              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6570                 /* first is the upper device itself */
6571                 ret = fn(udev, data);
6572                 if (ret)
6573                         return ret;
6574
6575                 /* then look at all of its upper devices */
6576                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6577                 if (ret)
6578                         return ret;
6579         }
6580
6581         return 0;
6582 }
6583 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6584
6585 /**
6586  * netdev_lower_get_next_private - Get the next ->private from the
6587  *                                 lower neighbour list
6588  * @dev: device
6589  * @iter: list_head ** of the current position
6590  *
6591  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6592  * list, starting from iter position. The caller must hold either hold the
6593  * RTNL lock or its own locking that guarantees that the neighbour lower
6594  * list will remain unchanged.
6595  */
6596 void *netdev_lower_get_next_private(struct net_device *dev,
6597                                     struct list_head **iter)
6598 {
6599         struct netdev_adjacent *lower;
6600
6601         lower = list_entry(*iter, struct netdev_adjacent, list);
6602
6603         if (&lower->list == &dev->adj_list.lower)
6604                 return NULL;
6605
6606         *iter = lower->list.next;
6607
6608         return lower->private;
6609 }
6610 EXPORT_SYMBOL(netdev_lower_get_next_private);
6611
6612 /**
6613  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6614  *                                     lower neighbour list, RCU
6615  *                                     variant
6616  * @dev: device
6617  * @iter: list_head ** of the current position
6618  *
6619  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6620  * list, starting from iter position. The caller must hold RCU read lock.
6621  */
6622 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6623                                         struct list_head **iter)
6624 {
6625         struct netdev_adjacent *lower;
6626
6627         WARN_ON_ONCE(!rcu_read_lock_held());
6628
6629         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6630
6631         if (&lower->list == &dev->adj_list.lower)
6632                 return NULL;
6633
6634         *iter = &lower->list;
6635
6636         return lower->private;
6637 }
6638 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6639
6640 /**
6641  * netdev_lower_get_next - Get the next device from the lower neighbour
6642  *                         list
6643  * @dev: device
6644  * @iter: list_head ** of the current position
6645  *
6646  * Gets the next netdev_adjacent from the dev's lower neighbour
6647  * list, starting from iter position. The caller must hold RTNL lock or
6648  * its own locking that guarantees that the neighbour lower
6649  * list will remain unchanged.
6650  */
6651 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6652 {
6653         struct netdev_adjacent *lower;
6654
6655         lower = list_entry(*iter, struct netdev_adjacent, list);
6656
6657         if (&lower->list == &dev->adj_list.lower)
6658                 return NULL;
6659
6660         *iter = lower->list.next;
6661
6662         return lower->dev;
6663 }
6664 EXPORT_SYMBOL(netdev_lower_get_next);
6665
6666 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6667                                                 struct list_head **iter)
6668 {
6669         struct netdev_adjacent *lower;
6670
6671         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6672
6673         if (&lower->list == &dev->adj_list.lower)
6674                 return NULL;
6675
6676         *iter = &lower->list;
6677
6678         return lower->dev;
6679 }
6680
6681 int netdev_walk_all_lower_dev(struct net_device *dev,
6682                               int (*fn)(struct net_device *dev,
6683                                         void *data),
6684                               void *data)
6685 {
6686         struct net_device *ldev;
6687         struct list_head *iter;
6688         int ret;
6689
6690         for (iter = &dev->adj_list.lower,
6691              ldev = netdev_next_lower_dev(dev, &iter);
6692              ldev;
6693              ldev = netdev_next_lower_dev(dev, &iter)) {
6694                 /* first is the lower device itself */
6695                 ret = fn(ldev, data);
6696                 if (ret)
6697                         return ret;
6698
6699                 /* then look at all of its lower devices */
6700                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6701                 if (ret)
6702                         return ret;
6703         }
6704
6705         return 0;
6706 }
6707 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6708
6709 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6710                                                     struct list_head **iter)
6711 {
6712         struct netdev_adjacent *lower;
6713
6714         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6715         if (&lower->list == &dev->adj_list.lower)
6716                 return NULL;
6717
6718         *iter = &lower->list;
6719
6720         return lower->dev;
6721 }
6722
6723 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6724                                   int (*fn)(struct net_device *dev,
6725                                             void *data),
6726                                   void *data)
6727 {
6728         struct net_device *ldev;
6729         struct list_head *iter;
6730         int ret;
6731
6732         for (iter = &dev->adj_list.lower,
6733              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6734              ldev;
6735              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6736                 /* first is the lower device itself */
6737                 ret = fn(ldev, data);
6738                 if (ret)
6739                         return ret;
6740
6741                 /* then look at all of its lower devices */
6742                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6743                 if (ret)
6744                         return ret;
6745         }
6746
6747         return 0;
6748 }
6749 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6750
6751 /**
6752  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6753  *                                     lower neighbour list, RCU
6754  *                                     variant
6755  * @dev: device
6756  *
6757  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6758  * list. The caller must hold RCU read lock.
6759  */
6760 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6761 {
6762         struct netdev_adjacent *lower;
6763
6764         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6765                         struct netdev_adjacent, list);
6766         if (lower)
6767                 return lower->private;
6768         return NULL;
6769 }
6770 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6771
6772 /**
6773  * netdev_master_upper_dev_get_rcu - Get master upper device
6774  * @dev: device
6775  *
6776  * Find a master upper device and return pointer to it or NULL in case
6777  * it's not there. The caller must hold the RCU read lock.
6778  */
6779 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6780 {
6781         struct netdev_adjacent *upper;
6782
6783         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6784                                        struct netdev_adjacent, list);
6785         if (upper && likely(upper->master))
6786                 return upper->dev;
6787         return NULL;
6788 }
6789 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6790
6791 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6792                               struct net_device *adj_dev,
6793                               struct list_head *dev_list)
6794 {
6795         char linkname[IFNAMSIZ+7];
6796
6797         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6798                 "upper_%s" : "lower_%s", adj_dev->name);
6799         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6800                                  linkname);
6801 }
6802 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6803                                char *name,
6804                                struct list_head *dev_list)
6805 {
6806         char linkname[IFNAMSIZ+7];
6807
6808         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6809                 "upper_%s" : "lower_%s", name);
6810         sysfs_remove_link(&(dev->dev.kobj), linkname);
6811 }
6812
6813 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6814                                                  struct net_device *adj_dev,
6815                                                  struct list_head *dev_list)
6816 {
6817         return (dev_list == &dev->adj_list.upper ||
6818                 dev_list == &dev->adj_list.lower) &&
6819                 net_eq(dev_net(dev), dev_net(adj_dev));
6820 }
6821
6822 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6823                                         struct net_device *adj_dev,
6824                                         struct list_head *dev_list,
6825                                         void *private, bool master)
6826 {
6827         struct netdev_adjacent *adj;
6828         int ret;
6829
6830         adj = __netdev_find_adj(adj_dev, dev_list);
6831
6832         if (adj) {
6833                 adj->ref_nr += 1;
6834                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6835                          dev->name, adj_dev->name, adj->ref_nr);
6836
6837                 return 0;
6838         }
6839
6840         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6841         if (!adj)
6842                 return -ENOMEM;
6843
6844         adj->dev = adj_dev;
6845         adj->master = master;
6846         adj->ref_nr = 1;
6847         adj->private = private;
6848         dev_hold(adj_dev);
6849
6850         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6851                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6852
6853         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6854                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6855                 if (ret)
6856                         goto free_adj;
6857         }
6858
6859         /* Ensure that master link is always the first item in list. */
6860         if (master) {
6861                 ret = sysfs_create_link(&(dev->dev.kobj),
6862                                         &(adj_dev->dev.kobj), "master");
6863                 if (ret)
6864                         goto remove_symlinks;
6865
6866                 list_add_rcu(&adj->list, dev_list);
6867         } else {
6868                 list_add_tail_rcu(&adj->list, dev_list);
6869         }
6870
6871         return 0;
6872
6873 remove_symlinks:
6874         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6875                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6876 free_adj:
6877         kfree(adj);
6878         dev_put(adj_dev);
6879
6880         return ret;
6881 }
6882
6883 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6884                                          struct net_device *adj_dev,
6885                                          u16 ref_nr,
6886                                          struct list_head *dev_list)
6887 {
6888         struct netdev_adjacent *adj;
6889
6890         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6891                  dev->name, adj_dev->name, ref_nr);
6892
6893         adj = __netdev_find_adj(adj_dev, dev_list);
6894
6895         if (!adj) {
6896                 pr_err("Adjacency does not exist for device %s from %s\n",
6897                        dev->name, adj_dev->name);
6898                 WARN_ON(1);
6899                 return;
6900         }
6901
6902         if (adj->ref_nr > ref_nr) {
6903                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6904                          dev->name, adj_dev->name, ref_nr,
6905                          adj->ref_nr - ref_nr);
6906                 adj->ref_nr -= ref_nr;
6907                 return;
6908         }
6909
6910         if (adj->master)
6911                 sysfs_remove_link(&(dev->dev.kobj), "master");
6912
6913         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6914                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6915
6916         list_del_rcu(&adj->list);
6917         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6918                  adj_dev->name, dev->name, adj_dev->name);
6919         dev_put(adj_dev);
6920         kfree_rcu(adj, rcu);
6921 }
6922
6923 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6924                                             struct net_device *upper_dev,
6925                                             struct list_head *up_list,
6926                                             struct list_head *down_list,
6927                                             void *private, bool master)
6928 {
6929         int ret;
6930
6931         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6932                                            private, master);
6933         if (ret)
6934                 return ret;
6935
6936         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6937                                            private, false);
6938         if (ret) {
6939                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6940                 return ret;
6941         }
6942
6943         return 0;
6944 }
6945
6946 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6947                                                struct net_device *upper_dev,
6948                                                u16 ref_nr,
6949                                                struct list_head *up_list,
6950                                                struct list_head *down_list)
6951 {
6952         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6953         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6954 }
6955
6956 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6957                                                 struct net_device *upper_dev,
6958                                                 void *private, bool master)
6959 {
6960         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6961                                                 &dev->adj_list.upper,
6962                                                 &upper_dev->adj_list.lower,
6963                                                 private, master);
6964 }
6965
6966 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6967                                                    struct net_device *upper_dev)
6968 {
6969         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6970                                            &dev->adj_list.upper,
6971                                            &upper_dev->adj_list.lower);
6972 }
6973
6974 static int __netdev_upper_dev_link(struct net_device *dev,
6975                                    struct net_device *upper_dev, bool master,
6976                                    void *upper_priv, void *upper_info,
6977                                    struct netlink_ext_ack *extack)
6978 {
6979         struct netdev_notifier_changeupper_info changeupper_info = {
6980                 .info = {
6981                         .dev = dev,
6982                         .extack = extack,
6983                 },
6984                 .upper_dev = upper_dev,
6985                 .master = master,
6986                 .linking = true,
6987                 .upper_info = upper_info,
6988         };
6989         struct net_device *master_dev;
6990         int ret = 0;
6991
6992         ASSERT_RTNL();
6993
6994         if (dev == upper_dev)
6995                 return -EBUSY;
6996
6997         /* To prevent loops, check if dev is not upper device to upper_dev. */
6998         if (netdev_has_upper_dev(upper_dev, dev))
6999                 return -EBUSY;
7000
7001         if (!master) {
7002                 if (netdev_has_upper_dev(dev, upper_dev))
7003                         return -EEXIST;
7004         } else {
7005                 master_dev = netdev_master_upper_dev_get(dev);
7006                 if (master_dev)
7007                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7008         }
7009
7010         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7011                                             &changeupper_info.info);
7012         ret = notifier_to_errno(ret);
7013         if (ret)
7014                 return ret;
7015
7016         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7017                                                    master);
7018         if (ret)
7019                 return ret;
7020
7021         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7022                                             &changeupper_info.info);
7023         ret = notifier_to_errno(ret);
7024         if (ret)
7025                 goto rollback;
7026
7027         return 0;
7028
7029 rollback:
7030         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7031
7032         return ret;
7033 }
7034
7035 /**
7036  * netdev_upper_dev_link - Add a link to the upper device
7037  * @dev: device
7038  * @upper_dev: new upper device
7039  * @extack: netlink extended ack
7040  *
7041  * Adds a link to device which is upper to this one. The caller must hold
7042  * the RTNL lock. On a failure a negative errno code is returned.
7043  * On success the reference counts are adjusted and the function
7044  * returns zero.
7045  */
7046 int netdev_upper_dev_link(struct net_device *dev,
7047                           struct net_device *upper_dev,
7048                           struct netlink_ext_ack *extack)
7049 {
7050         return __netdev_upper_dev_link(dev, upper_dev, false,
7051                                        NULL, NULL, extack);
7052 }
7053 EXPORT_SYMBOL(netdev_upper_dev_link);
7054
7055 /**
7056  * netdev_master_upper_dev_link - Add a master link to the upper device
7057  * @dev: device
7058  * @upper_dev: new upper device
7059  * @upper_priv: upper device private
7060  * @upper_info: upper info to be passed down via notifier
7061  * @extack: netlink extended ack
7062  *
7063  * Adds a link to device which is upper to this one. In this case, only
7064  * one master upper device can be linked, although other non-master devices
7065  * might be linked as well. The caller must hold the RTNL lock.
7066  * On a failure a negative errno code is returned. On success the reference
7067  * counts are adjusted and the function returns zero.
7068  */
7069 int netdev_master_upper_dev_link(struct net_device *dev,
7070                                  struct net_device *upper_dev,
7071                                  void *upper_priv, void *upper_info,
7072                                  struct netlink_ext_ack *extack)
7073 {
7074         return __netdev_upper_dev_link(dev, upper_dev, true,
7075                                        upper_priv, upper_info, extack);
7076 }
7077 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7078
7079 /**
7080  * netdev_upper_dev_unlink - Removes a link to upper device
7081  * @dev: device
7082  * @upper_dev: new upper device
7083  *
7084  * Removes a link to device which is upper to this one. The caller must hold
7085  * the RTNL lock.
7086  */
7087 void netdev_upper_dev_unlink(struct net_device *dev,
7088                              struct net_device *upper_dev)
7089 {
7090         struct netdev_notifier_changeupper_info changeupper_info = {
7091                 .info = {
7092                         .dev = dev,
7093                 },
7094                 .upper_dev = upper_dev,
7095                 .linking = false,
7096         };
7097
7098         ASSERT_RTNL();
7099
7100         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7101
7102         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7103                                       &changeupper_info.info);
7104
7105         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7106
7107         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7108                                       &changeupper_info.info);
7109 }
7110 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7111
7112 /**
7113  * netdev_bonding_info_change - Dispatch event about slave change
7114  * @dev: device
7115  * @bonding_info: info to dispatch
7116  *
7117  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7118  * The caller must hold the RTNL lock.
7119  */
7120 void netdev_bonding_info_change(struct net_device *dev,
7121                                 struct netdev_bonding_info *bonding_info)
7122 {
7123         struct netdev_notifier_bonding_info info = {
7124                 .info.dev = dev,
7125         };
7126
7127         memcpy(&info.bonding_info, bonding_info,
7128                sizeof(struct netdev_bonding_info));
7129         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7130                                       &info.info);
7131 }
7132 EXPORT_SYMBOL(netdev_bonding_info_change);
7133
7134 static void netdev_adjacent_add_links(struct net_device *dev)
7135 {
7136         struct netdev_adjacent *iter;
7137
7138         struct net *net = dev_net(dev);
7139
7140         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7141                 if (!net_eq(net, dev_net(iter->dev)))
7142                         continue;
7143                 netdev_adjacent_sysfs_add(iter->dev, dev,
7144                                           &iter->dev->adj_list.lower);
7145                 netdev_adjacent_sysfs_add(dev, iter->dev,
7146                                           &dev->adj_list.upper);
7147         }
7148
7149         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7150                 if (!net_eq(net, dev_net(iter->dev)))
7151                         continue;
7152                 netdev_adjacent_sysfs_add(iter->dev, dev,
7153                                           &iter->dev->adj_list.upper);
7154                 netdev_adjacent_sysfs_add(dev, iter->dev,
7155                                           &dev->adj_list.lower);
7156         }
7157 }
7158
7159 static void netdev_adjacent_del_links(struct net_device *dev)
7160 {
7161         struct netdev_adjacent *iter;
7162
7163         struct net *net = dev_net(dev);
7164
7165         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7166                 if (!net_eq(net, dev_net(iter->dev)))
7167                         continue;
7168                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7169                                           &iter->dev->adj_list.lower);
7170                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7171                                           &dev->adj_list.upper);
7172         }
7173
7174         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7175                 if (!net_eq(net, dev_net(iter->dev)))
7176                         continue;
7177                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7178                                           &iter->dev->adj_list.upper);
7179                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7180                                           &dev->adj_list.lower);
7181         }
7182 }
7183
7184 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7185 {
7186         struct netdev_adjacent *iter;
7187
7188         struct net *net = dev_net(dev);
7189
7190         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7191                 if (!net_eq(net, dev_net(iter->dev)))
7192                         continue;
7193                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7194                                           &iter->dev->adj_list.lower);
7195                 netdev_adjacent_sysfs_add(iter->dev, dev,
7196                                           &iter->dev->adj_list.lower);
7197         }
7198
7199         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7200                 if (!net_eq(net, dev_net(iter->dev)))
7201                         continue;
7202                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7203                                           &iter->dev->adj_list.upper);
7204                 netdev_adjacent_sysfs_add(iter->dev, dev,
7205                                           &iter->dev->adj_list.upper);
7206         }
7207 }
7208
7209 void *netdev_lower_dev_get_private(struct net_device *dev,
7210                                    struct net_device *lower_dev)
7211 {
7212         struct netdev_adjacent *lower;
7213
7214         if (!lower_dev)
7215                 return NULL;
7216         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7217         if (!lower)
7218                 return NULL;
7219
7220         return lower->private;
7221 }
7222 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7223
7224
7225 int dev_get_nest_level(struct net_device *dev)
7226 {
7227         struct net_device *lower = NULL;
7228         struct list_head *iter;
7229         int max_nest = -1;
7230         int nest;
7231
7232         ASSERT_RTNL();
7233
7234         netdev_for_each_lower_dev(dev, lower, iter) {
7235                 nest = dev_get_nest_level(lower);
7236                 if (max_nest < nest)
7237                         max_nest = nest;
7238         }
7239
7240         return max_nest + 1;
7241 }
7242 EXPORT_SYMBOL(dev_get_nest_level);
7243
7244 /**
7245  * netdev_lower_change - Dispatch event about lower device state change
7246  * @lower_dev: device
7247  * @lower_state_info: state to dispatch
7248  *
7249  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7250  * The caller must hold the RTNL lock.
7251  */
7252 void netdev_lower_state_changed(struct net_device *lower_dev,
7253                                 void *lower_state_info)
7254 {
7255         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7256                 .info.dev = lower_dev,
7257         };
7258
7259         ASSERT_RTNL();
7260         changelowerstate_info.lower_state_info = lower_state_info;
7261         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7262                                       &changelowerstate_info.info);
7263 }
7264 EXPORT_SYMBOL(netdev_lower_state_changed);
7265
7266 static void dev_change_rx_flags(struct net_device *dev, int flags)
7267 {
7268         const struct net_device_ops *ops = dev->netdev_ops;
7269
7270         if (ops->ndo_change_rx_flags)
7271                 ops->ndo_change_rx_flags(dev, flags);
7272 }
7273
7274 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7275 {
7276         unsigned int old_flags = dev->flags;
7277         kuid_t uid;
7278         kgid_t gid;
7279
7280         ASSERT_RTNL();
7281
7282         dev->flags |= IFF_PROMISC;
7283         dev->promiscuity += inc;
7284         if (dev->promiscuity == 0) {
7285                 /*
7286                  * Avoid overflow.
7287                  * If inc causes overflow, untouch promisc and return error.
7288                  */
7289                 if (inc < 0)
7290                         dev->flags &= ~IFF_PROMISC;
7291                 else {
7292                         dev->promiscuity -= inc;
7293                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7294                                 dev->name);
7295                         return -EOVERFLOW;
7296                 }
7297         }
7298         if (dev->flags != old_flags) {
7299                 pr_info("device %s %s promiscuous mode\n",
7300                         dev->name,
7301                         dev->flags & IFF_PROMISC ? "entered" : "left");
7302                 if (audit_enabled) {
7303                         current_uid_gid(&uid, &gid);
7304                         audit_log(audit_context(), GFP_ATOMIC,
7305                                   AUDIT_ANOM_PROMISCUOUS,
7306                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7307                                   dev->name, (dev->flags & IFF_PROMISC),
7308                                   (old_flags & IFF_PROMISC),
7309                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7310                                   from_kuid(&init_user_ns, uid),
7311                                   from_kgid(&init_user_ns, gid),
7312                                   audit_get_sessionid(current));
7313                 }
7314
7315                 dev_change_rx_flags(dev, IFF_PROMISC);
7316         }
7317         if (notify)
7318                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7319         return 0;
7320 }
7321
7322 /**
7323  *      dev_set_promiscuity     - update promiscuity count on a device
7324  *      @dev: device
7325  *      @inc: modifier
7326  *
7327  *      Add or remove promiscuity from a device. While the count in the device
7328  *      remains above zero the interface remains promiscuous. Once it hits zero
7329  *      the device reverts back to normal filtering operation. A negative inc
7330  *      value is used to drop promiscuity on the device.
7331  *      Return 0 if successful or a negative errno code on error.
7332  */
7333 int dev_set_promiscuity(struct net_device *dev, int inc)
7334 {
7335         unsigned int old_flags = dev->flags;
7336         int err;
7337
7338         err = __dev_set_promiscuity(dev, inc, true);
7339         if (err < 0)
7340                 return err;
7341         if (dev->flags != old_flags)
7342                 dev_set_rx_mode(dev);
7343         return err;
7344 }
7345 EXPORT_SYMBOL(dev_set_promiscuity);
7346
7347 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7348 {
7349         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7350
7351         ASSERT_RTNL();
7352
7353         dev->flags |= IFF_ALLMULTI;
7354         dev->allmulti += inc;
7355         if (dev->allmulti == 0) {
7356                 /*
7357                  * Avoid overflow.
7358                  * If inc causes overflow, untouch allmulti and return error.
7359                  */
7360                 if (inc < 0)
7361                         dev->flags &= ~IFF_ALLMULTI;
7362                 else {
7363                         dev->allmulti -= inc;
7364                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7365                                 dev->name);
7366                         return -EOVERFLOW;
7367                 }
7368         }
7369         if (dev->flags ^ old_flags) {
7370                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7371                 dev_set_rx_mode(dev);
7372                 if (notify)
7373                         __dev_notify_flags(dev, old_flags,
7374                                            dev->gflags ^ old_gflags);
7375         }
7376         return 0;
7377 }
7378
7379 /**
7380  *      dev_set_allmulti        - update allmulti count on a device
7381  *      @dev: device
7382  *      @inc: modifier
7383  *
7384  *      Add or remove reception of all multicast frames to a device. While the
7385  *      count in the device remains above zero the interface remains listening
7386  *      to all interfaces. Once it hits zero the device reverts back to normal
7387  *      filtering operation. A negative @inc value is used to drop the counter
7388  *      when releasing a resource needing all multicasts.
7389  *      Return 0 if successful or a negative errno code on error.
7390  */
7391
7392 int dev_set_allmulti(struct net_device *dev, int inc)
7393 {
7394         return __dev_set_allmulti(dev, inc, true);
7395 }
7396 EXPORT_SYMBOL(dev_set_allmulti);
7397
7398 /*
7399  *      Upload unicast and multicast address lists to device and
7400  *      configure RX filtering. When the device doesn't support unicast
7401  *      filtering it is put in promiscuous mode while unicast addresses
7402  *      are present.
7403  */
7404 void __dev_set_rx_mode(struct net_device *dev)
7405 {
7406         const struct net_device_ops *ops = dev->netdev_ops;
7407
7408         /* dev_open will call this function so the list will stay sane. */
7409         if (!(dev->flags&IFF_UP))
7410                 return;
7411
7412         if (!netif_device_present(dev))
7413                 return;
7414
7415         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7416                 /* Unicast addresses changes may only happen under the rtnl,
7417                  * therefore calling __dev_set_promiscuity here is safe.
7418                  */
7419                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7420                         __dev_set_promiscuity(dev, 1, false);
7421                         dev->uc_promisc = true;
7422                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7423                         __dev_set_promiscuity(dev, -1, false);
7424                         dev->uc_promisc = false;
7425                 }
7426         }
7427
7428         if (ops->ndo_set_rx_mode)
7429                 ops->ndo_set_rx_mode(dev);
7430 }
7431
7432 void dev_set_rx_mode(struct net_device *dev)
7433 {
7434         netif_addr_lock_bh(dev);
7435         __dev_set_rx_mode(dev);
7436         netif_addr_unlock_bh(dev);
7437 }
7438
7439 /**
7440  *      dev_get_flags - get flags reported to userspace
7441  *      @dev: device
7442  *
7443  *      Get the combination of flag bits exported through APIs to userspace.
7444  */
7445 unsigned int dev_get_flags(const struct net_device *dev)
7446 {
7447         unsigned int flags;
7448
7449         flags = (dev->flags & ~(IFF_PROMISC |
7450                                 IFF_ALLMULTI |
7451                                 IFF_RUNNING |
7452                                 IFF_LOWER_UP |
7453                                 IFF_DORMANT)) |
7454                 (dev->gflags & (IFF_PROMISC |
7455                                 IFF_ALLMULTI));
7456
7457         if (netif_running(dev)) {
7458                 if (netif_oper_up(dev))
7459                         flags |= IFF_RUNNING;
7460                 if (netif_carrier_ok(dev))
7461                         flags |= IFF_LOWER_UP;
7462                 if (netif_dormant(dev))
7463                         flags |= IFF_DORMANT;
7464         }
7465
7466         return flags;
7467 }
7468 EXPORT_SYMBOL(dev_get_flags);
7469
7470 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7471 {
7472         unsigned int old_flags = dev->flags;
7473         int ret;
7474
7475         ASSERT_RTNL();
7476
7477         /*
7478          *      Set the flags on our device.
7479          */
7480
7481         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7482                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7483                                IFF_AUTOMEDIA)) |
7484                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7485                                     IFF_ALLMULTI));
7486
7487         /*
7488          *      Load in the correct multicast list now the flags have changed.
7489          */
7490
7491         if ((old_flags ^ flags) & IFF_MULTICAST)
7492                 dev_change_rx_flags(dev, IFF_MULTICAST);
7493
7494         dev_set_rx_mode(dev);
7495
7496         /*
7497          *      Have we downed the interface. We handle IFF_UP ourselves
7498          *      according to user attempts to set it, rather than blindly
7499          *      setting it.
7500          */
7501
7502         ret = 0;
7503         if ((old_flags ^ flags) & IFF_UP) {
7504                 if (old_flags & IFF_UP)
7505                         __dev_close(dev);
7506                 else
7507                         ret = __dev_open(dev);
7508         }
7509
7510         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7511                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7512                 unsigned int old_flags = dev->flags;
7513
7514                 dev->gflags ^= IFF_PROMISC;
7515
7516                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7517                         if (dev->flags != old_flags)
7518                                 dev_set_rx_mode(dev);
7519         }
7520
7521         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7522          * is important. Some (broken) drivers set IFF_PROMISC, when
7523          * IFF_ALLMULTI is requested not asking us and not reporting.
7524          */
7525         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7526                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7527
7528                 dev->gflags ^= IFF_ALLMULTI;
7529                 __dev_set_allmulti(dev, inc, false);
7530         }
7531
7532         return ret;
7533 }
7534
7535 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7536                         unsigned int gchanges)
7537 {
7538         unsigned int changes = dev->flags ^ old_flags;
7539
7540         if (gchanges)
7541                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7542
7543         if (changes & IFF_UP) {
7544                 if (dev->flags & IFF_UP)
7545                         call_netdevice_notifiers(NETDEV_UP, dev);
7546                 else
7547                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7548         }
7549
7550         if (dev->flags & IFF_UP &&
7551             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7552                 struct netdev_notifier_change_info change_info = {
7553                         .info = {
7554                                 .dev = dev,
7555                         },
7556                         .flags_changed = changes,
7557                 };
7558
7559                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7560         }
7561 }
7562
7563 /**
7564  *      dev_change_flags - change device settings
7565  *      @dev: device
7566  *      @flags: device state flags
7567  *
7568  *      Change settings on device based state flags. The flags are
7569  *      in the userspace exported format.
7570  */
7571 int dev_change_flags(struct net_device *dev, unsigned int flags)
7572 {
7573         int ret;
7574         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7575
7576         ret = __dev_change_flags(dev, flags);
7577         if (ret < 0)
7578                 return ret;
7579
7580         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7581         __dev_notify_flags(dev, old_flags, changes);
7582         return ret;
7583 }
7584 EXPORT_SYMBOL(dev_change_flags);
7585
7586 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7587 {
7588         const struct net_device_ops *ops = dev->netdev_ops;
7589
7590         if (ops->ndo_change_mtu)
7591                 return ops->ndo_change_mtu(dev, new_mtu);
7592
7593         dev->mtu = new_mtu;
7594         return 0;
7595 }
7596 EXPORT_SYMBOL(__dev_set_mtu);
7597
7598 /**
7599  *      dev_set_mtu_ext - Change maximum transfer unit
7600  *      @dev: device
7601  *      @new_mtu: new transfer unit
7602  *      @extack: netlink extended ack
7603  *
7604  *      Change the maximum transfer size of the network device.
7605  */
7606 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7607                     struct netlink_ext_ack *extack)
7608 {
7609         int err, orig_mtu;
7610
7611         if (new_mtu == dev->mtu)
7612                 return 0;
7613
7614         /* MTU must be positive, and in range */
7615         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7616                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7617                 return -EINVAL;
7618         }
7619
7620         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7621                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7622                 return -EINVAL;
7623         }
7624
7625         if (!netif_device_present(dev))
7626                 return -ENODEV;
7627
7628         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7629         err = notifier_to_errno(err);
7630         if (err)
7631                 return err;
7632
7633         orig_mtu = dev->mtu;
7634         err = __dev_set_mtu(dev, new_mtu);
7635
7636         if (!err) {
7637                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7638                                                    orig_mtu);
7639                 err = notifier_to_errno(err);
7640                 if (err) {
7641                         /* setting mtu back and notifying everyone again,
7642                          * so that they have a chance to revert changes.
7643                          */
7644                         __dev_set_mtu(dev, orig_mtu);
7645                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7646                                                      new_mtu);
7647                 }
7648         }
7649         return err;
7650 }
7651
7652 int dev_set_mtu(struct net_device *dev, int new_mtu)
7653 {
7654         struct netlink_ext_ack extack;
7655         int err;
7656
7657         memset(&extack, 0, sizeof(extack));
7658         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7659         if (err && extack._msg)
7660                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7661         return err;
7662 }
7663 EXPORT_SYMBOL(dev_set_mtu);
7664
7665 /**
7666  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7667  *      @dev: device
7668  *      @new_len: new tx queue length
7669  */
7670 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7671 {
7672         unsigned int orig_len = dev->tx_queue_len;
7673         int res;
7674
7675         if (new_len != (unsigned int)new_len)
7676                 return -ERANGE;
7677
7678         if (new_len != orig_len) {
7679                 dev->tx_queue_len = new_len;
7680                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7681                 res = notifier_to_errno(res);
7682                 if (res)
7683                         goto err_rollback;
7684                 res = dev_qdisc_change_tx_queue_len(dev);
7685                 if (res)
7686                         goto err_rollback;
7687         }
7688
7689         return 0;
7690
7691 err_rollback:
7692         netdev_err(dev, "refused to change device tx_queue_len\n");
7693         dev->tx_queue_len = orig_len;
7694         return res;
7695 }
7696
7697 /**
7698  *      dev_set_group - Change group this device belongs to
7699  *      @dev: device
7700  *      @new_group: group this device should belong to
7701  */
7702 void dev_set_group(struct net_device *dev, int new_group)
7703 {
7704         dev->group = new_group;
7705 }
7706 EXPORT_SYMBOL(dev_set_group);
7707
7708 /**
7709  *      dev_set_mac_address - Change Media Access Control Address
7710  *      @dev: device
7711  *      @sa: new address
7712  *
7713  *      Change the hardware (MAC) address of the device
7714  */
7715 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7716 {
7717         const struct net_device_ops *ops = dev->netdev_ops;
7718         int err;
7719
7720         if (!ops->ndo_set_mac_address)
7721                 return -EOPNOTSUPP;
7722         if (sa->sa_family != dev->type)
7723                 return -EINVAL;
7724         if (!netif_device_present(dev))
7725                 return -ENODEV;
7726         err = ops->ndo_set_mac_address(dev, sa);
7727         if (err)
7728                 return err;
7729         dev->addr_assign_type = NET_ADDR_SET;
7730         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7731         add_device_randomness(dev->dev_addr, dev->addr_len);
7732         return 0;
7733 }
7734 EXPORT_SYMBOL(dev_set_mac_address);
7735
7736 /**
7737  *      dev_change_carrier - Change device carrier
7738  *      @dev: device
7739  *      @new_carrier: new value
7740  *
7741  *      Change device carrier
7742  */
7743 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7744 {
7745         const struct net_device_ops *ops = dev->netdev_ops;
7746
7747         if (!ops->ndo_change_carrier)
7748                 return -EOPNOTSUPP;
7749         if (!netif_device_present(dev))
7750                 return -ENODEV;
7751         return ops->ndo_change_carrier(dev, new_carrier);
7752 }
7753 EXPORT_SYMBOL(dev_change_carrier);
7754
7755 /**
7756  *      dev_get_phys_port_id - Get device physical port ID
7757  *      @dev: device
7758  *      @ppid: port ID
7759  *
7760  *      Get device physical port ID
7761  */
7762 int dev_get_phys_port_id(struct net_device *dev,
7763                          struct netdev_phys_item_id *ppid)
7764 {
7765         const struct net_device_ops *ops = dev->netdev_ops;
7766
7767         if (!ops->ndo_get_phys_port_id)
7768                 return -EOPNOTSUPP;
7769         return ops->ndo_get_phys_port_id(dev, ppid);
7770 }
7771 EXPORT_SYMBOL(dev_get_phys_port_id);
7772
7773 /**
7774  *      dev_get_phys_port_name - Get device physical port name
7775  *      @dev: device
7776  *      @name: port name
7777  *      @len: limit of bytes to copy to name
7778  *
7779  *      Get device physical port name
7780  */
7781 int dev_get_phys_port_name(struct net_device *dev,
7782                            char *name, size_t len)
7783 {
7784         const struct net_device_ops *ops = dev->netdev_ops;
7785
7786         if (!ops->ndo_get_phys_port_name)
7787                 return -EOPNOTSUPP;
7788         return ops->ndo_get_phys_port_name(dev, name, len);
7789 }
7790 EXPORT_SYMBOL(dev_get_phys_port_name);
7791
7792 /**
7793  *      dev_change_proto_down - update protocol port state information
7794  *      @dev: device
7795  *      @proto_down: new value
7796  *
7797  *      This info can be used by switch drivers to set the phys state of the
7798  *      port.
7799  */
7800 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7801 {
7802         const struct net_device_ops *ops = dev->netdev_ops;
7803
7804         if (!ops->ndo_change_proto_down)
7805                 return -EOPNOTSUPP;
7806         if (!netif_device_present(dev))
7807                 return -ENODEV;
7808         return ops->ndo_change_proto_down(dev, proto_down);
7809 }
7810 EXPORT_SYMBOL(dev_change_proto_down);
7811
7812 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7813                     enum bpf_netdev_command cmd)
7814 {
7815         struct netdev_bpf xdp;
7816
7817         if (!bpf_op)
7818                 return 0;
7819
7820         memset(&xdp, 0, sizeof(xdp));
7821         xdp.command = cmd;
7822
7823         /* Query must always succeed. */
7824         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7825
7826         return xdp.prog_id;
7827 }
7828
7829 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7830                            struct netlink_ext_ack *extack, u32 flags,
7831                            struct bpf_prog *prog)
7832 {
7833         struct netdev_bpf xdp;
7834
7835         memset(&xdp, 0, sizeof(xdp));
7836         if (flags & XDP_FLAGS_HW_MODE)
7837                 xdp.command = XDP_SETUP_PROG_HW;
7838         else
7839                 xdp.command = XDP_SETUP_PROG;
7840         xdp.extack = extack;
7841         xdp.flags = flags;
7842         xdp.prog = prog;
7843
7844         return bpf_op(dev, &xdp);
7845 }
7846
7847 static void dev_xdp_uninstall(struct net_device *dev)
7848 {
7849         struct netdev_bpf xdp;
7850         bpf_op_t ndo_bpf;
7851
7852         /* Remove generic XDP */
7853         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7854
7855         /* Remove from the driver */
7856         ndo_bpf = dev->netdev_ops->ndo_bpf;
7857         if (!ndo_bpf)
7858                 return;
7859
7860         memset(&xdp, 0, sizeof(xdp));
7861         xdp.command = XDP_QUERY_PROG;
7862         WARN_ON(ndo_bpf(dev, &xdp));
7863         if (xdp.prog_id)
7864                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7865                                         NULL));
7866
7867         /* Remove HW offload */
7868         memset(&xdp, 0, sizeof(xdp));
7869         xdp.command = XDP_QUERY_PROG_HW;
7870         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7871                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7872                                         NULL));
7873 }
7874
7875 /**
7876  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7877  *      @dev: device
7878  *      @extack: netlink extended ack
7879  *      @fd: new program fd or negative value to clear
7880  *      @flags: xdp-related flags
7881  *
7882  *      Set or clear a bpf program for a device
7883  */
7884 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7885                       int fd, u32 flags)
7886 {
7887         const struct net_device_ops *ops = dev->netdev_ops;
7888         enum bpf_netdev_command query;
7889         struct bpf_prog *prog = NULL;
7890         bpf_op_t bpf_op, bpf_chk;
7891         int err;
7892
7893         ASSERT_RTNL();
7894
7895         query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7896
7897         bpf_op = bpf_chk = ops->ndo_bpf;
7898         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7899                 return -EOPNOTSUPP;
7900         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7901                 bpf_op = generic_xdp_install;
7902         if (bpf_op == bpf_chk)
7903                 bpf_chk = generic_xdp_install;
7904
7905         if (fd >= 0) {
7906                 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7907                     __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7908                         return -EEXIST;
7909                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7910                     __dev_xdp_query(dev, bpf_op, query))
7911                         return -EBUSY;
7912
7913                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7914                                              bpf_op == ops->ndo_bpf);
7915                 if (IS_ERR(prog))
7916                         return PTR_ERR(prog);
7917
7918                 if (!(flags & XDP_FLAGS_HW_MODE) &&
7919                     bpf_prog_is_dev_bound(prog->aux)) {
7920                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7921                         bpf_prog_put(prog);
7922                         return -EINVAL;
7923                 }
7924         }
7925
7926         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7927         if (err < 0 && prog)
7928                 bpf_prog_put(prog);
7929
7930         return err;
7931 }
7932
7933 /**
7934  *      dev_new_index   -       allocate an ifindex
7935  *      @net: the applicable net namespace
7936  *
7937  *      Returns a suitable unique value for a new device interface
7938  *      number.  The caller must hold the rtnl semaphore or the
7939  *      dev_base_lock to be sure it remains unique.
7940  */
7941 static int dev_new_index(struct net *net)
7942 {
7943         int ifindex = net->ifindex;
7944
7945         for (;;) {
7946                 if (++ifindex <= 0)
7947                         ifindex = 1;
7948                 if (!__dev_get_by_index(net, ifindex))
7949                         return net->ifindex = ifindex;
7950         }
7951 }
7952
7953 /* Delayed registration/unregisteration */
7954 static LIST_HEAD(net_todo_list);
7955 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7956
7957 static void net_set_todo(struct net_device *dev)
7958 {
7959         list_add_tail(&dev->todo_list, &net_todo_list);
7960         dev_net(dev)->dev_unreg_count++;
7961 }
7962
7963 static void rollback_registered_many(struct list_head *head)
7964 {
7965         struct net_device *dev, *tmp;
7966         LIST_HEAD(close_head);
7967
7968         BUG_ON(dev_boot_phase);
7969         ASSERT_RTNL();
7970
7971         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7972                 /* Some devices call without registering
7973                  * for initialization unwind. Remove those
7974                  * devices and proceed with the remaining.
7975                  */
7976                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7977                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7978                                  dev->name, dev);
7979
7980                         WARN_ON(1);
7981                         list_del(&dev->unreg_list);
7982                         continue;
7983                 }
7984                 dev->dismantle = true;
7985                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7986         }
7987
7988         /* If device is running, close it first. */
7989         list_for_each_entry(dev, head, unreg_list)
7990                 list_add_tail(&dev->close_list, &close_head);
7991         dev_close_many(&close_head, true);
7992
7993         list_for_each_entry(dev, head, unreg_list) {
7994                 /* And unlink it from device chain. */
7995                 unlist_netdevice(dev);
7996
7997                 dev->reg_state = NETREG_UNREGISTERING;
7998         }
7999         flush_all_backlogs();
8000
8001         synchronize_net();
8002
8003         list_for_each_entry(dev, head, unreg_list) {
8004                 struct sk_buff *skb = NULL;
8005
8006                 /* Shutdown queueing discipline. */
8007                 dev_shutdown(dev);
8008
8009                 dev_xdp_uninstall(dev);
8010
8011                 /* Notify protocols, that we are about to destroy
8012                  * this device. They should clean all the things.
8013                  */
8014                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8015
8016                 if (!dev->rtnl_link_ops ||
8017                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8018                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8019                                                      GFP_KERNEL, NULL, 0);
8020
8021                 /*
8022                  *      Flush the unicast and multicast chains
8023                  */
8024                 dev_uc_flush(dev);
8025                 dev_mc_flush(dev);
8026
8027                 if (dev->netdev_ops->ndo_uninit)
8028                         dev->netdev_ops->ndo_uninit(dev);
8029
8030                 if (skb)
8031                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8032
8033                 /* Notifier chain MUST detach us all upper devices. */
8034                 WARN_ON(netdev_has_any_upper_dev(dev));
8035                 WARN_ON(netdev_has_any_lower_dev(dev));
8036
8037                 /* Remove entries from kobject tree */
8038                 netdev_unregister_kobject(dev);
8039 #ifdef CONFIG_XPS
8040                 /* Remove XPS queueing entries */
8041                 netif_reset_xps_queues_gt(dev, 0);
8042 #endif
8043         }
8044
8045         synchronize_net();
8046
8047         list_for_each_entry(dev, head, unreg_list)
8048                 dev_put(dev);
8049 }
8050
8051 static void rollback_registered(struct net_device *dev)
8052 {
8053         LIST_HEAD(single);
8054
8055         list_add(&dev->unreg_list, &single);
8056         rollback_registered_many(&single);
8057         list_del(&single);
8058 }
8059
8060 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8061         struct net_device *upper, netdev_features_t features)
8062 {
8063         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8064         netdev_features_t feature;
8065         int feature_bit;
8066
8067         for_each_netdev_feature(&upper_disables, feature_bit) {
8068                 feature = __NETIF_F_BIT(feature_bit);
8069                 if (!(upper->wanted_features & feature)
8070                     && (features & feature)) {
8071                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8072                                    &feature, upper->name);
8073                         features &= ~feature;
8074                 }
8075         }
8076
8077         return features;
8078 }
8079
8080 static void netdev_sync_lower_features(struct net_device *upper,
8081         struct net_device *lower, netdev_features_t features)
8082 {
8083         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8084         netdev_features_t feature;
8085         int feature_bit;
8086
8087         for_each_netdev_feature(&upper_disables, feature_bit) {
8088                 feature = __NETIF_F_BIT(feature_bit);
8089                 if (!(features & feature) && (lower->features & feature)) {
8090                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8091                                    &feature, lower->name);
8092                         lower->wanted_features &= ~feature;
8093                         netdev_update_features(lower);
8094
8095                         if (unlikely(lower->features & feature))
8096                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8097                                             &feature, lower->name);
8098                 }
8099         }
8100 }
8101
8102 static netdev_features_t netdev_fix_features(struct net_device *dev,
8103         netdev_features_t features)
8104 {
8105         /* Fix illegal checksum combinations */
8106         if ((features & NETIF_F_HW_CSUM) &&
8107             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8108                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8109                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8110         }
8111
8112         /* TSO requires that SG is present as well. */
8113         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8114                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8115                 features &= ~NETIF_F_ALL_TSO;
8116         }
8117
8118         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8119                                         !(features & NETIF_F_IP_CSUM)) {
8120                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8121                 features &= ~NETIF_F_TSO;
8122                 features &= ~NETIF_F_TSO_ECN;
8123         }
8124
8125         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8126                                          !(features & NETIF_F_IPV6_CSUM)) {
8127                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8128                 features &= ~NETIF_F_TSO6;
8129         }
8130
8131         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8132         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8133                 features &= ~NETIF_F_TSO_MANGLEID;
8134
8135         /* TSO ECN requires that TSO is present as well. */
8136         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8137                 features &= ~NETIF_F_TSO_ECN;
8138
8139         /* Software GSO depends on SG. */
8140         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8141                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8142                 features &= ~NETIF_F_GSO;
8143         }
8144
8145         /* GSO partial features require GSO partial be set */
8146         if ((features & dev->gso_partial_features) &&
8147             !(features & NETIF_F_GSO_PARTIAL)) {
8148                 netdev_dbg(dev,
8149                            "Dropping partially supported GSO features since no GSO partial.\n");
8150                 features &= ~dev->gso_partial_features;
8151         }
8152
8153         if (!(features & NETIF_F_RXCSUM)) {
8154                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8155                  * successfully merged by hardware must also have the
8156                  * checksum verified by hardware.  If the user does not
8157                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8158                  */
8159                 if (features & NETIF_F_GRO_HW) {
8160                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8161                         features &= ~NETIF_F_GRO_HW;
8162                 }
8163         }
8164
8165         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8166         if (features & NETIF_F_RXFCS) {
8167                 if (features & NETIF_F_LRO) {
8168                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8169                         features &= ~NETIF_F_LRO;
8170                 }
8171
8172                 if (features & NETIF_F_GRO_HW) {
8173                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8174                         features &= ~NETIF_F_GRO_HW;
8175                 }
8176         }
8177
8178         return features;
8179 }
8180
8181 int __netdev_update_features(struct net_device *dev)
8182 {
8183         struct net_device *upper, *lower;
8184         netdev_features_t features;
8185         struct list_head *iter;
8186         int err = -1;
8187
8188         ASSERT_RTNL();
8189
8190         features = netdev_get_wanted_features(dev);
8191
8192         if (dev->netdev_ops->ndo_fix_features)
8193                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8194
8195         /* driver might be less strict about feature dependencies */
8196         features = netdev_fix_features(dev, features);
8197
8198         /* some features can't be enabled if they're off an an upper device */
8199         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8200                 features = netdev_sync_upper_features(dev, upper, features);
8201
8202         if (dev->features == features)
8203                 goto sync_lower;
8204
8205         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8206                 &dev->features, &features);
8207
8208         if (dev->netdev_ops->ndo_set_features)
8209                 err = dev->netdev_ops->ndo_set_features(dev, features);
8210         else
8211                 err = 0;
8212
8213         if (unlikely(err < 0)) {
8214                 netdev_err(dev,
8215                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8216                         err, &features, &dev->features);
8217                 /* return non-0 since some features might have changed and
8218                  * it's better to fire a spurious notification than miss it
8219                  */
8220                 return -1;
8221         }
8222
8223 sync_lower:
8224         /* some features must be disabled on lower devices when disabled
8225          * on an upper device (think: bonding master or bridge)
8226          */
8227         netdev_for_each_lower_dev(dev, lower, iter)
8228                 netdev_sync_lower_features(dev, lower, features);
8229
8230         if (!err) {
8231                 netdev_features_t diff = features ^ dev->features;
8232
8233                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8234                         /* udp_tunnel_{get,drop}_rx_info both need
8235                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8236                          * device, or they won't do anything.
8237                          * Thus we need to update dev->features
8238                          * *before* calling udp_tunnel_get_rx_info,
8239                          * but *after* calling udp_tunnel_drop_rx_info.
8240                          */
8241                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8242                                 dev->features = features;
8243                                 udp_tunnel_get_rx_info(dev);
8244                         } else {
8245                                 udp_tunnel_drop_rx_info(dev);
8246                         }
8247                 }
8248
8249                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8250                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8251                                 dev->features = features;
8252                                 err |= vlan_get_rx_ctag_filter_info(dev);
8253                         } else {
8254                                 vlan_drop_rx_ctag_filter_info(dev);
8255                         }
8256                 }
8257
8258                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8259                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8260                                 dev->features = features;
8261                                 err |= vlan_get_rx_stag_filter_info(dev);
8262                         } else {
8263                                 vlan_drop_rx_stag_filter_info(dev);
8264                         }
8265                 }
8266
8267                 dev->features = features;
8268         }
8269
8270         return err < 0 ? 0 : 1;
8271 }
8272
8273 /**
8274  *      netdev_update_features - recalculate device features
8275  *      @dev: the device to check
8276  *
8277  *      Recalculate dev->features set and send notifications if it
8278  *      has changed. Should be called after driver or hardware dependent
8279  *      conditions might have changed that influence the features.
8280  */
8281 void netdev_update_features(struct net_device *dev)
8282 {
8283         if (__netdev_update_features(dev))
8284                 netdev_features_change(dev);
8285 }
8286 EXPORT_SYMBOL(netdev_update_features);
8287
8288 /**
8289  *      netdev_change_features - recalculate device features
8290  *      @dev: the device to check
8291  *
8292  *      Recalculate dev->features set and send notifications even
8293  *      if they have not changed. Should be called instead of
8294  *      netdev_update_features() if also dev->vlan_features might
8295  *      have changed to allow the changes to be propagated to stacked
8296  *      VLAN devices.
8297  */
8298 void netdev_change_features(struct net_device *dev)
8299 {
8300         __netdev_update_features(dev);
8301         netdev_features_change(dev);
8302 }
8303 EXPORT_SYMBOL(netdev_change_features);
8304
8305 /**
8306  *      netif_stacked_transfer_operstate -      transfer operstate
8307  *      @rootdev: the root or lower level device to transfer state from
8308  *      @dev: the device to transfer operstate to
8309  *
8310  *      Transfer operational state from root to device. This is normally
8311  *      called when a stacking relationship exists between the root
8312  *      device and the device(a leaf device).
8313  */
8314 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8315                                         struct net_device *dev)
8316 {
8317         if (rootdev->operstate == IF_OPER_DORMANT)
8318                 netif_dormant_on(dev);
8319         else
8320                 netif_dormant_off(dev);
8321
8322         if (netif_carrier_ok(rootdev))
8323                 netif_carrier_on(dev);
8324         else
8325                 netif_carrier_off(dev);
8326 }
8327 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8328
8329 static int netif_alloc_rx_queues(struct net_device *dev)
8330 {
8331         unsigned int i, count = dev->num_rx_queues;
8332         struct netdev_rx_queue *rx;
8333         size_t sz = count * sizeof(*rx);
8334         int err = 0;
8335
8336         BUG_ON(count < 1);
8337
8338         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8339         if (!rx)
8340                 return -ENOMEM;
8341
8342         dev->_rx = rx;
8343
8344         for (i = 0; i < count; i++) {
8345                 rx[i].dev = dev;
8346
8347                 /* XDP RX-queue setup */
8348                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8349                 if (err < 0)
8350                         goto err_rxq_info;
8351         }
8352         return 0;
8353
8354 err_rxq_info:
8355         /* Rollback successful reg's and free other resources */
8356         while (i--)
8357                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8358         kvfree(dev->_rx);
8359         dev->_rx = NULL;
8360         return err;
8361 }
8362
8363 static void netif_free_rx_queues(struct net_device *dev)
8364 {
8365         unsigned int i, count = dev->num_rx_queues;
8366
8367         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8368         if (!dev->_rx)
8369                 return;
8370
8371         for (i = 0; i < count; i++)
8372                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8373
8374         kvfree(dev->_rx);
8375 }
8376
8377 static void netdev_init_one_queue(struct net_device *dev,
8378                                   struct netdev_queue *queue, void *_unused)
8379 {
8380         /* Initialize queue lock */
8381         spin_lock_init(&queue->_xmit_lock);
8382         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8383         queue->xmit_lock_owner = -1;
8384         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8385         queue->dev = dev;
8386 #ifdef CONFIG_BQL
8387         dql_init(&queue->dql, HZ);
8388 #endif
8389 }
8390
8391 static void netif_free_tx_queues(struct net_device *dev)
8392 {
8393         kvfree(dev->_tx);
8394 }
8395
8396 static int netif_alloc_netdev_queues(struct net_device *dev)
8397 {
8398         unsigned int count = dev->num_tx_queues;
8399         struct netdev_queue *tx;
8400         size_t sz = count * sizeof(*tx);
8401
8402         if (count < 1 || count > 0xffff)
8403                 return -EINVAL;
8404
8405         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8406         if (!tx)
8407                 return -ENOMEM;
8408
8409         dev->_tx = tx;
8410
8411         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8412         spin_lock_init(&dev->tx_global_lock);
8413
8414         return 0;
8415 }
8416
8417 void netif_tx_stop_all_queues(struct net_device *dev)
8418 {
8419         unsigned int i;
8420
8421         for (i = 0; i < dev->num_tx_queues; i++) {
8422                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8423
8424                 netif_tx_stop_queue(txq);
8425         }
8426 }
8427 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8428
8429 /**
8430  *      register_netdevice      - register a network device
8431  *      @dev: device to register
8432  *
8433  *      Take a completed network device structure and add it to the kernel
8434  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8435  *      chain. 0 is returned on success. A negative errno code is returned
8436  *      on a failure to set up the device, or if the name is a duplicate.
8437  *
8438  *      Callers must hold the rtnl semaphore. You may want
8439  *      register_netdev() instead of this.
8440  *
8441  *      BUGS:
8442  *      The locking appears insufficient to guarantee two parallel registers
8443  *      will not get the same name.
8444  */
8445
8446 int register_netdevice(struct net_device *dev)
8447 {
8448         int ret;
8449         struct net *net = dev_net(dev);
8450
8451         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8452                      NETDEV_FEATURE_COUNT);
8453         BUG_ON(dev_boot_phase);
8454         ASSERT_RTNL();
8455
8456         might_sleep();
8457
8458         /* When net_device's are persistent, this will be fatal. */
8459         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8460         BUG_ON(!net);
8461
8462         spin_lock_init(&dev->addr_list_lock);
8463         netdev_set_addr_lockdep_class(dev);
8464
8465         ret = dev_get_valid_name(net, dev, dev->name);
8466         if (ret < 0)
8467                 goto out;
8468
8469         /* Init, if this function is available */
8470         if (dev->netdev_ops->ndo_init) {
8471                 ret = dev->netdev_ops->ndo_init(dev);
8472                 if (ret) {
8473                         if (ret > 0)
8474                                 ret = -EIO;
8475                         goto out;
8476                 }
8477         }
8478
8479         if (((dev->hw_features | dev->features) &
8480              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8481             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8482              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8483                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8484                 ret = -EINVAL;
8485                 goto err_uninit;
8486         }
8487
8488         ret = -EBUSY;
8489         if (!dev->ifindex)
8490                 dev->ifindex = dev_new_index(net);
8491         else if (__dev_get_by_index(net, dev->ifindex))
8492                 goto err_uninit;
8493
8494         /* Transfer changeable features to wanted_features and enable
8495          * software offloads (GSO and GRO).
8496          */
8497         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8498         dev->features |= NETIF_F_SOFT_FEATURES;
8499
8500         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8501                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8502                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8503         }
8504
8505         dev->wanted_features = dev->features & dev->hw_features;
8506
8507         if (!(dev->flags & IFF_LOOPBACK))
8508                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8509
8510         /* If IPv4 TCP segmentation offload is supported we should also
8511          * allow the device to enable segmenting the frame with the option
8512          * of ignoring a static IP ID value.  This doesn't enable the
8513          * feature itself but allows the user to enable it later.
8514          */
8515         if (dev->hw_features & NETIF_F_TSO)
8516                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8517         if (dev->vlan_features & NETIF_F_TSO)
8518                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8519         if (dev->mpls_features & NETIF_F_TSO)
8520                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8521         if (dev->hw_enc_features & NETIF_F_TSO)
8522                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8523
8524         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8525          */
8526         dev->vlan_features |= NETIF_F_HIGHDMA;
8527
8528         /* Make NETIF_F_SG inheritable to tunnel devices.
8529          */
8530         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8531
8532         /* Make NETIF_F_SG inheritable to MPLS.
8533          */
8534         dev->mpls_features |= NETIF_F_SG;
8535
8536         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8537         ret = notifier_to_errno(ret);
8538         if (ret)
8539                 goto err_uninit;
8540
8541         ret = netdev_register_kobject(dev);
8542         if (ret)
8543                 goto err_uninit;
8544         dev->reg_state = NETREG_REGISTERED;
8545
8546         __netdev_update_features(dev);
8547
8548         /*
8549          *      Default initial state at registry is that the
8550          *      device is present.
8551          */
8552
8553         set_bit(__LINK_STATE_PRESENT, &dev->state);
8554
8555         linkwatch_init_dev(dev);
8556
8557         dev_init_scheduler(dev);
8558         dev_hold(dev);
8559         list_netdevice(dev);
8560         add_device_randomness(dev->dev_addr, dev->addr_len);
8561
8562         /* If the device has permanent device address, driver should
8563          * set dev_addr and also addr_assign_type should be set to
8564          * NET_ADDR_PERM (default value).
8565          */
8566         if (dev->addr_assign_type == NET_ADDR_PERM)
8567                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8568
8569         /* Notify protocols, that a new device appeared. */
8570         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8571         ret = notifier_to_errno(ret);
8572         if (ret) {
8573                 rollback_registered(dev);
8574                 dev->reg_state = NETREG_UNREGISTERED;
8575         }
8576         /*
8577          *      Prevent userspace races by waiting until the network
8578          *      device is fully setup before sending notifications.
8579          */
8580         if (!dev->rtnl_link_ops ||
8581             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8582                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8583
8584 out:
8585         return ret;
8586
8587 err_uninit:
8588         if (dev->netdev_ops->ndo_uninit)
8589                 dev->netdev_ops->ndo_uninit(dev);
8590         if (dev->priv_destructor)
8591                 dev->priv_destructor(dev);
8592         goto out;
8593 }
8594 EXPORT_SYMBOL(register_netdevice);
8595
8596 /**
8597  *      init_dummy_netdev       - init a dummy network device for NAPI
8598  *      @dev: device to init
8599  *
8600  *      This takes a network device structure and initialize the minimum
8601  *      amount of fields so it can be used to schedule NAPI polls without
8602  *      registering a full blown interface. This is to be used by drivers
8603  *      that need to tie several hardware interfaces to a single NAPI
8604  *      poll scheduler due to HW limitations.
8605  */
8606 int init_dummy_netdev(struct net_device *dev)
8607 {
8608         /* Clear everything. Note we don't initialize spinlocks
8609          * are they aren't supposed to be taken by any of the
8610          * NAPI code and this dummy netdev is supposed to be
8611          * only ever used for NAPI polls
8612          */
8613         memset(dev, 0, sizeof(struct net_device));
8614
8615         /* make sure we BUG if trying to hit standard
8616          * register/unregister code path
8617          */
8618         dev->reg_state = NETREG_DUMMY;
8619
8620         /* NAPI wants this */
8621         INIT_LIST_HEAD(&dev->napi_list);
8622
8623         /* a dummy interface is started by default */
8624         set_bit(__LINK_STATE_PRESENT, &dev->state);
8625         set_bit(__LINK_STATE_START, &dev->state);
8626
8627         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8628          * because users of this 'device' dont need to change
8629          * its refcount.
8630          */
8631
8632         return 0;
8633 }
8634 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8635
8636
8637 /**
8638  *      register_netdev - register a network device
8639  *      @dev: device to register
8640  *
8641  *      Take a completed network device structure and add it to the kernel
8642  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8643  *      chain. 0 is returned on success. A negative errno code is returned
8644  *      on a failure to set up the device, or if the name is a duplicate.
8645  *
8646  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8647  *      and expands the device name if you passed a format string to
8648  *      alloc_netdev.
8649  */
8650 int register_netdev(struct net_device *dev)
8651 {
8652         int err;
8653
8654         if (rtnl_lock_killable())
8655                 return -EINTR;
8656         err = register_netdevice(dev);
8657         rtnl_unlock();
8658         return err;
8659 }
8660 EXPORT_SYMBOL(register_netdev);
8661
8662 int netdev_refcnt_read(const struct net_device *dev)
8663 {
8664         int i, refcnt = 0;
8665
8666         for_each_possible_cpu(i)
8667                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8668         return refcnt;
8669 }
8670 EXPORT_SYMBOL(netdev_refcnt_read);
8671
8672 /**
8673  * netdev_wait_allrefs - wait until all references are gone.
8674  * @dev: target net_device
8675  *
8676  * This is called when unregistering network devices.
8677  *
8678  * Any protocol or device that holds a reference should register
8679  * for netdevice notification, and cleanup and put back the
8680  * reference if they receive an UNREGISTER event.
8681  * We can get stuck here if buggy protocols don't correctly
8682  * call dev_put.
8683  */
8684 static void netdev_wait_allrefs(struct net_device *dev)
8685 {
8686         unsigned long rebroadcast_time, warning_time;
8687         int refcnt;
8688
8689         linkwatch_forget_dev(dev);
8690
8691         rebroadcast_time = warning_time = jiffies;
8692         refcnt = netdev_refcnt_read(dev);
8693
8694         while (refcnt != 0) {
8695                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8696                         rtnl_lock();
8697
8698                         /* Rebroadcast unregister notification */
8699                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8700
8701                         __rtnl_unlock();
8702                         rcu_barrier();
8703                         rtnl_lock();
8704
8705                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8706                                      &dev->state)) {
8707                                 /* We must not have linkwatch events
8708                                  * pending on unregister. If this
8709                                  * happens, we simply run the queue
8710                                  * unscheduled, resulting in a noop
8711                                  * for this device.
8712                                  */
8713                                 linkwatch_run_queue();
8714                         }
8715
8716                         __rtnl_unlock();
8717
8718                         rebroadcast_time = jiffies;
8719                 }
8720
8721                 msleep(250);
8722
8723                 refcnt = netdev_refcnt_read(dev);
8724
8725                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8726                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8727                                  dev->name, refcnt);
8728                         warning_time = jiffies;
8729                 }
8730         }
8731 }
8732
8733 /* The sequence is:
8734  *
8735  *      rtnl_lock();
8736  *      ...
8737  *      register_netdevice(x1);
8738  *      register_netdevice(x2);
8739  *      ...
8740  *      unregister_netdevice(y1);
8741  *      unregister_netdevice(y2);
8742  *      ...
8743  *      rtnl_unlock();
8744  *      free_netdev(y1);
8745  *      free_netdev(y2);
8746  *
8747  * We are invoked by rtnl_unlock().
8748  * This allows us to deal with problems:
8749  * 1) We can delete sysfs objects which invoke hotplug
8750  *    without deadlocking with linkwatch via keventd.
8751  * 2) Since we run with the RTNL semaphore not held, we can sleep
8752  *    safely in order to wait for the netdev refcnt to drop to zero.
8753  *
8754  * We must not return until all unregister events added during
8755  * the interval the lock was held have been completed.
8756  */
8757 void netdev_run_todo(void)
8758 {
8759         struct list_head list;
8760
8761         /* Snapshot list, allow later requests */
8762         list_replace_init(&net_todo_list, &list);
8763
8764         __rtnl_unlock();
8765
8766
8767         /* Wait for rcu callbacks to finish before next phase */
8768         if (!list_empty(&list))
8769                 rcu_barrier();
8770
8771         while (!list_empty(&list)) {
8772                 struct net_device *dev
8773                         = list_first_entry(&list, struct net_device, todo_list);
8774                 list_del(&dev->todo_list);
8775
8776                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8777                         pr_err("network todo '%s' but state %d\n",
8778                                dev->name, dev->reg_state);
8779                         dump_stack();
8780                         continue;
8781                 }
8782
8783                 dev->reg_state = NETREG_UNREGISTERED;
8784
8785                 netdev_wait_allrefs(dev);
8786
8787                 /* paranoia */
8788                 BUG_ON(netdev_refcnt_read(dev));
8789                 BUG_ON(!list_empty(&dev->ptype_all));
8790                 BUG_ON(!list_empty(&dev->ptype_specific));
8791                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8792                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8793 #if IS_ENABLED(CONFIG_DECNET)
8794                 WARN_ON(dev->dn_ptr);
8795 #endif
8796                 if (dev->priv_destructor)
8797                         dev->priv_destructor(dev);
8798                 if (dev->needs_free_netdev)
8799                         free_netdev(dev);
8800
8801                 /* Report a network device has been unregistered */
8802                 rtnl_lock();
8803                 dev_net(dev)->dev_unreg_count--;
8804                 __rtnl_unlock();
8805                 wake_up(&netdev_unregistering_wq);
8806
8807                 /* Free network device */
8808                 kobject_put(&dev->dev.kobj);
8809         }
8810 }
8811
8812 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8813  * all the same fields in the same order as net_device_stats, with only
8814  * the type differing, but rtnl_link_stats64 may have additional fields
8815  * at the end for newer counters.
8816  */
8817 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8818                              const struct net_device_stats *netdev_stats)
8819 {
8820 #if BITS_PER_LONG == 64
8821         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8822         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8823         /* zero out counters that only exist in rtnl_link_stats64 */
8824         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8825                sizeof(*stats64) - sizeof(*netdev_stats));
8826 #else
8827         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8828         const unsigned long *src = (const unsigned long *)netdev_stats;
8829         u64 *dst = (u64 *)stats64;
8830
8831         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8832         for (i = 0; i < n; i++)
8833                 dst[i] = src[i];
8834         /* zero out counters that only exist in rtnl_link_stats64 */
8835         memset((char *)stats64 + n * sizeof(u64), 0,
8836                sizeof(*stats64) - n * sizeof(u64));
8837 #endif
8838 }
8839 EXPORT_SYMBOL(netdev_stats_to_stats64);
8840
8841 /**
8842  *      dev_get_stats   - get network device statistics
8843  *      @dev: device to get statistics from
8844  *      @storage: place to store stats
8845  *
8846  *      Get network statistics from device. Return @storage.
8847  *      The device driver may provide its own method by setting
8848  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8849  *      otherwise the internal statistics structure is used.
8850  */
8851 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8852                                         struct rtnl_link_stats64 *storage)
8853 {
8854         const struct net_device_ops *ops = dev->netdev_ops;
8855
8856         if (ops->ndo_get_stats64) {
8857                 memset(storage, 0, sizeof(*storage));
8858                 ops->ndo_get_stats64(dev, storage);
8859         } else if (ops->ndo_get_stats) {
8860                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8861         } else {
8862                 netdev_stats_to_stats64(storage, &dev->stats);
8863         }
8864         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8865         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8866         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8867         return storage;
8868 }
8869 EXPORT_SYMBOL(dev_get_stats);
8870
8871 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8872 {
8873         struct netdev_queue *queue = dev_ingress_queue(dev);
8874
8875 #ifdef CONFIG_NET_CLS_ACT
8876         if (queue)
8877                 return queue;
8878         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8879         if (!queue)
8880                 return NULL;
8881         netdev_init_one_queue(dev, queue, NULL);
8882         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8883         queue->qdisc_sleeping = &noop_qdisc;
8884         rcu_assign_pointer(dev->ingress_queue, queue);
8885 #endif
8886         return queue;
8887 }
8888
8889 static const struct ethtool_ops default_ethtool_ops;
8890
8891 void netdev_set_default_ethtool_ops(struct net_device *dev,
8892                                     const struct ethtool_ops *ops)
8893 {
8894         if (dev->ethtool_ops == &default_ethtool_ops)
8895                 dev->ethtool_ops = ops;
8896 }
8897 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8898
8899 void netdev_freemem(struct net_device *dev)
8900 {
8901         char *addr = (char *)dev - dev->padded;
8902
8903         kvfree(addr);
8904 }
8905
8906 /**
8907  * alloc_netdev_mqs - allocate network device
8908  * @sizeof_priv: size of private data to allocate space for
8909  * @name: device name format string
8910  * @name_assign_type: origin of device name
8911  * @setup: callback to initialize device
8912  * @txqs: the number of TX subqueues to allocate
8913  * @rxqs: the number of RX subqueues to allocate
8914  *
8915  * Allocates a struct net_device with private data area for driver use
8916  * and performs basic initialization.  Also allocates subqueue structs
8917  * for each queue on the device.
8918  */
8919 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8920                 unsigned char name_assign_type,
8921                 void (*setup)(struct net_device *),
8922                 unsigned int txqs, unsigned int rxqs)
8923 {
8924         struct net_device *dev;
8925         unsigned int alloc_size;
8926         struct net_device *p;
8927
8928         BUG_ON(strlen(name) >= sizeof(dev->name));
8929
8930         if (txqs < 1) {
8931                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8932                 return NULL;
8933         }
8934
8935         if (rxqs < 1) {
8936                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8937                 return NULL;
8938         }
8939
8940         alloc_size = sizeof(struct net_device);
8941         if (sizeof_priv) {
8942                 /* ensure 32-byte alignment of private area */
8943                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8944                 alloc_size += sizeof_priv;
8945         }
8946         /* ensure 32-byte alignment of whole construct */
8947         alloc_size += NETDEV_ALIGN - 1;
8948
8949         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8950         if (!p)
8951                 return NULL;
8952
8953         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8954         dev->padded = (char *)dev - (char *)p;
8955
8956         dev->pcpu_refcnt = alloc_percpu(int);
8957         if (!dev->pcpu_refcnt)
8958                 goto free_dev;
8959
8960         if (dev_addr_init(dev))
8961                 goto free_pcpu;
8962
8963         dev_mc_init(dev);
8964         dev_uc_init(dev);
8965
8966         dev_net_set(dev, &init_net);
8967
8968         dev->gso_max_size = GSO_MAX_SIZE;
8969         dev->gso_max_segs = GSO_MAX_SEGS;
8970
8971         INIT_LIST_HEAD(&dev->napi_list);
8972         INIT_LIST_HEAD(&dev->unreg_list);
8973         INIT_LIST_HEAD(&dev->close_list);
8974         INIT_LIST_HEAD(&dev->link_watch_list);
8975         INIT_LIST_HEAD(&dev->adj_list.upper);
8976         INIT_LIST_HEAD(&dev->adj_list.lower);
8977         INIT_LIST_HEAD(&dev->ptype_all);
8978         INIT_LIST_HEAD(&dev->ptype_specific);
8979 #ifdef CONFIG_NET_SCHED
8980         hash_init(dev->qdisc_hash);
8981 #endif
8982         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8983         setup(dev);
8984
8985         if (!dev->tx_queue_len) {
8986                 dev->priv_flags |= IFF_NO_QUEUE;
8987                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8988         }
8989
8990         dev->num_tx_queues = txqs;
8991         dev->real_num_tx_queues = txqs;
8992         if (netif_alloc_netdev_queues(dev))
8993                 goto free_all;
8994
8995         dev->num_rx_queues = rxqs;
8996         dev->real_num_rx_queues = rxqs;
8997         if (netif_alloc_rx_queues(dev))
8998                 goto free_all;
8999
9000         strcpy(dev->name, name);
9001         dev->name_assign_type = name_assign_type;
9002         dev->group = INIT_NETDEV_GROUP;
9003         if (!dev->ethtool_ops)
9004                 dev->ethtool_ops = &default_ethtool_ops;
9005
9006         nf_hook_ingress_init(dev);
9007
9008         return dev;
9009
9010 free_all:
9011         free_netdev(dev);
9012         return NULL;
9013
9014 free_pcpu:
9015         free_percpu(dev->pcpu_refcnt);
9016 free_dev:
9017         netdev_freemem(dev);
9018         return NULL;
9019 }
9020 EXPORT_SYMBOL(alloc_netdev_mqs);
9021
9022 /**
9023  * free_netdev - free network device
9024  * @dev: device
9025  *
9026  * This function does the last stage of destroying an allocated device
9027  * interface. The reference to the device object is released. If this
9028  * is the last reference then it will be freed.Must be called in process
9029  * context.
9030  */
9031 void free_netdev(struct net_device *dev)
9032 {
9033         struct napi_struct *p, *n;
9034
9035         might_sleep();
9036         netif_free_tx_queues(dev);
9037         netif_free_rx_queues(dev);
9038
9039         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9040
9041         /* Flush device addresses */
9042         dev_addr_flush(dev);
9043
9044         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9045                 netif_napi_del(p);
9046
9047         free_percpu(dev->pcpu_refcnt);
9048         dev->pcpu_refcnt = NULL;
9049
9050         /*  Compatibility with error handling in drivers */
9051         if (dev->reg_state == NETREG_UNINITIALIZED) {
9052                 netdev_freemem(dev);
9053                 return;
9054         }
9055
9056         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9057         dev->reg_state = NETREG_RELEASED;
9058
9059         /* will free via device release */
9060         put_device(&dev->dev);
9061 }
9062 EXPORT_SYMBOL(free_netdev);
9063
9064 /**
9065  *      synchronize_net -  Synchronize with packet receive processing
9066  *
9067  *      Wait for packets currently being received to be done.
9068  *      Does not block later packets from starting.
9069  */
9070 void synchronize_net(void)
9071 {
9072         might_sleep();
9073         if (rtnl_is_locked())
9074                 synchronize_rcu_expedited();
9075         else
9076                 synchronize_rcu();
9077 }
9078 EXPORT_SYMBOL(synchronize_net);
9079
9080 /**
9081  *      unregister_netdevice_queue - remove device from the kernel
9082  *      @dev: device
9083  *      @head: list
9084  *
9085  *      This function shuts down a device interface and removes it
9086  *      from the kernel tables.
9087  *      If head not NULL, device is queued to be unregistered later.
9088  *
9089  *      Callers must hold the rtnl semaphore.  You may want
9090  *      unregister_netdev() instead of this.
9091  */
9092
9093 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9094 {
9095         ASSERT_RTNL();
9096
9097         if (head) {
9098                 list_move_tail(&dev->unreg_list, head);
9099         } else {
9100                 rollback_registered(dev);
9101                 /* Finish processing unregister after unlock */
9102                 net_set_todo(dev);
9103         }
9104 }
9105 EXPORT_SYMBOL(unregister_netdevice_queue);
9106
9107 /**
9108  *      unregister_netdevice_many - unregister many devices
9109  *      @head: list of devices
9110  *
9111  *  Note: As most callers use a stack allocated list_head,
9112  *  we force a list_del() to make sure stack wont be corrupted later.
9113  */
9114 void unregister_netdevice_many(struct list_head *head)
9115 {
9116         struct net_device *dev;
9117
9118         if (!list_empty(head)) {
9119                 rollback_registered_many(head);
9120                 list_for_each_entry(dev, head, unreg_list)
9121                         net_set_todo(dev);
9122                 list_del(head);
9123         }
9124 }
9125 EXPORT_SYMBOL(unregister_netdevice_many);
9126
9127 /**
9128  *      unregister_netdev - remove device from the kernel
9129  *      @dev: device
9130  *
9131  *      This function shuts down a device interface and removes it
9132  *      from the kernel tables.
9133  *
9134  *      This is just a wrapper for unregister_netdevice that takes
9135  *      the rtnl semaphore.  In general you want to use this and not
9136  *      unregister_netdevice.
9137  */
9138 void unregister_netdev(struct net_device *dev)
9139 {
9140         rtnl_lock();
9141         unregister_netdevice(dev);
9142         rtnl_unlock();
9143 }
9144 EXPORT_SYMBOL(unregister_netdev);
9145
9146 /**
9147  *      dev_change_net_namespace - move device to different nethost namespace
9148  *      @dev: device
9149  *      @net: network namespace
9150  *      @pat: If not NULL name pattern to try if the current device name
9151  *            is already taken in the destination network namespace.
9152  *
9153  *      This function shuts down a device interface and moves it
9154  *      to a new network namespace. On success 0 is returned, on
9155  *      a failure a netagive errno code is returned.
9156  *
9157  *      Callers must hold the rtnl semaphore.
9158  */
9159
9160 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9161 {
9162         int err, new_nsid, new_ifindex;
9163
9164         ASSERT_RTNL();
9165
9166         /* Don't allow namespace local devices to be moved. */
9167         err = -EINVAL;
9168         if (dev->features & NETIF_F_NETNS_LOCAL)
9169                 goto out;
9170
9171         /* Ensure the device has been registrered */
9172         if (dev->reg_state != NETREG_REGISTERED)
9173                 goto out;
9174
9175         /* Get out if there is nothing todo */
9176         err = 0;
9177         if (net_eq(dev_net(dev), net))
9178                 goto out;
9179
9180         /* Pick the destination device name, and ensure
9181          * we can use it in the destination network namespace.
9182          */
9183         err = -EEXIST;
9184         if (__dev_get_by_name(net, dev->name)) {
9185                 /* We get here if we can't use the current device name */
9186                 if (!pat)
9187                         goto out;
9188                 err = dev_get_valid_name(net, dev, pat);
9189                 if (err < 0)
9190                         goto out;
9191         }
9192
9193         /*
9194          * And now a mini version of register_netdevice unregister_netdevice.
9195          */
9196
9197         /* If device is running close it first. */
9198         dev_close(dev);
9199
9200         /* And unlink it from device chain */
9201         unlist_netdevice(dev);
9202
9203         synchronize_net();
9204
9205         /* Shutdown queueing discipline. */
9206         dev_shutdown(dev);
9207
9208         /* Notify protocols, that we are about to destroy
9209          * this device. They should clean all the things.
9210          *
9211          * Note that dev->reg_state stays at NETREG_REGISTERED.
9212          * This is wanted because this way 8021q and macvlan know
9213          * the device is just moving and can keep their slaves up.
9214          */
9215         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9216         rcu_barrier();
9217
9218         new_nsid = peernet2id_alloc(dev_net(dev), net);
9219         /* If there is an ifindex conflict assign a new one */
9220         if (__dev_get_by_index(net, dev->ifindex))
9221                 new_ifindex = dev_new_index(net);
9222         else
9223                 new_ifindex = dev->ifindex;
9224
9225         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9226                             new_ifindex);
9227
9228         /*
9229          *      Flush the unicast and multicast chains
9230          */
9231         dev_uc_flush(dev);
9232         dev_mc_flush(dev);
9233
9234         /* Send a netdev-removed uevent to the old namespace */
9235         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9236         netdev_adjacent_del_links(dev);
9237
9238         /* Actually switch the network namespace */
9239         dev_net_set(dev, net);
9240         dev->ifindex = new_ifindex;
9241
9242         /* Send a netdev-add uevent to the new namespace */
9243         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9244         netdev_adjacent_add_links(dev);
9245
9246         /* Fixup kobjects */
9247         err = device_rename(&dev->dev, dev->name);
9248         WARN_ON(err);
9249
9250         /* Add the device back in the hashes */
9251         list_netdevice(dev);
9252
9253         /* Notify protocols, that a new device appeared. */
9254         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9255
9256         /*
9257          *      Prevent userspace races by waiting until the network
9258          *      device is fully setup before sending notifications.
9259          */
9260         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9261
9262         synchronize_net();
9263         err = 0;
9264 out:
9265         return err;
9266 }
9267 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9268
9269 static int dev_cpu_dead(unsigned int oldcpu)
9270 {
9271         struct sk_buff **list_skb;
9272         struct sk_buff *skb;
9273         unsigned int cpu;
9274         struct softnet_data *sd, *oldsd, *remsd = NULL;
9275
9276         local_irq_disable();
9277         cpu = smp_processor_id();
9278         sd = &per_cpu(softnet_data, cpu);
9279         oldsd = &per_cpu(softnet_data, oldcpu);
9280
9281         /* Find end of our completion_queue. */
9282         list_skb = &sd->completion_queue;
9283         while (*list_skb)
9284                 list_skb = &(*list_skb)->next;
9285         /* Append completion queue from offline CPU. */
9286         *list_skb = oldsd->completion_queue;
9287         oldsd->completion_queue = NULL;
9288
9289         /* Append output queue from offline CPU. */
9290         if (oldsd->output_queue) {
9291                 *sd->output_queue_tailp = oldsd->output_queue;
9292                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9293                 oldsd->output_queue = NULL;
9294                 oldsd->output_queue_tailp = &oldsd->output_queue;
9295         }
9296         /* Append NAPI poll list from offline CPU, with one exception :
9297          * process_backlog() must be called by cpu owning percpu backlog.
9298          * We properly handle process_queue & input_pkt_queue later.
9299          */
9300         while (!list_empty(&oldsd->poll_list)) {
9301                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9302                                                             struct napi_struct,
9303                                                             poll_list);
9304
9305                 list_del_init(&napi->poll_list);
9306                 if (napi->poll == process_backlog)
9307                         napi->state = 0;
9308                 else
9309                         ____napi_schedule(sd, napi);
9310         }
9311
9312         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9313         local_irq_enable();
9314
9315 #ifdef CONFIG_RPS
9316         remsd = oldsd->rps_ipi_list;
9317         oldsd->rps_ipi_list = NULL;
9318 #endif
9319         /* send out pending IPI's on offline CPU */
9320         net_rps_send_ipi(remsd);
9321
9322         /* Process offline CPU's input_pkt_queue */
9323         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9324                 netif_rx_ni(skb);
9325                 input_queue_head_incr(oldsd);
9326         }
9327         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9328                 netif_rx_ni(skb);
9329                 input_queue_head_incr(oldsd);
9330         }
9331
9332         return 0;
9333 }
9334
9335 /**
9336  *      netdev_increment_features - increment feature set by one
9337  *      @all: current feature set
9338  *      @one: new feature set
9339  *      @mask: mask feature set
9340  *
9341  *      Computes a new feature set after adding a device with feature set
9342  *      @one to the master device with current feature set @all.  Will not
9343  *      enable anything that is off in @mask. Returns the new feature set.
9344  */
9345 netdev_features_t netdev_increment_features(netdev_features_t all,
9346         netdev_features_t one, netdev_features_t mask)
9347 {
9348         if (mask & NETIF_F_HW_CSUM)
9349                 mask |= NETIF_F_CSUM_MASK;
9350         mask |= NETIF_F_VLAN_CHALLENGED;
9351
9352         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9353         all &= one | ~NETIF_F_ALL_FOR_ALL;
9354
9355         /* If one device supports hw checksumming, set for all. */
9356         if (all & NETIF_F_HW_CSUM)
9357                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9358
9359         return all;
9360 }
9361 EXPORT_SYMBOL(netdev_increment_features);
9362
9363 static struct hlist_head * __net_init netdev_create_hash(void)
9364 {
9365         int i;
9366         struct hlist_head *hash;
9367
9368         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9369         if (hash != NULL)
9370                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9371                         INIT_HLIST_HEAD(&hash[i]);
9372
9373         return hash;
9374 }
9375
9376 /* Initialize per network namespace state */
9377 static int __net_init netdev_init(struct net *net)
9378 {
9379         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9380                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9381
9382         if (net != &init_net)
9383                 INIT_LIST_HEAD(&net->dev_base_head);
9384
9385         net->dev_name_head = netdev_create_hash();
9386         if (net->dev_name_head == NULL)
9387                 goto err_name;
9388
9389         net->dev_index_head = netdev_create_hash();
9390         if (net->dev_index_head == NULL)
9391                 goto err_idx;
9392
9393         return 0;
9394
9395 err_idx:
9396         kfree(net->dev_name_head);
9397 err_name:
9398         return -ENOMEM;
9399 }
9400
9401 /**
9402  *      netdev_drivername - network driver for the device
9403  *      @dev: network device
9404  *
9405  *      Determine network driver for device.
9406  */
9407 const char *netdev_drivername(const struct net_device *dev)
9408 {
9409         const struct device_driver *driver;
9410         const struct device *parent;
9411         const char *empty = "";
9412
9413         parent = dev->dev.parent;
9414         if (!parent)
9415                 return empty;
9416
9417         driver = parent->driver;
9418         if (driver && driver->name)
9419                 return driver->name;
9420         return empty;
9421 }
9422
9423 static void __netdev_printk(const char *level, const struct net_device *dev,
9424                             struct va_format *vaf)
9425 {
9426         if (dev && dev->dev.parent) {
9427                 dev_printk_emit(level[1] - '0',
9428                                 dev->dev.parent,
9429                                 "%s %s %s%s: %pV",
9430                                 dev_driver_string(dev->dev.parent),
9431                                 dev_name(dev->dev.parent),
9432                                 netdev_name(dev), netdev_reg_state(dev),
9433                                 vaf);
9434         } else if (dev) {
9435                 printk("%s%s%s: %pV",
9436                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9437         } else {
9438                 printk("%s(NULL net_device): %pV", level, vaf);
9439         }
9440 }
9441
9442 void netdev_printk(const char *level, const struct net_device *dev,
9443                    const char *format, ...)
9444 {
9445         struct va_format vaf;
9446         va_list args;
9447
9448         va_start(args, format);
9449
9450         vaf.fmt = format;
9451         vaf.va = &args;
9452
9453         __netdev_printk(level, dev, &vaf);
9454
9455         va_end(args);
9456 }
9457 EXPORT_SYMBOL(netdev_printk);
9458
9459 #define define_netdev_printk_level(func, level)                 \
9460 void func(const struct net_device *dev, const char *fmt, ...)   \
9461 {                                                               \
9462         struct va_format vaf;                                   \
9463         va_list args;                                           \
9464                                                                 \
9465         va_start(args, fmt);                                    \
9466                                                                 \
9467         vaf.fmt = fmt;                                          \
9468         vaf.va = &args;                                         \
9469                                                                 \
9470         __netdev_printk(level, dev, &vaf);                      \
9471                                                                 \
9472         va_end(args);                                           \
9473 }                                                               \
9474 EXPORT_SYMBOL(func);
9475
9476 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9477 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9478 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9479 define_netdev_printk_level(netdev_err, KERN_ERR);
9480 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9481 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9482 define_netdev_printk_level(netdev_info, KERN_INFO);
9483
9484 static void __net_exit netdev_exit(struct net *net)
9485 {
9486         kfree(net->dev_name_head);
9487         kfree(net->dev_index_head);
9488         if (net != &init_net)
9489                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9490 }
9491
9492 static struct pernet_operations __net_initdata netdev_net_ops = {
9493         .init = netdev_init,
9494         .exit = netdev_exit,
9495 };
9496
9497 static void __net_exit default_device_exit(struct net *net)
9498 {
9499         struct net_device *dev, *aux;
9500         /*
9501          * Push all migratable network devices back to the
9502          * initial network namespace
9503          */
9504         rtnl_lock();
9505         for_each_netdev_safe(net, dev, aux) {
9506                 int err;
9507                 char fb_name[IFNAMSIZ];
9508
9509                 /* Ignore unmoveable devices (i.e. loopback) */
9510                 if (dev->features & NETIF_F_NETNS_LOCAL)
9511                         continue;
9512
9513                 /* Leave virtual devices for the generic cleanup */
9514                 if (dev->rtnl_link_ops)
9515                         continue;
9516
9517                 /* Push remaining network devices to init_net */
9518                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9519                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9520                 if (err) {
9521                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9522                                  __func__, dev->name, err);
9523                         BUG();
9524                 }
9525         }
9526         rtnl_unlock();
9527 }
9528
9529 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9530 {
9531         /* Return with the rtnl_lock held when there are no network
9532          * devices unregistering in any network namespace in net_list.
9533          */
9534         struct net *net;
9535         bool unregistering;
9536         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9537
9538         add_wait_queue(&netdev_unregistering_wq, &wait);
9539         for (;;) {
9540                 unregistering = false;
9541                 rtnl_lock();
9542                 list_for_each_entry(net, net_list, exit_list) {
9543                         if (net->dev_unreg_count > 0) {
9544                                 unregistering = true;
9545                                 break;
9546                         }
9547                 }
9548                 if (!unregistering)
9549                         break;
9550                 __rtnl_unlock();
9551
9552                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9553         }
9554         remove_wait_queue(&netdev_unregistering_wq, &wait);
9555 }
9556
9557 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9558 {
9559         /* At exit all network devices most be removed from a network
9560          * namespace.  Do this in the reverse order of registration.
9561          * Do this across as many network namespaces as possible to
9562          * improve batching efficiency.
9563          */
9564         struct net_device *dev;
9565         struct net *net;
9566         LIST_HEAD(dev_kill_list);
9567
9568         /* To prevent network device cleanup code from dereferencing
9569          * loopback devices or network devices that have been freed
9570          * wait here for all pending unregistrations to complete,
9571          * before unregistring the loopback device and allowing the
9572          * network namespace be freed.
9573          *
9574          * The netdev todo list containing all network devices
9575          * unregistrations that happen in default_device_exit_batch
9576          * will run in the rtnl_unlock() at the end of
9577          * default_device_exit_batch.
9578          */
9579         rtnl_lock_unregistering(net_list);
9580         list_for_each_entry(net, net_list, exit_list) {
9581                 for_each_netdev_reverse(net, dev) {
9582                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9583                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9584                         else
9585                                 unregister_netdevice_queue(dev, &dev_kill_list);
9586                 }
9587         }
9588         unregister_netdevice_many(&dev_kill_list);
9589         rtnl_unlock();
9590 }
9591
9592 static struct pernet_operations __net_initdata default_device_ops = {
9593         .exit = default_device_exit,
9594         .exit_batch = default_device_exit_batch,
9595 };
9596
9597 /*
9598  *      Initialize the DEV module. At boot time this walks the device list and
9599  *      unhooks any devices that fail to initialise (normally hardware not
9600  *      present) and leaves us with a valid list of present and active devices.
9601  *
9602  */
9603
9604 /*
9605  *       This is called single threaded during boot, so no need
9606  *       to take the rtnl semaphore.
9607  */
9608 static int __init net_dev_init(void)
9609 {
9610         int i, rc = -ENOMEM;
9611
9612         BUG_ON(!dev_boot_phase);
9613
9614         if (dev_proc_init())
9615                 goto out;
9616
9617         if (netdev_kobject_init())
9618                 goto out;
9619
9620         INIT_LIST_HEAD(&ptype_all);
9621         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9622                 INIT_LIST_HEAD(&ptype_base[i]);
9623
9624         INIT_LIST_HEAD(&offload_base);
9625
9626         if (register_pernet_subsys(&netdev_net_ops))
9627                 goto out;
9628
9629         /*
9630          *      Initialise the packet receive queues.
9631          */
9632
9633         for_each_possible_cpu(i) {
9634                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9635                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9636
9637                 INIT_WORK(flush, flush_backlog);
9638
9639                 skb_queue_head_init(&sd->input_pkt_queue);
9640                 skb_queue_head_init(&sd->process_queue);
9641 #ifdef CONFIG_XFRM_OFFLOAD
9642                 skb_queue_head_init(&sd->xfrm_backlog);
9643 #endif
9644                 INIT_LIST_HEAD(&sd->poll_list);
9645                 sd->output_queue_tailp = &sd->output_queue;
9646 #ifdef CONFIG_RPS
9647                 sd->csd.func = rps_trigger_softirq;
9648                 sd->csd.info = sd;
9649                 sd->cpu = i;
9650 #endif
9651
9652                 init_gro_hash(&sd->backlog);
9653                 sd->backlog.poll = process_backlog;
9654                 sd->backlog.weight = weight_p;
9655         }
9656
9657         dev_boot_phase = 0;
9658
9659         /* The loopback device is special if any other network devices
9660          * is present in a network namespace the loopback device must
9661          * be present. Since we now dynamically allocate and free the
9662          * loopback device ensure this invariant is maintained by
9663          * keeping the loopback device as the first device on the
9664          * list of network devices.  Ensuring the loopback devices
9665          * is the first device that appears and the last network device
9666          * that disappears.
9667          */
9668         if (register_pernet_device(&loopback_net_ops))
9669                 goto out;
9670
9671         if (register_pernet_device(&default_device_ops))
9672                 goto out;
9673
9674         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9675         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9676
9677         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9678                                        NULL, dev_cpu_dead);
9679         WARN_ON(rc < 0);
9680         rc = 0;
9681 out:
9682         return rc;
9683 }
9684
9685 subsys_initcall(net_dev_init);