net: annotate data-races on txq->xmit_lock_owner
[platform/kernel/linux-rpi.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165                                          struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167                                            struct net_device *dev,
168                                            struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192
193 static DEFINE_MUTEX(ifalias_mutex);
194
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201 static DECLARE_RWSEM(devnet_rename_sem);
202
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205         while (++net->dev_base_seq == 0)
206                 ;
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224         spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231         spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236                                                        const char *name)
237 {
238         struct netdev_name_node *name_node;
239
240         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241         if (!name_node)
242                 return NULL;
243         INIT_HLIST_NODE(&name_node->hlist);
244         name_node->dev = dev;
245         name_node->name = name;
246         return name_node;
247 }
248
249 static struct netdev_name_node *
250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252         struct netdev_name_node *name_node;
253
254         name_node = netdev_name_node_alloc(dev, dev->name);
255         if (!name_node)
256                 return NULL;
257         INIT_LIST_HEAD(&name_node->list);
258         return name_node;
259 }
260
261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263         kfree(name_node);
264 }
265
266 static void netdev_name_node_add(struct net *net,
267                                  struct netdev_name_node *name_node)
268 {
269         hlist_add_head_rcu(&name_node->hlist,
270                            dev_name_hash(net, name_node->name));
271 }
272
273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275         hlist_del_rcu(&name_node->hlist);
276 }
277
278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279                                                         const char *name)
280 {
281         struct hlist_head *head = dev_name_hash(net, name);
282         struct netdev_name_node *name_node;
283
284         hlist_for_each_entry(name_node, head, hlist)
285                 if (!strcmp(name_node->name, name))
286                         return name_node;
287         return NULL;
288 }
289
290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291                                                             const char *name)
292 {
293         struct hlist_head *head = dev_name_hash(net, name);
294         struct netdev_name_node *name_node;
295
296         hlist_for_each_entry_rcu(name_node, head, hlist)
297                 if (!strcmp(name_node->name, name))
298                         return name_node;
299         return NULL;
300 }
301
302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304         struct netdev_name_node *name_node;
305         struct net *net = dev_net(dev);
306
307         name_node = netdev_name_node_lookup(net, name);
308         if (name_node)
309                 return -EEXIST;
310         name_node = netdev_name_node_alloc(dev, name);
311         if (!name_node)
312                 return -ENOMEM;
313         netdev_name_node_add(net, name_node);
314         /* The node that holds dev->name acts as a head of per-device list. */
315         list_add_tail(&name_node->list, &dev->name_node->list);
316
317         return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320
321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323         list_del(&name_node->list);
324         netdev_name_node_del(name_node);
325         kfree(name_node->name);
326         netdev_name_node_free(name_node);
327 }
328
329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331         struct netdev_name_node *name_node;
332         struct net *net = dev_net(dev);
333
334         name_node = netdev_name_node_lookup(net, name);
335         if (!name_node)
336                 return -ENOENT;
337         /* lookup might have found our primary name or a name belonging
338          * to another device.
339          */
340         if (name_node == dev->name_node || name_node->dev != dev)
341                 return -EINVAL;
342
343         __netdev_name_node_alt_destroy(name_node);
344
345         return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348
349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351         struct netdev_name_node *name_node, *tmp;
352
353         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354                 __netdev_name_node_alt_destroy(name_node);
355 }
356
357 /* Device list insertion */
358 static void list_netdevice(struct net_device *dev)
359 {
360         struct net *net = dev_net(dev);
361
362         ASSERT_RTNL();
363
364         write_lock_bh(&dev_base_lock);
365         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366         netdev_name_node_add(net, dev->name_node);
367         hlist_add_head_rcu(&dev->index_hlist,
368                            dev_index_hash(net, dev->ifindex));
369         write_unlock_bh(&dev_base_lock);
370
371         dev_base_seq_inc(net);
372 }
373
374 /* Device list removal
375  * caller must respect a RCU grace period before freeing/reusing dev
376  */
377 static void unlist_netdevice(struct net_device *dev)
378 {
379         ASSERT_RTNL();
380
381         /* Unlink dev from the device chain */
382         write_lock_bh(&dev_base_lock);
383         list_del_rcu(&dev->dev_list);
384         netdev_name_node_del(dev->name_node);
385         hlist_del_rcu(&dev->index_hlist);
386         write_unlock_bh(&dev_base_lock);
387
388         dev_base_seq_inc(dev_net(dev));
389 }
390
391 /*
392  *      Our notifier list
393  */
394
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396
397 /*
398  *      Device drivers call our routines to queue packets here. We empty the
399  *      queue in the local softnet handler.
400  */
401
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404
405 #ifdef CONFIG_LOCKDEP
406 /*
407  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408  * according to dev->type
409  */
410 static const unsigned short netdev_lock_type[] = {
411          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426
427 static const char *const netdev_lock_name[] = {
428         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446
447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449         int i;
450
451         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452                 if (netdev_lock_type[i] == dev_type)
453                         return i;
454         /* the last key is used by default */
455         return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457
458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459                                                  unsigned short dev_type)
460 {
461         int i;
462
463         i = netdev_lock_pos(dev_type);
464         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465                                    netdev_lock_name[i]);
466 }
467
468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470         int i;
471
472         i = netdev_lock_pos(dev->type);
473         lockdep_set_class_and_name(&dev->addr_list_lock,
474                                    &netdev_addr_lock_key[i],
475                                    netdev_lock_name[i]);
476 }
477 #else
478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479                                                  unsigned short dev_type)
480 {
481 }
482
483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487
488 /*******************************************************************************
489  *
490  *              Protocol management and registration routines
491  *
492  *******************************************************************************/
493
494
495 /*
496  *      Add a protocol ID to the list. Now that the input handler is
497  *      smarter we can dispense with all the messy stuff that used to be
498  *      here.
499  *
500  *      BEWARE!!! Protocol handlers, mangling input packets,
501  *      MUST BE last in hash buckets and checking protocol handlers
502  *      MUST start from promiscuous ptype_all chain in net_bh.
503  *      It is true now, do not change it.
504  *      Explanation follows: if protocol handler, mangling packet, will
505  *      be the first on list, it is not able to sense, that packet
506  *      is cloned and should be copied-on-write, so that it will
507  *      change it and subsequent readers will get broken packet.
508  *                                                      --ANK (980803)
509  */
510
511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513         if (pt->type == htons(ETH_P_ALL))
514                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515         else
516                 return pt->dev ? &pt->dev->ptype_specific :
517                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519
520 /**
521  *      dev_add_pack - add packet handler
522  *      @pt: packet type declaration
523  *
524  *      Add a protocol handler to the networking stack. The passed &packet_type
525  *      is linked into kernel lists and may not be freed until it has been
526  *      removed from the kernel lists.
527  *
528  *      This call does not sleep therefore it can not
529  *      guarantee all CPU's that are in middle of receiving packets
530  *      will see the new packet type (until the next received packet).
531  */
532
533 void dev_add_pack(struct packet_type *pt)
534 {
535         struct list_head *head = ptype_head(pt);
536
537         spin_lock(&ptype_lock);
538         list_add_rcu(&pt->list, head);
539         spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542
543 /**
544  *      __dev_remove_pack        - remove packet handler
545  *      @pt: packet type declaration
546  *
547  *      Remove a protocol handler that was previously added to the kernel
548  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
549  *      from the kernel lists and can be freed or reused once this function
550  *      returns.
551  *
552  *      The packet type might still be in use by receivers
553  *      and must not be freed until after all the CPU's have gone
554  *      through a quiescent state.
555  */
556 void __dev_remove_pack(struct packet_type *pt)
557 {
558         struct list_head *head = ptype_head(pt);
559         struct packet_type *pt1;
560
561         spin_lock(&ptype_lock);
562
563         list_for_each_entry(pt1, head, list) {
564                 if (pt == pt1) {
565                         list_del_rcu(&pt->list);
566                         goto out;
567                 }
568         }
569
570         pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572         spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575
576 /**
577  *      dev_remove_pack  - remove packet handler
578  *      @pt: packet type declaration
579  *
580  *      Remove a protocol handler that was previously added to the kernel
581  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
582  *      from the kernel lists and can be freed or reused once this function
583  *      returns.
584  *
585  *      This call sleeps to guarantee that no CPU is looking at the packet
586  *      type after return.
587  */
588 void dev_remove_pack(struct packet_type *pt)
589 {
590         __dev_remove_pack(pt);
591
592         synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595
596
597 /**
598  *      dev_add_offload - register offload handlers
599  *      @po: protocol offload declaration
600  *
601  *      Add protocol offload handlers to the networking stack. The passed
602  *      &proto_offload is linked into kernel lists and may not be freed until
603  *      it has been removed from the kernel lists.
604  *
605  *      This call does not sleep therefore it can not
606  *      guarantee all CPU's that are in middle of receiving packets
607  *      will see the new offload handlers (until the next received packet).
608  */
609 void dev_add_offload(struct packet_offload *po)
610 {
611         struct packet_offload *elem;
612
613         spin_lock(&offload_lock);
614         list_for_each_entry(elem, &offload_base, list) {
615                 if (po->priority < elem->priority)
616                         break;
617         }
618         list_add_rcu(&po->list, elem->list.prev);
619         spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622
623 /**
624  *      __dev_remove_offload     - remove offload handler
625  *      @po: packet offload declaration
626  *
627  *      Remove a protocol offload handler that was previously added to the
628  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
629  *      is removed from the kernel lists and can be freed or reused once this
630  *      function returns.
631  *
632  *      The packet type might still be in use by receivers
633  *      and must not be freed until after all the CPU's have gone
634  *      through a quiescent state.
635  */
636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638         struct list_head *head = &offload_base;
639         struct packet_offload *po1;
640
641         spin_lock(&offload_lock);
642
643         list_for_each_entry(po1, head, list) {
644                 if (po == po1) {
645                         list_del_rcu(&po->list);
646                         goto out;
647                 }
648         }
649
650         pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652         spin_unlock(&offload_lock);
653 }
654
655 /**
656  *      dev_remove_offload       - remove packet offload handler
657  *      @po: packet offload declaration
658  *
659  *      Remove a packet offload handler that was previously added to the kernel
660  *      offload handlers by dev_add_offload(). The passed &offload_type is
661  *      removed from the kernel lists and can be freed or reused once this
662  *      function returns.
663  *
664  *      This call sleeps to guarantee that no CPU is looking at the packet
665  *      type after return.
666  */
667 void dev_remove_offload(struct packet_offload *po)
668 {
669         __dev_remove_offload(po);
670
671         synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674
675 /******************************************************************************
676  *
677  *                    Device Boot-time Settings Routines
678  *
679  ******************************************************************************/
680
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683
684 /**
685  *      netdev_boot_setup_add   - add new setup entry
686  *      @name: name of the device
687  *      @map: configured settings for the device
688  *
689  *      Adds new setup entry to the dev_boot_setup list.  The function
690  *      returns 0 on error and 1 on success.  This is a generic routine to
691  *      all netdevices.
692  */
693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695         struct netdev_boot_setup *s;
696         int i;
697
698         s = dev_boot_setup;
699         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701                         memset(s[i].name, 0, sizeof(s[i].name));
702                         strlcpy(s[i].name, name, IFNAMSIZ);
703                         memcpy(&s[i].map, map, sizeof(s[i].map));
704                         break;
705                 }
706         }
707
708         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710
711 /**
712  * netdev_boot_setup_check      - check boot time settings
713  * @dev: the netdevice
714  *
715  * Check boot time settings for the device.
716  * The found settings are set for the device to be used
717  * later in the device probing.
718  * Returns 0 if no settings found, 1 if they are.
719  */
720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722         struct netdev_boot_setup *s = dev_boot_setup;
723         int i;
724
725         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727                     !strcmp(dev->name, s[i].name)) {
728                         dev->irq = s[i].map.irq;
729                         dev->base_addr = s[i].map.base_addr;
730                         dev->mem_start = s[i].map.mem_start;
731                         dev->mem_end = s[i].map.mem_end;
732                         return 1;
733                 }
734         }
735         return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738
739
740 /**
741  * netdev_boot_base     - get address from boot time settings
742  * @prefix: prefix for network device
743  * @unit: id for network device
744  *
745  * Check boot time settings for the base address of device.
746  * The found settings are set for the device to be used
747  * later in the device probing.
748  * Returns 0 if no settings found.
749  */
750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752         const struct netdev_boot_setup *s = dev_boot_setup;
753         char name[IFNAMSIZ];
754         int i;
755
756         sprintf(name, "%s%d", prefix, unit);
757
758         /*
759          * If device already registered then return base of 1
760          * to indicate not to probe for this interface
761          */
762         if (__dev_get_by_name(&init_net, name))
763                 return 1;
764
765         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766                 if (!strcmp(name, s[i].name))
767                         return s[i].map.base_addr;
768         return 0;
769 }
770
771 /*
772  * Saves at boot time configured settings for any netdevice.
773  */
774 int __init netdev_boot_setup(char *str)
775 {
776         int ints[5];
777         struct ifmap map;
778
779         str = get_options(str, ARRAY_SIZE(ints), ints);
780         if (!str || !*str)
781                 return 0;
782
783         /* Save settings */
784         memset(&map, 0, sizeof(map));
785         if (ints[0] > 0)
786                 map.irq = ints[1];
787         if (ints[0] > 1)
788                 map.base_addr = ints[2];
789         if (ints[0] > 2)
790                 map.mem_start = ints[3];
791         if (ints[0] > 3)
792                 map.mem_end = ints[4];
793
794         /* Add new entry to the list */
795         return netdev_boot_setup_add(str, &map);
796 }
797
798 __setup("netdev=", netdev_boot_setup);
799
800 /*******************************************************************************
801  *
802  *                          Device Interface Subroutines
803  *
804  *******************************************************************************/
805
806 /**
807  *      dev_get_iflink  - get 'iflink' value of a interface
808  *      @dev: targeted interface
809  *
810  *      Indicates the ifindex the interface is linked to.
811  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
812  */
813
814 int dev_get_iflink(const struct net_device *dev)
815 {
816         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817                 return dev->netdev_ops->ndo_get_iflink(dev);
818
819         return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822
823 /**
824  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
825  *      @dev: targeted interface
826  *      @skb: The packet.
827  *
828  *      For better visibility of tunnel traffic OVS needs to retrieve
829  *      egress tunnel information for a packet. Following API allows
830  *      user to get this info.
831  */
832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834         struct ip_tunnel_info *info;
835
836         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
837                 return -EINVAL;
838
839         info = skb_tunnel_info_unclone(skb);
840         if (!info)
841                 return -ENOMEM;
842         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843                 return -EINVAL;
844
845         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848
849 /**
850  *      __dev_get_by_name       - find a device by its name
851  *      @net: the applicable net namespace
852  *      @name: name to find
853  *
854  *      Find an interface by name. Must be called under RTNL semaphore
855  *      or @dev_base_lock. If the name is found a pointer to the device
856  *      is returned. If the name is not found then %NULL is returned. The
857  *      reference counters are not incremented so the caller must be
858  *      careful with locks.
859  */
860
861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863         struct netdev_name_node *node_name;
864
865         node_name = netdev_name_node_lookup(net, name);
866         return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869
870 /**
871  * dev_get_by_name_rcu  - find a device by its name
872  * @net: the applicable net namespace
873  * @name: name to find
874  *
875  * Find an interface by name.
876  * If the name is found a pointer to the device is returned.
877  * If the name is not found then %NULL is returned.
878  * The reference counters are not incremented so the caller must be
879  * careful with locks. The caller must hold RCU lock.
880  */
881
882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884         struct netdev_name_node *node_name;
885
886         node_name = netdev_name_node_lookup_rcu(net, name);
887         return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890
891 /**
892  *      dev_get_by_name         - find a device by its name
893  *      @net: the applicable net namespace
894  *      @name: name to find
895  *
896  *      Find an interface by name. This can be called from any
897  *      context and does its own locking. The returned handle has
898  *      the usage count incremented and the caller must use dev_put() to
899  *      release it when it is no longer needed. %NULL is returned if no
900  *      matching device is found.
901  */
902
903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905         struct net_device *dev;
906
907         rcu_read_lock();
908         dev = dev_get_by_name_rcu(net, name);
909         if (dev)
910                 dev_hold(dev);
911         rcu_read_unlock();
912         return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915
916 /**
917  *      __dev_get_by_index - find a device by its ifindex
918  *      @net: the applicable net namespace
919  *      @ifindex: index of device
920  *
921  *      Search for an interface by index. Returns %NULL if the device
922  *      is not found or a pointer to the device. The device has not
923  *      had its reference counter increased so the caller must be careful
924  *      about locking. The caller must hold either the RTNL semaphore
925  *      or @dev_base_lock.
926  */
927
928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930         struct net_device *dev;
931         struct hlist_head *head = dev_index_hash(net, ifindex);
932
933         hlist_for_each_entry(dev, head, index_hlist)
934                 if (dev->ifindex == ifindex)
935                         return dev;
936
937         return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940
941 /**
942  *      dev_get_by_index_rcu - find a device by its ifindex
943  *      @net: the applicable net namespace
944  *      @ifindex: index of device
945  *
946  *      Search for an interface by index. Returns %NULL if the device
947  *      is not found or a pointer to the device. The device has not
948  *      had its reference counter increased so the caller must be careful
949  *      about locking. The caller must hold RCU lock.
950  */
951
952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954         struct net_device *dev;
955         struct hlist_head *head = dev_index_hash(net, ifindex);
956
957         hlist_for_each_entry_rcu(dev, head, index_hlist)
958                 if (dev->ifindex == ifindex)
959                         return dev;
960
961         return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964
965
966 /**
967  *      dev_get_by_index - find a device by its ifindex
968  *      @net: the applicable net namespace
969  *      @ifindex: index of device
970  *
971  *      Search for an interface by index. Returns NULL if the device
972  *      is not found or a pointer to the device. The device returned has
973  *      had a reference added and the pointer is safe until the user calls
974  *      dev_put to indicate they have finished with it.
975  */
976
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979         struct net_device *dev;
980
981         rcu_read_lock();
982         dev = dev_get_by_index_rcu(net, ifindex);
983         if (dev)
984                 dev_hold(dev);
985         rcu_read_unlock();
986         return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989
990 /**
991  *      dev_get_by_napi_id - find a device by napi_id
992  *      @napi_id: ID of the NAPI struct
993  *
994  *      Search for an interface by NAPI ID. Returns %NULL if the device
995  *      is not found or a pointer to the device. The device has not had
996  *      its reference counter increased so the caller must be careful
997  *      about locking. The caller must hold RCU lock.
998  */
999
1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002         struct napi_struct *napi;
1003
1004         WARN_ON_ONCE(!rcu_read_lock_held());
1005
1006         if (napi_id < MIN_NAPI_ID)
1007                 return NULL;
1008
1009         napi = napi_by_id(napi_id);
1010
1011         return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014
1015 /**
1016  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1017  *      @net: network namespace
1018  *      @name: a pointer to the buffer where the name will be stored.
1019  *      @ifindex: the ifindex of the interface to get the name from.
1020  */
1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023         struct net_device *dev;
1024         int ret;
1025
1026         down_read(&devnet_rename_sem);
1027         rcu_read_lock();
1028
1029         dev = dev_get_by_index_rcu(net, ifindex);
1030         if (!dev) {
1031                 ret = -ENODEV;
1032                 goto out;
1033         }
1034
1035         strcpy(name, dev->name);
1036
1037         ret = 0;
1038 out:
1039         rcu_read_unlock();
1040         up_read(&devnet_rename_sem);
1041         return ret;
1042 }
1043
1044 /**
1045  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1046  *      @net: the applicable net namespace
1047  *      @type: media type of device
1048  *      @ha: hardware address
1049  *
1050  *      Search for an interface by MAC address. Returns NULL if the device
1051  *      is not found or a pointer to the device.
1052  *      The caller must hold RCU or RTNL.
1053  *      The returned device has not had its ref count increased
1054  *      and the caller must therefore be careful about locking
1055  *
1056  */
1057
1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059                                        const char *ha)
1060 {
1061         struct net_device *dev;
1062
1063         for_each_netdev_rcu(net, dev)
1064                 if (dev->type == type &&
1065                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1066                         return dev;
1067
1068         return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071
1072 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074         struct net_device *dev;
1075
1076         ASSERT_RTNL();
1077         for_each_netdev(net, dev)
1078                 if (dev->type == type)
1079                         return dev;
1080
1081         return NULL;
1082 }
1083 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1084
1085 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1086 {
1087         struct net_device *dev, *ret = NULL;
1088
1089         rcu_read_lock();
1090         for_each_netdev_rcu(net, dev)
1091                 if (dev->type == type) {
1092                         dev_hold(dev);
1093                         ret = dev;
1094                         break;
1095                 }
1096         rcu_read_unlock();
1097         return ret;
1098 }
1099 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1100
1101 /**
1102  *      __dev_get_by_flags - find any device with given flags
1103  *      @net: the applicable net namespace
1104  *      @if_flags: IFF_* values
1105  *      @mask: bitmask of bits in if_flags to check
1106  *
1107  *      Search for any interface with the given flags. Returns NULL if a device
1108  *      is not found or a pointer to the device. Must be called inside
1109  *      rtnl_lock(), and result refcount is unchanged.
1110  */
1111
1112 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1113                                       unsigned short mask)
1114 {
1115         struct net_device *dev, *ret;
1116
1117         ASSERT_RTNL();
1118
1119         ret = NULL;
1120         for_each_netdev(net, dev) {
1121                 if (((dev->flags ^ if_flags) & mask) == 0) {
1122                         ret = dev;
1123                         break;
1124                 }
1125         }
1126         return ret;
1127 }
1128 EXPORT_SYMBOL(__dev_get_by_flags);
1129
1130 /**
1131  *      dev_valid_name - check if name is okay for network device
1132  *      @name: name string
1133  *
1134  *      Network device names need to be valid file names to
1135  *      allow sysfs to work.  We also disallow any kind of
1136  *      whitespace.
1137  */
1138 bool dev_valid_name(const char *name)
1139 {
1140         if (*name == '\0')
1141                 return false;
1142         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1143                 return false;
1144         if (!strcmp(name, ".") || !strcmp(name, ".."))
1145                 return false;
1146
1147         while (*name) {
1148                 if (*name == '/' || *name == ':' || isspace(*name))
1149                         return false;
1150                 name++;
1151         }
1152         return true;
1153 }
1154 EXPORT_SYMBOL(dev_valid_name);
1155
1156 /**
1157  *      __dev_alloc_name - allocate a name for a device
1158  *      @net: network namespace to allocate the device name in
1159  *      @name: name format string
1160  *      @buf:  scratch buffer and result name string
1161  *
1162  *      Passed a format string - eg "lt%d" it will try and find a suitable
1163  *      id. It scans list of devices to build up a free map, then chooses
1164  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1165  *      while allocating the name and adding the device in order to avoid
1166  *      duplicates.
1167  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1168  *      Returns the number of the unit assigned or a negative errno code.
1169  */
1170
1171 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1172 {
1173         int i = 0;
1174         const char *p;
1175         const int max_netdevices = 8*PAGE_SIZE;
1176         unsigned long *inuse;
1177         struct net_device *d;
1178
1179         if (!dev_valid_name(name))
1180                 return -EINVAL;
1181
1182         p = strchr(name, '%');
1183         if (p) {
1184                 /*
1185                  * Verify the string as this thing may have come from
1186                  * the user.  There must be either one "%d" and no other "%"
1187                  * characters.
1188                  */
1189                 if (p[1] != 'd' || strchr(p + 2, '%'))
1190                         return -EINVAL;
1191
1192                 /* Use one page as a bit array of possible slots */
1193                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1194                 if (!inuse)
1195                         return -ENOMEM;
1196
1197                 for_each_netdev(net, d) {
1198                         struct netdev_name_node *name_node;
1199                         list_for_each_entry(name_node, &d->name_node->list, list) {
1200                                 if (!sscanf(name_node->name, name, &i))
1201                                         continue;
1202                                 if (i < 0 || i >= max_netdevices)
1203                                         continue;
1204
1205                                 /*  avoid cases where sscanf is not exact inverse of printf */
1206                                 snprintf(buf, IFNAMSIZ, name, i);
1207                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1208                                         set_bit(i, inuse);
1209                         }
1210                         if (!sscanf(d->name, name, &i))
1211                                 continue;
1212                         if (i < 0 || i >= max_netdevices)
1213                                 continue;
1214
1215                         /*  avoid cases where sscanf is not exact inverse of printf */
1216                         snprintf(buf, IFNAMSIZ, name, i);
1217                         if (!strncmp(buf, d->name, IFNAMSIZ))
1218                                 set_bit(i, inuse);
1219                 }
1220
1221                 i = find_first_zero_bit(inuse, max_netdevices);
1222                 free_page((unsigned long) inuse);
1223         }
1224
1225         snprintf(buf, IFNAMSIZ, name, i);
1226         if (!__dev_get_by_name(net, buf))
1227                 return i;
1228
1229         /* It is possible to run out of possible slots
1230          * when the name is long and there isn't enough space left
1231          * for the digits, or if all bits are used.
1232          */
1233         return -ENFILE;
1234 }
1235
1236 static int dev_alloc_name_ns(struct net *net,
1237                              struct net_device *dev,
1238                              const char *name)
1239 {
1240         char buf[IFNAMSIZ];
1241         int ret;
1242
1243         BUG_ON(!net);
1244         ret = __dev_alloc_name(net, name, buf);
1245         if (ret >= 0)
1246                 strlcpy(dev->name, buf, IFNAMSIZ);
1247         return ret;
1248 }
1249
1250 /**
1251  *      dev_alloc_name - allocate a name for a device
1252  *      @dev: device
1253  *      @name: name format string
1254  *
1255  *      Passed a format string - eg "lt%d" it will try and find a suitable
1256  *      id. It scans list of devices to build up a free map, then chooses
1257  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1258  *      while allocating the name and adding the device in order to avoid
1259  *      duplicates.
1260  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1261  *      Returns the number of the unit assigned or a negative errno code.
1262  */
1263
1264 int dev_alloc_name(struct net_device *dev, const char *name)
1265 {
1266         return dev_alloc_name_ns(dev_net(dev), dev, name);
1267 }
1268 EXPORT_SYMBOL(dev_alloc_name);
1269
1270 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1271                               const char *name)
1272 {
1273         BUG_ON(!net);
1274
1275         if (!dev_valid_name(name))
1276                 return -EINVAL;
1277
1278         if (strchr(name, '%'))
1279                 return dev_alloc_name_ns(net, dev, name);
1280         else if (__dev_get_by_name(net, name))
1281                 return -EEXIST;
1282         else if (dev->name != name)
1283                 strlcpy(dev->name, name, IFNAMSIZ);
1284
1285         return 0;
1286 }
1287
1288 /**
1289  *      dev_change_name - change name of a device
1290  *      @dev: device
1291  *      @newname: name (or format string) must be at least IFNAMSIZ
1292  *
1293  *      Change name of a device, can pass format strings "eth%d".
1294  *      for wildcarding.
1295  */
1296 int dev_change_name(struct net_device *dev, const char *newname)
1297 {
1298         unsigned char old_assign_type;
1299         char oldname[IFNAMSIZ];
1300         int err = 0;
1301         int ret;
1302         struct net *net;
1303
1304         ASSERT_RTNL();
1305         BUG_ON(!dev_net(dev));
1306
1307         net = dev_net(dev);
1308
1309         /* Some auto-enslaved devices e.g. failover slaves are
1310          * special, as userspace might rename the device after
1311          * the interface had been brought up and running since
1312          * the point kernel initiated auto-enslavement. Allow
1313          * live name change even when these slave devices are
1314          * up and running.
1315          *
1316          * Typically, users of these auto-enslaving devices
1317          * don't actually care about slave name change, as
1318          * they are supposed to operate on master interface
1319          * directly.
1320          */
1321         if (dev->flags & IFF_UP &&
1322             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1323                 return -EBUSY;
1324
1325         down_write(&devnet_rename_sem);
1326
1327         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1328                 up_write(&devnet_rename_sem);
1329                 return 0;
1330         }
1331
1332         memcpy(oldname, dev->name, IFNAMSIZ);
1333
1334         err = dev_get_valid_name(net, dev, newname);
1335         if (err < 0) {
1336                 up_write(&devnet_rename_sem);
1337                 return err;
1338         }
1339
1340         if (oldname[0] && !strchr(oldname, '%'))
1341                 netdev_info(dev, "renamed from %s\n", oldname);
1342
1343         old_assign_type = dev->name_assign_type;
1344         dev->name_assign_type = NET_NAME_RENAMED;
1345
1346 rollback:
1347         ret = device_rename(&dev->dev, dev->name);
1348         if (ret) {
1349                 memcpy(dev->name, oldname, IFNAMSIZ);
1350                 dev->name_assign_type = old_assign_type;
1351                 up_write(&devnet_rename_sem);
1352                 return ret;
1353         }
1354
1355         up_write(&devnet_rename_sem);
1356
1357         netdev_adjacent_rename_links(dev, oldname);
1358
1359         write_lock_bh(&dev_base_lock);
1360         netdev_name_node_del(dev->name_node);
1361         write_unlock_bh(&dev_base_lock);
1362
1363         synchronize_rcu();
1364
1365         write_lock_bh(&dev_base_lock);
1366         netdev_name_node_add(net, dev->name_node);
1367         write_unlock_bh(&dev_base_lock);
1368
1369         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1370         ret = notifier_to_errno(ret);
1371
1372         if (ret) {
1373                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1374                 if (err >= 0) {
1375                         err = ret;
1376                         down_write(&devnet_rename_sem);
1377                         memcpy(dev->name, oldname, IFNAMSIZ);
1378                         memcpy(oldname, newname, IFNAMSIZ);
1379                         dev->name_assign_type = old_assign_type;
1380                         old_assign_type = NET_NAME_RENAMED;
1381                         goto rollback;
1382                 } else {
1383                         pr_err("%s: name change rollback failed: %d\n",
1384                                dev->name, ret);
1385                 }
1386         }
1387
1388         return err;
1389 }
1390
1391 /**
1392  *      dev_set_alias - change ifalias of a device
1393  *      @dev: device
1394  *      @alias: name up to IFALIASZ
1395  *      @len: limit of bytes to copy from info
1396  *
1397  *      Set ifalias for a device,
1398  */
1399 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1400 {
1401         struct dev_ifalias *new_alias = NULL;
1402
1403         if (len >= IFALIASZ)
1404                 return -EINVAL;
1405
1406         if (len) {
1407                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1408                 if (!new_alias)
1409                         return -ENOMEM;
1410
1411                 memcpy(new_alias->ifalias, alias, len);
1412                 new_alias->ifalias[len] = 0;
1413         }
1414
1415         mutex_lock(&ifalias_mutex);
1416         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1417                                         mutex_is_locked(&ifalias_mutex));
1418         mutex_unlock(&ifalias_mutex);
1419
1420         if (new_alias)
1421                 kfree_rcu(new_alias, rcuhead);
1422
1423         return len;
1424 }
1425 EXPORT_SYMBOL(dev_set_alias);
1426
1427 /**
1428  *      dev_get_alias - get ifalias of a device
1429  *      @dev: device
1430  *      @name: buffer to store name of ifalias
1431  *      @len: size of buffer
1432  *
1433  *      get ifalias for a device.  Caller must make sure dev cannot go
1434  *      away,  e.g. rcu read lock or own a reference count to device.
1435  */
1436 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1437 {
1438         const struct dev_ifalias *alias;
1439         int ret = 0;
1440
1441         rcu_read_lock();
1442         alias = rcu_dereference(dev->ifalias);
1443         if (alias)
1444                 ret = snprintf(name, len, "%s", alias->ifalias);
1445         rcu_read_unlock();
1446
1447         return ret;
1448 }
1449
1450 /**
1451  *      netdev_features_change - device changes features
1452  *      @dev: device to cause notification
1453  *
1454  *      Called to indicate a device has changed features.
1455  */
1456 void netdev_features_change(struct net_device *dev)
1457 {
1458         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1459 }
1460 EXPORT_SYMBOL(netdev_features_change);
1461
1462 /**
1463  *      netdev_state_change - device changes state
1464  *      @dev: device to cause notification
1465  *
1466  *      Called to indicate a device has changed state. This function calls
1467  *      the notifier chains for netdev_chain and sends a NEWLINK message
1468  *      to the routing socket.
1469  */
1470 void netdev_state_change(struct net_device *dev)
1471 {
1472         if (dev->flags & IFF_UP) {
1473                 struct netdev_notifier_change_info change_info = {
1474                         .info.dev = dev,
1475                 };
1476
1477                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1478                                               &change_info.info);
1479                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1480         }
1481 }
1482 EXPORT_SYMBOL(netdev_state_change);
1483
1484 /**
1485  * netdev_notify_peers - notify network peers about existence of @dev
1486  * @dev: network device
1487  *
1488  * Generate traffic such that interested network peers are aware of
1489  * @dev, such as by generating a gratuitous ARP. This may be used when
1490  * a device wants to inform the rest of the network about some sort of
1491  * reconfiguration such as a failover event or virtual machine
1492  * migration.
1493  */
1494 void netdev_notify_peers(struct net_device *dev)
1495 {
1496         rtnl_lock();
1497         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1498         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1499         rtnl_unlock();
1500 }
1501 EXPORT_SYMBOL(netdev_notify_peers);
1502
1503 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1504 {
1505         const struct net_device_ops *ops = dev->netdev_ops;
1506         int ret;
1507
1508         ASSERT_RTNL();
1509
1510         if (!netif_device_present(dev)) {
1511                 /* may be detached because parent is runtime-suspended */
1512                 if (dev->dev.parent)
1513                         pm_runtime_resume(dev->dev.parent);
1514                 if (!netif_device_present(dev))
1515                         return -ENODEV;
1516         }
1517
1518         /* Block netpoll from trying to do any rx path servicing.
1519          * If we don't do this there is a chance ndo_poll_controller
1520          * or ndo_poll may be running while we open the device
1521          */
1522         netpoll_poll_disable(dev);
1523
1524         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1525         ret = notifier_to_errno(ret);
1526         if (ret)
1527                 return ret;
1528
1529         set_bit(__LINK_STATE_START, &dev->state);
1530
1531         if (ops->ndo_validate_addr)
1532                 ret = ops->ndo_validate_addr(dev);
1533
1534         if (!ret && ops->ndo_open)
1535                 ret = ops->ndo_open(dev);
1536
1537         netpoll_poll_enable(dev);
1538
1539         if (ret)
1540                 clear_bit(__LINK_STATE_START, &dev->state);
1541         else {
1542                 dev->flags |= IFF_UP;
1543                 dev_set_rx_mode(dev);
1544                 dev_activate(dev);
1545                 add_device_randomness(dev->dev_addr, dev->addr_len);
1546         }
1547
1548         return ret;
1549 }
1550
1551 /**
1552  *      dev_open        - prepare an interface for use.
1553  *      @dev: device to open
1554  *      @extack: netlink extended ack
1555  *
1556  *      Takes a device from down to up state. The device's private open
1557  *      function is invoked and then the multicast lists are loaded. Finally
1558  *      the device is moved into the up state and a %NETDEV_UP message is
1559  *      sent to the netdev notifier chain.
1560  *
1561  *      Calling this function on an active interface is a nop. On a failure
1562  *      a negative errno code is returned.
1563  */
1564 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1565 {
1566         int ret;
1567
1568         if (dev->flags & IFF_UP)
1569                 return 0;
1570
1571         ret = __dev_open(dev, extack);
1572         if (ret < 0)
1573                 return ret;
1574
1575         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1576         call_netdevice_notifiers(NETDEV_UP, dev);
1577
1578         return ret;
1579 }
1580 EXPORT_SYMBOL(dev_open);
1581
1582 static void __dev_close_many(struct list_head *head)
1583 {
1584         struct net_device *dev;
1585
1586         ASSERT_RTNL();
1587         might_sleep();
1588
1589         list_for_each_entry(dev, head, close_list) {
1590                 /* Temporarily disable netpoll until the interface is down */
1591                 netpoll_poll_disable(dev);
1592
1593                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1594
1595                 clear_bit(__LINK_STATE_START, &dev->state);
1596
1597                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1598                  * can be even on different cpu. So just clear netif_running().
1599                  *
1600                  * dev->stop() will invoke napi_disable() on all of it's
1601                  * napi_struct instances on this device.
1602                  */
1603                 smp_mb__after_atomic(); /* Commit netif_running(). */
1604         }
1605
1606         dev_deactivate_many(head);
1607
1608         list_for_each_entry(dev, head, close_list) {
1609                 const struct net_device_ops *ops = dev->netdev_ops;
1610
1611                 /*
1612                  *      Call the device specific close. This cannot fail.
1613                  *      Only if device is UP
1614                  *
1615                  *      We allow it to be called even after a DETACH hot-plug
1616                  *      event.
1617                  */
1618                 if (ops->ndo_stop)
1619                         ops->ndo_stop(dev);
1620
1621                 dev->flags &= ~IFF_UP;
1622                 netpoll_poll_enable(dev);
1623         }
1624 }
1625
1626 static void __dev_close(struct net_device *dev)
1627 {
1628         LIST_HEAD(single);
1629
1630         list_add(&dev->close_list, &single);
1631         __dev_close_many(&single);
1632         list_del(&single);
1633 }
1634
1635 void dev_close_many(struct list_head *head, bool unlink)
1636 {
1637         struct net_device *dev, *tmp;
1638
1639         /* Remove the devices that don't need to be closed */
1640         list_for_each_entry_safe(dev, tmp, head, close_list)
1641                 if (!(dev->flags & IFF_UP))
1642                         list_del_init(&dev->close_list);
1643
1644         __dev_close_many(head);
1645
1646         list_for_each_entry_safe(dev, tmp, head, close_list) {
1647                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1648                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1649                 if (unlink)
1650                         list_del_init(&dev->close_list);
1651         }
1652 }
1653 EXPORT_SYMBOL(dev_close_many);
1654
1655 /**
1656  *      dev_close - shutdown an interface.
1657  *      @dev: device to shutdown
1658  *
1659  *      This function moves an active device into down state. A
1660  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1661  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1662  *      chain.
1663  */
1664 void dev_close(struct net_device *dev)
1665 {
1666         if (dev->flags & IFF_UP) {
1667                 LIST_HEAD(single);
1668
1669                 list_add(&dev->close_list, &single);
1670                 dev_close_many(&single, true);
1671                 list_del(&single);
1672         }
1673 }
1674 EXPORT_SYMBOL(dev_close);
1675
1676
1677 /**
1678  *      dev_disable_lro - disable Large Receive Offload on a device
1679  *      @dev: device
1680  *
1681  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1682  *      called under RTNL.  This is needed if received packets may be
1683  *      forwarded to another interface.
1684  */
1685 void dev_disable_lro(struct net_device *dev)
1686 {
1687         struct net_device *lower_dev;
1688         struct list_head *iter;
1689
1690         dev->wanted_features &= ~NETIF_F_LRO;
1691         netdev_update_features(dev);
1692
1693         if (unlikely(dev->features & NETIF_F_LRO))
1694                 netdev_WARN(dev, "failed to disable LRO!\n");
1695
1696         netdev_for_each_lower_dev(dev, lower_dev, iter)
1697                 dev_disable_lro(lower_dev);
1698 }
1699 EXPORT_SYMBOL(dev_disable_lro);
1700
1701 /**
1702  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1703  *      @dev: device
1704  *
1705  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1706  *      called under RTNL.  This is needed if Generic XDP is installed on
1707  *      the device.
1708  */
1709 static void dev_disable_gro_hw(struct net_device *dev)
1710 {
1711         dev->wanted_features &= ~NETIF_F_GRO_HW;
1712         netdev_update_features(dev);
1713
1714         if (unlikely(dev->features & NETIF_F_GRO_HW))
1715                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1716 }
1717
1718 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1719 {
1720 #define N(val)                                          \
1721         case NETDEV_##val:                              \
1722                 return "NETDEV_" __stringify(val);
1723         switch (cmd) {
1724         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1725         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1726         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1727         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1728         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1729         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1730         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1731         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1732         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1733         N(PRE_CHANGEADDR)
1734         }
1735 #undef N
1736         return "UNKNOWN_NETDEV_EVENT";
1737 }
1738 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1739
1740 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1741                                    struct net_device *dev)
1742 {
1743         struct netdev_notifier_info info = {
1744                 .dev = dev,
1745         };
1746
1747         return nb->notifier_call(nb, val, &info);
1748 }
1749
1750 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1751                                              struct net_device *dev)
1752 {
1753         int err;
1754
1755         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1756         err = notifier_to_errno(err);
1757         if (err)
1758                 return err;
1759
1760         if (!(dev->flags & IFF_UP))
1761                 return 0;
1762
1763         call_netdevice_notifier(nb, NETDEV_UP, dev);
1764         return 0;
1765 }
1766
1767 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1768                                                 struct net_device *dev)
1769 {
1770         if (dev->flags & IFF_UP) {
1771                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1772                                         dev);
1773                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1774         }
1775         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1776 }
1777
1778 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1779                                                  struct net *net)
1780 {
1781         struct net_device *dev;
1782         int err;
1783
1784         for_each_netdev(net, dev) {
1785                 err = call_netdevice_register_notifiers(nb, dev);
1786                 if (err)
1787                         goto rollback;
1788         }
1789         return 0;
1790
1791 rollback:
1792         for_each_netdev_continue_reverse(net, dev)
1793                 call_netdevice_unregister_notifiers(nb, dev);
1794         return err;
1795 }
1796
1797 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1798                                                     struct net *net)
1799 {
1800         struct net_device *dev;
1801
1802         for_each_netdev(net, dev)
1803                 call_netdevice_unregister_notifiers(nb, dev);
1804 }
1805
1806 static int dev_boot_phase = 1;
1807
1808 /**
1809  * register_netdevice_notifier - register a network notifier block
1810  * @nb: notifier
1811  *
1812  * Register a notifier to be called when network device events occur.
1813  * The notifier passed is linked into the kernel structures and must
1814  * not be reused until it has been unregistered. A negative errno code
1815  * is returned on a failure.
1816  *
1817  * When registered all registration and up events are replayed
1818  * to the new notifier to allow device to have a race free
1819  * view of the network device list.
1820  */
1821
1822 int register_netdevice_notifier(struct notifier_block *nb)
1823 {
1824         struct net *net;
1825         int err;
1826
1827         /* Close race with setup_net() and cleanup_net() */
1828         down_write(&pernet_ops_rwsem);
1829         rtnl_lock();
1830         err = raw_notifier_chain_register(&netdev_chain, nb);
1831         if (err)
1832                 goto unlock;
1833         if (dev_boot_phase)
1834                 goto unlock;
1835         for_each_net(net) {
1836                 err = call_netdevice_register_net_notifiers(nb, net);
1837                 if (err)
1838                         goto rollback;
1839         }
1840
1841 unlock:
1842         rtnl_unlock();
1843         up_write(&pernet_ops_rwsem);
1844         return err;
1845
1846 rollback:
1847         for_each_net_continue_reverse(net)
1848                 call_netdevice_unregister_net_notifiers(nb, net);
1849
1850         raw_notifier_chain_unregister(&netdev_chain, nb);
1851         goto unlock;
1852 }
1853 EXPORT_SYMBOL(register_netdevice_notifier);
1854
1855 /**
1856  * unregister_netdevice_notifier - unregister a network notifier block
1857  * @nb: notifier
1858  *
1859  * Unregister a notifier previously registered by
1860  * register_netdevice_notifier(). The notifier is unlinked into the
1861  * kernel structures and may then be reused. A negative errno code
1862  * is returned on a failure.
1863  *
1864  * After unregistering unregister and down device events are synthesized
1865  * for all devices on the device list to the removed notifier to remove
1866  * the need for special case cleanup code.
1867  */
1868
1869 int unregister_netdevice_notifier(struct notifier_block *nb)
1870 {
1871         struct net *net;
1872         int err;
1873
1874         /* Close race with setup_net() and cleanup_net() */
1875         down_write(&pernet_ops_rwsem);
1876         rtnl_lock();
1877         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1878         if (err)
1879                 goto unlock;
1880
1881         for_each_net(net)
1882                 call_netdevice_unregister_net_notifiers(nb, net);
1883
1884 unlock:
1885         rtnl_unlock();
1886         up_write(&pernet_ops_rwsem);
1887         return err;
1888 }
1889 EXPORT_SYMBOL(unregister_netdevice_notifier);
1890
1891 static int __register_netdevice_notifier_net(struct net *net,
1892                                              struct notifier_block *nb,
1893                                              bool ignore_call_fail)
1894 {
1895         int err;
1896
1897         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1898         if (err)
1899                 return err;
1900         if (dev_boot_phase)
1901                 return 0;
1902
1903         err = call_netdevice_register_net_notifiers(nb, net);
1904         if (err && !ignore_call_fail)
1905                 goto chain_unregister;
1906
1907         return 0;
1908
1909 chain_unregister:
1910         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1911         return err;
1912 }
1913
1914 static int __unregister_netdevice_notifier_net(struct net *net,
1915                                                struct notifier_block *nb)
1916 {
1917         int err;
1918
1919         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1920         if (err)
1921                 return err;
1922
1923         call_netdevice_unregister_net_notifiers(nb, net);
1924         return 0;
1925 }
1926
1927 /**
1928  * register_netdevice_notifier_net - register a per-netns network notifier block
1929  * @net: network namespace
1930  * @nb: notifier
1931  *
1932  * Register a notifier to be called when network device events occur.
1933  * The notifier passed is linked into the kernel structures and must
1934  * not be reused until it has been unregistered. A negative errno code
1935  * is returned on a failure.
1936  *
1937  * When registered all registration and up events are replayed
1938  * to the new notifier to allow device to have a race free
1939  * view of the network device list.
1940  */
1941
1942 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1943 {
1944         int err;
1945
1946         rtnl_lock();
1947         err = __register_netdevice_notifier_net(net, nb, false);
1948         rtnl_unlock();
1949         return err;
1950 }
1951 EXPORT_SYMBOL(register_netdevice_notifier_net);
1952
1953 /**
1954  * unregister_netdevice_notifier_net - unregister a per-netns
1955  *                                     network notifier block
1956  * @net: network namespace
1957  * @nb: notifier
1958  *
1959  * Unregister a notifier previously registered by
1960  * register_netdevice_notifier(). The notifier is unlinked into the
1961  * kernel structures and may then be reused. A negative errno code
1962  * is returned on a failure.
1963  *
1964  * After unregistering unregister and down device events are synthesized
1965  * for all devices on the device list to the removed notifier to remove
1966  * the need for special case cleanup code.
1967  */
1968
1969 int unregister_netdevice_notifier_net(struct net *net,
1970                                       struct notifier_block *nb)
1971 {
1972         int err;
1973
1974         rtnl_lock();
1975         err = __unregister_netdevice_notifier_net(net, nb);
1976         rtnl_unlock();
1977         return err;
1978 }
1979 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1980
1981 int register_netdevice_notifier_dev_net(struct net_device *dev,
1982                                         struct notifier_block *nb,
1983                                         struct netdev_net_notifier *nn)
1984 {
1985         int err;
1986
1987         rtnl_lock();
1988         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1989         if (!err) {
1990                 nn->nb = nb;
1991                 list_add(&nn->list, &dev->net_notifier_list);
1992         }
1993         rtnl_unlock();
1994         return err;
1995 }
1996 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1997
1998 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1999                                           struct notifier_block *nb,
2000                                           struct netdev_net_notifier *nn)
2001 {
2002         int err;
2003
2004         rtnl_lock();
2005         list_del(&nn->list);
2006         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2007         rtnl_unlock();
2008         return err;
2009 }
2010 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2011
2012 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2013                                              struct net *net)
2014 {
2015         struct netdev_net_notifier *nn;
2016
2017         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2018                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2019                 __register_netdevice_notifier_net(net, nn->nb, true);
2020         }
2021 }
2022
2023 /**
2024  *      call_netdevice_notifiers_info - call all network notifier blocks
2025  *      @val: value passed unmodified to notifier function
2026  *      @info: notifier information data
2027  *
2028  *      Call all network notifier blocks.  Parameters and return value
2029  *      are as for raw_notifier_call_chain().
2030  */
2031
2032 static int call_netdevice_notifiers_info(unsigned long val,
2033                                          struct netdev_notifier_info *info)
2034 {
2035         struct net *net = dev_net(info->dev);
2036         int ret;
2037
2038         ASSERT_RTNL();
2039
2040         /* Run per-netns notifier block chain first, then run the global one.
2041          * Hopefully, one day, the global one is going to be removed after
2042          * all notifier block registrators get converted to be per-netns.
2043          */
2044         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2045         if (ret & NOTIFY_STOP_MASK)
2046                 return ret;
2047         return raw_notifier_call_chain(&netdev_chain, val, info);
2048 }
2049
2050 static int call_netdevice_notifiers_extack(unsigned long val,
2051                                            struct net_device *dev,
2052                                            struct netlink_ext_ack *extack)
2053 {
2054         struct netdev_notifier_info info = {
2055                 .dev = dev,
2056                 .extack = extack,
2057         };
2058
2059         return call_netdevice_notifiers_info(val, &info);
2060 }
2061
2062 /**
2063  *      call_netdevice_notifiers - call all network notifier blocks
2064  *      @val: value passed unmodified to notifier function
2065  *      @dev: net_device pointer passed unmodified to notifier function
2066  *
2067  *      Call all network notifier blocks.  Parameters and return value
2068  *      are as for raw_notifier_call_chain().
2069  */
2070
2071 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2072 {
2073         return call_netdevice_notifiers_extack(val, dev, NULL);
2074 }
2075 EXPORT_SYMBOL(call_netdevice_notifiers);
2076
2077 /**
2078  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2079  *      @val: value passed unmodified to notifier function
2080  *      @dev: net_device pointer passed unmodified to notifier function
2081  *      @arg: additional u32 argument passed to the notifier function
2082  *
2083  *      Call all network notifier blocks.  Parameters and return value
2084  *      are as for raw_notifier_call_chain().
2085  */
2086 static int call_netdevice_notifiers_mtu(unsigned long val,
2087                                         struct net_device *dev, u32 arg)
2088 {
2089         struct netdev_notifier_info_ext info = {
2090                 .info.dev = dev,
2091                 .ext.mtu = arg,
2092         };
2093
2094         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2095
2096         return call_netdevice_notifiers_info(val, &info.info);
2097 }
2098
2099 #ifdef CONFIG_NET_INGRESS
2100 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2101
2102 void net_inc_ingress_queue(void)
2103 {
2104         static_branch_inc(&ingress_needed_key);
2105 }
2106 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2107
2108 void net_dec_ingress_queue(void)
2109 {
2110         static_branch_dec(&ingress_needed_key);
2111 }
2112 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2113 #endif
2114
2115 #ifdef CONFIG_NET_EGRESS
2116 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2117
2118 void net_inc_egress_queue(void)
2119 {
2120         static_branch_inc(&egress_needed_key);
2121 }
2122 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2123
2124 void net_dec_egress_queue(void)
2125 {
2126         static_branch_dec(&egress_needed_key);
2127 }
2128 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2129 #endif
2130
2131 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2132 #ifdef CONFIG_JUMP_LABEL
2133 static atomic_t netstamp_needed_deferred;
2134 static atomic_t netstamp_wanted;
2135 static void netstamp_clear(struct work_struct *work)
2136 {
2137         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2138         int wanted;
2139
2140         wanted = atomic_add_return(deferred, &netstamp_wanted);
2141         if (wanted > 0)
2142                 static_branch_enable(&netstamp_needed_key);
2143         else
2144                 static_branch_disable(&netstamp_needed_key);
2145 }
2146 static DECLARE_WORK(netstamp_work, netstamp_clear);
2147 #endif
2148
2149 void net_enable_timestamp(void)
2150 {
2151 #ifdef CONFIG_JUMP_LABEL
2152         int wanted;
2153
2154         while (1) {
2155                 wanted = atomic_read(&netstamp_wanted);
2156                 if (wanted <= 0)
2157                         break;
2158                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2159                         return;
2160         }
2161         atomic_inc(&netstamp_needed_deferred);
2162         schedule_work(&netstamp_work);
2163 #else
2164         static_branch_inc(&netstamp_needed_key);
2165 #endif
2166 }
2167 EXPORT_SYMBOL(net_enable_timestamp);
2168
2169 void net_disable_timestamp(void)
2170 {
2171 #ifdef CONFIG_JUMP_LABEL
2172         int wanted;
2173
2174         while (1) {
2175                 wanted = atomic_read(&netstamp_wanted);
2176                 if (wanted <= 1)
2177                         break;
2178                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2179                         return;
2180         }
2181         atomic_dec(&netstamp_needed_deferred);
2182         schedule_work(&netstamp_work);
2183 #else
2184         static_branch_dec(&netstamp_needed_key);
2185 #endif
2186 }
2187 EXPORT_SYMBOL(net_disable_timestamp);
2188
2189 static inline void net_timestamp_set(struct sk_buff *skb)
2190 {
2191         skb->tstamp = 0;
2192         if (static_branch_unlikely(&netstamp_needed_key))
2193                 __net_timestamp(skb);
2194 }
2195
2196 #define net_timestamp_check(COND, SKB)                          \
2197         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2198                 if ((COND) && !(SKB)->tstamp)                   \
2199                         __net_timestamp(SKB);                   \
2200         }                                                       \
2201
2202 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2203 {
2204         unsigned int len;
2205
2206         if (!(dev->flags & IFF_UP))
2207                 return false;
2208
2209         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2210         if (skb->len <= len)
2211                 return true;
2212
2213         /* if TSO is enabled, we don't care about the length as the packet
2214          * could be forwarded without being segmented before
2215          */
2216         if (skb_is_gso(skb))
2217                 return true;
2218
2219         return false;
2220 }
2221 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2222
2223 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2224 {
2225         int ret = ____dev_forward_skb(dev, skb);
2226
2227         if (likely(!ret)) {
2228                 skb->protocol = eth_type_trans(skb, dev);
2229                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2230         }
2231
2232         return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2235
2236 /**
2237  * dev_forward_skb - loopback an skb to another netif
2238  *
2239  * @dev: destination network device
2240  * @skb: buffer to forward
2241  *
2242  * return values:
2243  *      NET_RX_SUCCESS  (no congestion)
2244  *      NET_RX_DROP     (packet was dropped, but freed)
2245  *
2246  * dev_forward_skb can be used for injecting an skb from the
2247  * start_xmit function of one device into the receive queue
2248  * of another device.
2249  *
2250  * The receiving device may be in another namespace, so
2251  * we have to clear all information in the skb that could
2252  * impact namespace isolation.
2253  */
2254 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2255 {
2256         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2257 }
2258 EXPORT_SYMBOL_GPL(dev_forward_skb);
2259
2260 static inline int deliver_skb(struct sk_buff *skb,
2261                               struct packet_type *pt_prev,
2262                               struct net_device *orig_dev)
2263 {
2264         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2265                 return -ENOMEM;
2266         refcount_inc(&skb->users);
2267         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2268 }
2269
2270 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2271                                           struct packet_type **pt,
2272                                           struct net_device *orig_dev,
2273                                           __be16 type,
2274                                           struct list_head *ptype_list)
2275 {
2276         struct packet_type *ptype, *pt_prev = *pt;
2277
2278         list_for_each_entry_rcu(ptype, ptype_list, list) {
2279                 if (ptype->type != type)
2280                         continue;
2281                 if (pt_prev)
2282                         deliver_skb(skb, pt_prev, orig_dev);
2283                 pt_prev = ptype;
2284         }
2285         *pt = pt_prev;
2286 }
2287
2288 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2289 {
2290         if (!ptype->af_packet_priv || !skb->sk)
2291                 return false;
2292
2293         if (ptype->id_match)
2294                 return ptype->id_match(ptype, skb->sk);
2295         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2296                 return true;
2297
2298         return false;
2299 }
2300
2301 /**
2302  * dev_nit_active - return true if any network interface taps are in use
2303  *
2304  * @dev: network device to check for the presence of taps
2305  */
2306 bool dev_nit_active(struct net_device *dev)
2307 {
2308         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2309 }
2310 EXPORT_SYMBOL_GPL(dev_nit_active);
2311
2312 /*
2313  *      Support routine. Sends outgoing frames to any network
2314  *      taps currently in use.
2315  */
2316
2317 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2318 {
2319         struct packet_type *ptype;
2320         struct sk_buff *skb2 = NULL;
2321         struct packet_type *pt_prev = NULL;
2322         struct list_head *ptype_list = &ptype_all;
2323
2324         rcu_read_lock();
2325 again:
2326         list_for_each_entry_rcu(ptype, ptype_list, list) {
2327                 if (ptype->ignore_outgoing)
2328                         continue;
2329
2330                 /* Never send packets back to the socket
2331                  * they originated from - MvS (miquels@drinkel.ow.org)
2332                  */
2333                 if (skb_loop_sk(ptype, skb))
2334                         continue;
2335
2336                 if (pt_prev) {
2337                         deliver_skb(skb2, pt_prev, skb->dev);
2338                         pt_prev = ptype;
2339                         continue;
2340                 }
2341
2342                 /* need to clone skb, done only once */
2343                 skb2 = skb_clone(skb, GFP_ATOMIC);
2344                 if (!skb2)
2345                         goto out_unlock;
2346
2347                 net_timestamp_set(skb2);
2348
2349                 /* skb->nh should be correctly
2350                  * set by sender, so that the second statement is
2351                  * just protection against buggy protocols.
2352                  */
2353                 skb_reset_mac_header(skb2);
2354
2355                 if (skb_network_header(skb2) < skb2->data ||
2356                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2357                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2358                                              ntohs(skb2->protocol),
2359                                              dev->name);
2360                         skb_reset_network_header(skb2);
2361                 }
2362
2363                 skb2->transport_header = skb2->network_header;
2364                 skb2->pkt_type = PACKET_OUTGOING;
2365                 pt_prev = ptype;
2366         }
2367
2368         if (ptype_list == &ptype_all) {
2369                 ptype_list = &dev->ptype_all;
2370                 goto again;
2371         }
2372 out_unlock:
2373         if (pt_prev) {
2374                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2375                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2376                 else
2377                         kfree_skb(skb2);
2378         }
2379         rcu_read_unlock();
2380 }
2381 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2382
2383 /**
2384  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2385  * @dev: Network device
2386  * @txq: number of queues available
2387  *
2388  * If real_num_tx_queues is changed the tc mappings may no longer be
2389  * valid. To resolve this verify the tc mapping remains valid and if
2390  * not NULL the mapping. With no priorities mapping to this
2391  * offset/count pair it will no longer be used. In the worst case TC0
2392  * is invalid nothing can be done so disable priority mappings. If is
2393  * expected that drivers will fix this mapping if they can before
2394  * calling netif_set_real_num_tx_queues.
2395  */
2396 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2397 {
2398         int i;
2399         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2400
2401         /* If TC0 is invalidated disable TC mapping */
2402         if (tc->offset + tc->count > txq) {
2403                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2404                 dev->num_tc = 0;
2405                 return;
2406         }
2407
2408         /* Invalidated prio to tc mappings set to TC0 */
2409         for (i = 1; i < TC_BITMASK + 1; i++) {
2410                 int q = netdev_get_prio_tc_map(dev, i);
2411
2412                 tc = &dev->tc_to_txq[q];
2413                 if (tc->offset + tc->count > txq) {
2414                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2415                                 i, q);
2416                         netdev_set_prio_tc_map(dev, i, 0);
2417                 }
2418         }
2419 }
2420
2421 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2422 {
2423         if (dev->num_tc) {
2424                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2425                 int i;
2426
2427                 /* walk through the TCs and see if it falls into any of them */
2428                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2429                         if ((txq - tc->offset) < tc->count)
2430                                 return i;
2431                 }
2432
2433                 /* didn't find it, just return -1 to indicate no match */
2434                 return -1;
2435         }
2436
2437         return 0;
2438 }
2439 EXPORT_SYMBOL(netdev_txq_to_tc);
2440
2441 #ifdef CONFIG_XPS
2442 struct static_key xps_needed __read_mostly;
2443 EXPORT_SYMBOL(xps_needed);
2444 struct static_key xps_rxqs_needed __read_mostly;
2445 EXPORT_SYMBOL(xps_rxqs_needed);
2446 static DEFINE_MUTEX(xps_map_mutex);
2447 #define xmap_dereference(P)             \
2448         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2449
2450 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2451                              int tci, u16 index)
2452 {
2453         struct xps_map *map = NULL;
2454         int pos;
2455
2456         if (dev_maps)
2457                 map = xmap_dereference(dev_maps->attr_map[tci]);
2458         if (!map)
2459                 return false;
2460
2461         for (pos = map->len; pos--;) {
2462                 if (map->queues[pos] != index)
2463                         continue;
2464
2465                 if (map->len > 1) {
2466                         map->queues[pos] = map->queues[--map->len];
2467                         break;
2468                 }
2469
2470                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2471                 kfree_rcu(map, rcu);
2472                 return false;
2473         }
2474
2475         return true;
2476 }
2477
2478 static bool remove_xps_queue_cpu(struct net_device *dev,
2479                                  struct xps_dev_maps *dev_maps,
2480                                  int cpu, u16 offset, u16 count)
2481 {
2482         int num_tc = dev->num_tc ? : 1;
2483         bool active = false;
2484         int tci;
2485
2486         for (tci = cpu * num_tc; num_tc--; tci++) {
2487                 int i, j;
2488
2489                 for (i = count, j = offset; i--; j++) {
2490                         if (!remove_xps_queue(dev_maps, tci, j))
2491                                 break;
2492                 }
2493
2494                 active |= i < 0;
2495         }
2496
2497         return active;
2498 }
2499
2500 static void reset_xps_maps(struct net_device *dev,
2501                            struct xps_dev_maps *dev_maps,
2502                            bool is_rxqs_map)
2503 {
2504         if (is_rxqs_map) {
2505                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2506                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2507         } else {
2508                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2509         }
2510         static_key_slow_dec_cpuslocked(&xps_needed);
2511         kfree_rcu(dev_maps, rcu);
2512 }
2513
2514 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2515                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2516                            u16 offset, u16 count, bool is_rxqs_map)
2517 {
2518         bool active = false;
2519         int i, j;
2520
2521         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2522              j < nr_ids;)
2523                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2524                                                count);
2525         if (!active)
2526                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2527
2528         if (!is_rxqs_map) {
2529                 for (i = offset + (count - 1); count--; i--) {
2530                         netdev_queue_numa_node_write(
2531                                 netdev_get_tx_queue(dev, i),
2532                                 NUMA_NO_NODE);
2533                 }
2534         }
2535 }
2536
2537 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2538                                    u16 count)
2539 {
2540         const unsigned long *possible_mask = NULL;
2541         struct xps_dev_maps *dev_maps;
2542         unsigned int nr_ids;
2543
2544         if (!static_key_false(&xps_needed))
2545                 return;
2546
2547         cpus_read_lock();
2548         mutex_lock(&xps_map_mutex);
2549
2550         if (static_key_false(&xps_rxqs_needed)) {
2551                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2552                 if (dev_maps) {
2553                         nr_ids = dev->num_rx_queues;
2554                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2555                                        offset, count, true);
2556                 }
2557         }
2558
2559         dev_maps = xmap_dereference(dev->xps_cpus_map);
2560         if (!dev_maps)
2561                 goto out_no_maps;
2562
2563         if (num_possible_cpus() > 1)
2564                 possible_mask = cpumask_bits(cpu_possible_mask);
2565         nr_ids = nr_cpu_ids;
2566         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2567                        false);
2568
2569 out_no_maps:
2570         mutex_unlock(&xps_map_mutex);
2571         cpus_read_unlock();
2572 }
2573
2574 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2575 {
2576         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2577 }
2578
2579 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2580                                       u16 index, bool is_rxqs_map)
2581 {
2582         struct xps_map *new_map;
2583         int alloc_len = XPS_MIN_MAP_ALLOC;
2584         int i, pos;
2585
2586         for (pos = 0; map && pos < map->len; pos++) {
2587                 if (map->queues[pos] != index)
2588                         continue;
2589                 return map;
2590         }
2591
2592         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2593         if (map) {
2594                 if (pos < map->alloc_len)
2595                         return map;
2596
2597                 alloc_len = map->alloc_len * 2;
2598         }
2599
2600         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2601          *  map
2602          */
2603         if (is_rxqs_map)
2604                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2605         else
2606                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2607                                        cpu_to_node(attr_index));
2608         if (!new_map)
2609                 return NULL;
2610
2611         for (i = 0; i < pos; i++)
2612                 new_map->queues[i] = map->queues[i];
2613         new_map->alloc_len = alloc_len;
2614         new_map->len = pos;
2615
2616         return new_map;
2617 }
2618
2619 /* Must be called under cpus_read_lock */
2620 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2621                           u16 index, bool is_rxqs_map)
2622 {
2623         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2624         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2625         int i, j, tci, numa_node_id = -2;
2626         int maps_sz, num_tc = 1, tc = 0;
2627         struct xps_map *map, *new_map;
2628         bool active = false;
2629         unsigned int nr_ids;
2630
2631         if (dev->num_tc) {
2632                 /* Do not allow XPS on subordinate device directly */
2633                 num_tc = dev->num_tc;
2634                 if (num_tc < 0)
2635                         return -EINVAL;
2636
2637                 /* If queue belongs to subordinate dev use its map */
2638                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2639
2640                 tc = netdev_txq_to_tc(dev, index);
2641                 if (tc < 0)
2642                         return -EINVAL;
2643         }
2644
2645         mutex_lock(&xps_map_mutex);
2646         if (is_rxqs_map) {
2647                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2648                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2649                 nr_ids = dev->num_rx_queues;
2650         } else {
2651                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2652                 if (num_possible_cpus() > 1) {
2653                         online_mask = cpumask_bits(cpu_online_mask);
2654                         possible_mask = cpumask_bits(cpu_possible_mask);
2655                 }
2656                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2657                 nr_ids = nr_cpu_ids;
2658         }
2659
2660         if (maps_sz < L1_CACHE_BYTES)
2661                 maps_sz = L1_CACHE_BYTES;
2662
2663         /* allocate memory for queue storage */
2664         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2665              j < nr_ids;) {
2666                 if (!new_dev_maps)
2667                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2668                 if (!new_dev_maps) {
2669                         mutex_unlock(&xps_map_mutex);
2670                         return -ENOMEM;
2671                 }
2672
2673                 tci = j * num_tc + tc;
2674                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2675                                  NULL;
2676
2677                 map = expand_xps_map(map, j, index, is_rxqs_map);
2678                 if (!map)
2679                         goto error;
2680
2681                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2682         }
2683
2684         if (!new_dev_maps)
2685                 goto out_no_new_maps;
2686
2687         if (!dev_maps) {
2688                 /* Increment static keys at most once per type */
2689                 static_key_slow_inc_cpuslocked(&xps_needed);
2690                 if (is_rxqs_map)
2691                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2692         }
2693
2694         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2695              j < nr_ids;) {
2696                 /* copy maps belonging to foreign traffic classes */
2697                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2698                         /* fill in the new device map from the old device map */
2699                         map = xmap_dereference(dev_maps->attr_map[tci]);
2700                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2701                 }
2702
2703                 /* We need to explicitly update tci as prevous loop
2704                  * could break out early if dev_maps is NULL.
2705                  */
2706                 tci = j * num_tc + tc;
2707
2708                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2709                     netif_attr_test_online(j, online_mask, nr_ids)) {
2710                         /* add tx-queue to CPU/rx-queue maps */
2711                         int pos = 0;
2712
2713                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2714                         while ((pos < map->len) && (map->queues[pos] != index))
2715                                 pos++;
2716
2717                         if (pos == map->len)
2718                                 map->queues[map->len++] = index;
2719 #ifdef CONFIG_NUMA
2720                         if (!is_rxqs_map) {
2721                                 if (numa_node_id == -2)
2722                                         numa_node_id = cpu_to_node(j);
2723                                 else if (numa_node_id != cpu_to_node(j))
2724                                         numa_node_id = -1;
2725                         }
2726 #endif
2727                 } else if (dev_maps) {
2728                         /* fill in the new device map from the old device map */
2729                         map = xmap_dereference(dev_maps->attr_map[tci]);
2730                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2731                 }
2732
2733                 /* copy maps belonging to foreign traffic classes */
2734                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2735                         /* fill in the new device map from the old device map */
2736                         map = xmap_dereference(dev_maps->attr_map[tci]);
2737                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2738                 }
2739         }
2740
2741         if (is_rxqs_map)
2742                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2743         else
2744                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2745
2746         /* Cleanup old maps */
2747         if (!dev_maps)
2748                 goto out_no_old_maps;
2749
2750         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2751              j < nr_ids;) {
2752                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2753                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2754                         map = xmap_dereference(dev_maps->attr_map[tci]);
2755                         if (map && map != new_map)
2756                                 kfree_rcu(map, rcu);
2757                 }
2758         }
2759
2760         kfree_rcu(dev_maps, rcu);
2761
2762 out_no_old_maps:
2763         dev_maps = new_dev_maps;
2764         active = true;
2765
2766 out_no_new_maps:
2767         if (!is_rxqs_map) {
2768                 /* update Tx queue numa node */
2769                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2770                                              (numa_node_id >= 0) ?
2771                                              numa_node_id : NUMA_NO_NODE);
2772         }
2773
2774         if (!dev_maps)
2775                 goto out_no_maps;
2776
2777         /* removes tx-queue from unused CPUs/rx-queues */
2778         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2779              j < nr_ids;) {
2780                 for (i = tc, tci = j * num_tc; i--; tci++)
2781                         active |= remove_xps_queue(dev_maps, tci, index);
2782                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2783                     !netif_attr_test_online(j, online_mask, nr_ids))
2784                         active |= remove_xps_queue(dev_maps, tci, index);
2785                 for (i = num_tc - tc, tci++; --i; tci++)
2786                         active |= remove_xps_queue(dev_maps, tci, index);
2787         }
2788
2789         /* free map if not active */
2790         if (!active)
2791                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2792
2793 out_no_maps:
2794         mutex_unlock(&xps_map_mutex);
2795
2796         return 0;
2797 error:
2798         /* remove any maps that we added */
2799         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2800              j < nr_ids;) {
2801                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2802                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2803                         map = dev_maps ?
2804                               xmap_dereference(dev_maps->attr_map[tci]) :
2805                               NULL;
2806                         if (new_map && new_map != map)
2807                                 kfree(new_map);
2808                 }
2809         }
2810
2811         mutex_unlock(&xps_map_mutex);
2812
2813         kfree(new_dev_maps);
2814         return -ENOMEM;
2815 }
2816 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2817
2818 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2819                         u16 index)
2820 {
2821         int ret;
2822
2823         cpus_read_lock();
2824         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2825         cpus_read_unlock();
2826
2827         return ret;
2828 }
2829 EXPORT_SYMBOL(netif_set_xps_queue);
2830
2831 #endif
2832 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2833 {
2834         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2835
2836         /* Unbind any subordinate channels */
2837         while (txq-- != &dev->_tx[0]) {
2838                 if (txq->sb_dev)
2839                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2840         }
2841 }
2842
2843 void netdev_reset_tc(struct net_device *dev)
2844 {
2845 #ifdef CONFIG_XPS
2846         netif_reset_xps_queues_gt(dev, 0);
2847 #endif
2848         netdev_unbind_all_sb_channels(dev);
2849
2850         /* Reset TC configuration of device */
2851         dev->num_tc = 0;
2852         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2853         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2854 }
2855 EXPORT_SYMBOL(netdev_reset_tc);
2856
2857 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2858 {
2859         if (tc >= dev->num_tc)
2860                 return -EINVAL;
2861
2862 #ifdef CONFIG_XPS
2863         netif_reset_xps_queues(dev, offset, count);
2864 #endif
2865         dev->tc_to_txq[tc].count = count;
2866         dev->tc_to_txq[tc].offset = offset;
2867         return 0;
2868 }
2869 EXPORT_SYMBOL(netdev_set_tc_queue);
2870
2871 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2872 {
2873         if (num_tc > TC_MAX_QUEUE)
2874                 return -EINVAL;
2875
2876 #ifdef CONFIG_XPS
2877         netif_reset_xps_queues_gt(dev, 0);
2878 #endif
2879         netdev_unbind_all_sb_channels(dev);
2880
2881         dev->num_tc = num_tc;
2882         return 0;
2883 }
2884 EXPORT_SYMBOL(netdev_set_num_tc);
2885
2886 void netdev_unbind_sb_channel(struct net_device *dev,
2887                               struct net_device *sb_dev)
2888 {
2889         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2890
2891 #ifdef CONFIG_XPS
2892         netif_reset_xps_queues_gt(sb_dev, 0);
2893 #endif
2894         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2895         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2896
2897         while (txq-- != &dev->_tx[0]) {
2898                 if (txq->sb_dev == sb_dev)
2899                         txq->sb_dev = NULL;
2900         }
2901 }
2902 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2903
2904 int netdev_bind_sb_channel_queue(struct net_device *dev,
2905                                  struct net_device *sb_dev,
2906                                  u8 tc, u16 count, u16 offset)
2907 {
2908         /* Make certain the sb_dev and dev are already configured */
2909         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2910                 return -EINVAL;
2911
2912         /* We cannot hand out queues we don't have */
2913         if ((offset + count) > dev->real_num_tx_queues)
2914                 return -EINVAL;
2915
2916         /* Record the mapping */
2917         sb_dev->tc_to_txq[tc].count = count;
2918         sb_dev->tc_to_txq[tc].offset = offset;
2919
2920         /* Provide a way for Tx queue to find the tc_to_txq map or
2921          * XPS map for itself.
2922          */
2923         while (count--)
2924                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2925
2926         return 0;
2927 }
2928 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2929
2930 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2931 {
2932         /* Do not use a multiqueue device to represent a subordinate channel */
2933         if (netif_is_multiqueue(dev))
2934                 return -ENODEV;
2935
2936         /* We allow channels 1 - 32767 to be used for subordinate channels.
2937          * Channel 0 is meant to be "native" mode and used only to represent
2938          * the main root device. We allow writing 0 to reset the device back
2939          * to normal mode after being used as a subordinate channel.
2940          */
2941         if (channel > S16_MAX)
2942                 return -EINVAL;
2943
2944         dev->num_tc = -channel;
2945
2946         return 0;
2947 }
2948 EXPORT_SYMBOL(netdev_set_sb_channel);
2949
2950 /*
2951  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2952  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2953  */
2954 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2955 {
2956         bool disabling;
2957         int rc;
2958
2959         disabling = txq < dev->real_num_tx_queues;
2960
2961         if (txq < 1 || txq > dev->num_tx_queues)
2962                 return -EINVAL;
2963
2964         if (dev->reg_state == NETREG_REGISTERED ||
2965             dev->reg_state == NETREG_UNREGISTERING) {
2966                 ASSERT_RTNL();
2967
2968                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2969                                                   txq);
2970                 if (rc)
2971                         return rc;
2972
2973                 if (dev->num_tc)
2974                         netif_setup_tc(dev, txq);
2975
2976                 dev_qdisc_change_real_num_tx(dev, txq);
2977
2978                 dev->real_num_tx_queues = txq;
2979
2980                 if (disabling) {
2981                         synchronize_net();
2982                         qdisc_reset_all_tx_gt(dev, txq);
2983 #ifdef CONFIG_XPS
2984                         netif_reset_xps_queues_gt(dev, txq);
2985 #endif
2986                 }
2987         } else {
2988                 dev->real_num_tx_queues = txq;
2989         }
2990
2991         return 0;
2992 }
2993 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2994
2995 #ifdef CONFIG_SYSFS
2996 /**
2997  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2998  *      @dev: Network device
2999  *      @rxq: Actual number of RX queues
3000  *
3001  *      This must be called either with the rtnl_lock held or before
3002  *      registration of the net device.  Returns 0 on success, or a
3003  *      negative error code.  If called before registration, it always
3004  *      succeeds.
3005  */
3006 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3007 {
3008         int rc;
3009
3010         if (rxq < 1 || rxq > dev->num_rx_queues)
3011                 return -EINVAL;
3012
3013         if (dev->reg_state == NETREG_REGISTERED) {
3014                 ASSERT_RTNL();
3015
3016                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3017                                                   rxq);
3018                 if (rc)
3019                         return rc;
3020         }
3021
3022         dev->real_num_rx_queues = rxq;
3023         return 0;
3024 }
3025 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3026 #endif
3027
3028 /**
3029  * netif_get_num_default_rss_queues - default number of RSS queues
3030  *
3031  * This routine should set an upper limit on the number of RSS queues
3032  * used by default by multiqueue devices.
3033  */
3034 int netif_get_num_default_rss_queues(void)
3035 {
3036         return is_kdump_kernel() ?
3037                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3038 }
3039 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3040
3041 static void __netif_reschedule(struct Qdisc *q)
3042 {
3043         struct softnet_data *sd;
3044         unsigned long flags;
3045
3046         local_irq_save(flags);
3047         sd = this_cpu_ptr(&softnet_data);
3048         q->next_sched = NULL;
3049         *sd->output_queue_tailp = q;
3050         sd->output_queue_tailp = &q->next_sched;
3051         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3052         local_irq_restore(flags);
3053 }
3054
3055 void __netif_schedule(struct Qdisc *q)
3056 {
3057         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3058                 __netif_reschedule(q);
3059 }
3060 EXPORT_SYMBOL(__netif_schedule);
3061
3062 struct dev_kfree_skb_cb {
3063         enum skb_free_reason reason;
3064 };
3065
3066 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3067 {
3068         return (struct dev_kfree_skb_cb *)skb->cb;
3069 }
3070
3071 void netif_schedule_queue(struct netdev_queue *txq)
3072 {
3073         rcu_read_lock();
3074         if (!netif_xmit_stopped(txq)) {
3075                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3076
3077                 __netif_schedule(q);
3078         }
3079         rcu_read_unlock();
3080 }
3081 EXPORT_SYMBOL(netif_schedule_queue);
3082
3083 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3084 {
3085         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3086                 struct Qdisc *q;
3087
3088                 rcu_read_lock();
3089                 q = rcu_dereference(dev_queue->qdisc);
3090                 __netif_schedule(q);
3091                 rcu_read_unlock();
3092         }
3093 }
3094 EXPORT_SYMBOL(netif_tx_wake_queue);
3095
3096 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3097 {
3098         unsigned long flags;
3099
3100         if (unlikely(!skb))
3101                 return;
3102
3103         if (likely(refcount_read(&skb->users) == 1)) {
3104                 smp_rmb();
3105                 refcount_set(&skb->users, 0);
3106         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3107                 return;
3108         }
3109         get_kfree_skb_cb(skb)->reason = reason;
3110         local_irq_save(flags);
3111         skb->next = __this_cpu_read(softnet_data.completion_queue);
3112         __this_cpu_write(softnet_data.completion_queue, skb);
3113         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3114         local_irq_restore(flags);
3115 }
3116 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3117
3118 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3119 {
3120         if (in_irq() || irqs_disabled())
3121                 __dev_kfree_skb_irq(skb, reason);
3122         else
3123                 dev_kfree_skb(skb);
3124 }
3125 EXPORT_SYMBOL(__dev_kfree_skb_any);
3126
3127
3128 /**
3129  * netif_device_detach - mark device as removed
3130  * @dev: network device
3131  *
3132  * Mark device as removed from system and therefore no longer available.
3133  */
3134 void netif_device_detach(struct net_device *dev)
3135 {
3136         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3137             netif_running(dev)) {
3138                 netif_tx_stop_all_queues(dev);
3139         }
3140 }
3141 EXPORT_SYMBOL(netif_device_detach);
3142
3143 /**
3144  * netif_device_attach - mark device as attached
3145  * @dev: network device
3146  *
3147  * Mark device as attached from system and restart if needed.
3148  */
3149 void netif_device_attach(struct net_device *dev)
3150 {
3151         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3152             netif_running(dev)) {
3153                 netif_tx_wake_all_queues(dev);
3154                 __netdev_watchdog_up(dev);
3155         }
3156 }
3157 EXPORT_SYMBOL(netif_device_attach);
3158
3159 /*
3160  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3161  * to be used as a distribution range.
3162  */
3163 static u16 skb_tx_hash(const struct net_device *dev,
3164                        const struct net_device *sb_dev,
3165                        struct sk_buff *skb)
3166 {
3167         u32 hash;
3168         u16 qoffset = 0;
3169         u16 qcount = dev->real_num_tx_queues;
3170
3171         if (dev->num_tc) {
3172                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3173
3174                 qoffset = sb_dev->tc_to_txq[tc].offset;
3175                 qcount = sb_dev->tc_to_txq[tc].count;
3176                 if (unlikely(!qcount)) {
3177                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3178                                              sb_dev->name, qoffset, tc);
3179                         qoffset = 0;
3180                         qcount = dev->real_num_tx_queues;
3181                 }
3182         }
3183
3184         if (skb_rx_queue_recorded(skb)) {
3185                 hash = skb_get_rx_queue(skb);
3186                 if (hash >= qoffset)
3187                         hash -= qoffset;
3188                 while (unlikely(hash >= qcount))
3189                         hash -= qcount;
3190                 return hash + qoffset;
3191         }
3192
3193         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3194 }
3195
3196 static void skb_warn_bad_offload(const struct sk_buff *skb)
3197 {
3198         static const netdev_features_t null_features;
3199         struct net_device *dev = skb->dev;
3200         const char *name = "";
3201
3202         if (!net_ratelimit())
3203                 return;
3204
3205         if (dev) {
3206                 if (dev->dev.parent)
3207                         name = dev_driver_string(dev->dev.parent);
3208                 else
3209                         name = netdev_name(dev);
3210         }
3211         skb_dump(KERN_WARNING, skb, false);
3212         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3213              name, dev ? &dev->features : &null_features,
3214              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3215 }
3216
3217 /*
3218  * Invalidate hardware checksum when packet is to be mangled, and
3219  * complete checksum manually on outgoing path.
3220  */
3221 int skb_checksum_help(struct sk_buff *skb)
3222 {
3223         __wsum csum;
3224         int ret = 0, offset;
3225
3226         if (skb->ip_summed == CHECKSUM_COMPLETE)
3227                 goto out_set_summed;
3228
3229         if (unlikely(skb_shinfo(skb)->gso_size)) {
3230                 skb_warn_bad_offload(skb);
3231                 return -EINVAL;
3232         }
3233
3234         /* Before computing a checksum, we should make sure no frag could
3235          * be modified by an external entity : checksum could be wrong.
3236          */
3237         if (skb_has_shared_frag(skb)) {
3238                 ret = __skb_linearize(skb);
3239                 if (ret)
3240                         goto out;
3241         }
3242
3243         offset = skb_checksum_start_offset(skb);
3244         BUG_ON(offset >= skb_headlen(skb));
3245         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3246
3247         offset += skb->csum_offset;
3248         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3249
3250         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3251         if (ret)
3252                 goto out;
3253
3254         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3255 out_set_summed:
3256         skb->ip_summed = CHECKSUM_NONE;
3257 out:
3258         return ret;
3259 }
3260 EXPORT_SYMBOL(skb_checksum_help);
3261
3262 int skb_crc32c_csum_help(struct sk_buff *skb)
3263 {
3264         __le32 crc32c_csum;
3265         int ret = 0, offset, start;
3266
3267         if (skb->ip_summed != CHECKSUM_PARTIAL)
3268                 goto out;
3269
3270         if (unlikely(skb_is_gso(skb)))
3271                 goto out;
3272
3273         /* Before computing a checksum, we should make sure no frag could
3274          * be modified by an external entity : checksum could be wrong.
3275          */
3276         if (unlikely(skb_has_shared_frag(skb))) {
3277                 ret = __skb_linearize(skb);
3278                 if (ret)
3279                         goto out;
3280         }
3281         start = skb_checksum_start_offset(skb);
3282         offset = start + offsetof(struct sctphdr, checksum);
3283         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3284                 ret = -EINVAL;
3285                 goto out;
3286         }
3287
3288         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3289         if (ret)
3290                 goto out;
3291
3292         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3293                                                   skb->len - start, ~(__u32)0,
3294                                                   crc32c_csum_stub));
3295         *(__le32 *)(skb->data + offset) = crc32c_csum;
3296         skb->ip_summed = CHECKSUM_NONE;
3297         skb->csum_not_inet = 0;
3298 out:
3299         return ret;
3300 }
3301
3302 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3303 {
3304         __be16 type = skb->protocol;
3305
3306         /* Tunnel gso handlers can set protocol to ethernet. */
3307         if (type == htons(ETH_P_TEB)) {
3308                 struct ethhdr *eth;
3309
3310                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3311                         return 0;
3312
3313                 eth = (struct ethhdr *)skb->data;
3314                 type = eth->h_proto;
3315         }
3316
3317         return __vlan_get_protocol(skb, type, depth);
3318 }
3319
3320 /**
3321  *      skb_mac_gso_segment - mac layer segmentation handler.
3322  *      @skb: buffer to segment
3323  *      @features: features for the output path (see dev->features)
3324  */
3325 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3326                                     netdev_features_t features)
3327 {
3328         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3329         struct packet_offload *ptype;
3330         int vlan_depth = skb->mac_len;
3331         __be16 type = skb_network_protocol(skb, &vlan_depth);
3332
3333         if (unlikely(!type))
3334                 return ERR_PTR(-EINVAL);
3335
3336         __skb_pull(skb, vlan_depth);
3337
3338         rcu_read_lock();
3339         list_for_each_entry_rcu(ptype, &offload_base, list) {
3340                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3341                         segs = ptype->callbacks.gso_segment(skb, features);
3342                         break;
3343                 }
3344         }
3345         rcu_read_unlock();
3346
3347         __skb_push(skb, skb->data - skb_mac_header(skb));
3348
3349         return segs;
3350 }
3351 EXPORT_SYMBOL(skb_mac_gso_segment);
3352
3353
3354 /* openvswitch calls this on rx path, so we need a different check.
3355  */
3356 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3357 {
3358         if (tx_path)
3359                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3360                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3361
3362         return skb->ip_summed == CHECKSUM_NONE;
3363 }
3364
3365 /**
3366  *      __skb_gso_segment - Perform segmentation on skb.
3367  *      @skb: buffer to segment
3368  *      @features: features for the output path (see dev->features)
3369  *      @tx_path: whether it is called in TX path
3370  *
3371  *      This function segments the given skb and returns a list of segments.
3372  *
3373  *      It may return NULL if the skb requires no segmentation.  This is
3374  *      only possible when GSO is used for verifying header integrity.
3375  *
3376  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3377  */
3378 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3379                                   netdev_features_t features, bool tx_path)
3380 {
3381         struct sk_buff *segs;
3382
3383         if (unlikely(skb_needs_check(skb, tx_path))) {
3384                 int err;
3385
3386                 /* We're going to init ->check field in TCP or UDP header */
3387                 err = skb_cow_head(skb, 0);
3388                 if (err < 0)
3389                         return ERR_PTR(err);
3390         }
3391
3392         /* Only report GSO partial support if it will enable us to
3393          * support segmentation on this frame without needing additional
3394          * work.
3395          */
3396         if (features & NETIF_F_GSO_PARTIAL) {
3397                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3398                 struct net_device *dev = skb->dev;
3399
3400                 partial_features |= dev->features & dev->gso_partial_features;
3401                 if (!skb_gso_ok(skb, features | partial_features))
3402                         features &= ~NETIF_F_GSO_PARTIAL;
3403         }
3404
3405         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3406                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3407
3408         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3409         SKB_GSO_CB(skb)->encap_level = 0;
3410
3411         skb_reset_mac_header(skb);
3412         skb_reset_mac_len(skb);
3413
3414         segs = skb_mac_gso_segment(skb, features);
3415
3416         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3417                 skb_warn_bad_offload(skb);
3418
3419         return segs;
3420 }
3421 EXPORT_SYMBOL(__skb_gso_segment);
3422
3423 /* Take action when hardware reception checksum errors are detected. */
3424 #ifdef CONFIG_BUG
3425 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3426 {
3427         if (net_ratelimit()) {
3428                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3429                 skb_dump(KERN_ERR, skb, true);
3430                 dump_stack();
3431         }
3432 }
3433 EXPORT_SYMBOL(netdev_rx_csum_fault);
3434 #endif
3435
3436 /* XXX: check that highmem exists at all on the given machine. */
3437 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3438 {
3439 #ifdef CONFIG_HIGHMEM
3440         int i;
3441
3442         if (!(dev->features & NETIF_F_HIGHDMA)) {
3443                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3444                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3445
3446                         if (PageHighMem(skb_frag_page(frag)))
3447                                 return 1;
3448                 }
3449         }
3450 #endif
3451         return 0;
3452 }
3453
3454 /* If MPLS offload request, verify we are testing hardware MPLS features
3455  * instead of standard features for the netdev.
3456  */
3457 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3458 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3459                                            netdev_features_t features,
3460                                            __be16 type)
3461 {
3462         if (eth_p_mpls(type))
3463                 features &= skb->dev->mpls_features;
3464
3465         return features;
3466 }
3467 #else
3468 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3469                                            netdev_features_t features,
3470                                            __be16 type)
3471 {
3472         return features;
3473 }
3474 #endif
3475
3476 static netdev_features_t harmonize_features(struct sk_buff *skb,
3477         netdev_features_t features)
3478 {
3479         __be16 type;
3480
3481         type = skb_network_protocol(skb, NULL);
3482         features = net_mpls_features(skb, features, type);
3483
3484         if (skb->ip_summed != CHECKSUM_NONE &&
3485             !can_checksum_protocol(features, type)) {
3486                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3487         }
3488         if (illegal_highdma(skb->dev, skb))
3489                 features &= ~NETIF_F_SG;
3490
3491         return features;
3492 }
3493
3494 netdev_features_t passthru_features_check(struct sk_buff *skb,
3495                                           struct net_device *dev,
3496                                           netdev_features_t features)
3497 {
3498         return features;
3499 }
3500 EXPORT_SYMBOL(passthru_features_check);
3501
3502 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3503                                              struct net_device *dev,
3504                                              netdev_features_t features)
3505 {
3506         return vlan_features_check(skb, features);
3507 }
3508
3509 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3510                                             struct net_device *dev,
3511                                             netdev_features_t features)
3512 {
3513         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3514
3515         if (gso_segs > dev->gso_max_segs)
3516                 return features & ~NETIF_F_GSO_MASK;
3517
3518         /* Support for GSO partial features requires software
3519          * intervention before we can actually process the packets
3520          * so we need to strip support for any partial features now
3521          * and we can pull them back in after we have partially
3522          * segmented the frame.
3523          */
3524         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3525                 features &= ~dev->gso_partial_features;
3526
3527         /* Make sure to clear the IPv4 ID mangling feature if the
3528          * IPv4 header has the potential to be fragmented.
3529          */
3530         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3531                 struct iphdr *iph = skb->encapsulation ?
3532                                     inner_ip_hdr(skb) : ip_hdr(skb);
3533
3534                 if (!(iph->frag_off & htons(IP_DF)))
3535                         features &= ~NETIF_F_TSO_MANGLEID;
3536         }
3537
3538         return features;
3539 }
3540
3541 netdev_features_t netif_skb_features(struct sk_buff *skb)
3542 {
3543         struct net_device *dev = skb->dev;
3544         netdev_features_t features = dev->features;
3545
3546         if (skb_is_gso(skb))
3547                 features = gso_features_check(skb, dev, features);
3548
3549         /* If encapsulation offload request, verify we are testing
3550          * hardware encapsulation features instead of standard
3551          * features for the netdev
3552          */
3553         if (skb->encapsulation)
3554                 features &= dev->hw_enc_features;
3555
3556         if (skb_vlan_tagged(skb))
3557                 features = netdev_intersect_features(features,
3558                                                      dev->vlan_features |
3559                                                      NETIF_F_HW_VLAN_CTAG_TX |
3560                                                      NETIF_F_HW_VLAN_STAG_TX);
3561
3562         if (dev->netdev_ops->ndo_features_check)
3563                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3564                                                                 features);
3565         else
3566                 features &= dflt_features_check(skb, dev, features);
3567
3568         return harmonize_features(skb, features);
3569 }
3570 EXPORT_SYMBOL(netif_skb_features);
3571
3572 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3573                     struct netdev_queue *txq, bool more)
3574 {
3575         unsigned int len;
3576         int rc;
3577
3578         if (dev_nit_active(dev))
3579                 dev_queue_xmit_nit(skb, dev);
3580
3581         len = skb->len;
3582         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3583         trace_net_dev_start_xmit(skb, dev);
3584         rc = netdev_start_xmit(skb, dev, txq, more);
3585         trace_net_dev_xmit(skb, rc, dev, len);
3586
3587         return rc;
3588 }
3589
3590 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3591                                     struct netdev_queue *txq, int *ret)
3592 {
3593         struct sk_buff *skb = first;
3594         int rc = NETDEV_TX_OK;
3595
3596         while (skb) {
3597                 struct sk_buff *next = skb->next;
3598
3599                 skb_mark_not_on_list(skb);
3600                 rc = xmit_one(skb, dev, txq, next != NULL);
3601                 if (unlikely(!dev_xmit_complete(rc))) {
3602                         skb->next = next;
3603                         goto out;
3604                 }
3605
3606                 skb = next;
3607                 if (netif_tx_queue_stopped(txq) && skb) {
3608                         rc = NETDEV_TX_BUSY;
3609                         break;
3610                 }
3611         }
3612
3613 out:
3614         *ret = rc;
3615         return skb;
3616 }
3617
3618 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3619                                           netdev_features_t features)
3620 {
3621         if (skb_vlan_tag_present(skb) &&
3622             !vlan_hw_offload_capable(features, skb->vlan_proto))
3623                 skb = __vlan_hwaccel_push_inside(skb);
3624         return skb;
3625 }
3626
3627 int skb_csum_hwoffload_help(struct sk_buff *skb,
3628                             const netdev_features_t features)
3629 {
3630         if (unlikely(skb->csum_not_inet))
3631                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3632                         skb_crc32c_csum_help(skb);
3633
3634         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3635 }
3636 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3637
3638 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3639 {
3640         netdev_features_t features;
3641
3642         features = netif_skb_features(skb);
3643         skb = validate_xmit_vlan(skb, features);
3644         if (unlikely(!skb))
3645                 goto out_null;
3646
3647         skb = sk_validate_xmit_skb(skb, dev);
3648         if (unlikely(!skb))
3649                 goto out_null;
3650
3651         if (netif_needs_gso(skb, features)) {
3652                 struct sk_buff *segs;
3653
3654                 segs = skb_gso_segment(skb, features);
3655                 if (IS_ERR(segs)) {
3656                         goto out_kfree_skb;
3657                 } else if (segs) {
3658                         consume_skb(skb);
3659                         skb = segs;
3660                 }
3661         } else {
3662                 if (skb_needs_linearize(skb, features) &&
3663                     __skb_linearize(skb))
3664                         goto out_kfree_skb;
3665
3666                 /* If packet is not checksummed and device does not
3667                  * support checksumming for this protocol, complete
3668                  * checksumming here.
3669                  */
3670                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3671                         if (skb->encapsulation)
3672                                 skb_set_inner_transport_header(skb,
3673                                                                skb_checksum_start_offset(skb));
3674                         else
3675                                 skb_set_transport_header(skb,
3676                                                          skb_checksum_start_offset(skb));
3677                         if (skb_csum_hwoffload_help(skb, features))
3678                                 goto out_kfree_skb;
3679                 }
3680         }
3681
3682         skb = validate_xmit_xfrm(skb, features, again);
3683
3684         return skb;
3685
3686 out_kfree_skb:
3687         kfree_skb(skb);
3688 out_null:
3689         atomic_long_inc(&dev->tx_dropped);
3690         return NULL;
3691 }
3692
3693 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3694 {
3695         struct sk_buff *next, *head = NULL, *tail;
3696
3697         for (; skb != NULL; skb = next) {
3698                 next = skb->next;
3699                 skb_mark_not_on_list(skb);
3700
3701                 /* in case skb wont be segmented, point to itself */
3702                 skb->prev = skb;
3703
3704                 skb = validate_xmit_skb(skb, dev, again);
3705                 if (!skb)
3706                         continue;
3707
3708                 if (!head)
3709                         head = skb;
3710                 else
3711                         tail->next = skb;
3712                 /* If skb was segmented, skb->prev points to
3713                  * the last segment. If not, it still contains skb.
3714                  */
3715                 tail = skb->prev;
3716         }
3717         return head;
3718 }
3719 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3720
3721 static void qdisc_pkt_len_init(struct sk_buff *skb)
3722 {
3723         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3724
3725         qdisc_skb_cb(skb)->pkt_len = skb->len;
3726
3727         /* To get more precise estimation of bytes sent on wire,
3728          * we add to pkt_len the headers size of all segments
3729          */
3730         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3731                 unsigned int hdr_len;
3732                 u16 gso_segs = shinfo->gso_segs;
3733
3734                 /* mac layer + network layer */
3735                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3736
3737                 /* + transport layer */
3738                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3739                         const struct tcphdr *th;
3740                         struct tcphdr _tcphdr;
3741
3742                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3743                                                 sizeof(_tcphdr), &_tcphdr);
3744                         if (likely(th))
3745                                 hdr_len += __tcp_hdrlen(th);
3746                 } else {
3747                         struct udphdr _udphdr;
3748
3749                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3750                                                sizeof(_udphdr), &_udphdr))
3751                                 hdr_len += sizeof(struct udphdr);
3752                 }
3753
3754                 if (shinfo->gso_type & SKB_GSO_DODGY)
3755                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3756                                                 shinfo->gso_size);
3757
3758                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3759         }
3760 }
3761
3762 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3763                                  struct net_device *dev,
3764                                  struct netdev_queue *txq)
3765 {
3766         spinlock_t *root_lock = qdisc_lock(q);
3767         struct sk_buff *to_free = NULL;
3768         bool contended;
3769         int rc;
3770
3771         qdisc_calculate_pkt_len(skb, q);
3772
3773         if (q->flags & TCQ_F_NOLOCK) {
3774                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3775                 if (likely(!netif_xmit_frozen_or_stopped(txq)))
3776                         qdisc_run(q);
3777
3778                 if (unlikely(to_free))
3779                         kfree_skb_list(to_free);
3780                 return rc;
3781         }
3782
3783         /*
3784          * Heuristic to force contended enqueues to serialize on a
3785          * separate lock before trying to get qdisc main lock.
3786          * This permits qdisc->running owner to get the lock more
3787          * often and dequeue packets faster.
3788          */
3789         contended = qdisc_is_running(q);
3790         if (unlikely(contended))
3791                 spin_lock(&q->busylock);
3792
3793         spin_lock(root_lock);
3794         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3795                 __qdisc_drop(skb, &to_free);
3796                 rc = NET_XMIT_DROP;
3797         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3798                    qdisc_run_begin(q)) {
3799                 /*
3800                  * This is a work-conserving queue; there are no old skbs
3801                  * waiting to be sent out; and the qdisc is not running -
3802                  * xmit the skb directly.
3803                  */
3804
3805                 qdisc_bstats_update(q, skb);
3806
3807                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3808                         if (unlikely(contended)) {
3809                                 spin_unlock(&q->busylock);
3810                                 contended = false;
3811                         }
3812                         __qdisc_run(q);
3813                 }
3814
3815                 qdisc_run_end(q);
3816                 rc = NET_XMIT_SUCCESS;
3817         } else {
3818                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3819                 if (qdisc_run_begin(q)) {
3820                         if (unlikely(contended)) {
3821                                 spin_unlock(&q->busylock);
3822                                 contended = false;
3823                         }
3824                         __qdisc_run(q);
3825                         qdisc_run_end(q);
3826                 }
3827         }
3828         spin_unlock(root_lock);
3829         if (unlikely(to_free))
3830                 kfree_skb_list(to_free);
3831         if (unlikely(contended))
3832                 spin_unlock(&q->busylock);
3833         return rc;
3834 }
3835
3836 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3837 static void skb_update_prio(struct sk_buff *skb)
3838 {
3839         const struct netprio_map *map;
3840         const struct sock *sk;
3841         unsigned int prioidx;
3842
3843         if (skb->priority)
3844                 return;
3845         map = rcu_dereference_bh(skb->dev->priomap);
3846         if (!map)
3847                 return;
3848         sk = skb_to_full_sk(skb);
3849         if (!sk)
3850                 return;
3851
3852         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3853
3854         if (prioidx < map->priomap_len)
3855                 skb->priority = map->priomap[prioidx];
3856 }
3857 #else
3858 #define skb_update_prio(skb)
3859 #endif
3860
3861 /**
3862  *      dev_loopback_xmit - loop back @skb
3863  *      @net: network namespace this loopback is happening in
3864  *      @sk:  sk needed to be a netfilter okfn
3865  *      @skb: buffer to transmit
3866  */
3867 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3868 {
3869         skb_reset_mac_header(skb);
3870         __skb_pull(skb, skb_network_offset(skb));
3871         skb->pkt_type = PACKET_LOOPBACK;
3872         if (skb->ip_summed == CHECKSUM_NONE)
3873                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3874         WARN_ON(!skb_dst(skb));
3875         skb_dst_force(skb);
3876         netif_rx_ni(skb);
3877         return 0;
3878 }
3879 EXPORT_SYMBOL(dev_loopback_xmit);
3880
3881 #ifdef CONFIG_NET_EGRESS
3882 static struct sk_buff *
3883 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3884 {
3885         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3886         struct tcf_result cl_res;
3887
3888         if (!miniq)
3889                 return skb;
3890
3891         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3892         qdisc_skb_cb(skb)->mru = 0;
3893         mini_qdisc_bstats_cpu_update(miniq, skb);
3894
3895         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3896         case TC_ACT_OK:
3897         case TC_ACT_RECLASSIFY:
3898                 skb->tc_index = TC_H_MIN(cl_res.classid);
3899                 break;
3900         case TC_ACT_SHOT:
3901                 mini_qdisc_qstats_cpu_drop(miniq);
3902                 *ret = NET_XMIT_DROP;
3903                 kfree_skb(skb);
3904                 return NULL;
3905         case TC_ACT_STOLEN:
3906         case TC_ACT_QUEUED:
3907         case TC_ACT_TRAP:
3908                 *ret = NET_XMIT_SUCCESS;
3909                 consume_skb(skb);
3910                 return NULL;
3911         case TC_ACT_REDIRECT:
3912                 /* No need to push/pop skb's mac_header here on egress! */
3913                 skb_do_redirect(skb);
3914                 *ret = NET_XMIT_SUCCESS;
3915                 return NULL;
3916         default:
3917                 break;
3918         }
3919
3920         return skb;
3921 }
3922 #endif /* CONFIG_NET_EGRESS */
3923
3924 #ifdef CONFIG_XPS
3925 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3926                                struct xps_dev_maps *dev_maps, unsigned int tci)
3927 {
3928         struct xps_map *map;
3929         int queue_index = -1;
3930
3931         if (dev->num_tc) {
3932                 tci *= dev->num_tc;
3933                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3934         }
3935
3936         map = rcu_dereference(dev_maps->attr_map[tci]);
3937         if (map) {
3938                 if (map->len == 1)
3939                         queue_index = map->queues[0];
3940                 else
3941                         queue_index = map->queues[reciprocal_scale(
3942                                                 skb_get_hash(skb), map->len)];
3943                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3944                         queue_index = -1;
3945         }
3946         return queue_index;
3947 }
3948 #endif
3949
3950 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3951                          struct sk_buff *skb)
3952 {
3953 #ifdef CONFIG_XPS
3954         struct xps_dev_maps *dev_maps;
3955         struct sock *sk = skb->sk;
3956         int queue_index = -1;
3957
3958         if (!static_key_false(&xps_needed))
3959                 return -1;
3960
3961         rcu_read_lock();
3962         if (!static_key_false(&xps_rxqs_needed))
3963                 goto get_cpus_map;
3964
3965         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3966         if (dev_maps) {
3967                 int tci = sk_rx_queue_get(sk);
3968
3969                 if (tci >= 0 && tci < dev->num_rx_queues)
3970                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3971                                                           tci);
3972         }
3973
3974 get_cpus_map:
3975         if (queue_index < 0) {
3976                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3977                 if (dev_maps) {
3978                         unsigned int tci = skb->sender_cpu - 1;
3979
3980                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3981                                                           tci);
3982                 }
3983         }
3984         rcu_read_unlock();
3985
3986         return queue_index;
3987 #else
3988         return -1;
3989 #endif
3990 }
3991
3992 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3993                      struct net_device *sb_dev)
3994 {
3995         return 0;
3996 }
3997 EXPORT_SYMBOL(dev_pick_tx_zero);
3998
3999 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4000                        struct net_device *sb_dev)
4001 {
4002         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4003 }
4004 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4005
4006 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4007                      struct net_device *sb_dev)
4008 {
4009         struct sock *sk = skb->sk;
4010         int queue_index = sk_tx_queue_get(sk);
4011
4012         sb_dev = sb_dev ? : dev;
4013
4014         if (queue_index < 0 || skb->ooo_okay ||
4015             queue_index >= dev->real_num_tx_queues) {
4016                 int new_index = get_xps_queue(dev, sb_dev, skb);
4017
4018                 if (new_index < 0)
4019                         new_index = skb_tx_hash(dev, sb_dev, skb);
4020
4021                 if (queue_index != new_index && sk &&
4022                     sk_fullsock(sk) &&
4023                     rcu_access_pointer(sk->sk_dst_cache))
4024                         sk_tx_queue_set(sk, new_index);
4025
4026                 queue_index = new_index;
4027         }
4028
4029         return queue_index;
4030 }
4031 EXPORT_SYMBOL(netdev_pick_tx);
4032
4033 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4034                                          struct sk_buff *skb,
4035                                          struct net_device *sb_dev)
4036 {
4037         int queue_index = 0;
4038
4039 #ifdef CONFIG_XPS
4040         u32 sender_cpu = skb->sender_cpu - 1;
4041
4042         if (sender_cpu >= (u32)NR_CPUS)
4043                 skb->sender_cpu = raw_smp_processor_id() + 1;
4044 #endif
4045
4046         if (dev->real_num_tx_queues != 1) {
4047                 const struct net_device_ops *ops = dev->netdev_ops;
4048
4049                 if (ops->ndo_select_queue)
4050                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4051                 else
4052                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4053
4054                 queue_index = netdev_cap_txqueue(dev, queue_index);
4055         }
4056
4057         skb_set_queue_mapping(skb, queue_index);
4058         return netdev_get_tx_queue(dev, queue_index);
4059 }
4060
4061 /**
4062  *      __dev_queue_xmit - transmit a buffer
4063  *      @skb: buffer to transmit
4064  *      @sb_dev: suboordinate device used for L2 forwarding offload
4065  *
4066  *      Queue a buffer for transmission to a network device. The caller must
4067  *      have set the device and priority and built the buffer before calling
4068  *      this function. The function can be called from an interrupt.
4069  *
4070  *      A negative errno code is returned on a failure. A success does not
4071  *      guarantee the frame will be transmitted as it may be dropped due
4072  *      to congestion or traffic shaping.
4073  *
4074  * -----------------------------------------------------------------------------------
4075  *      I notice this method can also return errors from the queue disciplines,
4076  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4077  *      be positive.
4078  *
4079  *      Regardless of the return value, the skb is consumed, so it is currently
4080  *      difficult to retry a send to this method.  (You can bump the ref count
4081  *      before sending to hold a reference for retry if you are careful.)
4082  *
4083  *      When calling this method, interrupts MUST be enabled.  This is because
4084  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4085  *          --BLG
4086  */
4087 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4088 {
4089         struct net_device *dev = skb->dev;
4090         struct netdev_queue *txq;
4091         struct Qdisc *q;
4092         int rc = -ENOMEM;
4093         bool again = false;
4094
4095         skb_reset_mac_header(skb);
4096
4097         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4098                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4099
4100         /* Disable soft irqs for various locks below. Also
4101          * stops preemption for RCU.
4102          */
4103         rcu_read_lock_bh();
4104
4105         skb_update_prio(skb);
4106
4107         qdisc_pkt_len_init(skb);
4108 #ifdef CONFIG_NET_CLS_ACT
4109         skb->tc_at_ingress = 0;
4110 # ifdef CONFIG_NET_EGRESS
4111         if (static_branch_unlikely(&egress_needed_key)) {
4112                 skb = sch_handle_egress(skb, &rc, dev);
4113                 if (!skb)
4114                         goto out;
4115         }
4116 # endif
4117 #endif
4118         /* If device/qdisc don't need skb->dst, release it right now while
4119          * its hot in this cpu cache.
4120          */
4121         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4122                 skb_dst_drop(skb);
4123         else
4124                 skb_dst_force(skb);
4125
4126         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4127         q = rcu_dereference_bh(txq->qdisc);
4128
4129         trace_net_dev_queue(skb);
4130         if (q->enqueue) {
4131                 rc = __dev_xmit_skb(skb, q, dev, txq);
4132                 goto out;
4133         }
4134
4135         /* The device has no queue. Common case for software devices:
4136          * loopback, all the sorts of tunnels...
4137
4138          * Really, it is unlikely that netif_tx_lock protection is necessary
4139          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4140          * counters.)
4141          * However, it is possible, that they rely on protection
4142          * made by us here.
4143
4144          * Check this and shot the lock. It is not prone from deadlocks.
4145          *Either shot noqueue qdisc, it is even simpler 8)
4146          */
4147         if (dev->flags & IFF_UP) {
4148                 int cpu = smp_processor_id(); /* ok because BHs are off */
4149
4150                 /* Other cpus might concurrently change txq->xmit_lock_owner
4151                  * to -1 or to their cpu id, but not to our id.
4152                  */
4153                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4154                         if (dev_xmit_recursion())
4155                                 goto recursion_alert;
4156
4157                         skb = validate_xmit_skb(skb, dev, &again);
4158                         if (!skb)
4159                                 goto out;
4160
4161                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4162                         HARD_TX_LOCK(dev, txq, cpu);
4163
4164                         if (!netif_xmit_stopped(txq)) {
4165                                 dev_xmit_recursion_inc();
4166                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4167                                 dev_xmit_recursion_dec();
4168                                 if (dev_xmit_complete(rc)) {
4169                                         HARD_TX_UNLOCK(dev, txq);
4170                                         goto out;
4171                                 }
4172                         }
4173                         HARD_TX_UNLOCK(dev, txq);
4174                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4175                                              dev->name);
4176                 } else {
4177                         /* Recursion is detected! It is possible,
4178                          * unfortunately
4179                          */
4180 recursion_alert:
4181                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4182                                              dev->name);
4183                 }
4184         }
4185
4186         rc = -ENETDOWN;
4187         rcu_read_unlock_bh();
4188
4189         atomic_long_inc(&dev->tx_dropped);
4190         kfree_skb_list(skb);
4191         return rc;
4192 out:
4193         rcu_read_unlock_bh();
4194         return rc;
4195 }
4196
4197 int dev_queue_xmit(struct sk_buff *skb)
4198 {
4199         return __dev_queue_xmit(skb, NULL);
4200 }
4201 EXPORT_SYMBOL(dev_queue_xmit);
4202
4203 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4204 {
4205         return __dev_queue_xmit(skb, sb_dev);
4206 }
4207 EXPORT_SYMBOL(dev_queue_xmit_accel);
4208
4209 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4210 {
4211         struct net_device *dev = skb->dev;
4212         struct sk_buff *orig_skb = skb;
4213         struct netdev_queue *txq;
4214         int ret = NETDEV_TX_BUSY;
4215         bool again = false;
4216
4217         if (unlikely(!netif_running(dev) ||
4218                      !netif_carrier_ok(dev)))
4219                 goto drop;
4220
4221         skb = validate_xmit_skb_list(skb, dev, &again);
4222         if (skb != orig_skb)
4223                 goto drop;
4224
4225         skb_set_queue_mapping(skb, queue_id);
4226         txq = skb_get_tx_queue(dev, skb);
4227         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4228
4229         local_bh_disable();
4230
4231         dev_xmit_recursion_inc();
4232         HARD_TX_LOCK(dev, txq, smp_processor_id());
4233         if (!netif_xmit_frozen_or_drv_stopped(txq))
4234                 ret = netdev_start_xmit(skb, dev, txq, false);
4235         HARD_TX_UNLOCK(dev, txq);
4236         dev_xmit_recursion_dec();
4237
4238         local_bh_enable();
4239         return ret;
4240 drop:
4241         atomic_long_inc(&dev->tx_dropped);
4242         kfree_skb_list(skb);
4243         return NET_XMIT_DROP;
4244 }
4245 EXPORT_SYMBOL(__dev_direct_xmit);
4246
4247 /*************************************************************************
4248  *                      Receiver routines
4249  *************************************************************************/
4250
4251 int netdev_max_backlog __read_mostly = 1000;
4252 EXPORT_SYMBOL(netdev_max_backlog);
4253
4254 int netdev_tstamp_prequeue __read_mostly = 1;
4255 int netdev_budget __read_mostly = 300;
4256 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4257 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4258 int weight_p __read_mostly = 64;           /* old backlog weight */
4259 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4260 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4261 int dev_rx_weight __read_mostly = 64;
4262 int dev_tx_weight __read_mostly = 64;
4263 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4264 int gro_normal_batch __read_mostly = 8;
4265
4266 /* Called with irq disabled */
4267 static inline void ____napi_schedule(struct softnet_data *sd,
4268                                      struct napi_struct *napi)
4269 {
4270         list_add_tail(&napi->poll_list, &sd->poll_list);
4271         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4272 }
4273
4274 #ifdef CONFIG_RPS
4275
4276 /* One global table that all flow-based protocols share. */
4277 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4278 EXPORT_SYMBOL(rps_sock_flow_table);
4279 u32 rps_cpu_mask __read_mostly;
4280 EXPORT_SYMBOL(rps_cpu_mask);
4281
4282 struct static_key_false rps_needed __read_mostly;
4283 EXPORT_SYMBOL(rps_needed);
4284 struct static_key_false rfs_needed __read_mostly;
4285 EXPORT_SYMBOL(rfs_needed);
4286
4287 static struct rps_dev_flow *
4288 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4289             struct rps_dev_flow *rflow, u16 next_cpu)
4290 {
4291         if (next_cpu < nr_cpu_ids) {
4292 #ifdef CONFIG_RFS_ACCEL
4293                 struct netdev_rx_queue *rxqueue;
4294                 struct rps_dev_flow_table *flow_table;
4295                 struct rps_dev_flow *old_rflow;
4296                 u32 flow_id;
4297                 u16 rxq_index;
4298                 int rc;
4299
4300                 /* Should we steer this flow to a different hardware queue? */
4301                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4302                     !(dev->features & NETIF_F_NTUPLE))
4303                         goto out;
4304                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4305                 if (rxq_index == skb_get_rx_queue(skb))
4306                         goto out;
4307
4308                 rxqueue = dev->_rx + rxq_index;
4309                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4310                 if (!flow_table)
4311                         goto out;
4312                 flow_id = skb_get_hash(skb) & flow_table->mask;
4313                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4314                                                         rxq_index, flow_id);
4315                 if (rc < 0)
4316                         goto out;
4317                 old_rflow = rflow;
4318                 rflow = &flow_table->flows[flow_id];
4319                 rflow->filter = rc;
4320                 if (old_rflow->filter == rflow->filter)
4321                         old_rflow->filter = RPS_NO_FILTER;
4322         out:
4323 #endif
4324                 rflow->last_qtail =
4325                         per_cpu(softnet_data, next_cpu).input_queue_head;
4326         }
4327
4328         rflow->cpu = next_cpu;
4329         return rflow;
4330 }
4331
4332 /*
4333  * get_rps_cpu is called from netif_receive_skb and returns the target
4334  * CPU from the RPS map of the receiving queue for a given skb.
4335  * rcu_read_lock must be held on entry.
4336  */
4337 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4338                        struct rps_dev_flow **rflowp)
4339 {
4340         const struct rps_sock_flow_table *sock_flow_table;
4341         struct netdev_rx_queue *rxqueue = dev->_rx;
4342         struct rps_dev_flow_table *flow_table;
4343         struct rps_map *map;
4344         int cpu = -1;
4345         u32 tcpu;
4346         u32 hash;
4347
4348         if (skb_rx_queue_recorded(skb)) {
4349                 u16 index = skb_get_rx_queue(skb);
4350
4351                 if (unlikely(index >= dev->real_num_rx_queues)) {
4352                         WARN_ONCE(dev->real_num_rx_queues > 1,
4353                                   "%s received packet on queue %u, but number "
4354                                   "of RX queues is %u\n",
4355                                   dev->name, index, dev->real_num_rx_queues);
4356                         goto done;
4357                 }
4358                 rxqueue += index;
4359         }
4360
4361         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4362
4363         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4364         map = rcu_dereference(rxqueue->rps_map);
4365         if (!flow_table && !map)
4366                 goto done;
4367
4368         skb_reset_network_header(skb);
4369         hash = skb_get_hash(skb);
4370         if (!hash)
4371                 goto done;
4372
4373         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4374         if (flow_table && sock_flow_table) {
4375                 struct rps_dev_flow *rflow;
4376                 u32 next_cpu;
4377                 u32 ident;
4378
4379                 /* First check into global flow table if there is a match */
4380                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4381                 if ((ident ^ hash) & ~rps_cpu_mask)
4382                         goto try_rps;
4383
4384                 next_cpu = ident & rps_cpu_mask;
4385
4386                 /* OK, now we know there is a match,
4387                  * we can look at the local (per receive queue) flow table
4388                  */
4389                 rflow = &flow_table->flows[hash & flow_table->mask];
4390                 tcpu = rflow->cpu;
4391
4392                 /*
4393                  * If the desired CPU (where last recvmsg was done) is
4394                  * different from current CPU (one in the rx-queue flow
4395                  * table entry), switch if one of the following holds:
4396                  *   - Current CPU is unset (>= nr_cpu_ids).
4397                  *   - Current CPU is offline.
4398                  *   - The current CPU's queue tail has advanced beyond the
4399                  *     last packet that was enqueued using this table entry.
4400                  *     This guarantees that all previous packets for the flow
4401                  *     have been dequeued, thus preserving in order delivery.
4402                  */
4403                 if (unlikely(tcpu != next_cpu) &&
4404                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4405                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4406                       rflow->last_qtail)) >= 0)) {
4407                         tcpu = next_cpu;
4408                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4409                 }
4410
4411                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4412                         *rflowp = rflow;
4413                         cpu = tcpu;
4414                         goto done;
4415                 }
4416         }
4417
4418 try_rps:
4419
4420         if (map) {
4421                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4422                 if (cpu_online(tcpu)) {
4423                         cpu = tcpu;
4424                         goto done;
4425                 }
4426         }
4427
4428 done:
4429         return cpu;
4430 }
4431
4432 #ifdef CONFIG_RFS_ACCEL
4433
4434 /**
4435  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4436  * @dev: Device on which the filter was set
4437  * @rxq_index: RX queue index
4438  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4439  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4440  *
4441  * Drivers that implement ndo_rx_flow_steer() should periodically call
4442  * this function for each installed filter and remove the filters for
4443  * which it returns %true.
4444  */
4445 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4446                          u32 flow_id, u16 filter_id)
4447 {
4448         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4449         struct rps_dev_flow_table *flow_table;
4450         struct rps_dev_flow *rflow;
4451         bool expire = true;
4452         unsigned int cpu;
4453
4454         rcu_read_lock();
4455         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4456         if (flow_table && flow_id <= flow_table->mask) {
4457                 rflow = &flow_table->flows[flow_id];
4458                 cpu = READ_ONCE(rflow->cpu);
4459                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4460                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4461                            rflow->last_qtail) <
4462                      (int)(10 * flow_table->mask)))
4463                         expire = false;
4464         }
4465         rcu_read_unlock();
4466         return expire;
4467 }
4468 EXPORT_SYMBOL(rps_may_expire_flow);
4469
4470 #endif /* CONFIG_RFS_ACCEL */
4471
4472 /* Called from hardirq (IPI) context */
4473 static void rps_trigger_softirq(void *data)
4474 {
4475         struct softnet_data *sd = data;
4476
4477         ____napi_schedule(sd, &sd->backlog);
4478         sd->received_rps++;
4479 }
4480
4481 #endif /* CONFIG_RPS */
4482
4483 /*
4484  * Check if this softnet_data structure is another cpu one
4485  * If yes, queue it to our IPI list and return 1
4486  * If no, return 0
4487  */
4488 static int rps_ipi_queued(struct softnet_data *sd)
4489 {
4490 #ifdef CONFIG_RPS
4491         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4492
4493         if (sd != mysd) {
4494                 sd->rps_ipi_next = mysd->rps_ipi_list;
4495                 mysd->rps_ipi_list = sd;
4496
4497                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4498                 return 1;
4499         }
4500 #endif /* CONFIG_RPS */
4501         return 0;
4502 }
4503
4504 #ifdef CONFIG_NET_FLOW_LIMIT
4505 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4506 #endif
4507
4508 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4509 {
4510 #ifdef CONFIG_NET_FLOW_LIMIT
4511         struct sd_flow_limit *fl;
4512         struct softnet_data *sd;
4513         unsigned int old_flow, new_flow;
4514
4515         if (qlen < (netdev_max_backlog >> 1))
4516                 return false;
4517
4518         sd = this_cpu_ptr(&softnet_data);
4519
4520         rcu_read_lock();
4521         fl = rcu_dereference(sd->flow_limit);
4522         if (fl) {
4523                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4524                 old_flow = fl->history[fl->history_head];
4525                 fl->history[fl->history_head] = new_flow;
4526
4527                 fl->history_head++;
4528                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4529
4530                 if (likely(fl->buckets[old_flow]))
4531                         fl->buckets[old_flow]--;
4532
4533                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4534                         fl->count++;
4535                         rcu_read_unlock();
4536                         return true;
4537                 }
4538         }
4539         rcu_read_unlock();
4540 #endif
4541         return false;
4542 }
4543
4544 /*
4545  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4546  * queue (may be a remote CPU queue).
4547  */
4548 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4549                               unsigned int *qtail)
4550 {
4551         struct softnet_data *sd;
4552         unsigned long flags;
4553         unsigned int qlen;
4554
4555         sd = &per_cpu(softnet_data, cpu);
4556
4557         local_irq_save(flags);
4558
4559         rps_lock(sd);
4560         if (!netif_running(skb->dev))
4561                 goto drop;
4562         qlen = skb_queue_len(&sd->input_pkt_queue);
4563         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4564                 if (qlen) {
4565 enqueue:
4566                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4567                         input_queue_tail_incr_save(sd, qtail);
4568                         rps_unlock(sd);
4569                         local_irq_restore(flags);
4570                         return NET_RX_SUCCESS;
4571                 }
4572
4573                 /* Schedule NAPI for backlog device
4574                  * We can use non atomic operation since we own the queue lock
4575                  */
4576                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4577                         if (!rps_ipi_queued(sd))
4578                                 ____napi_schedule(sd, &sd->backlog);
4579                 }
4580                 goto enqueue;
4581         }
4582
4583 drop:
4584         sd->dropped++;
4585         rps_unlock(sd);
4586
4587         local_irq_restore(flags);
4588
4589         atomic_long_inc(&skb->dev->rx_dropped);
4590         kfree_skb(skb);
4591         return NET_RX_DROP;
4592 }
4593
4594 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4595 {
4596         struct net_device *dev = skb->dev;
4597         struct netdev_rx_queue *rxqueue;
4598
4599         rxqueue = dev->_rx;
4600
4601         if (skb_rx_queue_recorded(skb)) {
4602                 u16 index = skb_get_rx_queue(skb);
4603
4604                 if (unlikely(index >= dev->real_num_rx_queues)) {
4605                         WARN_ONCE(dev->real_num_rx_queues > 1,
4606                                   "%s received packet on queue %u, but number "
4607                                   "of RX queues is %u\n",
4608                                   dev->name, index, dev->real_num_rx_queues);
4609
4610                         return rxqueue; /* Return first rxqueue */
4611                 }
4612                 rxqueue += index;
4613         }
4614         return rxqueue;
4615 }
4616
4617 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4618                                      struct xdp_buff *xdp,
4619                                      struct bpf_prog *xdp_prog)
4620 {
4621         struct netdev_rx_queue *rxqueue;
4622         void *orig_data, *orig_data_end;
4623         u32 metalen, act = XDP_DROP;
4624         __be16 orig_eth_type;
4625         struct ethhdr *eth;
4626         bool orig_bcast;
4627         int hlen, off;
4628         u32 mac_len;
4629
4630         /* Reinjected packets coming from act_mirred or similar should
4631          * not get XDP generic processing.
4632          */
4633         if (skb_is_redirected(skb))
4634                 return XDP_PASS;
4635
4636         /* XDP packets must be linear and must have sufficient headroom
4637          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4638          * native XDP provides, thus we need to do it here as well.
4639          */
4640         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4641             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4642                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4643                 int troom = skb->tail + skb->data_len - skb->end;
4644
4645                 /* In case we have to go down the path and also linearize,
4646                  * then lets do the pskb_expand_head() work just once here.
4647                  */
4648                 if (pskb_expand_head(skb,
4649                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4650                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4651                         goto do_drop;
4652                 if (skb_linearize(skb))
4653                         goto do_drop;
4654         }
4655
4656         /* The XDP program wants to see the packet starting at the MAC
4657          * header.
4658          */
4659         mac_len = skb->data - skb_mac_header(skb);
4660         hlen = skb_headlen(skb) + mac_len;
4661         xdp->data = skb->data - mac_len;
4662         xdp->data_meta = xdp->data;
4663         xdp->data_end = xdp->data + hlen;
4664         xdp->data_hard_start = skb->data - skb_headroom(skb);
4665
4666         /* SKB "head" area always have tailroom for skb_shared_info */
4667         xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4668         xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4669
4670         orig_data_end = xdp->data_end;
4671         orig_data = xdp->data;
4672         eth = (struct ethhdr *)xdp->data;
4673         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4674         orig_eth_type = eth->h_proto;
4675
4676         rxqueue = netif_get_rxqueue(skb);
4677         xdp->rxq = &rxqueue->xdp_rxq;
4678
4679         act = bpf_prog_run_xdp(xdp_prog, xdp);
4680
4681         /* check if bpf_xdp_adjust_head was used */
4682         off = xdp->data - orig_data;
4683         if (off) {
4684                 if (off > 0)
4685                         __skb_pull(skb, off);
4686                 else if (off < 0)
4687                         __skb_push(skb, -off);
4688
4689                 skb->mac_header += off;
4690                 skb_reset_network_header(skb);
4691         }
4692
4693         /* check if bpf_xdp_adjust_tail was used */
4694         off = xdp->data_end - orig_data_end;
4695         if (off != 0) {
4696                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4697                 skb->len += off; /* positive on grow, negative on shrink */
4698         }
4699
4700         /* check if XDP changed eth hdr such SKB needs update */
4701         eth = (struct ethhdr *)xdp->data;
4702         if ((orig_eth_type != eth->h_proto) ||
4703             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4704                 __skb_push(skb, ETH_HLEN);
4705                 skb->protocol = eth_type_trans(skb, skb->dev);
4706         }
4707
4708         switch (act) {
4709         case XDP_REDIRECT:
4710         case XDP_TX:
4711                 __skb_push(skb, mac_len);
4712                 break;
4713         case XDP_PASS:
4714                 metalen = xdp->data - xdp->data_meta;
4715                 if (metalen)
4716                         skb_metadata_set(skb, metalen);
4717                 break;
4718         default:
4719                 bpf_warn_invalid_xdp_action(act);
4720                 fallthrough;
4721         case XDP_ABORTED:
4722                 trace_xdp_exception(skb->dev, xdp_prog, act);
4723                 fallthrough;
4724         case XDP_DROP:
4725         do_drop:
4726                 kfree_skb(skb);
4727                 break;
4728         }
4729
4730         return act;
4731 }
4732
4733 /* When doing generic XDP we have to bypass the qdisc layer and the
4734  * network taps in order to match in-driver-XDP behavior.
4735  */
4736 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4737 {
4738         struct net_device *dev = skb->dev;
4739         struct netdev_queue *txq;
4740         bool free_skb = true;
4741         int cpu, rc;
4742
4743         txq = netdev_core_pick_tx(dev, skb, NULL);
4744         cpu = smp_processor_id();
4745         HARD_TX_LOCK(dev, txq, cpu);
4746         if (!netif_xmit_stopped(txq)) {
4747                 rc = netdev_start_xmit(skb, dev, txq, 0);
4748                 if (dev_xmit_complete(rc))
4749                         free_skb = false;
4750         }
4751         HARD_TX_UNLOCK(dev, txq);
4752         if (free_skb) {
4753                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4754                 kfree_skb(skb);
4755         }
4756 }
4757
4758 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4759
4760 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4761 {
4762         if (xdp_prog) {
4763                 struct xdp_buff xdp;
4764                 u32 act;
4765                 int err;
4766
4767                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4768                 if (act != XDP_PASS) {
4769                         switch (act) {
4770                         case XDP_REDIRECT:
4771                                 err = xdp_do_generic_redirect(skb->dev, skb,
4772                                                               &xdp, xdp_prog);
4773                                 if (err)
4774                                         goto out_redir;
4775                                 break;
4776                         case XDP_TX:
4777                                 generic_xdp_tx(skb, xdp_prog);
4778                                 break;
4779                         }
4780                         return XDP_DROP;
4781                 }
4782         }
4783         return XDP_PASS;
4784 out_redir:
4785         kfree_skb(skb);
4786         return XDP_DROP;
4787 }
4788 EXPORT_SYMBOL_GPL(do_xdp_generic);
4789
4790 static int netif_rx_internal(struct sk_buff *skb)
4791 {
4792         int ret;
4793
4794         net_timestamp_check(netdev_tstamp_prequeue, skb);
4795
4796         trace_netif_rx(skb);
4797
4798 #ifdef CONFIG_RPS
4799         if (static_branch_unlikely(&rps_needed)) {
4800                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4801                 int cpu;
4802
4803                 preempt_disable();
4804                 rcu_read_lock();
4805
4806                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4807                 if (cpu < 0)
4808                         cpu = smp_processor_id();
4809
4810                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4811
4812                 rcu_read_unlock();
4813                 preempt_enable();
4814         } else
4815 #endif
4816         {
4817                 unsigned int qtail;
4818
4819                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4820                 put_cpu();
4821         }
4822         return ret;
4823 }
4824
4825 /**
4826  *      netif_rx        -       post buffer to the network code
4827  *      @skb: buffer to post
4828  *
4829  *      This function receives a packet from a device driver and queues it for
4830  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4831  *      may be dropped during processing for congestion control or by the
4832  *      protocol layers.
4833  *
4834  *      return values:
4835  *      NET_RX_SUCCESS  (no congestion)
4836  *      NET_RX_DROP     (packet was dropped)
4837  *
4838  */
4839
4840 int netif_rx(struct sk_buff *skb)
4841 {
4842         int ret;
4843
4844         trace_netif_rx_entry(skb);
4845
4846         ret = netif_rx_internal(skb);
4847         trace_netif_rx_exit(ret);
4848
4849         return ret;
4850 }
4851 EXPORT_SYMBOL(netif_rx);
4852
4853 int netif_rx_ni(struct sk_buff *skb)
4854 {
4855         int err;
4856
4857         trace_netif_rx_ni_entry(skb);
4858
4859         preempt_disable();
4860         err = netif_rx_internal(skb);
4861         if (local_softirq_pending())
4862                 do_softirq();
4863         preempt_enable();
4864         trace_netif_rx_ni_exit(err);
4865
4866         return err;
4867 }
4868 EXPORT_SYMBOL(netif_rx_ni);
4869
4870 int netif_rx_any_context(struct sk_buff *skb)
4871 {
4872         /*
4873          * If invoked from contexts which do not invoke bottom half
4874          * processing either at return from interrupt or when softrqs are
4875          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4876          * directly.
4877          */
4878         if (in_interrupt())
4879                 return netif_rx(skb);
4880         else
4881                 return netif_rx_ni(skb);
4882 }
4883 EXPORT_SYMBOL(netif_rx_any_context);
4884
4885 static __latent_entropy void net_tx_action(struct softirq_action *h)
4886 {
4887         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4888
4889         if (sd->completion_queue) {
4890                 struct sk_buff *clist;
4891
4892                 local_irq_disable();
4893                 clist = sd->completion_queue;
4894                 sd->completion_queue = NULL;
4895                 local_irq_enable();
4896
4897                 while (clist) {
4898                         struct sk_buff *skb = clist;
4899
4900                         clist = clist->next;
4901
4902                         WARN_ON(refcount_read(&skb->users));
4903                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4904                                 trace_consume_skb(skb);
4905                         else
4906                                 trace_kfree_skb(skb, net_tx_action);
4907
4908                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4909                                 __kfree_skb(skb);
4910                         else
4911                                 __kfree_skb_defer(skb);
4912                 }
4913
4914                 __kfree_skb_flush();
4915         }
4916
4917         if (sd->output_queue) {
4918                 struct Qdisc *head;
4919
4920                 local_irq_disable();
4921                 head = sd->output_queue;
4922                 sd->output_queue = NULL;
4923                 sd->output_queue_tailp = &sd->output_queue;
4924                 local_irq_enable();
4925
4926                 rcu_read_lock();
4927
4928                 while (head) {
4929                         struct Qdisc *q = head;
4930                         spinlock_t *root_lock = NULL;
4931
4932                         head = head->next_sched;
4933
4934                         /* We need to make sure head->next_sched is read
4935                          * before clearing __QDISC_STATE_SCHED
4936                          */
4937                         smp_mb__before_atomic();
4938
4939                         if (!(q->flags & TCQ_F_NOLOCK)) {
4940                                 root_lock = qdisc_lock(q);
4941                                 spin_lock(root_lock);
4942                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4943                                                      &q->state))) {
4944                                 /* There is a synchronize_net() between
4945                                  * STATE_DEACTIVATED flag being set and
4946                                  * qdisc_reset()/some_qdisc_is_busy() in
4947                                  * dev_deactivate(), so we can safely bail out
4948                                  * early here to avoid data race between
4949                                  * qdisc_deactivate() and some_qdisc_is_busy()
4950                                  * for lockless qdisc.
4951                                  */
4952                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
4953                                 continue;
4954                         }
4955
4956                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4957                         qdisc_run(q);
4958                         if (root_lock)
4959                                 spin_unlock(root_lock);
4960                 }
4961
4962                 rcu_read_unlock();
4963         }
4964
4965         xfrm_dev_backlog(sd);
4966 }
4967
4968 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4969 /* This hook is defined here for ATM LANE */
4970 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4971                              unsigned char *addr) __read_mostly;
4972 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4973 #endif
4974
4975 static inline struct sk_buff *
4976 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4977                    struct net_device *orig_dev, bool *another)
4978 {
4979 #ifdef CONFIG_NET_CLS_ACT
4980         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4981         struct tcf_result cl_res;
4982
4983         /* If there's at least one ingress present somewhere (so
4984          * we get here via enabled static key), remaining devices
4985          * that are not configured with an ingress qdisc will bail
4986          * out here.
4987          */
4988         if (!miniq)
4989                 return skb;
4990
4991         if (*pt_prev) {
4992                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4993                 *pt_prev = NULL;
4994         }
4995
4996         qdisc_skb_cb(skb)->pkt_len = skb->len;
4997         qdisc_skb_cb(skb)->mru = 0;
4998         skb->tc_at_ingress = 1;
4999         mini_qdisc_bstats_cpu_update(miniq, skb);
5000
5001         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5002                                      &cl_res, false)) {
5003         case TC_ACT_OK:
5004         case TC_ACT_RECLASSIFY:
5005                 skb->tc_index = TC_H_MIN(cl_res.classid);
5006                 break;
5007         case TC_ACT_SHOT:
5008                 mini_qdisc_qstats_cpu_drop(miniq);
5009                 kfree_skb(skb);
5010                 return NULL;
5011         case TC_ACT_STOLEN:
5012         case TC_ACT_QUEUED:
5013         case TC_ACT_TRAP:
5014                 consume_skb(skb);
5015                 return NULL;
5016         case TC_ACT_REDIRECT:
5017                 /* skb_mac_header check was done by cls/act_bpf, so
5018                  * we can safely push the L2 header back before
5019                  * redirecting to another netdev
5020                  */
5021                 __skb_push(skb, skb->mac_len);
5022                 if (skb_do_redirect(skb) == -EAGAIN) {
5023                         __skb_pull(skb, skb->mac_len);
5024                         *another = true;
5025                         break;
5026                 }
5027                 return NULL;
5028         case TC_ACT_CONSUMED:
5029                 return NULL;
5030         default:
5031                 break;
5032         }
5033 #endif /* CONFIG_NET_CLS_ACT */
5034         return skb;
5035 }
5036
5037 /**
5038  *      netdev_is_rx_handler_busy - check if receive handler is registered
5039  *      @dev: device to check
5040  *
5041  *      Check if a receive handler is already registered for a given device.
5042  *      Return true if there one.
5043  *
5044  *      The caller must hold the rtnl_mutex.
5045  */
5046 bool netdev_is_rx_handler_busy(struct net_device *dev)
5047 {
5048         ASSERT_RTNL();
5049         return dev && rtnl_dereference(dev->rx_handler);
5050 }
5051 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5052
5053 /**
5054  *      netdev_rx_handler_register - register receive handler
5055  *      @dev: device to register a handler for
5056  *      @rx_handler: receive handler to register
5057  *      @rx_handler_data: data pointer that is used by rx handler
5058  *
5059  *      Register a receive handler for a device. This handler will then be
5060  *      called from __netif_receive_skb. A negative errno code is returned
5061  *      on a failure.
5062  *
5063  *      The caller must hold the rtnl_mutex.
5064  *
5065  *      For a general description of rx_handler, see enum rx_handler_result.
5066  */
5067 int netdev_rx_handler_register(struct net_device *dev,
5068                                rx_handler_func_t *rx_handler,
5069                                void *rx_handler_data)
5070 {
5071         if (netdev_is_rx_handler_busy(dev))
5072                 return -EBUSY;
5073
5074         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5075                 return -EINVAL;
5076
5077         /* Note: rx_handler_data must be set before rx_handler */
5078         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5079         rcu_assign_pointer(dev->rx_handler, rx_handler);
5080
5081         return 0;
5082 }
5083 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5084
5085 /**
5086  *      netdev_rx_handler_unregister - unregister receive handler
5087  *      @dev: device to unregister a handler from
5088  *
5089  *      Unregister a receive handler from a device.
5090  *
5091  *      The caller must hold the rtnl_mutex.
5092  */
5093 void netdev_rx_handler_unregister(struct net_device *dev)
5094 {
5095
5096         ASSERT_RTNL();
5097         RCU_INIT_POINTER(dev->rx_handler, NULL);
5098         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5099          * section has a guarantee to see a non NULL rx_handler_data
5100          * as well.
5101          */
5102         synchronize_net();
5103         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5104 }
5105 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5106
5107 /*
5108  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5109  * the special handling of PFMEMALLOC skbs.
5110  */
5111 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5112 {
5113         switch (skb->protocol) {
5114         case htons(ETH_P_ARP):
5115         case htons(ETH_P_IP):
5116         case htons(ETH_P_IPV6):
5117         case htons(ETH_P_8021Q):
5118         case htons(ETH_P_8021AD):
5119                 return true;
5120         default:
5121                 return false;
5122         }
5123 }
5124
5125 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5126                              int *ret, struct net_device *orig_dev)
5127 {
5128         if (nf_hook_ingress_active(skb)) {
5129                 int ingress_retval;
5130
5131                 if (*pt_prev) {
5132                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5133                         *pt_prev = NULL;
5134                 }
5135
5136                 rcu_read_lock();
5137                 ingress_retval = nf_hook_ingress(skb);
5138                 rcu_read_unlock();
5139                 return ingress_retval;
5140         }
5141         return 0;
5142 }
5143
5144 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5145                                     struct packet_type **ppt_prev)
5146 {
5147         struct packet_type *ptype, *pt_prev;
5148         rx_handler_func_t *rx_handler;
5149         struct sk_buff *skb = *pskb;
5150         struct net_device *orig_dev;
5151         bool deliver_exact = false;
5152         int ret = NET_RX_DROP;
5153         __be16 type;
5154
5155         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5156
5157         trace_netif_receive_skb(skb);
5158
5159         orig_dev = skb->dev;
5160
5161         skb_reset_network_header(skb);
5162         if (!skb_transport_header_was_set(skb))
5163                 skb_reset_transport_header(skb);
5164         skb_reset_mac_len(skb);
5165
5166         pt_prev = NULL;
5167
5168 another_round:
5169         skb->skb_iif = skb->dev->ifindex;
5170
5171         __this_cpu_inc(softnet_data.processed);
5172
5173         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5174                 int ret2;
5175
5176                 preempt_disable();
5177                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5178                 preempt_enable();
5179
5180                 if (ret2 != XDP_PASS) {
5181                         ret = NET_RX_DROP;
5182                         goto out;
5183                 }
5184                 skb_reset_mac_len(skb);
5185         }
5186
5187         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5188             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5189                 skb = skb_vlan_untag(skb);
5190                 if (unlikely(!skb))
5191                         goto out;
5192         }
5193
5194         if (skb_skip_tc_classify(skb))
5195                 goto skip_classify;
5196
5197         if (pfmemalloc)
5198                 goto skip_taps;
5199
5200         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5201                 if (pt_prev)
5202                         ret = deliver_skb(skb, pt_prev, orig_dev);
5203                 pt_prev = ptype;
5204         }
5205
5206         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5207                 if (pt_prev)
5208                         ret = deliver_skb(skb, pt_prev, orig_dev);
5209                 pt_prev = ptype;
5210         }
5211
5212 skip_taps:
5213 #ifdef CONFIG_NET_INGRESS
5214         if (static_branch_unlikely(&ingress_needed_key)) {
5215                 bool another = false;
5216
5217                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5218                                          &another);
5219                 if (another)
5220                         goto another_round;
5221                 if (!skb)
5222                         goto out;
5223
5224                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5225                         goto out;
5226         }
5227 #endif
5228         skb_reset_redirect(skb);
5229 skip_classify:
5230         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5231                 goto drop;
5232
5233         if (skb_vlan_tag_present(skb)) {
5234                 if (pt_prev) {
5235                         ret = deliver_skb(skb, pt_prev, orig_dev);
5236                         pt_prev = NULL;
5237                 }
5238                 if (vlan_do_receive(&skb))
5239                         goto another_round;
5240                 else if (unlikely(!skb))
5241                         goto out;
5242         }
5243
5244         rx_handler = rcu_dereference(skb->dev->rx_handler);
5245         if (rx_handler) {
5246                 if (pt_prev) {
5247                         ret = deliver_skb(skb, pt_prev, orig_dev);
5248                         pt_prev = NULL;
5249                 }
5250                 switch (rx_handler(&skb)) {
5251                 case RX_HANDLER_CONSUMED:
5252                         ret = NET_RX_SUCCESS;
5253                         goto out;
5254                 case RX_HANDLER_ANOTHER:
5255                         goto another_round;
5256                 case RX_HANDLER_EXACT:
5257                         deliver_exact = true;
5258                 case RX_HANDLER_PASS:
5259                         break;
5260                 default:
5261                         BUG();
5262                 }
5263         }
5264
5265         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5266 check_vlan_id:
5267                 if (skb_vlan_tag_get_id(skb)) {
5268                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5269                          * find vlan device.
5270                          */
5271                         skb->pkt_type = PACKET_OTHERHOST;
5272                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5273                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5274                         /* Outer header is 802.1P with vlan 0, inner header is
5275                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5276                          * not find vlan dev for vlan id 0.
5277                          */
5278                         __vlan_hwaccel_clear_tag(skb);
5279                         skb = skb_vlan_untag(skb);
5280                         if (unlikely(!skb))
5281                                 goto out;
5282                         if (vlan_do_receive(&skb))
5283                                 /* After stripping off 802.1P header with vlan 0
5284                                  * vlan dev is found for inner header.
5285                                  */
5286                                 goto another_round;
5287                         else if (unlikely(!skb))
5288                                 goto out;
5289                         else
5290                                 /* We have stripped outer 802.1P vlan 0 header.
5291                                  * But could not find vlan dev.
5292                                  * check again for vlan id to set OTHERHOST.
5293                                  */
5294                                 goto check_vlan_id;
5295                 }
5296                 /* Note: we might in the future use prio bits
5297                  * and set skb->priority like in vlan_do_receive()
5298                  * For the time being, just ignore Priority Code Point
5299                  */
5300                 __vlan_hwaccel_clear_tag(skb);
5301         }
5302
5303         type = skb->protocol;
5304
5305         /* deliver only exact match when indicated */
5306         if (likely(!deliver_exact)) {
5307                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5308                                        &ptype_base[ntohs(type) &
5309                                                    PTYPE_HASH_MASK]);
5310         }
5311
5312         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5313                                &orig_dev->ptype_specific);
5314
5315         if (unlikely(skb->dev != orig_dev)) {
5316                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5317                                        &skb->dev->ptype_specific);
5318         }
5319
5320         if (pt_prev) {
5321                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5322                         goto drop;
5323                 *ppt_prev = pt_prev;
5324         } else {
5325 drop:
5326                 if (!deliver_exact)
5327                         atomic_long_inc(&skb->dev->rx_dropped);
5328                 else
5329                         atomic_long_inc(&skb->dev->rx_nohandler);
5330                 kfree_skb(skb);
5331                 /* Jamal, now you will not able to escape explaining
5332                  * me how you were going to use this. :-)
5333                  */
5334                 ret = NET_RX_DROP;
5335         }
5336
5337 out:
5338         /* The invariant here is that if *ppt_prev is not NULL
5339          * then skb should also be non-NULL.
5340          *
5341          * Apparently *ppt_prev assignment above holds this invariant due to
5342          * skb dereferencing near it.
5343          */
5344         *pskb = skb;
5345         return ret;
5346 }
5347
5348 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5349 {
5350         struct net_device *orig_dev = skb->dev;
5351         struct packet_type *pt_prev = NULL;
5352         int ret;
5353
5354         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5355         if (pt_prev)
5356                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5357                                          skb->dev, pt_prev, orig_dev);
5358         return ret;
5359 }
5360
5361 /**
5362  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5363  *      @skb: buffer to process
5364  *
5365  *      More direct receive version of netif_receive_skb().  It should
5366  *      only be used by callers that have a need to skip RPS and Generic XDP.
5367  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5368  *
5369  *      This function may only be called from softirq context and interrupts
5370  *      should be enabled.
5371  *
5372  *      Return values (usually ignored):
5373  *      NET_RX_SUCCESS: no congestion
5374  *      NET_RX_DROP: packet was dropped
5375  */
5376 int netif_receive_skb_core(struct sk_buff *skb)
5377 {
5378         int ret;
5379
5380         rcu_read_lock();
5381         ret = __netif_receive_skb_one_core(skb, false);
5382         rcu_read_unlock();
5383
5384         return ret;
5385 }
5386 EXPORT_SYMBOL(netif_receive_skb_core);
5387
5388 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5389                                                   struct packet_type *pt_prev,
5390                                                   struct net_device *orig_dev)
5391 {
5392         struct sk_buff *skb, *next;
5393
5394         if (!pt_prev)
5395                 return;
5396         if (list_empty(head))
5397                 return;
5398         if (pt_prev->list_func != NULL)
5399                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5400                                    ip_list_rcv, head, pt_prev, orig_dev);
5401         else
5402                 list_for_each_entry_safe(skb, next, head, list) {
5403                         skb_list_del_init(skb);
5404                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5405                 }
5406 }
5407
5408 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5409 {
5410         /* Fast-path assumptions:
5411          * - There is no RX handler.
5412          * - Only one packet_type matches.
5413          * If either of these fails, we will end up doing some per-packet
5414          * processing in-line, then handling the 'last ptype' for the whole
5415          * sublist.  This can't cause out-of-order delivery to any single ptype,
5416          * because the 'last ptype' must be constant across the sublist, and all
5417          * other ptypes are handled per-packet.
5418          */
5419         /* Current (common) ptype of sublist */
5420         struct packet_type *pt_curr = NULL;
5421         /* Current (common) orig_dev of sublist */
5422         struct net_device *od_curr = NULL;
5423         struct list_head sublist;
5424         struct sk_buff *skb, *next;
5425
5426         INIT_LIST_HEAD(&sublist);
5427         list_for_each_entry_safe(skb, next, head, list) {
5428                 struct net_device *orig_dev = skb->dev;
5429                 struct packet_type *pt_prev = NULL;
5430
5431                 skb_list_del_init(skb);
5432                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5433                 if (!pt_prev)
5434                         continue;
5435                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5436                         /* dispatch old sublist */
5437                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5438                         /* start new sublist */
5439                         INIT_LIST_HEAD(&sublist);
5440                         pt_curr = pt_prev;
5441                         od_curr = orig_dev;
5442                 }
5443                 list_add_tail(&skb->list, &sublist);
5444         }
5445
5446         /* dispatch final sublist */
5447         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5448 }
5449
5450 static int __netif_receive_skb(struct sk_buff *skb)
5451 {
5452         int ret;
5453
5454         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5455                 unsigned int noreclaim_flag;
5456
5457                 /*
5458                  * PFMEMALLOC skbs are special, they should
5459                  * - be delivered to SOCK_MEMALLOC sockets only
5460                  * - stay away from userspace
5461                  * - have bounded memory usage
5462                  *
5463                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5464                  * context down to all allocation sites.
5465                  */
5466                 noreclaim_flag = memalloc_noreclaim_save();
5467                 ret = __netif_receive_skb_one_core(skb, true);
5468                 memalloc_noreclaim_restore(noreclaim_flag);
5469         } else
5470                 ret = __netif_receive_skb_one_core(skb, false);
5471
5472         return ret;
5473 }
5474
5475 static void __netif_receive_skb_list(struct list_head *head)
5476 {
5477         unsigned long noreclaim_flag = 0;
5478         struct sk_buff *skb, *next;
5479         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5480
5481         list_for_each_entry_safe(skb, next, head, list) {
5482                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5483                         struct list_head sublist;
5484
5485                         /* Handle the previous sublist */
5486                         list_cut_before(&sublist, head, &skb->list);
5487                         if (!list_empty(&sublist))
5488                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5489                         pfmemalloc = !pfmemalloc;
5490                         /* See comments in __netif_receive_skb */
5491                         if (pfmemalloc)
5492                                 noreclaim_flag = memalloc_noreclaim_save();
5493                         else
5494                                 memalloc_noreclaim_restore(noreclaim_flag);
5495                 }
5496         }
5497         /* Handle the remaining sublist */
5498         if (!list_empty(head))
5499                 __netif_receive_skb_list_core(head, pfmemalloc);
5500         /* Restore pflags */
5501         if (pfmemalloc)
5502                 memalloc_noreclaim_restore(noreclaim_flag);
5503 }
5504
5505 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5506 {
5507         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5508         struct bpf_prog *new = xdp->prog;
5509         int ret = 0;
5510
5511         if (new) {
5512                 u32 i;
5513
5514                 mutex_lock(&new->aux->used_maps_mutex);
5515
5516                 /* generic XDP does not work with DEVMAPs that can
5517                  * have a bpf_prog installed on an entry
5518                  */
5519                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5520                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5521                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5522                                 mutex_unlock(&new->aux->used_maps_mutex);
5523                                 return -EINVAL;
5524                         }
5525                 }
5526
5527                 mutex_unlock(&new->aux->used_maps_mutex);
5528         }
5529
5530         switch (xdp->command) {
5531         case XDP_SETUP_PROG:
5532                 rcu_assign_pointer(dev->xdp_prog, new);
5533                 if (old)
5534                         bpf_prog_put(old);
5535
5536                 if (old && !new) {
5537                         static_branch_dec(&generic_xdp_needed_key);
5538                 } else if (new && !old) {
5539                         static_branch_inc(&generic_xdp_needed_key);
5540                         dev_disable_lro(dev);
5541                         dev_disable_gro_hw(dev);
5542                 }
5543                 break;
5544
5545         default:
5546                 ret = -EINVAL;
5547                 break;
5548         }
5549
5550         return ret;
5551 }
5552
5553 static int netif_receive_skb_internal(struct sk_buff *skb)
5554 {
5555         int ret;
5556
5557         net_timestamp_check(netdev_tstamp_prequeue, skb);
5558
5559         if (skb_defer_rx_timestamp(skb))
5560                 return NET_RX_SUCCESS;
5561
5562         rcu_read_lock();
5563 #ifdef CONFIG_RPS
5564         if (static_branch_unlikely(&rps_needed)) {
5565                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5566                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5567
5568                 if (cpu >= 0) {
5569                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5570                         rcu_read_unlock();
5571                         return ret;
5572                 }
5573         }
5574 #endif
5575         ret = __netif_receive_skb(skb);
5576         rcu_read_unlock();
5577         return ret;
5578 }
5579
5580 static void netif_receive_skb_list_internal(struct list_head *head)
5581 {
5582         struct sk_buff *skb, *next;
5583         struct list_head sublist;
5584
5585         INIT_LIST_HEAD(&sublist);
5586         list_for_each_entry_safe(skb, next, head, list) {
5587                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5588                 skb_list_del_init(skb);
5589                 if (!skb_defer_rx_timestamp(skb))
5590                         list_add_tail(&skb->list, &sublist);
5591         }
5592         list_splice_init(&sublist, head);
5593
5594         rcu_read_lock();
5595 #ifdef CONFIG_RPS
5596         if (static_branch_unlikely(&rps_needed)) {
5597                 list_for_each_entry_safe(skb, next, head, list) {
5598                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5599                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5600
5601                         if (cpu >= 0) {
5602                                 /* Will be handled, remove from list */
5603                                 skb_list_del_init(skb);
5604                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5605                         }
5606                 }
5607         }
5608 #endif
5609         __netif_receive_skb_list(head);
5610         rcu_read_unlock();
5611 }
5612
5613 /**
5614  *      netif_receive_skb - process receive buffer from network
5615  *      @skb: buffer to process
5616  *
5617  *      netif_receive_skb() is the main receive data processing function.
5618  *      It always succeeds. The buffer may be dropped during processing
5619  *      for congestion control or by the protocol layers.
5620  *
5621  *      This function may only be called from softirq context and interrupts
5622  *      should be enabled.
5623  *
5624  *      Return values (usually ignored):
5625  *      NET_RX_SUCCESS: no congestion
5626  *      NET_RX_DROP: packet was dropped
5627  */
5628 int netif_receive_skb(struct sk_buff *skb)
5629 {
5630         int ret;
5631
5632         trace_netif_receive_skb_entry(skb);
5633
5634         ret = netif_receive_skb_internal(skb);
5635         trace_netif_receive_skb_exit(ret);
5636
5637         return ret;
5638 }
5639 EXPORT_SYMBOL(netif_receive_skb);
5640
5641 /**
5642  *      netif_receive_skb_list - process many receive buffers from network
5643  *      @head: list of skbs to process.
5644  *
5645  *      Since return value of netif_receive_skb() is normally ignored, and
5646  *      wouldn't be meaningful for a list, this function returns void.
5647  *
5648  *      This function may only be called from softirq context and interrupts
5649  *      should be enabled.
5650  */
5651 void netif_receive_skb_list(struct list_head *head)
5652 {
5653         struct sk_buff *skb;
5654
5655         if (list_empty(head))
5656                 return;
5657         if (trace_netif_receive_skb_list_entry_enabled()) {
5658                 list_for_each_entry(skb, head, list)
5659                         trace_netif_receive_skb_list_entry(skb);
5660         }
5661         netif_receive_skb_list_internal(head);
5662         trace_netif_receive_skb_list_exit(0);
5663 }
5664 EXPORT_SYMBOL(netif_receive_skb_list);
5665
5666 static DEFINE_PER_CPU(struct work_struct, flush_works);
5667
5668 /* Network device is going away, flush any packets still pending */
5669 static void flush_backlog(struct work_struct *work)
5670 {
5671         struct sk_buff *skb, *tmp;
5672         struct softnet_data *sd;
5673
5674         local_bh_disable();
5675         sd = this_cpu_ptr(&softnet_data);
5676
5677         local_irq_disable();
5678         rps_lock(sd);
5679         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5680                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5681                         __skb_unlink(skb, &sd->input_pkt_queue);
5682                         dev_kfree_skb_irq(skb);
5683                         input_queue_head_incr(sd);
5684                 }
5685         }
5686         rps_unlock(sd);
5687         local_irq_enable();
5688
5689         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5690                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5691                         __skb_unlink(skb, &sd->process_queue);
5692                         kfree_skb(skb);
5693                         input_queue_head_incr(sd);
5694                 }
5695         }
5696         local_bh_enable();
5697 }
5698
5699 static bool flush_required(int cpu)
5700 {
5701 #if IS_ENABLED(CONFIG_RPS)
5702         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5703         bool do_flush;
5704
5705         local_irq_disable();
5706         rps_lock(sd);
5707
5708         /* as insertion into process_queue happens with the rps lock held,
5709          * process_queue access may race only with dequeue
5710          */
5711         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5712                    !skb_queue_empty_lockless(&sd->process_queue);
5713         rps_unlock(sd);
5714         local_irq_enable();
5715
5716         return do_flush;
5717 #endif
5718         /* without RPS we can't safely check input_pkt_queue: during a
5719          * concurrent remote skb_queue_splice() we can detect as empty both
5720          * input_pkt_queue and process_queue even if the latter could end-up
5721          * containing a lot of packets.
5722          */
5723         return true;
5724 }
5725
5726 static void flush_all_backlogs(void)
5727 {
5728         static cpumask_t flush_cpus;
5729         unsigned int cpu;
5730
5731         /* since we are under rtnl lock protection we can use static data
5732          * for the cpumask and avoid allocating on stack the possibly
5733          * large mask
5734          */
5735         ASSERT_RTNL();
5736
5737         get_online_cpus();
5738
5739         cpumask_clear(&flush_cpus);
5740         for_each_online_cpu(cpu) {
5741                 if (flush_required(cpu)) {
5742                         queue_work_on(cpu, system_highpri_wq,
5743                                       per_cpu_ptr(&flush_works, cpu));
5744                         cpumask_set_cpu(cpu, &flush_cpus);
5745                 }
5746         }
5747
5748         /* we can have in flight packet[s] on the cpus we are not flushing,
5749          * synchronize_net() in rollback_registered_many() will take care of
5750          * them
5751          */
5752         for_each_cpu(cpu, &flush_cpus)
5753                 flush_work(per_cpu_ptr(&flush_works, cpu));
5754
5755         put_online_cpus();
5756 }
5757
5758 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5759 static void gro_normal_list(struct napi_struct *napi)
5760 {
5761         if (!napi->rx_count)
5762                 return;
5763         netif_receive_skb_list_internal(&napi->rx_list);
5764         INIT_LIST_HEAD(&napi->rx_list);
5765         napi->rx_count = 0;
5766 }
5767
5768 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5769  * pass the whole batch up to the stack.
5770  */
5771 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5772 {
5773         list_add_tail(&skb->list, &napi->rx_list);
5774         napi->rx_count += segs;
5775         if (napi->rx_count >= gro_normal_batch)
5776                 gro_normal_list(napi);
5777 }
5778
5779 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5780 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5781 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5782 {
5783         struct packet_offload *ptype;
5784         __be16 type = skb->protocol;
5785         struct list_head *head = &offload_base;
5786         int err = -ENOENT;
5787
5788         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5789
5790         if (NAPI_GRO_CB(skb)->count == 1) {
5791                 skb_shinfo(skb)->gso_size = 0;
5792                 goto out;
5793         }
5794
5795         rcu_read_lock();
5796         list_for_each_entry_rcu(ptype, head, list) {
5797                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5798                         continue;
5799
5800                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5801                                          ipv6_gro_complete, inet_gro_complete,
5802                                          skb, 0);
5803                 break;
5804         }
5805         rcu_read_unlock();
5806
5807         if (err) {
5808                 WARN_ON(&ptype->list == head);
5809                 kfree_skb(skb);
5810                 return NET_RX_SUCCESS;
5811         }
5812
5813 out:
5814         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5815         return NET_RX_SUCCESS;
5816 }
5817
5818 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5819                                    bool flush_old)
5820 {
5821         struct list_head *head = &napi->gro_hash[index].list;
5822         struct sk_buff *skb, *p;
5823
5824         list_for_each_entry_safe_reverse(skb, p, head, list) {
5825                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5826                         return;
5827                 skb_list_del_init(skb);
5828                 napi_gro_complete(napi, skb);
5829                 napi->gro_hash[index].count--;
5830         }
5831
5832         if (!napi->gro_hash[index].count)
5833                 __clear_bit(index, &napi->gro_bitmask);
5834 }
5835
5836 /* napi->gro_hash[].list contains packets ordered by age.
5837  * youngest packets at the head of it.
5838  * Complete skbs in reverse order to reduce latencies.
5839  */
5840 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5841 {
5842         unsigned long bitmask = napi->gro_bitmask;
5843         unsigned int i, base = ~0U;
5844
5845         while ((i = ffs(bitmask)) != 0) {
5846                 bitmask >>= i;
5847                 base += i;
5848                 __napi_gro_flush_chain(napi, base, flush_old);
5849         }
5850 }
5851 EXPORT_SYMBOL(napi_gro_flush);
5852
5853 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5854                                           struct sk_buff *skb)
5855 {
5856         unsigned int maclen = skb->dev->hard_header_len;
5857         u32 hash = skb_get_hash_raw(skb);
5858         struct list_head *head;
5859         struct sk_buff *p;
5860
5861         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5862         list_for_each_entry(p, head, list) {
5863                 unsigned long diffs;
5864
5865                 NAPI_GRO_CB(p)->flush = 0;
5866
5867                 if (hash != skb_get_hash_raw(p)) {
5868                         NAPI_GRO_CB(p)->same_flow = 0;
5869                         continue;
5870                 }
5871
5872                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5873                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5874                 if (skb_vlan_tag_present(p))
5875                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5876                 diffs |= skb_metadata_dst_cmp(p, skb);
5877                 diffs |= skb_metadata_differs(p, skb);
5878                 if (maclen == ETH_HLEN)
5879                         diffs |= compare_ether_header(skb_mac_header(p),
5880                                                       skb_mac_header(skb));
5881                 else if (!diffs)
5882                         diffs = memcmp(skb_mac_header(p),
5883                                        skb_mac_header(skb),
5884                                        maclen);
5885
5886                 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5887 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5888                 if (!diffs) {
5889                         struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5890                         struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
5891
5892                         diffs |= (!!p_ext) ^ (!!skb_ext);
5893                         if (!diffs && unlikely(skb_ext))
5894                                 diffs |= p_ext->chain ^ skb_ext->chain;
5895                 }
5896 #endif
5897
5898                 NAPI_GRO_CB(p)->same_flow = !diffs;
5899         }
5900
5901         return head;
5902 }
5903
5904 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5905 {
5906         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5907         const skb_frag_t *frag0 = &pinfo->frags[0];
5908
5909         NAPI_GRO_CB(skb)->data_offset = 0;
5910         NAPI_GRO_CB(skb)->frag0 = NULL;
5911         NAPI_GRO_CB(skb)->frag0_len = 0;
5912
5913         if (!skb_headlen(skb) && pinfo->nr_frags &&
5914             !PageHighMem(skb_frag_page(frag0)) &&
5915             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5916                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5917                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5918                                                     skb_frag_size(frag0),
5919                                                     skb->end - skb->tail);
5920         }
5921 }
5922
5923 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5924 {
5925         struct skb_shared_info *pinfo = skb_shinfo(skb);
5926
5927         BUG_ON(skb->end - skb->tail < grow);
5928
5929         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5930
5931         skb->data_len -= grow;
5932         skb->tail += grow;
5933
5934         skb_frag_off_add(&pinfo->frags[0], grow);
5935         skb_frag_size_sub(&pinfo->frags[0], grow);
5936
5937         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5938                 skb_frag_unref(skb, 0);
5939                 memmove(pinfo->frags, pinfo->frags + 1,
5940                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5941         }
5942 }
5943
5944 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5945 {
5946         struct sk_buff *oldest;
5947
5948         oldest = list_last_entry(head, struct sk_buff, list);
5949
5950         /* We are called with head length >= MAX_GRO_SKBS, so this is
5951          * impossible.
5952          */
5953         if (WARN_ON_ONCE(!oldest))
5954                 return;
5955
5956         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5957          * SKB to the chain.
5958          */
5959         skb_list_del_init(oldest);
5960         napi_gro_complete(napi, oldest);
5961 }
5962
5963 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5964                                                            struct sk_buff *));
5965 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5966                                                            struct sk_buff *));
5967 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5968 {
5969         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5970         struct list_head *head = &offload_base;
5971         struct packet_offload *ptype;
5972         __be16 type = skb->protocol;
5973         struct list_head *gro_head;
5974         struct sk_buff *pp = NULL;
5975         enum gro_result ret;
5976         int same_flow;
5977         int grow;
5978
5979         if (netif_elide_gro(skb->dev))
5980                 goto normal;
5981
5982         gro_head = gro_list_prepare(napi, skb);
5983
5984         rcu_read_lock();
5985         list_for_each_entry_rcu(ptype, head, list) {
5986                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5987                         continue;
5988
5989                 skb_set_network_header(skb, skb_gro_offset(skb));
5990                 skb_reset_mac_len(skb);
5991                 NAPI_GRO_CB(skb)->same_flow = 0;
5992                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5993                 NAPI_GRO_CB(skb)->free = 0;
5994                 NAPI_GRO_CB(skb)->encap_mark = 0;
5995                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5996                 NAPI_GRO_CB(skb)->is_fou = 0;
5997                 NAPI_GRO_CB(skb)->is_atomic = 1;
5998                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5999
6000                 /* Setup for GRO checksum validation */
6001                 switch (skb->ip_summed) {
6002                 case CHECKSUM_COMPLETE:
6003                         NAPI_GRO_CB(skb)->csum = skb->csum;
6004                         NAPI_GRO_CB(skb)->csum_valid = 1;
6005                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6006                         break;
6007                 case CHECKSUM_UNNECESSARY:
6008                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6009                         NAPI_GRO_CB(skb)->csum_valid = 0;
6010                         break;
6011                 default:
6012                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6013                         NAPI_GRO_CB(skb)->csum_valid = 0;
6014                 }
6015
6016                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6017                                         ipv6_gro_receive, inet_gro_receive,
6018                                         gro_head, skb);
6019                 break;
6020         }
6021         rcu_read_unlock();
6022
6023         if (&ptype->list == head)
6024                 goto normal;
6025
6026         if (PTR_ERR(pp) == -EINPROGRESS) {
6027                 ret = GRO_CONSUMED;
6028                 goto ok;
6029         }
6030
6031         same_flow = NAPI_GRO_CB(skb)->same_flow;
6032         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6033
6034         if (pp) {
6035                 skb_list_del_init(pp);
6036                 napi_gro_complete(napi, pp);
6037                 napi->gro_hash[hash].count--;
6038         }
6039
6040         if (same_flow)
6041                 goto ok;
6042
6043         if (NAPI_GRO_CB(skb)->flush)
6044                 goto normal;
6045
6046         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6047                 gro_flush_oldest(napi, gro_head);
6048         } else {
6049                 napi->gro_hash[hash].count++;
6050         }
6051         NAPI_GRO_CB(skb)->count = 1;
6052         NAPI_GRO_CB(skb)->age = jiffies;
6053         NAPI_GRO_CB(skb)->last = skb;
6054         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6055         list_add(&skb->list, gro_head);
6056         ret = GRO_HELD;
6057
6058 pull:
6059         grow = skb_gro_offset(skb) - skb_headlen(skb);
6060         if (grow > 0)
6061                 gro_pull_from_frag0(skb, grow);
6062 ok:
6063         if (napi->gro_hash[hash].count) {
6064                 if (!test_bit(hash, &napi->gro_bitmask))
6065                         __set_bit(hash, &napi->gro_bitmask);
6066         } else if (test_bit(hash, &napi->gro_bitmask)) {
6067                 __clear_bit(hash, &napi->gro_bitmask);
6068         }
6069
6070         return ret;
6071
6072 normal:
6073         ret = GRO_NORMAL;
6074         goto pull;
6075 }
6076
6077 struct packet_offload *gro_find_receive_by_type(__be16 type)
6078 {
6079         struct list_head *offload_head = &offload_base;
6080         struct packet_offload *ptype;
6081
6082         list_for_each_entry_rcu(ptype, offload_head, list) {
6083                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6084                         continue;
6085                 return ptype;
6086         }
6087         return NULL;
6088 }
6089 EXPORT_SYMBOL(gro_find_receive_by_type);
6090
6091 struct packet_offload *gro_find_complete_by_type(__be16 type)
6092 {
6093         struct list_head *offload_head = &offload_base;
6094         struct packet_offload *ptype;
6095
6096         list_for_each_entry_rcu(ptype, offload_head, list) {
6097                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6098                         continue;
6099                 return ptype;
6100         }
6101         return NULL;
6102 }
6103 EXPORT_SYMBOL(gro_find_complete_by_type);
6104
6105 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6106 {
6107         skb_dst_drop(skb);
6108         skb_ext_put(skb);
6109         kmem_cache_free(skbuff_head_cache, skb);
6110 }
6111
6112 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6113                                     struct sk_buff *skb,
6114                                     gro_result_t ret)
6115 {
6116         switch (ret) {
6117         case GRO_NORMAL:
6118                 gro_normal_one(napi, skb, 1);
6119                 break;
6120
6121         case GRO_DROP:
6122                 kfree_skb(skb);
6123                 break;
6124
6125         case GRO_MERGED_FREE:
6126                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6127                         napi_skb_free_stolen_head(skb);
6128                 else
6129                         __kfree_skb(skb);
6130                 break;
6131
6132         case GRO_HELD:
6133         case GRO_MERGED:
6134         case GRO_CONSUMED:
6135                 break;
6136         }
6137
6138         return ret;
6139 }
6140
6141 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6142 {
6143         gro_result_t ret;
6144
6145         skb_mark_napi_id(skb, napi);
6146         trace_napi_gro_receive_entry(skb);
6147
6148         skb_gro_reset_offset(skb, 0);
6149
6150         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6151         trace_napi_gro_receive_exit(ret);
6152
6153         return ret;
6154 }
6155 EXPORT_SYMBOL(napi_gro_receive);
6156
6157 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6158 {
6159         if (unlikely(skb->pfmemalloc)) {
6160                 consume_skb(skb);
6161                 return;
6162         }
6163         __skb_pull(skb, skb_headlen(skb));
6164         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6165         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6166         __vlan_hwaccel_clear_tag(skb);
6167         skb->dev = napi->dev;
6168         skb->skb_iif = 0;
6169
6170         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6171         skb->pkt_type = PACKET_HOST;
6172
6173         skb->encapsulation = 0;
6174         skb_shinfo(skb)->gso_type = 0;
6175         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6176         skb_ext_reset(skb);
6177         nf_reset_ct(skb);
6178
6179         napi->skb = skb;
6180 }
6181
6182 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6183 {
6184         struct sk_buff *skb = napi->skb;
6185
6186         if (!skb) {
6187                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6188                 if (skb) {
6189                         napi->skb = skb;
6190                         skb_mark_napi_id(skb, napi);
6191                 }
6192         }
6193         return skb;
6194 }
6195 EXPORT_SYMBOL(napi_get_frags);
6196
6197 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6198                                       struct sk_buff *skb,
6199                                       gro_result_t ret)
6200 {
6201         switch (ret) {
6202         case GRO_NORMAL:
6203         case GRO_HELD:
6204                 __skb_push(skb, ETH_HLEN);
6205                 skb->protocol = eth_type_trans(skb, skb->dev);
6206                 if (ret == GRO_NORMAL)
6207                         gro_normal_one(napi, skb, 1);
6208                 break;
6209
6210         case GRO_DROP:
6211                 napi_reuse_skb(napi, skb);
6212                 break;
6213
6214         case GRO_MERGED_FREE:
6215                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6216                         napi_skb_free_stolen_head(skb);
6217                 else
6218                         napi_reuse_skb(napi, skb);
6219                 break;
6220
6221         case GRO_MERGED:
6222         case GRO_CONSUMED:
6223                 break;
6224         }
6225
6226         return ret;
6227 }
6228
6229 /* Upper GRO stack assumes network header starts at gro_offset=0
6230  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6231  * We copy ethernet header into skb->data to have a common layout.
6232  */
6233 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6234 {
6235         struct sk_buff *skb = napi->skb;
6236         const struct ethhdr *eth;
6237         unsigned int hlen = sizeof(*eth);
6238
6239         napi->skb = NULL;
6240
6241         skb_reset_mac_header(skb);
6242         skb_gro_reset_offset(skb, hlen);
6243
6244         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6245                 eth = skb_gro_header_slow(skb, hlen, 0);
6246                 if (unlikely(!eth)) {
6247                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6248                                              __func__, napi->dev->name);
6249                         napi_reuse_skb(napi, skb);
6250                         return NULL;
6251                 }
6252         } else {
6253                 eth = (const struct ethhdr *)skb->data;
6254                 gro_pull_from_frag0(skb, hlen);
6255                 NAPI_GRO_CB(skb)->frag0 += hlen;
6256                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6257         }
6258         __skb_pull(skb, hlen);
6259
6260         /*
6261          * This works because the only protocols we care about don't require
6262          * special handling.
6263          * We'll fix it up properly in napi_frags_finish()
6264          */
6265         skb->protocol = eth->h_proto;
6266
6267         return skb;
6268 }
6269
6270 gro_result_t napi_gro_frags(struct napi_struct *napi)
6271 {
6272         gro_result_t ret;
6273         struct sk_buff *skb = napi_frags_skb(napi);
6274
6275         if (!skb)
6276                 return GRO_DROP;
6277
6278         trace_napi_gro_frags_entry(skb);
6279
6280         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6281         trace_napi_gro_frags_exit(ret);
6282
6283         return ret;
6284 }
6285 EXPORT_SYMBOL(napi_gro_frags);
6286
6287 /* Compute the checksum from gro_offset and return the folded value
6288  * after adding in any pseudo checksum.
6289  */
6290 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6291 {
6292         __wsum wsum;
6293         __sum16 sum;
6294
6295         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6296
6297         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6298         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6299         /* See comments in __skb_checksum_complete(). */
6300         if (likely(!sum)) {
6301                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6302                     !skb->csum_complete_sw)
6303                         netdev_rx_csum_fault(skb->dev, skb);
6304         }
6305
6306         NAPI_GRO_CB(skb)->csum = wsum;
6307         NAPI_GRO_CB(skb)->csum_valid = 1;
6308
6309         return sum;
6310 }
6311 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6312
6313 static void net_rps_send_ipi(struct softnet_data *remsd)
6314 {
6315 #ifdef CONFIG_RPS
6316         while (remsd) {
6317                 struct softnet_data *next = remsd->rps_ipi_next;
6318
6319                 if (cpu_online(remsd->cpu))
6320                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6321                 remsd = next;
6322         }
6323 #endif
6324 }
6325
6326 /*
6327  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6328  * Note: called with local irq disabled, but exits with local irq enabled.
6329  */
6330 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6331 {
6332 #ifdef CONFIG_RPS
6333         struct softnet_data *remsd = sd->rps_ipi_list;
6334
6335         if (remsd) {
6336                 sd->rps_ipi_list = NULL;
6337
6338                 local_irq_enable();
6339
6340                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6341                 net_rps_send_ipi(remsd);
6342         } else
6343 #endif
6344                 local_irq_enable();
6345 }
6346
6347 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6348 {
6349 #ifdef CONFIG_RPS
6350         return sd->rps_ipi_list != NULL;
6351 #else
6352         return false;
6353 #endif
6354 }
6355
6356 static int process_backlog(struct napi_struct *napi, int quota)
6357 {
6358         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6359         bool again = true;
6360         int work = 0;
6361
6362         /* Check if we have pending ipi, its better to send them now,
6363          * not waiting net_rx_action() end.
6364          */
6365         if (sd_has_rps_ipi_waiting(sd)) {
6366                 local_irq_disable();
6367                 net_rps_action_and_irq_enable(sd);
6368         }
6369
6370         napi->weight = dev_rx_weight;
6371         while (again) {
6372                 struct sk_buff *skb;
6373
6374                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6375                         rcu_read_lock();
6376                         __netif_receive_skb(skb);
6377                         rcu_read_unlock();
6378                         input_queue_head_incr(sd);
6379                         if (++work >= quota)
6380                                 return work;
6381
6382                 }
6383
6384                 local_irq_disable();
6385                 rps_lock(sd);
6386                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6387                         /*
6388                          * Inline a custom version of __napi_complete().
6389                          * only current cpu owns and manipulates this napi,
6390                          * and NAPI_STATE_SCHED is the only possible flag set
6391                          * on backlog.
6392                          * We can use a plain write instead of clear_bit(),
6393                          * and we dont need an smp_mb() memory barrier.
6394                          */
6395                         napi->state = 0;
6396                         again = false;
6397                 } else {
6398                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6399                                                    &sd->process_queue);
6400                 }
6401                 rps_unlock(sd);
6402                 local_irq_enable();
6403         }
6404
6405         return work;
6406 }
6407
6408 /**
6409  * __napi_schedule - schedule for receive
6410  * @n: entry to schedule
6411  *
6412  * The entry's receive function will be scheduled to run.
6413  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6414  */
6415 void __napi_schedule(struct napi_struct *n)
6416 {
6417         unsigned long flags;
6418
6419         local_irq_save(flags);
6420         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6421         local_irq_restore(flags);
6422 }
6423 EXPORT_SYMBOL(__napi_schedule);
6424
6425 /**
6426  *      napi_schedule_prep - check if napi can be scheduled
6427  *      @n: napi context
6428  *
6429  * Test if NAPI routine is already running, and if not mark
6430  * it as running.  This is used as a condition variable to
6431  * insure only one NAPI poll instance runs.  We also make
6432  * sure there is no pending NAPI disable.
6433  */
6434 bool napi_schedule_prep(struct napi_struct *n)
6435 {
6436         unsigned long val, new;
6437
6438         do {
6439                 val = READ_ONCE(n->state);
6440                 if (unlikely(val & NAPIF_STATE_DISABLE))
6441                         return false;
6442                 new = val | NAPIF_STATE_SCHED;
6443
6444                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6445                  * This was suggested by Alexander Duyck, as compiler
6446                  * emits better code than :
6447                  * if (val & NAPIF_STATE_SCHED)
6448                  *     new |= NAPIF_STATE_MISSED;
6449                  */
6450                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6451                                                    NAPIF_STATE_MISSED;
6452         } while (cmpxchg(&n->state, val, new) != val);
6453
6454         return !(val & NAPIF_STATE_SCHED);
6455 }
6456 EXPORT_SYMBOL(napi_schedule_prep);
6457
6458 /**
6459  * __napi_schedule_irqoff - schedule for receive
6460  * @n: entry to schedule
6461  *
6462  * Variant of __napi_schedule() assuming hard irqs are masked.
6463  *
6464  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6465  * because the interrupt disabled assumption might not be true
6466  * due to force-threaded interrupts and spinlock substitution.
6467  */
6468 void __napi_schedule_irqoff(struct napi_struct *n)
6469 {
6470         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6471                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6472         else
6473                 __napi_schedule(n);
6474 }
6475 EXPORT_SYMBOL(__napi_schedule_irqoff);
6476
6477 bool napi_complete_done(struct napi_struct *n, int work_done)
6478 {
6479         unsigned long flags, val, new, timeout = 0;
6480         bool ret = true;
6481
6482         /*
6483          * 1) Don't let napi dequeue from the cpu poll list
6484          *    just in case its running on a different cpu.
6485          * 2) If we are busy polling, do nothing here, we have
6486          *    the guarantee we will be called later.
6487          */
6488         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6489                                  NAPIF_STATE_IN_BUSY_POLL)))
6490                 return false;
6491
6492         if (work_done) {
6493                 if (n->gro_bitmask)
6494                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6495                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6496         }
6497         if (n->defer_hard_irqs_count > 0) {
6498                 n->defer_hard_irqs_count--;
6499                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6500                 if (timeout)
6501                         ret = false;
6502         }
6503         if (n->gro_bitmask) {
6504                 /* When the NAPI instance uses a timeout and keeps postponing
6505                  * it, we need to bound somehow the time packets are kept in
6506                  * the GRO layer
6507                  */
6508                 napi_gro_flush(n, !!timeout);
6509         }
6510
6511         gro_normal_list(n);
6512
6513         if (unlikely(!list_empty(&n->poll_list))) {
6514                 /* If n->poll_list is not empty, we need to mask irqs */
6515                 local_irq_save(flags);
6516                 list_del_init(&n->poll_list);
6517                 local_irq_restore(flags);
6518         }
6519
6520         do {
6521                 val = READ_ONCE(n->state);
6522
6523                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6524
6525                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6526
6527                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6528                  * because we will call napi->poll() one more time.
6529                  * This C code was suggested by Alexander Duyck to help gcc.
6530                  */
6531                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6532                                                     NAPIF_STATE_SCHED;
6533         } while (cmpxchg(&n->state, val, new) != val);
6534
6535         if (unlikely(val & NAPIF_STATE_MISSED)) {
6536                 __napi_schedule(n);
6537                 return false;
6538         }
6539
6540         if (timeout)
6541                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6542                               HRTIMER_MODE_REL_PINNED);
6543         return ret;
6544 }
6545 EXPORT_SYMBOL(napi_complete_done);
6546
6547 /* must be called under rcu_read_lock(), as we dont take a reference */
6548 static struct napi_struct *napi_by_id(unsigned int napi_id)
6549 {
6550         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6551         struct napi_struct *napi;
6552
6553         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6554                 if (napi->napi_id == napi_id)
6555                         return napi;
6556
6557         return NULL;
6558 }
6559
6560 #if defined(CONFIG_NET_RX_BUSY_POLL)
6561
6562 #define BUSY_POLL_BUDGET 8
6563
6564 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6565 {
6566         int rc;
6567
6568         /* Busy polling means there is a high chance device driver hard irq
6569          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6570          * set in napi_schedule_prep().
6571          * Since we are about to call napi->poll() once more, we can safely
6572          * clear NAPI_STATE_MISSED.
6573          *
6574          * Note: x86 could use a single "lock and ..." instruction
6575          * to perform these two clear_bit()
6576          */
6577         clear_bit(NAPI_STATE_MISSED, &napi->state);
6578         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6579
6580         local_bh_disable();
6581
6582         /* All we really want here is to re-enable device interrupts.
6583          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6584          */
6585         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6586         /* We can't gro_normal_list() here, because napi->poll() might have
6587          * rearmed the napi (napi_complete_done()) in which case it could
6588          * already be running on another CPU.
6589          */
6590         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6591         netpoll_poll_unlock(have_poll_lock);
6592         if (rc == BUSY_POLL_BUDGET) {
6593                 /* As the whole budget was spent, we still own the napi so can
6594                  * safely handle the rx_list.
6595                  */
6596                 gro_normal_list(napi);
6597                 __napi_schedule(napi);
6598         }
6599         local_bh_enable();
6600 }
6601
6602 void napi_busy_loop(unsigned int napi_id,
6603                     bool (*loop_end)(void *, unsigned long),
6604                     void *loop_end_arg)
6605 {
6606         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6607         int (*napi_poll)(struct napi_struct *napi, int budget);
6608         void *have_poll_lock = NULL;
6609         struct napi_struct *napi;
6610
6611 restart:
6612         napi_poll = NULL;
6613
6614         rcu_read_lock();
6615
6616         napi = napi_by_id(napi_id);
6617         if (!napi)
6618                 goto out;
6619
6620         preempt_disable();
6621         for (;;) {
6622                 int work = 0;
6623
6624                 local_bh_disable();
6625                 if (!napi_poll) {
6626                         unsigned long val = READ_ONCE(napi->state);
6627
6628                         /* If multiple threads are competing for this napi,
6629                          * we avoid dirtying napi->state as much as we can.
6630                          */
6631                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6632                                    NAPIF_STATE_IN_BUSY_POLL))
6633                                 goto count;
6634                         if (cmpxchg(&napi->state, val,
6635                                     val | NAPIF_STATE_IN_BUSY_POLL |
6636                                           NAPIF_STATE_SCHED) != val)
6637                                 goto count;
6638                         have_poll_lock = netpoll_poll_lock(napi);
6639                         napi_poll = napi->poll;
6640                 }
6641                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6642                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6643                 gro_normal_list(napi);
6644 count:
6645                 if (work > 0)
6646                         __NET_ADD_STATS(dev_net(napi->dev),
6647                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6648                 local_bh_enable();
6649
6650                 if (!loop_end || loop_end(loop_end_arg, start_time))
6651                         break;
6652
6653                 if (unlikely(need_resched())) {
6654                         if (napi_poll)
6655                                 busy_poll_stop(napi, have_poll_lock);
6656                         preempt_enable();
6657                         rcu_read_unlock();
6658                         cond_resched();
6659                         if (loop_end(loop_end_arg, start_time))
6660                                 return;
6661                         goto restart;
6662                 }
6663                 cpu_relax();
6664         }
6665         if (napi_poll)
6666                 busy_poll_stop(napi, have_poll_lock);
6667         preempt_enable();
6668 out:
6669         rcu_read_unlock();
6670 }
6671 EXPORT_SYMBOL(napi_busy_loop);
6672
6673 #endif /* CONFIG_NET_RX_BUSY_POLL */
6674
6675 static void napi_hash_add(struct napi_struct *napi)
6676 {
6677         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6678                 return;
6679
6680         spin_lock(&napi_hash_lock);
6681
6682         /* 0..NR_CPUS range is reserved for sender_cpu use */
6683         do {
6684                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6685                         napi_gen_id = MIN_NAPI_ID;
6686         } while (napi_by_id(napi_gen_id));
6687         napi->napi_id = napi_gen_id;
6688
6689         hlist_add_head_rcu(&napi->napi_hash_node,
6690                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6691
6692         spin_unlock(&napi_hash_lock);
6693 }
6694
6695 /* Warning : caller is responsible to make sure rcu grace period
6696  * is respected before freeing memory containing @napi
6697  */
6698 static void napi_hash_del(struct napi_struct *napi)
6699 {
6700         spin_lock(&napi_hash_lock);
6701
6702         hlist_del_init_rcu(&napi->napi_hash_node);
6703
6704         spin_unlock(&napi_hash_lock);
6705 }
6706
6707 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6708 {
6709         struct napi_struct *napi;
6710
6711         napi = container_of(timer, struct napi_struct, timer);
6712
6713         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6714          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6715          */
6716         if (!napi_disable_pending(napi) &&
6717             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6718                 __napi_schedule_irqoff(napi);
6719
6720         return HRTIMER_NORESTART;
6721 }
6722
6723 static void init_gro_hash(struct napi_struct *napi)
6724 {
6725         int i;
6726
6727         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6728                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6729                 napi->gro_hash[i].count = 0;
6730         }
6731         napi->gro_bitmask = 0;
6732 }
6733
6734 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6735                     int (*poll)(struct napi_struct *, int), int weight)
6736 {
6737         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6738                 return;
6739
6740         INIT_LIST_HEAD(&napi->poll_list);
6741         INIT_HLIST_NODE(&napi->napi_hash_node);
6742         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6743         napi->timer.function = napi_watchdog;
6744         init_gro_hash(napi);
6745         napi->skb = NULL;
6746         INIT_LIST_HEAD(&napi->rx_list);
6747         napi->rx_count = 0;
6748         napi->poll = poll;
6749         if (weight > NAPI_POLL_WEIGHT)
6750                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6751                                 weight);
6752         napi->weight = weight;
6753         napi->dev = dev;
6754 #ifdef CONFIG_NETPOLL
6755         napi->poll_owner = -1;
6756 #endif
6757         set_bit(NAPI_STATE_SCHED, &napi->state);
6758         set_bit(NAPI_STATE_NPSVC, &napi->state);
6759         list_add_rcu(&napi->dev_list, &dev->napi_list);
6760         napi_hash_add(napi);
6761 }
6762 EXPORT_SYMBOL(netif_napi_add);
6763
6764 void napi_disable(struct napi_struct *n)
6765 {
6766         might_sleep();
6767         set_bit(NAPI_STATE_DISABLE, &n->state);
6768
6769         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6770                 msleep(1);
6771         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6772                 msleep(1);
6773
6774         hrtimer_cancel(&n->timer);
6775
6776         clear_bit(NAPI_STATE_DISABLE, &n->state);
6777 }
6778 EXPORT_SYMBOL(napi_disable);
6779
6780 static void flush_gro_hash(struct napi_struct *napi)
6781 {
6782         int i;
6783
6784         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6785                 struct sk_buff *skb, *n;
6786
6787                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6788                         kfree_skb(skb);
6789                 napi->gro_hash[i].count = 0;
6790         }
6791 }
6792
6793 /* Must be called in process context */
6794 void __netif_napi_del(struct napi_struct *napi)
6795 {
6796         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6797                 return;
6798
6799         napi_hash_del(napi);
6800         list_del_rcu(&napi->dev_list);
6801         napi_free_frags(napi);
6802
6803         flush_gro_hash(napi);
6804         napi->gro_bitmask = 0;
6805 }
6806 EXPORT_SYMBOL(__netif_napi_del);
6807
6808 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6809 {
6810         void *have;
6811         int work, weight;
6812
6813         list_del_init(&n->poll_list);
6814
6815         have = netpoll_poll_lock(n);
6816
6817         weight = n->weight;
6818
6819         /* This NAPI_STATE_SCHED test is for avoiding a race
6820          * with netpoll's poll_napi().  Only the entity which
6821          * obtains the lock and sees NAPI_STATE_SCHED set will
6822          * actually make the ->poll() call.  Therefore we avoid
6823          * accidentally calling ->poll() when NAPI is not scheduled.
6824          */
6825         work = 0;
6826         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6827                 work = n->poll(n, weight);
6828                 trace_napi_poll(n, work, weight);
6829         }
6830
6831         if (unlikely(work > weight))
6832                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6833                             n->poll, work, weight);
6834
6835         if (likely(work < weight))
6836                 goto out_unlock;
6837
6838         /* Drivers must not modify the NAPI state if they
6839          * consume the entire weight.  In such cases this code
6840          * still "owns" the NAPI instance and therefore can
6841          * move the instance around on the list at-will.
6842          */
6843         if (unlikely(napi_disable_pending(n))) {
6844                 napi_complete(n);
6845                 goto out_unlock;
6846         }
6847
6848         if (n->gro_bitmask) {
6849                 /* flush too old packets
6850                  * If HZ < 1000, flush all packets.
6851                  */
6852                 napi_gro_flush(n, HZ >= 1000);
6853         }
6854
6855         gro_normal_list(n);
6856
6857         /* Some drivers may have called napi_schedule
6858          * prior to exhausting their budget.
6859          */
6860         if (unlikely(!list_empty(&n->poll_list))) {
6861                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6862                              n->dev ? n->dev->name : "backlog");
6863                 goto out_unlock;
6864         }
6865
6866         list_add_tail(&n->poll_list, repoll);
6867
6868 out_unlock:
6869         netpoll_poll_unlock(have);
6870
6871         return work;
6872 }
6873
6874 static __latent_entropy void net_rx_action(struct softirq_action *h)
6875 {
6876         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6877         unsigned long time_limit = jiffies +
6878                 usecs_to_jiffies(netdev_budget_usecs);
6879         int budget = netdev_budget;
6880         LIST_HEAD(list);
6881         LIST_HEAD(repoll);
6882
6883         local_irq_disable();
6884         list_splice_init(&sd->poll_list, &list);
6885         local_irq_enable();
6886
6887         for (;;) {
6888                 struct napi_struct *n;
6889
6890                 if (list_empty(&list)) {
6891                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6892                                 goto out;
6893                         break;
6894                 }
6895
6896                 n = list_first_entry(&list, struct napi_struct, poll_list);
6897                 budget -= napi_poll(n, &repoll);
6898
6899                 /* If softirq window is exhausted then punt.
6900                  * Allow this to run for 2 jiffies since which will allow
6901                  * an average latency of 1.5/HZ.
6902                  */
6903                 if (unlikely(budget <= 0 ||
6904                              time_after_eq(jiffies, time_limit))) {
6905                         sd->time_squeeze++;
6906                         break;
6907                 }
6908         }
6909
6910         local_irq_disable();
6911
6912         list_splice_tail_init(&sd->poll_list, &list);
6913         list_splice_tail(&repoll, &list);
6914         list_splice(&list, &sd->poll_list);
6915         if (!list_empty(&sd->poll_list))
6916                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6917
6918         net_rps_action_and_irq_enable(sd);
6919 out:
6920         __kfree_skb_flush();
6921 }
6922
6923 struct netdev_adjacent {
6924         struct net_device *dev;
6925
6926         /* upper master flag, there can only be one master device per list */
6927         bool master;
6928
6929         /* lookup ignore flag */
6930         bool ignore;
6931
6932         /* counter for the number of times this device was added to us */
6933         u16 ref_nr;
6934
6935         /* private field for the users */
6936         void *private;
6937
6938         struct list_head list;
6939         struct rcu_head rcu;
6940 };
6941
6942 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6943                                                  struct list_head *adj_list)
6944 {
6945         struct netdev_adjacent *adj;
6946
6947         list_for_each_entry(adj, adj_list, list) {
6948                 if (adj->dev == adj_dev)
6949                         return adj;
6950         }
6951         return NULL;
6952 }
6953
6954 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6955                                     struct netdev_nested_priv *priv)
6956 {
6957         struct net_device *dev = (struct net_device *)priv->data;
6958
6959         return upper_dev == dev;
6960 }
6961
6962 /**
6963  * netdev_has_upper_dev - Check if device is linked to an upper device
6964  * @dev: device
6965  * @upper_dev: upper device to check
6966  *
6967  * Find out if a device is linked to specified upper device and return true
6968  * in case it is. Note that this checks only immediate upper device,
6969  * not through a complete stack of devices. The caller must hold the RTNL lock.
6970  */
6971 bool netdev_has_upper_dev(struct net_device *dev,
6972                           struct net_device *upper_dev)
6973 {
6974         struct netdev_nested_priv priv = {
6975                 .data = (void *)upper_dev,
6976         };
6977
6978         ASSERT_RTNL();
6979
6980         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6981                                              &priv);
6982 }
6983 EXPORT_SYMBOL(netdev_has_upper_dev);
6984
6985 /**
6986  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6987  * @dev: device
6988  * @upper_dev: upper device to check
6989  *
6990  * Find out if a device is linked to specified upper device and return true
6991  * in case it is. Note that this checks the entire upper device chain.
6992  * The caller must hold rcu lock.
6993  */
6994
6995 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6996                                   struct net_device *upper_dev)
6997 {
6998         struct netdev_nested_priv priv = {
6999                 .data = (void *)upper_dev,
7000         };
7001
7002         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7003                                                &priv);
7004 }
7005 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7006
7007 /**
7008  * netdev_has_any_upper_dev - Check if device is linked to some device
7009  * @dev: device
7010  *
7011  * Find out if a device is linked to an upper device and return true in case
7012  * it is. The caller must hold the RTNL lock.
7013  */
7014 bool netdev_has_any_upper_dev(struct net_device *dev)
7015 {
7016         ASSERT_RTNL();
7017
7018         return !list_empty(&dev->adj_list.upper);
7019 }
7020 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7021
7022 /**
7023  * netdev_master_upper_dev_get - Get master upper device
7024  * @dev: device
7025  *
7026  * Find a master upper device and return pointer to it or NULL in case
7027  * it's not there. The caller must hold the RTNL lock.
7028  */
7029 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7030 {
7031         struct netdev_adjacent *upper;
7032
7033         ASSERT_RTNL();
7034
7035         if (list_empty(&dev->adj_list.upper))
7036                 return NULL;
7037
7038         upper = list_first_entry(&dev->adj_list.upper,
7039                                  struct netdev_adjacent, list);
7040         if (likely(upper->master))
7041                 return upper->dev;
7042         return NULL;
7043 }
7044 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7045
7046 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7047 {
7048         struct netdev_adjacent *upper;
7049
7050         ASSERT_RTNL();
7051
7052         if (list_empty(&dev->adj_list.upper))
7053                 return NULL;
7054
7055         upper = list_first_entry(&dev->adj_list.upper,
7056                                  struct netdev_adjacent, list);
7057         if (likely(upper->master) && !upper->ignore)
7058                 return upper->dev;
7059         return NULL;
7060 }
7061
7062 /**
7063  * netdev_has_any_lower_dev - Check if device is linked to some device
7064  * @dev: device
7065  *
7066  * Find out if a device is linked to a lower device and return true in case
7067  * it is. The caller must hold the RTNL lock.
7068  */
7069 static bool netdev_has_any_lower_dev(struct net_device *dev)
7070 {
7071         ASSERT_RTNL();
7072
7073         return !list_empty(&dev->adj_list.lower);
7074 }
7075
7076 void *netdev_adjacent_get_private(struct list_head *adj_list)
7077 {
7078         struct netdev_adjacent *adj;
7079
7080         adj = list_entry(adj_list, struct netdev_adjacent, list);
7081
7082         return adj->private;
7083 }
7084 EXPORT_SYMBOL(netdev_adjacent_get_private);
7085
7086 /**
7087  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7088  * @dev: device
7089  * @iter: list_head ** of the current position
7090  *
7091  * Gets the next device from the dev's upper list, starting from iter
7092  * position. The caller must hold RCU read lock.
7093  */
7094 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7095                                                  struct list_head **iter)
7096 {
7097         struct netdev_adjacent *upper;
7098
7099         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7100
7101         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7102
7103         if (&upper->list == &dev->adj_list.upper)
7104                 return NULL;
7105
7106         *iter = &upper->list;
7107
7108         return upper->dev;
7109 }
7110 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7111
7112 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7113                                                   struct list_head **iter,
7114                                                   bool *ignore)
7115 {
7116         struct netdev_adjacent *upper;
7117
7118         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7119
7120         if (&upper->list == &dev->adj_list.upper)
7121                 return NULL;
7122
7123         *iter = &upper->list;
7124         *ignore = upper->ignore;
7125
7126         return upper->dev;
7127 }
7128
7129 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7130                                                     struct list_head **iter)
7131 {
7132         struct netdev_adjacent *upper;
7133
7134         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7135
7136         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7137
7138         if (&upper->list == &dev->adj_list.upper)
7139                 return NULL;
7140
7141         *iter = &upper->list;
7142
7143         return upper->dev;
7144 }
7145
7146 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7147                                        int (*fn)(struct net_device *dev,
7148                                          struct netdev_nested_priv *priv),
7149                                        struct netdev_nested_priv *priv)
7150 {
7151         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7152         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7153         int ret, cur = 0;
7154         bool ignore;
7155
7156         now = dev;
7157         iter = &dev->adj_list.upper;
7158
7159         while (1) {
7160                 if (now != dev) {
7161                         ret = fn(now, priv);
7162                         if (ret)
7163                                 return ret;
7164                 }
7165
7166                 next = NULL;
7167                 while (1) {
7168                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7169                         if (!udev)
7170                                 break;
7171                         if (ignore)
7172                                 continue;
7173
7174                         next = udev;
7175                         niter = &udev->adj_list.upper;
7176                         dev_stack[cur] = now;
7177                         iter_stack[cur++] = iter;
7178                         break;
7179                 }
7180
7181                 if (!next) {
7182                         if (!cur)
7183                                 return 0;
7184                         next = dev_stack[--cur];
7185                         niter = iter_stack[cur];
7186                 }
7187
7188                 now = next;
7189                 iter = niter;
7190         }
7191
7192         return 0;
7193 }
7194
7195 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7196                                   int (*fn)(struct net_device *dev,
7197                                             struct netdev_nested_priv *priv),
7198                                   struct netdev_nested_priv *priv)
7199 {
7200         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7201         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7202         int ret, cur = 0;
7203
7204         now = dev;
7205         iter = &dev->adj_list.upper;
7206
7207         while (1) {
7208                 if (now != dev) {
7209                         ret = fn(now, priv);
7210                         if (ret)
7211                                 return ret;
7212                 }
7213
7214                 next = NULL;
7215                 while (1) {
7216                         udev = netdev_next_upper_dev_rcu(now, &iter);
7217                         if (!udev)
7218                                 break;
7219
7220                         next = udev;
7221                         niter = &udev->adj_list.upper;
7222                         dev_stack[cur] = now;
7223                         iter_stack[cur++] = iter;
7224                         break;
7225                 }
7226
7227                 if (!next) {
7228                         if (!cur)
7229                                 return 0;
7230                         next = dev_stack[--cur];
7231                         niter = iter_stack[cur];
7232                 }
7233
7234                 now = next;
7235                 iter = niter;
7236         }
7237
7238         return 0;
7239 }
7240 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7241
7242 static bool __netdev_has_upper_dev(struct net_device *dev,
7243                                    struct net_device *upper_dev)
7244 {
7245         struct netdev_nested_priv priv = {
7246                 .flags = 0,
7247                 .data = (void *)upper_dev,
7248         };
7249
7250         ASSERT_RTNL();
7251
7252         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7253                                            &priv);
7254 }
7255
7256 /**
7257  * netdev_lower_get_next_private - Get the next ->private from the
7258  *                                 lower neighbour list
7259  * @dev: device
7260  * @iter: list_head ** of the current position
7261  *
7262  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7263  * list, starting from iter position. The caller must hold either hold the
7264  * RTNL lock or its own locking that guarantees that the neighbour lower
7265  * list will remain unchanged.
7266  */
7267 void *netdev_lower_get_next_private(struct net_device *dev,
7268                                     struct list_head **iter)
7269 {
7270         struct netdev_adjacent *lower;
7271
7272         lower = list_entry(*iter, struct netdev_adjacent, list);
7273
7274         if (&lower->list == &dev->adj_list.lower)
7275                 return NULL;
7276
7277         *iter = lower->list.next;
7278
7279         return lower->private;
7280 }
7281 EXPORT_SYMBOL(netdev_lower_get_next_private);
7282
7283 /**
7284  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7285  *                                     lower neighbour list, RCU
7286  *                                     variant
7287  * @dev: device
7288  * @iter: list_head ** of the current position
7289  *
7290  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7291  * list, starting from iter position. The caller must hold RCU read lock.
7292  */
7293 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7294                                         struct list_head **iter)
7295 {
7296         struct netdev_adjacent *lower;
7297
7298         WARN_ON_ONCE(!rcu_read_lock_held());
7299
7300         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7301
7302         if (&lower->list == &dev->adj_list.lower)
7303                 return NULL;
7304
7305         *iter = &lower->list;
7306
7307         return lower->private;
7308 }
7309 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7310
7311 /**
7312  * netdev_lower_get_next - Get the next device from the lower neighbour
7313  *                         list
7314  * @dev: device
7315  * @iter: list_head ** of the current position
7316  *
7317  * Gets the next netdev_adjacent from the dev's lower neighbour
7318  * list, starting from iter position. The caller must hold RTNL lock or
7319  * its own locking that guarantees that the neighbour lower
7320  * list will remain unchanged.
7321  */
7322 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7323 {
7324         struct netdev_adjacent *lower;
7325
7326         lower = list_entry(*iter, struct netdev_adjacent, list);
7327
7328         if (&lower->list == &dev->adj_list.lower)
7329                 return NULL;
7330
7331         *iter = lower->list.next;
7332
7333         return lower->dev;
7334 }
7335 EXPORT_SYMBOL(netdev_lower_get_next);
7336
7337 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7338                                                 struct list_head **iter)
7339 {
7340         struct netdev_adjacent *lower;
7341
7342         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7343
7344         if (&lower->list == &dev->adj_list.lower)
7345                 return NULL;
7346
7347         *iter = &lower->list;
7348
7349         return lower->dev;
7350 }
7351
7352 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7353                                                   struct list_head **iter,
7354                                                   bool *ignore)
7355 {
7356         struct netdev_adjacent *lower;
7357
7358         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7359
7360         if (&lower->list == &dev->adj_list.lower)
7361                 return NULL;
7362
7363         *iter = &lower->list;
7364         *ignore = lower->ignore;
7365
7366         return lower->dev;
7367 }
7368
7369 int netdev_walk_all_lower_dev(struct net_device *dev,
7370                               int (*fn)(struct net_device *dev,
7371                                         struct netdev_nested_priv *priv),
7372                               struct netdev_nested_priv *priv)
7373 {
7374         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7375         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7376         int ret, cur = 0;
7377
7378         now = dev;
7379         iter = &dev->adj_list.lower;
7380
7381         while (1) {
7382                 if (now != dev) {
7383                         ret = fn(now, priv);
7384                         if (ret)
7385                                 return ret;
7386                 }
7387
7388                 next = NULL;
7389                 while (1) {
7390                         ldev = netdev_next_lower_dev(now, &iter);
7391                         if (!ldev)
7392                                 break;
7393
7394                         next = ldev;
7395                         niter = &ldev->adj_list.lower;
7396                         dev_stack[cur] = now;
7397                         iter_stack[cur++] = iter;
7398                         break;
7399                 }
7400
7401                 if (!next) {
7402                         if (!cur)
7403                                 return 0;
7404                         next = dev_stack[--cur];
7405                         niter = iter_stack[cur];
7406                 }
7407
7408                 now = next;
7409                 iter = niter;
7410         }
7411
7412         return 0;
7413 }
7414 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7415
7416 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7417                                        int (*fn)(struct net_device *dev,
7418                                          struct netdev_nested_priv *priv),
7419                                        struct netdev_nested_priv *priv)
7420 {
7421         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7422         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7423         int ret, cur = 0;
7424         bool ignore;
7425
7426         now = dev;
7427         iter = &dev->adj_list.lower;
7428
7429         while (1) {
7430                 if (now != dev) {
7431                         ret = fn(now, priv);
7432                         if (ret)
7433                                 return ret;
7434                 }
7435
7436                 next = NULL;
7437                 while (1) {
7438                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7439                         if (!ldev)
7440                                 break;
7441                         if (ignore)
7442                                 continue;
7443
7444                         next = ldev;
7445                         niter = &ldev->adj_list.lower;
7446                         dev_stack[cur] = now;
7447                         iter_stack[cur++] = iter;
7448                         break;
7449                 }
7450
7451                 if (!next) {
7452                         if (!cur)
7453                                 return 0;
7454                         next = dev_stack[--cur];
7455                         niter = iter_stack[cur];
7456                 }
7457
7458                 now = next;
7459                 iter = niter;
7460         }
7461
7462         return 0;
7463 }
7464
7465 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7466                                              struct list_head **iter)
7467 {
7468         struct netdev_adjacent *lower;
7469
7470         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7471         if (&lower->list == &dev->adj_list.lower)
7472                 return NULL;
7473
7474         *iter = &lower->list;
7475
7476         return lower->dev;
7477 }
7478 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7479
7480 static u8 __netdev_upper_depth(struct net_device *dev)
7481 {
7482         struct net_device *udev;
7483         struct list_head *iter;
7484         u8 max_depth = 0;
7485         bool ignore;
7486
7487         for (iter = &dev->adj_list.upper,
7488              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7489              udev;
7490              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7491                 if (ignore)
7492                         continue;
7493                 if (max_depth < udev->upper_level)
7494                         max_depth = udev->upper_level;
7495         }
7496
7497         return max_depth;
7498 }
7499
7500 static u8 __netdev_lower_depth(struct net_device *dev)
7501 {
7502         struct net_device *ldev;
7503         struct list_head *iter;
7504         u8 max_depth = 0;
7505         bool ignore;
7506
7507         for (iter = &dev->adj_list.lower,
7508              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7509              ldev;
7510              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7511                 if (ignore)
7512                         continue;
7513                 if (max_depth < ldev->lower_level)
7514                         max_depth = ldev->lower_level;
7515         }
7516
7517         return max_depth;
7518 }
7519
7520 static int __netdev_update_upper_level(struct net_device *dev,
7521                                        struct netdev_nested_priv *__unused)
7522 {
7523         dev->upper_level = __netdev_upper_depth(dev) + 1;
7524         return 0;
7525 }
7526
7527 static int __netdev_update_lower_level(struct net_device *dev,
7528                                        struct netdev_nested_priv *priv)
7529 {
7530         dev->lower_level = __netdev_lower_depth(dev) + 1;
7531
7532 #ifdef CONFIG_LOCKDEP
7533         if (!priv)
7534                 return 0;
7535
7536         if (priv->flags & NESTED_SYNC_IMM)
7537                 dev->nested_level = dev->lower_level - 1;
7538         if (priv->flags & NESTED_SYNC_TODO)
7539                 net_unlink_todo(dev);
7540 #endif
7541         return 0;
7542 }
7543
7544 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7545                                   int (*fn)(struct net_device *dev,
7546                                             struct netdev_nested_priv *priv),
7547                                   struct netdev_nested_priv *priv)
7548 {
7549         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7550         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7551         int ret, cur = 0;
7552
7553         now = dev;
7554         iter = &dev->adj_list.lower;
7555
7556         while (1) {
7557                 if (now != dev) {
7558                         ret = fn(now, priv);
7559                         if (ret)
7560                                 return ret;
7561                 }
7562
7563                 next = NULL;
7564                 while (1) {
7565                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7566                         if (!ldev)
7567                                 break;
7568
7569                         next = ldev;
7570                         niter = &ldev->adj_list.lower;
7571                         dev_stack[cur] = now;
7572                         iter_stack[cur++] = iter;
7573                         break;
7574                 }
7575
7576                 if (!next) {
7577                         if (!cur)
7578                                 return 0;
7579                         next = dev_stack[--cur];
7580                         niter = iter_stack[cur];
7581                 }
7582
7583                 now = next;
7584                 iter = niter;
7585         }
7586
7587         return 0;
7588 }
7589 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7590
7591 /**
7592  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7593  *                                     lower neighbour list, RCU
7594  *                                     variant
7595  * @dev: device
7596  *
7597  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7598  * list. The caller must hold RCU read lock.
7599  */
7600 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7601 {
7602         struct netdev_adjacent *lower;
7603
7604         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7605                         struct netdev_adjacent, list);
7606         if (lower)
7607                 return lower->private;
7608         return NULL;
7609 }
7610 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7611
7612 /**
7613  * netdev_master_upper_dev_get_rcu - Get master upper device
7614  * @dev: device
7615  *
7616  * Find a master upper device and return pointer to it or NULL in case
7617  * it's not there. The caller must hold the RCU read lock.
7618  */
7619 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7620 {
7621         struct netdev_adjacent *upper;
7622
7623         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7624                                        struct netdev_adjacent, list);
7625         if (upper && likely(upper->master))
7626                 return upper->dev;
7627         return NULL;
7628 }
7629 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7630
7631 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7632                               struct net_device *adj_dev,
7633                               struct list_head *dev_list)
7634 {
7635         char linkname[IFNAMSIZ+7];
7636
7637         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7638                 "upper_%s" : "lower_%s", adj_dev->name);
7639         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7640                                  linkname);
7641 }
7642 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7643                                char *name,
7644                                struct list_head *dev_list)
7645 {
7646         char linkname[IFNAMSIZ+7];
7647
7648         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7649                 "upper_%s" : "lower_%s", name);
7650         sysfs_remove_link(&(dev->dev.kobj), linkname);
7651 }
7652
7653 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7654                                                  struct net_device *adj_dev,
7655                                                  struct list_head *dev_list)
7656 {
7657         return (dev_list == &dev->adj_list.upper ||
7658                 dev_list == &dev->adj_list.lower) &&
7659                 net_eq(dev_net(dev), dev_net(adj_dev));
7660 }
7661
7662 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7663                                         struct net_device *adj_dev,
7664                                         struct list_head *dev_list,
7665                                         void *private, bool master)
7666 {
7667         struct netdev_adjacent *adj;
7668         int ret;
7669
7670         adj = __netdev_find_adj(adj_dev, dev_list);
7671
7672         if (adj) {
7673                 adj->ref_nr += 1;
7674                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7675                          dev->name, adj_dev->name, adj->ref_nr);
7676
7677                 return 0;
7678         }
7679
7680         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7681         if (!adj)
7682                 return -ENOMEM;
7683
7684         adj->dev = adj_dev;
7685         adj->master = master;
7686         adj->ref_nr = 1;
7687         adj->private = private;
7688         adj->ignore = false;
7689         dev_hold(adj_dev);
7690
7691         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7692                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7693
7694         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7695                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7696                 if (ret)
7697                         goto free_adj;
7698         }
7699
7700         /* Ensure that master link is always the first item in list. */
7701         if (master) {
7702                 ret = sysfs_create_link(&(dev->dev.kobj),
7703                                         &(adj_dev->dev.kobj), "master");
7704                 if (ret)
7705                         goto remove_symlinks;
7706
7707                 list_add_rcu(&adj->list, dev_list);
7708         } else {
7709                 list_add_tail_rcu(&adj->list, dev_list);
7710         }
7711
7712         return 0;
7713
7714 remove_symlinks:
7715         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7716                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7717 free_adj:
7718         kfree(adj);
7719         dev_put(adj_dev);
7720
7721         return ret;
7722 }
7723
7724 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7725                                          struct net_device *adj_dev,
7726                                          u16 ref_nr,
7727                                          struct list_head *dev_list)
7728 {
7729         struct netdev_adjacent *adj;
7730
7731         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7732                  dev->name, adj_dev->name, ref_nr);
7733
7734         adj = __netdev_find_adj(adj_dev, dev_list);
7735
7736         if (!adj) {
7737                 pr_err("Adjacency does not exist for device %s from %s\n",
7738                        dev->name, adj_dev->name);
7739                 WARN_ON(1);
7740                 return;
7741         }
7742
7743         if (adj->ref_nr > ref_nr) {
7744                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7745                          dev->name, adj_dev->name, ref_nr,
7746                          adj->ref_nr - ref_nr);
7747                 adj->ref_nr -= ref_nr;
7748                 return;
7749         }
7750
7751         if (adj->master)
7752                 sysfs_remove_link(&(dev->dev.kobj), "master");
7753
7754         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7755                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7756
7757         list_del_rcu(&adj->list);
7758         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7759                  adj_dev->name, dev->name, adj_dev->name);
7760         dev_put(adj_dev);
7761         kfree_rcu(adj, rcu);
7762 }
7763
7764 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7765                                             struct net_device *upper_dev,
7766                                             struct list_head *up_list,
7767                                             struct list_head *down_list,
7768                                             void *private, bool master)
7769 {
7770         int ret;
7771
7772         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7773                                            private, master);
7774         if (ret)
7775                 return ret;
7776
7777         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7778                                            private, false);
7779         if (ret) {
7780                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7781                 return ret;
7782         }
7783
7784         return 0;
7785 }
7786
7787 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7788                                                struct net_device *upper_dev,
7789                                                u16 ref_nr,
7790                                                struct list_head *up_list,
7791                                                struct list_head *down_list)
7792 {
7793         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7794         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7795 }
7796
7797 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7798                                                 struct net_device *upper_dev,
7799                                                 void *private, bool master)
7800 {
7801         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7802                                                 &dev->adj_list.upper,
7803                                                 &upper_dev->adj_list.lower,
7804                                                 private, master);
7805 }
7806
7807 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7808                                                    struct net_device *upper_dev)
7809 {
7810         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7811                                            &dev->adj_list.upper,
7812                                            &upper_dev->adj_list.lower);
7813 }
7814
7815 static int __netdev_upper_dev_link(struct net_device *dev,
7816                                    struct net_device *upper_dev, bool master,
7817                                    void *upper_priv, void *upper_info,
7818                                    struct netdev_nested_priv *priv,
7819                                    struct netlink_ext_ack *extack)
7820 {
7821         struct netdev_notifier_changeupper_info changeupper_info = {
7822                 .info = {
7823                         .dev = dev,
7824                         .extack = extack,
7825                 },
7826                 .upper_dev = upper_dev,
7827                 .master = master,
7828                 .linking = true,
7829                 .upper_info = upper_info,
7830         };
7831         struct net_device *master_dev;
7832         int ret = 0;
7833
7834         ASSERT_RTNL();
7835
7836         if (dev == upper_dev)
7837                 return -EBUSY;
7838
7839         /* To prevent loops, check if dev is not upper device to upper_dev. */
7840         if (__netdev_has_upper_dev(upper_dev, dev))
7841                 return -EBUSY;
7842
7843         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7844                 return -EMLINK;
7845
7846         if (!master) {
7847                 if (__netdev_has_upper_dev(dev, upper_dev))
7848                         return -EEXIST;
7849         } else {
7850                 master_dev = __netdev_master_upper_dev_get(dev);
7851                 if (master_dev)
7852                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7853         }
7854
7855         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7856                                             &changeupper_info.info);
7857         ret = notifier_to_errno(ret);
7858         if (ret)
7859                 return ret;
7860
7861         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7862                                                    master);
7863         if (ret)
7864                 return ret;
7865
7866         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7867                                             &changeupper_info.info);
7868         ret = notifier_to_errno(ret);
7869         if (ret)
7870                 goto rollback;
7871
7872         __netdev_update_upper_level(dev, NULL);
7873         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7874
7875         __netdev_update_lower_level(upper_dev, priv);
7876         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7877                                     priv);
7878
7879         return 0;
7880
7881 rollback:
7882         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7883
7884         return ret;
7885 }
7886
7887 /**
7888  * netdev_upper_dev_link - Add a link to the upper device
7889  * @dev: device
7890  * @upper_dev: new upper device
7891  * @extack: netlink extended ack
7892  *
7893  * Adds a link to device which is upper to this one. The caller must hold
7894  * the RTNL lock. On a failure a negative errno code is returned.
7895  * On success the reference counts are adjusted and the function
7896  * returns zero.
7897  */
7898 int netdev_upper_dev_link(struct net_device *dev,
7899                           struct net_device *upper_dev,
7900                           struct netlink_ext_ack *extack)
7901 {
7902         struct netdev_nested_priv priv = {
7903                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7904                 .data = NULL,
7905         };
7906
7907         return __netdev_upper_dev_link(dev, upper_dev, false,
7908                                        NULL, NULL, &priv, extack);
7909 }
7910 EXPORT_SYMBOL(netdev_upper_dev_link);
7911
7912 /**
7913  * netdev_master_upper_dev_link - Add a master link to the upper device
7914  * @dev: device
7915  * @upper_dev: new upper device
7916  * @upper_priv: upper device private
7917  * @upper_info: upper info to be passed down via notifier
7918  * @extack: netlink extended ack
7919  *
7920  * Adds a link to device which is upper to this one. In this case, only
7921  * one master upper device can be linked, although other non-master devices
7922  * might be linked as well. The caller must hold the RTNL lock.
7923  * On a failure a negative errno code is returned. On success the reference
7924  * counts are adjusted and the function returns zero.
7925  */
7926 int netdev_master_upper_dev_link(struct net_device *dev,
7927                                  struct net_device *upper_dev,
7928                                  void *upper_priv, void *upper_info,
7929                                  struct netlink_ext_ack *extack)
7930 {
7931         struct netdev_nested_priv priv = {
7932                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7933                 .data = NULL,
7934         };
7935
7936         return __netdev_upper_dev_link(dev, upper_dev, true,
7937                                        upper_priv, upper_info, &priv, extack);
7938 }
7939 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7940
7941 static void __netdev_upper_dev_unlink(struct net_device *dev,
7942                                       struct net_device *upper_dev,
7943                                       struct netdev_nested_priv *priv)
7944 {
7945         struct netdev_notifier_changeupper_info changeupper_info = {
7946                 .info = {
7947                         .dev = dev,
7948                 },
7949                 .upper_dev = upper_dev,
7950                 .linking = false,
7951         };
7952
7953         ASSERT_RTNL();
7954
7955         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7956
7957         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7958                                       &changeupper_info.info);
7959
7960         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7961
7962         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7963                                       &changeupper_info.info);
7964
7965         __netdev_update_upper_level(dev, NULL);
7966         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7967
7968         __netdev_update_lower_level(upper_dev, priv);
7969         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7970                                     priv);
7971 }
7972
7973 /**
7974  * netdev_upper_dev_unlink - Removes a link to upper device
7975  * @dev: device
7976  * @upper_dev: new upper device
7977  *
7978  * Removes a link to device which is upper to this one. The caller must hold
7979  * the RTNL lock.
7980  */
7981 void netdev_upper_dev_unlink(struct net_device *dev,
7982                              struct net_device *upper_dev)
7983 {
7984         struct netdev_nested_priv priv = {
7985                 .flags = NESTED_SYNC_TODO,
7986                 .data = NULL,
7987         };
7988
7989         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7990 }
7991 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7992
7993 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7994                                       struct net_device *lower_dev,
7995                                       bool val)
7996 {
7997         struct netdev_adjacent *adj;
7998
7999         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8000         if (adj)
8001                 adj->ignore = val;
8002
8003         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8004         if (adj)
8005                 adj->ignore = val;
8006 }
8007
8008 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8009                                         struct net_device *lower_dev)
8010 {
8011         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8012 }
8013
8014 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8015                                        struct net_device *lower_dev)
8016 {
8017         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8018 }
8019
8020 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8021                                    struct net_device *new_dev,
8022                                    struct net_device *dev,
8023                                    struct netlink_ext_ack *extack)
8024 {
8025         struct netdev_nested_priv priv = {
8026                 .flags = 0,
8027                 .data = NULL,
8028         };
8029         int err;
8030
8031         if (!new_dev)
8032                 return 0;
8033
8034         if (old_dev && new_dev != old_dev)
8035                 netdev_adjacent_dev_disable(dev, old_dev);
8036         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8037                                       extack);
8038         if (err) {
8039                 if (old_dev && new_dev != old_dev)
8040                         netdev_adjacent_dev_enable(dev, old_dev);
8041                 return err;
8042         }
8043
8044         return 0;
8045 }
8046 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8047
8048 void netdev_adjacent_change_commit(struct net_device *old_dev,
8049                                    struct net_device *new_dev,
8050                                    struct net_device *dev)
8051 {
8052         struct netdev_nested_priv priv = {
8053                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8054                 .data = NULL,
8055         };
8056
8057         if (!new_dev || !old_dev)
8058                 return;
8059
8060         if (new_dev == old_dev)
8061                 return;
8062
8063         netdev_adjacent_dev_enable(dev, old_dev);
8064         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8065 }
8066 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8067
8068 void netdev_adjacent_change_abort(struct net_device *old_dev,
8069                                   struct net_device *new_dev,
8070                                   struct net_device *dev)
8071 {
8072         struct netdev_nested_priv priv = {
8073                 .flags = 0,
8074                 .data = NULL,
8075         };
8076
8077         if (!new_dev)
8078                 return;
8079
8080         if (old_dev && new_dev != old_dev)
8081                 netdev_adjacent_dev_enable(dev, old_dev);
8082
8083         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8084 }
8085 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8086
8087 /**
8088  * netdev_bonding_info_change - Dispatch event about slave change
8089  * @dev: device
8090  * @bonding_info: info to dispatch
8091  *
8092  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8093  * The caller must hold the RTNL lock.
8094  */
8095 void netdev_bonding_info_change(struct net_device *dev,
8096                                 struct netdev_bonding_info *bonding_info)
8097 {
8098         struct netdev_notifier_bonding_info info = {
8099                 .info.dev = dev,
8100         };
8101
8102         memcpy(&info.bonding_info, bonding_info,
8103                sizeof(struct netdev_bonding_info));
8104         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8105                                       &info.info);
8106 }
8107 EXPORT_SYMBOL(netdev_bonding_info_change);
8108
8109 /**
8110  * netdev_get_xmit_slave - Get the xmit slave of master device
8111  * @dev: device
8112  * @skb: The packet
8113  * @all_slaves: assume all the slaves are active
8114  *
8115  * The reference counters are not incremented so the caller must be
8116  * careful with locks. The caller must hold RCU lock.
8117  * %NULL is returned if no slave is found.
8118  */
8119
8120 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8121                                          struct sk_buff *skb,
8122                                          bool all_slaves)
8123 {
8124         const struct net_device_ops *ops = dev->netdev_ops;
8125
8126         if (!ops->ndo_get_xmit_slave)
8127                 return NULL;
8128         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8129 }
8130 EXPORT_SYMBOL(netdev_get_xmit_slave);
8131
8132 static void netdev_adjacent_add_links(struct net_device *dev)
8133 {
8134         struct netdev_adjacent *iter;
8135
8136         struct net *net = dev_net(dev);
8137
8138         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8139                 if (!net_eq(net, dev_net(iter->dev)))
8140                         continue;
8141                 netdev_adjacent_sysfs_add(iter->dev, dev,
8142                                           &iter->dev->adj_list.lower);
8143                 netdev_adjacent_sysfs_add(dev, iter->dev,
8144                                           &dev->adj_list.upper);
8145         }
8146
8147         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8148                 if (!net_eq(net, dev_net(iter->dev)))
8149                         continue;
8150                 netdev_adjacent_sysfs_add(iter->dev, dev,
8151                                           &iter->dev->adj_list.upper);
8152                 netdev_adjacent_sysfs_add(dev, iter->dev,
8153                                           &dev->adj_list.lower);
8154         }
8155 }
8156
8157 static void netdev_adjacent_del_links(struct net_device *dev)
8158 {
8159         struct netdev_adjacent *iter;
8160
8161         struct net *net = dev_net(dev);
8162
8163         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8164                 if (!net_eq(net, dev_net(iter->dev)))
8165                         continue;
8166                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8167                                           &iter->dev->adj_list.lower);
8168                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8169                                           &dev->adj_list.upper);
8170         }
8171
8172         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8173                 if (!net_eq(net, dev_net(iter->dev)))
8174                         continue;
8175                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8176                                           &iter->dev->adj_list.upper);
8177                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8178                                           &dev->adj_list.lower);
8179         }
8180 }
8181
8182 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8183 {
8184         struct netdev_adjacent *iter;
8185
8186         struct net *net = dev_net(dev);
8187
8188         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8189                 if (!net_eq(net, dev_net(iter->dev)))
8190                         continue;
8191                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8192                                           &iter->dev->adj_list.lower);
8193                 netdev_adjacent_sysfs_add(iter->dev, dev,
8194                                           &iter->dev->adj_list.lower);
8195         }
8196
8197         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8198                 if (!net_eq(net, dev_net(iter->dev)))
8199                         continue;
8200                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8201                                           &iter->dev->adj_list.upper);
8202                 netdev_adjacent_sysfs_add(iter->dev, dev,
8203                                           &iter->dev->adj_list.upper);
8204         }
8205 }
8206
8207 void *netdev_lower_dev_get_private(struct net_device *dev,
8208                                    struct net_device *lower_dev)
8209 {
8210         struct netdev_adjacent *lower;
8211
8212         if (!lower_dev)
8213                 return NULL;
8214         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8215         if (!lower)
8216                 return NULL;
8217
8218         return lower->private;
8219 }
8220 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8221
8222
8223 /**
8224  * netdev_lower_change - Dispatch event about lower device state change
8225  * @lower_dev: device
8226  * @lower_state_info: state to dispatch
8227  *
8228  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8229  * The caller must hold the RTNL lock.
8230  */
8231 void netdev_lower_state_changed(struct net_device *lower_dev,
8232                                 void *lower_state_info)
8233 {
8234         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8235                 .info.dev = lower_dev,
8236         };
8237
8238         ASSERT_RTNL();
8239         changelowerstate_info.lower_state_info = lower_state_info;
8240         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8241                                       &changelowerstate_info.info);
8242 }
8243 EXPORT_SYMBOL(netdev_lower_state_changed);
8244
8245 static void dev_change_rx_flags(struct net_device *dev, int flags)
8246 {
8247         const struct net_device_ops *ops = dev->netdev_ops;
8248
8249         if (ops->ndo_change_rx_flags)
8250                 ops->ndo_change_rx_flags(dev, flags);
8251 }
8252
8253 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8254 {
8255         unsigned int old_flags = dev->flags;
8256         kuid_t uid;
8257         kgid_t gid;
8258
8259         ASSERT_RTNL();
8260
8261         dev->flags |= IFF_PROMISC;
8262         dev->promiscuity += inc;
8263         if (dev->promiscuity == 0) {
8264                 /*
8265                  * Avoid overflow.
8266                  * If inc causes overflow, untouch promisc and return error.
8267                  */
8268                 if (inc < 0)
8269                         dev->flags &= ~IFF_PROMISC;
8270                 else {
8271                         dev->promiscuity -= inc;
8272                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8273                                 dev->name);
8274                         return -EOVERFLOW;
8275                 }
8276         }
8277         if (dev->flags != old_flags) {
8278                 pr_info("device %s %s promiscuous mode\n",
8279                         dev->name,
8280                         dev->flags & IFF_PROMISC ? "entered" : "left");
8281                 if (audit_enabled) {
8282                         current_uid_gid(&uid, &gid);
8283                         audit_log(audit_context(), GFP_ATOMIC,
8284                                   AUDIT_ANOM_PROMISCUOUS,
8285                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8286                                   dev->name, (dev->flags & IFF_PROMISC),
8287                                   (old_flags & IFF_PROMISC),
8288                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8289                                   from_kuid(&init_user_ns, uid),
8290                                   from_kgid(&init_user_ns, gid),
8291                                   audit_get_sessionid(current));
8292                 }
8293
8294                 dev_change_rx_flags(dev, IFF_PROMISC);
8295         }
8296         if (notify)
8297                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8298         return 0;
8299 }
8300
8301 /**
8302  *      dev_set_promiscuity     - update promiscuity count on a device
8303  *      @dev: device
8304  *      @inc: modifier
8305  *
8306  *      Add or remove promiscuity from a device. While the count in the device
8307  *      remains above zero the interface remains promiscuous. Once it hits zero
8308  *      the device reverts back to normal filtering operation. A negative inc
8309  *      value is used to drop promiscuity on the device.
8310  *      Return 0 if successful or a negative errno code on error.
8311  */
8312 int dev_set_promiscuity(struct net_device *dev, int inc)
8313 {
8314         unsigned int old_flags = dev->flags;
8315         int err;
8316
8317         err = __dev_set_promiscuity(dev, inc, true);
8318         if (err < 0)
8319                 return err;
8320         if (dev->flags != old_flags)
8321                 dev_set_rx_mode(dev);
8322         return err;
8323 }
8324 EXPORT_SYMBOL(dev_set_promiscuity);
8325
8326 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8327 {
8328         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8329
8330         ASSERT_RTNL();
8331
8332         dev->flags |= IFF_ALLMULTI;
8333         dev->allmulti += inc;
8334         if (dev->allmulti == 0) {
8335                 /*
8336                  * Avoid overflow.
8337                  * If inc causes overflow, untouch allmulti and return error.
8338                  */
8339                 if (inc < 0)
8340                         dev->flags &= ~IFF_ALLMULTI;
8341                 else {
8342                         dev->allmulti -= inc;
8343                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8344                                 dev->name);
8345                         return -EOVERFLOW;
8346                 }
8347         }
8348         if (dev->flags ^ old_flags) {
8349                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8350                 dev_set_rx_mode(dev);
8351                 if (notify)
8352                         __dev_notify_flags(dev, old_flags,
8353                                            dev->gflags ^ old_gflags);
8354         }
8355         return 0;
8356 }
8357
8358 /**
8359  *      dev_set_allmulti        - update allmulti count on a device
8360  *      @dev: device
8361  *      @inc: modifier
8362  *
8363  *      Add or remove reception of all multicast frames to a device. While the
8364  *      count in the device remains above zero the interface remains listening
8365  *      to all interfaces. Once it hits zero the device reverts back to normal
8366  *      filtering operation. A negative @inc value is used to drop the counter
8367  *      when releasing a resource needing all multicasts.
8368  *      Return 0 if successful or a negative errno code on error.
8369  */
8370
8371 int dev_set_allmulti(struct net_device *dev, int inc)
8372 {
8373         return __dev_set_allmulti(dev, inc, true);
8374 }
8375 EXPORT_SYMBOL(dev_set_allmulti);
8376
8377 /*
8378  *      Upload unicast and multicast address lists to device and
8379  *      configure RX filtering. When the device doesn't support unicast
8380  *      filtering it is put in promiscuous mode while unicast addresses
8381  *      are present.
8382  */
8383 void __dev_set_rx_mode(struct net_device *dev)
8384 {
8385         const struct net_device_ops *ops = dev->netdev_ops;
8386
8387         /* dev_open will call this function so the list will stay sane. */
8388         if (!(dev->flags&IFF_UP))
8389                 return;
8390
8391         if (!netif_device_present(dev))
8392                 return;
8393
8394         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8395                 /* Unicast addresses changes may only happen under the rtnl,
8396                  * therefore calling __dev_set_promiscuity here is safe.
8397                  */
8398                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8399                         __dev_set_promiscuity(dev, 1, false);
8400                         dev->uc_promisc = true;
8401                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8402                         __dev_set_promiscuity(dev, -1, false);
8403                         dev->uc_promisc = false;
8404                 }
8405         }
8406
8407         if (ops->ndo_set_rx_mode)
8408                 ops->ndo_set_rx_mode(dev);
8409 }
8410
8411 void dev_set_rx_mode(struct net_device *dev)
8412 {
8413         netif_addr_lock_bh(dev);
8414         __dev_set_rx_mode(dev);
8415         netif_addr_unlock_bh(dev);
8416 }
8417
8418 /**
8419  *      dev_get_flags - get flags reported to userspace
8420  *      @dev: device
8421  *
8422  *      Get the combination of flag bits exported through APIs to userspace.
8423  */
8424 unsigned int dev_get_flags(const struct net_device *dev)
8425 {
8426         unsigned int flags;
8427
8428         flags = (dev->flags & ~(IFF_PROMISC |
8429                                 IFF_ALLMULTI |
8430                                 IFF_RUNNING |
8431                                 IFF_LOWER_UP |
8432                                 IFF_DORMANT)) |
8433                 (dev->gflags & (IFF_PROMISC |
8434                                 IFF_ALLMULTI));
8435
8436         if (netif_running(dev)) {
8437                 if (netif_oper_up(dev))
8438                         flags |= IFF_RUNNING;
8439                 if (netif_carrier_ok(dev))
8440                         flags |= IFF_LOWER_UP;
8441                 if (netif_dormant(dev))
8442                         flags |= IFF_DORMANT;
8443         }
8444
8445         return flags;
8446 }
8447 EXPORT_SYMBOL(dev_get_flags);
8448
8449 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8450                        struct netlink_ext_ack *extack)
8451 {
8452         unsigned int old_flags = dev->flags;
8453         int ret;
8454
8455         ASSERT_RTNL();
8456
8457         /*
8458          *      Set the flags on our device.
8459          */
8460
8461         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8462                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8463                                IFF_AUTOMEDIA)) |
8464                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8465                                     IFF_ALLMULTI));
8466
8467         /*
8468          *      Load in the correct multicast list now the flags have changed.
8469          */
8470
8471         if ((old_flags ^ flags) & IFF_MULTICAST)
8472                 dev_change_rx_flags(dev, IFF_MULTICAST);
8473
8474         dev_set_rx_mode(dev);
8475
8476         /*
8477          *      Have we downed the interface. We handle IFF_UP ourselves
8478          *      according to user attempts to set it, rather than blindly
8479          *      setting it.
8480          */
8481
8482         ret = 0;
8483         if ((old_flags ^ flags) & IFF_UP) {
8484                 if (old_flags & IFF_UP)
8485                         __dev_close(dev);
8486                 else
8487                         ret = __dev_open(dev, extack);
8488         }
8489
8490         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8491                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8492                 unsigned int old_flags = dev->flags;
8493
8494                 dev->gflags ^= IFF_PROMISC;
8495
8496                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8497                         if (dev->flags != old_flags)
8498                                 dev_set_rx_mode(dev);
8499         }
8500
8501         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8502          * is important. Some (broken) drivers set IFF_PROMISC, when
8503          * IFF_ALLMULTI is requested not asking us and not reporting.
8504          */
8505         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8506                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8507
8508                 dev->gflags ^= IFF_ALLMULTI;
8509                 __dev_set_allmulti(dev, inc, false);
8510         }
8511
8512         return ret;
8513 }
8514
8515 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8516                         unsigned int gchanges)
8517 {
8518         unsigned int changes = dev->flags ^ old_flags;
8519
8520         if (gchanges)
8521                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8522
8523         if (changes & IFF_UP) {
8524                 if (dev->flags & IFF_UP)
8525                         call_netdevice_notifiers(NETDEV_UP, dev);
8526                 else
8527                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8528         }
8529
8530         if (dev->flags & IFF_UP &&
8531             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8532                 struct netdev_notifier_change_info change_info = {
8533                         .info = {
8534                                 .dev = dev,
8535                         },
8536                         .flags_changed = changes,
8537                 };
8538
8539                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8540         }
8541 }
8542
8543 /**
8544  *      dev_change_flags - change device settings
8545  *      @dev: device
8546  *      @flags: device state flags
8547  *      @extack: netlink extended ack
8548  *
8549  *      Change settings on device based state flags. The flags are
8550  *      in the userspace exported format.
8551  */
8552 int dev_change_flags(struct net_device *dev, unsigned int flags,
8553                      struct netlink_ext_ack *extack)
8554 {
8555         int ret;
8556         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8557
8558         ret = __dev_change_flags(dev, flags, extack);
8559         if (ret < 0)
8560                 return ret;
8561
8562         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8563         __dev_notify_flags(dev, old_flags, changes);
8564         return ret;
8565 }
8566 EXPORT_SYMBOL(dev_change_flags);
8567
8568 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8569 {
8570         const struct net_device_ops *ops = dev->netdev_ops;
8571
8572         if (ops->ndo_change_mtu)
8573                 return ops->ndo_change_mtu(dev, new_mtu);
8574
8575         /* Pairs with all the lockless reads of dev->mtu in the stack */
8576         WRITE_ONCE(dev->mtu, new_mtu);
8577         return 0;
8578 }
8579 EXPORT_SYMBOL(__dev_set_mtu);
8580
8581 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8582                      struct netlink_ext_ack *extack)
8583 {
8584         /* MTU must be positive, and in range */
8585         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8586                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8587                 return -EINVAL;
8588         }
8589
8590         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8591                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8592                 return -EINVAL;
8593         }
8594         return 0;
8595 }
8596
8597 /**
8598  *      dev_set_mtu_ext - Change maximum transfer unit
8599  *      @dev: device
8600  *      @new_mtu: new transfer unit
8601  *      @extack: netlink extended ack
8602  *
8603  *      Change the maximum transfer size of the network device.
8604  */
8605 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8606                     struct netlink_ext_ack *extack)
8607 {
8608         int err, orig_mtu;
8609
8610         if (new_mtu == dev->mtu)
8611                 return 0;
8612
8613         err = dev_validate_mtu(dev, new_mtu, extack);
8614         if (err)
8615                 return err;
8616
8617         if (!netif_device_present(dev))
8618                 return -ENODEV;
8619
8620         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8621         err = notifier_to_errno(err);
8622         if (err)
8623                 return err;
8624
8625         orig_mtu = dev->mtu;
8626         err = __dev_set_mtu(dev, new_mtu);
8627
8628         if (!err) {
8629                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8630                                                    orig_mtu);
8631                 err = notifier_to_errno(err);
8632                 if (err) {
8633                         /* setting mtu back and notifying everyone again,
8634                          * so that they have a chance to revert changes.
8635                          */
8636                         __dev_set_mtu(dev, orig_mtu);
8637                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8638                                                      new_mtu);
8639                 }
8640         }
8641         return err;
8642 }
8643
8644 int dev_set_mtu(struct net_device *dev, int new_mtu)
8645 {
8646         struct netlink_ext_ack extack;
8647         int err;
8648
8649         memset(&extack, 0, sizeof(extack));
8650         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8651         if (err && extack._msg)
8652                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8653         return err;
8654 }
8655 EXPORT_SYMBOL(dev_set_mtu);
8656
8657 /**
8658  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8659  *      @dev: device
8660  *      @new_len: new tx queue length
8661  */
8662 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8663 {
8664         unsigned int orig_len = dev->tx_queue_len;
8665         int res;
8666
8667         if (new_len != (unsigned int)new_len)
8668                 return -ERANGE;
8669
8670         if (new_len != orig_len) {
8671                 dev->tx_queue_len = new_len;
8672                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8673                 res = notifier_to_errno(res);
8674                 if (res)
8675                         goto err_rollback;
8676                 res = dev_qdisc_change_tx_queue_len(dev);
8677                 if (res)
8678                         goto err_rollback;
8679         }
8680
8681         return 0;
8682
8683 err_rollback:
8684         netdev_err(dev, "refused to change device tx_queue_len\n");
8685         dev->tx_queue_len = orig_len;
8686         return res;
8687 }
8688
8689 /**
8690  *      dev_set_group - Change group this device belongs to
8691  *      @dev: device
8692  *      @new_group: group this device should belong to
8693  */
8694 void dev_set_group(struct net_device *dev, int new_group)
8695 {
8696         dev->group = new_group;
8697 }
8698 EXPORT_SYMBOL(dev_set_group);
8699
8700 /**
8701  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8702  *      @dev: device
8703  *      @addr: new address
8704  *      @extack: netlink extended ack
8705  */
8706 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8707                               struct netlink_ext_ack *extack)
8708 {
8709         struct netdev_notifier_pre_changeaddr_info info = {
8710                 .info.dev = dev,
8711                 .info.extack = extack,
8712                 .dev_addr = addr,
8713         };
8714         int rc;
8715
8716         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8717         return notifier_to_errno(rc);
8718 }
8719 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8720
8721 /**
8722  *      dev_set_mac_address - Change Media Access Control Address
8723  *      @dev: device
8724  *      @sa: new address
8725  *      @extack: netlink extended ack
8726  *
8727  *      Change the hardware (MAC) address of the device
8728  */
8729 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8730                         struct netlink_ext_ack *extack)
8731 {
8732         const struct net_device_ops *ops = dev->netdev_ops;
8733         int err;
8734
8735         if (!ops->ndo_set_mac_address)
8736                 return -EOPNOTSUPP;
8737         if (sa->sa_family != dev->type)
8738                 return -EINVAL;
8739         if (!netif_device_present(dev))
8740                 return -ENODEV;
8741         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8742         if (err)
8743                 return err;
8744         err = ops->ndo_set_mac_address(dev, sa);
8745         if (err)
8746                 return err;
8747         dev->addr_assign_type = NET_ADDR_SET;
8748         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8749         add_device_randomness(dev->dev_addr, dev->addr_len);
8750         return 0;
8751 }
8752 EXPORT_SYMBOL(dev_set_mac_address);
8753
8754 static DECLARE_RWSEM(dev_addr_sem);
8755
8756 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8757                              struct netlink_ext_ack *extack)
8758 {
8759         int ret;
8760
8761         down_write(&dev_addr_sem);
8762         ret = dev_set_mac_address(dev, sa, extack);
8763         up_write(&dev_addr_sem);
8764         return ret;
8765 }
8766 EXPORT_SYMBOL(dev_set_mac_address_user);
8767
8768 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8769 {
8770         size_t size = sizeof(sa->sa_data);
8771         struct net_device *dev;
8772         int ret = 0;
8773
8774         down_read(&dev_addr_sem);
8775         rcu_read_lock();
8776
8777         dev = dev_get_by_name_rcu(net, dev_name);
8778         if (!dev) {
8779                 ret = -ENODEV;
8780                 goto unlock;
8781         }
8782         if (!dev->addr_len)
8783                 memset(sa->sa_data, 0, size);
8784         else
8785                 memcpy(sa->sa_data, dev->dev_addr,
8786                        min_t(size_t, size, dev->addr_len));
8787         sa->sa_family = dev->type;
8788
8789 unlock:
8790         rcu_read_unlock();
8791         up_read(&dev_addr_sem);
8792         return ret;
8793 }
8794 EXPORT_SYMBOL(dev_get_mac_address);
8795
8796 /**
8797  *      dev_change_carrier - Change device carrier
8798  *      @dev: device
8799  *      @new_carrier: new value
8800  *
8801  *      Change device carrier
8802  */
8803 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8804 {
8805         const struct net_device_ops *ops = dev->netdev_ops;
8806
8807         if (!ops->ndo_change_carrier)
8808                 return -EOPNOTSUPP;
8809         if (!netif_device_present(dev))
8810                 return -ENODEV;
8811         return ops->ndo_change_carrier(dev, new_carrier);
8812 }
8813 EXPORT_SYMBOL(dev_change_carrier);
8814
8815 /**
8816  *      dev_get_phys_port_id - Get device physical port ID
8817  *      @dev: device
8818  *      @ppid: port ID
8819  *
8820  *      Get device physical port ID
8821  */
8822 int dev_get_phys_port_id(struct net_device *dev,
8823                          struct netdev_phys_item_id *ppid)
8824 {
8825         const struct net_device_ops *ops = dev->netdev_ops;
8826
8827         if (!ops->ndo_get_phys_port_id)
8828                 return -EOPNOTSUPP;
8829         return ops->ndo_get_phys_port_id(dev, ppid);
8830 }
8831 EXPORT_SYMBOL(dev_get_phys_port_id);
8832
8833 /**
8834  *      dev_get_phys_port_name - Get device physical port name
8835  *      @dev: device
8836  *      @name: port name
8837  *      @len: limit of bytes to copy to name
8838  *
8839  *      Get device physical port name
8840  */
8841 int dev_get_phys_port_name(struct net_device *dev,
8842                            char *name, size_t len)
8843 {
8844         const struct net_device_ops *ops = dev->netdev_ops;
8845         int err;
8846
8847         if (ops->ndo_get_phys_port_name) {
8848                 err = ops->ndo_get_phys_port_name(dev, name, len);
8849                 if (err != -EOPNOTSUPP)
8850                         return err;
8851         }
8852         return devlink_compat_phys_port_name_get(dev, name, len);
8853 }
8854 EXPORT_SYMBOL(dev_get_phys_port_name);
8855
8856 /**
8857  *      dev_get_port_parent_id - Get the device's port parent identifier
8858  *      @dev: network device
8859  *      @ppid: pointer to a storage for the port's parent identifier
8860  *      @recurse: allow/disallow recursion to lower devices
8861  *
8862  *      Get the devices's port parent identifier
8863  */
8864 int dev_get_port_parent_id(struct net_device *dev,
8865                            struct netdev_phys_item_id *ppid,
8866                            bool recurse)
8867 {
8868         const struct net_device_ops *ops = dev->netdev_ops;
8869         struct netdev_phys_item_id first = { };
8870         struct net_device *lower_dev;
8871         struct list_head *iter;
8872         int err;
8873
8874         if (ops->ndo_get_port_parent_id) {
8875                 err = ops->ndo_get_port_parent_id(dev, ppid);
8876                 if (err != -EOPNOTSUPP)
8877                         return err;
8878         }
8879
8880         err = devlink_compat_switch_id_get(dev, ppid);
8881         if (!err || err != -EOPNOTSUPP)
8882                 return err;
8883
8884         if (!recurse)
8885                 return -EOPNOTSUPP;
8886
8887         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8888                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8889                 if (err)
8890                         break;
8891                 if (!first.id_len)
8892                         first = *ppid;
8893                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8894                         return -EOPNOTSUPP;
8895         }
8896
8897         return err;
8898 }
8899 EXPORT_SYMBOL(dev_get_port_parent_id);
8900
8901 /**
8902  *      netdev_port_same_parent_id - Indicate if two network devices have
8903  *      the same port parent identifier
8904  *      @a: first network device
8905  *      @b: second network device
8906  */
8907 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8908 {
8909         struct netdev_phys_item_id a_id = { };
8910         struct netdev_phys_item_id b_id = { };
8911
8912         if (dev_get_port_parent_id(a, &a_id, true) ||
8913             dev_get_port_parent_id(b, &b_id, true))
8914                 return false;
8915
8916         return netdev_phys_item_id_same(&a_id, &b_id);
8917 }
8918 EXPORT_SYMBOL(netdev_port_same_parent_id);
8919
8920 /**
8921  *      dev_change_proto_down - update protocol port state information
8922  *      @dev: device
8923  *      @proto_down: new value
8924  *
8925  *      This info can be used by switch drivers to set the phys state of the
8926  *      port.
8927  */
8928 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8929 {
8930         const struct net_device_ops *ops = dev->netdev_ops;
8931
8932         if (!ops->ndo_change_proto_down)
8933                 return -EOPNOTSUPP;
8934         if (!netif_device_present(dev))
8935                 return -ENODEV;
8936         return ops->ndo_change_proto_down(dev, proto_down);
8937 }
8938 EXPORT_SYMBOL(dev_change_proto_down);
8939
8940 /**
8941  *      dev_change_proto_down_generic - generic implementation for
8942  *      ndo_change_proto_down that sets carrier according to
8943  *      proto_down.
8944  *
8945  *      @dev: device
8946  *      @proto_down: new value
8947  */
8948 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8949 {
8950         if (proto_down)
8951                 netif_carrier_off(dev);
8952         else
8953                 netif_carrier_on(dev);
8954         dev->proto_down = proto_down;
8955         return 0;
8956 }
8957 EXPORT_SYMBOL(dev_change_proto_down_generic);
8958
8959 /**
8960  *      dev_change_proto_down_reason - proto down reason
8961  *
8962  *      @dev: device
8963  *      @mask: proto down mask
8964  *      @value: proto down value
8965  */
8966 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8967                                   u32 value)
8968 {
8969         int b;
8970
8971         if (!mask) {
8972                 dev->proto_down_reason = value;
8973         } else {
8974                 for_each_set_bit(b, &mask, 32) {
8975                         if (value & (1 << b))
8976                                 dev->proto_down_reason |= BIT(b);
8977                         else
8978                                 dev->proto_down_reason &= ~BIT(b);
8979                 }
8980         }
8981 }
8982 EXPORT_SYMBOL(dev_change_proto_down_reason);
8983
8984 struct bpf_xdp_link {
8985         struct bpf_link link;
8986         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8987         int flags;
8988 };
8989
8990 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8991 {
8992         if (flags & XDP_FLAGS_HW_MODE)
8993                 return XDP_MODE_HW;
8994         if (flags & XDP_FLAGS_DRV_MODE)
8995                 return XDP_MODE_DRV;
8996         if (flags & XDP_FLAGS_SKB_MODE)
8997                 return XDP_MODE_SKB;
8998         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8999 }
9000
9001 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9002 {
9003         switch (mode) {
9004         case XDP_MODE_SKB:
9005                 return generic_xdp_install;
9006         case XDP_MODE_DRV:
9007         case XDP_MODE_HW:
9008                 return dev->netdev_ops->ndo_bpf;
9009         default:
9010                 return NULL;
9011         };
9012 }
9013
9014 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9015                                          enum bpf_xdp_mode mode)
9016 {
9017         return dev->xdp_state[mode].link;
9018 }
9019
9020 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9021                                      enum bpf_xdp_mode mode)
9022 {
9023         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9024
9025         if (link)
9026                 return link->link.prog;
9027         return dev->xdp_state[mode].prog;
9028 }
9029
9030 static u8 dev_xdp_prog_count(struct net_device *dev)
9031 {
9032         u8 count = 0;
9033         int i;
9034
9035         for (i = 0; i < __MAX_XDP_MODE; i++)
9036                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9037                         count++;
9038         return count;
9039 }
9040
9041 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9042 {
9043         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9044
9045         return prog ? prog->aux->id : 0;
9046 }
9047
9048 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9049                              struct bpf_xdp_link *link)
9050 {
9051         dev->xdp_state[mode].link = link;
9052         dev->xdp_state[mode].prog = NULL;
9053 }
9054
9055 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9056                              struct bpf_prog *prog)
9057 {
9058         dev->xdp_state[mode].link = NULL;
9059         dev->xdp_state[mode].prog = prog;
9060 }
9061
9062 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9063                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9064                            u32 flags, struct bpf_prog *prog)
9065 {
9066         struct netdev_bpf xdp;
9067         int err;
9068
9069         memset(&xdp, 0, sizeof(xdp));
9070         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9071         xdp.extack = extack;
9072         xdp.flags = flags;
9073         xdp.prog = prog;
9074
9075         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9076          * "moved" into driver), so they don't increment it on their own, but
9077          * they do decrement refcnt when program is detached or replaced.
9078          * Given net_device also owns link/prog, we need to bump refcnt here
9079          * to prevent drivers from underflowing it.
9080          */
9081         if (prog)
9082                 bpf_prog_inc(prog);
9083         err = bpf_op(dev, &xdp);
9084         if (err) {
9085                 if (prog)
9086                         bpf_prog_put(prog);
9087                 return err;
9088         }
9089
9090         if (mode != XDP_MODE_HW)
9091                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9092
9093         return 0;
9094 }
9095
9096 static void dev_xdp_uninstall(struct net_device *dev)
9097 {
9098         struct bpf_xdp_link *link;
9099         struct bpf_prog *prog;
9100         enum bpf_xdp_mode mode;
9101         bpf_op_t bpf_op;
9102
9103         ASSERT_RTNL();
9104
9105         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9106                 prog = dev_xdp_prog(dev, mode);
9107                 if (!prog)
9108                         continue;
9109
9110                 bpf_op = dev_xdp_bpf_op(dev, mode);
9111                 if (!bpf_op)
9112                         continue;
9113
9114                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9115
9116                 /* auto-detach link from net device */
9117                 link = dev_xdp_link(dev, mode);
9118                 if (link)
9119                         link->dev = NULL;
9120                 else
9121                         bpf_prog_put(prog);
9122
9123                 dev_xdp_set_link(dev, mode, NULL);
9124         }
9125 }
9126
9127 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9128                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9129                           struct bpf_prog *old_prog, u32 flags)
9130 {
9131         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9132         struct bpf_prog *cur_prog;
9133         enum bpf_xdp_mode mode;
9134         bpf_op_t bpf_op;
9135         int err;
9136
9137         ASSERT_RTNL();
9138
9139         /* either link or prog attachment, never both */
9140         if (link && (new_prog || old_prog))
9141                 return -EINVAL;
9142         /* link supports only XDP mode flags */
9143         if (link && (flags & ~XDP_FLAGS_MODES)) {
9144                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9145                 return -EINVAL;
9146         }
9147         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9148         if (num_modes > 1) {
9149                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9150                 return -EINVAL;
9151         }
9152         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9153         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9154                 NL_SET_ERR_MSG(extack,
9155                                "More than one program loaded, unset mode is ambiguous");
9156                 return -EINVAL;
9157         }
9158         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9159         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9160                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9161                 return -EINVAL;
9162         }
9163
9164         mode = dev_xdp_mode(dev, flags);
9165         /* can't replace attached link */
9166         if (dev_xdp_link(dev, mode)) {
9167                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9168                 return -EBUSY;
9169         }
9170
9171         cur_prog = dev_xdp_prog(dev, mode);
9172         /* can't replace attached prog with link */
9173         if (link && cur_prog) {
9174                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9175                 return -EBUSY;
9176         }
9177         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9178                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9179                 return -EEXIST;
9180         }
9181
9182         /* put effective new program into new_prog */
9183         if (link)
9184                 new_prog = link->link.prog;
9185
9186         if (new_prog) {
9187                 bool offload = mode == XDP_MODE_HW;
9188                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9189                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9190
9191                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9192                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9193                         return -EBUSY;
9194                 }
9195                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9196                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9197                         return -EEXIST;
9198                 }
9199                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9200                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9201                         return -EINVAL;
9202                 }
9203                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9204                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9205                         return -EINVAL;
9206                 }
9207                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9208                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9209                         return -EINVAL;
9210                 }
9211         }
9212
9213         /* don't call drivers if the effective program didn't change */
9214         if (new_prog != cur_prog) {
9215                 bpf_op = dev_xdp_bpf_op(dev, mode);
9216                 if (!bpf_op) {
9217                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9218                         return -EOPNOTSUPP;
9219                 }
9220
9221                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9222                 if (err)
9223                         return err;
9224         }
9225
9226         if (link)
9227                 dev_xdp_set_link(dev, mode, link);
9228         else
9229                 dev_xdp_set_prog(dev, mode, new_prog);
9230         if (cur_prog)
9231                 bpf_prog_put(cur_prog);
9232
9233         return 0;
9234 }
9235
9236 static int dev_xdp_attach_link(struct net_device *dev,
9237                                struct netlink_ext_ack *extack,
9238                                struct bpf_xdp_link *link)
9239 {
9240         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9241 }
9242
9243 static int dev_xdp_detach_link(struct net_device *dev,
9244                                struct netlink_ext_ack *extack,
9245                                struct bpf_xdp_link *link)
9246 {
9247         enum bpf_xdp_mode mode;
9248         bpf_op_t bpf_op;
9249
9250         ASSERT_RTNL();
9251
9252         mode = dev_xdp_mode(dev, link->flags);
9253         if (dev_xdp_link(dev, mode) != link)
9254                 return -EINVAL;
9255
9256         bpf_op = dev_xdp_bpf_op(dev, mode);
9257         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9258         dev_xdp_set_link(dev, mode, NULL);
9259         return 0;
9260 }
9261
9262 static void bpf_xdp_link_release(struct bpf_link *link)
9263 {
9264         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9265
9266         rtnl_lock();
9267
9268         /* if racing with net_device's tear down, xdp_link->dev might be
9269          * already NULL, in which case link was already auto-detached
9270          */
9271         if (xdp_link->dev) {
9272                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9273                 xdp_link->dev = NULL;
9274         }
9275
9276         rtnl_unlock();
9277 }
9278
9279 static int bpf_xdp_link_detach(struct bpf_link *link)
9280 {
9281         bpf_xdp_link_release(link);
9282         return 0;
9283 }
9284
9285 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9286 {
9287         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9288
9289         kfree(xdp_link);
9290 }
9291
9292 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9293                                      struct seq_file *seq)
9294 {
9295         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9296         u32 ifindex = 0;
9297
9298         rtnl_lock();
9299         if (xdp_link->dev)
9300                 ifindex = xdp_link->dev->ifindex;
9301         rtnl_unlock();
9302
9303         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9304 }
9305
9306 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9307                                        struct bpf_link_info *info)
9308 {
9309         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9310         u32 ifindex = 0;
9311
9312         rtnl_lock();
9313         if (xdp_link->dev)
9314                 ifindex = xdp_link->dev->ifindex;
9315         rtnl_unlock();
9316
9317         info->xdp.ifindex = ifindex;
9318         return 0;
9319 }
9320
9321 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9322                                struct bpf_prog *old_prog)
9323 {
9324         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9325         enum bpf_xdp_mode mode;
9326         bpf_op_t bpf_op;
9327         int err = 0;
9328
9329         rtnl_lock();
9330
9331         /* link might have been auto-released already, so fail */
9332         if (!xdp_link->dev) {
9333                 err = -ENOLINK;
9334                 goto out_unlock;
9335         }
9336
9337         if (old_prog && link->prog != old_prog) {
9338                 err = -EPERM;
9339                 goto out_unlock;
9340         }
9341         old_prog = link->prog;
9342         if (old_prog == new_prog) {
9343                 /* no-op, don't disturb drivers */
9344                 bpf_prog_put(new_prog);
9345                 goto out_unlock;
9346         }
9347
9348         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9349         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9350         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9351                               xdp_link->flags, new_prog);
9352         if (err)
9353                 goto out_unlock;
9354
9355         old_prog = xchg(&link->prog, new_prog);
9356         bpf_prog_put(old_prog);
9357
9358 out_unlock:
9359         rtnl_unlock();
9360         return err;
9361 }
9362
9363 static const struct bpf_link_ops bpf_xdp_link_lops = {
9364         .release = bpf_xdp_link_release,
9365         .dealloc = bpf_xdp_link_dealloc,
9366         .detach = bpf_xdp_link_detach,
9367         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9368         .fill_link_info = bpf_xdp_link_fill_link_info,
9369         .update_prog = bpf_xdp_link_update,
9370 };
9371
9372 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9373 {
9374         struct net *net = current->nsproxy->net_ns;
9375         struct bpf_link_primer link_primer;
9376         struct bpf_xdp_link *link;
9377         struct net_device *dev;
9378         int err, fd;
9379
9380         rtnl_lock();
9381         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9382         if (!dev) {
9383                 rtnl_unlock();
9384                 return -EINVAL;
9385         }
9386
9387         link = kzalloc(sizeof(*link), GFP_USER);
9388         if (!link) {
9389                 err = -ENOMEM;
9390                 goto unlock;
9391         }
9392
9393         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9394         link->dev = dev;
9395         link->flags = attr->link_create.flags;
9396
9397         err = bpf_link_prime(&link->link, &link_primer);
9398         if (err) {
9399                 kfree(link);
9400                 goto unlock;
9401         }
9402
9403         err = dev_xdp_attach_link(dev, NULL, link);
9404         rtnl_unlock();
9405
9406         if (err) {
9407                 link->dev = NULL;
9408                 bpf_link_cleanup(&link_primer);
9409                 goto out_put_dev;
9410         }
9411
9412         fd = bpf_link_settle(&link_primer);
9413         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9414         dev_put(dev);
9415         return fd;
9416
9417 unlock:
9418         rtnl_unlock();
9419
9420 out_put_dev:
9421         dev_put(dev);
9422         return err;
9423 }
9424
9425 /**
9426  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9427  *      @dev: device
9428  *      @extack: netlink extended ack
9429  *      @fd: new program fd or negative value to clear
9430  *      @expected_fd: old program fd that userspace expects to replace or clear
9431  *      @flags: xdp-related flags
9432  *
9433  *      Set or clear a bpf program for a device
9434  */
9435 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9436                       int fd, int expected_fd, u32 flags)
9437 {
9438         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9439         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9440         int err;
9441
9442         ASSERT_RTNL();
9443
9444         if (fd >= 0) {
9445                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9446                                                  mode != XDP_MODE_SKB);
9447                 if (IS_ERR(new_prog))
9448                         return PTR_ERR(new_prog);
9449         }
9450
9451         if (expected_fd >= 0) {
9452                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9453                                                  mode != XDP_MODE_SKB);
9454                 if (IS_ERR(old_prog)) {
9455                         err = PTR_ERR(old_prog);
9456                         old_prog = NULL;
9457                         goto err_out;
9458                 }
9459         }
9460
9461         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9462
9463 err_out:
9464         if (err && new_prog)
9465                 bpf_prog_put(new_prog);
9466         if (old_prog)
9467                 bpf_prog_put(old_prog);
9468         return err;
9469 }
9470
9471 /**
9472  *      dev_new_index   -       allocate an ifindex
9473  *      @net: the applicable net namespace
9474  *
9475  *      Returns a suitable unique value for a new device interface
9476  *      number.  The caller must hold the rtnl semaphore or the
9477  *      dev_base_lock to be sure it remains unique.
9478  */
9479 static int dev_new_index(struct net *net)
9480 {
9481         int ifindex = net->ifindex;
9482
9483         for (;;) {
9484                 if (++ifindex <= 0)
9485                         ifindex = 1;
9486                 if (!__dev_get_by_index(net, ifindex))
9487                         return net->ifindex = ifindex;
9488         }
9489 }
9490
9491 /* Delayed registration/unregisteration */
9492 static LIST_HEAD(net_todo_list);
9493 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9494
9495 static void net_set_todo(struct net_device *dev)
9496 {
9497         list_add_tail(&dev->todo_list, &net_todo_list);
9498         dev_net(dev)->dev_unreg_count++;
9499 }
9500
9501 static void rollback_registered_many(struct list_head *head)
9502 {
9503         struct net_device *dev, *tmp;
9504         LIST_HEAD(close_head);
9505
9506         BUG_ON(dev_boot_phase);
9507         ASSERT_RTNL();
9508
9509         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9510                 /* Some devices call without registering
9511                  * for initialization unwind. Remove those
9512                  * devices and proceed with the remaining.
9513                  */
9514                 if (dev->reg_state == NETREG_UNINITIALIZED) {
9515                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9516                                  dev->name, dev);
9517
9518                         WARN_ON(1);
9519                         list_del(&dev->unreg_list);
9520                         continue;
9521                 }
9522                 dev->dismantle = true;
9523                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
9524         }
9525
9526         /* If device is running, close it first. */
9527         list_for_each_entry(dev, head, unreg_list)
9528                 list_add_tail(&dev->close_list, &close_head);
9529         dev_close_many(&close_head, true);
9530
9531         list_for_each_entry(dev, head, unreg_list) {
9532                 /* And unlink it from device chain. */
9533                 unlist_netdevice(dev);
9534
9535                 dev->reg_state = NETREG_UNREGISTERING;
9536         }
9537         flush_all_backlogs();
9538
9539         synchronize_net();
9540
9541         list_for_each_entry(dev, head, unreg_list) {
9542                 struct sk_buff *skb = NULL;
9543
9544                 /* Shutdown queueing discipline. */
9545                 dev_shutdown(dev);
9546
9547                 dev_xdp_uninstall(dev);
9548
9549                 /* Notify protocols, that we are about to destroy
9550                  * this device. They should clean all the things.
9551                  */
9552                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9553
9554                 if (!dev->rtnl_link_ops ||
9555                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9556                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9557                                                      GFP_KERNEL, NULL, 0);
9558
9559                 /*
9560                  *      Flush the unicast and multicast chains
9561                  */
9562                 dev_uc_flush(dev);
9563                 dev_mc_flush(dev);
9564
9565                 netdev_name_node_alt_flush(dev);
9566                 netdev_name_node_free(dev->name_node);
9567
9568                 if (dev->netdev_ops->ndo_uninit)
9569                         dev->netdev_ops->ndo_uninit(dev);
9570
9571                 if (skb)
9572                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9573
9574                 /* Notifier chain MUST detach us all upper devices. */
9575                 WARN_ON(netdev_has_any_upper_dev(dev));
9576                 WARN_ON(netdev_has_any_lower_dev(dev));
9577
9578                 /* Remove entries from kobject tree */
9579                 netdev_unregister_kobject(dev);
9580 #ifdef CONFIG_XPS
9581                 /* Remove XPS queueing entries */
9582                 netif_reset_xps_queues_gt(dev, 0);
9583 #endif
9584         }
9585
9586         synchronize_net();
9587
9588         list_for_each_entry(dev, head, unreg_list)
9589                 dev_put(dev);
9590 }
9591
9592 static void rollback_registered(struct net_device *dev)
9593 {
9594         LIST_HEAD(single);
9595
9596         list_add(&dev->unreg_list, &single);
9597         rollback_registered_many(&single);
9598         list_del(&single);
9599 }
9600
9601 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9602         struct net_device *upper, netdev_features_t features)
9603 {
9604         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9605         netdev_features_t feature;
9606         int feature_bit;
9607
9608         for_each_netdev_feature(upper_disables, feature_bit) {
9609                 feature = __NETIF_F_BIT(feature_bit);
9610                 if (!(upper->wanted_features & feature)
9611                     && (features & feature)) {
9612                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9613                                    &feature, upper->name);
9614                         features &= ~feature;
9615                 }
9616         }
9617
9618         return features;
9619 }
9620
9621 static void netdev_sync_lower_features(struct net_device *upper,
9622         struct net_device *lower, netdev_features_t features)
9623 {
9624         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9625         netdev_features_t feature;
9626         int feature_bit;
9627
9628         for_each_netdev_feature(upper_disables, feature_bit) {
9629                 feature = __NETIF_F_BIT(feature_bit);
9630                 if (!(features & feature) && (lower->features & feature)) {
9631                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9632                                    &feature, lower->name);
9633                         lower->wanted_features &= ~feature;
9634                         __netdev_update_features(lower);
9635
9636                         if (unlikely(lower->features & feature))
9637                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9638                                             &feature, lower->name);
9639                         else
9640                                 netdev_features_change(lower);
9641                 }
9642         }
9643 }
9644
9645 static netdev_features_t netdev_fix_features(struct net_device *dev,
9646         netdev_features_t features)
9647 {
9648         /* Fix illegal checksum combinations */
9649         if ((features & NETIF_F_HW_CSUM) &&
9650             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9651                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9652                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9653         }
9654
9655         /* TSO requires that SG is present as well. */
9656         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9657                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9658                 features &= ~NETIF_F_ALL_TSO;
9659         }
9660
9661         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9662                                         !(features & NETIF_F_IP_CSUM)) {
9663                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9664                 features &= ~NETIF_F_TSO;
9665                 features &= ~NETIF_F_TSO_ECN;
9666         }
9667
9668         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9669                                          !(features & NETIF_F_IPV6_CSUM)) {
9670                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9671                 features &= ~NETIF_F_TSO6;
9672         }
9673
9674         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9675         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9676                 features &= ~NETIF_F_TSO_MANGLEID;
9677
9678         /* TSO ECN requires that TSO is present as well. */
9679         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9680                 features &= ~NETIF_F_TSO_ECN;
9681
9682         /* Software GSO depends on SG. */
9683         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9684                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9685                 features &= ~NETIF_F_GSO;
9686         }
9687
9688         /* GSO partial features require GSO partial be set */
9689         if ((features & dev->gso_partial_features) &&
9690             !(features & NETIF_F_GSO_PARTIAL)) {
9691                 netdev_dbg(dev,
9692                            "Dropping partially supported GSO features since no GSO partial.\n");
9693                 features &= ~dev->gso_partial_features;
9694         }
9695
9696         if (!(features & NETIF_F_RXCSUM)) {
9697                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9698                  * successfully merged by hardware must also have the
9699                  * checksum verified by hardware.  If the user does not
9700                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9701                  */
9702                 if (features & NETIF_F_GRO_HW) {
9703                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9704                         features &= ~NETIF_F_GRO_HW;
9705                 }
9706         }
9707
9708         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9709         if (features & NETIF_F_RXFCS) {
9710                 if (features & NETIF_F_LRO) {
9711                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9712                         features &= ~NETIF_F_LRO;
9713                 }
9714
9715                 if (features & NETIF_F_GRO_HW) {
9716                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9717                         features &= ~NETIF_F_GRO_HW;
9718                 }
9719         }
9720
9721         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9722                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9723                 features &= ~NETIF_F_HW_TLS_RX;
9724         }
9725
9726         return features;
9727 }
9728
9729 int __netdev_update_features(struct net_device *dev)
9730 {
9731         struct net_device *upper, *lower;
9732         netdev_features_t features;
9733         struct list_head *iter;
9734         int err = -1;
9735
9736         ASSERT_RTNL();
9737
9738         features = netdev_get_wanted_features(dev);
9739
9740         if (dev->netdev_ops->ndo_fix_features)
9741                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9742
9743         /* driver might be less strict about feature dependencies */
9744         features = netdev_fix_features(dev, features);
9745
9746         /* some features can't be enabled if they're off on an upper device */
9747         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9748                 features = netdev_sync_upper_features(dev, upper, features);
9749
9750         if (dev->features == features)
9751                 goto sync_lower;
9752
9753         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9754                 &dev->features, &features);
9755
9756         if (dev->netdev_ops->ndo_set_features)
9757                 err = dev->netdev_ops->ndo_set_features(dev, features);
9758         else
9759                 err = 0;
9760
9761         if (unlikely(err < 0)) {
9762                 netdev_err(dev,
9763                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9764                         err, &features, &dev->features);
9765                 /* return non-0 since some features might have changed and
9766                  * it's better to fire a spurious notification than miss it
9767                  */
9768                 return -1;
9769         }
9770
9771 sync_lower:
9772         /* some features must be disabled on lower devices when disabled
9773          * on an upper device (think: bonding master or bridge)
9774          */
9775         netdev_for_each_lower_dev(dev, lower, iter)
9776                 netdev_sync_lower_features(dev, lower, features);
9777
9778         if (!err) {
9779                 netdev_features_t diff = features ^ dev->features;
9780
9781                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9782                         /* udp_tunnel_{get,drop}_rx_info both need
9783                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9784                          * device, or they won't do anything.
9785                          * Thus we need to update dev->features
9786                          * *before* calling udp_tunnel_get_rx_info,
9787                          * but *after* calling udp_tunnel_drop_rx_info.
9788                          */
9789                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9790                                 dev->features = features;
9791                                 udp_tunnel_get_rx_info(dev);
9792                         } else {
9793                                 udp_tunnel_drop_rx_info(dev);
9794                         }
9795                 }
9796
9797                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9798                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9799                                 dev->features = features;
9800                                 err |= vlan_get_rx_ctag_filter_info(dev);
9801                         } else {
9802                                 vlan_drop_rx_ctag_filter_info(dev);
9803                         }
9804                 }
9805
9806                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9807                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9808                                 dev->features = features;
9809                                 err |= vlan_get_rx_stag_filter_info(dev);
9810                         } else {
9811                                 vlan_drop_rx_stag_filter_info(dev);
9812                         }
9813                 }
9814
9815                 dev->features = features;
9816         }
9817
9818         return err < 0 ? 0 : 1;
9819 }
9820
9821 /**
9822  *      netdev_update_features - recalculate device features
9823  *      @dev: the device to check
9824  *
9825  *      Recalculate dev->features set and send notifications if it
9826  *      has changed. Should be called after driver or hardware dependent
9827  *      conditions might have changed that influence the features.
9828  */
9829 void netdev_update_features(struct net_device *dev)
9830 {
9831         if (__netdev_update_features(dev))
9832                 netdev_features_change(dev);
9833 }
9834 EXPORT_SYMBOL(netdev_update_features);
9835
9836 /**
9837  *      netdev_change_features - recalculate device features
9838  *      @dev: the device to check
9839  *
9840  *      Recalculate dev->features set and send notifications even
9841  *      if they have not changed. Should be called instead of
9842  *      netdev_update_features() if also dev->vlan_features might
9843  *      have changed to allow the changes to be propagated to stacked
9844  *      VLAN devices.
9845  */
9846 void netdev_change_features(struct net_device *dev)
9847 {
9848         __netdev_update_features(dev);
9849         netdev_features_change(dev);
9850 }
9851 EXPORT_SYMBOL(netdev_change_features);
9852
9853 /**
9854  *      netif_stacked_transfer_operstate -      transfer operstate
9855  *      @rootdev: the root or lower level device to transfer state from
9856  *      @dev: the device to transfer operstate to
9857  *
9858  *      Transfer operational state from root to device. This is normally
9859  *      called when a stacking relationship exists between the root
9860  *      device and the device(a leaf device).
9861  */
9862 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9863                                         struct net_device *dev)
9864 {
9865         if (rootdev->operstate == IF_OPER_DORMANT)
9866                 netif_dormant_on(dev);
9867         else
9868                 netif_dormant_off(dev);
9869
9870         if (rootdev->operstate == IF_OPER_TESTING)
9871                 netif_testing_on(dev);
9872         else
9873                 netif_testing_off(dev);
9874
9875         if (netif_carrier_ok(rootdev))
9876                 netif_carrier_on(dev);
9877         else
9878                 netif_carrier_off(dev);
9879 }
9880 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9881
9882 static int netif_alloc_rx_queues(struct net_device *dev)
9883 {
9884         unsigned int i, count = dev->num_rx_queues;
9885         struct netdev_rx_queue *rx;
9886         size_t sz = count * sizeof(*rx);
9887         int err = 0;
9888
9889         BUG_ON(count < 1);
9890
9891         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9892         if (!rx)
9893                 return -ENOMEM;
9894
9895         dev->_rx = rx;
9896
9897         for (i = 0; i < count; i++) {
9898                 rx[i].dev = dev;
9899
9900                 /* XDP RX-queue setup */
9901                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9902                 if (err < 0)
9903                         goto err_rxq_info;
9904         }
9905         return 0;
9906
9907 err_rxq_info:
9908         /* Rollback successful reg's and free other resources */
9909         while (i--)
9910                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9911         kvfree(dev->_rx);
9912         dev->_rx = NULL;
9913         return err;
9914 }
9915
9916 static void netif_free_rx_queues(struct net_device *dev)
9917 {
9918         unsigned int i, count = dev->num_rx_queues;
9919
9920         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9921         if (!dev->_rx)
9922                 return;
9923
9924         for (i = 0; i < count; i++)
9925                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9926
9927         kvfree(dev->_rx);
9928 }
9929
9930 static void netdev_init_one_queue(struct net_device *dev,
9931                                   struct netdev_queue *queue, void *_unused)
9932 {
9933         /* Initialize queue lock */
9934         spin_lock_init(&queue->_xmit_lock);
9935         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9936         queue->xmit_lock_owner = -1;
9937         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9938         queue->dev = dev;
9939 #ifdef CONFIG_BQL
9940         dql_init(&queue->dql, HZ);
9941 #endif
9942 }
9943
9944 static void netif_free_tx_queues(struct net_device *dev)
9945 {
9946         kvfree(dev->_tx);
9947 }
9948
9949 static int netif_alloc_netdev_queues(struct net_device *dev)
9950 {
9951         unsigned int count = dev->num_tx_queues;
9952         struct netdev_queue *tx;
9953         size_t sz = count * sizeof(*tx);
9954
9955         if (count < 1 || count > 0xffff)
9956                 return -EINVAL;
9957
9958         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9959         if (!tx)
9960                 return -ENOMEM;
9961
9962         dev->_tx = tx;
9963
9964         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9965         spin_lock_init(&dev->tx_global_lock);
9966
9967         return 0;
9968 }
9969
9970 void netif_tx_stop_all_queues(struct net_device *dev)
9971 {
9972         unsigned int i;
9973
9974         for (i = 0; i < dev->num_tx_queues; i++) {
9975                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9976
9977                 netif_tx_stop_queue(txq);
9978         }
9979 }
9980 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9981
9982 /**
9983  *      register_netdevice      - register a network device
9984  *      @dev: device to register
9985  *
9986  *      Take a completed network device structure and add it to the kernel
9987  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9988  *      chain. 0 is returned on success. A negative errno code is returned
9989  *      on a failure to set up the device, or if the name is a duplicate.
9990  *
9991  *      Callers must hold the rtnl semaphore. You may want
9992  *      register_netdev() instead of this.
9993  *
9994  *      BUGS:
9995  *      The locking appears insufficient to guarantee two parallel registers
9996  *      will not get the same name.
9997  */
9998
9999 int register_netdevice(struct net_device *dev)
10000 {
10001         int ret;
10002         struct net *net = dev_net(dev);
10003
10004         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10005                      NETDEV_FEATURE_COUNT);
10006         BUG_ON(dev_boot_phase);
10007         ASSERT_RTNL();
10008
10009         might_sleep();
10010
10011         /* When net_device's are persistent, this will be fatal. */
10012         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10013         BUG_ON(!net);
10014
10015         ret = ethtool_check_ops(dev->ethtool_ops);
10016         if (ret)
10017                 return ret;
10018
10019         spin_lock_init(&dev->addr_list_lock);
10020         netdev_set_addr_lockdep_class(dev);
10021
10022         ret = dev_get_valid_name(net, dev, dev->name);
10023         if (ret < 0)
10024                 goto out;
10025
10026         ret = -ENOMEM;
10027         dev->name_node = netdev_name_node_head_alloc(dev);
10028         if (!dev->name_node)
10029                 goto out;
10030
10031         /* Init, if this function is available */
10032         if (dev->netdev_ops->ndo_init) {
10033                 ret = dev->netdev_ops->ndo_init(dev);
10034                 if (ret) {
10035                         if (ret > 0)
10036                                 ret = -EIO;
10037                         goto err_free_name;
10038                 }
10039         }
10040
10041         if (((dev->hw_features | dev->features) &
10042              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10043             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10044              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10045                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10046                 ret = -EINVAL;
10047                 goto err_uninit;
10048         }
10049
10050         ret = -EBUSY;
10051         if (!dev->ifindex)
10052                 dev->ifindex = dev_new_index(net);
10053         else if (__dev_get_by_index(net, dev->ifindex))
10054                 goto err_uninit;
10055
10056         /* Transfer changeable features to wanted_features and enable
10057          * software offloads (GSO and GRO).
10058          */
10059         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10060         dev->features |= NETIF_F_SOFT_FEATURES;
10061
10062         if (dev->netdev_ops->ndo_udp_tunnel_add) {
10063                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10064                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10065         }
10066
10067         dev->wanted_features = dev->features & dev->hw_features;
10068
10069         if (!(dev->flags & IFF_LOOPBACK))
10070                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10071
10072         /* If IPv4 TCP segmentation offload is supported we should also
10073          * allow the device to enable segmenting the frame with the option
10074          * of ignoring a static IP ID value.  This doesn't enable the
10075          * feature itself but allows the user to enable it later.
10076          */
10077         if (dev->hw_features & NETIF_F_TSO)
10078                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10079         if (dev->vlan_features & NETIF_F_TSO)
10080                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10081         if (dev->mpls_features & NETIF_F_TSO)
10082                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10083         if (dev->hw_enc_features & NETIF_F_TSO)
10084                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10085
10086         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10087          */
10088         dev->vlan_features |= NETIF_F_HIGHDMA;
10089
10090         /* Make NETIF_F_SG inheritable to tunnel devices.
10091          */
10092         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10093
10094         /* Make NETIF_F_SG inheritable to MPLS.
10095          */
10096         dev->mpls_features |= NETIF_F_SG;
10097
10098         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10099         ret = notifier_to_errno(ret);
10100         if (ret)
10101                 goto err_uninit;
10102
10103         ret = netdev_register_kobject(dev);
10104         if (ret) {
10105                 dev->reg_state = NETREG_UNREGISTERED;
10106                 goto err_uninit;
10107         }
10108         dev->reg_state = NETREG_REGISTERED;
10109
10110         __netdev_update_features(dev);
10111
10112         /*
10113          *      Default initial state at registry is that the
10114          *      device is present.
10115          */
10116
10117         set_bit(__LINK_STATE_PRESENT, &dev->state);
10118
10119         linkwatch_init_dev(dev);
10120
10121         dev_init_scheduler(dev);
10122         dev_hold(dev);
10123         list_netdevice(dev);
10124         add_device_randomness(dev->dev_addr, dev->addr_len);
10125
10126         /* If the device has permanent device address, driver should
10127          * set dev_addr and also addr_assign_type should be set to
10128          * NET_ADDR_PERM (default value).
10129          */
10130         if (dev->addr_assign_type == NET_ADDR_PERM)
10131                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10132
10133         /* Notify protocols, that a new device appeared. */
10134         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10135         ret = notifier_to_errno(ret);
10136         if (ret) {
10137                 rollback_registered(dev);
10138                 rcu_barrier();
10139
10140                 dev->reg_state = NETREG_UNREGISTERED;
10141                 /* We should put the kobject that hold in
10142                  * netdev_unregister_kobject(), otherwise
10143                  * the net device cannot be freed when
10144                  * driver calls free_netdev(), because the
10145                  * kobject is being hold.
10146                  */
10147                 kobject_put(&dev->dev.kobj);
10148         }
10149         /*
10150          *      Prevent userspace races by waiting until the network
10151          *      device is fully setup before sending notifications.
10152          */
10153         if (!dev->rtnl_link_ops ||
10154             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10155                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10156
10157 out:
10158         return ret;
10159
10160 err_uninit:
10161         if (dev->netdev_ops->ndo_uninit)
10162                 dev->netdev_ops->ndo_uninit(dev);
10163         if (dev->priv_destructor)
10164                 dev->priv_destructor(dev);
10165 err_free_name:
10166         netdev_name_node_free(dev->name_node);
10167         goto out;
10168 }
10169 EXPORT_SYMBOL(register_netdevice);
10170
10171 /**
10172  *      init_dummy_netdev       - init a dummy network device for NAPI
10173  *      @dev: device to init
10174  *
10175  *      This takes a network device structure and initialize the minimum
10176  *      amount of fields so it can be used to schedule NAPI polls without
10177  *      registering a full blown interface. This is to be used by drivers
10178  *      that need to tie several hardware interfaces to a single NAPI
10179  *      poll scheduler due to HW limitations.
10180  */
10181 int init_dummy_netdev(struct net_device *dev)
10182 {
10183         /* Clear everything. Note we don't initialize spinlocks
10184          * are they aren't supposed to be taken by any of the
10185          * NAPI code and this dummy netdev is supposed to be
10186          * only ever used for NAPI polls
10187          */
10188         memset(dev, 0, sizeof(struct net_device));
10189
10190         /* make sure we BUG if trying to hit standard
10191          * register/unregister code path
10192          */
10193         dev->reg_state = NETREG_DUMMY;
10194
10195         /* NAPI wants this */
10196         INIT_LIST_HEAD(&dev->napi_list);
10197
10198         /* a dummy interface is started by default */
10199         set_bit(__LINK_STATE_PRESENT, &dev->state);
10200         set_bit(__LINK_STATE_START, &dev->state);
10201
10202         /* napi_busy_loop stats accounting wants this */
10203         dev_net_set(dev, &init_net);
10204
10205         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10206          * because users of this 'device' dont need to change
10207          * its refcount.
10208          */
10209
10210         return 0;
10211 }
10212 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10213
10214
10215 /**
10216  *      register_netdev - register a network device
10217  *      @dev: device to register
10218  *
10219  *      Take a completed network device structure and add it to the kernel
10220  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10221  *      chain. 0 is returned on success. A negative errno code is returned
10222  *      on a failure to set up the device, or if the name is a duplicate.
10223  *
10224  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10225  *      and expands the device name if you passed a format string to
10226  *      alloc_netdev.
10227  */
10228 int register_netdev(struct net_device *dev)
10229 {
10230         int err;
10231
10232         if (rtnl_lock_killable())
10233                 return -EINTR;
10234         err = register_netdevice(dev);
10235         rtnl_unlock();
10236         return err;
10237 }
10238 EXPORT_SYMBOL(register_netdev);
10239
10240 int netdev_refcnt_read(const struct net_device *dev)
10241 {
10242         int i, refcnt = 0;
10243
10244         for_each_possible_cpu(i)
10245                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10246         return refcnt;
10247 }
10248 EXPORT_SYMBOL(netdev_refcnt_read);
10249
10250 #define WAIT_REFS_MIN_MSECS 1
10251 #define WAIT_REFS_MAX_MSECS 250
10252 /**
10253  * netdev_wait_allrefs - wait until all references are gone.
10254  * @dev: target net_device
10255  *
10256  * This is called when unregistering network devices.
10257  *
10258  * Any protocol or device that holds a reference should register
10259  * for netdevice notification, and cleanup and put back the
10260  * reference if they receive an UNREGISTER event.
10261  * We can get stuck here if buggy protocols don't correctly
10262  * call dev_put.
10263  */
10264 static void netdev_wait_allrefs(struct net_device *dev)
10265 {
10266         unsigned long rebroadcast_time, warning_time;
10267         int wait = 0, refcnt;
10268
10269         linkwatch_forget_dev(dev);
10270
10271         rebroadcast_time = warning_time = jiffies;
10272         refcnt = netdev_refcnt_read(dev);
10273
10274         while (refcnt != 0) {
10275                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10276                         rtnl_lock();
10277
10278                         /* Rebroadcast unregister notification */
10279                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10280
10281                         __rtnl_unlock();
10282                         rcu_barrier();
10283                         rtnl_lock();
10284
10285                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10286                                      &dev->state)) {
10287                                 /* We must not have linkwatch events
10288                                  * pending on unregister. If this
10289                                  * happens, we simply run the queue
10290                                  * unscheduled, resulting in a noop
10291                                  * for this device.
10292                                  */
10293                                 linkwatch_run_queue();
10294                         }
10295
10296                         __rtnl_unlock();
10297
10298                         rebroadcast_time = jiffies;
10299                 }
10300
10301                 if (!wait) {
10302                         rcu_barrier();
10303                         wait = WAIT_REFS_MIN_MSECS;
10304                 } else {
10305                         msleep(wait);
10306                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10307                 }
10308
10309                 refcnt = netdev_refcnt_read(dev);
10310
10311                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10312                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10313                                  dev->name, refcnt);
10314                         warning_time = jiffies;
10315                 }
10316         }
10317 }
10318
10319 /* The sequence is:
10320  *
10321  *      rtnl_lock();
10322  *      ...
10323  *      register_netdevice(x1);
10324  *      register_netdevice(x2);
10325  *      ...
10326  *      unregister_netdevice(y1);
10327  *      unregister_netdevice(y2);
10328  *      ...
10329  *      rtnl_unlock();
10330  *      free_netdev(y1);
10331  *      free_netdev(y2);
10332  *
10333  * We are invoked by rtnl_unlock().
10334  * This allows us to deal with problems:
10335  * 1) We can delete sysfs objects which invoke hotplug
10336  *    without deadlocking with linkwatch via keventd.
10337  * 2) Since we run with the RTNL semaphore not held, we can sleep
10338  *    safely in order to wait for the netdev refcnt to drop to zero.
10339  *
10340  * We must not return until all unregister events added during
10341  * the interval the lock was held have been completed.
10342  */
10343 void netdev_run_todo(void)
10344 {
10345         struct list_head list;
10346 #ifdef CONFIG_LOCKDEP
10347         struct list_head unlink_list;
10348
10349         list_replace_init(&net_unlink_list, &unlink_list);
10350
10351         while (!list_empty(&unlink_list)) {
10352                 struct net_device *dev = list_first_entry(&unlink_list,
10353                                                           struct net_device,
10354                                                           unlink_list);
10355                 list_del_init(&dev->unlink_list);
10356                 dev->nested_level = dev->lower_level - 1;
10357         }
10358 #endif
10359
10360         /* Snapshot list, allow later requests */
10361         list_replace_init(&net_todo_list, &list);
10362
10363         __rtnl_unlock();
10364
10365
10366         /* Wait for rcu callbacks to finish before next phase */
10367         if (!list_empty(&list))
10368                 rcu_barrier();
10369
10370         while (!list_empty(&list)) {
10371                 struct net_device *dev
10372                         = list_first_entry(&list, struct net_device, todo_list);
10373                 list_del(&dev->todo_list);
10374
10375                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10376                         pr_err("network todo '%s' but state %d\n",
10377                                dev->name, dev->reg_state);
10378                         dump_stack();
10379                         continue;
10380                 }
10381
10382                 dev->reg_state = NETREG_UNREGISTERED;
10383
10384                 netdev_wait_allrefs(dev);
10385
10386                 /* paranoia */
10387                 BUG_ON(netdev_refcnt_read(dev));
10388                 BUG_ON(!list_empty(&dev->ptype_all));
10389                 BUG_ON(!list_empty(&dev->ptype_specific));
10390                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10391                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10392 #if IS_ENABLED(CONFIG_DECNET)
10393                 WARN_ON(dev->dn_ptr);
10394 #endif
10395                 if (dev->priv_destructor)
10396                         dev->priv_destructor(dev);
10397                 if (dev->needs_free_netdev)
10398                         free_netdev(dev);
10399
10400                 /* Report a network device has been unregistered */
10401                 rtnl_lock();
10402                 dev_net(dev)->dev_unreg_count--;
10403                 __rtnl_unlock();
10404                 wake_up(&netdev_unregistering_wq);
10405
10406                 /* Free network device */
10407                 kobject_put(&dev->dev.kobj);
10408         }
10409 }
10410
10411 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10412  * all the same fields in the same order as net_device_stats, with only
10413  * the type differing, but rtnl_link_stats64 may have additional fields
10414  * at the end for newer counters.
10415  */
10416 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10417                              const struct net_device_stats *netdev_stats)
10418 {
10419 #if BITS_PER_LONG == 64
10420         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10421         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10422         /* zero out counters that only exist in rtnl_link_stats64 */
10423         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10424                sizeof(*stats64) - sizeof(*netdev_stats));
10425 #else
10426         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10427         const unsigned long *src = (const unsigned long *)netdev_stats;
10428         u64 *dst = (u64 *)stats64;
10429
10430         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10431         for (i = 0; i < n; i++)
10432                 dst[i] = src[i];
10433         /* zero out counters that only exist in rtnl_link_stats64 */
10434         memset((char *)stats64 + n * sizeof(u64), 0,
10435                sizeof(*stats64) - n * sizeof(u64));
10436 #endif
10437 }
10438 EXPORT_SYMBOL(netdev_stats_to_stats64);
10439
10440 /**
10441  *      dev_get_stats   - get network device statistics
10442  *      @dev: device to get statistics from
10443  *      @storage: place to store stats
10444  *
10445  *      Get network statistics from device. Return @storage.
10446  *      The device driver may provide its own method by setting
10447  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10448  *      otherwise the internal statistics structure is used.
10449  */
10450 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10451                                         struct rtnl_link_stats64 *storage)
10452 {
10453         const struct net_device_ops *ops = dev->netdev_ops;
10454
10455         if (ops->ndo_get_stats64) {
10456                 memset(storage, 0, sizeof(*storage));
10457                 ops->ndo_get_stats64(dev, storage);
10458         } else if (ops->ndo_get_stats) {
10459                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10460         } else {
10461                 netdev_stats_to_stats64(storage, &dev->stats);
10462         }
10463         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10464         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10465         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10466         return storage;
10467 }
10468 EXPORT_SYMBOL(dev_get_stats);
10469
10470 /**
10471  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10472  *      @s: place to store stats
10473  *      @netstats: per-cpu network stats to read from
10474  *
10475  *      Read per-cpu network statistics and populate the related fields in @s.
10476  */
10477 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10478                            const struct pcpu_sw_netstats __percpu *netstats)
10479 {
10480         int cpu;
10481
10482         for_each_possible_cpu(cpu) {
10483                 const struct pcpu_sw_netstats *stats;
10484                 struct pcpu_sw_netstats tmp;
10485                 unsigned int start;
10486
10487                 stats = per_cpu_ptr(netstats, cpu);
10488                 do {
10489                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10490                         tmp.rx_packets = stats->rx_packets;
10491                         tmp.rx_bytes   = stats->rx_bytes;
10492                         tmp.tx_packets = stats->tx_packets;
10493                         tmp.tx_bytes   = stats->tx_bytes;
10494                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10495
10496                 s->rx_packets += tmp.rx_packets;
10497                 s->rx_bytes   += tmp.rx_bytes;
10498                 s->tx_packets += tmp.tx_packets;
10499                 s->tx_bytes   += tmp.tx_bytes;
10500         }
10501 }
10502 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10503
10504 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10505 {
10506         struct netdev_queue *queue = dev_ingress_queue(dev);
10507
10508 #ifdef CONFIG_NET_CLS_ACT
10509         if (queue)
10510                 return queue;
10511         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10512         if (!queue)
10513                 return NULL;
10514         netdev_init_one_queue(dev, queue, NULL);
10515         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10516         queue->qdisc_sleeping = &noop_qdisc;
10517         rcu_assign_pointer(dev->ingress_queue, queue);
10518 #endif
10519         return queue;
10520 }
10521
10522 static const struct ethtool_ops default_ethtool_ops;
10523
10524 void netdev_set_default_ethtool_ops(struct net_device *dev,
10525                                     const struct ethtool_ops *ops)
10526 {
10527         if (dev->ethtool_ops == &default_ethtool_ops)
10528                 dev->ethtool_ops = ops;
10529 }
10530 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10531
10532 void netdev_freemem(struct net_device *dev)
10533 {
10534         char *addr = (char *)dev - dev->padded;
10535
10536         kvfree(addr);
10537 }
10538
10539 /**
10540  * alloc_netdev_mqs - allocate network device
10541  * @sizeof_priv: size of private data to allocate space for
10542  * @name: device name format string
10543  * @name_assign_type: origin of device name
10544  * @setup: callback to initialize device
10545  * @txqs: the number of TX subqueues to allocate
10546  * @rxqs: the number of RX subqueues to allocate
10547  *
10548  * Allocates a struct net_device with private data area for driver use
10549  * and performs basic initialization.  Also allocates subqueue structs
10550  * for each queue on the device.
10551  */
10552 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10553                 unsigned char name_assign_type,
10554                 void (*setup)(struct net_device *),
10555                 unsigned int txqs, unsigned int rxqs)
10556 {
10557         struct net_device *dev;
10558         unsigned int alloc_size;
10559         struct net_device *p;
10560
10561         BUG_ON(strlen(name) >= sizeof(dev->name));
10562
10563         if (txqs < 1) {
10564                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10565                 return NULL;
10566         }
10567
10568         if (rxqs < 1) {
10569                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10570                 return NULL;
10571         }
10572
10573         alloc_size = sizeof(struct net_device);
10574         if (sizeof_priv) {
10575                 /* ensure 32-byte alignment of private area */
10576                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10577                 alloc_size += sizeof_priv;
10578         }
10579         /* ensure 32-byte alignment of whole construct */
10580         alloc_size += NETDEV_ALIGN - 1;
10581
10582         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10583         if (!p)
10584                 return NULL;
10585
10586         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10587         dev->padded = (char *)dev - (char *)p;
10588
10589         dev->pcpu_refcnt = alloc_percpu(int);
10590         if (!dev->pcpu_refcnt)
10591                 goto free_dev;
10592
10593         if (dev_addr_init(dev))
10594                 goto free_pcpu;
10595
10596         dev_mc_init(dev);
10597         dev_uc_init(dev);
10598
10599         dev_net_set(dev, &init_net);
10600
10601         dev->gso_max_size = GSO_MAX_SIZE;
10602         dev->gso_max_segs = GSO_MAX_SEGS;
10603         dev->upper_level = 1;
10604         dev->lower_level = 1;
10605 #ifdef CONFIG_LOCKDEP
10606         dev->nested_level = 0;
10607         INIT_LIST_HEAD(&dev->unlink_list);
10608 #endif
10609
10610         INIT_LIST_HEAD(&dev->napi_list);
10611         INIT_LIST_HEAD(&dev->unreg_list);
10612         INIT_LIST_HEAD(&dev->close_list);
10613         INIT_LIST_HEAD(&dev->link_watch_list);
10614         INIT_LIST_HEAD(&dev->adj_list.upper);
10615         INIT_LIST_HEAD(&dev->adj_list.lower);
10616         INIT_LIST_HEAD(&dev->ptype_all);
10617         INIT_LIST_HEAD(&dev->ptype_specific);
10618         INIT_LIST_HEAD(&dev->net_notifier_list);
10619 #ifdef CONFIG_NET_SCHED
10620         hash_init(dev->qdisc_hash);
10621 #endif
10622         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10623         setup(dev);
10624
10625         if (!dev->tx_queue_len) {
10626                 dev->priv_flags |= IFF_NO_QUEUE;
10627                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10628         }
10629
10630         dev->num_tx_queues = txqs;
10631         dev->real_num_tx_queues = txqs;
10632         if (netif_alloc_netdev_queues(dev))
10633                 goto free_all;
10634
10635         dev->num_rx_queues = rxqs;
10636         dev->real_num_rx_queues = rxqs;
10637         if (netif_alloc_rx_queues(dev))
10638                 goto free_all;
10639
10640         strcpy(dev->name, name);
10641         dev->name_assign_type = name_assign_type;
10642         dev->group = INIT_NETDEV_GROUP;
10643         if (!dev->ethtool_ops)
10644                 dev->ethtool_ops = &default_ethtool_ops;
10645
10646         nf_hook_ingress_init(dev);
10647
10648         return dev;
10649
10650 free_all:
10651         free_netdev(dev);
10652         return NULL;
10653
10654 free_pcpu:
10655         free_percpu(dev->pcpu_refcnt);
10656 free_dev:
10657         netdev_freemem(dev);
10658         return NULL;
10659 }
10660 EXPORT_SYMBOL(alloc_netdev_mqs);
10661
10662 /**
10663  * free_netdev - free network device
10664  * @dev: device
10665  *
10666  * This function does the last stage of destroying an allocated device
10667  * interface. The reference to the device object is released. If this
10668  * is the last reference then it will be freed.Must be called in process
10669  * context.
10670  */
10671 void free_netdev(struct net_device *dev)
10672 {
10673         struct napi_struct *p, *n;
10674
10675         might_sleep();
10676         netif_free_tx_queues(dev);
10677         netif_free_rx_queues(dev);
10678
10679         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10680
10681         /* Flush device addresses */
10682         dev_addr_flush(dev);
10683
10684         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10685                 netif_napi_del(p);
10686
10687         free_percpu(dev->pcpu_refcnt);
10688         dev->pcpu_refcnt = NULL;
10689         free_percpu(dev->xdp_bulkq);
10690         dev->xdp_bulkq = NULL;
10691
10692         /*  Compatibility with error handling in drivers */
10693         if (dev->reg_state == NETREG_UNINITIALIZED) {
10694                 netdev_freemem(dev);
10695                 return;
10696         }
10697
10698         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10699         dev->reg_state = NETREG_RELEASED;
10700
10701         /* will free via device release */
10702         put_device(&dev->dev);
10703 }
10704 EXPORT_SYMBOL(free_netdev);
10705
10706 /**
10707  *      synchronize_net -  Synchronize with packet receive processing
10708  *
10709  *      Wait for packets currently being received to be done.
10710  *      Does not block later packets from starting.
10711  */
10712 void synchronize_net(void)
10713 {
10714         might_sleep();
10715         if (rtnl_is_locked())
10716                 synchronize_rcu_expedited();
10717         else
10718                 synchronize_rcu();
10719 }
10720 EXPORT_SYMBOL(synchronize_net);
10721
10722 /**
10723  *      unregister_netdevice_queue - remove device from the kernel
10724  *      @dev: device
10725  *      @head: list
10726  *
10727  *      This function shuts down a device interface and removes it
10728  *      from the kernel tables.
10729  *      If head not NULL, device is queued to be unregistered later.
10730  *
10731  *      Callers must hold the rtnl semaphore.  You may want
10732  *      unregister_netdev() instead of this.
10733  */
10734
10735 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10736 {
10737         ASSERT_RTNL();
10738
10739         if (head) {
10740                 list_move_tail(&dev->unreg_list, head);
10741         } else {
10742                 rollback_registered(dev);
10743                 /* Finish processing unregister after unlock */
10744                 net_set_todo(dev);
10745         }
10746 }
10747 EXPORT_SYMBOL(unregister_netdevice_queue);
10748
10749 /**
10750  *      unregister_netdevice_many - unregister many devices
10751  *      @head: list of devices
10752  *
10753  *  Note: As most callers use a stack allocated list_head,
10754  *  we force a list_del() to make sure stack wont be corrupted later.
10755  */
10756 void unregister_netdevice_many(struct list_head *head)
10757 {
10758         struct net_device *dev;
10759
10760         if (!list_empty(head)) {
10761                 rollback_registered_many(head);
10762                 list_for_each_entry(dev, head, unreg_list)
10763                         net_set_todo(dev);
10764                 list_del(head);
10765         }
10766 }
10767 EXPORT_SYMBOL(unregister_netdevice_many);
10768
10769 /**
10770  *      unregister_netdev - remove device from the kernel
10771  *      @dev: device
10772  *
10773  *      This function shuts down a device interface and removes it
10774  *      from the kernel tables.
10775  *
10776  *      This is just a wrapper for unregister_netdevice that takes
10777  *      the rtnl semaphore.  In general you want to use this and not
10778  *      unregister_netdevice.
10779  */
10780 void unregister_netdev(struct net_device *dev)
10781 {
10782         rtnl_lock();
10783         unregister_netdevice(dev);
10784         rtnl_unlock();
10785 }
10786 EXPORT_SYMBOL(unregister_netdev);
10787
10788 /**
10789  *      dev_change_net_namespace - move device to different nethost namespace
10790  *      @dev: device
10791  *      @net: network namespace
10792  *      @pat: If not NULL name pattern to try if the current device name
10793  *            is already taken in the destination network namespace.
10794  *
10795  *      This function shuts down a device interface and moves it
10796  *      to a new network namespace. On success 0 is returned, on
10797  *      a failure a netagive errno code is returned.
10798  *
10799  *      Callers must hold the rtnl semaphore.
10800  */
10801
10802 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10803 {
10804         struct net *net_old = dev_net(dev);
10805         int err, new_nsid, new_ifindex;
10806
10807         ASSERT_RTNL();
10808
10809         /* Don't allow namespace local devices to be moved. */
10810         err = -EINVAL;
10811         if (dev->features & NETIF_F_NETNS_LOCAL)
10812                 goto out;
10813
10814         /* Ensure the device has been registrered */
10815         if (dev->reg_state != NETREG_REGISTERED)
10816                 goto out;
10817
10818         /* Get out if there is nothing todo */
10819         err = 0;
10820         if (net_eq(net_old, net))
10821                 goto out;
10822
10823         /* Pick the destination device name, and ensure
10824          * we can use it in the destination network namespace.
10825          */
10826         err = -EEXIST;
10827         if (__dev_get_by_name(net, dev->name)) {
10828                 /* We get here if we can't use the current device name */
10829                 if (!pat)
10830                         goto out;
10831                 err = dev_get_valid_name(net, dev, pat);
10832                 if (err < 0)
10833                         goto out;
10834         }
10835
10836         /*
10837          * And now a mini version of register_netdevice unregister_netdevice.
10838          */
10839
10840         /* If device is running close it first. */
10841         dev_close(dev);
10842
10843         /* And unlink it from device chain */
10844         unlist_netdevice(dev);
10845
10846         synchronize_net();
10847
10848         /* Shutdown queueing discipline. */
10849         dev_shutdown(dev);
10850
10851         /* Notify protocols, that we are about to destroy
10852          * this device. They should clean all the things.
10853          *
10854          * Note that dev->reg_state stays at NETREG_REGISTERED.
10855          * This is wanted because this way 8021q and macvlan know
10856          * the device is just moving and can keep their slaves up.
10857          */
10858         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10859         rcu_barrier();
10860
10861         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10862         /* If there is an ifindex conflict assign a new one */
10863         if (__dev_get_by_index(net, dev->ifindex))
10864                 new_ifindex = dev_new_index(net);
10865         else
10866                 new_ifindex = dev->ifindex;
10867
10868         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10869                             new_ifindex);
10870
10871         /*
10872          *      Flush the unicast and multicast chains
10873          */
10874         dev_uc_flush(dev);
10875         dev_mc_flush(dev);
10876
10877         /* Send a netdev-removed uevent to the old namespace */
10878         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10879         netdev_adjacent_del_links(dev);
10880
10881         /* Move per-net netdevice notifiers that are following the netdevice */
10882         move_netdevice_notifiers_dev_net(dev, net);
10883
10884         /* Actually switch the network namespace */
10885         dev_net_set(dev, net);
10886         dev->ifindex = new_ifindex;
10887
10888         /* Send a netdev-add uevent to the new namespace */
10889         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10890         netdev_adjacent_add_links(dev);
10891
10892         /* Fixup kobjects */
10893         err = device_rename(&dev->dev, dev->name);
10894         WARN_ON(err);
10895
10896         /* Adapt owner in case owning user namespace of target network
10897          * namespace is different from the original one.
10898          */
10899         err = netdev_change_owner(dev, net_old, net);
10900         WARN_ON(err);
10901
10902         /* Add the device back in the hashes */
10903         list_netdevice(dev);
10904
10905         /* Notify protocols, that a new device appeared. */
10906         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10907
10908         /*
10909          *      Prevent userspace races by waiting until the network
10910          *      device is fully setup before sending notifications.
10911          */
10912         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10913
10914         synchronize_net();
10915         err = 0;
10916 out:
10917         return err;
10918 }
10919 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10920
10921 static int dev_cpu_dead(unsigned int oldcpu)
10922 {
10923         struct sk_buff **list_skb;
10924         struct sk_buff *skb;
10925         unsigned int cpu;
10926         struct softnet_data *sd, *oldsd, *remsd = NULL;
10927
10928         local_irq_disable();
10929         cpu = smp_processor_id();
10930         sd = &per_cpu(softnet_data, cpu);
10931         oldsd = &per_cpu(softnet_data, oldcpu);
10932
10933         /* Find end of our completion_queue. */
10934         list_skb = &sd->completion_queue;
10935         while (*list_skb)
10936                 list_skb = &(*list_skb)->next;
10937         /* Append completion queue from offline CPU. */
10938         *list_skb = oldsd->completion_queue;
10939         oldsd->completion_queue = NULL;
10940
10941         /* Append output queue from offline CPU. */
10942         if (oldsd->output_queue) {
10943                 *sd->output_queue_tailp = oldsd->output_queue;
10944                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10945                 oldsd->output_queue = NULL;
10946                 oldsd->output_queue_tailp = &oldsd->output_queue;
10947         }
10948         /* Append NAPI poll list from offline CPU, with one exception :
10949          * process_backlog() must be called by cpu owning percpu backlog.
10950          * We properly handle process_queue & input_pkt_queue later.
10951          */
10952         while (!list_empty(&oldsd->poll_list)) {
10953                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10954                                                             struct napi_struct,
10955                                                             poll_list);
10956
10957                 list_del_init(&napi->poll_list);
10958                 if (napi->poll == process_backlog)
10959                         napi->state = 0;
10960                 else
10961                         ____napi_schedule(sd, napi);
10962         }
10963
10964         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10965         local_irq_enable();
10966
10967 #ifdef CONFIG_RPS
10968         remsd = oldsd->rps_ipi_list;
10969         oldsd->rps_ipi_list = NULL;
10970 #endif
10971         /* send out pending IPI's on offline CPU */
10972         net_rps_send_ipi(remsd);
10973
10974         /* Process offline CPU's input_pkt_queue */
10975         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10976                 netif_rx_ni(skb);
10977                 input_queue_head_incr(oldsd);
10978         }
10979         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10980                 netif_rx_ni(skb);
10981                 input_queue_head_incr(oldsd);
10982         }
10983
10984         return 0;
10985 }
10986
10987 /**
10988  *      netdev_increment_features - increment feature set by one
10989  *      @all: current feature set
10990  *      @one: new feature set
10991  *      @mask: mask feature set
10992  *
10993  *      Computes a new feature set after adding a device with feature set
10994  *      @one to the master device with current feature set @all.  Will not
10995  *      enable anything that is off in @mask. Returns the new feature set.
10996  */
10997 netdev_features_t netdev_increment_features(netdev_features_t all,
10998         netdev_features_t one, netdev_features_t mask)
10999 {
11000         if (mask & NETIF_F_HW_CSUM)
11001                 mask |= NETIF_F_CSUM_MASK;
11002         mask |= NETIF_F_VLAN_CHALLENGED;
11003
11004         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11005         all &= one | ~NETIF_F_ALL_FOR_ALL;
11006
11007         /* If one device supports hw checksumming, set for all. */
11008         if (all & NETIF_F_HW_CSUM)
11009                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11010
11011         return all;
11012 }
11013 EXPORT_SYMBOL(netdev_increment_features);
11014
11015 static struct hlist_head * __net_init netdev_create_hash(void)
11016 {
11017         int i;
11018         struct hlist_head *hash;
11019
11020         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11021         if (hash != NULL)
11022                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11023                         INIT_HLIST_HEAD(&hash[i]);
11024
11025         return hash;
11026 }
11027
11028 /* Initialize per network namespace state */
11029 static int __net_init netdev_init(struct net *net)
11030 {
11031         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11032                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11033
11034         if (net != &init_net)
11035                 INIT_LIST_HEAD(&net->dev_base_head);
11036
11037         net->dev_name_head = netdev_create_hash();
11038         if (net->dev_name_head == NULL)
11039                 goto err_name;
11040
11041         net->dev_index_head = netdev_create_hash();
11042         if (net->dev_index_head == NULL)
11043                 goto err_idx;
11044
11045         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11046
11047         return 0;
11048
11049 err_idx:
11050         kfree(net->dev_name_head);
11051 err_name:
11052         return -ENOMEM;
11053 }
11054
11055 /**
11056  *      netdev_drivername - network driver for the device
11057  *      @dev: network device
11058  *
11059  *      Determine network driver for device.
11060  */
11061 const char *netdev_drivername(const struct net_device *dev)
11062 {
11063         const struct device_driver *driver;
11064         const struct device *parent;
11065         const char *empty = "";
11066
11067         parent = dev->dev.parent;
11068         if (!parent)
11069                 return empty;
11070
11071         driver = parent->driver;
11072         if (driver && driver->name)
11073                 return driver->name;
11074         return empty;
11075 }
11076
11077 static void __netdev_printk(const char *level, const struct net_device *dev,
11078                             struct va_format *vaf)
11079 {
11080         if (dev && dev->dev.parent) {
11081                 dev_printk_emit(level[1] - '0',
11082                                 dev->dev.parent,
11083                                 "%s %s %s%s: %pV",
11084                                 dev_driver_string(dev->dev.parent),
11085                                 dev_name(dev->dev.parent),
11086                                 netdev_name(dev), netdev_reg_state(dev),
11087                                 vaf);
11088         } else if (dev) {
11089                 printk("%s%s%s: %pV",
11090                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11091         } else {
11092                 printk("%s(NULL net_device): %pV", level, vaf);
11093         }
11094 }
11095
11096 void netdev_printk(const char *level, const struct net_device *dev,
11097                    const char *format, ...)
11098 {
11099         struct va_format vaf;
11100         va_list args;
11101
11102         va_start(args, format);
11103
11104         vaf.fmt = format;
11105         vaf.va = &args;
11106
11107         __netdev_printk(level, dev, &vaf);
11108
11109         va_end(args);
11110 }
11111 EXPORT_SYMBOL(netdev_printk);
11112
11113 #define define_netdev_printk_level(func, level)                 \
11114 void func(const struct net_device *dev, const char *fmt, ...)   \
11115 {                                                               \
11116         struct va_format vaf;                                   \
11117         va_list args;                                           \
11118                                                                 \
11119         va_start(args, fmt);                                    \
11120                                                                 \
11121         vaf.fmt = fmt;                                          \
11122         vaf.va = &args;                                         \
11123                                                                 \
11124         __netdev_printk(level, dev, &vaf);                      \
11125                                                                 \
11126         va_end(args);                                           \
11127 }                                                               \
11128 EXPORT_SYMBOL(func);
11129
11130 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11131 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11132 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11133 define_netdev_printk_level(netdev_err, KERN_ERR);
11134 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11135 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11136 define_netdev_printk_level(netdev_info, KERN_INFO);
11137
11138 static void __net_exit netdev_exit(struct net *net)
11139 {
11140         kfree(net->dev_name_head);
11141         kfree(net->dev_index_head);
11142         if (net != &init_net)
11143                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11144 }
11145
11146 static struct pernet_operations __net_initdata netdev_net_ops = {
11147         .init = netdev_init,
11148         .exit = netdev_exit,
11149 };
11150
11151 static void __net_exit default_device_exit(struct net *net)
11152 {
11153         struct net_device *dev, *aux;
11154         /*
11155          * Push all migratable network devices back to the
11156          * initial network namespace
11157          */
11158         rtnl_lock();
11159         for_each_netdev_safe(net, dev, aux) {
11160                 int err;
11161                 char fb_name[IFNAMSIZ];
11162
11163                 /* Ignore unmoveable devices (i.e. loopback) */
11164                 if (dev->features & NETIF_F_NETNS_LOCAL)
11165                         continue;
11166
11167                 /* Leave virtual devices for the generic cleanup */
11168                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11169                         continue;
11170
11171                 /* Push remaining network devices to init_net */
11172                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11173                 if (__dev_get_by_name(&init_net, fb_name))
11174                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11175                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11176                 if (err) {
11177                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11178                                  __func__, dev->name, err);
11179                         BUG();
11180                 }
11181         }
11182         rtnl_unlock();
11183 }
11184
11185 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11186 {
11187         /* Return with the rtnl_lock held when there are no network
11188          * devices unregistering in any network namespace in net_list.
11189          */
11190         struct net *net;
11191         bool unregistering;
11192         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11193
11194         add_wait_queue(&netdev_unregistering_wq, &wait);
11195         for (;;) {
11196                 unregistering = false;
11197                 rtnl_lock();
11198                 list_for_each_entry(net, net_list, exit_list) {
11199                         if (net->dev_unreg_count > 0) {
11200                                 unregistering = true;
11201                                 break;
11202                         }
11203                 }
11204                 if (!unregistering)
11205                         break;
11206                 __rtnl_unlock();
11207
11208                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11209         }
11210         remove_wait_queue(&netdev_unregistering_wq, &wait);
11211 }
11212
11213 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11214 {
11215         /* At exit all network devices most be removed from a network
11216          * namespace.  Do this in the reverse order of registration.
11217          * Do this across as many network namespaces as possible to
11218          * improve batching efficiency.
11219          */
11220         struct net_device *dev;
11221         struct net *net;
11222         LIST_HEAD(dev_kill_list);
11223
11224         /* To prevent network device cleanup code from dereferencing
11225          * loopback devices or network devices that have been freed
11226          * wait here for all pending unregistrations to complete,
11227          * before unregistring the loopback device and allowing the
11228          * network namespace be freed.
11229          *
11230          * The netdev todo list containing all network devices
11231          * unregistrations that happen in default_device_exit_batch
11232          * will run in the rtnl_unlock() at the end of
11233          * default_device_exit_batch.
11234          */
11235         rtnl_lock_unregistering(net_list);
11236         list_for_each_entry(net, net_list, exit_list) {
11237                 for_each_netdev_reverse(net, dev) {
11238                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11239                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11240                         else
11241                                 unregister_netdevice_queue(dev, &dev_kill_list);
11242                 }
11243         }
11244         unregister_netdevice_many(&dev_kill_list);
11245         rtnl_unlock();
11246 }
11247
11248 static struct pernet_operations __net_initdata default_device_ops = {
11249         .exit = default_device_exit,
11250         .exit_batch = default_device_exit_batch,
11251 };
11252
11253 /*
11254  *      Initialize the DEV module. At boot time this walks the device list and
11255  *      unhooks any devices that fail to initialise (normally hardware not
11256  *      present) and leaves us with a valid list of present and active devices.
11257  *
11258  */
11259
11260 /*
11261  *       This is called single threaded during boot, so no need
11262  *       to take the rtnl semaphore.
11263  */
11264 static int __init net_dev_init(void)
11265 {
11266         int i, rc = -ENOMEM;
11267
11268         BUG_ON(!dev_boot_phase);
11269
11270         if (dev_proc_init())
11271                 goto out;
11272
11273         if (netdev_kobject_init())
11274                 goto out;
11275
11276         INIT_LIST_HEAD(&ptype_all);
11277         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11278                 INIT_LIST_HEAD(&ptype_base[i]);
11279
11280         INIT_LIST_HEAD(&offload_base);
11281
11282         if (register_pernet_subsys(&netdev_net_ops))
11283                 goto out;
11284
11285         /*
11286          *      Initialise the packet receive queues.
11287          */
11288
11289         for_each_possible_cpu(i) {
11290                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11291                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11292
11293                 INIT_WORK(flush, flush_backlog);
11294
11295                 skb_queue_head_init(&sd->input_pkt_queue);
11296                 skb_queue_head_init(&sd->process_queue);
11297 #ifdef CONFIG_XFRM_OFFLOAD
11298                 skb_queue_head_init(&sd->xfrm_backlog);
11299 #endif
11300                 INIT_LIST_HEAD(&sd->poll_list);
11301                 sd->output_queue_tailp = &sd->output_queue;
11302 #ifdef CONFIG_RPS
11303                 sd->csd.func = rps_trigger_softirq;
11304                 sd->csd.info = sd;
11305                 sd->cpu = i;
11306 #endif
11307
11308                 init_gro_hash(&sd->backlog);
11309                 sd->backlog.poll = process_backlog;
11310                 sd->backlog.weight = weight_p;
11311         }
11312
11313         dev_boot_phase = 0;
11314
11315         /* The loopback device is special if any other network devices
11316          * is present in a network namespace the loopback device must
11317          * be present. Since we now dynamically allocate and free the
11318          * loopback device ensure this invariant is maintained by
11319          * keeping the loopback device as the first device on the
11320          * list of network devices.  Ensuring the loopback devices
11321          * is the first device that appears and the last network device
11322          * that disappears.
11323          */
11324         if (register_pernet_device(&loopback_net_ops))
11325                 goto out;
11326
11327         if (register_pernet_device(&default_device_ops))
11328                 goto out;
11329
11330         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11331         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11332
11333         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11334                                        NULL, dev_cpu_dead);
11335         WARN_ON(rc < 0);
11336         rc = 0;
11337 out:
11338         return rc;
11339 }
11340
11341 subsys_initcall(net_dev_init);