5aaf5753d4e46c7c4b67b00daadeda9784708dfe
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         netdev_name_node_del(name_node);
349         kfree(name_node->name);
350         netdev_name_node_free(name_node);
351 }
352
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355         struct netdev_name_node *name_node;
356         struct net *net = dev_net(dev);
357
358         name_node = netdev_name_node_lookup(net, name);
359         if (!name_node)
360                 return -ENOENT;
361         /* lookup might have found our primary name or a name belonging
362          * to another device.
363          */
364         if (name_node == dev->name_node || name_node->dev != dev)
365                 return -EINVAL;
366
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct net *net = dev_net(dev);
384
385         ASSERT_RTNL();
386
387         write_lock(&dev_base_lock);
388         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389         netdev_name_node_add(net, dev->name_node);
390         hlist_add_head_rcu(&dev->index_hlist,
391                            dev_index_hash(net, dev->ifindex));
392         write_unlock(&dev_base_lock);
393         /* We reserved the ifindex, this can't fail */
394         WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
395
396         dev_base_seq_inc(net);
397 }
398
399 /* Device list removal
400  * caller must respect a RCU grace period before freeing/reusing dev
401  */
402 static void unlist_netdevice(struct net_device *dev, bool lock)
403 {
404         struct net *net = dev_net(dev);
405
406         ASSERT_RTNL();
407
408         xa_erase(&net->dev_by_index, dev->ifindex);
409
410         /* Unlink dev from the device chain */
411         if (lock)
412                 write_lock(&dev_base_lock);
413         list_del_rcu(&dev->dev_list);
414         netdev_name_node_del(dev->name_node);
415         hlist_del_rcu(&dev->index_hlist);
416         if (lock)
417                 write_unlock(&dev_base_lock);
418
419         dev_base_seq_inc(dev_net(dev));
420 }
421
422 /*
423  *      Our notifier list
424  */
425
426 static RAW_NOTIFIER_HEAD(netdev_chain);
427
428 /*
429  *      Device drivers call our routines to queue packets here. We empty the
430  *      queue in the local softnet handler.
431  */
432
433 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
434 EXPORT_PER_CPU_SYMBOL(softnet_data);
435
436 #ifdef CONFIG_LOCKDEP
437 /*
438  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
439  * according to dev->type
440  */
441 static const unsigned short netdev_lock_type[] = {
442          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
443          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
444          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
445          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
446          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
447          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
448          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
449          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
450          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
451          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
452          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
453          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
454          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
455          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
456          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
457
458 static const char *const netdev_lock_name[] = {
459         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
460         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
461         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
462         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
463         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
464         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
465         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
466         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
467         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
468         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
469         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
470         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
471         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
472         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
473         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
474
475 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
476 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
477
478 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
479 {
480         int i;
481
482         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
483                 if (netdev_lock_type[i] == dev_type)
484                         return i;
485         /* the last key is used by default */
486         return ARRAY_SIZE(netdev_lock_type) - 1;
487 }
488
489 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
490                                                  unsigned short dev_type)
491 {
492         int i;
493
494         i = netdev_lock_pos(dev_type);
495         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
496                                    netdev_lock_name[i]);
497 }
498
499 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
500 {
501         int i;
502
503         i = netdev_lock_pos(dev->type);
504         lockdep_set_class_and_name(&dev->addr_list_lock,
505                                    &netdev_addr_lock_key[i],
506                                    netdev_lock_name[i]);
507 }
508 #else
509 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
510                                                  unsigned short dev_type)
511 {
512 }
513
514 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
515 {
516 }
517 #endif
518
519 /*******************************************************************************
520  *
521  *              Protocol management and registration routines
522  *
523  *******************************************************************************/
524
525
526 /*
527  *      Add a protocol ID to the list. Now that the input handler is
528  *      smarter we can dispense with all the messy stuff that used to be
529  *      here.
530  *
531  *      BEWARE!!! Protocol handlers, mangling input packets,
532  *      MUST BE last in hash buckets and checking protocol handlers
533  *      MUST start from promiscuous ptype_all chain in net_bh.
534  *      It is true now, do not change it.
535  *      Explanation follows: if protocol handler, mangling packet, will
536  *      be the first on list, it is not able to sense, that packet
537  *      is cloned and should be copied-on-write, so that it will
538  *      change it and subsequent readers will get broken packet.
539  *                                                      --ANK (980803)
540  */
541
542 static inline struct list_head *ptype_head(const struct packet_type *pt)
543 {
544         if (pt->type == htons(ETH_P_ALL))
545                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
546         else
547                 return pt->dev ? &pt->dev->ptype_specific :
548                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
549 }
550
551 /**
552  *      dev_add_pack - add packet handler
553  *      @pt: packet type declaration
554  *
555  *      Add a protocol handler to the networking stack. The passed &packet_type
556  *      is linked into kernel lists and may not be freed until it has been
557  *      removed from the kernel lists.
558  *
559  *      This call does not sleep therefore it can not
560  *      guarantee all CPU's that are in middle of receiving packets
561  *      will see the new packet type (until the next received packet).
562  */
563
564 void dev_add_pack(struct packet_type *pt)
565 {
566         struct list_head *head = ptype_head(pt);
567
568         spin_lock(&ptype_lock);
569         list_add_rcu(&pt->list, head);
570         spin_unlock(&ptype_lock);
571 }
572 EXPORT_SYMBOL(dev_add_pack);
573
574 /**
575  *      __dev_remove_pack        - remove packet handler
576  *      @pt: packet type declaration
577  *
578  *      Remove a protocol handler that was previously added to the kernel
579  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
580  *      from the kernel lists and can be freed or reused once this function
581  *      returns.
582  *
583  *      The packet type might still be in use by receivers
584  *      and must not be freed until after all the CPU's have gone
585  *      through a quiescent state.
586  */
587 void __dev_remove_pack(struct packet_type *pt)
588 {
589         struct list_head *head = ptype_head(pt);
590         struct packet_type *pt1;
591
592         spin_lock(&ptype_lock);
593
594         list_for_each_entry(pt1, head, list) {
595                 if (pt == pt1) {
596                         list_del_rcu(&pt->list);
597                         goto out;
598                 }
599         }
600
601         pr_warn("dev_remove_pack: %p not found\n", pt);
602 out:
603         spin_unlock(&ptype_lock);
604 }
605 EXPORT_SYMBOL(__dev_remove_pack);
606
607 /**
608  *      dev_remove_pack  - remove packet handler
609  *      @pt: packet type declaration
610  *
611  *      Remove a protocol handler that was previously added to the kernel
612  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
613  *      from the kernel lists and can be freed or reused once this function
614  *      returns.
615  *
616  *      This call sleeps to guarantee that no CPU is looking at the packet
617  *      type after return.
618  */
619 void dev_remove_pack(struct packet_type *pt)
620 {
621         __dev_remove_pack(pt);
622
623         synchronize_net();
624 }
625 EXPORT_SYMBOL(dev_remove_pack);
626
627
628 /*******************************************************************************
629  *
630  *                          Device Interface Subroutines
631  *
632  *******************************************************************************/
633
634 /**
635  *      dev_get_iflink  - get 'iflink' value of a interface
636  *      @dev: targeted interface
637  *
638  *      Indicates the ifindex the interface is linked to.
639  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
640  */
641
642 int dev_get_iflink(const struct net_device *dev)
643 {
644         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
645                 return dev->netdev_ops->ndo_get_iflink(dev);
646
647         return dev->ifindex;
648 }
649 EXPORT_SYMBOL(dev_get_iflink);
650
651 /**
652  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
653  *      @dev: targeted interface
654  *      @skb: The packet.
655  *
656  *      For better visibility of tunnel traffic OVS needs to retrieve
657  *      egress tunnel information for a packet. Following API allows
658  *      user to get this info.
659  */
660 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
661 {
662         struct ip_tunnel_info *info;
663
664         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
665                 return -EINVAL;
666
667         info = skb_tunnel_info_unclone(skb);
668         if (!info)
669                 return -ENOMEM;
670         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
671                 return -EINVAL;
672
673         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
674 }
675 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
676
677 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
678 {
679         int k = stack->num_paths++;
680
681         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
682                 return NULL;
683
684         return &stack->path[k];
685 }
686
687 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
688                           struct net_device_path_stack *stack)
689 {
690         const struct net_device *last_dev;
691         struct net_device_path_ctx ctx = {
692                 .dev    = dev,
693         };
694         struct net_device_path *path;
695         int ret = 0;
696
697         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
698         stack->num_paths = 0;
699         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
700                 last_dev = ctx.dev;
701                 path = dev_fwd_path(stack);
702                 if (!path)
703                         return -1;
704
705                 memset(path, 0, sizeof(struct net_device_path));
706                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
707                 if (ret < 0)
708                         return -1;
709
710                 if (WARN_ON_ONCE(last_dev == ctx.dev))
711                         return -1;
712         }
713
714         if (!ctx.dev)
715                 return ret;
716
717         path = dev_fwd_path(stack);
718         if (!path)
719                 return -1;
720         path->type = DEV_PATH_ETHERNET;
721         path->dev = ctx.dev;
722
723         return ret;
724 }
725 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
726
727 /**
728  *      __dev_get_by_name       - find a device by its name
729  *      @net: the applicable net namespace
730  *      @name: name to find
731  *
732  *      Find an interface by name. Must be called under RTNL semaphore
733  *      or @dev_base_lock. If the name is found a pointer to the device
734  *      is returned. If the name is not found then %NULL is returned. The
735  *      reference counters are not incremented so the caller must be
736  *      careful with locks.
737  */
738
739 struct net_device *__dev_get_by_name(struct net *net, const char *name)
740 {
741         struct netdev_name_node *node_name;
742
743         node_name = netdev_name_node_lookup(net, name);
744         return node_name ? node_name->dev : NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_name);
747
748 /**
749  * dev_get_by_name_rcu  - find a device by its name
750  * @net: the applicable net namespace
751  * @name: name to find
752  *
753  * Find an interface by name.
754  * If the name is found a pointer to the device is returned.
755  * If the name is not found then %NULL is returned.
756  * The reference counters are not incremented so the caller must be
757  * careful with locks. The caller must hold RCU lock.
758  */
759
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 {
762         struct netdev_name_node *node_name;
763
764         node_name = netdev_name_node_lookup_rcu(net, name);
765         return node_name ? node_name->dev : NULL;
766 }
767 EXPORT_SYMBOL(dev_get_by_name_rcu);
768
769 /* Deprecated for new users, call netdev_get_by_name() instead */
770 struct net_device *dev_get_by_name(struct net *net, const char *name)
771 {
772         struct net_device *dev;
773
774         rcu_read_lock();
775         dev = dev_get_by_name_rcu(net, name);
776         dev_hold(dev);
777         rcu_read_unlock();
778         return dev;
779 }
780 EXPORT_SYMBOL(dev_get_by_name);
781
782 /**
783  *      netdev_get_by_name() - find a device by its name
784  *      @net: the applicable net namespace
785  *      @name: name to find
786  *      @tracker: tracking object for the acquired reference
787  *      @gfp: allocation flags for the tracker
788  *
789  *      Find an interface by name. This can be called from any
790  *      context and does its own locking. The returned handle has
791  *      the usage count incremented and the caller must use netdev_put() to
792  *      release it when it is no longer needed. %NULL is returned if no
793  *      matching device is found.
794  */
795 struct net_device *netdev_get_by_name(struct net *net, const char *name,
796                                       netdevice_tracker *tracker, gfp_t gfp)
797 {
798         struct net_device *dev;
799
800         dev = dev_get_by_name(net, name);
801         if (dev)
802                 netdev_tracker_alloc(dev, tracker, gfp);
803         return dev;
804 }
805 EXPORT_SYMBOL(netdev_get_by_name);
806
807 /**
808  *      __dev_get_by_index - find a device by its ifindex
809  *      @net: the applicable net namespace
810  *      @ifindex: index of device
811  *
812  *      Search for an interface by index. Returns %NULL if the device
813  *      is not found or a pointer to the device. The device has not
814  *      had its reference counter increased so the caller must be careful
815  *      about locking. The caller must hold either the RTNL semaphore
816  *      or @dev_base_lock.
817  */
818
819 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
820 {
821         struct net_device *dev;
822         struct hlist_head *head = dev_index_hash(net, ifindex);
823
824         hlist_for_each_entry(dev, head, index_hlist)
825                 if (dev->ifindex == ifindex)
826                         return dev;
827
828         return NULL;
829 }
830 EXPORT_SYMBOL(__dev_get_by_index);
831
832 /**
833  *      dev_get_by_index_rcu - find a device by its ifindex
834  *      @net: the applicable net namespace
835  *      @ifindex: index of device
836  *
837  *      Search for an interface by index. Returns %NULL if the device
838  *      is not found or a pointer to the device. The device has not
839  *      had its reference counter increased so the caller must be careful
840  *      about locking. The caller must hold RCU lock.
841  */
842
843 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
844 {
845         struct net_device *dev;
846         struct hlist_head *head = dev_index_hash(net, ifindex);
847
848         hlist_for_each_entry_rcu(dev, head, index_hlist)
849                 if (dev->ifindex == ifindex)
850                         return dev;
851
852         return NULL;
853 }
854 EXPORT_SYMBOL(dev_get_by_index_rcu);
855
856 /* Deprecated for new users, call netdev_get_by_index() instead */
857 struct net_device *dev_get_by_index(struct net *net, int ifindex)
858 {
859         struct net_device *dev;
860
861         rcu_read_lock();
862         dev = dev_get_by_index_rcu(net, ifindex);
863         dev_hold(dev);
864         rcu_read_unlock();
865         return dev;
866 }
867 EXPORT_SYMBOL(dev_get_by_index);
868
869 /**
870  *      netdev_get_by_index() - find a device by its ifindex
871  *      @net: the applicable net namespace
872  *      @ifindex: index of device
873  *      @tracker: tracking object for the acquired reference
874  *      @gfp: allocation flags for the tracker
875  *
876  *      Search for an interface by index. Returns NULL if the device
877  *      is not found or a pointer to the device. The device returned has
878  *      had a reference added and the pointer is safe until the user calls
879  *      netdev_put() to indicate they have finished with it.
880  */
881 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
882                                        netdevice_tracker *tracker, gfp_t gfp)
883 {
884         struct net_device *dev;
885
886         dev = dev_get_by_index(net, ifindex);
887         if (dev)
888                 netdev_tracker_alloc(dev, tracker, gfp);
889         return dev;
890 }
891 EXPORT_SYMBOL(netdev_get_by_index);
892
893 /**
894  *      dev_get_by_napi_id - find a device by napi_id
895  *      @napi_id: ID of the NAPI struct
896  *
897  *      Search for an interface by NAPI ID. Returns %NULL if the device
898  *      is not found or a pointer to the device. The device has not had
899  *      its reference counter increased so the caller must be careful
900  *      about locking. The caller must hold RCU lock.
901  */
902
903 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
904 {
905         struct napi_struct *napi;
906
907         WARN_ON_ONCE(!rcu_read_lock_held());
908
909         if (napi_id < MIN_NAPI_ID)
910                 return NULL;
911
912         napi = napi_by_id(napi_id);
913
914         return napi ? napi->dev : NULL;
915 }
916 EXPORT_SYMBOL(dev_get_by_napi_id);
917
918 /**
919  *      netdev_get_name - get a netdevice name, knowing its ifindex.
920  *      @net: network namespace
921  *      @name: a pointer to the buffer where the name will be stored.
922  *      @ifindex: the ifindex of the interface to get the name from.
923  */
924 int netdev_get_name(struct net *net, char *name, int ifindex)
925 {
926         struct net_device *dev;
927         int ret;
928
929         down_read(&devnet_rename_sem);
930         rcu_read_lock();
931
932         dev = dev_get_by_index_rcu(net, ifindex);
933         if (!dev) {
934                 ret = -ENODEV;
935                 goto out;
936         }
937
938         strcpy(name, dev->name);
939
940         ret = 0;
941 out:
942         rcu_read_unlock();
943         up_read(&devnet_rename_sem);
944         return ret;
945 }
946
947 /**
948  *      dev_getbyhwaddr_rcu - find a device by its hardware address
949  *      @net: the applicable net namespace
950  *      @type: media type of device
951  *      @ha: hardware address
952  *
953  *      Search for an interface by MAC address. Returns NULL if the device
954  *      is not found or a pointer to the device.
955  *      The caller must hold RCU or RTNL.
956  *      The returned device has not had its ref count increased
957  *      and the caller must therefore be careful about locking
958  *
959  */
960
961 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
962                                        const char *ha)
963 {
964         struct net_device *dev;
965
966         for_each_netdev_rcu(net, dev)
967                 if (dev->type == type &&
968                     !memcmp(dev->dev_addr, ha, dev->addr_len))
969                         return dev;
970
971         return NULL;
972 }
973 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
974
975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976 {
977         struct net_device *dev, *ret = NULL;
978
979         rcu_read_lock();
980         for_each_netdev_rcu(net, dev)
981                 if (dev->type == type) {
982                         dev_hold(dev);
983                         ret = dev;
984                         break;
985                 }
986         rcu_read_unlock();
987         return ret;
988 }
989 EXPORT_SYMBOL(dev_getfirstbyhwtype);
990
991 /**
992  *      __dev_get_by_flags - find any device with given flags
993  *      @net: the applicable net namespace
994  *      @if_flags: IFF_* values
995  *      @mask: bitmask of bits in if_flags to check
996  *
997  *      Search for any interface with the given flags. Returns NULL if a device
998  *      is not found or a pointer to the device. Must be called inside
999  *      rtnl_lock(), and result refcount is unchanged.
1000  */
1001
1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003                                       unsigned short mask)
1004 {
1005         struct net_device *dev, *ret;
1006
1007         ASSERT_RTNL();
1008
1009         ret = NULL;
1010         for_each_netdev(net, dev) {
1011                 if (((dev->flags ^ if_flags) & mask) == 0) {
1012                         ret = dev;
1013                         break;
1014                 }
1015         }
1016         return ret;
1017 }
1018 EXPORT_SYMBOL(__dev_get_by_flags);
1019
1020 /**
1021  *      dev_valid_name - check if name is okay for network device
1022  *      @name: name string
1023  *
1024  *      Network device names need to be valid file names to
1025  *      allow sysfs to work.  We also disallow any kind of
1026  *      whitespace.
1027  */
1028 bool dev_valid_name(const char *name)
1029 {
1030         if (*name == '\0')
1031                 return false;
1032         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033                 return false;
1034         if (!strcmp(name, ".") || !strcmp(name, ".."))
1035                 return false;
1036
1037         while (*name) {
1038                 if (*name == '/' || *name == ':' || isspace(*name))
1039                         return false;
1040                 name++;
1041         }
1042         return true;
1043 }
1044 EXPORT_SYMBOL(dev_valid_name);
1045
1046 /**
1047  *      __dev_alloc_name - allocate a name for a device
1048  *      @net: network namespace to allocate the device name in
1049  *      @name: name format string
1050  *      @buf:  scratch buffer and result name string
1051  *
1052  *      Passed a format string - eg "lt%d" it will try and find a suitable
1053  *      id. It scans list of devices to build up a free map, then chooses
1054  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1055  *      while allocating the name and adding the device in order to avoid
1056  *      duplicates.
1057  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058  *      Returns the number of the unit assigned or a negative errno code.
1059  */
1060
1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062 {
1063         int i = 0;
1064         const char *p;
1065         const int max_netdevices = 8*PAGE_SIZE;
1066         unsigned long *inuse;
1067         struct net_device *d;
1068
1069         if (!dev_valid_name(name))
1070                 return -EINVAL;
1071
1072         p = strchr(name, '%');
1073         if (p) {
1074                 /*
1075                  * Verify the string as this thing may have come from
1076                  * the user.  There must be either one "%d" and no other "%"
1077                  * characters.
1078                  */
1079                 if (p[1] != 'd' || strchr(p + 2, '%'))
1080                         return -EINVAL;
1081
1082                 /* Use one page as a bit array of possible slots */
1083                 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1084                 if (!inuse)
1085                         return -ENOMEM;
1086
1087                 for_each_netdev(net, d) {
1088                         struct netdev_name_node *name_node;
1089                         list_for_each_entry(name_node, &d->name_node->list, list) {
1090                                 if (!sscanf(name_node->name, name, &i))
1091                                         continue;
1092                                 if (i < 0 || i >= max_netdevices)
1093                                         continue;
1094
1095                                 /*  avoid cases where sscanf is not exact inverse of printf */
1096                                 snprintf(buf, IFNAMSIZ, name, i);
1097                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1098                                         __set_bit(i, inuse);
1099                         }
1100                         if (!sscanf(d->name, name, &i))
1101                                 continue;
1102                         if (i < 0 || i >= max_netdevices)
1103                                 continue;
1104
1105                         /*  avoid cases where sscanf is not exact inverse of printf */
1106                         snprintf(buf, IFNAMSIZ, name, i);
1107                         if (!strncmp(buf, d->name, IFNAMSIZ))
1108                                 __set_bit(i, inuse);
1109                 }
1110
1111                 i = find_first_zero_bit(inuse, max_netdevices);
1112                 bitmap_free(inuse);
1113         }
1114
1115         snprintf(buf, IFNAMSIZ, name, i);
1116         if (!netdev_name_in_use(net, buf))
1117                 return i;
1118
1119         /* It is possible to run out of possible slots
1120          * when the name is long and there isn't enough space left
1121          * for the digits, or if all bits are used.
1122          */
1123         return -ENFILE;
1124 }
1125
1126 static int dev_alloc_name_ns(struct net *net,
1127                              struct net_device *dev,
1128                              const char *name)
1129 {
1130         char buf[IFNAMSIZ];
1131         int ret;
1132
1133         BUG_ON(!net);
1134         ret = __dev_alloc_name(net, name, buf);
1135         if (ret >= 0)
1136                 strscpy(dev->name, buf, IFNAMSIZ);
1137         return ret;
1138 }
1139
1140 /**
1141  *      dev_alloc_name - allocate a name for a device
1142  *      @dev: device
1143  *      @name: name format string
1144  *
1145  *      Passed a format string - eg "lt%d" it will try and find a suitable
1146  *      id. It scans list of devices to build up a free map, then chooses
1147  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1148  *      while allocating the name and adding the device in order to avoid
1149  *      duplicates.
1150  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1151  *      Returns the number of the unit assigned or a negative errno code.
1152  */
1153
1154 int dev_alloc_name(struct net_device *dev, const char *name)
1155 {
1156         return dev_alloc_name_ns(dev_net(dev), dev, name);
1157 }
1158 EXPORT_SYMBOL(dev_alloc_name);
1159
1160 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1161                               const char *name)
1162 {
1163         BUG_ON(!net);
1164
1165         if (!dev_valid_name(name))
1166                 return -EINVAL;
1167
1168         if (strchr(name, '%'))
1169                 return dev_alloc_name_ns(net, dev, name);
1170         else if (netdev_name_in_use(net, name))
1171                 return -EEXIST;
1172         else if (dev->name != name)
1173                 strscpy(dev->name, name, IFNAMSIZ);
1174
1175         return 0;
1176 }
1177
1178 /**
1179  *      dev_change_name - change name of a device
1180  *      @dev: device
1181  *      @newname: name (or format string) must be at least IFNAMSIZ
1182  *
1183  *      Change name of a device, can pass format strings "eth%d".
1184  *      for wildcarding.
1185  */
1186 int dev_change_name(struct net_device *dev, const char *newname)
1187 {
1188         unsigned char old_assign_type;
1189         char oldname[IFNAMSIZ];
1190         int err = 0;
1191         int ret;
1192         struct net *net;
1193
1194         ASSERT_RTNL();
1195         BUG_ON(!dev_net(dev));
1196
1197         net = dev_net(dev);
1198
1199         down_write(&devnet_rename_sem);
1200
1201         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1202                 up_write(&devnet_rename_sem);
1203                 return 0;
1204         }
1205
1206         memcpy(oldname, dev->name, IFNAMSIZ);
1207
1208         err = dev_get_valid_name(net, dev, newname);
1209         if (err < 0) {
1210                 up_write(&devnet_rename_sem);
1211                 return err;
1212         }
1213
1214         if (oldname[0] && !strchr(oldname, '%'))
1215                 netdev_info(dev, "renamed from %s%s\n", oldname,
1216                             dev->flags & IFF_UP ? " (while UP)" : "");
1217
1218         old_assign_type = dev->name_assign_type;
1219         dev->name_assign_type = NET_NAME_RENAMED;
1220
1221 rollback:
1222         ret = device_rename(&dev->dev, dev->name);
1223         if (ret) {
1224                 memcpy(dev->name, oldname, IFNAMSIZ);
1225                 dev->name_assign_type = old_assign_type;
1226                 up_write(&devnet_rename_sem);
1227                 return ret;
1228         }
1229
1230         up_write(&devnet_rename_sem);
1231
1232         netdev_adjacent_rename_links(dev, oldname);
1233
1234         write_lock(&dev_base_lock);
1235         netdev_name_node_del(dev->name_node);
1236         write_unlock(&dev_base_lock);
1237
1238         synchronize_rcu();
1239
1240         write_lock(&dev_base_lock);
1241         netdev_name_node_add(net, dev->name_node);
1242         write_unlock(&dev_base_lock);
1243
1244         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245         ret = notifier_to_errno(ret);
1246
1247         if (ret) {
1248                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1249                 if (err >= 0) {
1250                         err = ret;
1251                         down_write(&devnet_rename_sem);
1252                         memcpy(dev->name, oldname, IFNAMSIZ);
1253                         memcpy(oldname, newname, IFNAMSIZ);
1254                         dev->name_assign_type = old_assign_type;
1255                         old_assign_type = NET_NAME_RENAMED;
1256                         goto rollback;
1257                 } else {
1258                         netdev_err(dev, "name change rollback failed: %d\n",
1259                                    ret);
1260                 }
1261         }
1262
1263         return err;
1264 }
1265
1266 /**
1267  *      dev_set_alias - change ifalias of a device
1268  *      @dev: device
1269  *      @alias: name up to IFALIASZ
1270  *      @len: limit of bytes to copy from info
1271  *
1272  *      Set ifalias for a device,
1273  */
1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275 {
1276         struct dev_ifalias *new_alias = NULL;
1277
1278         if (len >= IFALIASZ)
1279                 return -EINVAL;
1280
1281         if (len) {
1282                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283                 if (!new_alias)
1284                         return -ENOMEM;
1285
1286                 memcpy(new_alias->ifalias, alias, len);
1287                 new_alias->ifalias[len] = 0;
1288         }
1289
1290         mutex_lock(&ifalias_mutex);
1291         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1292                                         mutex_is_locked(&ifalias_mutex));
1293         mutex_unlock(&ifalias_mutex);
1294
1295         if (new_alias)
1296                 kfree_rcu(new_alias, rcuhead);
1297
1298         return len;
1299 }
1300 EXPORT_SYMBOL(dev_set_alias);
1301
1302 /**
1303  *      dev_get_alias - get ifalias of a device
1304  *      @dev: device
1305  *      @name: buffer to store name of ifalias
1306  *      @len: size of buffer
1307  *
1308  *      get ifalias for a device.  Caller must make sure dev cannot go
1309  *      away,  e.g. rcu read lock or own a reference count to device.
1310  */
1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312 {
1313         const struct dev_ifalias *alias;
1314         int ret = 0;
1315
1316         rcu_read_lock();
1317         alias = rcu_dereference(dev->ifalias);
1318         if (alias)
1319                 ret = snprintf(name, len, "%s", alias->ifalias);
1320         rcu_read_unlock();
1321
1322         return ret;
1323 }
1324
1325 /**
1326  *      netdev_features_change - device changes features
1327  *      @dev: device to cause notification
1328  *
1329  *      Called to indicate a device has changed features.
1330  */
1331 void netdev_features_change(struct net_device *dev)
1332 {
1333         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334 }
1335 EXPORT_SYMBOL(netdev_features_change);
1336
1337 /**
1338  *      netdev_state_change - device changes state
1339  *      @dev: device to cause notification
1340  *
1341  *      Called to indicate a device has changed state. This function calls
1342  *      the notifier chains for netdev_chain and sends a NEWLINK message
1343  *      to the routing socket.
1344  */
1345 void netdev_state_change(struct net_device *dev)
1346 {
1347         if (dev->flags & IFF_UP) {
1348                 struct netdev_notifier_change_info change_info = {
1349                         .info.dev = dev,
1350                 };
1351
1352                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1353                                               &change_info.info);
1354                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1355         }
1356 }
1357 EXPORT_SYMBOL(netdev_state_change);
1358
1359 /**
1360  * __netdev_notify_peers - notify network peers about existence of @dev,
1361  * to be called when rtnl lock is already held.
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void __netdev_notify_peers(struct net_device *dev)
1371 {
1372         ASSERT_RTNL();
1373         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1374         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1375 }
1376 EXPORT_SYMBOL(__netdev_notify_peers);
1377
1378 /**
1379  * netdev_notify_peers - notify network peers about existence of @dev
1380  * @dev: network device
1381  *
1382  * Generate traffic such that interested network peers are aware of
1383  * @dev, such as by generating a gratuitous ARP. This may be used when
1384  * a device wants to inform the rest of the network about some sort of
1385  * reconfiguration such as a failover event or virtual machine
1386  * migration.
1387  */
1388 void netdev_notify_peers(struct net_device *dev)
1389 {
1390         rtnl_lock();
1391         __netdev_notify_peers(dev);
1392         rtnl_unlock();
1393 }
1394 EXPORT_SYMBOL(netdev_notify_peers);
1395
1396 static int napi_threaded_poll(void *data);
1397
1398 static int napi_kthread_create(struct napi_struct *n)
1399 {
1400         int err = 0;
1401
1402         /* Create and wake up the kthread once to put it in
1403          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1404          * warning and work with loadavg.
1405          */
1406         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1407                                 n->dev->name, n->napi_id);
1408         if (IS_ERR(n->thread)) {
1409                 err = PTR_ERR(n->thread);
1410                 pr_err("kthread_run failed with err %d\n", err);
1411                 n->thread = NULL;
1412         }
1413
1414         return err;
1415 }
1416
1417 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1418 {
1419         const struct net_device_ops *ops = dev->netdev_ops;
1420         int ret;
1421
1422         ASSERT_RTNL();
1423         dev_addr_check(dev);
1424
1425         if (!netif_device_present(dev)) {
1426                 /* may be detached because parent is runtime-suspended */
1427                 if (dev->dev.parent)
1428                         pm_runtime_resume(dev->dev.parent);
1429                 if (!netif_device_present(dev))
1430                         return -ENODEV;
1431         }
1432
1433         /* Block netpoll from trying to do any rx path servicing.
1434          * If we don't do this there is a chance ndo_poll_controller
1435          * or ndo_poll may be running while we open the device
1436          */
1437         netpoll_poll_disable(dev);
1438
1439         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1440         ret = notifier_to_errno(ret);
1441         if (ret)
1442                 return ret;
1443
1444         set_bit(__LINK_STATE_START, &dev->state);
1445
1446         if (ops->ndo_validate_addr)
1447                 ret = ops->ndo_validate_addr(dev);
1448
1449         if (!ret && ops->ndo_open)
1450                 ret = ops->ndo_open(dev);
1451
1452         netpoll_poll_enable(dev);
1453
1454         if (ret)
1455                 clear_bit(__LINK_STATE_START, &dev->state);
1456         else {
1457                 dev->flags |= IFF_UP;
1458                 dev_set_rx_mode(dev);
1459                 dev_activate(dev);
1460                 add_device_randomness(dev->dev_addr, dev->addr_len);
1461         }
1462
1463         return ret;
1464 }
1465
1466 /**
1467  *      dev_open        - prepare an interface for use.
1468  *      @dev: device to open
1469  *      @extack: netlink extended ack
1470  *
1471  *      Takes a device from down to up state. The device's private open
1472  *      function is invoked and then the multicast lists are loaded. Finally
1473  *      the device is moved into the up state and a %NETDEV_UP message is
1474  *      sent to the netdev notifier chain.
1475  *
1476  *      Calling this function on an active interface is a nop. On a failure
1477  *      a negative errno code is returned.
1478  */
1479 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1480 {
1481         int ret;
1482
1483         if (dev->flags & IFF_UP)
1484                 return 0;
1485
1486         ret = __dev_open(dev, extack);
1487         if (ret < 0)
1488                 return ret;
1489
1490         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1491         call_netdevice_notifiers(NETDEV_UP, dev);
1492
1493         return ret;
1494 }
1495 EXPORT_SYMBOL(dev_open);
1496
1497 static void __dev_close_many(struct list_head *head)
1498 {
1499         struct net_device *dev;
1500
1501         ASSERT_RTNL();
1502         might_sleep();
1503
1504         list_for_each_entry(dev, head, close_list) {
1505                 /* Temporarily disable netpoll until the interface is down */
1506                 netpoll_poll_disable(dev);
1507
1508                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1509
1510                 clear_bit(__LINK_STATE_START, &dev->state);
1511
1512                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1513                  * can be even on different cpu. So just clear netif_running().
1514                  *
1515                  * dev->stop() will invoke napi_disable() on all of it's
1516                  * napi_struct instances on this device.
1517                  */
1518                 smp_mb__after_atomic(); /* Commit netif_running(). */
1519         }
1520
1521         dev_deactivate_many(head);
1522
1523         list_for_each_entry(dev, head, close_list) {
1524                 const struct net_device_ops *ops = dev->netdev_ops;
1525
1526                 /*
1527                  *      Call the device specific close. This cannot fail.
1528                  *      Only if device is UP
1529                  *
1530                  *      We allow it to be called even after a DETACH hot-plug
1531                  *      event.
1532                  */
1533                 if (ops->ndo_stop)
1534                         ops->ndo_stop(dev);
1535
1536                 dev->flags &= ~IFF_UP;
1537                 netpoll_poll_enable(dev);
1538         }
1539 }
1540
1541 static void __dev_close(struct net_device *dev)
1542 {
1543         LIST_HEAD(single);
1544
1545         list_add(&dev->close_list, &single);
1546         __dev_close_many(&single);
1547         list_del(&single);
1548 }
1549
1550 void dev_close_many(struct list_head *head, bool unlink)
1551 {
1552         struct net_device *dev, *tmp;
1553
1554         /* Remove the devices that don't need to be closed */
1555         list_for_each_entry_safe(dev, tmp, head, close_list)
1556                 if (!(dev->flags & IFF_UP))
1557                         list_del_init(&dev->close_list);
1558
1559         __dev_close_many(head);
1560
1561         list_for_each_entry_safe(dev, tmp, head, close_list) {
1562                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1563                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1564                 if (unlink)
1565                         list_del_init(&dev->close_list);
1566         }
1567 }
1568 EXPORT_SYMBOL(dev_close_many);
1569
1570 /**
1571  *      dev_close - shutdown an interface.
1572  *      @dev: device to shutdown
1573  *
1574  *      This function moves an active device into down state. A
1575  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1576  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1577  *      chain.
1578  */
1579 void dev_close(struct net_device *dev)
1580 {
1581         if (dev->flags & IFF_UP) {
1582                 LIST_HEAD(single);
1583
1584                 list_add(&dev->close_list, &single);
1585                 dev_close_many(&single, true);
1586                 list_del(&single);
1587         }
1588 }
1589 EXPORT_SYMBOL(dev_close);
1590
1591
1592 /**
1593  *      dev_disable_lro - disable Large Receive Offload on a device
1594  *      @dev: device
1595  *
1596  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1597  *      called under RTNL.  This is needed if received packets may be
1598  *      forwarded to another interface.
1599  */
1600 void dev_disable_lro(struct net_device *dev)
1601 {
1602         struct net_device *lower_dev;
1603         struct list_head *iter;
1604
1605         dev->wanted_features &= ~NETIF_F_LRO;
1606         netdev_update_features(dev);
1607
1608         if (unlikely(dev->features & NETIF_F_LRO))
1609                 netdev_WARN(dev, "failed to disable LRO!\n");
1610
1611         netdev_for_each_lower_dev(dev, lower_dev, iter)
1612                 dev_disable_lro(lower_dev);
1613 }
1614 EXPORT_SYMBOL(dev_disable_lro);
1615
1616 /**
1617  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1618  *      @dev: device
1619  *
1620  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1621  *      called under RTNL.  This is needed if Generic XDP is installed on
1622  *      the device.
1623  */
1624 static void dev_disable_gro_hw(struct net_device *dev)
1625 {
1626         dev->wanted_features &= ~NETIF_F_GRO_HW;
1627         netdev_update_features(dev);
1628
1629         if (unlikely(dev->features & NETIF_F_GRO_HW))
1630                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1631 }
1632
1633 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1634 {
1635 #define N(val)                                          \
1636         case NETDEV_##val:                              \
1637                 return "NETDEV_" __stringify(val);
1638         switch (cmd) {
1639         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1640         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1641         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1642         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1643         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1644         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1645         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1646         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1647         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1648         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1649         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1650         N(XDP_FEAT_CHANGE)
1651         }
1652 #undef N
1653         return "UNKNOWN_NETDEV_EVENT";
1654 }
1655 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1656
1657 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1658                                    struct net_device *dev)
1659 {
1660         struct netdev_notifier_info info = {
1661                 .dev = dev,
1662         };
1663
1664         return nb->notifier_call(nb, val, &info);
1665 }
1666
1667 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1668                                              struct net_device *dev)
1669 {
1670         int err;
1671
1672         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1673         err = notifier_to_errno(err);
1674         if (err)
1675                 return err;
1676
1677         if (!(dev->flags & IFF_UP))
1678                 return 0;
1679
1680         call_netdevice_notifier(nb, NETDEV_UP, dev);
1681         return 0;
1682 }
1683
1684 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1685                                                 struct net_device *dev)
1686 {
1687         if (dev->flags & IFF_UP) {
1688                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1689                                         dev);
1690                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1691         }
1692         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1693 }
1694
1695 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1696                                                  struct net *net)
1697 {
1698         struct net_device *dev;
1699         int err;
1700
1701         for_each_netdev(net, dev) {
1702                 err = call_netdevice_register_notifiers(nb, dev);
1703                 if (err)
1704                         goto rollback;
1705         }
1706         return 0;
1707
1708 rollback:
1709         for_each_netdev_continue_reverse(net, dev)
1710                 call_netdevice_unregister_notifiers(nb, dev);
1711         return err;
1712 }
1713
1714 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1715                                                     struct net *net)
1716 {
1717         struct net_device *dev;
1718
1719         for_each_netdev(net, dev)
1720                 call_netdevice_unregister_notifiers(nb, dev);
1721 }
1722
1723 static int dev_boot_phase = 1;
1724
1725 /**
1726  * register_netdevice_notifier - register a network notifier block
1727  * @nb: notifier
1728  *
1729  * Register a notifier to be called when network device events occur.
1730  * The notifier passed is linked into the kernel structures and must
1731  * not be reused until it has been unregistered. A negative errno code
1732  * is returned on a failure.
1733  *
1734  * When registered all registration and up events are replayed
1735  * to the new notifier to allow device to have a race free
1736  * view of the network device list.
1737  */
1738
1739 int register_netdevice_notifier(struct notifier_block *nb)
1740 {
1741         struct net *net;
1742         int err;
1743
1744         /* Close race with setup_net() and cleanup_net() */
1745         down_write(&pernet_ops_rwsem);
1746         rtnl_lock();
1747         err = raw_notifier_chain_register(&netdev_chain, nb);
1748         if (err)
1749                 goto unlock;
1750         if (dev_boot_phase)
1751                 goto unlock;
1752         for_each_net(net) {
1753                 err = call_netdevice_register_net_notifiers(nb, net);
1754                 if (err)
1755                         goto rollback;
1756         }
1757
1758 unlock:
1759         rtnl_unlock();
1760         up_write(&pernet_ops_rwsem);
1761         return err;
1762
1763 rollback:
1764         for_each_net_continue_reverse(net)
1765                 call_netdevice_unregister_net_notifiers(nb, net);
1766
1767         raw_notifier_chain_unregister(&netdev_chain, nb);
1768         goto unlock;
1769 }
1770 EXPORT_SYMBOL(register_netdevice_notifier);
1771
1772 /**
1773  * unregister_netdevice_notifier - unregister a network notifier block
1774  * @nb: notifier
1775  *
1776  * Unregister a notifier previously registered by
1777  * register_netdevice_notifier(). The notifier is unlinked into the
1778  * kernel structures and may then be reused. A negative errno code
1779  * is returned on a failure.
1780  *
1781  * After unregistering unregister and down device events are synthesized
1782  * for all devices on the device list to the removed notifier to remove
1783  * the need for special case cleanup code.
1784  */
1785
1786 int unregister_netdevice_notifier(struct notifier_block *nb)
1787 {
1788         struct net *net;
1789         int err;
1790
1791         /* Close race with setup_net() and cleanup_net() */
1792         down_write(&pernet_ops_rwsem);
1793         rtnl_lock();
1794         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1795         if (err)
1796                 goto unlock;
1797
1798         for_each_net(net)
1799                 call_netdevice_unregister_net_notifiers(nb, net);
1800
1801 unlock:
1802         rtnl_unlock();
1803         up_write(&pernet_ops_rwsem);
1804         return err;
1805 }
1806 EXPORT_SYMBOL(unregister_netdevice_notifier);
1807
1808 static int __register_netdevice_notifier_net(struct net *net,
1809                                              struct notifier_block *nb,
1810                                              bool ignore_call_fail)
1811 {
1812         int err;
1813
1814         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1815         if (err)
1816                 return err;
1817         if (dev_boot_phase)
1818                 return 0;
1819
1820         err = call_netdevice_register_net_notifiers(nb, net);
1821         if (err && !ignore_call_fail)
1822                 goto chain_unregister;
1823
1824         return 0;
1825
1826 chain_unregister:
1827         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1828         return err;
1829 }
1830
1831 static int __unregister_netdevice_notifier_net(struct net *net,
1832                                                struct notifier_block *nb)
1833 {
1834         int err;
1835
1836         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1837         if (err)
1838                 return err;
1839
1840         call_netdevice_unregister_net_notifiers(nb, net);
1841         return 0;
1842 }
1843
1844 /**
1845  * register_netdevice_notifier_net - register a per-netns network notifier block
1846  * @net: network namespace
1847  * @nb: notifier
1848  *
1849  * Register a notifier to be called when network device events occur.
1850  * The notifier passed is linked into the kernel structures and must
1851  * not be reused until it has been unregistered. A negative errno code
1852  * is returned on a failure.
1853  *
1854  * When registered all registration and up events are replayed
1855  * to the new notifier to allow device to have a race free
1856  * view of the network device list.
1857  */
1858
1859 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1860 {
1861         int err;
1862
1863         rtnl_lock();
1864         err = __register_netdevice_notifier_net(net, nb, false);
1865         rtnl_unlock();
1866         return err;
1867 }
1868 EXPORT_SYMBOL(register_netdevice_notifier_net);
1869
1870 /**
1871  * unregister_netdevice_notifier_net - unregister a per-netns
1872  *                                     network notifier block
1873  * @net: network namespace
1874  * @nb: notifier
1875  *
1876  * Unregister a notifier previously registered by
1877  * register_netdevice_notifier_net(). The notifier is unlinked from the
1878  * kernel structures and may then be reused. A negative errno code
1879  * is returned on a failure.
1880  *
1881  * After unregistering unregister and down device events are synthesized
1882  * for all devices on the device list to the removed notifier to remove
1883  * the need for special case cleanup code.
1884  */
1885
1886 int unregister_netdevice_notifier_net(struct net *net,
1887                                       struct notifier_block *nb)
1888 {
1889         int err;
1890
1891         rtnl_lock();
1892         err = __unregister_netdevice_notifier_net(net, nb);
1893         rtnl_unlock();
1894         return err;
1895 }
1896 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1897
1898 static void __move_netdevice_notifier_net(struct net *src_net,
1899                                           struct net *dst_net,
1900                                           struct notifier_block *nb)
1901 {
1902         __unregister_netdevice_notifier_net(src_net, nb);
1903         __register_netdevice_notifier_net(dst_net, nb, true);
1904 }
1905
1906 int register_netdevice_notifier_dev_net(struct net_device *dev,
1907                                         struct notifier_block *nb,
1908                                         struct netdev_net_notifier *nn)
1909 {
1910         int err;
1911
1912         rtnl_lock();
1913         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1914         if (!err) {
1915                 nn->nb = nb;
1916                 list_add(&nn->list, &dev->net_notifier_list);
1917         }
1918         rtnl_unlock();
1919         return err;
1920 }
1921 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1922
1923 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1924                                           struct notifier_block *nb,
1925                                           struct netdev_net_notifier *nn)
1926 {
1927         int err;
1928
1929         rtnl_lock();
1930         list_del(&nn->list);
1931         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1932         rtnl_unlock();
1933         return err;
1934 }
1935 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1936
1937 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1938                                              struct net *net)
1939 {
1940         struct netdev_net_notifier *nn;
1941
1942         list_for_each_entry(nn, &dev->net_notifier_list, list)
1943                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1944 }
1945
1946 /**
1947  *      call_netdevice_notifiers_info - call all network notifier blocks
1948  *      @val: value passed unmodified to notifier function
1949  *      @info: notifier information data
1950  *
1951  *      Call all network notifier blocks.  Parameters and return value
1952  *      are as for raw_notifier_call_chain().
1953  */
1954
1955 int call_netdevice_notifiers_info(unsigned long val,
1956                                   struct netdev_notifier_info *info)
1957 {
1958         struct net *net = dev_net(info->dev);
1959         int ret;
1960
1961         ASSERT_RTNL();
1962
1963         /* Run per-netns notifier block chain first, then run the global one.
1964          * Hopefully, one day, the global one is going to be removed after
1965          * all notifier block registrators get converted to be per-netns.
1966          */
1967         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1968         if (ret & NOTIFY_STOP_MASK)
1969                 return ret;
1970         return raw_notifier_call_chain(&netdev_chain, val, info);
1971 }
1972
1973 /**
1974  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1975  *                                             for and rollback on error
1976  *      @val_up: value passed unmodified to notifier function
1977  *      @val_down: value passed unmodified to the notifier function when
1978  *                 recovering from an error on @val_up
1979  *      @info: notifier information data
1980  *
1981  *      Call all per-netns network notifier blocks, but not notifier blocks on
1982  *      the global notifier chain. Parameters and return value are as for
1983  *      raw_notifier_call_chain_robust().
1984  */
1985
1986 static int
1987 call_netdevice_notifiers_info_robust(unsigned long val_up,
1988                                      unsigned long val_down,
1989                                      struct netdev_notifier_info *info)
1990 {
1991         struct net *net = dev_net(info->dev);
1992
1993         ASSERT_RTNL();
1994
1995         return raw_notifier_call_chain_robust(&net->netdev_chain,
1996                                               val_up, val_down, info);
1997 }
1998
1999 static int call_netdevice_notifiers_extack(unsigned long val,
2000                                            struct net_device *dev,
2001                                            struct netlink_ext_ack *extack)
2002 {
2003         struct netdev_notifier_info info = {
2004                 .dev = dev,
2005                 .extack = extack,
2006         };
2007
2008         return call_netdevice_notifiers_info(val, &info);
2009 }
2010
2011 /**
2012  *      call_netdevice_notifiers - call all network notifier blocks
2013  *      @val: value passed unmodified to notifier function
2014  *      @dev: net_device pointer passed unmodified to notifier function
2015  *
2016  *      Call all network notifier blocks.  Parameters and return value
2017  *      are as for raw_notifier_call_chain().
2018  */
2019
2020 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2021 {
2022         return call_netdevice_notifiers_extack(val, dev, NULL);
2023 }
2024 EXPORT_SYMBOL(call_netdevice_notifiers);
2025
2026 /**
2027  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2028  *      @val: value passed unmodified to notifier function
2029  *      @dev: net_device pointer passed unmodified to notifier function
2030  *      @arg: additional u32 argument passed to the notifier function
2031  *
2032  *      Call all network notifier blocks.  Parameters and return value
2033  *      are as for raw_notifier_call_chain().
2034  */
2035 static int call_netdevice_notifiers_mtu(unsigned long val,
2036                                         struct net_device *dev, u32 arg)
2037 {
2038         struct netdev_notifier_info_ext info = {
2039                 .info.dev = dev,
2040                 .ext.mtu = arg,
2041         };
2042
2043         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2044
2045         return call_netdevice_notifiers_info(val, &info.info);
2046 }
2047
2048 #ifdef CONFIG_NET_INGRESS
2049 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2050
2051 void net_inc_ingress_queue(void)
2052 {
2053         static_branch_inc(&ingress_needed_key);
2054 }
2055 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2056
2057 void net_dec_ingress_queue(void)
2058 {
2059         static_branch_dec(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2062 #endif
2063
2064 #ifdef CONFIG_NET_EGRESS
2065 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2066
2067 void net_inc_egress_queue(void)
2068 {
2069         static_branch_inc(&egress_needed_key);
2070 }
2071 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2072
2073 void net_dec_egress_queue(void)
2074 {
2075         static_branch_dec(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2078 #endif
2079
2080 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2081 EXPORT_SYMBOL(netstamp_needed_key);
2082 #ifdef CONFIG_JUMP_LABEL
2083 static atomic_t netstamp_needed_deferred;
2084 static atomic_t netstamp_wanted;
2085 static void netstamp_clear(struct work_struct *work)
2086 {
2087         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2088         int wanted;
2089
2090         wanted = atomic_add_return(deferred, &netstamp_wanted);
2091         if (wanted > 0)
2092                 static_branch_enable(&netstamp_needed_key);
2093         else
2094                 static_branch_disable(&netstamp_needed_key);
2095 }
2096 static DECLARE_WORK(netstamp_work, netstamp_clear);
2097 #endif
2098
2099 void net_enable_timestamp(void)
2100 {
2101 #ifdef CONFIG_JUMP_LABEL
2102         int wanted = atomic_read(&netstamp_wanted);
2103
2104         while (wanted > 0) {
2105                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2106                         return;
2107         }
2108         atomic_inc(&netstamp_needed_deferred);
2109         schedule_work(&netstamp_work);
2110 #else
2111         static_branch_inc(&netstamp_needed_key);
2112 #endif
2113 }
2114 EXPORT_SYMBOL(net_enable_timestamp);
2115
2116 void net_disable_timestamp(void)
2117 {
2118 #ifdef CONFIG_JUMP_LABEL
2119         int wanted = atomic_read(&netstamp_wanted);
2120
2121         while (wanted > 1) {
2122                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2123                         return;
2124         }
2125         atomic_dec(&netstamp_needed_deferred);
2126         schedule_work(&netstamp_work);
2127 #else
2128         static_branch_dec(&netstamp_needed_key);
2129 #endif
2130 }
2131 EXPORT_SYMBOL(net_disable_timestamp);
2132
2133 static inline void net_timestamp_set(struct sk_buff *skb)
2134 {
2135         skb->tstamp = 0;
2136         skb->mono_delivery_time = 0;
2137         if (static_branch_unlikely(&netstamp_needed_key))
2138                 skb->tstamp = ktime_get_real();
2139 }
2140
2141 #define net_timestamp_check(COND, SKB)                          \
2142         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2143                 if ((COND) && !(SKB)->tstamp)                   \
2144                         (SKB)->tstamp = ktime_get_real();       \
2145         }                                                       \
2146
2147 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2148 {
2149         return __is_skb_forwardable(dev, skb, true);
2150 }
2151 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2152
2153 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2154                               bool check_mtu)
2155 {
2156         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2157
2158         if (likely(!ret)) {
2159                 skb->protocol = eth_type_trans(skb, dev);
2160                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2161         }
2162
2163         return ret;
2164 }
2165
2166 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2167 {
2168         return __dev_forward_skb2(dev, skb, true);
2169 }
2170 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2171
2172 /**
2173  * dev_forward_skb - loopback an skb to another netif
2174  *
2175  * @dev: destination network device
2176  * @skb: buffer to forward
2177  *
2178  * return values:
2179  *      NET_RX_SUCCESS  (no congestion)
2180  *      NET_RX_DROP     (packet was dropped, but freed)
2181  *
2182  * dev_forward_skb can be used for injecting an skb from the
2183  * start_xmit function of one device into the receive queue
2184  * of another device.
2185  *
2186  * The receiving device may be in another namespace, so
2187  * we have to clear all information in the skb that could
2188  * impact namespace isolation.
2189  */
2190 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2191 {
2192         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2193 }
2194 EXPORT_SYMBOL_GPL(dev_forward_skb);
2195
2196 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2197 {
2198         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2199 }
2200
2201 static inline int deliver_skb(struct sk_buff *skb,
2202                               struct packet_type *pt_prev,
2203                               struct net_device *orig_dev)
2204 {
2205         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2206                 return -ENOMEM;
2207         refcount_inc(&skb->users);
2208         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2209 }
2210
2211 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2212                                           struct packet_type **pt,
2213                                           struct net_device *orig_dev,
2214                                           __be16 type,
2215                                           struct list_head *ptype_list)
2216 {
2217         struct packet_type *ptype, *pt_prev = *pt;
2218
2219         list_for_each_entry_rcu(ptype, ptype_list, list) {
2220                 if (ptype->type != type)
2221                         continue;
2222                 if (pt_prev)
2223                         deliver_skb(skb, pt_prev, orig_dev);
2224                 pt_prev = ptype;
2225         }
2226         *pt = pt_prev;
2227 }
2228
2229 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2230 {
2231         if (!ptype->af_packet_priv || !skb->sk)
2232                 return false;
2233
2234         if (ptype->id_match)
2235                 return ptype->id_match(ptype, skb->sk);
2236         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2237                 return true;
2238
2239         return false;
2240 }
2241
2242 /**
2243  * dev_nit_active - return true if any network interface taps are in use
2244  *
2245  * @dev: network device to check for the presence of taps
2246  */
2247 bool dev_nit_active(struct net_device *dev)
2248 {
2249         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2250 }
2251 EXPORT_SYMBOL_GPL(dev_nit_active);
2252
2253 /*
2254  *      Support routine. Sends outgoing frames to any network
2255  *      taps currently in use.
2256  */
2257
2258 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2259 {
2260         struct packet_type *ptype;
2261         struct sk_buff *skb2 = NULL;
2262         struct packet_type *pt_prev = NULL;
2263         struct list_head *ptype_list = &ptype_all;
2264
2265         rcu_read_lock();
2266 again:
2267         list_for_each_entry_rcu(ptype, ptype_list, list) {
2268                 if (ptype->ignore_outgoing)
2269                         continue;
2270
2271                 /* Never send packets back to the socket
2272                  * they originated from - MvS (miquels@drinkel.ow.org)
2273                  */
2274                 if (skb_loop_sk(ptype, skb))
2275                         continue;
2276
2277                 if (pt_prev) {
2278                         deliver_skb(skb2, pt_prev, skb->dev);
2279                         pt_prev = ptype;
2280                         continue;
2281                 }
2282
2283                 /* need to clone skb, done only once */
2284                 skb2 = skb_clone(skb, GFP_ATOMIC);
2285                 if (!skb2)
2286                         goto out_unlock;
2287
2288                 net_timestamp_set(skb2);
2289
2290                 /* skb->nh should be correctly
2291                  * set by sender, so that the second statement is
2292                  * just protection against buggy protocols.
2293                  */
2294                 skb_reset_mac_header(skb2);
2295
2296                 if (skb_network_header(skb2) < skb2->data ||
2297                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2298                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2299                                              ntohs(skb2->protocol),
2300                                              dev->name);
2301                         skb_reset_network_header(skb2);
2302                 }
2303
2304                 skb2->transport_header = skb2->network_header;
2305                 skb2->pkt_type = PACKET_OUTGOING;
2306                 pt_prev = ptype;
2307         }
2308
2309         if (ptype_list == &ptype_all) {
2310                 ptype_list = &dev->ptype_all;
2311                 goto again;
2312         }
2313 out_unlock:
2314         if (pt_prev) {
2315                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2316                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2317                 else
2318                         kfree_skb(skb2);
2319         }
2320         rcu_read_unlock();
2321 }
2322 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2323
2324 /**
2325  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2326  * @dev: Network device
2327  * @txq: number of queues available
2328  *
2329  * If real_num_tx_queues is changed the tc mappings may no longer be
2330  * valid. To resolve this verify the tc mapping remains valid and if
2331  * not NULL the mapping. With no priorities mapping to this
2332  * offset/count pair it will no longer be used. In the worst case TC0
2333  * is invalid nothing can be done so disable priority mappings. If is
2334  * expected that drivers will fix this mapping if they can before
2335  * calling netif_set_real_num_tx_queues.
2336  */
2337 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2338 {
2339         int i;
2340         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2341
2342         /* If TC0 is invalidated disable TC mapping */
2343         if (tc->offset + tc->count > txq) {
2344                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2345                 dev->num_tc = 0;
2346                 return;
2347         }
2348
2349         /* Invalidated prio to tc mappings set to TC0 */
2350         for (i = 1; i < TC_BITMASK + 1; i++) {
2351                 int q = netdev_get_prio_tc_map(dev, i);
2352
2353                 tc = &dev->tc_to_txq[q];
2354                 if (tc->offset + tc->count > txq) {
2355                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2356                                     i, q);
2357                         netdev_set_prio_tc_map(dev, i, 0);
2358                 }
2359         }
2360 }
2361
2362 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2363 {
2364         if (dev->num_tc) {
2365                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366                 int i;
2367
2368                 /* walk through the TCs and see if it falls into any of them */
2369                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2370                         if ((txq - tc->offset) < tc->count)
2371                                 return i;
2372                 }
2373
2374                 /* didn't find it, just return -1 to indicate no match */
2375                 return -1;
2376         }
2377
2378         return 0;
2379 }
2380 EXPORT_SYMBOL(netdev_txq_to_tc);
2381
2382 #ifdef CONFIG_XPS
2383 static struct static_key xps_needed __read_mostly;
2384 static struct static_key xps_rxqs_needed __read_mostly;
2385 static DEFINE_MUTEX(xps_map_mutex);
2386 #define xmap_dereference(P)             \
2387         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2388
2389 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2390                              struct xps_dev_maps *old_maps, int tci, u16 index)
2391 {
2392         struct xps_map *map = NULL;
2393         int pos;
2394
2395         map = xmap_dereference(dev_maps->attr_map[tci]);
2396         if (!map)
2397                 return false;
2398
2399         for (pos = map->len; pos--;) {
2400                 if (map->queues[pos] != index)
2401                         continue;
2402
2403                 if (map->len > 1) {
2404                         map->queues[pos] = map->queues[--map->len];
2405                         break;
2406                 }
2407
2408                 if (old_maps)
2409                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2410                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2411                 kfree_rcu(map, rcu);
2412                 return false;
2413         }
2414
2415         return true;
2416 }
2417
2418 static bool remove_xps_queue_cpu(struct net_device *dev,
2419                                  struct xps_dev_maps *dev_maps,
2420                                  int cpu, u16 offset, u16 count)
2421 {
2422         int num_tc = dev_maps->num_tc;
2423         bool active = false;
2424         int tci;
2425
2426         for (tci = cpu * num_tc; num_tc--; tci++) {
2427                 int i, j;
2428
2429                 for (i = count, j = offset; i--; j++) {
2430                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2431                                 break;
2432                 }
2433
2434                 active |= i < 0;
2435         }
2436
2437         return active;
2438 }
2439
2440 static void reset_xps_maps(struct net_device *dev,
2441                            struct xps_dev_maps *dev_maps,
2442                            enum xps_map_type type)
2443 {
2444         static_key_slow_dec_cpuslocked(&xps_needed);
2445         if (type == XPS_RXQS)
2446                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2447
2448         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2449
2450         kfree_rcu(dev_maps, rcu);
2451 }
2452
2453 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2454                            u16 offset, u16 count)
2455 {
2456         struct xps_dev_maps *dev_maps;
2457         bool active = false;
2458         int i, j;
2459
2460         dev_maps = xmap_dereference(dev->xps_maps[type]);
2461         if (!dev_maps)
2462                 return;
2463
2464         for (j = 0; j < dev_maps->nr_ids; j++)
2465                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2466         if (!active)
2467                 reset_xps_maps(dev, dev_maps, type);
2468
2469         if (type == XPS_CPUS) {
2470                 for (i = offset + (count - 1); count--; i--)
2471                         netdev_queue_numa_node_write(
2472                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2473         }
2474 }
2475
2476 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2477                                    u16 count)
2478 {
2479         if (!static_key_false(&xps_needed))
2480                 return;
2481
2482         cpus_read_lock();
2483         mutex_lock(&xps_map_mutex);
2484
2485         if (static_key_false(&xps_rxqs_needed))
2486                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2487
2488         clean_xps_maps(dev, XPS_CPUS, offset, count);
2489
2490         mutex_unlock(&xps_map_mutex);
2491         cpus_read_unlock();
2492 }
2493
2494 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2495 {
2496         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2497 }
2498
2499 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2500                                       u16 index, bool is_rxqs_map)
2501 {
2502         struct xps_map *new_map;
2503         int alloc_len = XPS_MIN_MAP_ALLOC;
2504         int i, pos;
2505
2506         for (pos = 0; map && pos < map->len; pos++) {
2507                 if (map->queues[pos] != index)
2508                         continue;
2509                 return map;
2510         }
2511
2512         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2513         if (map) {
2514                 if (pos < map->alloc_len)
2515                         return map;
2516
2517                 alloc_len = map->alloc_len * 2;
2518         }
2519
2520         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2521          *  map
2522          */
2523         if (is_rxqs_map)
2524                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2525         else
2526                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2527                                        cpu_to_node(attr_index));
2528         if (!new_map)
2529                 return NULL;
2530
2531         for (i = 0; i < pos; i++)
2532                 new_map->queues[i] = map->queues[i];
2533         new_map->alloc_len = alloc_len;
2534         new_map->len = pos;
2535
2536         return new_map;
2537 }
2538
2539 /* Copy xps maps at a given index */
2540 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2541                               struct xps_dev_maps *new_dev_maps, int index,
2542                               int tc, bool skip_tc)
2543 {
2544         int i, tci = index * dev_maps->num_tc;
2545         struct xps_map *map;
2546
2547         /* copy maps belonging to foreign traffic classes */
2548         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2549                 if (i == tc && skip_tc)
2550                         continue;
2551
2552                 /* fill in the new device map from the old device map */
2553                 map = xmap_dereference(dev_maps->attr_map[tci]);
2554                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2555         }
2556 }
2557
2558 /* Must be called under cpus_read_lock */
2559 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2560                           u16 index, enum xps_map_type type)
2561 {
2562         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2563         const unsigned long *online_mask = NULL;
2564         bool active = false, copy = false;
2565         int i, j, tci, numa_node_id = -2;
2566         int maps_sz, num_tc = 1, tc = 0;
2567         struct xps_map *map, *new_map;
2568         unsigned int nr_ids;
2569
2570         WARN_ON_ONCE(index >= dev->num_tx_queues);
2571
2572         if (dev->num_tc) {
2573                 /* Do not allow XPS on subordinate device directly */
2574                 num_tc = dev->num_tc;
2575                 if (num_tc < 0)
2576                         return -EINVAL;
2577
2578                 /* If queue belongs to subordinate dev use its map */
2579                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2580
2581                 tc = netdev_txq_to_tc(dev, index);
2582                 if (tc < 0)
2583                         return -EINVAL;
2584         }
2585
2586         mutex_lock(&xps_map_mutex);
2587
2588         dev_maps = xmap_dereference(dev->xps_maps[type]);
2589         if (type == XPS_RXQS) {
2590                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2591                 nr_ids = dev->num_rx_queues;
2592         } else {
2593                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2594                 if (num_possible_cpus() > 1)
2595                         online_mask = cpumask_bits(cpu_online_mask);
2596                 nr_ids = nr_cpu_ids;
2597         }
2598
2599         if (maps_sz < L1_CACHE_BYTES)
2600                 maps_sz = L1_CACHE_BYTES;
2601
2602         /* The old dev_maps could be larger or smaller than the one we're
2603          * setting up now, as dev->num_tc or nr_ids could have been updated in
2604          * between. We could try to be smart, but let's be safe instead and only
2605          * copy foreign traffic classes if the two map sizes match.
2606          */
2607         if (dev_maps &&
2608             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2609                 copy = true;
2610
2611         /* allocate memory for queue storage */
2612         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2613              j < nr_ids;) {
2614                 if (!new_dev_maps) {
2615                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2616                         if (!new_dev_maps) {
2617                                 mutex_unlock(&xps_map_mutex);
2618                                 return -ENOMEM;
2619                         }
2620
2621                         new_dev_maps->nr_ids = nr_ids;
2622                         new_dev_maps->num_tc = num_tc;
2623                 }
2624
2625                 tci = j * num_tc + tc;
2626                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2627
2628                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2629                 if (!map)
2630                         goto error;
2631
2632                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2633         }
2634
2635         if (!new_dev_maps)
2636                 goto out_no_new_maps;
2637
2638         if (!dev_maps) {
2639                 /* Increment static keys at most once per type */
2640                 static_key_slow_inc_cpuslocked(&xps_needed);
2641                 if (type == XPS_RXQS)
2642                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2643         }
2644
2645         for (j = 0; j < nr_ids; j++) {
2646                 bool skip_tc = false;
2647
2648                 tci = j * num_tc + tc;
2649                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2650                     netif_attr_test_online(j, online_mask, nr_ids)) {
2651                         /* add tx-queue to CPU/rx-queue maps */
2652                         int pos = 0;
2653
2654                         skip_tc = true;
2655
2656                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2657                         while ((pos < map->len) && (map->queues[pos] != index))
2658                                 pos++;
2659
2660                         if (pos == map->len)
2661                                 map->queues[map->len++] = index;
2662 #ifdef CONFIG_NUMA
2663                         if (type == XPS_CPUS) {
2664                                 if (numa_node_id == -2)
2665                                         numa_node_id = cpu_to_node(j);
2666                                 else if (numa_node_id != cpu_to_node(j))
2667                                         numa_node_id = -1;
2668                         }
2669 #endif
2670                 }
2671
2672                 if (copy)
2673                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2674                                           skip_tc);
2675         }
2676
2677         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2678
2679         /* Cleanup old maps */
2680         if (!dev_maps)
2681                 goto out_no_old_maps;
2682
2683         for (j = 0; j < dev_maps->nr_ids; j++) {
2684                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2685                         map = xmap_dereference(dev_maps->attr_map[tci]);
2686                         if (!map)
2687                                 continue;
2688
2689                         if (copy) {
2690                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2691                                 if (map == new_map)
2692                                         continue;
2693                         }
2694
2695                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2696                         kfree_rcu(map, rcu);
2697                 }
2698         }
2699
2700         old_dev_maps = dev_maps;
2701
2702 out_no_old_maps:
2703         dev_maps = new_dev_maps;
2704         active = true;
2705
2706 out_no_new_maps:
2707         if (type == XPS_CPUS)
2708                 /* update Tx queue numa node */
2709                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2710                                              (numa_node_id >= 0) ?
2711                                              numa_node_id : NUMA_NO_NODE);
2712
2713         if (!dev_maps)
2714                 goto out_no_maps;
2715
2716         /* removes tx-queue from unused CPUs/rx-queues */
2717         for (j = 0; j < dev_maps->nr_ids; j++) {
2718                 tci = j * dev_maps->num_tc;
2719
2720                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2721                         if (i == tc &&
2722                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2723                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2724                                 continue;
2725
2726                         active |= remove_xps_queue(dev_maps,
2727                                                    copy ? old_dev_maps : NULL,
2728                                                    tci, index);
2729                 }
2730         }
2731
2732         if (old_dev_maps)
2733                 kfree_rcu(old_dev_maps, rcu);
2734
2735         /* free map if not active */
2736         if (!active)
2737                 reset_xps_maps(dev, dev_maps, type);
2738
2739 out_no_maps:
2740         mutex_unlock(&xps_map_mutex);
2741
2742         return 0;
2743 error:
2744         /* remove any maps that we added */
2745         for (j = 0; j < nr_ids; j++) {
2746                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2747                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2748                         map = copy ?
2749                               xmap_dereference(dev_maps->attr_map[tci]) :
2750                               NULL;
2751                         if (new_map && new_map != map)
2752                                 kfree(new_map);
2753                 }
2754         }
2755
2756         mutex_unlock(&xps_map_mutex);
2757
2758         kfree(new_dev_maps);
2759         return -ENOMEM;
2760 }
2761 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2762
2763 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2764                         u16 index)
2765 {
2766         int ret;
2767
2768         cpus_read_lock();
2769         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2770         cpus_read_unlock();
2771
2772         return ret;
2773 }
2774 EXPORT_SYMBOL(netif_set_xps_queue);
2775
2776 #endif
2777 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2778 {
2779         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2780
2781         /* Unbind any subordinate channels */
2782         while (txq-- != &dev->_tx[0]) {
2783                 if (txq->sb_dev)
2784                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2785         }
2786 }
2787
2788 void netdev_reset_tc(struct net_device *dev)
2789 {
2790 #ifdef CONFIG_XPS
2791         netif_reset_xps_queues_gt(dev, 0);
2792 #endif
2793         netdev_unbind_all_sb_channels(dev);
2794
2795         /* Reset TC configuration of device */
2796         dev->num_tc = 0;
2797         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2798         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2799 }
2800 EXPORT_SYMBOL(netdev_reset_tc);
2801
2802 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2803 {
2804         if (tc >= dev->num_tc)
2805                 return -EINVAL;
2806
2807 #ifdef CONFIG_XPS
2808         netif_reset_xps_queues(dev, offset, count);
2809 #endif
2810         dev->tc_to_txq[tc].count = count;
2811         dev->tc_to_txq[tc].offset = offset;
2812         return 0;
2813 }
2814 EXPORT_SYMBOL(netdev_set_tc_queue);
2815
2816 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2817 {
2818         if (num_tc > TC_MAX_QUEUE)
2819                 return -EINVAL;
2820
2821 #ifdef CONFIG_XPS
2822         netif_reset_xps_queues_gt(dev, 0);
2823 #endif
2824         netdev_unbind_all_sb_channels(dev);
2825
2826         dev->num_tc = num_tc;
2827         return 0;
2828 }
2829 EXPORT_SYMBOL(netdev_set_num_tc);
2830
2831 void netdev_unbind_sb_channel(struct net_device *dev,
2832                               struct net_device *sb_dev)
2833 {
2834         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2835
2836 #ifdef CONFIG_XPS
2837         netif_reset_xps_queues_gt(sb_dev, 0);
2838 #endif
2839         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2840         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2841
2842         while (txq-- != &dev->_tx[0]) {
2843                 if (txq->sb_dev == sb_dev)
2844                         txq->sb_dev = NULL;
2845         }
2846 }
2847 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2848
2849 int netdev_bind_sb_channel_queue(struct net_device *dev,
2850                                  struct net_device *sb_dev,
2851                                  u8 tc, u16 count, u16 offset)
2852 {
2853         /* Make certain the sb_dev and dev are already configured */
2854         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2855                 return -EINVAL;
2856
2857         /* We cannot hand out queues we don't have */
2858         if ((offset + count) > dev->real_num_tx_queues)
2859                 return -EINVAL;
2860
2861         /* Record the mapping */
2862         sb_dev->tc_to_txq[tc].count = count;
2863         sb_dev->tc_to_txq[tc].offset = offset;
2864
2865         /* Provide a way for Tx queue to find the tc_to_txq map or
2866          * XPS map for itself.
2867          */
2868         while (count--)
2869                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2870
2871         return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2874
2875 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2876 {
2877         /* Do not use a multiqueue device to represent a subordinate channel */
2878         if (netif_is_multiqueue(dev))
2879                 return -ENODEV;
2880
2881         /* We allow channels 1 - 32767 to be used for subordinate channels.
2882          * Channel 0 is meant to be "native" mode and used only to represent
2883          * the main root device. We allow writing 0 to reset the device back
2884          * to normal mode after being used as a subordinate channel.
2885          */
2886         if (channel > S16_MAX)
2887                 return -EINVAL;
2888
2889         dev->num_tc = -channel;
2890
2891         return 0;
2892 }
2893 EXPORT_SYMBOL(netdev_set_sb_channel);
2894
2895 /*
2896  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2897  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2898  */
2899 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2900 {
2901         bool disabling;
2902         int rc;
2903
2904         disabling = txq < dev->real_num_tx_queues;
2905
2906         if (txq < 1 || txq > dev->num_tx_queues)
2907                 return -EINVAL;
2908
2909         if (dev->reg_state == NETREG_REGISTERED ||
2910             dev->reg_state == NETREG_UNREGISTERING) {
2911                 ASSERT_RTNL();
2912
2913                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2914                                                   txq);
2915                 if (rc)
2916                         return rc;
2917
2918                 if (dev->num_tc)
2919                         netif_setup_tc(dev, txq);
2920
2921                 dev_qdisc_change_real_num_tx(dev, txq);
2922
2923                 dev->real_num_tx_queues = txq;
2924
2925                 if (disabling) {
2926                         synchronize_net();
2927                         qdisc_reset_all_tx_gt(dev, txq);
2928 #ifdef CONFIG_XPS
2929                         netif_reset_xps_queues_gt(dev, txq);
2930 #endif
2931                 }
2932         } else {
2933                 dev->real_num_tx_queues = txq;
2934         }
2935
2936         return 0;
2937 }
2938 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2939
2940 #ifdef CONFIG_SYSFS
2941 /**
2942  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2943  *      @dev: Network device
2944  *      @rxq: Actual number of RX queues
2945  *
2946  *      This must be called either with the rtnl_lock held or before
2947  *      registration of the net device.  Returns 0 on success, or a
2948  *      negative error code.  If called before registration, it always
2949  *      succeeds.
2950  */
2951 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2952 {
2953         int rc;
2954
2955         if (rxq < 1 || rxq > dev->num_rx_queues)
2956                 return -EINVAL;
2957
2958         if (dev->reg_state == NETREG_REGISTERED) {
2959                 ASSERT_RTNL();
2960
2961                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2962                                                   rxq);
2963                 if (rc)
2964                         return rc;
2965         }
2966
2967         dev->real_num_rx_queues = rxq;
2968         return 0;
2969 }
2970 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2971 #endif
2972
2973 /**
2974  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2975  *      @dev: Network device
2976  *      @txq: Actual number of TX queues
2977  *      @rxq: Actual number of RX queues
2978  *
2979  *      Set the real number of both TX and RX queues.
2980  *      Does nothing if the number of queues is already correct.
2981  */
2982 int netif_set_real_num_queues(struct net_device *dev,
2983                               unsigned int txq, unsigned int rxq)
2984 {
2985         unsigned int old_rxq = dev->real_num_rx_queues;
2986         int err;
2987
2988         if (txq < 1 || txq > dev->num_tx_queues ||
2989             rxq < 1 || rxq > dev->num_rx_queues)
2990                 return -EINVAL;
2991
2992         /* Start from increases, so the error path only does decreases -
2993          * decreases can't fail.
2994          */
2995         if (rxq > dev->real_num_rx_queues) {
2996                 err = netif_set_real_num_rx_queues(dev, rxq);
2997                 if (err)
2998                         return err;
2999         }
3000         if (txq > dev->real_num_tx_queues) {
3001                 err = netif_set_real_num_tx_queues(dev, txq);
3002                 if (err)
3003                         goto undo_rx;
3004         }
3005         if (rxq < dev->real_num_rx_queues)
3006                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3007         if (txq < dev->real_num_tx_queues)
3008                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3009
3010         return 0;
3011 undo_rx:
3012         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3013         return err;
3014 }
3015 EXPORT_SYMBOL(netif_set_real_num_queues);
3016
3017 /**
3018  * netif_set_tso_max_size() - set the max size of TSO frames supported
3019  * @dev:        netdev to update
3020  * @size:       max skb->len of a TSO frame
3021  *
3022  * Set the limit on the size of TSO super-frames the device can handle.
3023  * Unless explicitly set the stack will assume the value of
3024  * %GSO_LEGACY_MAX_SIZE.
3025  */
3026 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3027 {
3028         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3029         if (size < READ_ONCE(dev->gso_max_size))
3030                 netif_set_gso_max_size(dev, size);
3031         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3032                 netif_set_gso_ipv4_max_size(dev, size);
3033 }
3034 EXPORT_SYMBOL(netif_set_tso_max_size);
3035
3036 /**
3037  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3038  * @dev:        netdev to update
3039  * @segs:       max number of TCP segments
3040  *
3041  * Set the limit on the number of TCP segments the device can generate from
3042  * a single TSO super-frame.
3043  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3044  */
3045 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3046 {
3047         dev->tso_max_segs = segs;
3048         if (segs < READ_ONCE(dev->gso_max_segs))
3049                 netif_set_gso_max_segs(dev, segs);
3050 }
3051 EXPORT_SYMBOL(netif_set_tso_max_segs);
3052
3053 /**
3054  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3055  * @to:         netdev to update
3056  * @from:       netdev from which to copy the limits
3057  */
3058 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3059 {
3060         netif_set_tso_max_size(to, from->tso_max_size);
3061         netif_set_tso_max_segs(to, from->tso_max_segs);
3062 }
3063 EXPORT_SYMBOL(netif_inherit_tso_max);
3064
3065 /**
3066  * netif_get_num_default_rss_queues - default number of RSS queues
3067  *
3068  * Default value is the number of physical cores if there are only 1 or 2, or
3069  * divided by 2 if there are more.
3070  */
3071 int netif_get_num_default_rss_queues(void)
3072 {
3073         cpumask_var_t cpus;
3074         int cpu, count = 0;
3075
3076         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3077                 return 1;
3078
3079         cpumask_copy(cpus, cpu_online_mask);
3080         for_each_cpu(cpu, cpus) {
3081                 ++count;
3082                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3083         }
3084         free_cpumask_var(cpus);
3085
3086         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3087 }
3088 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3089
3090 static void __netif_reschedule(struct Qdisc *q)
3091 {
3092         struct softnet_data *sd;
3093         unsigned long flags;
3094
3095         local_irq_save(flags);
3096         sd = this_cpu_ptr(&softnet_data);
3097         q->next_sched = NULL;
3098         *sd->output_queue_tailp = q;
3099         sd->output_queue_tailp = &q->next_sched;
3100         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3101         local_irq_restore(flags);
3102 }
3103
3104 void __netif_schedule(struct Qdisc *q)
3105 {
3106         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3107                 __netif_reschedule(q);
3108 }
3109 EXPORT_SYMBOL(__netif_schedule);
3110
3111 struct dev_kfree_skb_cb {
3112         enum skb_drop_reason reason;
3113 };
3114
3115 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3116 {
3117         return (struct dev_kfree_skb_cb *)skb->cb;
3118 }
3119
3120 void netif_schedule_queue(struct netdev_queue *txq)
3121 {
3122         rcu_read_lock();
3123         if (!netif_xmit_stopped(txq)) {
3124                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3125
3126                 __netif_schedule(q);
3127         }
3128         rcu_read_unlock();
3129 }
3130 EXPORT_SYMBOL(netif_schedule_queue);
3131
3132 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3133 {
3134         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3135                 struct Qdisc *q;
3136
3137                 rcu_read_lock();
3138                 q = rcu_dereference(dev_queue->qdisc);
3139                 __netif_schedule(q);
3140                 rcu_read_unlock();
3141         }
3142 }
3143 EXPORT_SYMBOL(netif_tx_wake_queue);
3144
3145 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3146 {
3147         unsigned long flags;
3148
3149         if (unlikely(!skb))
3150                 return;
3151
3152         if (likely(refcount_read(&skb->users) == 1)) {
3153                 smp_rmb();
3154                 refcount_set(&skb->users, 0);
3155         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3156                 return;
3157         }
3158         get_kfree_skb_cb(skb)->reason = reason;
3159         local_irq_save(flags);
3160         skb->next = __this_cpu_read(softnet_data.completion_queue);
3161         __this_cpu_write(softnet_data.completion_queue, skb);
3162         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3163         local_irq_restore(flags);
3164 }
3165 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3166
3167 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3168 {
3169         if (in_hardirq() || irqs_disabled())
3170                 dev_kfree_skb_irq_reason(skb, reason);
3171         else
3172                 kfree_skb_reason(skb, reason);
3173 }
3174 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3175
3176
3177 /**
3178  * netif_device_detach - mark device as removed
3179  * @dev: network device
3180  *
3181  * Mark device as removed from system and therefore no longer available.
3182  */
3183 void netif_device_detach(struct net_device *dev)
3184 {
3185         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3186             netif_running(dev)) {
3187                 netif_tx_stop_all_queues(dev);
3188         }
3189 }
3190 EXPORT_SYMBOL(netif_device_detach);
3191
3192 /**
3193  * netif_device_attach - mark device as attached
3194  * @dev: network device
3195  *
3196  * Mark device as attached from system and restart if needed.
3197  */
3198 void netif_device_attach(struct net_device *dev)
3199 {
3200         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3201             netif_running(dev)) {
3202                 netif_tx_wake_all_queues(dev);
3203                 __netdev_watchdog_up(dev);
3204         }
3205 }
3206 EXPORT_SYMBOL(netif_device_attach);
3207
3208 /*
3209  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3210  * to be used as a distribution range.
3211  */
3212 static u16 skb_tx_hash(const struct net_device *dev,
3213                        const struct net_device *sb_dev,
3214                        struct sk_buff *skb)
3215 {
3216         u32 hash;
3217         u16 qoffset = 0;
3218         u16 qcount = dev->real_num_tx_queues;
3219
3220         if (dev->num_tc) {
3221                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3222
3223                 qoffset = sb_dev->tc_to_txq[tc].offset;
3224                 qcount = sb_dev->tc_to_txq[tc].count;
3225                 if (unlikely(!qcount)) {
3226                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3227                                              sb_dev->name, qoffset, tc);
3228                         qoffset = 0;
3229                         qcount = dev->real_num_tx_queues;
3230                 }
3231         }
3232
3233         if (skb_rx_queue_recorded(skb)) {
3234                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3235                 hash = skb_get_rx_queue(skb);
3236                 if (hash >= qoffset)
3237                         hash -= qoffset;
3238                 while (unlikely(hash >= qcount))
3239                         hash -= qcount;
3240                 return hash + qoffset;
3241         }
3242
3243         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3244 }
3245
3246 void skb_warn_bad_offload(const struct sk_buff *skb)
3247 {
3248         static const netdev_features_t null_features;
3249         struct net_device *dev = skb->dev;
3250         const char *name = "";
3251
3252         if (!net_ratelimit())
3253                 return;
3254
3255         if (dev) {
3256                 if (dev->dev.parent)
3257                         name = dev_driver_string(dev->dev.parent);
3258                 else
3259                         name = netdev_name(dev);
3260         }
3261         skb_dump(KERN_WARNING, skb, false);
3262         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3263              name, dev ? &dev->features : &null_features,
3264              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3265 }
3266
3267 /*
3268  * Invalidate hardware checksum when packet is to be mangled, and
3269  * complete checksum manually on outgoing path.
3270  */
3271 int skb_checksum_help(struct sk_buff *skb)
3272 {
3273         __wsum csum;
3274         int ret = 0, offset;
3275
3276         if (skb->ip_summed == CHECKSUM_COMPLETE)
3277                 goto out_set_summed;
3278
3279         if (unlikely(skb_is_gso(skb))) {
3280                 skb_warn_bad_offload(skb);
3281                 return -EINVAL;
3282         }
3283
3284         /* Before computing a checksum, we should make sure no frag could
3285          * be modified by an external entity : checksum could be wrong.
3286          */
3287         if (skb_has_shared_frag(skb)) {
3288                 ret = __skb_linearize(skb);
3289                 if (ret)
3290                         goto out;
3291         }
3292
3293         offset = skb_checksum_start_offset(skb);
3294         ret = -EINVAL;
3295         if (unlikely(offset >= skb_headlen(skb))) {
3296                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3297                 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3298                           offset, skb_headlen(skb));
3299                 goto out;
3300         }
3301         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3302
3303         offset += skb->csum_offset;
3304         if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3305                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3306                 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3307                           offset + sizeof(__sum16), skb_headlen(skb));
3308                 goto out;
3309         }
3310         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3311         if (ret)
3312                 goto out;
3313
3314         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3315 out_set_summed:
3316         skb->ip_summed = CHECKSUM_NONE;
3317 out:
3318         return ret;
3319 }
3320 EXPORT_SYMBOL(skb_checksum_help);
3321
3322 int skb_crc32c_csum_help(struct sk_buff *skb)
3323 {
3324         __le32 crc32c_csum;
3325         int ret = 0, offset, start;
3326
3327         if (skb->ip_summed != CHECKSUM_PARTIAL)
3328                 goto out;
3329
3330         if (unlikely(skb_is_gso(skb)))
3331                 goto out;
3332
3333         /* Before computing a checksum, we should make sure no frag could
3334          * be modified by an external entity : checksum could be wrong.
3335          */
3336         if (unlikely(skb_has_shared_frag(skb))) {
3337                 ret = __skb_linearize(skb);
3338                 if (ret)
3339                         goto out;
3340         }
3341         start = skb_checksum_start_offset(skb);
3342         offset = start + offsetof(struct sctphdr, checksum);
3343         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3344                 ret = -EINVAL;
3345                 goto out;
3346         }
3347
3348         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3349         if (ret)
3350                 goto out;
3351
3352         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3353                                                   skb->len - start, ~(__u32)0,
3354                                                   crc32c_csum_stub));
3355         *(__le32 *)(skb->data + offset) = crc32c_csum;
3356         skb_reset_csum_not_inet(skb);
3357 out:
3358         return ret;
3359 }
3360
3361 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3362 {
3363         __be16 type = skb->protocol;
3364
3365         /* Tunnel gso handlers can set protocol to ethernet. */
3366         if (type == htons(ETH_P_TEB)) {
3367                 struct ethhdr *eth;
3368
3369                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3370                         return 0;
3371
3372                 eth = (struct ethhdr *)skb->data;
3373                 type = eth->h_proto;
3374         }
3375
3376         return vlan_get_protocol_and_depth(skb, type, depth);
3377 }
3378
3379
3380 /* Take action when hardware reception checksum errors are detected. */
3381 #ifdef CONFIG_BUG
3382 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3383 {
3384         netdev_err(dev, "hw csum failure\n");
3385         skb_dump(KERN_ERR, skb, true);
3386         dump_stack();
3387 }
3388
3389 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3390 {
3391         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3392 }
3393 EXPORT_SYMBOL(netdev_rx_csum_fault);
3394 #endif
3395
3396 /* XXX: check that highmem exists at all on the given machine. */
3397 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3398 {
3399 #ifdef CONFIG_HIGHMEM
3400         int i;
3401
3402         if (!(dev->features & NETIF_F_HIGHDMA)) {
3403                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3404                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3405
3406                         if (PageHighMem(skb_frag_page(frag)))
3407                                 return 1;
3408                 }
3409         }
3410 #endif
3411         return 0;
3412 }
3413
3414 /* If MPLS offload request, verify we are testing hardware MPLS features
3415  * instead of standard features for the netdev.
3416  */
3417 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3418 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3419                                            netdev_features_t features,
3420                                            __be16 type)
3421 {
3422         if (eth_p_mpls(type))
3423                 features &= skb->dev->mpls_features;
3424
3425         return features;
3426 }
3427 #else
3428 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3429                                            netdev_features_t features,
3430                                            __be16 type)
3431 {
3432         return features;
3433 }
3434 #endif
3435
3436 static netdev_features_t harmonize_features(struct sk_buff *skb,
3437         netdev_features_t features)
3438 {
3439         __be16 type;
3440
3441         type = skb_network_protocol(skb, NULL);
3442         features = net_mpls_features(skb, features, type);
3443
3444         if (skb->ip_summed != CHECKSUM_NONE &&
3445             !can_checksum_protocol(features, type)) {
3446                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3447         }
3448         if (illegal_highdma(skb->dev, skb))
3449                 features &= ~NETIF_F_SG;
3450
3451         return features;
3452 }
3453
3454 netdev_features_t passthru_features_check(struct sk_buff *skb,
3455                                           struct net_device *dev,
3456                                           netdev_features_t features)
3457 {
3458         return features;
3459 }
3460 EXPORT_SYMBOL(passthru_features_check);
3461
3462 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3463                                              struct net_device *dev,
3464                                              netdev_features_t features)
3465 {
3466         return vlan_features_check(skb, features);
3467 }
3468
3469 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3470                                             struct net_device *dev,
3471                                             netdev_features_t features)
3472 {
3473         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3474
3475         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3476                 return features & ~NETIF_F_GSO_MASK;
3477
3478         if (!skb_shinfo(skb)->gso_type) {
3479                 skb_warn_bad_offload(skb);
3480                 return features & ~NETIF_F_GSO_MASK;
3481         }
3482
3483         /* Support for GSO partial features requires software
3484          * intervention before we can actually process the packets
3485          * so we need to strip support for any partial features now
3486          * and we can pull them back in after we have partially
3487          * segmented the frame.
3488          */
3489         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3490                 features &= ~dev->gso_partial_features;
3491
3492         /* Make sure to clear the IPv4 ID mangling feature if the
3493          * IPv4 header has the potential to be fragmented.
3494          */
3495         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3496                 struct iphdr *iph = skb->encapsulation ?
3497                                     inner_ip_hdr(skb) : ip_hdr(skb);
3498
3499                 if (!(iph->frag_off & htons(IP_DF)))
3500                         features &= ~NETIF_F_TSO_MANGLEID;
3501         }
3502
3503         return features;
3504 }
3505
3506 netdev_features_t netif_skb_features(struct sk_buff *skb)
3507 {
3508         struct net_device *dev = skb->dev;
3509         netdev_features_t features = dev->features;
3510
3511         if (skb_is_gso(skb))
3512                 features = gso_features_check(skb, dev, features);
3513
3514         /* If encapsulation offload request, verify we are testing
3515          * hardware encapsulation features instead of standard
3516          * features for the netdev
3517          */
3518         if (skb->encapsulation)
3519                 features &= dev->hw_enc_features;
3520
3521         if (skb_vlan_tagged(skb))
3522                 features = netdev_intersect_features(features,
3523                                                      dev->vlan_features |
3524                                                      NETIF_F_HW_VLAN_CTAG_TX |
3525                                                      NETIF_F_HW_VLAN_STAG_TX);
3526
3527         if (dev->netdev_ops->ndo_features_check)
3528                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3529                                                                 features);
3530         else
3531                 features &= dflt_features_check(skb, dev, features);
3532
3533         return harmonize_features(skb, features);
3534 }
3535 EXPORT_SYMBOL(netif_skb_features);
3536
3537 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3538                     struct netdev_queue *txq, bool more)
3539 {
3540         unsigned int len;
3541         int rc;
3542
3543         if (dev_nit_active(dev))
3544                 dev_queue_xmit_nit(skb, dev);
3545
3546         len = skb->len;
3547         trace_net_dev_start_xmit(skb, dev);
3548         rc = netdev_start_xmit(skb, dev, txq, more);
3549         trace_net_dev_xmit(skb, rc, dev, len);
3550
3551         return rc;
3552 }
3553
3554 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3555                                     struct netdev_queue *txq, int *ret)
3556 {
3557         struct sk_buff *skb = first;
3558         int rc = NETDEV_TX_OK;
3559
3560         while (skb) {
3561                 struct sk_buff *next = skb->next;
3562
3563                 skb_mark_not_on_list(skb);
3564                 rc = xmit_one(skb, dev, txq, next != NULL);
3565                 if (unlikely(!dev_xmit_complete(rc))) {
3566                         skb->next = next;
3567                         goto out;
3568                 }
3569
3570                 skb = next;
3571                 if (netif_tx_queue_stopped(txq) && skb) {
3572                         rc = NETDEV_TX_BUSY;
3573                         break;
3574                 }
3575         }
3576
3577 out:
3578         *ret = rc;
3579         return skb;
3580 }
3581
3582 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3583                                           netdev_features_t features)
3584 {
3585         if (skb_vlan_tag_present(skb) &&
3586             !vlan_hw_offload_capable(features, skb->vlan_proto))
3587                 skb = __vlan_hwaccel_push_inside(skb);
3588         return skb;
3589 }
3590
3591 int skb_csum_hwoffload_help(struct sk_buff *skb,
3592                             const netdev_features_t features)
3593 {
3594         if (unlikely(skb_csum_is_sctp(skb)))
3595                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3596                         skb_crc32c_csum_help(skb);
3597
3598         if (features & NETIF_F_HW_CSUM)
3599                 return 0;
3600
3601         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3602                 switch (skb->csum_offset) {
3603                 case offsetof(struct tcphdr, check):
3604                 case offsetof(struct udphdr, check):
3605                         return 0;
3606                 }
3607         }
3608
3609         return skb_checksum_help(skb);
3610 }
3611 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3612
3613 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3614 {
3615         netdev_features_t features;
3616
3617         features = netif_skb_features(skb);
3618         skb = validate_xmit_vlan(skb, features);
3619         if (unlikely(!skb))
3620                 goto out_null;
3621
3622         skb = sk_validate_xmit_skb(skb, dev);
3623         if (unlikely(!skb))
3624                 goto out_null;
3625
3626         if (netif_needs_gso(skb, features)) {
3627                 struct sk_buff *segs;
3628
3629                 segs = skb_gso_segment(skb, features);
3630                 if (IS_ERR(segs)) {
3631                         goto out_kfree_skb;
3632                 } else if (segs) {
3633                         consume_skb(skb);
3634                         skb = segs;
3635                 }
3636         } else {
3637                 if (skb_needs_linearize(skb, features) &&
3638                     __skb_linearize(skb))
3639                         goto out_kfree_skb;
3640
3641                 /* If packet is not checksummed and device does not
3642                  * support checksumming for this protocol, complete
3643                  * checksumming here.
3644                  */
3645                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3646                         if (skb->encapsulation)
3647                                 skb_set_inner_transport_header(skb,
3648                                                                skb_checksum_start_offset(skb));
3649                         else
3650                                 skb_set_transport_header(skb,
3651                                                          skb_checksum_start_offset(skb));
3652                         if (skb_csum_hwoffload_help(skb, features))
3653                                 goto out_kfree_skb;
3654                 }
3655         }
3656
3657         skb = validate_xmit_xfrm(skb, features, again);
3658
3659         return skb;
3660
3661 out_kfree_skb:
3662         kfree_skb(skb);
3663 out_null:
3664         dev_core_stats_tx_dropped_inc(dev);
3665         return NULL;
3666 }
3667
3668 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3669 {
3670         struct sk_buff *next, *head = NULL, *tail;
3671
3672         for (; skb != NULL; skb = next) {
3673                 next = skb->next;
3674                 skb_mark_not_on_list(skb);
3675
3676                 /* in case skb wont be segmented, point to itself */
3677                 skb->prev = skb;
3678
3679                 skb = validate_xmit_skb(skb, dev, again);
3680                 if (!skb)
3681                         continue;
3682
3683                 if (!head)
3684                         head = skb;
3685                 else
3686                         tail->next = skb;
3687                 /* If skb was segmented, skb->prev points to
3688                  * the last segment. If not, it still contains skb.
3689                  */
3690                 tail = skb->prev;
3691         }
3692         return head;
3693 }
3694 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3695
3696 static void qdisc_pkt_len_init(struct sk_buff *skb)
3697 {
3698         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3699
3700         qdisc_skb_cb(skb)->pkt_len = skb->len;
3701
3702         /* To get more precise estimation of bytes sent on wire,
3703          * we add to pkt_len the headers size of all segments
3704          */
3705         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3706                 u16 gso_segs = shinfo->gso_segs;
3707                 unsigned int hdr_len;
3708
3709                 /* mac layer + network layer */
3710                 hdr_len = skb_transport_offset(skb);
3711
3712                 /* + transport layer */
3713                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3714                         const struct tcphdr *th;
3715                         struct tcphdr _tcphdr;
3716
3717                         th = skb_header_pointer(skb, hdr_len,
3718                                                 sizeof(_tcphdr), &_tcphdr);
3719                         if (likely(th))
3720                                 hdr_len += __tcp_hdrlen(th);
3721                 } else {
3722                         struct udphdr _udphdr;
3723
3724                         if (skb_header_pointer(skb, hdr_len,
3725                                                sizeof(_udphdr), &_udphdr))
3726                                 hdr_len += sizeof(struct udphdr);
3727                 }
3728
3729                 if (shinfo->gso_type & SKB_GSO_DODGY)
3730                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3731                                                 shinfo->gso_size);
3732
3733                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3734         }
3735 }
3736
3737 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3738                              struct sk_buff **to_free,
3739                              struct netdev_queue *txq)
3740 {
3741         int rc;
3742
3743         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3744         if (rc == NET_XMIT_SUCCESS)
3745                 trace_qdisc_enqueue(q, txq, skb);
3746         return rc;
3747 }
3748
3749 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3750                                  struct net_device *dev,
3751                                  struct netdev_queue *txq)
3752 {
3753         spinlock_t *root_lock = qdisc_lock(q);
3754         struct sk_buff *to_free = NULL;
3755         bool contended;
3756         int rc;
3757
3758         qdisc_calculate_pkt_len(skb, q);
3759
3760         if (q->flags & TCQ_F_NOLOCK) {
3761                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3762                     qdisc_run_begin(q)) {
3763                         /* Retest nolock_qdisc_is_empty() within the protection
3764                          * of q->seqlock to protect from racing with requeuing.
3765                          */
3766                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3767                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3768                                 __qdisc_run(q);
3769                                 qdisc_run_end(q);
3770
3771                                 goto no_lock_out;
3772                         }
3773
3774                         qdisc_bstats_cpu_update(q, skb);
3775                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3776                             !nolock_qdisc_is_empty(q))
3777                                 __qdisc_run(q);
3778
3779                         qdisc_run_end(q);
3780                         return NET_XMIT_SUCCESS;
3781                 }
3782
3783                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3784                 qdisc_run(q);
3785
3786 no_lock_out:
3787                 if (unlikely(to_free))
3788                         kfree_skb_list_reason(to_free,
3789                                               SKB_DROP_REASON_QDISC_DROP);
3790                 return rc;
3791         }
3792
3793         /*
3794          * Heuristic to force contended enqueues to serialize on a
3795          * separate lock before trying to get qdisc main lock.
3796          * This permits qdisc->running owner to get the lock more
3797          * often and dequeue packets faster.
3798          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3799          * and then other tasks will only enqueue packets. The packets will be
3800          * sent after the qdisc owner is scheduled again. To prevent this
3801          * scenario the task always serialize on the lock.
3802          */
3803         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3804         if (unlikely(contended))
3805                 spin_lock(&q->busylock);
3806
3807         spin_lock(root_lock);
3808         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3809                 __qdisc_drop(skb, &to_free);
3810                 rc = NET_XMIT_DROP;
3811         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3812                    qdisc_run_begin(q)) {
3813                 /*
3814                  * This is a work-conserving queue; there are no old skbs
3815                  * waiting to be sent out; and the qdisc is not running -
3816                  * xmit the skb directly.
3817                  */
3818
3819                 qdisc_bstats_update(q, skb);
3820
3821                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3822                         if (unlikely(contended)) {
3823                                 spin_unlock(&q->busylock);
3824                                 contended = false;
3825                         }
3826                         __qdisc_run(q);
3827                 }
3828
3829                 qdisc_run_end(q);
3830                 rc = NET_XMIT_SUCCESS;
3831         } else {
3832                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3833                 if (qdisc_run_begin(q)) {
3834                         if (unlikely(contended)) {
3835                                 spin_unlock(&q->busylock);
3836                                 contended = false;
3837                         }
3838                         __qdisc_run(q);
3839                         qdisc_run_end(q);
3840                 }
3841         }
3842         spin_unlock(root_lock);
3843         if (unlikely(to_free))
3844                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3845         if (unlikely(contended))
3846                 spin_unlock(&q->busylock);
3847         return rc;
3848 }
3849
3850 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3851 static void skb_update_prio(struct sk_buff *skb)
3852 {
3853         const struct netprio_map *map;
3854         const struct sock *sk;
3855         unsigned int prioidx;
3856
3857         if (skb->priority)
3858                 return;
3859         map = rcu_dereference_bh(skb->dev->priomap);
3860         if (!map)
3861                 return;
3862         sk = skb_to_full_sk(skb);
3863         if (!sk)
3864                 return;
3865
3866         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3867
3868         if (prioidx < map->priomap_len)
3869                 skb->priority = map->priomap[prioidx];
3870 }
3871 #else
3872 #define skb_update_prio(skb)
3873 #endif
3874
3875 /**
3876  *      dev_loopback_xmit - loop back @skb
3877  *      @net: network namespace this loopback is happening in
3878  *      @sk:  sk needed to be a netfilter okfn
3879  *      @skb: buffer to transmit
3880  */
3881 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3882 {
3883         skb_reset_mac_header(skb);
3884         __skb_pull(skb, skb_network_offset(skb));
3885         skb->pkt_type = PACKET_LOOPBACK;
3886         if (skb->ip_summed == CHECKSUM_NONE)
3887                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3888         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3889         skb_dst_force(skb);
3890         netif_rx(skb);
3891         return 0;
3892 }
3893 EXPORT_SYMBOL(dev_loopback_xmit);
3894
3895 #ifdef CONFIG_NET_EGRESS
3896 static struct netdev_queue *
3897 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3898 {
3899         int qm = skb_get_queue_mapping(skb);
3900
3901         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3902 }
3903
3904 static bool netdev_xmit_txqueue_skipped(void)
3905 {
3906         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3907 }
3908
3909 void netdev_xmit_skip_txqueue(bool skip)
3910 {
3911         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3912 }
3913 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3914 #endif /* CONFIG_NET_EGRESS */
3915
3916 #ifdef CONFIG_NET_XGRESS
3917 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3918 {
3919         int ret = TC_ACT_UNSPEC;
3920 #ifdef CONFIG_NET_CLS_ACT
3921         struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3922         struct tcf_result res;
3923
3924         if (!miniq)
3925                 return ret;
3926
3927         tc_skb_cb(skb)->mru = 0;
3928         tc_skb_cb(skb)->post_ct = false;
3929
3930         mini_qdisc_bstats_cpu_update(miniq, skb);
3931         ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3932         /* Only tcf related quirks below. */
3933         switch (ret) {
3934         case TC_ACT_SHOT:
3935                 mini_qdisc_qstats_cpu_drop(miniq);
3936                 break;
3937         case TC_ACT_OK:
3938         case TC_ACT_RECLASSIFY:
3939                 skb->tc_index = TC_H_MIN(res.classid);
3940                 break;
3941         }
3942 #endif /* CONFIG_NET_CLS_ACT */
3943         return ret;
3944 }
3945
3946 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3947
3948 void tcx_inc(void)
3949 {
3950         static_branch_inc(&tcx_needed_key);
3951 }
3952
3953 void tcx_dec(void)
3954 {
3955         static_branch_dec(&tcx_needed_key);
3956 }
3957
3958 static __always_inline enum tcx_action_base
3959 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3960         const bool needs_mac)
3961 {
3962         const struct bpf_mprog_fp *fp;
3963         const struct bpf_prog *prog;
3964         int ret = TCX_NEXT;
3965
3966         if (needs_mac)
3967                 __skb_push(skb, skb->mac_len);
3968         bpf_mprog_foreach_prog(entry, fp, prog) {
3969                 bpf_compute_data_pointers(skb);
3970                 ret = bpf_prog_run(prog, skb);
3971                 if (ret != TCX_NEXT)
3972                         break;
3973         }
3974         if (needs_mac)
3975                 __skb_pull(skb, skb->mac_len);
3976         return tcx_action_code(skb, ret);
3977 }
3978
3979 static __always_inline struct sk_buff *
3980 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3981                    struct net_device *orig_dev, bool *another)
3982 {
3983         struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3984         int sch_ret;
3985
3986         if (!entry)
3987                 return skb;
3988         if (*pt_prev) {
3989                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3990                 *pt_prev = NULL;
3991         }
3992
3993         qdisc_skb_cb(skb)->pkt_len = skb->len;
3994         tcx_set_ingress(skb, true);
3995
3996         if (static_branch_unlikely(&tcx_needed_key)) {
3997                 sch_ret = tcx_run(entry, skb, true);
3998                 if (sch_ret != TC_ACT_UNSPEC)
3999                         goto ingress_verdict;
4000         }
4001         sch_ret = tc_run(tcx_entry(entry), skb);
4002 ingress_verdict:
4003         switch (sch_ret) {
4004         case TC_ACT_REDIRECT:
4005                 /* skb_mac_header check was done by BPF, so we can safely
4006                  * push the L2 header back before redirecting to another
4007                  * netdev.
4008                  */
4009                 __skb_push(skb, skb->mac_len);
4010                 if (skb_do_redirect(skb) == -EAGAIN) {
4011                         __skb_pull(skb, skb->mac_len);
4012                         *another = true;
4013                         break;
4014                 }
4015                 *ret = NET_RX_SUCCESS;
4016                 return NULL;
4017         case TC_ACT_SHOT:
4018                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4019                 *ret = NET_RX_DROP;
4020                 return NULL;
4021         /* used by tc_run */
4022         case TC_ACT_STOLEN:
4023         case TC_ACT_QUEUED:
4024         case TC_ACT_TRAP:
4025                 consume_skb(skb);
4026                 fallthrough;
4027         case TC_ACT_CONSUMED:
4028                 *ret = NET_RX_SUCCESS;
4029                 return NULL;
4030         }
4031
4032         return skb;
4033 }
4034
4035 static __always_inline struct sk_buff *
4036 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4037 {
4038         struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4039         int sch_ret;
4040
4041         if (!entry)
4042                 return skb;
4043
4044         /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4045          * already set by the caller.
4046          */
4047         if (static_branch_unlikely(&tcx_needed_key)) {
4048                 sch_ret = tcx_run(entry, skb, false);
4049                 if (sch_ret != TC_ACT_UNSPEC)
4050                         goto egress_verdict;
4051         }
4052         sch_ret = tc_run(tcx_entry(entry), skb);
4053 egress_verdict:
4054         switch (sch_ret) {
4055         case TC_ACT_REDIRECT:
4056                 /* No need to push/pop skb's mac_header here on egress! */
4057                 skb_do_redirect(skb);
4058                 *ret = NET_XMIT_SUCCESS;
4059                 return NULL;
4060         case TC_ACT_SHOT:
4061                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4062                 *ret = NET_XMIT_DROP;
4063                 return NULL;
4064         /* used by tc_run */
4065         case TC_ACT_STOLEN:
4066         case TC_ACT_QUEUED:
4067         case TC_ACT_TRAP:
4068                 consume_skb(skb);
4069                 fallthrough;
4070         case TC_ACT_CONSUMED:
4071                 *ret = NET_XMIT_SUCCESS;
4072                 return NULL;
4073         }
4074
4075         return skb;
4076 }
4077 #else
4078 static __always_inline struct sk_buff *
4079 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4080                    struct net_device *orig_dev, bool *another)
4081 {
4082         return skb;
4083 }
4084
4085 static __always_inline struct sk_buff *
4086 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4087 {
4088         return skb;
4089 }
4090 #endif /* CONFIG_NET_XGRESS */
4091
4092 #ifdef CONFIG_XPS
4093 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4094                                struct xps_dev_maps *dev_maps, unsigned int tci)
4095 {
4096         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4097         struct xps_map *map;
4098         int queue_index = -1;
4099
4100         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4101                 return queue_index;
4102
4103         tci *= dev_maps->num_tc;
4104         tci += tc;
4105
4106         map = rcu_dereference(dev_maps->attr_map[tci]);
4107         if (map) {
4108                 if (map->len == 1)
4109                         queue_index = map->queues[0];
4110                 else
4111                         queue_index = map->queues[reciprocal_scale(
4112                                                 skb_get_hash(skb), map->len)];
4113                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4114                         queue_index = -1;
4115         }
4116         return queue_index;
4117 }
4118 #endif
4119
4120 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4121                          struct sk_buff *skb)
4122 {
4123 #ifdef CONFIG_XPS
4124         struct xps_dev_maps *dev_maps;
4125         struct sock *sk = skb->sk;
4126         int queue_index = -1;
4127
4128         if (!static_key_false(&xps_needed))
4129                 return -1;
4130
4131         rcu_read_lock();
4132         if (!static_key_false(&xps_rxqs_needed))
4133                 goto get_cpus_map;
4134
4135         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4136         if (dev_maps) {
4137                 int tci = sk_rx_queue_get(sk);
4138
4139                 if (tci >= 0)
4140                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4141                                                           tci);
4142         }
4143
4144 get_cpus_map:
4145         if (queue_index < 0) {
4146                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4147                 if (dev_maps) {
4148                         unsigned int tci = skb->sender_cpu - 1;
4149
4150                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4151                                                           tci);
4152                 }
4153         }
4154         rcu_read_unlock();
4155
4156         return queue_index;
4157 #else
4158         return -1;
4159 #endif
4160 }
4161
4162 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4163                      struct net_device *sb_dev)
4164 {
4165         return 0;
4166 }
4167 EXPORT_SYMBOL(dev_pick_tx_zero);
4168
4169 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4170                        struct net_device *sb_dev)
4171 {
4172         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4173 }
4174 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4175
4176 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4177                      struct net_device *sb_dev)
4178 {
4179         struct sock *sk = skb->sk;
4180         int queue_index = sk_tx_queue_get(sk);
4181
4182         sb_dev = sb_dev ? : dev;
4183
4184         if (queue_index < 0 || skb->ooo_okay ||
4185             queue_index >= dev->real_num_tx_queues) {
4186                 int new_index = get_xps_queue(dev, sb_dev, skb);
4187
4188                 if (new_index < 0)
4189                         new_index = skb_tx_hash(dev, sb_dev, skb);
4190
4191                 if (queue_index != new_index && sk &&
4192                     sk_fullsock(sk) &&
4193                     rcu_access_pointer(sk->sk_dst_cache))
4194                         sk_tx_queue_set(sk, new_index);
4195
4196                 queue_index = new_index;
4197         }
4198
4199         return queue_index;
4200 }
4201 EXPORT_SYMBOL(netdev_pick_tx);
4202
4203 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4204                                          struct sk_buff *skb,
4205                                          struct net_device *sb_dev)
4206 {
4207         int queue_index = 0;
4208
4209 #ifdef CONFIG_XPS
4210         u32 sender_cpu = skb->sender_cpu - 1;
4211
4212         if (sender_cpu >= (u32)NR_CPUS)
4213                 skb->sender_cpu = raw_smp_processor_id() + 1;
4214 #endif
4215
4216         if (dev->real_num_tx_queues != 1) {
4217                 const struct net_device_ops *ops = dev->netdev_ops;
4218
4219                 if (ops->ndo_select_queue)
4220                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4221                 else
4222                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4223
4224                 queue_index = netdev_cap_txqueue(dev, queue_index);
4225         }
4226
4227         skb_set_queue_mapping(skb, queue_index);
4228         return netdev_get_tx_queue(dev, queue_index);
4229 }
4230
4231 /**
4232  * __dev_queue_xmit() - transmit a buffer
4233  * @skb:        buffer to transmit
4234  * @sb_dev:     suboordinate device used for L2 forwarding offload
4235  *
4236  * Queue a buffer for transmission to a network device. The caller must
4237  * have set the device and priority and built the buffer before calling
4238  * this function. The function can be called from an interrupt.
4239  *
4240  * When calling this method, interrupts MUST be enabled. This is because
4241  * the BH enable code must have IRQs enabled so that it will not deadlock.
4242  *
4243  * Regardless of the return value, the skb is consumed, so it is currently
4244  * difficult to retry a send to this method. (You can bump the ref count
4245  * before sending to hold a reference for retry if you are careful.)
4246  *
4247  * Return:
4248  * * 0                          - buffer successfully transmitted
4249  * * positive qdisc return code - NET_XMIT_DROP etc.
4250  * * negative errno             - other errors
4251  */
4252 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4253 {
4254         struct net_device *dev = skb->dev;
4255         struct netdev_queue *txq = NULL;
4256         struct Qdisc *q;
4257         int rc = -ENOMEM;
4258         bool again = false;
4259
4260         skb_reset_mac_header(skb);
4261         skb_assert_len(skb);
4262
4263         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4264                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4265
4266         /* Disable soft irqs for various locks below. Also
4267          * stops preemption for RCU.
4268          */
4269         rcu_read_lock_bh();
4270
4271         skb_update_prio(skb);
4272
4273         qdisc_pkt_len_init(skb);
4274         tcx_set_ingress(skb, false);
4275 #ifdef CONFIG_NET_EGRESS
4276         if (static_branch_unlikely(&egress_needed_key)) {
4277                 if (nf_hook_egress_active()) {
4278                         skb = nf_hook_egress(skb, &rc, dev);
4279                         if (!skb)
4280                                 goto out;
4281                 }
4282
4283                 netdev_xmit_skip_txqueue(false);
4284
4285                 nf_skip_egress(skb, true);
4286                 skb = sch_handle_egress(skb, &rc, dev);
4287                 if (!skb)
4288                         goto out;
4289                 nf_skip_egress(skb, false);
4290
4291                 if (netdev_xmit_txqueue_skipped())
4292                         txq = netdev_tx_queue_mapping(dev, skb);
4293         }
4294 #endif
4295         /* If device/qdisc don't need skb->dst, release it right now while
4296          * its hot in this cpu cache.
4297          */
4298         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4299                 skb_dst_drop(skb);
4300         else
4301                 skb_dst_force(skb);
4302
4303         if (!txq)
4304                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4305
4306         q = rcu_dereference_bh(txq->qdisc);
4307
4308         trace_net_dev_queue(skb);
4309         if (q->enqueue) {
4310                 rc = __dev_xmit_skb(skb, q, dev, txq);
4311                 goto out;
4312         }
4313
4314         /* The device has no queue. Common case for software devices:
4315          * loopback, all the sorts of tunnels...
4316
4317          * Really, it is unlikely that netif_tx_lock protection is necessary
4318          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4319          * counters.)
4320          * However, it is possible, that they rely on protection
4321          * made by us here.
4322
4323          * Check this and shot the lock. It is not prone from deadlocks.
4324          *Either shot noqueue qdisc, it is even simpler 8)
4325          */
4326         if (dev->flags & IFF_UP) {
4327                 int cpu = smp_processor_id(); /* ok because BHs are off */
4328
4329                 /* Other cpus might concurrently change txq->xmit_lock_owner
4330                  * to -1 or to their cpu id, but not to our id.
4331                  */
4332                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4333                         if (dev_xmit_recursion())
4334                                 goto recursion_alert;
4335
4336                         skb = validate_xmit_skb(skb, dev, &again);
4337                         if (!skb)
4338                                 goto out;
4339
4340                         HARD_TX_LOCK(dev, txq, cpu);
4341
4342                         if (!netif_xmit_stopped(txq)) {
4343                                 dev_xmit_recursion_inc();
4344                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4345                                 dev_xmit_recursion_dec();
4346                                 if (dev_xmit_complete(rc)) {
4347                                         HARD_TX_UNLOCK(dev, txq);
4348                                         goto out;
4349                                 }
4350                         }
4351                         HARD_TX_UNLOCK(dev, txq);
4352                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4353                                              dev->name);
4354                 } else {
4355                         /* Recursion is detected! It is possible,
4356                          * unfortunately
4357                          */
4358 recursion_alert:
4359                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4360                                              dev->name);
4361                 }
4362         }
4363
4364         rc = -ENETDOWN;
4365         rcu_read_unlock_bh();
4366
4367         dev_core_stats_tx_dropped_inc(dev);
4368         kfree_skb_list(skb);
4369         return rc;
4370 out:
4371         rcu_read_unlock_bh();
4372         return rc;
4373 }
4374 EXPORT_SYMBOL(__dev_queue_xmit);
4375
4376 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4377 {
4378         struct net_device *dev = skb->dev;
4379         struct sk_buff *orig_skb = skb;
4380         struct netdev_queue *txq;
4381         int ret = NETDEV_TX_BUSY;
4382         bool again = false;
4383
4384         if (unlikely(!netif_running(dev) ||
4385                      !netif_carrier_ok(dev)))
4386                 goto drop;
4387
4388         skb = validate_xmit_skb_list(skb, dev, &again);
4389         if (skb != orig_skb)
4390                 goto drop;
4391
4392         skb_set_queue_mapping(skb, queue_id);
4393         txq = skb_get_tx_queue(dev, skb);
4394
4395         local_bh_disable();
4396
4397         dev_xmit_recursion_inc();
4398         HARD_TX_LOCK(dev, txq, smp_processor_id());
4399         if (!netif_xmit_frozen_or_drv_stopped(txq))
4400                 ret = netdev_start_xmit(skb, dev, txq, false);
4401         HARD_TX_UNLOCK(dev, txq);
4402         dev_xmit_recursion_dec();
4403
4404         local_bh_enable();
4405         return ret;
4406 drop:
4407         dev_core_stats_tx_dropped_inc(dev);
4408         kfree_skb_list(skb);
4409         return NET_XMIT_DROP;
4410 }
4411 EXPORT_SYMBOL(__dev_direct_xmit);
4412
4413 /*************************************************************************
4414  *                      Receiver routines
4415  *************************************************************************/
4416
4417 int netdev_max_backlog __read_mostly = 1000;
4418 EXPORT_SYMBOL(netdev_max_backlog);
4419
4420 int netdev_tstamp_prequeue __read_mostly = 1;
4421 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4422 int netdev_budget __read_mostly = 300;
4423 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4424 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4425 int weight_p __read_mostly = 64;           /* old backlog weight */
4426 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4427 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4428 int dev_rx_weight __read_mostly = 64;
4429 int dev_tx_weight __read_mostly = 64;
4430
4431 /* Called with irq disabled */
4432 static inline void ____napi_schedule(struct softnet_data *sd,
4433                                      struct napi_struct *napi)
4434 {
4435         struct task_struct *thread;
4436
4437         lockdep_assert_irqs_disabled();
4438
4439         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4440                 /* Paired with smp_mb__before_atomic() in
4441                  * napi_enable()/dev_set_threaded().
4442                  * Use READ_ONCE() to guarantee a complete
4443                  * read on napi->thread. Only call
4444                  * wake_up_process() when it's not NULL.
4445                  */
4446                 thread = READ_ONCE(napi->thread);
4447                 if (thread) {
4448                         /* Avoid doing set_bit() if the thread is in
4449                          * INTERRUPTIBLE state, cause napi_thread_wait()
4450                          * makes sure to proceed with napi polling
4451                          * if the thread is explicitly woken from here.
4452                          */
4453                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4454                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4455                         wake_up_process(thread);
4456                         return;
4457                 }
4458         }
4459
4460         list_add_tail(&napi->poll_list, &sd->poll_list);
4461         WRITE_ONCE(napi->list_owner, smp_processor_id());
4462         /* If not called from net_rx_action()
4463          * we have to raise NET_RX_SOFTIRQ.
4464          */
4465         if (!sd->in_net_rx_action)
4466                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4467 }
4468
4469 #ifdef CONFIG_RPS
4470
4471 /* One global table that all flow-based protocols share. */
4472 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4473 EXPORT_SYMBOL(rps_sock_flow_table);
4474 u32 rps_cpu_mask __read_mostly;
4475 EXPORT_SYMBOL(rps_cpu_mask);
4476
4477 struct static_key_false rps_needed __read_mostly;
4478 EXPORT_SYMBOL(rps_needed);
4479 struct static_key_false rfs_needed __read_mostly;
4480 EXPORT_SYMBOL(rfs_needed);
4481
4482 static struct rps_dev_flow *
4483 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4484             struct rps_dev_flow *rflow, u16 next_cpu)
4485 {
4486         if (next_cpu < nr_cpu_ids) {
4487 #ifdef CONFIG_RFS_ACCEL
4488                 struct netdev_rx_queue *rxqueue;
4489                 struct rps_dev_flow_table *flow_table;
4490                 struct rps_dev_flow *old_rflow;
4491                 u32 flow_id;
4492                 u16 rxq_index;
4493                 int rc;
4494
4495                 /* Should we steer this flow to a different hardware queue? */
4496                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4497                     !(dev->features & NETIF_F_NTUPLE))
4498                         goto out;
4499                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4500                 if (rxq_index == skb_get_rx_queue(skb))
4501                         goto out;
4502
4503                 rxqueue = dev->_rx + rxq_index;
4504                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4505                 if (!flow_table)
4506                         goto out;
4507                 flow_id = skb_get_hash(skb) & flow_table->mask;
4508                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4509                                                         rxq_index, flow_id);
4510                 if (rc < 0)
4511                         goto out;
4512                 old_rflow = rflow;
4513                 rflow = &flow_table->flows[flow_id];
4514                 rflow->filter = rc;
4515                 if (old_rflow->filter == rflow->filter)
4516                         old_rflow->filter = RPS_NO_FILTER;
4517         out:
4518 #endif
4519                 rflow->last_qtail =
4520                         per_cpu(softnet_data, next_cpu).input_queue_head;
4521         }
4522
4523         rflow->cpu = next_cpu;
4524         return rflow;
4525 }
4526
4527 /*
4528  * get_rps_cpu is called from netif_receive_skb and returns the target
4529  * CPU from the RPS map of the receiving queue for a given skb.
4530  * rcu_read_lock must be held on entry.
4531  */
4532 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4533                        struct rps_dev_flow **rflowp)
4534 {
4535         const struct rps_sock_flow_table *sock_flow_table;
4536         struct netdev_rx_queue *rxqueue = dev->_rx;
4537         struct rps_dev_flow_table *flow_table;
4538         struct rps_map *map;
4539         int cpu = -1;
4540         u32 tcpu;
4541         u32 hash;
4542
4543         if (skb_rx_queue_recorded(skb)) {
4544                 u16 index = skb_get_rx_queue(skb);
4545
4546                 if (unlikely(index >= dev->real_num_rx_queues)) {
4547                         WARN_ONCE(dev->real_num_rx_queues > 1,
4548                                   "%s received packet on queue %u, but number "
4549                                   "of RX queues is %u\n",
4550                                   dev->name, index, dev->real_num_rx_queues);
4551                         goto done;
4552                 }
4553                 rxqueue += index;
4554         }
4555
4556         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4557
4558         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4559         map = rcu_dereference(rxqueue->rps_map);
4560         if (!flow_table && !map)
4561                 goto done;
4562
4563         skb_reset_network_header(skb);
4564         hash = skb_get_hash(skb);
4565         if (!hash)
4566                 goto done;
4567
4568         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4569         if (flow_table && sock_flow_table) {
4570                 struct rps_dev_flow *rflow;
4571                 u32 next_cpu;
4572                 u32 ident;
4573
4574                 /* First check into global flow table if there is a match.
4575                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4576                  */
4577                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4578                 if ((ident ^ hash) & ~rps_cpu_mask)
4579                         goto try_rps;
4580
4581                 next_cpu = ident & rps_cpu_mask;
4582
4583                 /* OK, now we know there is a match,
4584                  * we can look at the local (per receive queue) flow table
4585                  */
4586                 rflow = &flow_table->flows[hash & flow_table->mask];
4587                 tcpu = rflow->cpu;
4588
4589                 /*
4590                  * If the desired CPU (where last recvmsg was done) is
4591                  * different from current CPU (one in the rx-queue flow
4592                  * table entry), switch if one of the following holds:
4593                  *   - Current CPU is unset (>= nr_cpu_ids).
4594                  *   - Current CPU is offline.
4595                  *   - The current CPU's queue tail has advanced beyond the
4596                  *     last packet that was enqueued using this table entry.
4597                  *     This guarantees that all previous packets for the flow
4598                  *     have been dequeued, thus preserving in order delivery.
4599                  */
4600                 if (unlikely(tcpu != next_cpu) &&
4601                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4602                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4603                       rflow->last_qtail)) >= 0)) {
4604                         tcpu = next_cpu;
4605                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4606                 }
4607
4608                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4609                         *rflowp = rflow;
4610                         cpu = tcpu;
4611                         goto done;
4612                 }
4613         }
4614
4615 try_rps:
4616
4617         if (map) {
4618                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4619                 if (cpu_online(tcpu)) {
4620                         cpu = tcpu;
4621                         goto done;
4622                 }
4623         }
4624
4625 done:
4626         return cpu;
4627 }
4628
4629 #ifdef CONFIG_RFS_ACCEL
4630
4631 /**
4632  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4633  * @dev: Device on which the filter was set
4634  * @rxq_index: RX queue index
4635  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4636  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4637  *
4638  * Drivers that implement ndo_rx_flow_steer() should periodically call
4639  * this function for each installed filter and remove the filters for
4640  * which it returns %true.
4641  */
4642 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4643                          u32 flow_id, u16 filter_id)
4644 {
4645         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4646         struct rps_dev_flow_table *flow_table;
4647         struct rps_dev_flow *rflow;
4648         bool expire = true;
4649         unsigned int cpu;
4650
4651         rcu_read_lock();
4652         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4653         if (flow_table && flow_id <= flow_table->mask) {
4654                 rflow = &flow_table->flows[flow_id];
4655                 cpu = READ_ONCE(rflow->cpu);
4656                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4657                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4658                            rflow->last_qtail) <
4659                      (int)(10 * flow_table->mask)))
4660                         expire = false;
4661         }
4662         rcu_read_unlock();
4663         return expire;
4664 }
4665 EXPORT_SYMBOL(rps_may_expire_flow);
4666
4667 #endif /* CONFIG_RFS_ACCEL */
4668
4669 /* Called from hardirq (IPI) context */
4670 static void rps_trigger_softirq(void *data)
4671 {
4672         struct softnet_data *sd = data;
4673
4674         ____napi_schedule(sd, &sd->backlog);
4675         sd->received_rps++;
4676 }
4677
4678 #endif /* CONFIG_RPS */
4679
4680 /* Called from hardirq (IPI) context */
4681 static void trigger_rx_softirq(void *data)
4682 {
4683         struct softnet_data *sd = data;
4684
4685         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4686         smp_store_release(&sd->defer_ipi_scheduled, 0);
4687 }
4688
4689 /*
4690  * After we queued a packet into sd->input_pkt_queue,
4691  * we need to make sure this queue is serviced soon.
4692  *
4693  * - If this is another cpu queue, link it to our rps_ipi_list,
4694  *   and make sure we will process rps_ipi_list from net_rx_action().
4695  *
4696  * - If this is our own queue, NAPI schedule our backlog.
4697  *   Note that this also raises NET_RX_SOFTIRQ.
4698  */
4699 static void napi_schedule_rps(struct softnet_data *sd)
4700 {
4701         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4702
4703 #ifdef CONFIG_RPS
4704         if (sd != mysd) {
4705                 sd->rps_ipi_next = mysd->rps_ipi_list;
4706                 mysd->rps_ipi_list = sd;
4707
4708                 /* If not called from net_rx_action() or napi_threaded_poll()
4709                  * we have to raise NET_RX_SOFTIRQ.
4710                  */
4711                 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4712                         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4713                 return;
4714         }
4715 #endif /* CONFIG_RPS */
4716         __napi_schedule_irqoff(&mysd->backlog);
4717 }
4718
4719 #ifdef CONFIG_NET_FLOW_LIMIT
4720 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4721 #endif
4722
4723 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4724 {
4725 #ifdef CONFIG_NET_FLOW_LIMIT
4726         struct sd_flow_limit *fl;
4727         struct softnet_data *sd;
4728         unsigned int old_flow, new_flow;
4729
4730         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4731                 return false;
4732
4733         sd = this_cpu_ptr(&softnet_data);
4734
4735         rcu_read_lock();
4736         fl = rcu_dereference(sd->flow_limit);
4737         if (fl) {
4738                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4739                 old_flow = fl->history[fl->history_head];
4740                 fl->history[fl->history_head] = new_flow;
4741
4742                 fl->history_head++;
4743                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4744
4745                 if (likely(fl->buckets[old_flow]))
4746                         fl->buckets[old_flow]--;
4747
4748                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4749                         fl->count++;
4750                         rcu_read_unlock();
4751                         return true;
4752                 }
4753         }
4754         rcu_read_unlock();
4755 #endif
4756         return false;
4757 }
4758
4759 /*
4760  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4761  * queue (may be a remote CPU queue).
4762  */
4763 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4764                               unsigned int *qtail)
4765 {
4766         enum skb_drop_reason reason;
4767         struct softnet_data *sd;
4768         unsigned long flags;
4769         unsigned int qlen;
4770
4771         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4772         sd = &per_cpu(softnet_data, cpu);
4773
4774         rps_lock_irqsave(sd, &flags);
4775         if (!netif_running(skb->dev))
4776                 goto drop;
4777         qlen = skb_queue_len(&sd->input_pkt_queue);
4778         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4779                 if (qlen) {
4780 enqueue:
4781                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4782                         input_queue_tail_incr_save(sd, qtail);
4783                         rps_unlock_irq_restore(sd, &flags);
4784                         return NET_RX_SUCCESS;
4785                 }
4786
4787                 /* Schedule NAPI for backlog device
4788                  * We can use non atomic operation since we own the queue lock
4789                  */
4790                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4791                         napi_schedule_rps(sd);
4792                 goto enqueue;
4793         }
4794         reason = SKB_DROP_REASON_CPU_BACKLOG;
4795
4796 drop:
4797         sd->dropped++;
4798         rps_unlock_irq_restore(sd, &flags);
4799
4800         dev_core_stats_rx_dropped_inc(skb->dev);
4801         kfree_skb_reason(skb, reason);
4802         return NET_RX_DROP;
4803 }
4804
4805 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4806 {
4807         struct net_device *dev = skb->dev;
4808         struct netdev_rx_queue *rxqueue;
4809
4810         rxqueue = dev->_rx;
4811
4812         if (skb_rx_queue_recorded(skb)) {
4813                 u16 index = skb_get_rx_queue(skb);
4814
4815                 if (unlikely(index >= dev->real_num_rx_queues)) {
4816                         WARN_ONCE(dev->real_num_rx_queues > 1,
4817                                   "%s received packet on queue %u, but number "
4818                                   "of RX queues is %u\n",
4819                                   dev->name, index, dev->real_num_rx_queues);
4820
4821                         return rxqueue; /* Return first rxqueue */
4822                 }
4823                 rxqueue += index;
4824         }
4825         return rxqueue;
4826 }
4827
4828 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4829                              struct bpf_prog *xdp_prog)
4830 {
4831         void *orig_data, *orig_data_end, *hard_start;
4832         struct netdev_rx_queue *rxqueue;
4833         bool orig_bcast, orig_host;
4834         u32 mac_len, frame_sz;
4835         __be16 orig_eth_type;
4836         struct ethhdr *eth;
4837         u32 metalen, act;
4838         int off;
4839
4840         /* The XDP program wants to see the packet starting at the MAC
4841          * header.
4842          */
4843         mac_len = skb->data - skb_mac_header(skb);
4844         hard_start = skb->data - skb_headroom(skb);
4845
4846         /* SKB "head" area always have tailroom for skb_shared_info */
4847         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4848         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4849
4850         rxqueue = netif_get_rxqueue(skb);
4851         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4852         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4853                          skb_headlen(skb) + mac_len, true);
4854
4855         orig_data_end = xdp->data_end;
4856         orig_data = xdp->data;
4857         eth = (struct ethhdr *)xdp->data;
4858         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4859         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4860         orig_eth_type = eth->h_proto;
4861
4862         act = bpf_prog_run_xdp(xdp_prog, xdp);
4863
4864         /* check if bpf_xdp_adjust_head was used */
4865         off = xdp->data - orig_data;
4866         if (off) {
4867                 if (off > 0)
4868                         __skb_pull(skb, off);
4869                 else if (off < 0)
4870                         __skb_push(skb, -off);
4871
4872                 skb->mac_header += off;
4873                 skb_reset_network_header(skb);
4874         }
4875
4876         /* check if bpf_xdp_adjust_tail was used */
4877         off = xdp->data_end - orig_data_end;
4878         if (off != 0) {
4879                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4880                 skb->len += off; /* positive on grow, negative on shrink */
4881         }
4882
4883         /* check if XDP changed eth hdr such SKB needs update */
4884         eth = (struct ethhdr *)xdp->data;
4885         if ((orig_eth_type != eth->h_proto) ||
4886             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4887                                                   skb->dev->dev_addr)) ||
4888             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4889                 __skb_push(skb, ETH_HLEN);
4890                 skb->pkt_type = PACKET_HOST;
4891                 skb->protocol = eth_type_trans(skb, skb->dev);
4892         }
4893
4894         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4895          * before calling us again on redirect path. We do not call do_redirect
4896          * as we leave that up to the caller.
4897          *
4898          * Caller is responsible for managing lifetime of skb (i.e. calling
4899          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4900          */
4901         switch (act) {
4902         case XDP_REDIRECT:
4903         case XDP_TX:
4904                 __skb_push(skb, mac_len);
4905                 break;
4906         case XDP_PASS:
4907                 metalen = xdp->data - xdp->data_meta;
4908                 if (metalen)
4909                         skb_metadata_set(skb, metalen);
4910                 break;
4911         }
4912
4913         return act;
4914 }
4915
4916 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4917                                      struct xdp_buff *xdp,
4918                                      struct bpf_prog *xdp_prog)
4919 {
4920         u32 act = XDP_DROP;
4921
4922         /* Reinjected packets coming from act_mirred or similar should
4923          * not get XDP generic processing.
4924          */
4925         if (skb_is_redirected(skb))
4926                 return XDP_PASS;
4927
4928         /* XDP packets must be linear and must have sufficient headroom
4929          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4930          * native XDP provides, thus we need to do it here as well.
4931          */
4932         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4933             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4934                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4935                 int troom = skb->tail + skb->data_len - skb->end;
4936
4937                 /* In case we have to go down the path and also linearize,
4938                  * then lets do the pskb_expand_head() work just once here.
4939                  */
4940                 if (pskb_expand_head(skb,
4941                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4942                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4943                         goto do_drop;
4944                 if (skb_linearize(skb))
4945                         goto do_drop;
4946         }
4947
4948         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4949         switch (act) {
4950         case XDP_REDIRECT:
4951         case XDP_TX:
4952         case XDP_PASS:
4953                 break;
4954         default:
4955                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4956                 fallthrough;
4957         case XDP_ABORTED:
4958                 trace_xdp_exception(skb->dev, xdp_prog, act);
4959                 fallthrough;
4960         case XDP_DROP:
4961         do_drop:
4962                 kfree_skb(skb);
4963                 break;
4964         }
4965
4966         return act;
4967 }
4968
4969 /* When doing generic XDP we have to bypass the qdisc layer and the
4970  * network taps in order to match in-driver-XDP behavior. This also means
4971  * that XDP packets are able to starve other packets going through a qdisc,
4972  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4973  * queues, so they do not have this starvation issue.
4974  */
4975 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4976 {
4977         struct net_device *dev = skb->dev;
4978         struct netdev_queue *txq;
4979         bool free_skb = true;
4980         int cpu, rc;
4981
4982         txq = netdev_core_pick_tx(dev, skb, NULL);
4983         cpu = smp_processor_id();
4984         HARD_TX_LOCK(dev, txq, cpu);
4985         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4986                 rc = netdev_start_xmit(skb, dev, txq, 0);
4987                 if (dev_xmit_complete(rc))
4988                         free_skb = false;
4989         }
4990         HARD_TX_UNLOCK(dev, txq);
4991         if (free_skb) {
4992                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4993                 dev_core_stats_tx_dropped_inc(dev);
4994                 kfree_skb(skb);
4995         }
4996 }
4997
4998 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4999
5000 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5001 {
5002         if (xdp_prog) {
5003                 struct xdp_buff xdp;
5004                 u32 act;
5005                 int err;
5006
5007                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5008                 if (act != XDP_PASS) {
5009                         switch (act) {
5010                         case XDP_REDIRECT:
5011                                 err = xdp_do_generic_redirect(skb->dev, skb,
5012                                                               &xdp, xdp_prog);
5013                                 if (err)
5014                                         goto out_redir;
5015                                 break;
5016                         case XDP_TX:
5017                                 generic_xdp_tx(skb, xdp_prog);
5018                                 break;
5019                         }
5020                         return XDP_DROP;
5021                 }
5022         }
5023         return XDP_PASS;
5024 out_redir:
5025         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5026         return XDP_DROP;
5027 }
5028 EXPORT_SYMBOL_GPL(do_xdp_generic);
5029
5030 static int netif_rx_internal(struct sk_buff *skb)
5031 {
5032         int ret;
5033
5034         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5035
5036         trace_netif_rx(skb);
5037
5038 #ifdef CONFIG_RPS
5039         if (static_branch_unlikely(&rps_needed)) {
5040                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5041                 int cpu;
5042
5043                 rcu_read_lock();
5044
5045                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5046                 if (cpu < 0)
5047                         cpu = smp_processor_id();
5048
5049                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5050
5051                 rcu_read_unlock();
5052         } else
5053 #endif
5054         {
5055                 unsigned int qtail;
5056
5057                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5058         }
5059         return ret;
5060 }
5061
5062 /**
5063  *      __netif_rx      -       Slightly optimized version of netif_rx
5064  *      @skb: buffer to post
5065  *
5066  *      This behaves as netif_rx except that it does not disable bottom halves.
5067  *      As a result this function may only be invoked from the interrupt context
5068  *      (either hard or soft interrupt).
5069  */
5070 int __netif_rx(struct sk_buff *skb)
5071 {
5072         int ret;
5073
5074         lockdep_assert_once(hardirq_count() | softirq_count());
5075
5076         trace_netif_rx_entry(skb);
5077         ret = netif_rx_internal(skb);
5078         trace_netif_rx_exit(ret);
5079         return ret;
5080 }
5081 EXPORT_SYMBOL(__netif_rx);
5082
5083 /**
5084  *      netif_rx        -       post buffer to the network code
5085  *      @skb: buffer to post
5086  *
5087  *      This function receives a packet from a device driver and queues it for
5088  *      the upper (protocol) levels to process via the backlog NAPI device. It
5089  *      always succeeds. The buffer may be dropped during processing for
5090  *      congestion control or by the protocol layers.
5091  *      The network buffer is passed via the backlog NAPI device. Modern NIC
5092  *      driver should use NAPI and GRO.
5093  *      This function can used from interrupt and from process context. The
5094  *      caller from process context must not disable interrupts before invoking
5095  *      this function.
5096  *
5097  *      return values:
5098  *      NET_RX_SUCCESS  (no congestion)
5099  *      NET_RX_DROP     (packet was dropped)
5100  *
5101  */
5102 int netif_rx(struct sk_buff *skb)
5103 {
5104         bool need_bh_off = !(hardirq_count() | softirq_count());
5105         int ret;
5106
5107         if (need_bh_off)
5108                 local_bh_disable();
5109         trace_netif_rx_entry(skb);
5110         ret = netif_rx_internal(skb);
5111         trace_netif_rx_exit(ret);
5112         if (need_bh_off)
5113                 local_bh_enable();
5114         return ret;
5115 }
5116 EXPORT_SYMBOL(netif_rx);
5117
5118 static __latent_entropy void net_tx_action(struct softirq_action *h)
5119 {
5120         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5121
5122         if (sd->completion_queue) {
5123                 struct sk_buff *clist;
5124
5125                 local_irq_disable();
5126                 clist = sd->completion_queue;
5127                 sd->completion_queue = NULL;
5128                 local_irq_enable();
5129
5130                 while (clist) {
5131                         struct sk_buff *skb = clist;
5132
5133                         clist = clist->next;
5134
5135                         WARN_ON(refcount_read(&skb->users));
5136                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5137                                 trace_consume_skb(skb, net_tx_action);
5138                         else
5139                                 trace_kfree_skb(skb, net_tx_action,
5140                                                 get_kfree_skb_cb(skb)->reason);
5141
5142                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5143                                 __kfree_skb(skb);
5144                         else
5145                                 __napi_kfree_skb(skb,
5146                                                  get_kfree_skb_cb(skb)->reason);
5147                 }
5148         }
5149
5150         if (sd->output_queue) {
5151                 struct Qdisc *head;
5152
5153                 local_irq_disable();
5154                 head = sd->output_queue;
5155                 sd->output_queue = NULL;
5156                 sd->output_queue_tailp = &sd->output_queue;
5157                 local_irq_enable();
5158
5159                 rcu_read_lock();
5160
5161                 while (head) {
5162                         struct Qdisc *q = head;
5163                         spinlock_t *root_lock = NULL;
5164
5165                         head = head->next_sched;
5166
5167                         /* We need to make sure head->next_sched is read
5168                          * before clearing __QDISC_STATE_SCHED
5169                          */
5170                         smp_mb__before_atomic();
5171
5172                         if (!(q->flags & TCQ_F_NOLOCK)) {
5173                                 root_lock = qdisc_lock(q);
5174                                 spin_lock(root_lock);
5175                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5176                                                      &q->state))) {
5177                                 /* There is a synchronize_net() between
5178                                  * STATE_DEACTIVATED flag being set and
5179                                  * qdisc_reset()/some_qdisc_is_busy() in
5180                                  * dev_deactivate(), so we can safely bail out
5181                                  * early here to avoid data race between
5182                                  * qdisc_deactivate() and some_qdisc_is_busy()
5183                                  * for lockless qdisc.
5184                                  */
5185                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5186                                 continue;
5187                         }
5188
5189                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5190                         qdisc_run(q);
5191                         if (root_lock)
5192                                 spin_unlock(root_lock);
5193                 }
5194
5195                 rcu_read_unlock();
5196         }
5197
5198         xfrm_dev_backlog(sd);
5199 }
5200
5201 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5202 /* This hook is defined here for ATM LANE */
5203 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5204                              unsigned char *addr) __read_mostly;
5205 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5206 #endif
5207
5208 /**
5209  *      netdev_is_rx_handler_busy - check if receive handler is registered
5210  *      @dev: device to check
5211  *
5212  *      Check if a receive handler is already registered for a given device.
5213  *      Return true if there one.
5214  *
5215  *      The caller must hold the rtnl_mutex.
5216  */
5217 bool netdev_is_rx_handler_busy(struct net_device *dev)
5218 {
5219         ASSERT_RTNL();
5220         return dev && rtnl_dereference(dev->rx_handler);
5221 }
5222 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5223
5224 /**
5225  *      netdev_rx_handler_register - register receive handler
5226  *      @dev: device to register a handler for
5227  *      @rx_handler: receive handler to register
5228  *      @rx_handler_data: data pointer that is used by rx handler
5229  *
5230  *      Register a receive handler for a device. This handler will then be
5231  *      called from __netif_receive_skb. A negative errno code is returned
5232  *      on a failure.
5233  *
5234  *      The caller must hold the rtnl_mutex.
5235  *
5236  *      For a general description of rx_handler, see enum rx_handler_result.
5237  */
5238 int netdev_rx_handler_register(struct net_device *dev,
5239                                rx_handler_func_t *rx_handler,
5240                                void *rx_handler_data)
5241 {
5242         if (netdev_is_rx_handler_busy(dev))
5243                 return -EBUSY;
5244
5245         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5246                 return -EINVAL;
5247
5248         /* Note: rx_handler_data must be set before rx_handler */
5249         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5250         rcu_assign_pointer(dev->rx_handler, rx_handler);
5251
5252         return 0;
5253 }
5254 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5255
5256 /**
5257  *      netdev_rx_handler_unregister - unregister receive handler
5258  *      @dev: device to unregister a handler from
5259  *
5260  *      Unregister a receive handler from a device.
5261  *
5262  *      The caller must hold the rtnl_mutex.
5263  */
5264 void netdev_rx_handler_unregister(struct net_device *dev)
5265 {
5266
5267         ASSERT_RTNL();
5268         RCU_INIT_POINTER(dev->rx_handler, NULL);
5269         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5270          * section has a guarantee to see a non NULL rx_handler_data
5271          * as well.
5272          */
5273         synchronize_net();
5274         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5275 }
5276 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5277
5278 /*
5279  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5280  * the special handling of PFMEMALLOC skbs.
5281  */
5282 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5283 {
5284         switch (skb->protocol) {
5285         case htons(ETH_P_ARP):
5286         case htons(ETH_P_IP):
5287         case htons(ETH_P_IPV6):
5288         case htons(ETH_P_8021Q):
5289         case htons(ETH_P_8021AD):
5290                 return true;
5291         default:
5292                 return false;
5293         }
5294 }
5295
5296 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5297                              int *ret, struct net_device *orig_dev)
5298 {
5299         if (nf_hook_ingress_active(skb)) {
5300                 int ingress_retval;
5301
5302                 if (*pt_prev) {
5303                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5304                         *pt_prev = NULL;
5305                 }
5306
5307                 rcu_read_lock();
5308                 ingress_retval = nf_hook_ingress(skb);
5309                 rcu_read_unlock();
5310                 return ingress_retval;
5311         }
5312         return 0;
5313 }
5314
5315 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5316                                     struct packet_type **ppt_prev)
5317 {
5318         struct packet_type *ptype, *pt_prev;
5319         rx_handler_func_t *rx_handler;
5320         struct sk_buff *skb = *pskb;
5321         struct net_device *orig_dev;
5322         bool deliver_exact = false;
5323         int ret = NET_RX_DROP;
5324         __be16 type;
5325
5326         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5327
5328         trace_netif_receive_skb(skb);
5329
5330         orig_dev = skb->dev;
5331
5332         skb_reset_network_header(skb);
5333         if (!skb_transport_header_was_set(skb))
5334                 skb_reset_transport_header(skb);
5335         skb_reset_mac_len(skb);
5336
5337         pt_prev = NULL;
5338
5339 another_round:
5340         skb->skb_iif = skb->dev->ifindex;
5341
5342         __this_cpu_inc(softnet_data.processed);
5343
5344         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5345                 int ret2;
5346
5347                 migrate_disable();
5348                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5349                 migrate_enable();
5350
5351                 if (ret2 != XDP_PASS) {
5352                         ret = NET_RX_DROP;
5353                         goto out;
5354                 }
5355         }
5356
5357         if (eth_type_vlan(skb->protocol)) {
5358                 skb = skb_vlan_untag(skb);
5359                 if (unlikely(!skb))
5360                         goto out;
5361         }
5362
5363         if (skb_skip_tc_classify(skb))
5364                 goto skip_classify;
5365
5366         if (pfmemalloc)
5367                 goto skip_taps;
5368
5369         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5370                 if (pt_prev)
5371                         ret = deliver_skb(skb, pt_prev, orig_dev);
5372                 pt_prev = ptype;
5373         }
5374
5375         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5376                 if (pt_prev)
5377                         ret = deliver_skb(skb, pt_prev, orig_dev);
5378                 pt_prev = ptype;
5379         }
5380
5381 skip_taps:
5382 #ifdef CONFIG_NET_INGRESS
5383         if (static_branch_unlikely(&ingress_needed_key)) {
5384                 bool another = false;
5385
5386                 nf_skip_egress(skb, true);
5387                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5388                                          &another);
5389                 if (another)
5390                         goto another_round;
5391                 if (!skb)
5392                         goto out;
5393
5394                 nf_skip_egress(skb, false);
5395                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5396                         goto out;
5397         }
5398 #endif
5399         skb_reset_redirect(skb);
5400 skip_classify:
5401         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5402                 goto drop;
5403
5404         if (skb_vlan_tag_present(skb)) {
5405                 if (pt_prev) {
5406                         ret = deliver_skb(skb, pt_prev, orig_dev);
5407                         pt_prev = NULL;
5408                 }
5409                 if (vlan_do_receive(&skb))
5410                         goto another_round;
5411                 else if (unlikely(!skb))
5412                         goto out;
5413         }
5414
5415         rx_handler = rcu_dereference(skb->dev->rx_handler);
5416         if (rx_handler) {
5417                 if (pt_prev) {
5418                         ret = deliver_skb(skb, pt_prev, orig_dev);
5419                         pt_prev = NULL;
5420                 }
5421                 switch (rx_handler(&skb)) {
5422                 case RX_HANDLER_CONSUMED:
5423                         ret = NET_RX_SUCCESS;
5424                         goto out;
5425                 case RX_HANDLER_ANOTHER:
5426                         goto another_round;
5427                 case RX_HANDLER_EXACT:
5428                         deliver_exact = true;
5429                         break;
5430                 case RX_HANDLER_PASS:
5431                         break;
5432                 default:
5433                         BUG();
5434                 }
5435         }
5436
5437         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5438 check_vlan_id:
5439                 if (skb_vlan_tag_get_id(skb)) {
5440                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5441                          * find vlan device.
5442                          */
5443                         skb->pkt_type = PACKET_OTHERHOST;
5444                 } else if (eth_type_vlan(skb->protocol)) {
5445                         /* Outer header is 802.1P with vlan 0, inner header is
5446                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5447                          * not find vlan dev for vlan id 0.
5448                          */
5449                         __vlan_hwaccel_clear_tag(skb);
5450                         skb = skb_vlan_untag(skb);
5451                         if (unlikely(!skb))
5452                                 goto out;
5453                         if (vlan_do_receive(&skb))
5454                                 /* After stripping off 802.1P header with vlan 0
5455                                  * vlan dev is found for inner header.
5456                                  */
5457                                 goto another_round;
5458                         else if (unlikely(!skb))
5459                                 goto out;
5460                         else
5461                                 /* We have stripped outer 802.1P vlan 0 header.
5462                                  * But could not find vlan dev.
5463                                  * check again for vlan id to set OTHERHOST.
5464                                  */
5465                                 goto check_vlan_id;
5466                 }
5467                 /* Note: we might in the future use prio bits
5468                  * and set skb->priority like in vlan_do_receive()
5469                  * For the time being, just ignore Priority Code Point
5470                  */
5471                 __vlan_hwaccel_clear_tag(skb);
5472         }
5473
5474         type = skb->protocol;
5475
5476         /* deliver only exact match when indicated */
5477         if (likely(!deliver_exact)) {
5478                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5479                                        &ptype_base[ntohs(type) &
5480                                                    PTYPE_HASH_MASK]);
5481         }
5482
5483         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5484                                &orig_dev->ptype_specific);
5485
5486         if (unlikely(skb->dev != orig_dev)) {
5487                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5488                                        &skb->dev->ptype_specific);
5489         }
5490
5491         if (pt_prev) {
5492                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5493                         goto drop;
5494                 *ppt_prev = pt_prev;
5495         } else {
5496 drop:
5497                 if (!deliver_exact)
5498                         dev_core_stats_rx_dropped_inc(skb->dev);
5499                 else
5500                         dev_core_stats_rx_nohandler_inc(skb->dev);
5501                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5502                 /* Jamal, now you will not able to escape explaining
5503                  * me how you were going to use this. :-)
5504                  */
5505                 ret = NET_RX_DROP;
5506         }
5507
5508 out:
5509         /* The invariant here is that if *ppt_prev is not NULL
5510          * then skb should also be non-NULL.
5511          *
5512          * Apparently *ppt_prev assignment above holds this invariant due to
5513          * skb dereferencing near it.
5514          */
5515         *pskb = skb;
5516         return ret;
5517 }
5518
5519 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5520 {
5521         struct net_device *orig_dev = skb->dev;
5522         struct packet_type *pt_prev = NULL;
5523         int ret;
5524
5525         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5526         if (pt_prev)
5527                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5528                                          skb->dev, pt_prev, orig_dev);
5529         return ret;
5530 }
5531
5532 /**
5533  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5534  *      @skb: buffer to process
5535  *
5536  *      More direct receive version of netif_receive_skb().  It should
5537  *      only be used by callers that have a need to skip RPS and Generic XDP.
5538  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5539  *
5540  *      This function may only be called from softirq context and interrupts
5541  *      should be enabled.
5542  *
5543  *      Return values (usually ignored):
5544  *      NET_RX_SUCCESS: no congestion
5545  *      NET_RX_DROP: packet was dropped
5546  */
5547 int netif_receive_skb_core(struct sk_buff *skb)
5548 {
5549         int ret;
5550
5551         rcu_read_lock();
5552         ret = __netif_receive_skb_one_core(skb, false);
5553         rcu_read_unlock();
5554
5555         return ret;
5556 }
5557 EXPORT_SYMBOL(netif_receive_skb_core);
5558
5559 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5560                                                   struct packet_type *pt_prev,
5561                                                   struct net_device *orig_dev)
5562 {
5563         struct sk_buff *skb, *next;
5564
5565         if (!pt_prev)
5566                 return;
5567         if (list_empty(head))
5568                 return;
5569         if (pt_prev->list_func != NULL)
5570                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5571                                    ip_list_rcv, head, pt_prev, orig_dev);
5572         else
5573                 list_for_each_entry_safe(skb, next, head, list) {
5574                         skb_list_del_init(skb);
5575                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5576                 }
5577 }
5578
5579 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5580 {
5581         /* Fast-path assumptions:
5582          * - There is no RX handler.
5583          * - Only one packet_type matches.
5584          * If either of these fails, we will end up doing some per-packet
5585          * processing in-line, then handling the 'last ptype' for the whole
5586          * sublist.  This can't cause out-of-order delivery to any single ptype,
5587          * because the 'last ptype' must be constant across the sublist, and all
5588          * other ptypes are handled per-packet.
5589          */
5590         /* Current (common) ptype of sublist */
5591         struct packet_type *pt_curr = NULL;
5592         /* Current (common) orig_dev of sublist */
5593         struct net_device *od_curr = NULL;
5594         struct list_head sublist;
5595         struct sk_buff *skb, *next;
5596
5597         INIT_LIST_HEAD(&sublist);
5598         list_for_each_entry_safe(skb, next, head, list) {
5599                 struct net_device *orig_dev = skb->dev;
5600                 struct packet_type *pt_prev = NULL;
5601
5602                 skb_list_del_init(skb);
5603                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5604                 if (!pt_prev)
5605                         continue;
5606                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5607                         /* dispatch old sublist */
5608                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5609                         /* start new sublist */
5610                         INIT_LIST_HEAD(&sublist);
5611                         pt_curr = pt_prev;
5612                         od_curr = orig_dev;
5613                 }
5614                 list_add_tail(&skb->list, &sublist);
5615         }
5616
5617         /* dispatch final sublist */
5618         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5619 }
5620
5621 static int __netif_receive_skb(struct sk_buff *skb)
5622 {
5623         int ret;
5624
5625         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5626                 unsigned int noreclaim_flag;
5627
5628                 /*
5629                  * PFMEMALLOC skbs are special, they should
5630                  * - be delivered to SOCK_MEMALLOC sockets only
5631                  * - stay away from userspace
5632                  * - have bounded memory usage
5633                  *
5634                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5635                  * context down to all allocation sites.
5636                  */
5637                 noreclaim_flag = memalloc_noreclaim_save();
5638                 ret = __netif_receive_skb_one_core(skb, true);
5639                 memalloc_noreclaim_restore(noreclaim_flag);
5640         } else
5641                 ret = __netif_receive_skb_one_core(skb, false);
5642
5643         return ret;
5644 }
5645
5646 static void __netif_receive_skb_list(struct list_head *head)
5647 {
5648         unsigned long noreclaim_flag = 0;
5649         struct sk_buff *skb, *next;
5650         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5651
5652         list_for_each_entry_safe(skb, next, head, list) {
5653                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5654                         struct list_head sublist;
5655
5656                         /* Handle the previous sublist */
5657                         list_cut_before(&sublist, head, &skb->list);
5658                         if (!list_empty(&sublist))
5659                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5660                         pfmemalloc = !pfmemalloc;
5661                         /* See comments in __netif_receive_skb */
5662                         if (pfmemalloc)
5663                                 noreclaim_flag = memalloc_noreclaim_save();
5664                         else
5665                                 memalloc_noreclaim_restore(noreclaim_flag);
5666                 }
5667         }
5668         /* Handle the remaining sublist */
5669         if (!list_empty(head))
5670                 __netif_receive_skb_list_core(head, pfmemalloc);
5671         /* Restore pflags */
5672         if (pfmemalloc)
5673                 memalloc_noreclaim_restore(noreclaim_flag);
5674 }
5675
5676 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5677 {
5678         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5679         struct bpf_prog *new = xdp->prog;
5680         int ret = 0;
5681
5682         switch (xdp->command) {
5683         case XDP_SETUP_PROG:
5684                 rcu_assign_pointer(dev->xdp_prog, new);
5685                 if (old)
5686                         bpf_prog_put(old);
5687
5688                 if (old && !new) {
5689                         static_branch_dec(&generic_xdp_needed_key);
5690                 } else if (new && !old) {
5691                         static_branch_inc(&generic_xdp_needed_key);
5692                         dev_disable_lro(dev);
5693                         dev_disable_gro_hw(dev);
5694                 }
5695                 break;
5696
5697         default:
5698                 ret = -EINVAL;
5699                 break;
5700         }
5701
5702         return ret;
5703 }
5704
5705 static int netif_receive_skb_internal(struct sk_buff *skb)
5706 {
5707         int ret;
5708
5709         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5710
5711         if (skb_defer_rx_timestamp(skb))
5712                 return NET_RX_SUCCESS;
5713
5714         rcu_read_lock();
5715 #ifdef CONFIG_RPS
5716         if (static_branch_unlikely(&rps_needed)) {
5717                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5718                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5719
5720                 if (cpu >= 0) {
5721                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5722                         rcu_read_unlock();
5723                         return ret;
5724                 }
5725         }
5726 #endif
5727         ret = __netif_receive_skb(skb);
5728         rcu_read_unlock();
5729         return ret;
5730 }
5731
5732 void netif_receive_skb_list_internal(struct list_head *head)
5733 {
5734         struct sk_buff *skb, *next;
5735         struct list_head sublist;
5736
5737         INIT_LIST_HEAD(&sublist);
5738         list_for_each_entry_safe(skb, next, head, list) {
5739                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5740                 skb_list_del_init(skb);
5741                 if (!skb_defer_rx_timestamp(skb))
5742                         list_add_tail(&skb->list, &sublist);
5743         }
5744         list_splice_init(&sublist, head);
5745
5746         rcu_read_lock();
5747 #ifdef CONFIG_RPS
5748         if (static_branch_unlikely(&rps_needed)) {
5749                 list_for_each_entry_safe(skb, next, head, list) {
5750                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5751                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5752
5753                         if (cpu >= 0) {
5754                                 /* Will be handled, remove from list */
5755                                 skb_list_del_init(skb);
5756                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5757                         }
5758                 }
5759         }
5760 #endif
5761         __netif_receive_skb_list(head);
5762         rcu_read_unlock();
5763 }
5764
5765 /**
5766  *      netif_receive_skb - process receive buffer from network
5767  *      @skb: buffer to process
5768  *
5769  *      netif_receive_skb() is the main receive data processing function.
5770  *      It always succeeds. The buffer may be dropped during processing
5771  *      for congestion control or by the protocol layers.
5772  *
5773  *      This function may only be called from softirq context and interrupts
5774  *      should be enabled.
5775  *
5776  *      Return values (usually ignored):
5777  *      NET_RX_SUCCESS: no congestion
5778  *      NET_RX_DROP: packet was dropped
5779  */
5780 int netif_receive_skb(struct sk_buff *skb)
5781 {
5782         int ret;
5783
5784         trace_netif_receive_skb_entry(skb);
5785
5786         ret = netif_receive_skb_internal(skb);
5787         trace_netif_receive_skb_exit(ret);
5788
5789         return ret;
5790 }
5791 EXPORT_SYMBOL(netif_receive_skb);
5792
5793 /**
5794  *      netif_receive_skb_list - process many receive buffers from network
5795  *      @head: list of skbs to process.
5796  *
5797  *      Since return value of netif_receive_skb() is normally ignored, and
5798  *      wouldn't be meaningful for a list, this function returns void.
5799  *
5800  *      This function may only be called from softirq context and interrupts
5801  *      should be enabled.
5802  */
5803 void netif_receive_skb_list(struct list_head *head)
5804 {
5805         struct sk_buff *skb;
5806
5807         if (list_empty(head))
5808                 return;
5809         if (trace_netif_receive_skb_list_entry_enabled()) {
5810                 list_for_each_entry(skb, head, list)
5811                         trace_netif_receive_skb_list_entry(skb);
5812         }
5813         netif_receive_skb_list_internal(head);
5814         trace_netif_receive_skb_list_exit(0);
5815 }
5816 EXPORT_SYMBOL(netif_receive_skb_list);
5817
5818 static DEFINE_PER_CPU(struct work_struct, flush_works);
5819
5820 /* Network device is going away, flush any packets still pending */
5821 static void flush_backlog(struct work_struct *work)
5822 {
5823         struct sk_buff *skb, *tmp;
5824         struct softnet_data *sd;
5825
5826         local_bh_disable();
5827         sd = this_cpu_ptr(&softnet_data);
5828
5829         rps_lock_irq_disable(sd);
5830         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5831                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5832                         __skb_unlink(skb, &sd->input_pkt_queue);
5833                         dev_kfree_skb_irq(skb);
5834                         input_queue_head_incr(sd);
5835                 }
5836         }
5837         rps_unlock_irq_enable(sd);
5838
5839         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5840                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5841                         __skb_unlink(skb, &sd->process_queue);
5842                         kfree_skb(skb);
5843                         input_queue_head_incr(sd);
5844                 }
5845         }
5846         local_bh_enable();
5847 }
5848
5849 static bool flush_required(int cpu)
5850 {
5851 #if IS_ENABLED(CONFIG_RPS)
5852         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5853         bool do_flush;
5854
5855         rps_lock_irq_disable(sd);
5856
5857         /* as insertion into process_queue happens with the rps lock held,
5858          * process_queue access may race only with dequeue
5859          */
5860         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5861                    !skb_queue_empty_lockless(&sd->process_queue);
5862         rps_unlock_irq_enable(sd);
5863
5864         return do_flush;
5865 #endif
5866         /* without RPS we can't safely check input_pkt_queue: during a
5867          * concurrent remote skb_queue_splice() we can detect as empty both
5868          * input_pkt_queue and process_queue even if the latter could end-up
5869          * containing a lot of packets.
5870          */
5871         return true;
5872 }
5873
5874 static void flush_all_backlogs(void)
5875 {
5876         static cpumask_t flush_cpus;
5877         unsigned int cpu;
5878
5879         /* since we are under rtnl lock protection we can use static data
5880          * for the cpumask and avoid allocating on stack the possibly
5881          * large mask
5882          */
5883         ASSERT_RTNL();
5884
5885         cpus_read_lock();
5886
5887         cpumask_clear(&flush_cpus);
5888         for_each_online_cpu(cpu) {
5889                 if (flush_required(cpu)) {
5890                         queue_work_on(cpu, system_highpri_wq,
5891                                       per_cpu_ptr(&flush_works, cpu));
5892                         cpumask_set_cpu(cpu, &flush_cpus);
5893                 }
5894         }
5895
5896         /* we can have in flight packet[s] on the cpus we are not flushing,
5897          * synchronize_net() in unregister_netdevice_many() will take care of
5898          * them
5899          */
5900         for_each_cpu(cpu, &flush_cpus)
5901                 flush_work(per_cpu_ptr(&flush_works, cpu));
5902
5903         cpus_read_unlock();
5904 }
5905
5906 static void net_rps_send_ipi(struct softnet_data *remsd)
5907 {
5908 #ifdef CONFIG_RPS
5909         while (remsd) {
5910                 struct softnet_data *next = remsd->rps_ipi_next;
5911
5912                 if (cpu_online(remsd->cpu))
5913                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5914                 remsd = next;
5915         }
5916 #endif
5917 }
5918
5919 /*
5920  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5921  * Note: called with local irq disabled, but exits with local irq enabled.
5922  */
5923 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5924 {
5925 #ifdef CONFIG_RPS
5926         struct softnet_data *remsd = sd->rps_ipi_list;
5927
5928         if (remsd) {
5929                 sd->rps_ipi_list = NULL;
5930
5931                 local_irq_enable();
5932
5933                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5934                 net_rps_send_ipi(remsd);
5935         } else
5936 #endif
5937                 local_irq_enable();
5938 }
5939
5940 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5941 {
5942 #ifdef CONFIG_RPS
5943         return sd->rps_ipi_list != NULL;
5944 #else
5945         return false;
5946 #endif
5947 }
5948
5949 static int process_backlog(struct napi_struct *napi, int quota)
5950 {
5951         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5952         bool again = true;
5953         int work = 0;
5954
5955         /* Check if we have pending ipi, its better to send them now,
5956          * not waiting net_rx_action() end.
5957          */
5958         if (sd_has_rps_ipi_waiting(sd)) {
5959                 local_irq_disable();
5960                 net_rps_action_and_irq_enable(sd);
5961         }
5962
5963         napi->weight = READ_ONCE(dev_rx_weight);
5964         while (again) {
5965                 struct sk_buff *skb;
5966
5967                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5968                         rcu_read_lock();
5969                         __netif_receive_skb(skb);
5970                         rcu_read_unlock();
5971                         input_queue_head_incr(sd);
5972                         if (++work >= quota)
5973                                 return work;
5974
5975                 }
5976
5977                 rps_lock_irq_disable(sd);
5978                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5979                         /*
5980                          * Inline a custom version of __napi_complete().
5981                          * only current cpu owns and manipulates this napi,
5982                          * and NAPI_STATE_SCHED is the only possible flag set
5983                          * on backlog.
5984                          * We can use a plain write instead of clear_bit(),
5985                          * and we dont need an smp_mb() memory barrier.
5986                          */
5987                         napi->state = 0;
5988                         again = false;
5989                 } else {
5990                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5991                                                    &sd->process_queue);
5992                 }
5993                 rps_unlock_irq_enable(sd);
5994         }
5995
5996         return work;
5997 }
5998
5999 /**
6000  * __napi_schedule - schedule for receive
6001  * @n: entry to schedule
6002  *
6003  * The entry's receive function will be scheduled to run.
6004  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6005  */
6006 void __napi_schedule(struct napi_struct *n)
6007 {
6008         unsigned long flags;
6009
6010         local_irq_save(flags);
6011         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6012         local_irq_restore(flags);
6013 }
6014 EXPORT_SYMBOL(__napi_schedule);
6015
6016 /**
6017  *      napi_schedule_prep - check if napi can be scheduled
6018  *      @n: napi context
6019  *
6020  * Test if NAPI routine is already running, and if not mark
6021  * it as running.  This is used as a condition variable to
6022  * insure only one NAPI poll instance runs.  We also make
6023  * sure there is no pending NAPI disable.
6024  */
6025 bool napi_schedule_prep(struct napi_struct *n)
6026 {
6027         unsigned long new, val = READ_ONCE(n->state);
6028
6029         do {
6030                 if (unlikely(val & NAPIF_STATE_DISABLE))
6031                         return false;
6032                 new = val | NAPIF_STATE_SCHED;
6033
6034                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6035                  * This was suggested by Alexander Duyck, as compiler
6036                  * emits better code than :
6037                  * if (val & NAPIF_STATE_SCHED)
6038                  *     new |= NAPIF_STATE_MISSED;
6039                  */
6040                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6041                                                    NAPIF_STATE_MISSED;
6042         } while (!try_cmpxchg(&n->state, &val, new));
6043
6044         return !(val & NAPIF_STATE_SCHED);
6045 }
6046 EXPORT_SYMBOL(napi_schedule_prep);
6047
6048 /**
6049  * __napi_schedule_irqoff - schedule for receive
6050  * @n: entry to schedule
6051  *
6052  * Variant of __napi_schedule() assuming hard irqs are masked.
6053  *
6054  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6055  * because the interrupt disabled assumption might not be true
6056  * due to force-threaded interrupts and spinlock substitution.
6057  */
6058 void __napi_schedule_irqoff(struct napi_struct *n)
6059 {
6060         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6061                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6062         else
6063                 __napi_schedule(n);
6064 }
6065 EXPORT_SYMBOL(__napi_schedule_irqoff);
6066
6067 bool napi_complete_done(struct napi_struct *n, int work_done)
6068 {
6069         unsigned long flags, val, new, timeout = 0;
6070         bool ret = true;
6071
6072         /*
6073          * 1) Don't let napi dequeue from the cpu poll list
6074          *    just in case its running on a different cpu.
6075          * 2) If we are busy polling, do nothing here, we have
6076          *    the guarantee we will be called later.
6077          */
6078         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6079                                  NAPIF_STATE_IN_BUSY_POLL)))
6080                 return false;
6081
6082         if (work_done) {
6083                 if (n->gro_bitmask)
6084                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6085                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6086         }
6087         if (n->defer_hard_irqs_count > 0) {
6088                 n->defer_hard_irqs_count--;
6089                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6090                 if (timeout)
6091                         ret = false;
6092         }
6093         if (n->gro_bitmask) {
6094                 /* When the NAPI instance uses a timeout and keeps postponing
6095                  * it, we need to bound somehow the time packets are kept in
6096                  * the GRO layer
6097                  */
6098                 napi_gro_flush(n, !!timeout);
6099         }
6100
6101         gro_normal_list(n);
6102
6103         if (unlikely(!list_empty(&n->poll_list))) {
6104                 /* If n->poll_list is not empty, we need to mask irqs */
6105                 local_irq_save(flags);
6106                 list_del_init(&n->poll_list);
6107                 local_irq_restore(flags);
6108         }
6109         WRITE_ONCE(n->list_owner, -1);
6110
6111         val = READ_ONCE(n->state);
6112         do {
6113                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6114
6115                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6116                               NAPIF_STATE_SCHED_THREADED |
6117                               NAPIF_STATE_PREFER_BUSY_POLL);
6118
6119                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6120                  * because we will call napi->poll() one more time.
6121                  * This C code was suggested by Alexander Duyck to help gcc.
6122                  */
6123                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6124                                                     NAPIF_STATE_SCHED;
6125         } while (!try_cmpxchg(&n->state, &val, new));
6126
6127         if (unlikely(val & NAPIF_STATE_MISSED)) {
6128                 __napi_schedule(n);
6129                 return false;
6130         }
6131
6132         if (timeout)
6133                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6134                               HRTIMER_MODE_REL_PINNED);
6135         return ret;
6136 }
6137 EXPORT_SYMBOL(napi_complete_done);
6138
6139 /* must be called under rcu_read_lock(), as we dont take a reference */
6140 static struct napi_struct *napi_by_id(unsigned int napi_id)
6141 {
6142         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6143         struct napi_struct *napi;
6144
6145         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6146                 if (napi->napi_id == napi_id)
6147                         return napi;
6148
6149         return NULL;
6150 }
6151
6152 #if defined(CONFIG_NET_RX_BUSY_POLL)
6153
6154 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6155 {
6156         if (!skip_schedule) {
6157                 gro_normal_list(napi);
6158                 __napi_schedule(napi);
6159                 return;
6160         }
6161
6162         if (napi->gro_bitmask) {
6163                 /* flush too old packets
6164                  * If HZ < 1000, flush all packets.
6165                  */
6166                 napi_gro_flush(napi, HZ >= 1000);
6167         }
6168
6169         gro_normal_list(napi);
6170         clear_bit(NAPI_STATE_SCHED, &napi->state);
6171 }
6172
6173 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6174                            u16 budget)
6175 {
6176         bool skip_schedule = false;
6177         unsigned long timeout;
6178         int rc;
6179
6180         /* Busy polling means there is a high chance device driver hard irq
6181          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6182          * set in napi_schedule_prep().
6183          * Since we are about to call napi->poll() once more, we can safely
6184          * clear NAPI_STATE_MISSED.
6185          *
6186          * Note: x86 could use a single "lock and ..." instruction
6187          * to perform these two clear_bit()
6188          */
6189         clear_bit(NAPI_STATE_MISSED, &napi->state);
6190         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6191
6192         local_bh_disable();
6193
6194         if (prefer_busy_poll) {
6195                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6196                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6197                 if (napi->defer_hard_irqs_count && timeout) {
6198                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6199                         skip_schedule = true;
6200                 }
6201         }
6202
6203         /* All we really want here is to re-enable device interrupts.
6204          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6205          */
6206         rc = napi->poll(napi, budget);
6207         /* We can't gro_normal_list() here, because napi->poll() might have
6208          * rearmed the napi (napi_complete_done()) in which case it could
6209          * already be running on another CPU.
6210          */
6211         trace_napi_poll(napi, rc, budget);
6212         netpoll_poll_unlock(have_poll_lock);
6213         if (rc == budget)
6214                 __busy_poll_stop(napi, skip_schedule);
6215         local_bh_enable();
6216 }
6217
6218 void napi_busy_loop(unsigned int napi_id,
6219                     bool (*loop_end)(void *, unsigned long),
6220                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6221 {
6222         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6223         int (*napi_poll)(struct napi_struct *napi, int budget);
6224         void *have_poll_lock = NULL;
6225         struct napi_struct *napi;
6226
6227 restart:
6228         napi_poll = NULL;
6229
6230         rcu_read_lock();
6231
6232         napi = napi_by_id(napi_id);
6233         if (!napi)
6234                 goto out;
6235
6236         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6237                 preempt_disable();
6238         for (;;) {
6239                 int work = 0;
6240
6241                 local_bh_disable();
6242                 if (!napi_poll) {
6243                         unsigned long val = READ_ONCE(napi->state);
6244
6245                         /* If multiple threads are competing for this napi,
6246                          * we avoid dirtying napi->state as much as we can.
6247                          */
6248                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6249                                    NAPIF_STATE_IN_BUSY_POLL)) {
6250                                 if (prefer_busy_poll)
6251                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6252                                 goto count;
6253                         }
6254                         if (cmpxchg(&napi->state, val,
6255                                     val | NAPIF_STATE_IN_BUSY_POLL |
6256                                           NAPIF_STATE_SCHED) != val) {
6257                                 if (prefer_busy_poll)
6258                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6259                                 goto count;
6260                         }
6261                         have_poll_lock = netpoll_poll_lock(napi);
6262                         napi_poll = napi->poll;
6263                 }
6264                 work = napi_poll(napi, budget);
6265                 trace_napi_poll(napi, work, budget);
6266                 gro_normal_list(napi);
6267 count:
6268                 if (work > 0)
6269                         __NET_ADD_STATS(dev_net(napi->dev),
6270                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6271                 local_bh_enable();
6272
6273                 if (!loop_end || loop_end(loop_end_arg, start_time))
6274                         break;
6275
6276                 if (unlikely(need_resched())) {
6277                         if (napi_poll)
6278                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6279                         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6280                                 preempt_enable();
6281                         rcu_read_unlock();
6282                         cond_resched();
6283                         if (loop_end(loop_end_arg, start_time))
6284                                 return;
6285                         goto restart;
6286                 }
6287                 cpu_relax();
6288         }
6289         if (napi_poll)
6290                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6291         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6292                 preempt_enable();
6293 out:
6294         rcu_read_unlock();
6295 }
6296 EXPORT_SYMBOL(napi_busy_loop);
6297
6298 #endif /* CONFIG_NET_RX_BUSY_POLL */
6299
6300 static void napi_hash_add(struct napi_struct *napi)
6301 {
6302         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6303                 return;
6304
6305         spin_lock(&napi_hash_lock);
6306
6307         /* 0..NR_CPUS range is reserved for sender_cpu use */
6308         do {
6309                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6310                         napi_gen_id = MIN_NAPI_ID;
6311         } while (napi_by_id(napi_gen_id));
6312         napi->napi_id = napi_gen_id;
6313
6314         hlist_add_head_rcu(&napi->napi_hash_node,
6315                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6316
6317         spin_unlock(&napi_hash_lock);
6318 }
6319
6320 /* Warning : caller is responsible to make sure rcu grace period
6321  * is respected before freeing memory containing @napi
6322  */
6323 static void napi_hash_del(struct napi_struct *napi)
6324 {
6325         spin_lock(&napi_hash_lock);
6326
6327         hlist_del_init_rcu(&napi->napi_hash_node);
6328
6329         spin_unlock(&napi_hash_lock);
6330 }
6331
6332 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6333 {
6334         struct napi_struct *napi;
6335
6336         napi = container_of(timer, struct napi_struct, timer);
6337
6338         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6339          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6340          */
6341         if (!napi_disable_pending(napi) &&
6342             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6343                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6344                 __napi_schedule_irqoff(napi);
6345         }
6346
6347         return HRTIMER_NORESTART;
6348 }
6349
6350 static void init_gro_hash(struct napi_struct *napi)
6351 {
6352         int i;
6353
6354         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6355                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6356                 napi->gro_hash[i].count = 0;
6357         }
6358         napi->gro_bitmask = 0;
6359 }
6360
6361 int dev_set_threaded(struct net_device *dev, bool threaded)
6362 {
6363         struct napi_struct *napi;
6364         int err = 0;
6365
6366         if (dev->threaded == threaded)
6367                 return 0;
6368
6369         if (threaded) {
6370                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6371                         if (!napi->thread) {
6372                                 err = napi_kthread_create(napi);
6373                                 if (err) {
6374                                         threaded = false;
6375                                         break;
6376                                 }
6377                         }
6378                 }
6379         }
6380
6381         dev->threaded = threaded;
6382
6383         /* Make sure kthread is created before THREADED bit
6384          * is set.
6385          */
6386         smp_mb__before_atomic();
6387
6388         /* Setting/unsetting threaded mode on a napi might not immediately
6389          * take effect, if the current napi instance is actively being
6390          * polled. In this case, the switch between threaded mode and
6391          * softirq mode will happen in the next round of napi_schedule().
6392          * This should not cause hiccups/stalls to the live traffic.
6393          */
6394         list_for_each_entry(napi, &dev->napi_list, dev_list)
6395                 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6396
6397         return err;
6398 }
6399 EXPORT_SYMBOL(dev_set_threaded);
6400
6401 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6402                            int (*poll)(struct napi_struct *, int), int weight)
6403 {
6404         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6405                 return;
6406
6407         INIT_LIST_HEAD(&napi->poll_list);
6408         INIT_HLIST_NODE(&napi->napi_hash_node);
6409         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6410         napi->timer.function = napi_watchdog;
6411         init_gro_hash(napi);
6412         napi->skb = NULL;
6413         INIT_LIST_HEAD(&napi->rx_list);
6414         napi->rx_count = 0;
6415         napi->poll = poll;
6416         if (weight > NAPI_POLL_WEIGHT)
6417                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6418                                 weight);
6419         napi->weight = weight;
6420         napi->dev = dev;
6421 #ifdef CONFIG_NETPOLL
6422         napi->poll_owner = -1;
6423 #endif
6424         napi->list_owner = -1;
6425         set_bit(NAPI_STATE_SCHED, &napi->state);
6426         set_bit(NAPI_STATE_NPSVC, &napi->state);
6427         list_add_rcu(&napi->dev_list, &dev->napi_list);
6428         napi_hash_add(napi);
6429         napi_get_frags_check(napi);
6430         /* Create kthread for this napi if dev->threaded is set.
6431          * Clear dev->threaded if kthread creation failed so that
6432          * threaded mode will not be enabled in napi_enable().
6433          */
6434         if (dev->threaded && napi_kthread_create(napi))
6435                 dev->threaded = 0;
6436 }
6437 EXPORT_SYMBOL(netif_napi_add_weight);
6438
6439 void napi_disable(struct napi_struct *n)
6440 {
6441         unsigned long val, new;
6442
6443         might_sleep();
6444         set_bit(NAPI_STATE_DISABLE, &n->state);
6445
6446         val = READ_ONCE(n->state);
6447         do {
6448                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6449                         usleep_range(20, 200);
6450                         val = READ_ONCE(n->state);
6451                 }
6452
6453                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6454                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6455         } while (!try_cmpxchg(&n->state, &val, new));
6456
6457         hrtimer_cancel(&n->timer);
6458
6459         clear_bit(NAPI_STATE_DISABLE, &n->state);
6460 }
6461 EXPORT_SYMBOL(napi_disable);
6462
6463 /**
6464  *      napi_enable - enable NAPI scheduling
6465  *      @n: NAPI context
6466  *
6467  * Resume NAPI from being scheduled on this context.
6468  * Must be paired with napi_disable.
6469  */
6470 void napi_enable(struct napi_struct *n)
6471 {
6472         unsigned long new, val = READ_ONCE(n->state);
6473
6474         do {
6475                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6476
6477                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6478                 if (n->dev->threaded && n->thread)
6479                         new |= NAPIF_STATE_THREADED;
6480         } while (!try_cmpxchg(&n->state, &val, new));
6481 }
6482 EXPORT_SYMBOL(napi_enable);
6483
6484 static void flush_gro_hash(struct napi_struct *napi)
6485 {
6486         int i;
6487
6488         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6489                 struct sk_buff *skb, *n;
6490
6491                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6492                         kfree_skb(skb);
6493                 napi->gro_hash[i].count = 0;
6494         }
6495 }
6496
6497 /* Must be called in process context */
6498 void __netif_napi_del(struct napi_struct *napi)
6499 {
6500         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6501                 return;
6502
6503         napi_hash_del(napi);
6504         list_del_rcu(&napi->dev_list);
6505         napi_free_frags(napi);
6506
6507         flush_gro_hash(napi);
6508         napi->gro_bitmask = 0;
6509
6510         if (napi->thread) {
6511                 kthread_stop(napi->thread);
6512                 napi->thread = NULL;
6513         }
6514 }
6515 EXPORT_SYMBOL(__netif_napi_del);
6516
6517 static int __napi_poll(struct napi_struct *n, bool *repoll)
6518 {
6519         int work, weight;
6520
6521         weight = n->weight;
6522
6523         /* This NAPI_STATE_SCHED test is for avoiding a race
6524          * with netpoll's poll_napi().  Only the entity which
6525          * obtains the lock and sees NAPI_STATE_SCHED set will
6526          * actually make the ->poll() call.  Therefore we avoid
6527          * accidentally calling ->poll() when NAPI is not scheduled.
6528          */
6529         work = 0;
6530         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6531                 work = n->poll(n, weight);
6532                 trace_napi_poll(n, work, weight);
6533         }
6534
6535         if (unlikely(work > weight))
6536                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6537                                 n->poll, work, weight);
6538
6539         if (likely(work < weight))
6540                 return work;
6541
6542         /* Drivers must not modify the NAPI state if they
6543          * consume the entire weight.  In such cases this code
6544          * still "owns" the NAPI instance and therefore can
6545          * move the instance around on the list at-will.
6546          */
6547         if (unlikely(napi_disable_pending(n))) {
6548                 napi_complete(n);
6549                 return work;
6550         }
6551
6552         /* The NAPI context has more processing work, but busy-polling
6553          * is preferred. Exit early.
6554          */
6555         if (napi_prefer_busy_poll(n)) {
6556                 if (napi_complete_done(n, work)) {
6557                         /* If timeout is not set, we need to make sure
6558                          * that the NAPI is re-scheduled.
6559                          */
6560                         napi_schedule(n);
6561                 }
6562                 return work;
6563         }
6564
6565         if (n->gro_bitmask) {
6566                 /* flush too old packets
6567                  * If HZ < 1000, flush all packets.
6568                  */
6569                 napi_gro_flush(n, HZ >= 1000);
6570         }
6571
6572         gro_normal_list(n);
6573
6574         /* Some drivers may have called napi_schedule
6575          * prior to exhausting their budget.
6576          */
6577         if (unlikely(!list_empty(&n->poll_list))) {
6578                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6579                              n->dev ? n->dev->name : "backlog");
6580                 return work;
6581         }
6582
6583         *repoll = true;
6584
6585         return work;
6586 }
6587
6588 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6589 {
6590         bool do_repoll = false;
6591         void *have;
6592         int work;
6593
6594         list_del_init(&n->poll_list);
6595
6596         have = netpoll_poll_lock(n);
6597
6598         work = __napi_poll(n, &do_repoll);
6599
6600         if (do_repoll)
6601                 list_add_tail(&n->poll_list, repoll);
6602
6603         netpoll_poll_unlock(have);
6604
6605         return work;
6606 }
6607
6608 static int napi_thread_wait(struct napi_struct *napi)
6609 {
6610         bool woken = false;
6611
6612         set_current_state(TASK_INTERRUPTIBLE);
6613
6614         while (!kthread_should_stop()) {
6615                 /* Testing SCHED_THREADED bit here to make sure the current
6616                  * kthread owns this napi and could poll on this napi.
6617                  * Testing SCHED bit is not enough because SCHED bit might be
6618                  * set by some other busy poll thread or by napi_disable().
6619                  */
6620                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6621                         WARN_ON(!list_empty(&napi->poll_list));
6622                         __set_current_state(TASK_RUNNING);
6623                         return 0;
6624                 }
6625
6626                 schedule();
6627                 /* woken being true indicates this thread owns this napi. */
6628                 woken = true;
6629                 set_current_state(TASK_INTERRUPTIBLE);
6630         }
6631         __set_current_state(TASK_RUNNING);
6632
6633         return -1;
6634 }
6635
6636 static void skb_defer_free_flush(struct softnet_data *sd)
6637 {
6638         struct sk_buff *skb, *next;
6639
6640         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6641         if (!READ_ONCE(sd->defer_list))
6642                 return;
6643
6644         spin_lock(&sd->defer_lock);
6645         skb = sd->defer_list;
6646         sd->defer_list = NULL;
6647         sd->defer_count = 0;
6648         spin_unlock(&sd->defer_lock);
6649
6650         while (skb != NULL) {
6651                 next = skb->next;
6652                 napi_consume_skb(skb, 1);
6653                 skb = next;
6654         }
6655 }
6656
6657 static int napi_threaded_poll(void *data)
6658 {
6659         struct napi_struct *napi = data;
6660         struct softnet_data *sd;
6661         void *have;
6662
6663         while (!napi_thread_wait(napi)) {
6664                 for (;;) {
6665                         bool repoll = false;
6666
6667                         local_bh_disable();
6668                         sd = this_cpu_ptr(&softnet_data);
6669                         sd->in_napi_threaded_poll = true;
6670
6671                         have = netpoll_poll_lock(napi);
6672                         __napi_poll(napi, &repoll);
6673                         netpoll_poll_unlock(have);
6674
6675                         sd->in_napi_threaded_poll = false;
6676                         barrier();
6677
6678                         if (sd_has_rps_ipi_waiting(sd)) {
6679                                 local_irq_disable();
6680                                 net_rps_action_and_irq_enable(sd);
6681                         }
6682                         skb_defer_free_flush(sd);
6683                         local_bh_enable();
6684
6685                         if (!repoll)
6686                                 break;
6687
6688                         cond_resched();
6689                 }
6690         }
6691         return 0;
6692 }
6693
6694 static __latent_entropy void net_rx_action(struct softirq_action *h)
6695 {
6696         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6697         unsigned long time_limit = jiffies +
6698                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6699         int budget = READ_ONCE(netdev_budget);
6700         LIST_HEAD(list);
6701         LIST_HEAD(repoll);
6702
6703 start:
6704         sd->in_net_rx_action = true;
6705         local_irq_disable();
6706         list_splice_init(&sd->poll_list, &list);
6707         local_irq_enable();
6708
6709         for (;;) {
6710                 struct napi_struct *n;
6711
6712                 skb_defer_free_flush(sd);
6713
6714                 if (list_empty(&list)) {
6715                         if (list_empty(&repoll)) {
6716                                 sd->in_net_rx_action = false;
6717                                 barrier();
6718                                 /* We need to check if ____napi_schedule()
6719                                  * had refilled poll_list while
6720                                  * sd->in_net_rx_action was true.
6721                                  */
6722                                 if (!list_empty(&sd->poll_list))
6723                                         goto start;
6724                                 if (!sd_has_rps_ipi_waiting(sd))
6725                                         goto end;
6726                         }
6727                         break;
6728                 }
6729
6730                 n = list_first_entry(&list, struct napi_struct, poll_list);
6731                 budget -= napi_poll(n, &repoll);
6732
6733                 /* If softirq window is exhausted then punt.
6734                  * Allow this to run for 2 jiffies since which will allow
6735                  * an average latency of 1.5/HZ.
6736                  */
6737                 if (unlikely(budget <= 0 ||
6738                              time_after_eq(jiffies, time_limit))) {
6739                         sd->time_squeeze++;
6740                         break;
6741                 }
6742         }
6743
6744         local_irq_disable();
6745
6746         list_splice_tail_init(&sd->poll_list, &list);
6747         list_splice_tail(&repoll, &list);
6748         list_splice(&list, &sd->poll_list);
6749         if (!list_empty(&sd->poll_list))
6750                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6751         else
6752                 sd->in_net_rx_action = false;
6753
6754         net_rps_action_and_irq_enable(sd);
6755 end:;
6756 }
6757
6758 struct netdev_adjacent {
6759         struct net_device *dev;
6760         netdevice_tracker dev_tracker;
6761
6762         /* upper master flag, there can only be one master device per list */
6763         bool master;
6764
6765         /* lookup ignore flag */
6766         bool ignore;
6767
6768         /* counter for the number of times this device was added to us */
6769         u16 ref_nr;
6770
6771         /* private field for the users */
6772         void *private;
6773
6774         struct list_head list;
6775         struct rcu_head rcu;
6776 };
6777
6778 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6779                                                  struct list_head *adj_list)
6780 {
6781         struct netdev_adjacent *adj;
6782
6783         list_for_each_entry(adj, adj_list, list) {
6784                 if (adj->dev == adj_dev)
6785                         return adj;
6786         }
6787         return NULL;
6788 }
6789
6790 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6791                                     struct netdev_nested_priv *priv)
6792 {
6793         struct net_device *dev = (struct net_device *)priv->data;
6794
6795         return upper_dev == dev;
6796 }
6797
6798 /**
6799  * netdev_has_upper_dev - Check if device is linked to an upper device
6800  * @dev: device
6801  * @upper_dev: upper device to check
6802  *
6803  * Find out if a device is linked to specified upper device and return true
6804  * in case it is. Note that this checks only immediate upper device,
6805  * not through a complete stack of devices. The caller must hold the RTNL lock.
6806  */
6807 bool netdev_has_upper_dev(struct net_device *dev,
6808                           struct net_device *upper_dev)
6809 {
6810         struct netdev_nested_priv priv = {
6811                 .data = (void *)upper_dev,
6812         };
6813
6814         ASSERT_RTNL();
6815
6816         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6817                                              &priv);
6818 }
6819 EXPORT_SYMBOL(netdev_has_upper_dev);
6820
6821 /**
6822  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6823  * @dev: device
6824  * @upper_dev: upper device to check
6825  *
6826  * Find out if a device is linked to specified upper device and return true
6827  * in case it is. Note that this checks the entire upper device chain.
6828  * The caller must hold rcu lock.
6829  */
6830
6831 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6832                                   struct net_device *upper_dev)
6833 {
6834         struct netdev_nested_priv priv = {
6835                 .data = (void *)upper_dev,
6836         };
6837
6838         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6839                                                &priv);
6840 }
6841 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6842
6843 /**
6844  * netdev_has_any_upper_dev - Check if device is linked to some device
6845  * @dev: device
6846  *
6847  * Find out if a device is linked to an upper device and return true in case
6848  * it is. The caller must hold the RTNL lock.
6849  */
6850 bool netdev_has_any_upper_dev(struct net_device *dev)
6851 {
6852         ASSERT_RTNL();
6853
6854         return !list_empty(&dev->adj_list.upper);
6855 }
6856 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6857
6858 /**
6859  * netdev_master_upper_dev_get - Get master upper device
6860  * @dev: device
6861  *
6862  * Find a master upper device and return pointer to it or NULL in case
6863  * it's not there. The caller must hold the RTNL lock.
6864  */
6865 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6866 {
6867         struct netdev_adjacent *upper;
6868
6869         ASSERT_RTNL();
6870
6871         if (list_empty(&dev->adj_list.upper))
6872                 return NULL;
6873
6874         upper = list_first_entry(&dev->adj_list.upper,
6875                                  struct netdev_adjacent, list);
6876         if (likely(upper->master))
6877                 return upper->dev;
6878         return NULL;
6879 }
6880 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6881
6882 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6883 {
6884         struct netdev_adjacent *upper;
6885
6886         ASSERT_RTNL();
6887
6888         if (list_empty(&dev->adj_list.upper))
6889                 return NULL;
6890
6891         upper = list_first_entry(&dev->adj_list.upper,
6892                                  struct netdev_adjacent, list);
6893         if (likely(upper->master) && !upper->ignore)
6894                 return upper->dev;
6895         return NULL;
6896 }
6897
6898 /**
6899  * netdev_has_any_lower_dev - Check if device is linked to some device
6900  * @dev: device
6901  *
6902  * Find out if a device is linked to a lower device and return true in case
6903  * it is. The caller must hold the RTNL lock.
6904  */
6905 static bool netdev_has_any_lower_dev(struct net_device *dev)
6906 {
6907         ASSERT_RTNL();
6908
6909         return !list_empty(&dev->adj_list.lower);
6910 }
6911
6912 void *netdev_adjacent_get_private(struct list_head *adj_list)
6913 {
6914         struct netdev_adjacent *adj;
6915
6916         adj = list_entry(adj_list, struct netdev_adjacent, list);
6917
6918         return adj->private;
6919 }
6920 EXPORT_SYMBOL(netdev_adjacent_get_private);
6921
6922 /**
6923  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6924  * @dev: device
6925  * @iter: list_head ** of the current position
6926  *
6927  * Gets the next device from the dev's upper list, starting from iter
6928  * position. The caller must hold RCU read lock.
6929  */
6930 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6931                                                  struct list_head **iter)
6932 {
6933         struct netdev_adjacent *upper;
6934
6935         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6936
6937         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6938
6939         if (&upper->list == &dev->adj_list.upper)
6940                 return NULL;
6941
6942         *iter = &upper->list;
6943
6944         return upper->dev;
6945 }
6946 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6947
6948 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6949                                                   struct list_head **iter,
6950                                                   bool *ignore)
6951 {
6952         struct netdev_adjacent *upper;
6953
6954         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6955
6956         if (&upper->list == &dev->adj_list.upper)
6957                 return NULL;
6958
6959         *iter = &upper->list;
6960         *ignore = upper->ignore;
6961
6962         return upper->dev;
6963 }
6964
6965 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6966                                                     struct list_head **iter)
6967 {
6968         struct netdev_adjacent *upper;
6969
6970         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6971
6972         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6973
6974         if (&upper->list == &dev->adj_list.upper)
6975                 return NULL;
6976
6977         *iter = &upper->list;
6978
6979         return upper->dev;
6980 }
6981
6982 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6983                                        int (*fn)(struct net_device *dev,
6984                                          struct netdev_nested_priv *priv),
6985                                        struct netdev_nested_priv *priv)
6986 {
6987         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6988         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6989         int ret, cur = 0;
6990         bool ignore;
6991
6992         now = dev;
6993         iter = &dev->adj_list.upper;
6994
6995         while (1) {
6996                 if (now != dev) {
6997                         ret = fn(now, priv);
6998                         if (ret)
6999                                 return ret;
7000                 }
7001
7002                 next = NULL;
7003                 while (1) {
7004                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7005                         if (!udev)
7006                                 break;
7007                         if (ignore)
7008                                 continue;
7009
7010                         next = udev;
7011                         niter = &udev->adj_list.upper;
7012                         dev_stack[cur] = now;
7013                         iter_stack[cur++] = iter;
7014                         break;
7015                 }
7016
7017                 if (!next) {
7018                         if (!cur)
7019                                 return 0;
7020                         next = dev_stack[--cur];
7021                         niter = iter_stack[cur];
7022                 }
7023
7024                 now = next;
7025                 iter = niter;
7026         }
7027
7028         return 0;
7029 }
7030
7031 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7032                                   int (*fn)(struct net_device *dev,
7033                                             struct netdev_nested_priv *priv),
7034                                   struct netdev_nested_priv *priv)
7035 {
7036         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7037         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7038         int ret, cur = 0;
7039
7040         now = dev;
7041         iter = &dev->adj_list.upper;
7042
7043         while (1) {
7044                 if (now != dev) {
7045                         ret = fn(now, priv);
7046                         if (ret)
7047                                 return ret;
7048                 }
7049
7050                 next = NULL;
7051                 while (1) {
7052                         udev = netdev_next_upper_dev_rcu(now, &iter);
7053                         if (!udev)
7054                                 break;
7055
7056                         next = udev;
7057                         niter = &udev->adj_list.upper;
7058                         dev_stack[cur] = now;
7059                         iter_stack[cur++] = iter;
7060                         break;
7061                 }
7062
7063                 if (!next) {
7064                         if (!cur)
7065                                 return 0;
7066                         next = dev_stack[--cur];
7067                         niter = iter_stack[cur];
7068                 }
7069
7070                 now = next;
7071                 iter = niter;
7072         }
7073
7074         return 0;
7075 }
7076 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7077
7078 static bool __netdev_has_upper_dev(struct net_device *dev,
7079                                    struct net_device *upper_dev)
7080 {
7081         struct netdev_nested_priv priv = {
7082                 .flags = 0,
7083                 .data = (void *)upper_dev,
7084         };
7085
7086         ASSERT_RTNL();
7087
7088         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7089                                            &priv);
7090 }
7091
7092 /**
7093  * netdev_lower_get_next_private - Get the next ->private from the
7094  *                                 lower neighbour list
7095  * @dev: device
7096  * @iter: list_head ** of the current position
7097  *
7098  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7099  * list, starting from iter position. The caller must hold either hold the
7100  * RTNL lock or its own locking that guarantees that the neighbour lower
7101  * list will remain unchanged.
7102  */
7103 void *netdev_lower_get_next_private(struct net_device *dev,
7104                                     struct list_head **iter)
7105 {
7106         struct netdev_adjacent *lower;
7107
7108         lower = list_entry(*iter, struct netdev_adjacent, list);
7109
7110         if (&lower->list == &dev->adj_list.lower)
7111                 return NULL;
7112
7113         *iter = lower->list.next;
7114
7115         return lower->private;
7116 }
7117 EXPORT_SYMBOL(netdev_lower_get_next_private);
7118
7119 /**
7120  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7121  *                                     lower neighbour list, RCU
7122  *                                     variant
7123  * @dev: device
7124  * @iter: list_head ** of the current position
7125  *
7126  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7127  * list, starting from iter position. The caller must hold RCU read lock.
7128  */
7129 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7130                                         struct list_head **iter)
7131 {
7132         struct netdev_adjacent *lower;
7133
7134         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7135
7136         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7137
7138         if (&lower->list == &dev->adj_list.lower)
7139                 return NULL;
7140
7141         *iter = &lower->list;
7142
7143         return lower->private;
7144 }
7145 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7146
7147 /**
7148  * netdev_lower_get_next - Get the next device from the lower neighbour
7149  *                         list
7150  * @dev: device
7151  * @iter: list_head ** of the current position
7152  *
7153  * Gets the next netdev_adjacent from the dev's lower neighbour
7154  * list, starting from iter position. The caller must hold RTNL lock or
7155  * its own locking that guarantees that the neighbour lower
7156  * list will remain unchanged.
7157  */
7158 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7159 {
7160         struct netdev_adjacent *lower;
7161
7162         lower = list_entry(*iter, struct netdev_adjacent, list);
7163
7164         if (&lower->list == &dev->adj_list.lower)
7165                 return NULL;
7166
7167         *iter = lower->list.next;
7168
7169         return lower->dev;
7170 }
7171 EXPORT_SYMBOL(netdev_lower_get_next);
7172
7173 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7174                                                 struct list_head **iter)
7175 {
7176         struct netdev_adjacent *lower;
7177
7178         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7179
7180         if (&lower->list == &dev->adj_list.lower)
7181                 return NULL;
7182
7183         *iter = &lower->list;
7184
7185         return lower->dev;
7186 }
7187
7188 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7189                                                   struct list_head **iter,
7190                                                   bool *ignore)
7191 {
7192         struct netdev_adjacent *lower;
7193
7194         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7195
7196         if (&lower->list == &dev->adj_list.lower)
7197                 return NULL;
7198
7199         *iter = &lower->list;
7200         *ignore = lower->ignore;
7201
7202         return lower->dev;
7203 }
7204
7205 int netdev_walk_all_lower_dev(struct net_device *dev,
7206                               int (*fn)(struct net_device *dev,
7207                                         struct netdev_nested_priv *priv),
7208                               struct netdev_nested_priv *priv)
7209 {
7210         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7211         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7212         int ret, cur = 0;
7213
7214         now = dev;
7215         iter = &dev->adj_list.lower;
7216
7217         while (1) {
7218                 if (now != dev) {
7219                         ret = fn(now, priv);
7220                         if (ret)
7221                                 return ret;
7222                 }
7223
7224                 next = NULL;
7225                 while (1) {
7226                         ldev = netdev_next_lower_dev(now, &iter);
7227                         if (!ldev)
7228                                 break;
7229
7230                         next = ldev;
7231                         niter = &ldev->adj_list.lower;
7232                         dev_stack[cur] = now;
7233                         iter_stack[cur++] = iter;
7234                         break;
7235                 }
7236
7237                 if (!next) {
7238                         if (!cur)
7239                                 return 0;
7240                         next = dev_stack[--cur];
7241                         niter = iter_stack[cur];
7242                 }
7243
7244                 now = next;
7245                 iter = niter;
7246         }
7247
7248         return 0;
7249 }
7250 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7251
7252 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7253                                        int (*fn)(struct net_device *dev,
7254                                          struct netdev_nested_priv *priv),
7255                                        struct netdev_nested_priv *priv)
7256 {
7257         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7258         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7259         int ret, cur = 0;
7260         bool ignore;
7261
7262         now = dev;
7263         iter = &dev->adj_list.lower;
7264
7265         while (1) {
7266                 if (now != dev) {
7267                         ret = fn(now, priv);
7268                         if (ret)
7269                                 return ret;
7270                 }
7271
7272                 next = NULL;
7273                 while (1) {
7274                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7275                         if (!ldev)
7276                                 break;
7277                         if (ignore)
7278                                 continue;
7279
7280                         next = ldev;
7281                         niter = &ldev->adj_list.lower;
7282                         dev_stack[cur] = now;
7283                         iter_stack[cur++] = iter;
7284                         break;
7285                 }
7286
7287                 if (!next) {
7288                         if (!cur)
7289                                 return 0;
7290                         next = dev_stack[--cur];
7291                         niter = iter_stack[cur];
7292                 }
7293
7294                 now = next;
7295                 iter = niter;
7296         }
7297
7298         return 0;
7299 }
7300
7301 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7302                                              struct list_head **iter)
7303 {
7304         struct netdev_adjacent *lower;
7305
7306         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7307         if (&lower->list == &dev->adj_list.lower)
7308                 return NULL;
7309
7310         *iter = &lower->list;
7311
7312         return lower->dev;
7313 }
7314 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7315
7316 static u8 __netdev_upper_depth(struct net_device *dev)
7317 {
7318         struct net_device *udev;
7319         struct list_head *iter;
7320         u8 max_depth = 0;
7321         bool ignore;
7322
7323         for (iter = &dev->adj_list.upper,
7324              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7325              udev;
7326              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7327                 if (ignore)
7328                         continue;
7329                 if (max_depth < udev->upper_level)
7330                         max_depth = udev->upper_level;
7331         }
7332
7333         return max_depth;
7334 }
7335
7336 static u8 __netdev_lower_depth(struct net_device *dev)
7337 {
7338         struct net_device *ldev;
7339         struct list_head *iter;
7340         u8 max_depth = 0;
7341         bool ignore;
7342
7343         for (iter = &dev->adj_list.lower,
7344              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7345              ldev;
7346              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7347                 if (ignore)
7348                         continue;
7349                 if (max_depth < ldev->lower_level)
7350                         max_depth = ldev->lower_level;
7351         }
7352
7353         return max_depth;
7354 }
7355
7356 static int __netdev_update_upper_level(struct net_device *dev,
7357                                        struct netdev_nested_priv *__unused)
7358 {
7359         dev->upper_level = __netdev_upper_depth(dev) + 1;
7360         return 0;
7361 }
7362
7363 #ifdef CONFIG_LOCKDEP
7364 static LIST_HEAD(net_unlink_list);
7365
7366 static void net_unlink_todo(struct net_device *dev)
7367 {
7368         if (list_empty(&dev->unlink_list))
7369                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7370 }
7371 #endif
7372
7373 static int __netdev_update_lower_level(struct net_device *dev,
7374                                        struct netdev_nested_priv *priv)
7375 {
7376         dev->lower_level = __netdev_lower_depth(dev) + 1;
7377
7378 #ifdef CONFIG_LOCKDEP
7379         if (!priv)
7380                 return 0;
7381
7382         if (priv->flags & NESTED_SYNC_IMM)
7383                 dev->nested_level = dev->lower_level - 1;
7384         if (priv->flags & NESTED_SYNC_TODO)
7385                 net_unlink_todo(dev);
7386 #endif
7387         return 0;
7388 }
7389
7390 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7391                                   int (*fn)(struct net_device *dev,
7392                                             struct netdev_nested_priv *priv),
7393                                   struct netdev_nested_priv *priv)
7394 {
7395         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7396         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7397         int ret, cur = 0;
7398
7399         now = dev;
7400         iter = &dev->adj_list.lower;
7401
7402         while (1) {
7403                 if (now != dev) {
7404                         ret = fn(now, priv);
7405                         if (ret)
7406                                 return ret;
7407                 }
7408
7409                 next = NULL;
7410                 while (1) {
7411                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7412                         if (!ldev)
7413                                 break;
7414
7415                         next = ldev;
7416                         niter = &ldev->adj_list.lower;
7417                         dev_stack[cur] = now;
7418                         iter_stack[cur++] = iter;
7419                         break;
7420                 }
7421
7422                 if (!next) {
7423                         if (!cur)
7424                                 return 0;
7425                         next = dev_stack[--cur];
7426                         niter = iter_stack[cur];
7427                 }
7428
7429                 now = next;
7430                 iter = niter;
7431         }
7432
7433         return 0;
7434 }
7435 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7436
7437 /**
7438  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7439  *                                     lower neighbour list, RCU
7440  *                                     variant
7441  * @dev: device
7442  *
7443  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7444  * list. The caller must hold RCU read lock.
7445  */
7446 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7447 {
7448         struct netdev_adjacent *lower;
7449
7450         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7451                         struct netdev_adjacent, list);
7452         if (lower)
7453                 return lower->private;
7454         return NULL;
7455 }
7456 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7457
7458 /**
7459  * netdev_master_upper_dev_get_rcu - Get master upper device
7460  * @dev: device
7461  *
7462  * Find a master upper device and return pointer to it or NULL in case
7463  * it's not there. The caller must hold the RCU read lock.
7464  */
7465 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7466 {
7467         struct netdev_adjacent *upper;
7468
7469         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7470                                        struct netdev_adjacent, list);
7471         if (upper && likely(upper->master))
7472                 return upper->dev;
7473         return NULL;
7474 }
7475 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7476
7477 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7478                               struct net_device *adj_dev,
7479                               struct list_head *dev_list)
7480 {
7481         char linkname[IFNAMSIZ+7];
7482
7483         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7484                 "upper_%s" : "lower_%s", adj_dev->name);
7485         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7486                                  linkname);
7487 }
7488 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7489                                char *name,
7490                                struct list_head *dev_list)
7491 {
7492         char linkname[IFNAMSIZ+7];
7493
7494         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7495                 "upper_%s" : "lower_%s", name);
7496         sysfs_remove_link(&(dev->dev.kobj), linkname);
7497 }
7498
7499 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7500                                                  struct net_device *adj_dev,
7501                                                  struct list_head *dev_list)
7502 {
7503         return (dev_list == &dev->adj_list.upper ||
7504                 dev_list == &dev->adj_list.lower) &&
7505                 net_eq(dev_net(dev), dev_net(adj_dev));
7506 }
7507
7508 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7509                                         struct net_device *adj_dev,
7510                                         struct list_head *dev_list,
7511                                         void *private, bool master)
7512 {
7513         struct netdev_adjacent *adj;
7514         int ret;
7515
7516         adj = __netdev_find_adj(adj_dev, dev_list);
7517
7518         if (adj) {
7519                 adj->ref_nr += 1;
7520                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7521                          dev->name, adj_dev->name, adj->ref_nr);
7522
7523                 return 0;
7524         }
7525
7526         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7527         if (!adj)
7528                 return -ENOMEM;
7529
7530         adj->dev = adj_dev;
7531         adj->master = master;
7532         adj->ref_nr = 1;
7533         adj->private = private;
7534         adj->ignore = false;
7535         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7536
7537         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7538                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7539
7540         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7541                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7542                 if (ret)
7543                         goto free_adj;
7544         }
7545
7546         /* Ensure that master link is always the first item in list. */
7547         if (master) {
7548                 ret = sysfs_create_link(&(dev->dev.kobj),
7549                                         &(adj_dev->dev.kobj), "master");
7550                 if (ret)
7551                         goto remove_symlinks;
7552
7553                 list_add_rcu(&adj->list, dev_list);
7554         } else {
7555                 list_add_tail_rcu(&adj->list, dev_list);
7556         }
7557
7558         return 0;
7559
7560 remove_symlinks:
7561         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7562                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7563 free_adj:
7564         netdev_put(adj_dev, &adj->dev_tracker);
7565         kfree(adj);
7566
7567         return ret;
7568 }
7569
7570 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7571                                          struct net_device *adj_dev,
7572                                          u16 ref_nr,
7573                                          struct list_head *dev_list)
7574 {
7575         struct netdev_adjacent *adj;
7576
7577         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7578                  dev->name, adj_dev->name, ref_nr);
7579
7580         adj = __netdev_find_adj(adj_dev, dev_list);
7581
7582         if (!adj) {
7583                 pr_err("Adjacency does not exist for device %s from %s\n",
7584                        dev->name, adj_dev->name);
7585                 WARN_ON(1);
7586                 return;
7587         }
7588
7589         if (adj->ref_nr > ref_nr) {
7590                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7591                          dev->name, adj_dev->name, ref_nr,
7592                          adj->ref_nr - ref_nr);
7593                 adj->ref_nr -= ref_nr;
7594                 return;
7595         }
7596
7597         if (adj->master)
7598                 sysfs_remove_link(&(dev->dev.kobj), "master");
7599
7600         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7601                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7602
7603         list_del_rcu(&adj->list);
7604         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7605                  adj_dev->name, dev->name, adj_dev->name);
7606         netdev_put(adj_dev, &adj->dev_tracker);
7607         kfree_rcu(adj, rcu);
7608 }
7609
7610 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7611                                             struct net_device *upper_dev,
7612                                             struct list_head *up_list,
7613                                             struct list_head *down_list,
7614                                             void *private, bool master)
7615 {
7616         int ret;
7617
7618         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7619                                            private, master);
7620         if (ret)
7621                 return ret;
7622
7623         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7624                                            private, false);
7625         if (ret) {
7626                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7627                 return ret;
7628         }
7629
7630         return 0;
7631 }
7632
7633 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7634                                                struct net_device *upper_dev,
7635                                                u16 ref_nr,
7636                                                struct list_head *up_list,
7637                                                struct list_head *down_list)
7638 {
7639         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7640         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7641 }
7642
7643 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7644                                                 struct net_device *upper_dev,
7645                                                 void *private, bool master)
7646 {
7647         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7648                                                 &dev->adj_list.upper,
7649                                                 &upper_dev->adj_list.lower,
7650                                                 private, master);
7651 }
7652
7653 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7654                                                    struct net_device *upper_dev)
7655 {
7656         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7657                                            &dev->adj_list.upper,
7658                                            &upper_dev->adj_list.lower);
7659 }
7660
7661 static int __netdev_upper_dev_link(struct net_device *dev,
7662                                    struct net_device *upper_dev, bool master,
7663                                    void *upper_priv, void *upper_info,
7664                                    struct netdev_nested_priv *priv,
7665                                    struct netlink_ext_ack *extack)
7666 {
7667         struct netdev_notifier_changeupper_info changeupper_info = {
7668                 .info = {
7669                         .dev = dev,
7670                         .extack = extack,
7671                 },
7672                 .upper_dev = upper_dev,
7673                 .master = master,
7674                 .linking = true,
7675                 .upper_info = upper_info,
7676         };
7677         struct net_device *master_dev;
7678         int ret = 0;
7679
7680         ASSERT_RTNL();
7681
7682         if (dev == upper_dev)
7683                 return -EBUSY;
7684
7685         /* To prevent loops, check if dev is not upper device to upper_dev. */
7686         if (__netdev_has_upper_dev(upper_dev, dev))
7687                 return -EBUSY;
7688
7689         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7690                 return -EMLINK;
7691
7692         if (!master) {
7693                 if (__netdev_has_upper_dev(dev, upper_dev))
7694                         return -EEXIST;
7695         } else {
7696                 master_dev = __netdev_master_upper_dev_get(dev);
7697                 if (master_dev)
7698                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7699         }
7700
7701         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7702                                             &changeupper_info.info);
7703         ret = notifier_to_errno(ret);
7704         if (ret)
7705                 return ret;
7706
7707         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7708                                                    master);
7709         if (ret)
7710                 return ret;
7711
7712         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7713                                             &changeupper_info.info);
7714         ret = notifier_to_errno(ret);
7715         if (ret)
7716                 goto rollback;
7717
7718         __netdev_update_upper_level(dev, NULL);
7719         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7720
7721         __netdev_update_lower_level(upper_dev, priv);
7722         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7723                                     priv);
7724
7725         return 0;
7726
7727 rollback:
7728         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7729
7730         return ret;
7731 }
7732
7733 /**
7734  * netdev_upper_dev_link - Add a link to the upper device
7735  * @dev: device
7736  * @upper_dev: new upper device
7737  * @extack: netlink extended ack
7738  *
7739  * Adds a link to device which is upper to this one. The caller must hold
7740  * the RTNL lock. On a failure a negative errno code is returned.
7741  * On success the reference counts are adjusted and the function
7742  * returns zero.
7743  */
7744 int netdev_upper_dev_link(struct net_device *dev,
7745                           struct net_device *upper_dev,
7746                           struct netlink_ext_ack *extack)
7747 {
7748         struct netdev_nested_priv priv = {
7749                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7750                 .data = NULL,
7751         };
7752
7753         return __netdev_upper_dev_link(dev, upper_dev, false,
7754                                        NULL, NULL, &priv, extack);
7755 }
7756 EXPORT_SYMBOL(netdev_upper_dev_link);
7757
7758 /**
7759  * netdev_master_upper_dev_link - Add a master link to the upper device
7760  * @dev: device
7761  * @upper_dev: new upper device
7762  * @upper_priv: upper device private
7763  * @upper_info: upper info to be passed down via notifier
7764  * @extack: netlink extended ack
7765  *
7766  * Adds a link to device which is upper to this one. In this case, only
7767  * one master upper device can be linked, although other non-master devices
7768  * might be linked as well. The caller must hold the RTNL lock.
7769  * On a failure a negative errno code is returned. On success the reference
7770  * counts are adjusted and the function returns zero.
7771  */
7772 int netdev_master_upper_dev_link(struct net_device *dev,
7773                                  struct net_device *upper_dev,
7774                                  void *upper_priv, void *upper_info,
7775                                  struct netlink_ext_ack *extack)
7776 {
7777         struct netdev_nested_priv priv = {
7778                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7779                 .data = NULL,
7780         };
7781
7782         return __netdev_upper_dev_link(dev, upper_dev, true,
7783                                        upper_priv, upper_info, &priv, extack);
7784 }
7785 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7786
7787 static void __netdev_upper_dev_unlink(struct net_device *dev,
7788                                       struct net_device *upper_dev,
7789                                       struct netdev_nested_priv *priv)
7790 {
7791         struct netdev_notifier_changeupper_info changeupper_info = {
7792                 .info = {
7793                         .dev = dev,
7794                 },
7795                 .upper_dev = upper_dev,
7796                 .linking = false,
7797         };
7798
7799         ASSERT_RTNL();
7800
7801         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7802
7803         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7804                                       &changeupper_info.info);
7805
7806         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7807
7808         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7809                                       &changeupper_info.info);
7810
7811         __netdev_update_upper_level(dev, NULL);
7812         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7813
7814         __netdev_update_lower_level(upper_dev, priv);
7815         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7816                                     priv);
7817 }
7818
7819 /**
7820  * netdev_upper_dev_unlink - Removes a link to upper device
7821  * @dev: device
7822  * @upper_dev: new upper device
7823  *
7824  * Removes a link to device which is upper to this one. The caller must hold
7825  * the RTNL lock.
7826  */
7827 void netdev_upper_dev_unlink(struct net_device *dev,
7828                              struct net_device *upper_dev)
7829 {
7830         struct netdev_nested_priv priv = {
7831                 .flags = NESTED_SYNC_TODO,
7832                 .data = NULL,
7833         };
7834
7835         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7836 }
7837 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7838
7839 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7840                                       struct net_device *lower_dev,
7841                                       bool val)
7842 {
7843         struct netdev_adjacent *adj;
7844
7845         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7846         if (adj)
7847                 adj->ignore = val;
7848
7849         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7850         if (adj)
7851                 adj->ignore = val;
7852 }
7853
7854 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7855                                         struct net_device *lower_dev)
7856 {
7857         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7858 }
7859
7860 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7861                                        struct net_device *lower_dev)
7862 {
7863         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7864 }
7865
7866 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7867                                    struct net_device *new_dev,
7868                                    struct net_device *dev,
7869                                    struct netlink_ext_ack *extack)
7870 {
7871         struct netdev_nested_priv priv = {
7872                 .flags = 0,
7873                 .data = NULL,
7874         };
7875         int err;
7876
7877         if (!new_dev)
7878                 return 0;
7879
7880         if (old_dev && new_dev != old_dev)
7881                 netdev_adjacent_dev_disable(dev, old_dev);
7882         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7883                                       extack);
7884         if (err) {
7885                 if (old_dev && new_dev != old_dev)
7886                         netdev_adjacent_dev_enable(dev, old_dev);
7887                 return err;
7888         }
7889
7890         return 0;
7891 }
7892 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7893
7894 void netdev_adjacent_change_commit(struct net_device *old_dev,
7895                                    struct net_device *new_dev,
7896                                    struct net_device *dev)
7897 {
7898         struct netdev_nested_priv priv = {
7899                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7900                 .data = NULL,
7901         };
7902
7903         if (!new_dev || !old_dev)
7904                 return;
7905
7906         if (new_dev == old_dev)
7907                 return;
7908
7909         netdev_adjacent_dev_enable(dev, old_dev);
7910         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7911 }
7912 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7913
7914 void netdev_adjacent_change_abort(struct net_device *old_dev,
7915                                   struct net_device *new_dev,
7916                                   struct net_device *dev)
7917 {
7918         struct netdev_nested_priv priv = {
7919                 .flags = 0,
7920                 .data = NULL,
7921         };
7922
7923         if (!new_dev)
7924                 return;
7925
7926         if (old_dev && new_dev != old_dev)
7927                 netdev_adjacent_dev_enable(dev, old_dev);
7928
7929         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7930 }
7931 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7932
7933 /**
7934  * netdev_bonding_info_change - Dispatch event about slave change
7935  * @dev: device
7936  * @bonding_info: info to dispatch
7937  *
7938  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7939  * The caller must hold the RTNL lock.
7940  */
7941 void netdev_bonding_info_change(struct net_device *dev,
7942                                 struct netdev_bonding_info *bonding_info)
7943 {
7944         struct netdev_notifier_bonding_info info = {
7945                 .info.dev = dev,
7946         };
7947
7948         memcpy(&info.bonding_info, bonding_info,
7949                sizeof(struct netdev_bonding_info));
7950         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7951                                       &info.info);
7952 }
7953 EXPORT_SYMBOL(netdev_bonding_info_change);
7954
7955 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7956                                            struct netlink_ext_ack *extack)
7957 {
7958         struct netdev_notifier_offload_xstats_info info = {
7959                 .info.dev = dev,
7960                 .info.extack = extack,
7961                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7962         };
7963         int err;
7964         int rc;
7965
7966         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7967                                          GFP_KERNEL);
7968         if (!dev->offload_xstats_l3)
7969                 return -ENOMEM;
7970
7971         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7972                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7973                                                   &info.info);
7974         err = notifier_to_errno(rc);
7975         if (err)
7976                 goto free_stats;
7977
7978         return 0;
7979
7980 free_stats:
7981         kfree(dev->offload_xstats_l3);
7982         dev->offload_xstats_l3 = NULL;
7983         return err;
7984 }
7985
7986 int netdev_offload_xstats_enable(struct net_device *dev,
7987                                  enum netdev_offload_xstats_type type,
7988                                  struct netlink_ext_ack *extack)
7989 {
7990         ASSERT_RTNL();
7991
7992         if (netdev_offload_xstats_enabled(dev, type))
7993                 return -EALREADY;
7994
7995         switch (type) {
7996         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7997                 return netdev_offload_xstats_enable_l3(dev, extack);
7998         }
7999
8000         WARN_ON(1);
8001         return -EINVAL;
8002 }
8003 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8004
8005 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8006 {
8007         struct netdev_notifier_offload_xstats_info info = {
8008                 .info.dev = dev,
8009                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8010         };
8011
8012         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8013                                       &info.info);
8014         kfree(dev->offload_xstats_l3);
8015         dev->offload_xstats_l3 = NULL;
8016 }
8017
8018 int netdev_offload_xstats_disable(struct net_device *dev,
8019                                   enum netdev_offload_xstats_type type)
8020 {
8021         ASSERT_RTNL();
8022
8023         if (!netdev_offload_xstats_enabled(dev, type))
8024                 return -EALREADY;
8025
8026         switch (type) {
8027         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8028                 netdev_offload_xstats_disable_l3(dev);
8029                 return 0;
8030         }
8031
8032         WARN_ON(1);
8033         return -EINVAL;
8034 }
8035 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8036
8037 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8038 {
8039         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8040 }
8041
8042 static struct rtnl_hw_stats64 *
8043 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8044                               enum netdev_offload_xstats_type type)
8045 {
8046         switch (type) {
8047         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8048                 return dev->offload_xstats_l3;
8049         }
8050
8051         WARN_ON(1);
8052         return NULL;
8053 }
8054
8055 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8056                                    enum netdev_offload_xstats_type type)
8057 {
8058         ASSERT_RTNL();
8059
8060         return netdev_offload_xstats_get_ptr(dev, type);
8061 }
8062 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8063
8064 struct netdev_notifier_offload_xstats_ru {
8065         bool used;
8066 };
8067
8068 struct netdev_notifier_offload_xstats_rd {
8069         struct rtnl_hw_stats64 stats;
8070         bool used;
8071 };
8072
8073 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8074                                   const struct rtnl_hw_stats64 *src)
8075 {
8076         dest->rx_packets          += src->rx_packets;
8077         dest->tx_packets          += src->tx_packets;
8078         dest->rx_bytes            += src->rx_bytes;
8079         dest->tx_bytes            += src->tx_bytes;
8080         dest->rx_errors           += src->rx_errors;
8081         dest->tx_errors           += src->tx_errors;
8082         dest->rx_dropped          += src->rx_dropped;
8083         dest->tx_dropped          += src->tx_dropped;
8084         dest->multicast           += src->multicast;
8085 }
8086
8087 static int netdev_offload_xstats_get_used(struct net_device *dev,
8088                                           enum netdev_offload_xstats_type type,
8089                                           bool *p_used,
8090                                           struct netlink_ext_ack *extack)
8091 {
8092         struct netdev_notifier_offload_xstats_ru report_used = {};
8093         struct netdev_notifier_offload_xstats_info info = {
8094                 .info.dev = dev,
8095                 .info.extack = extack,
8096                 .type = type,
8097                 .report_used = &report_used,
8098         };
8099         int rc;
8100
8101         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8102         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8103                                            &info.info);
8104         *p_used = report_used.used;
8105         return notifier_to_errno(rc);
8106 }
8107
8108 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8109                                            enum netdev_offload_xstats_type type,
8110                                            struct rtnl_hw_stats64 *p_stats,
8111                                            bool *p_used,
8112                                            struct netlink_ext_ack *extack)
8113 {
8114         struct netdev_notifier_offload_xstats_rd report_delta = {};
8115         struct netdev_notifier_offload_xstats_info info = {
8116                 .info.dev = dev,
8117                 .info.extack = extack,
8118                 .type = type,
8119                 .report_delta = &report_delta,
8120         };
8121         struct rtnl_hw_stats64 *stats;
8122         int rc;
8123
8124         stats = netdev_offload_xstats_get_ptr(dev, type);
8125         if (WARN_ON(!stats))
8126                 return -EINVAL;
8127
8128         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8129                                            &info.info);
8130
8131         /* Cache whatever we got, even if there was an error, otherwise the
8132          * successful stats retrievals would get lost.
8133          */
8134         netdev_hw_stats64_add(stats, &report_delta.stats);
8135
8136         if (p_stats)
8137                 *p_stats = *stats;
8138         *p_used = report_delta.used;
8139
8140         return notifier_to_errno(rc);
8141 }
8142
8143 int netdev_offload_xstats_get(struct net_device *dev,
8144                               enum netdev_offload_xstats_type type,
8145                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8146                               struct netlink_ext_ack *extack)
8147 {
8148         ASSERT_RTNL();
8149
8150         if (p_stats)
8151                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8152                                                        p_used, extack);
8153         else
8154                 return netdev_offload_xstats_get_used(dev, type, p_used,
8155                                                       extack);
8156 }
8157 EXPORT_SYMBOL(netdev_offload_xstats_get);
8158
8159 void
8160 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8161                                    const struct rtnl_hw_stats64 *stats)
8162 {
8163         report_delta->used = true;
8164         netdev_hw_stats64_add(&report_delta->stats, stats);
8165 }
8166 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8167
8168 void
8169 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8170 {
8171         report_used->used = true;
8172 }
8173 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8174
8175 void netdev_offload_xstats_push_delta(struct net_device *dev,
8176                                       enum netdev_offload_xstats_type type,
8177                                       const struct rtnl_hw_stats64 *p_stats)
8178 {
8179         struct rtnl_hw_stats64 *stats;
8180
8181         ASSERT_RTNL();
8182
8183         stats = netdev_offload_xstats_get_ptr(dev, type);
8184         if (WARN_ON(!stats))
8185                 return;
8186
8187         netdev_hw_stats64_add(stats, p_stats);
8188 }
8189 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8190
8191 /**
8192  * netdev_get_xmit_slave - Get the xmit slave of master device
8193  * @dev: device
8194  * @skb: The packet
8195  * @all_slaves: assume all the slaves are active
8196  *
8197  * The reference counters are not incremented so the caller must be
8198  * careful with locks. The caller must hold RCU lock.
8199  * %NULL is returned if no slave is found.
8200  */
8201
8202 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8203                                          struct sk_buff *skb,
8204                                          bool all_slaves)
8205 {
8206         const struct net_device_ops *ops = dev->netdev_ops;
8207
8208         if (!ops->ndo_get_xmit_slave)
8209                 return NULL;
8210         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8211 }
8212 EXPORT_SYMBOL(netdev_get_xmit_slave);
8213
8214 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8215                                                   struct sock *sk)
8216 {
8217         const struct net_device_ops *ops = dev->netdev_ops;
8218
8219         if (!ops->ndo_sk_get_lower_dev)
8220                 return NULL;
8221         return ops->ndo_sk_get_lower_dev(dev, sk);
8222 }
8223
8224 /**
8225  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8226  * @dev: device
8227  * @sk: the socket
8228  *
8229  * %NULL is returned if no lower device is found.
8230  */
8231
8232 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8233                                             struct sock *sk)
8234 {
8235         struct net_device *lower;
8236
8237         lower = netdev_sk_get_lower_dev(dev, sk);
8238         while (lower) {
8239                 dev = lower;
8240                 lower = netdev_sk_get_lower_dev(dev, sk);
8241         }
8242
8243         return dev;
8244 }
8245 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8246
8247 static void netdev_adjacent_add_links(struct net_device *dev)
8248 {
8249         struct netdev_adjacent *iter;
8250
8251         struct net *net = dev_net(dev);
8252
8253         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8254                 if (!net_eq(net, dev_net(iter->dev)))
8255                         continue;
8256                 netdev_adjacent_sysfs_add(iter->dev, dev,
8257                                           &iter->dev->adj_list.lower);
8258                 netdev_adjacent_sysfs_add(dev, iter->dev,
8259                                           &dev->adj_list.upper);
8260         }
8261
8262         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8263                 if (!net_eq(net, dev_net(iter->dev)))
8264                         continue;
8265                 netdev_adjacent_sysfs_add(iter->dev, dev,
8266                                           &iter->dev->adj_list.upper);
8267                 netdev_adjacent_sysfs_add(dev, iter->dev,
8268                                           &dev->adj_list.lower);
8269         }
8270 }
8271
8272 static void netdev_adjacent_del_links(struct net_device *dev)
8273 {
8274         struct netdev_adjacent *iter;
8275
8276         struct net *net = dev_net(dev);
8277
8278         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8279                 if (!net_eq(net, dev_net(iter->dev)))
8280                         continue;
8281                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8282                                           &iter->dev->adj_list.lower);
8283                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8284                                           &dev->adj_list.upper);
8285         }
8286
8287         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8288                 if (!net_eq(net, dev_net(iter->dev)))
8289                         continue;
8290                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8291                                           &iter->dev->adj_list.upper);
8292                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8293                                           &dev->adj_list.lower);
8294         }
8295 }
8296
8297 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8298 {
8299         struct netdev_adjacent *iter;
8300
8301         struct net *net = dev_net(dev);
8302
8303         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8304                 if (!net_eq(net, dev_net(iter->dev)))
8305                         continue;
8306                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8307                                           &iter->dev->adj_list.lower);
8308                 netdev_adjacent_sysfs_add(iter->dev, dev,
8309                                           &iter->dev->adj_list.lower);
8310         }
8311
8312         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8313                 if (!net_eq(net, dev_net(iter->dev)))
8314                         continue;
8315                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8316                                           &iter->dev->adj_list.upper);
8317                 netdev_adjacent_sysfs_add(iter->dev, dev,
8318                                           &iter->dev->adj_list.upper);
8319         }
8320 }
8321
8322 void *netdev_lower_dev_get_private(struct net_device *dev,
8323                                    struct net_device *lower_dev)
8324 {
8325         struct netdev_adjacent *lower;
8326
8327         if (!lower_dev)
8328                 return NULL;
8329         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8330         if (!lower)
8331                 return NULL;
8332
8333         return lower->private;
8334 }
8335 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8336
8337
8338 /**
8339  * netdev_lower_state_changed - Dispatch event about lower device state change
8340  * @lower_dev: device
8341  * @lower_state_info: state to dispatch
8342  *
8343  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8344  * The caller must hold the RTNL lock.
8345  */
8346 void netdev_lower_state_changed(struct net_device *lower_dev,
8347                                 void *lower_state_info)
8348 {
8349         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8350                 .info.dev = lower_dev,
8351         };
8352
8353         ASSERT_RTNL();
8354         changelowerstate_info.lower_state_info = lower_state_info;
8355         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8356                                       &changelowerstate_info.info);
8357 }
8358 EXPORT_SYMBOL(netdev_lower_state_changed);
8359
8360 static void dev_change_rx_flags(struct net_device *dev, int flags)
8361 {
8362         const struct net_device_ops *ops = dev->netdev_ops;
8363
8364         if (ops->ndo_change_rx_flags)
8365                 ops->ndo_change_rx_flags(dev, flags);
8366 }
8367
8368 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8369 {
8370         unsigned int old_flags = dev->flags;
8371         kuid_t uid;
8372         kgid_t gid;
8373
8374         ASSERT_RTNL();
8375
8376         dev->flags |= IFF_PROMISC;
8377         dev->promiscuity += inc;
8378         if (dev->promiscuity == 0) {
8379                 /*
8380                  * Avoid overflow.
8381                  * If inc causes overflow, untouch promisc and return error.
8382                  */
8383                 if (inc < 0)
8384                         dev->flags &= ~IFF_PROMISC;
8385                 else {
8386                         dev->promiscuity -= inc;
8387                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8388                         return -EOVERFLOW;
8389                 }
8390         }
8391         if (dev->flags != old_flags) {
8392                 netdev_info(dev, "%s promiscuous mode\n",
8393                             dev->flags & IFF_PROMISC ? "entered" : "left");
8394                 if (audit_enabled) {
8395                         current_uid_gid(&uid, &gid);
8396                         audit_log(audit_context(), GFP_ATOMIC,
8397                                   AUDIT_ANOM_PROMISCUOUS,
8398                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8399                                   dev->name, (dev->flags & IFF_PROMISC),
8400                                   (old_flags & IFF_PROMISC),
8401                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8402                                   from_kuid(&init_user_ns, uid),
8403                                   from_kgid(&init_user_ns, gid),
8404                                   audit_get_sessionid(current));
8405                 }
8406
8407                 dev_change_rx_flags(dev, IFF_PROMISC);
8408         }
8409         if (notify)
8410                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8411         return 0;
8412 }
8413
8414 /**
8415  *      dev_set_promiscuity     - update promiscuity count on a device
8416  *      @dev: device
8417  *      @inc: modifier
8418  *
8419  *      Add or remove promiscuity from a device. While the count in the device
8420  *      remains above zero the interface remains promiscuous. Once it hits zero
8421  *      the device reverts back to normal filtering operation. A negative inc
8422  *      value is used to drop promiscuity on the device.
8423  *      Return 0 if successful or a negative errno code on error.
8424  */
8425 int dev_set_promiscuity(struct net_device *dev, int inc)
8426 {
8427         unsigned int old_flags = dev->flags;
8428         int err;
8429
8430         err = __dev_set_promiscuity(dev, inc, true);
8431         if (err < 0)
8432                 return err;
8433         if (dev->flags != old_flags)
8434                 dev_set_rx_mode(dev);
8435         return err;
8436 }
8437 EXPORT_SYMBOL(dev_set_promiscuity);
8438
8439 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8440 {
8441         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8442
8443         ASSERT_RTNL();
8444
8445         dev->flags |= IFF_ALLMULTI;
8446         dev->allmulti += inc;
8447         if (dev->allmulti == 0) {
8448                 /*
8449                  * Avoid overflow.
8450                  * If inc causes overflow, untouch allmulti and return error.
8451                  */
8452                 if (inc < 0)
8453                         dev->flags &= ~IFF_ALLMULTI;
8454                 else {
8455                         dev->allmulti -= inc;
8456                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8457                         return -EOVERFLOW;
8458                 }
8459         }
8460         if (dev->flags ^ old_flags) {
8461                 netdev_info(dev, "%s allmulticast mode\n",
8462                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8463                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8464                 dev_set_rx_mode(dev);
8465                 if (notify)
8466                         __dev_notify_flags(dev, old_flags,
8467                                            dev->gflags ^ old_gflags, 0, NULL);
8468         }
8469         return 0;
8470 }
8471
8472 /**
8473  *      dev_set_allmulti        - update allmulti count on a device
8474  *      @dev: device
8475  *      @inc: modifier
8476  *
8477  *      Add or remove reception of all multicast frames to a device. While the
8478  *      count in the device remains above zero the interface remains listening
8479  *      to all interfaces. Once it hits zero the device reverts back to normal
8480  *      filtering operation. A negative @inc value is used to drop the counter
8481  *      when releasing a resource needing all multicasts.
8482  *      Return 0 if successful or a negative errno code on error.
8483  */
8484
8485 int dev_set_allmulti(struct net_device *dev, int inc)
8486 {
8487         return __dev_set_allmulti(dev, inc, true);
8488 }
8489 EXPORT_SYMBOL(dev_set_allmulti);
8490
8491 /*
8492  *      Upload unicast and multicast address lists to device and
8493  *      configure RX filtering. When the device doesn't support unicast
8494  *      filtering it is put in promiscuous mode while unicast addresses
8495  *      are present.
8496  */
8497 void __dev_set_rx_mode(struct net_device *dev)
8498 {
8499         const struct net_device_ops *ops = dev->netdev_ops;
8500
8501         /* dev_open will call this function so the list will stay sane. */
8502         if (!(dev->flags&IFF_UP))
8503                 return;
8504
8505         if (!netif_device_present(dev))
8506                 return;
8507
8508         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8509                 /* Unicast addresses changes may only happen under the rtnl,
8510                  * therefore calling __dev_set_promiscuity here is safe.
8511                  */
8512                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8513                         __dev_set_promiscuity(dev, 1, false);
8514                         dev->uc_promisc = true;
8515                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8516                         __dev_set_promiscuity(dev, -1, false);
8517                         dev->uc_promisc = false;
8518                 }
8519         }
8520
8521         if (ops->ndo_set_rx_mode)
8522                 ops->ndo_set_rx_mode(dev);
8523 }
8524
8525 void dev_set_rx_mode(struct net_device *dev)
8526 {
8527         netif_addr_lock_bh(dev);
8528         __dev_set_rx_mode(dev);
8529         netif_addr_unlock_bh(dev);
8530 }
8531
8532 /**
8533  *      dev_get_flags - get flags reported to userspace
8534  *      @dev: device
8535  *
8536  *      Get the combination of flag bits exported through APIs to userspace.
8537  */
8538 unsigned int dev_get_flags(const struct net_device *dev)
8539 {
8540         unsigned int flags;
8541
8542         flags = (dev->flags & ~(IFF_PROMISC |
8543                                 IFF_ALLMULTI |
8544                                 IFF_RUNNING |
8545                                 IFF_LOWER_UP |
8546                                 IFF_DORMANT)) |
8547                 (dev->gflags & (IFF_PROMISC |
8548                                 IFF_ALLMULTI));
8549
8550         if (netif_running(dev)) {
8551                 if (netif_oper_up(dev))
8552                         flags |= IFF_RUNNING;
8553                 if (netif_carrier_ok(dev))
8554                         flags |= IFF_LOWER_UP;
8555                 if (netif_dormant(dev))
8556                         flags |= IFF_DORMANT;
8557         }
8558
8559         return flags;
8560 }
8561 EXPORT_SYMBOL(dev_get_flags);
8562
8563 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8564                        struct netlink_ext_ack *extack)
8565 {
8566         unsigned int old_flags = dev->flags;
8567         int ret;
8568
8569         ASSERT_RTNL();
8570
8571         /*
8572          *      Set the flags on our device.
8573          */
8574
8575         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8576                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8577                                IFF_AUTOMEDIA)) |
8578                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8579                                     IFF_ALLMULTI));
8580
8581         /*
8582          *      Load in the correct multicast list now the flags have changed.
8583          */
8584
8585         if ((old_flags ^ flags) & IFF_MULTICAST)
8586                 dev_change_rx_flags(dev, IFF_MULTICAST);
8587
8588         dev_set_rx_mode(dev);
8589
8590         /*
8591          *      Have we downed the interface. We handle IFF_UP ourselves
8592          *      according to user attempts to set it, rather than blindly
8593          *      setting it.
8594          */
8595
8596         ret = 0;
8597         if ((old_flags ^ flags) & IFF_UP) {
8598                 if (old_flags & IFF_UP)
8599                         __dev_close(dev);
8600                 else
8601                         ret = __dev_open(dev, extack);
8602         }
8603
8604         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8605                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8606                 unsigned int old_flags = dev->flags;
8607
8608                 dev->gflags ^= IFF_PROMISC;
8609
8610                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8611                         if (dev->flags != old_flags)
8612                                 dev_set_rx_mode(dev);
8613         }
8614
8615         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8616          * is important. Some (broken) drivers set IFF_PROMISC, when
8617          * IFF_ALLMULTI is requested not asking us and not reporting.
8618          */
8619         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8620                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8621
8622                 dev->gflags ^= IFF_ALLMULTI;
8623                 __dev_set_allmulti(dev, inc, false);
8624         }
8625
8626         return ret;
8627 }
8628
8629 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8630                         unsigned int gchanges, u32 portid,
8631                         const struct nlmsghdr *nlh)
8632 {
8633         unsigned int changes = dev->flags ^ old_flags;
8634
8635         if (gchanges)
8636                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8637
8638         if (changes & IFF_UP) {
8639                 if (dev->flags & IFF_UP)
8640                         call_netdevice_notifiers(NETDEV_UP, dev);
8641                 else
8642                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8643         }
8644
8645         if (dev->flags & IFF_UP &&
8646             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8647                 struct netdev_notifier_change_info change_info = {
8648                         .info = {
8649                                 .dev = dev,
8650                         },
8651                         .flags_changed = changes,
8652                 };
8653
8654                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8655         }
8656 }
8657
8658 /**
8659  *      dev_change_flags - change device settings
8660  *      @dev: device
8661  *      @flags: device state flags
8662  *      @extack: netlink extended ack
8663  *
8664  *      Change settings on device based state flags. The flags are
8665  *      in the userspace exported format.
8666  */
8667 int dev_change_flags(struct net_device *dev, unsigned int flags,
8668                      struct netlink_ext_ack *extack)
8669 {
8670         int ret;
8671         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8672
8673         ret = __dev_change_flags(dev, flags, extack);
8674         if (ret < 0)
8675                 return ret;
8676
8677         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8678         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8679         return ret;
8680 }
8681 EXPORT_SYMBOL(dev_change_flags);
8682
8683 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8684 {
8685         const struct net_device_ops *ops = dev->netdev_ops;
8686
8687         if (ops->ndo_change_mtu)
8688                 return ops->ndo_change_mtu(dev, new_mtu);
8689
8690         /* Pairs with all the lockless reads of dev->mtu in the stack */
8691         WRITE_ONCE(dev->mtu, new_mtu);
8692         return 0;
8693 }
8694 EXPORT_SYMBOL(__dev_set_mtu);
8695
8696 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8697                      struct netlink_ext_ack *extack)
8698 {
8699         /* MTU must be positive, and in range */
8700         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8701                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8702                 return -EINVAL;
8703         }
8704
8705         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8706                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8707                 return -EINVAL;
8708         }
8709         return 0;
8710 }
8711
8712 /**
8713  *      dev_set_mtu_ext - Change maximum transfer unit
8714  *      @dev: device
8715  *      @new_mtu: new transfer unit
8716  *      @extack: netlink extended ack
8717  *
8718  *      Change the maximum transfer size of the network device.
8719  */
8720 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8721                     struct netlink_ext_ack *extack)
8722 {
8723         int err, orig_mtu;
8724
8725         if (new_mtu == dev->mtu)
8726                 return 0;
8727
8728         err = dev_validate_mtu(dev, new_mtu, extack);
8729         if (err)
8730                 return err;
8731
8732         if (!netif_device_present(dev))
8733                 return -ENODEV;
8734
8735         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8736         err = notifier_to_errno(err);
8737         if (err)
8738                 return err;
8739
8740         orig_mtu = dev->mtu;
8741         err = __dev_set_mtu(dev, new_mtu);
8742
8743         if (!err) {
8744                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8745                                                    orig_mtu);
8746                 err = notifier_to_errno(err);
8747                 if (err) {
8748                         /* setting mtu back and notifying everyone again,
8749                          * so that they have a chance to revert changes.
8750                          */
8751                         __dev_set_mtu(dev, orig_mtu);
8752                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8753                                                      new_mtu);
8754                 }
8755         }
8756         return err;
8757 }
8758
8759 int dev_set_mtu(struct net_device *dev, int new_mtu)
8760 {
8761         struct netlink_ext_ack extack;
8762         int err;
8763
8764         memset(&extack, 0, sizeof(extack));
8765         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8766         if (err && extack._msg)
8767                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8768         return err;
8769 }
8770 EXPORT_SYMBOL(dev_set_mtu);
8771
8772 /**
8773  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8774  *      @dev: device
8775  *      @new_len: new tx queue length
8776  */
8777 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8778 {
8779         unsigned int orig_len = dev->tx_queue_len;
8780         int res;
8781
8782         if (new_len != (unsigned int)new_len)
8783                 return -ERANGE;
8784
8785         if (new_len != orig_len) {
8786                 dev->tx_queue_len = new_len;
8787                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8788                 res = notifier_to_errno(res);
8789                 if (res)
8790                         goto err_rollback;
8791                 res = dev_qdisc_change_tx_queue_len(dev);
8792                 if (res)
8793                         goto err_rollback;
8794         }
8795
8796         return 0;
8797
8798 err_rollback:
8799         netdev_err(dev, "refused to change device tx_queue_len\n");
8800         dev->tx_queue_len = orig_len;
8801         return res;
8802 }
8803
8804 /**
8805  *      dev_set_group - Change group this device belongs to
8806  *      @dev: device
8807  *      @new_group: group this device should belong to
8808  */
8809 void dev_set_group(struct net_device *dev, int new_group)
8810 {
8811         dev->group = new_group;
8812 }
8813
8814 /**
8815  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8816  *      @dev: device
8817  *      @addr: new address
8818  *      @extack: netlink extended ack
8819  */
8820 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8821                               struct netlink_ext_ack *extack)
8822 {
8823         struct netdev_notifier_pre_changeaddr_info info = {
8824                 .info.dev = dev,
8825                 .info.extack = extack,
8826                 .dev_addr = addr,
8827         };
8828         int rc;
8829
8830         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8831         return notifier_to_errno(rc);
8832 }
8833 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8834
8835 /**
8836  *      dev_set_mac_address - Change Media Access Control Address
8837  *      @dev: device
8838  *      @sa: new address
8839  *      @extack: netlink extended ack
8840  *
8841  *      Change the hardware (MAC) address of the device
8842  */
8843 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8844                         struct netlink_ext_ack *extack)
8845 {
8846         const struct net_device_ops *ops = dev->netdev_ops;
8847         int err;
8848
8849         if (!ops->ndo_set_mac_address)
8850                 return -EOPNOTSUPP;
8851         if (sa->sa_family != dev->type)
8852                 return -EINVAL;
8853         if (!netif_device_present(dev))
8854                 return -ENODEV;
8855         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8856         if (err)
8857                 return err;
8858         if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8859                 err = ops->ndo_set_mac_address(dev, sa);
8860                 if (err)
8861                         return err;
8862         }
8863         dev->addr_assign_type = NET_ADDR_SET;
8864         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8865         add_device_randomness(dev->dev_addr, dev->addr_len);
8866         return 0;
8867 }
8868 EXPORT_SYMBOL(dev_set_mac_address);
8869
8870 static DECLARE_RWSEM(dev_addr_sem);
8871
8872 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8873                              struct netlink_ext_ack *extack)
8874 {
8875         int ret;
8876
8877         down_write(&dev_addr_sem);
8878         ret = dev_set_mac_address(dev, sa, extack);
8879         up_write(&dev_addr_sem);
8880         return ret;
8881 }
8882 EXPORT_SYMBOL(dev_set_mac_address_user);
8883
8884 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8885 {
8886         size_t size = sizeof(sa->sa_data_min);
8887         struct net_device *dev;
8888         int ret = 0;
8889
8890         down_read(&dev_addr_sem);
8891         rcu_read_lock();
8892
8893         dev = dev_get_by_name_rcu(net, dev_name);
8894         if (!dev) {
8895                 ret = -ENODEV;
8896                 goto unlock;
8897         }
8898         if (!dev->addr_len)
8899                 memset(sa->sa_data, 0, size);
8900         else
8901                 memcpy(sa->sa_data, dev->dev_addr,
8902                        min_t(size_t, size, dev->addr_len));
8903         sa->sa_family = dev->type;
8904
8905 unlock:
8906         rcu_read_unlock();
8907         up_read(&dev_addr_sem);
8908         return ret;
8909 }
8910 EXPORT_SYMBOL(dev_get_mac_address);
8911
8912 /**
8913  *      dev_change_carrier - Change device carrier
8914  *      @dev: device
8915  *      @new_carrier: new value
8916  *
8917  *      Change device carrier
8918  */
8919 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8920 {
8921         const struct net_device_ops *ops = dev->netdev_ops;
8922
8923         if (!ops->ndo_change_carrier)
8924                 return -EOPNOTSUPP;
8925         if (!netif_device_present(dev))
8926                 return -ENODEV;
8927         return ops->ndo_change_carrier(dev, new_carrier);
8928 }
8929
8930 /**
8931  *      dev_get_phys_port_id - Get device physical port ID
8932  *      @dev: device
8933  *      @ppid: port ID
8934  *
8935  *      Get device physical port ID
8936  */
8937 int dev_get_phys_port_id(struct net_device *dev,
8938                          struct netdev_phys_item_id *ppid)
8939 {
8940         const struct net_device_ops *ops = dev->netdev_ops;
8941
8942         if (!ops->ndo_get_phys_port_id)
8943                 return -EOPNOTSUPP;
8944         return ops->ndo_get_phys_port_id(dev, ppid);
8945 }
8946
8947 /**
8948  *      dev_get_phys_port_name - Get device physical port name
8949  *      @dev: device
8950  *      @name: port name
8951  *      @len: limit of bytes to copy to name
8952  *
8953  *      Get device physical port name
8954  */
8955 int dev_get_phys_port_name(struct net_device *dev,
8956                            char *name, size_t len)
8957 {
8958         const struct net_device_ops *ops = dev->netdev_ops;
8959         int err;
8960
8961         if (ops->ndo_get_phys_port_name) {
8962                 err = ops->ndo_get_phys_port_name(dev, name, len);
8963                 if (err != -EOPNOTSUPP)
8964                         return err;
8965         }
8966         return devlink_compat_phys_port_name_get(dev, name, len);
8967 }
8968
8969 /**
8970  *      dev_get_port_parent_id - Get the device's port parent identifier
8971  *      @dev: network device
8972  *      @ppid: pointer to a storage for the port's parent identifier
8973  *      @recurse: allow/disallow recursion to lower devices
8974  *
8975  *      Get the devices's port parent identifier
8976  */
8977 int dev_get_port_parent_id(struct net_device *dev,
8978                            struct netdev_phys_item_id *ppid,
8979                            bool recurse)
8980 {
8981         const struct net_device_ops *ops = dev->netdev_ops;
8982         struct netdev_phys_item_id first = { };
8983         struct net_device *lower_dev;
8984         struct list_head *iter;
8985         int err;
8986
8987         if (ops->ndo_get_port_parent_id) {
8988                 err = ops->ndo_get_port_parent_id(dev, ppid);
8989                 if (err != -EOPNOTSUPP)
8990                         return err;
8991         }
8992
8993         err = devlink_compat_switch_id_get(dev, ppid);
8994         if (!recurse || err != -EOPNOTSUPP)
8995                 return err;
8996
8997         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8998                 err = dev_get_port_parent_id(lower_dev, ppid, true);
8999                 if (err)
9000                         break;
9001                 if (!first.id_len)
9002                         first = *ppid;
9003                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9004                         return -EOPNOTSUPP;
9005         }
9006
9007         return err;
9008 }
9009 EXPORT_SYMBOL(dev_get_port_parent_id);
9010
9011 /**
9012  *      netdev_port_same_parent_id - Indicate if two network devices have
9013  *      the same port parent identifier
9014  *      @a: first network device
9015  *      @b: second network device
9016  */
9017 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9018 {
9019         struct netdev_phys_item_id a_id = { };
9020         struct netdev_phys_item_id b_id = { };
9021
9022         if (dev_get_port_parent_id(a, &a_id, true) ||
9023             dev_get_port_parent_id(b, &b_id, true))
9024                 return false;
9025
9026         return netdev_phys_item_id_same(&a_id, &b_id);
9027 }
9028 EXPORT_SYMBOL(netdev_port_same_parent_id);
9029
9030 /**
9031  *      dev_change_proto_down - set carrier according to proto_down.
9032  *
9033  *      @dev: device
9034  *      @proto_down: new value
9035  */
9036 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9037 {
9038         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9039                 return -EOPNOTSUPP;
9040         if (!netif_device_present(dev))
9041                 return -ENODEV;
9042         if (proto_down)
9043                 netif_carrier_off(dev);
9044         else
9045                 netif_carrier_on(dev);
9046         dev->proto_down = proto_down;
9047         return 0;
9048 }
9049
9050 /**
9051  *      dev_change_proto_down_reason - proto down reason
9052  *
9053  *      @dev: device
9054  *      @mask: proto down mask
9055  *      @value: proto down value
9056  */
9057 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9058                                   u32 value)
9059 {
9060         int b;
9061
9062         if (!mask) {
9063                 dev->proto_down_reason = value;
9064         } else {
9065                 for_each_set_bit(b, &mask, 32) {
9066                         if (value & (1 << b))
9067                                 dev->proto_down_reason |= BIT(b);
9068                         else
9069                                 dev->proto_down_reason &= ~BIT(b);
9070                 }
9071         }
9072 }
9073
9074 struct bpf_xdp_link {
9075         struct bpf_link link;
9076         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9077         int flags;
9078 };
9079
9080 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9081 {
9082         if (flags & XDP_FLAGS_HW_MODE)
9083                 return XDP_MODE_HW;
9084         if (flags & XDP_FLAGS_DRV_MODE)
9085                 return XDP_MODE_DRV;
9086         if (flags & XDP_FLAGS_SKB_MODE)
9087                 return XDP_MODE_SKB;
9088         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9089 }
9090
9091 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9092 {
9093         switch (mode) {
9094         case XDP_MODE_SKB:
9095                 return generic_xdp_install;
9096         case XDP_MODE_DRV:
9097         case XDP_MODE_HW:
9098                 return dev->netdev_ops->ndo_bpf;
9099         default:
9100                 return NULL;
9101         }
9102 }
9103
9104 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9105                                          enum bpf_xdp_mode mode)
9106 {
9107         return dev->xdp_state[mode].link;
9108 }
9109
9110 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9111                                      enum bpf_xdp_mode mode)
9112 {
9113         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9114
9115         if (link)
9116                 return link->link.prog;
9117         return dev->xdp_state[mode].prog;
9118 }
9119
9120 u8 dev_xdp_prog_count(struct net_device *dev)
9121 {
9122         u8 count = 0;
9123         int i;
9124
9125         for (i = 0; i < __MAX_XDP_MODE; i++)
9126                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9127                         count++;
9128         return count;
9129 }
9130 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9131
9132 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9133 {
9134         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9135
9136         return prog ? prog->aux->id : 0;
9137 }
9138
9139 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9140                              struct bpf_xdp_link *link)
9141 {
9142         dev->xdp_state[mode].link = link;
9143         dev->xdp_state[mode].prog = NULL;
9144 }
9145
9146 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9147                              struct bpf_prog *prog)
9148 {
9149         dev->xdp_state[mode].link = NULL;
9150         dev->xdp_state[mode].prog = prog;
9151 }
9152
9153 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9154                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9155                            u32 flags, struct bpf_prog *prog)
9156 {
9157         struct netdev_bpf xdp;
9158         int err;
9159
9160         memset(&xdp, 0, sizeof(xdp));
9161         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9162         xdp.extack = extack;
9163         xdp.flags = flags;
9164         xdp.prog = prog;
9165
9166         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9167          * "moved" into driver), so they don't increment it on their own, but
9168          * they do decrement refcnt when program is detached or replaced.
9169          * Given net_device also owns link/prog, we need to bump refcnt here
9170          * to prevent drivers from underflowing it.
9171          */
9172         if (prog)
9173                 bpf_prog_inc(prog);
9174         err = bpf_op(dev, &xdp);
9175         if (err) {
9176                 if (prog)
9177                         bpf_prog_put(prog);
9178                 return err;
9179         }
9180
9181         if (mode != XDP_MODE_HW)
9182                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9183
9184         return 0;
9185 }
9186
9187 static void dev_xdp_uninstall(struct net_device *dev)
9188 {
9189         struct bpf_xdp_link *link;
9190         struct bpf_prog *prog;
9191         enum bpf_xdp_mode mode;
9192         bpf_op_t bpf_op;
9193
9194         ASSERT_RTNL();
9195
9196         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9197                 prog = dev_xdp_prog(dev, mode);
9198                 if (!prog)
9199                         continue;
9200
9201                 bpf_op = dev_xdp_bpf_op(dev, mode);
9202                 if (!bpf_op)
9203                         continue;
9204
9205                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9206
9207                 /* auto-detach link from net device */
9208                 link = dev_xdp_link(dev, mode);
9209                 if (link)
9210                         link->dev = NULL;
9211                 else
9212                         bpf_prog_put(prog);
9213
9214                 dev_xdp_set_link(dev, mode, NULL);
9215         }
9216 }
9217
9218 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9219                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9220                           struct bpf_prog *old_prog, u32 flags)
9221 {
9222         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9223         struct bpf_prog *cur_prog;
9224         struct net_device *upper;
9225         struct list_head *iter;
9226         enum bpf_xdp_mode mode;
9227         bpf_op_t bpf_op;
9228         int err;
9229
9230         ASSERT_RTNL();
9231
9232         /* either link or prog attachment, never both */
9233         if (link && (new_prog || old_prog))
9234                 return -EINVAL;
9235         /* link supports only XDP mode flags */
9236         if (link && (flags & ~XDP_FLAGS_MODES)) {
9237                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9238                 return -EINVAL;
9239         }
9240         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9241         if (num_modes > 1) {
9242                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9243                 return -EINVAL;
9244         }
9245         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9246         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9247                 NL_SET_ERR_MSG(extack,
9248                                "More than one program loaded, unset mode is ambiguous");
9249                 return -EINVAL;
9250         }
9251         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9252         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9253                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9254                 return -EINVAL;
9255         }
9256
9257         mode = dev_xdp_mode(dev, flags);
9258         /* can't replace attached link */
9259         if (dev_xdp_link(dev, mode)) {
9260                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9261                 return -EBUSY;
9262         }
9263
9264         /* don't allow if an upper device already has a program */
9265         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9266                 if (dev_xdp_prog_count(upper) > 0) {
9267                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9268                         return -EEXIST;
9269                 }
9270         }
9271
9272         cur_prog = dev_xdp_prog(dev, mode);
9273         /* can't replace attached prog with link */
9274         if (link && cur_prog) {
9275                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9276                 return -EBUSY;
9277         }
9278         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9279                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9280                 return -EEXIST;
9281         }
9282
9283         /* put effective new program into new_prog */
9284         if (link)
9285                 new_prog = link->link.prog;
9286
9287         if (new_prog) {
9288                 bool offload = mode == XDP_MODE_HW;
9289                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9290                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9291
9292                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9293                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9294                         return -EBUSY;
9295                 }
9296                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9297                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9298                         return -EEXIST;
9299                 }
9300                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9301                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9302                         return -EINVAL;
9303                 }
9304                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9305                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9306                         return -EINVAL;
9307                 }
9308                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9309                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9310                         return -EINVAL;
9311                 }
9312                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9313                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9314                         return -EINVAL;
9315                 }
9316         }
9317
9318         /* don't call drivers if the effective program didn't change */
9319         if (new_prog != cur_prog) {
9320                 bpf_op = dev_xdp_bpf_op(dev, mode);
9321                 if (!bpf_op) {
9322                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9323                         return -EOPNOTSUPP;
9324                 }
9325
9326                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9327                 if (err)
9328                         return err;
9329         }
9330
9331         if (link)
9332                 dev_xdp_set_link(dev, mode, link);
9333         else
9334                 dev_xdp_set_prog(dev, mode, new_prog);
9335         if (cur_prog)
9336                 bpf_prog_put(cur_prog);
9337
9338         return 0;
9339 }
9340
9341 static int dev_xdp_attach_link(struct net_device *dev,
9342                                struct netlink_ext_ack *extack,
9343                                struct bpf_xdp_link *link)
9344 {
9345         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9346 }
9347
9348 static int dev_xdp_detach_link(struct net_device *dev,
9349                                struct netlink_ext_ack *extack,
9350                                struct bpf_xdp_link *link)
9351 {
9352         enum bpf_xdp_mode mode;
9353         bpf_op_t bpf_op;
9354
9355         ASSERT_RTNL();
9356
9357         mode = dev_xdp_mode(dev, link->flags);
9358         if (dev_xdp_link(dev, mode) != link)
9359                 return -EINVAL;
9360
9361         bpf_op = dev_xdp_bpf_op(dev, mode);
9362         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9363         dev_xdp_set_link(dev, mode, NULL);
9364         return 0;
9365 }
9366
9367 static void bpf_xdp_link_release(struct bpf_link *link)
9368 {
9369         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9370
9371         rtnl_lock();
9372
9373         /* if racing with net_device's tear down, xdp_link->dev might be
9374          * already NULL, in which case link was already auto-detached
9375          */
9376         if (xdp_link->dev) {
9377                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9378                 xdp_link->dev = NULL;
9379         }
9380
9381         rtnl_unlock();
9382 }
9383
9384 static int bpf_xdp_link_detach(struct bpf_link *link)
9385 {
9386         bpf_xdp_link_release(link);
9387         return 0;
9388 }
9389
9390 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9391 {
9392         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9393
9394         kfree(xdp_link);
9395 }
9396
9397 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9398                                      struct seq_file *seq)
9399 {
9400         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9401         u32 ifindex = 0;
9402
9403         rtnl_lock();
9404         if (xdp_link->dev)
9405                 ifindex = xdp_link->dev->ifindex;
9406         rtnl_unlock();
9407
9408         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9409 }
9410
9411 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9412                                        struct bpf_link_info *info)
9413 {
9414         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9415         u32 ifindex = 0;
9416
9417         rtnl_lock();
9418         if (xdp_link->dev)
9419                 ifindex = xdp_link->dev->ifindex;
9420         rtnl_unlock();
9421
9422         info->xdp.ifindex = ifindex;
9423         return 0;
9424 }
9425
9426 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9427                                struct bpf_prog *old_prog)
9428 {
9429         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9430         enum bpf_xdp_mode mode;
9431         bpf_op_t bpf_op;
9432         int err = 0;
9433
9434         rtnl_lock();
9435
9436         /* link might have been auto-released already, so fail */
9437         if (!xdp_link->dev) {
9438                 err = -ENOLINK;
9439                 goto out_unlock;
9440         }
9441
9442         if (old_prog && link->prog != old_prog) {
9443                 err = -EPERM;
9444                 goto out_unlock;
9445         }
9446         old_prog = link->prog;
9447         if (old_prog->type != new_prog->type ||
9448             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9449                 err = -EINVAL;
9450                 goto out_unlock;
9451         }
9452
9453         if (old_prog == new_prog) {
9454                 /* no-op, don't disturb drivers */
9455                 bpf_prog_put(new_prog);
9456                 goto out_unlock;
9457         }
9458
9459         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9460         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9461         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9462                               xdp_link->flags, new_prog);
9463         if (err)
9464                 goto out_unlock;
9465
9466         old_prog = xchg(&link->prog, new_prog);
9467         bpf_prog_put(old_prog);
9468
9469 out_unlock:
9470         rtnl_unlock();
9471         return err;
9472 }
9473
9474 static const struct bpf_link_ops bpf_xdp_link_lops = {
9475         .release = bpf_xdp_link_release,
9476         .dealloc = bpf_xdp_link_dealloc,
9477         .detach = bpf_xdp_link_detach,
9478         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9479         .fill_link_info = bpf_xdp_link_fill_link_info,
9480         .update_prog = bpf_xdp_link_update,
9481 };
9482
9483 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9484 {
9485         struct net *net = current->nsproxy->net_ns;
9486         struct bpf_link_primer link_primer;
9487         struct netlink_ext_ack extack = {};
9488         struct bpf_xdp_link *link;
9489         struct net_device *dev;
9490         int err, fd;
9491
9492         rtnl_lock();
9493         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9494         if (!dev) {
9495                 rtnl_unlock();
9496                 return -EINVAL;
9497         }
9498
9499         link = kzalloc(sizeof(*link), GFP_USER);
9500         if (!link) {
9501                 err = -ENOMEM;
9502                 goto unlock;
9503         }
9504
9505         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9506         link->dev = dev;
9507         link->flags = attr->link_create.flags;
9508
9509         err = bpf_link_prime(&link->link, &link_primer);
9510         if (err) {
9511                 kfree(link);
9512                 goto unlock;
9513         }
9514
9515         err = dev_xdp_attach_link(dev, &extack, link);
9516         rtnl_unlock();
9517
9518         if (err) {
9519                 link->dev = NULL;
9520                 bpf_link_cleanup(&link_primer);
9521                 trace_bpf_xdp_link_attach_failed(extack._msg);
9522                 goto out_put_dev;
9523         }
9524
9525         fd = bpf_link_settle(&link_primer);
9526         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9527         dev_put(dev);
9528         return fd;
9529
9530 unlock:
9531         rtnl_unlock();
9532
9533 out_put_dev:
9534         dev_put(dev);
9535         return err;
9536 }
9537
9538 /**
9539  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9540  *      @dev: device
9541  *      @extack: netlink extended ack
9542  *      @fd: new program fd or negative value to clear
9543  *      @expected_fd: old program fd that userspace expects to replace or clear
9544  *      @flags: xdp-related flags
9545  *
9546  *      Set or clear a bpf program for a device
9547  */
9548 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9549                       int fd, int expected_fd, u32 flags)
9550 {
9551         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9552         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9553         int err;
9554
9555         ASSERT_RTNL();
9556
9557         if (fd >= 0) {
9558                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9559                                                  mode != XDP_MODE_SKB);
9560                 if (IS_ERR(new_prog))
9561                         return PTR_ERR(new_prog);
9562         }
9563
9564         if (expected_fd >= 0) {
9565                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9566                                                  mode != XDP_MODE_SKB);
9567                 if (IS_ERR(old_prog)) {
9568                         err = PTR_ERR(old_prog);
9569                         old_prog = NULL;
9570                         goto err_out;
9571                 }
9572         }
9573
9574         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9575
9576 err_out:
9577         if (err && new_prog)
9578                 bpf_prog_put(new_prog);
9579         if (old_prog)
9580                 bpf_prog_put(old_prog);
9581         return err;
9582 }
9583
9584 /**
9585  * dev_index_reserve() - allocate an ifindex in a namespace
9586  * @net: the applicable net namespace
9587  * @ifindex: requested ifindex, pass %0 to get one allocated
9588  *
9589  * Allocate a ifindex for a new device. Caller must either use the ifindex
9590  * to store the device (via list_netdevice()) or call dev_index_release()
9591  * to give the index up.
9592  *
9593  * Return: a suitable unique value for a new device interface number or -errno.
9594  */
9595 static int dev_index_reserve(struct net *net, u32 ifindex)
9596 {
9597         int err;
9598
9599         if (ifindex > INT_MAX) {
9600                 DEBUG_NET_WARN_ON_ONCE(1);
9601                 return -EINVAL;
9602         }
9603
9604         if (!ifindex)
9605                 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9606                                       xa_limit_31b, &net->ifindex, GFP_KERNEL);
9607         else
9608                 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9609         if (err < 0)
9610                 return err;
9611
9612         return ifindex;
9613 }
9614
9615 static void dev_index_release(struct net *net, int ifindex)
9616 {
9617         /* Expect only unused indexes, unlist_netdevice() removes the used */
9618         WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9619 }
9620
9621 /* Delayed registration/unregisteration */
9622 LIST_HEAD(net_todo_list);
9623 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9624
9625 static void net_set_todo(struct net_device *dev)
9626 {
9627         list_add_tail(&dev->todo_list, &net_todo_list);
9628         atomic_inc(&dev_net(dev)->dev_unreg_count);
9629 }
9630
9631 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9632         struct net_device *upper, netdev_features_t features)
9633 {
9634         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9635         netdev_features_t feature;
9636         int feature_bit;
9637
9638         for_each_netdev_feature(upper_disables, feature_bit) {
9639                 feature = __NETIF_F_BIT(feature_bit);
9640                 if (!(upper->wanted_features & feature)
9641                     && (features & feature)) {
9642                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9643                                    &feature, upper->name);
9644                         features &= ~feature;
9645                 }
9646         }
9647
9648         return features;
9649 }
9650
9651 static void netdev_sync_lower_features(struct net_device *upper,
9652         struct net_device *lower, netdev_features_t features)
9653 {
9654         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9655         netdev_features_t feature;
9656         int feature_bit;
9657
9658         for_each_netdev_feature(upper_disables, feature_bit) {
9659                 feature = __NETIF_F_BIT(feature_bit);
9660                 if (!(features & feature) && (lower->features & feature)) {
9661                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9662                                    &feature, lower->name);
9663                         lower->wanted_features &= ~feature;
9664                         __netdev_update_features(lower);
9665
9666                         if (unlikely(lower->features & feature))
9667                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9668                                             &feature, lower->name);
9669                         else
9670                                 netdev_features_change(lower);
9671                 }
9672         }
9673 }
9674
9675 static netdev_features_t netdev_fix_features(struct net_device *dev,
9676         netdev_features_t features)
9677 {
9678         /* Fix illegal checksum combinations */
9679         if ((features & NETIF_F_HW_CSUM) &&
9680             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9681                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9682                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9683         }
9684
9685         /* TSO requires that SG is present as well. */
9686         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9687                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9688                 features &= ~NETIF_F_ALL_TSO;
9689         }
9690
9691         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9692                                         !(features & NETIF_F_IP_CSUM)) {
9693                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9694                 features &= ~NETIF_F_TSO;
9695                 features &= ~NETIF_F_TSO_ECN;
9696         }
9697
9698         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9699                                          !(features & NETIF_F_IPV6_CSUM)) {
9700                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9701                 features &= ~NETIF_F_TSO6;
9702         }
9703
9704         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9705         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9706                 features &= ~NETIF_F_TSO_MANGLEID;
9707
9708         /* TSO ECN requires that TSO is present as well. */
9709         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9710                 features &= ~NETIF_F_TSO_ECN;
9711
9712         /* Software GSO depends on SG. */
9713         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9714                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9715                 features &= ~NETIF_F_GSO;
9716         }
9717
9718         /* GSO partial features require GSO partial be set */
9719         if ((features & dev->gso_partial_features) &&
9720             !(features & NETIF_F_GSO_PARTIAL)) {
9721                 netdev_dbg(dev,
9722                            "Dropping partially supported GSO features since no GSO partial.\n");
9723                 features &= ~dev->gso_partial_features;
9724         }
9725
9726         if (!(features & NETIF_F_RXCSUM)) {
9727                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9728                  * successfully merged by hardware must also have the
9729                  * checksum verified by hardware.  If the user does not
9730                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9731                  */
9732                 if (features & NETIF_F_GRO_HW) {
9733                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9734                         features &= ~NETIF_F_GRO_HW;
9735                 }
9736         }
9737
9738         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9739         if (features & NETIF_F_RXFCS) {
9740                 if (features & NETIF_F_LRO) {
9741                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9742                         features &= ~NETIF_F_LRO;
9743                 }
9744
9745                 if (features & NETIF_F_GRO_HW) {
9746                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9747                         features &= ~NETIF_F_GRO_HW;
9748                 }
9749         }
9750
9751         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9752                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9753                 features &= ~NETIF_F_LRO;
9754         }
9755
9756         if (features & NETIF_F_HW_TLS_TX) {
9757                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9758                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9759                 bool hw_csum = features & NETIF_F_HW_CSUM;
9760
9761                 if (!ip_csum && !hw_csum) {
9762                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9763                         features &= ~NETIF_F_HW_TLS_TX;
9764                 }
9765         }
9766
9767         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9768                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9769                 features &= ~NETIF_F_HW_TLS_RX;
9770         }
9771
9772         return features;
9773 }
9774
9775 int __netdev_update_features(struct net_device *dev)
9776 {
9777         struct net_device *upper, *lower;
9778         netdev_features_t features;
9779         struct list_head *iter;
9780         int err = -1;
9781
9782         ASSERT_RTNL();
9783
9784         features = netdev_get_wanted_features(dev);
9785
9786         if (dev->netdev_ops->ndo_fix_features)
9787                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9788
9789         /* driver might be less strict about feature dependencies */
9790         features = netdev_fix_features(dev, features);
9791
9792         /* some features can't be enabled if they're off on an upper device */
9793         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9794                 features = netdev_sync_upper_features(dev, upper, features);
9795
9796         if (dev->features == features)
9797                 goto sync_lower;
9798
9799         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9800                 &dev->features, &features);
9801
9802         if (dev->netdev_ops->ndo_set_features)
9803                 err = dev->netdev_ops->ndo_set_features(dev, features);
9804         else
9805                 err = 0;
9806
9807         if (unlikely(err < 0)) {
9808                 netdev_err(dev,
9809                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9810                         err, &features, &dev->features);
9811                 /* return non-0 since some features might have changed and
9812                  * it's better to fire a spurious notification than miss it
9813                  */
9814                 return -1;
9815         }
9816
9817 sync_lower:
9818         /* some features must be disabled on lower devices when disabled
9819          * on an upper device (think: bonding master or bridge)
9820          */
9821         netdev_for_each_lower_dev(dev, lower, iter)
9822                 netdev_sync_lower_features(dev, lower, features);
9823
9824         if (!err) {
9825                 netdev_features_t diff = features ^ dev->features;
9826
9827                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9828                         /* udp_tunnel_{get,drop}_rx_info both need
9829                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9830                          * device, or they won't do anything.
9831                          * Thus we need to update dev->features
9832                          * *before* calling udp_tunnel_get_rx_info,
9833                          * but *after* calling udp_tunnel_drop_rx_info.
9834                          */
9835                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9836                                 dev->features = features;
9837                                 udp_tunnel_get_rx_info(dev);
9838                         } else {
9839                                 udp_tunnel_drop_rx_info(dev);
9840                         }
9841                 }
9842
9843                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9844                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9845                                 dev->features = features;
9846                                 err |= vlan_get_rx_ctag_filter_info(dev);
9847                         } else {
9848                                 vlan_drop_rx_ctag_filter_info(dev);
9849                         }
9850                 }
9851
9852                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9853                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9854                                 dev->features = features;
9855                                 err |= vlan_get_rx_stag_filter_info(dev);
9856                         } else {
9857                                 vlan_drop_rx_stag_filter_info(dev);
9858                         }
9859                 }
9860
9861                 dev->features = features;
9862         }
9863
9864         return err < 0 ? 0 : 1;
9865 }
9866
9867 /**
9868  *      netdev_update_features - recalculate device features
9869  *      @dev: the device to check
9870  *
9871  *      Recalculate dev->features set and send notifications if it
9872  *      has changed. Should be called after driver or hardware dependent
9873  *      conditions might have changed that influence the features.
9874  */
9875 void netdev_update_features(struct net_device *dev)
9876 {
9877         if (__netdev_update_features(dev))
9878                 netdev_features_change(dev);
9879 }
9880 EXPORT_SYMBOL(netdev_update_features);
9881
9882 /**
9883  *      netdev_change_features - recalculate device features
9884  *      @dev: the device to check
9885  *
9886  *      Recalculate dev->features set and send notifications even
9887  *      if they have not changed. Should be called instead of
9888  *      netdev_update_features() if also dev->vlan_features might
9889  *      have changed to allow the changes to be propagated to stacked
9890  *      VLAN devices.
9891  */
9892 void netdev_change_features(struct net_device *dev)
9893 {
9894         __netdev_update_features(dev);
9895         netdev_features_change(dev);
9896 }
9897 EXPORT_SYMBOL(netdev_change_features);
9898
9899 /**
9900  *      netif_stacked_transfer_operstate -      transfer operstate
9901  *      @rootdev: the root or lower level device to transfer state from
9902  *      @dev: the device to transfer operstate to
9903  *
9904  *      Transfer operational state from root to device. This is normally
9905  *      called when a stacking relationship exists between the root
9906  *      device and the device(a leaf device).
9907  */
9908 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9909                                         struct net_device *dev)
9910 {
9911         if (rootdev->operstate == IF_OPER_DORMANT)
9912                 netif_dormant_on(dev);
9913         else
9914                 netif_dormant_off(dev);
9915
9916         if (rootdev->operstate == IF_OPER_TESTING)
9917                 netif_testing_on(dev);
9918         else
9919                 netif_testing_off(dev);
9920
9921         if (netif_carrier_ok(rootdev))
9922                 netif_carrier_on(dev);
9923         else
9924                 netif_carrier_off(dev);
9925 }
9926 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9927
9928 static int netif_alloc_rx_queues(struct net_device *dev)
9929 {
9930         unsigned int i, count = dev->num_rx_queues;
9931         struct netdev_rx_queue *rx;
9932         size_t sz = count * sizeof(*rx);
9933         int err = 0;
9934
9935         BUG_ON(count < 1);
9936
9937         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9938         if (!rx)
9939                 return -ENOMEM;
9940
9941         dev->_rx = rx;
9942
9943         for (i = 0; i < count; i++) {
9944                 rx[i].dev = dev;
9945
9946                 /* XDP RX-queue setup */
9947                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9948                 if (err < 0)
9949                         goto err_rxq_info;
9950         }
9951         return 0;
9952
9953 err_rxq_info:
9954         /* Rollback successful reg's and free other resources */
9955         while (i--)
9956                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9957         kvfree(dev->_rx);
9958         dev->_rx = NULL;
9959         return err;
9960 }
9961
9962 static void netif_free_rx_queues(struct net_device *dev)
9963 {
9964         unsigned int i, count = dev->num_rx_queues;
9965
9966         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9967         if (!dev->_rx)
9968                 return;
9969
9970         for (i = 0; i < count; i++)
9971                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9972
9973         kvfree(dev->_rx);
9974 }
9975
9976 static void netdev_init_one_queue(struct net_device *dev,
9977                                   struct netdev_queue *queue, void *_unused)
9978 {
9979         /* Initialize queue lock */
9980         spin_lock_init(&queue->_xmit_lock);
9981         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9982         queue->xmit_lock_owner = -1;
9983         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9984         queue->dev = dev;
9985 #ifdef CONFIG_BQL
9986         dql_init(&queue->dql, HZ);
9987 #endif
9988 }
9989
9990 static void netif_free_tx_queues(struct net_device *dev)
9991 {
9992         kvfree(dev->_tx);
9993 }
9994
9995 static int netif_alloc_netdev_queues(struct net_device *dev)
9996 {
9997         unsigned int count = dev->num_tx_queues;
9998         struct netdev_queue *tx;
9999         size_t sz = count * sizeof(*tx);
10000
10001         if (count < 1 || count > 0xffff)
10002                 return -EINVAL;
10003
10004         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10005         if (!tx)
10006                 return -ENOMEM;
10007
10008         dev->_tx = tx;
10009
10010         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10011         spin_lock_init(&dev->tx_global_lock);
10012
10013         return 0;
10014 }
10015
10016 void netif_tx_stop_all_queues(struct net_device *dev)
10017 {
10018         unsigned int i;
10019
10020         for (i = 0; i < dev->num_tx_queues; i++) {
10021                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10022
10023                 netif_tx_stop_queue(txq);
10024         }
10025 }
10026 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10027
10028 /**
10029  * register_netdevice() - register a network device
10030  * @dev: device to register
10031  *
10032  * Take a prepared network device structure and make it externally accessible.
10033  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10034  * Callers must hold the rtnl lock - you may want register_netdev()
10035  * instead of this.
10036  */
10037 int register_netdevice(struct net_device *dev)
10038 {
10039         int ret;
10040         struct net *net = dev_net(dev);
10041
10042         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10043                      NETDEV_FEATURE_COUNT);
10044         BUG_ON(dev_boot_phase);
10045         ASSERT_RTNL();
10046
10047         might_sleep();
10048
10049         /* When net_device's are persistent, this will be fatal. */
10050         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10051         BUG_ON(!net);
10052
10053         ret = ethtool_check_ops(dev->ethtool_ops);
10054         if (ret)
10055                 return ret;
10056
10057         spin_lock_init(&dev->addr_list_lock);
10058         netdev_set_addr_lockdep_class(dev);
10059
10060         ret = dev_get_valid_name(net, dev, dev->name);
10061         if (ret < 0)
10062                 goto out;
10063
10064         ret = -ENOMEM;
10065         dev->name_node = netdev_name_node_head_alloc(dev);
10066         if (!dev->name_node)
10067                 goto out;
10068
10069         /* Init, if this function is available */
10070         if (dev->netdev_ops->ndo_init) {
10071                 ret = dev->netdev_ops->ndo_init(dev);
10072                 if (ret) {
10073                         if (ret > 0)
10074                                 ret = -EIO;
10075                         goto err_free_name;
10076                 }
10077         }
10078
10079         if (((dev->hw_features | dev->features) &
10080              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10081             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10082              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10083                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10084                 ret = -EINVAL;
10085                 goto err_uninit;
10086         }
10087
10088         ret = dev_index_reserve(net, dev->ifindex);
10089         if (ret < 0)
10090                 goto err_uninit;
10091         dev->ifindex = ret;
10092
10093         /* Transfer changeable features to wanted_features and enable
10094          * software offloads (GSO and GRO).
10095          */
10096         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10097         dev->features |= NETIF_F_SOFT_FEATURES;
10098
10099         if (dev->udp_tunnel_nic_info) {
10100                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10101                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10102         }
10103
10104         dev->wanted_features = dev->features & dev->hw_features;
10105
10106         if (!(dev->flags & IFF_LOOPBACK))
10107                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10108
10109         /* If IPv4 TCP segmentation offload is supported we should also
10110          * allow the device to enable segmenting the frame with the option
10111          * of ignoring a static IP ID value.  This doesn't enable the
10112          * feature itself but allows the user to enable it later.
10113          */
10114         if (dev->hw_features & NETIF_F_TSO)
10115                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10116         if (dev->vlan_features & NETIF_F_TSO)
10117                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10118         if (dev->mpls_features & NETIF_F_TSO)
10119                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10120         if (dev->hw_enc_features & NETIF_F_TSO)
10121                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10122
10123         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10124          */
10125         dev->vlan_features |= NETIF_F_HIGHDMA;
10126
10127         /* Make NETIF_F_SG inheritable to tunnel devices.
10128          */
10129         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10130
10131         /* Make NETIF_F_SG inheritable to MPLS.
10132          */
10133         dev->mpls_features |= NETIF_F_SG;
10134
10135         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10136         ret = notifier_to_errno(ret);
10137         if (ret)
10138                 goto err_ifindex_release;
10139
10140         ret = netdev_register_kobject(dev);
10141         write_lock(&dev_base_lock);
10142         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10143         write_unlock(&dev_base_lock);
10144         if (ret)
10145                 goto err_uninit_notify;
10146
10147         __netdev_update_features(dev);
10148
10149         /*
10150          *      Default initial state at registry is that the
10151          *      device is present.
10152          */
10153
10154         set_bit(__LINK_STATE_PRESENT, &dev->state);
10155
10156         linkwatch_init_dev(dev);
10157
10158         dev_init_scheduler(dev);
10159
10160         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10161         list_netdevice(dev);
10162
10163         add_device_randomness(dev->dev_addr, dev->addr_len);
10164
10165         /* If the device has permanent device address, driver should
10166          * set dev_addr and also addr_assign_type should be set to
10167          * NET_ADDR_PERM (default value).
10168          */
10169         if (dev->addr_assign_type == NET_ADDR_PERM)
10170                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10171
10172         /* Notify protocols, that a new device appeared. */
10173         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10174         ret = notifier_to_errno(ret);
10175         if (ret) {
10176                 /* Expect explicit free_netdev() on failure */
10177                 dev->needs_free_netdev = false;
10178                 unregister_netdevice_queue(dev, NULL);
10179                 goto out;
10180         }
10181         /*
10182          *      Prevent userspace races by waiting until the network
10183          *      device is fully setup before sending notifications.
10184          */
10185         if (!dev->rtnl_link_ops ||
10186             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10187                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10188
10189 out:
10190         return ret;
10191
10192 err_uninit_notify:
10193         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10194 err_ifindex_release:
10195         dev_index_release(net, dev->ifindex);
10196 err_uninit:
10197         if (dev->netdev_ops->ndo_uninit)
10198                 dev->netdev_ops->ndo_uninit(dev);
10199         if (dev->priv_destructor)
10200                 dev->priv_destructor(dev);
10201 err_free_name:
10202         netdev_name_node_free(dev->name_node);
10203         goto out;
10204 }
10205 EXPORT_SYMBOL(register_netdevice);
10206
10207 /**
10208  *      init_dummy_netdev       - init a dummy network device for NAPI
10209  *      @dev: device to init
10210  *
10211  *      This takes a network device structure and initialize the minimum
10212  *      amount of fields so it can be used to schedule NAPI polls without
10213  *      registering a full blown interface. This is to be used by drivers
10214  *      that need to tie several hardware interfaces to a single NAPI
10215  *      poll scheduler due to HW limitations.
10216  */
10217 int init_dummy_netdev(struct net_device *dev)
10218 {
10219         /* Clear everything. Note we don't initialize spinlocks
10220          * are they aren't supposed to be taken by any of the
10221          * NAPI code and this dummy netdev is supposed to be
10222          * only ever used for NAPI polls
10223          */
10224         memset(dev, 0, sizeof(struct net_device));
10225
10226         /* make sure we BUG if trying to hit standard
10227          * register/unregister code path
10228          */
10229         dev->reg_state = NETREG_DUMMY;
10230
10231         /* NAPI wants this */
10232         INIT_LIST_HEAD(&dev->napi_list);
10233
10234         /* a dummy interface is started by default */
10235         set_bit(__LINK_STATE_PRESENT, &dev->state);
10236         set_bit(__LINK_STATE_START, &dev->state);
10237
10238         /* napi_busy_loop stats accounting wants this */
10239         dev_net_set(dev, &init_net);
10240
10241         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10242          * because users of this 'device' dont need to change
10243          * its refcount.
10244          */
10245
10246         return 0;
10247 }
10248 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10249
10250
10251 /**
10252  *      register_netdev - register a network device
10253  *      @dev: device to register
10254  *
10255  *      Take a completed network device structure and add it to the kernel
10256  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10257  *      chain. 0 is returned on success. A negative errno code is returned
10258  *      on a failure to set up the device, or if the name is a duplicate.
10259  *
10260  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10261  *      and expands the device name if you passed a format string to
10262  *      alloc_netdev.
10263  */
10264 int register_netdev(struct net_device *dev)
10265 {
10266         int err;
10267
10268         if (rtnl_lock_killable())
10269                 return -EINTR;
10270         err = register_netdevice(dev);
10271         rtnl_unlock();
10272         return err;
10273 }
10274 EXPORT_SYMBOL(register_netdev);
10275
10276 int netdev_refcnt_read(const struct net_device *dev)
10277 {
10278 #ifdef CONFIG_PCPU_DEV_REFCNT
10279         int i, refcnt = 0;
10280
10281         for_each_possible_cpu(i)
10282                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10283         return refcnt;
10284 #else
10285         return refcount_read(&dev->dev_refcnt);
10286 #endif
10287 }
10288 EXPORT_SYMBOL(netdev_refcnt_read);
10289
10290 int netdev_unregister_timeout_secs __read_mostly = 10;
10291
10292 #define WAIT_REFS_MIN_MSECS 1
10293 #define WAIT_REFS_MAX_MSECS 250
10294 /**
10295  * netdev_wait_allrefs_any - wait until all references are gone.
10296  * @list: list of net_devices to wait on
10297  *
10298  * This is called when unregistering network devices.
10299  *
10300  * Any protocol or device that holds a reference should register
10301  * for netdevice notification, and cleanup and put back the
10302  * reference if they receive an UNREGISTER event.
10303  * We can get stuck here if buggy protocols don't correctly
10304  * call dev_put.
10305  */
10306 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10307 {
10308         unsigned long rebroadcast_time, warning_time;
10309         struct net_device *dev;
10310         int wait = 0;
10311
10312         rebroadcast_time = warning_time = jiffies;
10313
10314         list_for_each_entry(dev, list, todo_list)
10315                 if (netdev_refcnt_read(dev) == 1)
10316                         return dev;
10317
10318         while (true) {
10319                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10320                         rtnl_lock();
10321
10322                         /* Rebroadcast unregister notification */
10323                         list_for_each_entry(dev, list, todo_list)
10324                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10325
10326                         __rtnl_unlock();
10327                         rcu_barrier();
10328                         rtnl_lock();
10329
10330                         list_for_each_entry(dev, list, todo_list)
10331                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10332                                              &dev->state)) {
10333                                         /* We must not have linkwatch events
10334                                          * pending on unregister. If this
10335                                          * happens, we simply run the queue
10336                                          * unscheduled, resulting in a noop
10337                                          * for this device.
10338                                          */
10339                                         linkwatch_run_queue();
10340                                         break;
10341                                 }
10342
10343                         __rtnl_unlock();
10344
10345                         rebroadcast_time = jiffies;
10346                 }
10347
10348                 if (!wait) {
10349                         rcu_barrier();
10350                         wait = WAIT_REFS_MIN_MSECS;
10351                 } else {
10352                         msleep(wait);
10353                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10354                 }
10355
10356                 list_for_each_entry(dev, list, todo_list)
10357                         if (netdev_refcnt_read(dev) == 1)
10358                                 return dev;
10359
10360                 if (time_after(jiffies, warning_time +
10361                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10362                         list_for_each_entry(dev, list, todo_list) {
10363                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10364                                          dev->name, netdev_refcnt_read(dev));
10365                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10366                         }
10367
10368                         warning_time = jiffies;
10369                 }
10370         }
10371 }
10372
10373 /* The sequence is:
10374  *
10375  *      rtnl_lock();
10376  *      ...
10377  *      register_netdevice(x1);
10378  *      register_netdevice(x2);
10379  *      ...
10380  *      unregister_netdevice(y1);
10381  *      unregister_netdevice(y2);
10382  *      ...
10383  *      rtnl_unlock();
10384  *      free_netdev(y1);
10385  *      free_netdev(y2);
10386  *
10387  * We are invoked by rtnl_unlock().
10388  * This allows us to deal with problems:
10389  * 1) We can delete sysfs objects which invoke hotplug
10390  *    without deadlocking with linkwatch via keventd.
10391  * 2) Since we run with the RTNL semaphore not held, we can sleep
10392  *    safely in order to wait for the netdev refcnt to drop to zero.
10393  *
10394  * We must not return until all unregister events added during
10395  * the interval the lock was held have been completed.
10396  */
10397 void netdev_run_todo(void)
10398 {
10399         struct net_device *dev, *tmp;
10400         struct list_head list;
10401 #ifdef CONFIG_LOCKDEP
10402         struct list_head unlink_list;
10403
10404         list_replace_init(&net_unlink_list, &unlink_list);
10405
10406         while (!list_empty(&unlink_list)) {
10407                 struct net_device *dev = list_first_entry(&unlink_list,
10408                                                           struct net_device,
10409                                                           unlink_list);
10410                 list_del_init(&dev->unlink_list);
10411                 dev->nested_level = dev->lower_level - 1;
10412         }
10413 #endif
10414
10415         /* Snapshot list, allow later requests */
10416         list_replace_init(&net_todo_list, &list);
10417
10418         __rtnl_unlock();
10419
10420         /* Wait for rcu callbacks to finish before next phase */
10421         if (!list_empty(&list))
10422                 rcu_barrier();
10423
10424         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10425                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10426                         netdev_WARN(dev, "run_todo but not unregistering\n");
10427                         list_del(&dev->todo_list);
10428                         continue;
10429                 }
10430
10431                 write_lock(&dev_base_lock);
10432                 dev->reg_state = NETREG_UNREGISTERED;
10433                 write_unlock(&dev_base_lock);
10434                 linkwatch_forget_dev(dev);
10435         }
10436
10437         while (!list_empty(&list)) {
10438                 dev = netdev_wait_allrefs_any(&list);
10439                 list_del(&dev->todo_list);
10440
10441                 /* paranoia */
10442                 BUG_ON(netdev_refcnt_read(dev) != 1);
10443                 BUG_ON(!list_empty(&dev->ptype_all));
10444                 BUG_ON(!list_empty(&dev->ptype_specific));
10445                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10446                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10447
10448                 if (dev->priv_destructor)
10449                         dev->priv_destructor(dev);
10450                 if (dev->needs_free_netdev)
10451                         free_netdev(dev);
10452
10453                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10454                         wake_up(&netdev_unregistering_wq);
10455
10456                 /* Free network device */
10457                 kobject_put(&dev->dev.kobj);
10458         }
10459 }
10460
10461 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10462  * all the same fields in the same order as net_device_stats, with only
10463  * the type differing, but rtnl_link_stats64 may have additional fields
10464  * at the end for newer counters.
10465  */
10466 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10467                              const struct net_device_stats *netdev_stats)
10468 {
10469         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10470         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10471         u64 *dst = (u64 *)stats64;
10472
10473         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10474         for (i = 0; i < n; i++)
10475                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10476         /* zero out counters that only exist in rtnl_link_stats64 */
10477         memset((char *)stats64 + n * sizeof(u64), 0,
10478                sizeof(*stats64) - n * sizeof(u64));
10479 }
10480 EXPORT_SYMBOL(netdev_stats_to_stats64);
10481
10482 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10483 {
10484         struct net_device_core_stats __percpu *p;
10485
10486         p = alloc_percpu_gfp(struct net_device_core_stats,
10487                              GFP_ATOMIC | __GFP_NOWARN);
10488
10489         if (p && cmpxchg(&dev->core_stats, NULL, p))
10490                 free_percpu(p);
10491
10492         /* This READ_ONCE() pairs with the cmpxchg() above */
10493         return READ_ONCE(dev->core_stats);
10494 }
10495 EXPORT_SYMBOL(netdev_core_stats_alloc);
10496
10497 /**
10498  *      dev_get_stats   - get network device statistics
10499  *      @dev: device to get statistics from
10500  *      @storage: place to store stats
10501  *
10502  *      Get network statistics from device. Return @storage.
10503  *      The device driver may provide its own method by setting
10504  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10505  *      otherwise the internal statistics structure is used.
10506  */
10507 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10508                                         struct rtnl_link_stats64 *storage)
10509 {
10510         const struct net_device_ops *ops = dev->netdev_ops;
10511         const struct net_device_core_stats __percpu *p;
10512
10513         if (ops->ndo_get_stats64) {
10514                 memset(storage, 0, sizeof(*storage));
10515                 ops->ndo_get_stats64(dev, storage);
10516         } else if (ops->ndo_get_stats) {
10517                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10518         } else {
10519                 netdev_stats_to_stats64(storage, &dev->stats);
10520         }
10521
10522         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10523         p = READ_ONCE(dev->core_stats);
10524         if (p) {
10525                 const struct net_device_core_stats *core_stats;
10526                 int i;
10527
10528                 for_each_possible_cpu(i) {
10529                         core_stats = per_cpu_ptr(p, i);
10530                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10531                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10532                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10533                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10534                 }
10535         }
10536         return storage;
10537 }
10538 EXPORT_SYMBOL(dev_get_stats);
10539
10540 /**
10541  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10542  *      @s: place to store stats
10543  *      @netstats: per-cpu network stats to read from
10544  *
10545  *      Read per-cpu network statistics and populate the related fields in @s.
10546  */
10547 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10548                            const struct pcpu_sw_netstats __percpu *netstats)
10549 {
10550         int cpu;
10551
10552         for_each_possible_cpu(cpu) {
10553                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10554                 const struct pcpu_sw_netstats *stats;
10555                 unsigned int start;
10556
10557                 stats = per_cpu_ptr(netstats, cpu);
10558                 do {
10559                         start = u64_stats_fetch_begin(&stats->syncp);
10560                         rx_packets = u64_stats_read(&stats->rx_packets);
10561                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10562                         tx_packets = u64_stats_read(&stats->tx_packets);
10563                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10564                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10565
10566                 s->rx_packets += rx_packets;
10567                 s->rx_bytes   += rx_bytes;
10568                 s->tx_packets += tx_packets;
10569                 s->tx_bytes   += tx_bytes;
10570         }
10571 }
10572 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10573
10574 /**
10575  *      dev_get_tstats64 - ndo_get_stats64 implementation
10576  *      @dev: device to get statistics from
10577  *      @s: place to store stats
10578  *
10579  *      Populate @s from dev->stats and dev->tstats. Can be used as
10580  *      ndo_get_stats64() callback.
10581  */
10582 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10583 {
10584         netdev_stats_to_stats64(s, &dev->stats);
10585         dev_fetch_sw_netstats(s, dev->tstats);
10586 }
10587 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10588
10589 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10590 {
10591         struct netdev_queue *queue = dev_ingress_queue(dev);
10592
10593 #ifdef CONFIG_NET_CLS_ACT
10594         if (queue)
10595                 return queue;
10596         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10597         if (!queue)
10598                 return NULL;
10599         netdev_init_one_queue(dev, queue, NULL);
10600         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10601         RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10602         rcu_assign_pointer(dev->ingress_queue, queue);
10603 #endif
10604         return queue;
10605 }
10606
10607 static const struct ethtool_ops default_ethtool_ops;
10608
10609 void netdev_set_default_ethtool_ops(struct net_device *dev,
10610                                     const struct ethtool_ops *ops)
10611 {
10612         if (dev->ethtool_ops == &default_ethtool_ops)
10613                 dev->ethtool_ops = ops;
10614 }
10615 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10616
10617 /**
10618  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10619  * @dev: netdev to enable the IRQ coalescing on
10620  *
10621  * Sets a conservative default for SW IRQ coalescing. Users can use
10622  * sysfs attributes to override the default values.
10623  */
10624 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10625 {
10626         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10627
10628         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10629                 dev->gro_flush_timeout = 20000;
10630                 dev->napi_defer_hard_irqs = 1;
10631         }
10632 }
10633 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10634
10635 void netdev_freemem(struct net_device *dev)
10636 {
10637         char *addr = (char *)dev - dev->padded;
10638
10639         kvfree(addr);
10640 }
10641
10642 /**
10643  * alloc_netdev_mqs - allocate network device
10644  * @sizeof_priv: size of private data to allocate space for
10645  * @name: device name format string
10646  * @name_assign_type: origin of device name
10647  * @setup: callback to initialize device
10648  * @txqs: the number of TX subqueues to allocate
10649  * @rxqs: the number of RX subqueues to allocate
10650  *
10651  * Allocates a struct net_device with private data area for driver use
10652  * and performs basic initialization.  Also allocates subqueue structs
10653  * for each queue on the device.
10654  */
10655 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10656                 unsigned char name_assign_type,
10657                 void (*setup)(struct net_device *),
10658                 unsigned int txqs, unsigned int rxqs)
10659 {
10660         struct net_device *dev;
10661         unsigned int alloc_size;
10662         struct net_device *p;
10663
10664         BUG_ON(strlen(name) >= sizeof(dev->name));
10665
10666         if (txqs < 1) {
10667                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10668                 return NULL;
10669         }
10670
10671         if (rxqs < 1) {
10672                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10673                 return NULL;
10674         }
10675
10676         alloc_size = sizeof(struct net_device);
10677         if (sizeof_priv) {
10678                 /* ensure 32-byte alignment of private area */
10679                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10680                 alloc_size += sizeof_priv;
10681         }
10682         /* ensure 32-byte alignment of whole construct */
10683         alloc_size += NETDEV_ALIGN - 1;
10684
10685         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10686         if (!p)
10687                 return NULL;
10688
10689         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10690         dev->padded = (char *)dev - (char *)p;
10691
10692         ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10693 #ifdef CONFIG_PCPU_DEV_REFCNT
10694         dev->pcpu_refcnt = alloc_percpu(int);
10695         if (!dev->pcpu_refcnt)
10696                 goto free_dev;
10697         __dev_hold(dev);
10698 #else
10699         refcount_set(&dev->dev_refcnt, 1);
10700 #endif
10701
10702         if (dev_addr_init(dev))
10703                 goto free_pcpu;
10704
10705         dev_mc_init(dev);
10706         dev_uc_init(dev);
10707
10708         dev_net_set(dev, &init_net);
10709
10710         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10711         dev->xdp_zc_max_segs = 1;
10712         dev->gso_max_segs = GSO_MAX_SEGS;
10713         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10714         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10715         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10716         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10717         dev->tso_max_segs = TSO_MAX_SEGS;
10718         dev->upper_level = 1;
10719         dev->lower_level = 1;
10720 #ifdef CONFIG_LOCKDEP
10721         dev->nested_level = 0;
10722         INIT_LIST_HEAD(&dev->unlink_list);
10723 #endif
10724
10725         INIT_LIST_HEAD(&dev->napi_list);
10726         INIT_LIST_HEAD(&dev->unreg_list);
10727         INIT_LIST_HEAD(&dev->close_list);
10728         INIT_LIST_HEAD(&dev->link_watch_list);
10729         INIT_LIST_HEAD(&dev->adj_list.upper);
10730         INIT_LIST_HEAD(&dev->adj_list.lower);
10731         INIT_LIST_HEAD(&dev->ptype_all);
10732         INIT_LIST_HEAD(&dev->ptype_specific);
10733         INIT_LIST_HEAD(&dev->net_notifier_list);
10734 #ifdef CONFIG_NET_SCHED
10735         hash_init(dev->qdisc_hash);
10736 #endif
10737         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10738         setup(dev);
10739
10740         if (!dev->tx_queue_len) {
10741                 dev->priv_flags |= IFF_NO_QUEUE;
10742                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10743         }
10744
10745         dev->num_tx_queues = txqs;
10746         dev->real_num_tx_queues = txqs;
10747         if (netif_alloc_netdev_queues(dev))
10748                 goto free_all;
10749
10750         dev->num_rx_queues = rxqs;
10751         dev->real_num_rx_queues = rxqs;
10752         if (netif_alloc_rx_queues(dev))
10753                 goto free_all;
10754
10755         strcpy(dev->name, name);
10756         dev->name_assign_type = name_assign_type;
10757         dev->group = INIT_NETDEV_GROUP;
10758         if (!dev->ethtool_ops)
10759                 dev->ethtool_ops = &default_ethtool_ops;
10760
10761         nf_hook_netdev_init(dev);
10762
10763         return dev;
10764
10765 free_all:
10766         free_netdev(dev);
10767         return NULL;
10768
10769 free_pcpu:
10770 #ifdef CONFIG_PCPU_DEV_REFCNT
10771         free_percpu(dev->pcpu_refcnt);
10772 free_dev:
10773 #endif
10774         netdev_freemem(dev);
10775         return NULL;
10776 }
10777 EXPORT_SYMBOL(alloc_netdev_mqs);
10778
10779 /**
10780  * free_netdev - free network device
10781  * @dev: device
10782  *
10783  * This function does the last stage of destroying an allocated device
10784  * interface. The reference to the device object is released. If this
10785  * is the last reference then it will be freed.Must be called in process
10786  * context.
10787  */
10788 void free_netdev(struct net_device *dev)
10789 {
10790         struct napi_struct *p, *n;
10791
10792         might_sleep();
10793
10794         /* When called immediately after register_netdevice() failed the unwind
10795          * handling may still be dismantling the device. Handle that case by
10796          * deferring the free.
10797          */
10798         if (dev->reg_state == NETREG_UNREGISTERING) {
10799                 ASSERT_RTNL();
10800                 dev->needs_free_netdev = true;
10801                 return;
10802         }
10803
10804         netif_free_tx_queues(dev);
10805         netif_free_rx_queues(dev);
10806
10807         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10808
10809         /* Flush device addresses */
10810         dev_addr_flush(dev);
10811
10812         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10813                 netif_napi_del(p);
10814
10815         ref_tracker_dir_exit(&dev->refcnt_tracker);
10816 #ifdef CONFIG_PCPU_DEV_REFCNT
10817         free_percpu(dev->pcpu_refcnt);
10818         dev->pcpu_refcnt = NULL;
10819 #endif
10820         free_percpu(dev->core_stats);
10821         dev->core_stats = NULL;
10822         free_percpu(dev->xdp_bulkq);
10823         dev->xdp_bulkq = NULL;
10824
10825         /*  Compatibility with error handling in drivers */
10826         if (dev->reg_state == NETREG_UNINITIALIZED) {
10827                 netdev_freemem(dev);
10828                 return;
10829         }
10830
10831         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10832         dev->reg_state = NETREG_RELEASED;
10833
10834         /* will free via device release */
10835         put_device(&dev->dev);
10836 }
10837 EXPORT_SYMBOL(free_netdev);
10838
10839 /**
10840  *      synchronize_net -  Synchronize with packet receive processing
10841  *
10842  *      Wait for packets currently being received to be done.
10843  *      Does not block later packets from starting.
10844  */
10845 void synchronize_net(void)
10846 {
10847         might_sleep();
10848         if (rtnl_is_locked())
10849                 synchronize_rcu_expedited();
10850         else
10851                 synchronize_rcu();
10852 }
10853 EXPORT_SYMBOL(synchronize_net);
10854
10855 /**
10856  *      unregister_netdevice_queue - remove device from the kernel
10857  *      @dev: device
10858  *      @head: list
10859  *
10860  *      This function shuts down a device interface and removes it
10861  *      from the kernel tables.
10862  *      If head not NULL, device is queued to be unregistered later.
10863  *
10864  *      Callers must hold the rtnl semaphore.  You may want
10865  *      unregister_netdev() instead of this.
10866  */
10867
10868 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10869 {
10870         ASSERT_RTNL();
10871
10872         if (head) {
10873                 list_move_tail(&dev->unreg_list, head);
10874         } else {
10875                 LIST_HEAD(single);
10876
10877                 list_add(&dev->unreg_list, &single);
10878                 unregister_netdevice_many(&single);
10879         }
10880 }
10881 EXPORT_SYMBOL(unregister_netdevice_queue);
10882
10883 void unregister_netdevice_many_notify(struct list_head *head,
10884                                       u32 portid, const struct nlmsghdr *nlh)
10885 {
10886         struct net_device *dev, *tmp;
10887         LIST_HEAD(close_head);
10888
10889         BUG_ON(dev_boot_phase);
10890         ASSERT_RTNL();
10891
10892         if (list_empty(head))
10893                 return;
10894
10895         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10896                 /* Some devices call without registering
10897                  * for initialization unwind. Remove those
10898                  * devices and proceed with the remaining.
10899                  */
10900                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10901                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10902                                  dev->name, dev);
10903
10904                         WARN_ON(1);
10905                         list_del(&dev->unreg_list);
10906                         continue;
10907                 }
10908                 dev->dismantle = true;
10909                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10910         }
10911
10912         /* If device is running, close it first. */
10913         list_for_each_entry(dev, head, unreg_list)
10914                 list_add_tail(&dev->close_list, &close_head);
10915         dev_close_many(&close_head, true);
10916
10917         list_for_each_entry(dev, head, unreg_list) {
10918                 /* And unlink it from device chain. */
10919                 write_lock(&dev_base_lock);
10920                 unlist_netdevice(dev, false);
10921                 dev->reg_state = NETREG_UNREGISTERING;
10922                 write_unlock(&dev_base_lock);
10923         }
10924         flush_all_backlogs();
10925
10926         synchronize_net();
10927
10928         list_for_each_entry(dev, head, unreg_list) {
10929                 struct sk_buff *skb = NULL;
10930
10931                 /* Shutdown queueing discipline. */
10932                 dev_shutdown(dev);
10933                 dev_tcx_uninstall(dev);
10934                 dev_xdp_uninstall(dev);
10935                 bpf_dev_bound_netdev_unregister(dev);
10936
10937                 netdev_offload_xstats_disable_all(dev);
10938
10939                 /* Notify protocols, that we are about to destroy
10940                  * this device. They should clean all the things.
10941                  */
10942                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10943
10944                 if (!dev->rtnl_link_ops ||
10945                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10946                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10947                                                      GFP_KERNEL, NULL, 0,
10948                                                      portid, nlh);
10949
10950                 /*
10951                  *      Flush the unicast and multicast chains
10952                  */
10953                 dev_uc_flush(dev);
10954                 dev_mc_flush(dev);
10955
10956                 netdev_name_node_alt_flush(dev);
10957                 netdev_name_node_free(dev->name_node);
10958
10959                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10960
10961                 if (dev->netdev_ops->ndo_uninit)
10962                         dev->netdev_ops->ndo_uninit(dev);
10963
10964                 if (skb)
10965                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10966
10967                 /* Notifier chain MUST detach us all upper devices. */
10968                 WARN_ON(netdev_has_any_upper_dev(dev));
10969                 WARN_ON(netdev_has_any_lower_dev(dev));
10970
10971                 /* Remove entries from kobject tree */
10972                 netdev_unregister_kobject(dev);
10973 #ifdef CONFIG_XPS
10974                 /* Remove XPS queueing entries */
10975                 netif_reset_xps_queues_gt(dev, 0);
10976 #endif
10977         }
10978
10979         synchronize_net();
10980
10981         list_for_each_entry(dev, head, unreg_list) {
10982                 netdev_put(dev, &dev->dev_registered_tracker);
10983                 net_set_todo(dev);
10984         }
10985
10986         list_del(head);
10987 }
10988
10989 /**
10990  *      unregister_netdevice_many - unregister many devices
10991  *      @head: list of devices
10992  *
10993  *  Note: As most callers use a stack allocated list_head,
10994  *  we force a list_del() to make sure stack wont be corrupted later.
10995  */
10996 void unregister_netdevice_many(struct list_head *head)
10997 {
10998         unregister_netdevice_many_notify(head, 0, NULL);
10999 }
11000 EXPORT_SYMBOL(unregister_netdevice_many);
11001
11002 /**
11003  *      unregister_netdev - remove device from the kernel
11004  *      @dev: device
11005  *
11006  *      This function shuts down a device interface and removes it
11007  *      from the kernel tables.
11008  *
11009  *      This is just a wrapper for unregister_netdevice that takes
11010  *      the rtnl semaphore.  In general you want to use this and not
11011  *      unregister_netdevice.
11012  */
11013 void unregister_netdev(struct net_device *dev)
11014 {
11015         rtnl_lock();
11016         unregister_netdevice(dev);
11017         rtnl_unlock();
11018 }
11019 EXPORT_SYMBOL(unregister_netdev);
11020
11021 /**
11022  *      __dev_change_net_namespace - move device to different nethost namespace
11023  *      @dev: device
11024  *      @net: network namespace
11025  *      @pat: If not NULL name pattern to try if the current device name
11026  *            is already taken in the destination network namespace.
11027  *      @new_ifindex: If not zero, specifies device index in the target
11028  *                    namespace.
11029  *
11030  *      This function shuts down a device interface and moves it
11031  *      to a new network namespace. On success 0 is returned, on
11032  *      a failure a netagive errno code is returned.
11033  *
11034  *      Callers must hold the rtnl semaphore.
11035  */
11036
11037 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11038                                const char *pat, int new_ifindex)
11039 {
11040         struct net *net_old = dev_net(dev);
11041         int err, new_nsid;
11042
11043         ASSERT_RTNL();
11044
11045         /* Don't allow namespace local devices to be moved. */
11046         err = -EINVAL;
11047         if (dev->features & NETIF_F_NETNS_LOCAL)
11048                 goto out;
11049
11050         /* Ensure the device has been registrered */
11051         if (dev->reg_state != NETREG_REGISTERED)
11052                 goto out;
11053
11054         /* Get out if there is nothing todo */
11055         err = 0;
11056         if (net_eq(net_old, net))
11057                 goto out;
11058
11059         /* Pick the destination device name, and ensure
11060          * we can use it in the destination network namespace.
11061          */
11062         err = -EEXIST;
11063         if (netdev_name_in_use(net, dev->name)) {
11064                 /* We get here if we can't use the current device name */
11065                 if (!pat)
11066                         goto out;
11067                 err = dev_get_valid_name(net, dev, pat);
11068                 if (err < 0)
11069                         goto out;
11070         }
11071
11072         /* Check that new_ifindex isn't used yet. */
11073         if (new_ifindex) {
11074                 err = dev_index_reserve(net, new_ifindex);
11075                 if (err < 0)
11076                         goto out;
11077         } else {
11078                 /* If there is an ifindex conflict assign a new one */
11079                 err = dev_index_reserve(net, dev->ifindex);
11080                 if (err == -EBUSY)
11081                         err = dev_index_reserve(net, 0);
11082                 if (err < 0)
11083                         goto out;
11084                 new_ifindex = err;
11085         }
11086
11087         /*
11088          * And now a mini version of register_netdevice unregister_netdevice.
11089          */
11090
11091         /* If device is running close it first. */
11092         dev_close(dev);
11093
11094         /* And unlink it from device chain */
11095         unlist_netdevice(dev, true);
11096
11097         synchronize_net();
11098
11099         /* Shutdown queueing discipline. */
11100         dev_shutdown(dev);
11101
11102         /* Notify protocols, that we are about to destroy
11103          * this device. They should clean all the things.
11104          *
11105          * Note that dev->reg_state stays at NETREG_REGISTERED.
11106          * This is wanted because this way 8021q and macvlan know
11107          * the device is just moving and can keep their slaves up.
11108          */
11109         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11110         rcu_barrier();
11111
11112         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11113
11114         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11115                             new_ifindex);
11116
11117         /*
11118          *      Flush the unicast and multicast chains
11119          */
11120         dev_uc_flush(dev);
11121         dev_mc_flush(dev);
11122
11123         /* Send a netdev-removed uevent to the old namespace */
11124         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11125         netdev_adjacent_del_links(dev);
11126
11127         /* Move per-net netdevice notifiers that are following the netdevice */
11128         move_netdevice_notifiers_dev_net(dev, net);
11129
11130         /* Actually switch the network namespace */
11131         dev_net_set(dev, net);
11132         dev->ifindex = new_ifindex;
11133
11134         /* Send a netdev-add uevent to the new namespace */
11135         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11136         netdev_adjacent_add_links(dev);
11137
11138         /* Fixup kobjects */
11139         err = device_rename(&dev->dev, dev->name);
11140         WARN_ON(err);
11141
11142         /* Adapt owner in case owning user namespace of target network
11143          * namespace is different from the original one.
11144          */
11145         err = netdev_change_owner(dev, net_old, net);
11146         WARN_ON(err);
11147
11148         /* Add the device back in the hashes */
11149         list_netdevice(dev);
11150
11151         /* Notify protocols, that a new device appeared. */
11152         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11153
11154         /*
11155          *      Prevent userspace races by waiting until the network
11156          *      device is fully setup before sending notifications.
11157          */
11158         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11159
11160         synchronize_net();
11161         err = 0;
11162 out:
11163         return err;
11164 }
11165 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11166
11167 static int dev_cpu_dead(unsigned int oldcpu)
11168 {
11169         struct sk_buff **list_skb;
11170         struct sk_buff *skb;
11171         unsigned int cpu;
11172         struct softnet_data *sd, *oldsd, *remsd = NULL;
11173
11174         local_irq_disable();
11175         cpu = smp_processor_id();
11176         sd = &per_cpu(softnet_data, cpu);
11177         oldsd = &per_cpu(softnet_data, oldcpu);
11178
11179         /* Find end of our completion_queue. */
11180         list_skb = &sd->completion_queue;
11181         while (*list_skb)
11182                 list_skb = &(*list_skb)->next;
11183         /* Append completion queue from offline CPU. */
11184         *list_skb = oldsd->completion_queue;
11185         oldsd->completion_queue = NULL;
11186
11187         /* Append output queue from offline CPU. */
11188         if (oldsd->output_queue) {
11189                 *sd->output_queue_tailp = oldsd->output_queue;
11190                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11191                 oldsd->output_queue = NULL;
11192                 oldsd->output_queue_tailp = &oldsd->output_queue;
11193         }
11194         /* Append NAPI poll list from offline CPU, with one exception :
11195          * process_backlog() must be called by cpu owning percpu backlog.
11196          * We properly handle process_queue & input_pkt_queue later.
11197          */
11198         while (!list_empty(&oldsd->poll_list)) {
11199                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11200                                                             struct napi_struct,
11201                                                             poll_list);
11202
11203                 list_del_init(&napi->poll_list);
11204                 if (napi->poll == process_backlog)
11205                         napi->state = 0;
11206                 else
11207                         ____napi_schedule(sd, napi);
11208         }
11209
11210         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11211         local_irq_enable();
11212
11213 #ifdef CONFIG_RPS
11214         remsd = oldsd->rps_ipi_list;
11215         oldsd->rps_ipi_list = NULL;
11216 #endif
11217         /* send out pending IPI's on offline CPU */
11218         net_rps_send_ipi(remsd);
11219
11220         /* Process offline CPU's input_pkt_queue */
11221         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11222                 netif_rx(skb);
11223                 input_queue_head_incr(oldsd);
11224         }
11225         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11226                 netif_rx(skb);
11227                 input_queue_head_incr(oldsd);
11228         }
11229
11230         return 0;
11231 }
11232
11233 /**
11234  *      netdev_increment_features - increment feature set by one
11235  *      @all: current feature set
11236  *      @one: new feature set
11237  *      @mask: mask feature set
11238  *
11239  *      Computes a new feature set after adding a device with feature set
11240  *      @one to the master device with current feature set @all.  Will not
11241  *      enable anything that is off in @mask. Returns the new feature set.
11242  */
11243 netdev_features_t netdev_increment_features(netdev_features_t all,
11244         netdev_features_t one, netdev_features_t mask)
11245 {
11246         if (mask & NETIF_F_HW_CSUM)
11247                 mask |= NETIF_F_CSUM_MASK;
11248         mask |= NETIF_F_VLAN_CHALLENGED;
11249
11250         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11251         all &= one | ~NETIF_F_ALL_FOR_ALL;
11252
11253         /* If one device supports hw checksumming, set for all. */
11254         if (all & NETIF_F_HW_CSUM)
11255                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11256
11257         return all;
11258 }
11259 EXPORT_SYMBOL(netdev_increment_features);
11260
11261 static struct hlist_head * __net_init netdev_create_hash(void)
11262 {
11263         int i;
11264         struct hlist_head *hash;
11265
11266         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11267         if (hash != NULL)
11268                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11269                         INIT_HLIST_HEAD(&hash[i]);
11270
11271         return hash;
11272 }
11273
11274 /* Initialize per network namespace state */
11275 static int __net_init netdev_init(struct net *net)
11276 {
11277         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11278                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11279
11280         INIT_LIST_HEAD(&net->dev_base_head);
11281
11282         net->dev_name_head = netdev_create_hash();
11283         if (net->dev_name_head == NULL)
11284                 goto err_name;
11285
11286         net->dev_index_head = netdev_create_hash();
11287         if (net->dev_index_head == NULL)
11288                 goto err_idx;
11289
11290         xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11291
11292         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11293
11294         return 0;
11295
11296 err_idx:
11297         kfree(net->dev_name_head);
11298 err_name:
11299         return -ENOMEM;
11300 }
11301
11302 /**
11303  *      netdev_drivername - network driver for the device
11304  *      @dev: network device
11305  *
11306  *      Determine network driver for device.
11307  */
11308 const char *netdev_drivername(const struct net_device *dev)
11309 {
11310         const struct device_driver *driver;
11311         const struct device *parent;
11312         const char *empty = "";
11313
11314         parent = dev->dev.parent;
11315         if (!parent)
11316                 return empty;
11317
11318         driver = parent->driver;
11319         if (driver && driver->name)
11320                 return driver->name;
11321         return empty;
11322 }
11323
11324 static void __netdev_printk(const char *level, const struct net_device *dev,
11325                             struct va_format *vaf)
11326 {
11327         if (dev && dev->dev.parent) {
11328                 dev_printk_emit(level[1] - '0',
11329                                 dev->dev.parent,
11330                                 "%s %s %s%s: %pV",
11331                                 dev_driver_string(dev->dev.parent),
11332                                 dev_name(dev->dev.parent),
11333                                 netdev_name(dev), netdev_reg_state(dev),
11334                                 vaf);
11335         } else if (dev) {
11336                 printk("%s%s%s: %pV",
11337                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11338         } else {
11339                 printk("%s(NULL net_device): %pV", level, vaf);
11340         }
11341 }
11342
11343 void netdev_printk(const char *level, const struct net_device *dev,
11344                    const char *format, ...)
11345 {
11346         struct va_format vaf;
11347         va_list args;
11348
11349         va_start(args, format);
11350
11351         vaf.fmt = format;
11352         vaf.va = &args;
11353
11354         __netdev_printk(level, dev, &vaf);
11355
11356         va_end(args);
11357 }
11358 EXPORT_SYMBOL(netdev_printk);
11359
11360 #define define_netdev_printk_level(func, level)                 \
11361 void func(const struct net_device *dev, const char *fmt, ...)   \
11362 {                                                               \
11363         struct va_format vaf;                                   \
11364         va_list args;                                           \
11365                                                                 \
11366         va_start(args, fmt);                                    \
11367                                                                 \
11368         vaf.fmt = fmt;                                          \
11369         vaf.va = &args;                                         \
11370                                                                 \
11371         __netdev_printk(level, dev, &vaf);                      \
11372                                                                 \
11373         va_end(args);                                           \
11374 }                                                               \
11375 EXPORT_SYMBOL(func);
11376
11377 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11378 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11379 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11380 define_netdev_printk_level(netdev_err, KERN_ERR);
11381 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11382 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11383 define_netdev_printk_level(netdev_info, KERN_INFO);
11384
11385 static void __net_exit netdev_exit(struct net *net)
11386 {
11387         kfree(net->dev_name_head);
11388         kfree(net->dev_index_head);
11389         xa_destroy(&net->dev_by_index);
11390         if (net != &init_net)
11391                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11392 }
11393
11394 static struct pernet_operations __net_initdata netdev_net_ops = {
11395         .init = netdev_init,
11396         .exit = netdev_exit,
11397 };
11398
11399 static void __net_exit default_device_exit_net(struct net *net)
11400 {
11401         struct net_device *dev, *aux;
11402         /*
11403          * Push all migratable network devices back to the
11404          * initial network namespace
11405          */
11406         ASSERT_RTNL();
11407         for_each_netdev_safe(net, dev, aux) {
11408                 int err;
11409                 char fb_name[IFNAMSIZ];
11410
11411                 /* Ignore unmoveable devices (i.e. loopback) */
11412                 if (dev->features & NETIF_F_NETNS_LOCAL)
11413                         continue;
11414
11415                 /* Leave virtual devices for the generic cleanup */
11416                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11417                         continue;
11418
11419                 /* Push remaining network devices to init_net */
11420                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11421                 if (netdev_name_in_use(&init_net, fb_name))
11422                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11423                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11424                 if (err) {
11425                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11426                                  __func__, dev->name, err);
11427                         BUG();
11428                 }
11429         }
11430 }
11431
11432 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11433 {
11434         /* At exit all network devices most be removed from a network
11435          * namespace.  Do this in the reverse order of registration.
11436          * Do this across as many network namespaces as possible to
11437          * improve batching efficiency.
11438          */
11439         struct net_device *dev;
11440         struct net *net;
11441         LIST_HEAD(dev_kill_list);
11442
11443         rtnl_lock();
11444         list_for_each_entry(net, net_list, exit_list) {
11445                 default_device_exit_net(net);
11446                 cond_resched();
11447         }
11448
11449         list_for_each_entry(net, net_list, exit_list) {
11450                 for_each_netdev_reverse(net, dev) {
11451                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11452                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11453                         else
11454                                 unregister_netdevice_queue(dev, &dev_kill_list);
11455                 }
11456         }
11457         unregister_netdevice_many(&dev_kill_list);
11458         rtnl_unlock();
11459 }
11460
11461 static struct pernet_operations __net_initdata default_device_ops = {
11462         .exit_batch = default_device_exit_batch,
11463 };
11464
11465 /*
11466  *      Initialize the DEV module. At boot time this walks the device list and
11467  *      unhooks any devices that fail to initialise (normally hardware not
11468  *      present) and leaves us with a valid list of present and active devices.
11469  *
11470  */
11471
11472 /*
11473  *       This is called single threaded during boot, so no need
11474  *       to take the rtnl semaphore.
11475  */
11476 static int __init net_dev_init(void)
11477 {
11478         int i, rc = -ENOMEM;
11479
11480         BUG_ON(!dev_boot_phase);
11481
11482         if (dev_proc_init())
11483                 goto out;
11484
11485         if (netdev_kobject_init())
11486                 goto out;
11487
11488         INIT_LIST_HEAD(&ptype_all);
11489         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11490                 INIT_LIST_HEAD(&ptype_base[i]);
11491
11492         if (register_pernet_subsys(&netdev_net_ops))
11493                 goto out;
11494
11495         /*
11496          *      Initialise the packet receive queues.
11497          */
11498
11499         for_each_possible_cpu(i) {
11500                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11501                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11502
11503                 INIT_WORK(flush, flush_backlog);
11504
11505                 skb_queue_head_init(&sd->input_pkt_queue);
11506                 skb_queue_head_init(&sd->process_queue);
11507 #ifdef CONFIG_XFRM_OFFLOAD
11508                 skb_queue_head_init(&sd->xfrm_backlog);
11509 #endif
11510                 INIT_LIST_HEAD(&sd->poll_list);
11511                 sd->output_queue_tailp = &sd->output_queue;
11512 #ifdef CONFIG_RPS
11513                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11514                 sd->cpu = i;
11515 #endif
11516                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11517                 spin_lock_init(&sd->defer_lock);
11518
11519                 init_gro_hash(&sd->backlog);
11520                 sd->backlog.poll = process_backlog;
11521                 sd->backlog.weight = weight_p;
11522         }
11523
11524         dev_boot_phase = 0;
11525
11526         /* The loopback device is special if any other network devices
11527          * is present in a network namespace the loopback device must
11528          * be present. Since we now dynamically allocate and free the
11529          * loopback device ensure this invariant is maintained by
11530          * keeping the loopback device as the first device on the
11531          * list of network devices.  Ensuring the loopback devices
11532          * is the first device that appears and the last network device
11533          * that disappears.
11534          */
11535         if (register_pernet_device(&loopback_net_ops))
11536                 goto out;
11537
11538         if (register_pernet_device(&default_device_ops))
11539                 goto out;
11540
11541         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11542         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11543
11544         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11545                                        NULL, dev_cpu_dead);
11546         WARN_ON(rc < 0);
11547         rc = 0;
11548 out:
11549         return rc;
11550 }
11551
11552 subsys_initcall(net_dev_init);