522288177bbd8ce00d2152c218d7eef6fbcd82ab
[platform/kernel/linux-rpi.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163                                            struct net_device *dev,
164                                            struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232                                                        const char *name)
233 {
234         struct netdev_name_node *name_node;
235
236         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237         if (!name_node)
238                 return NULL;
239         INIT_HLIST_NODE(&name_node->hlist);
240         name_node->dev = dev;
241         name_node->name = name;
242         return name_node;
243 }
244
245 static struct netdev_name_node *
246 netdev_name_node_head_alloc(struct net_device *dev)
247 {
248         struct netdev_name_node *name_node;
249
250         name_node = netdev_name_node_alloc(dev, dev->name);
251         if (!name_node)
252                 return NULL;
253         INIT_LIST_HEAD(&name_node->list);
254         return name_node;
255 }
256
257 static void netdev_name_node_free(struct netdev_name_node *name_node)
258 {
259         kfree(name_node);
260 }
261
262 static void netdev_name_node_add(struct net *net,
263                                  struct netdev_name_node *name_node)
264 {
265         hlist_add_head_rcu(&name_node->hlist,
266                            dev_name_hash(net, name_node->name));
267 }
268
269 static void netdev_name_node_del(struct netdev_name_node *name_node)
270 {
271         hlist_del_rcu(&name_node->hlist);
272 }
273
274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275                                                         const char *name)
276 {
277         struct hlist_head *head = dev_name_hash(net, name);
278         struct netdev_name_node *name_node;
279
280         hlist_for_each_entry(name_node, head, hlist)
281                 if (!strcmp(name_node->name, name))
282                         return name_node;
283         return NULL;
284 }
285
286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287                                                             const char *name)
288 {
289         struct hlist_head *head = dev_name_hash(net, name);
290         struct netdev_name_node *name_node;
291
292         hlist_for_each_entry_rcu(name_node, head, hlist)
293                 if (!strcmp(name_node->name, name))
294                         return name_node;
295         return NULL;
296 }
297
298 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299 {
300         struct netdev_name_node *name_node;
301         struct net *net = dev_net(dev);
302
303         name_node = netdev_name_node_lookup(net, name);
304         if (name_node)
305                 return -EEXIST;
306         name_node = netdev_name_node_alloc(dev, name);
307         if (!name_node)
308                 return -ENOMEM;
309         netdev_name_node_add(net, name_node);
310         /* The node that holds dev->name acts as a head of per-device list. */
311         list_add_tail(&name_node->list, &dev->name_node->list);
312
313         return 0;
314 }
315 EXPORT_SYMBOL(netdev_name_node_alt_create);
316
317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318 {
319         list_del(&name_node->list);
320         netdev_name_node_del(name_node);
321         kfree(name_node->name);
322         netdev_name_node_free(name_node);
323 }
324
325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326 {
327         struct netdev_name_node *name_node;
328         struct net *net = dev_net(dev);
329
330         name_node = netdev_name_node_lookup(net, name);
331         if (!name_node)
332                 return -ENOENT;
333         /* lookup might have found our primary name or a name belonging
334          * to another device.
335          */
336         if (name_node == dev->name_node || name_node->dev != dev)
337                 return -EINVAL;
338
339         __netdev_name_node_alt_destroy(name_node);
340
341         return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344
345 static void netdev_name_node_alt_flush(struct net_device *dev)
346 {
347         struct netdev_name_node *name_node, *tmp;
348
349         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350                 __netdev_name_node_alt_destroy(name_node);
351 }
352
353 /* Device list insertion */
354 static void list_netdevice(struct net_device *dev)
355 {
356         struct net *net = dev_net(dev);
357
358         ASSERT_RTNL();
359
360         write_lock_bh(&dev_base_lock);
361         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
362         netdev_name_node_add(net, dev->name_node);
363         hlist_add_head_rcu(&dev->index_hlist,
364                            dev_index_hash(net, dev->ifindex));
365         write_unlock_bh(&dev_base_lock);
366
367         dev_base_seq_inc(net);
368 }
369
370 /* Device list removal
371  * caller must respect a RCU grace period before freeing/reusing dev
372  */
373 static void unlist_netdevice(struct net_device *dev)
374 {
375         ASSERT_RTNL();
376
377         /* Unlink dev from the device chain */
378         write_lock_bh(&dev_base_lock);
379         list_del_rcu(&dev->dev_list);
380         netdev_name_node_del(dev->name_node);
381         hlist_del_rcu(&dev->index_hlist);
382         write_unlock_bh(&dev_base_lock);
383
384         dev_base_seq_inc(dev_net(dev));
385 }
386
387 /*
388  *      Our notifier list
389  */
390
391 static RAW_NOTIFIER_HEAD(netdev_chain);
392
393 /*
394  *      Device drivers call our routines to queue packets here. We empty the
395  *      queue in the local softnet handler.
396  */
397
398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
399 EXPORT_PER_CPU_SYMBOL(softnet_data);
400
401 /*******************************************************************************
402  *
403  *              Protocol management and registration routines
404  *
405  *******************************************************************************/
406
407
408 /*
409  *      Add a protocol ID to the list. Now that the input handler is
410  *      smarter we can dispense with all the messy stuff that used to be
411  *      here.
412  *
413  *      BEWARE!!! Protocol handlers, mangling input packets,
414  *      MUST BE last in hash buckets and checking protocol handlers
415  *      MUST start from promiscuous ptype_all chain in net_bh.
416  *      It is true now, do not change it.
417  *      Explanation follows: if protocol handler, mangling packet, will
418  *      be the first on list, it is not able to sense, that packet
419  *      is cloned and should be copied-on-write, so that it will
420  *      change it and subsequent readers will get broken packet.
421  *                                                      --ANK (980803)
422  */
423
424 static inline struct list_head *ptype_head(const struct packet_type *pt)
425 {
426         if (pt->type == htons(ETH_P_ALL))
427                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
428         else
429                 return pt->dev ? &pt->dev->ptype_specific :
430                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
431 }
432
433 /**
434  *      dev_add_pack - add packet handler
435  *      @pt: packet type declaration
436  *
437  *      Add a protocol handler to the networking stack. The passed &packet_type
438  *      is linked into kernel lists and may not be freed until it has been
439  *      removed from the kernel lists.
440  *
441  *      This call does not sleep therefore it can not
442  *      guarantee all CPU's that are in middle of receiving packets
443  *      will see the new packet type (until the next received packet).
444  */
445
446 void dev_add_pack(struct packet_type *pt)
447 {
448         struct list_head *head = ptype_head(pt);
449
450         spin_lock(&ptype_lock);
451         list_add_rcu(&pt->list, head);
452         spin_unlock(&ptype_lock);
453 }
454 EXPORT_SYMBOL(dev_add_pack);
455
456 /**
457  *      __dev_remove_pack        - remove packet handler
458  *      @pt: packet type declaration
459  *
460  *      Remove a protocol handler that was previously added to the kernel
461  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
462  *      from the kernel lists and can be freed or reused once this function
463  *      returns.
464  *
465  *      The packet type might still be in use by receivers
466  *      and must not be freed until after all the CPU's have gone
467  *      through a quiescent state.
468  */
469 void __dev_remove_pack(struct packet_type *pt)
470 {
471         struct list_head *head = ptype_head(pt);
472         struct packet_type *pt1;
473
474         spin_lock(&ptype_lock);
475
476         list_for_each_entry(pt1, head, list) {
477                 if (pt == pt1) {
478                         list_del_rcu(&pt->list);
479                         goto out;
480                 }
481         }
482
483         pr_warn("dev_remove_pack: %p not found\n", pt);
484 out:
485         spin_unlock(&ptype_lock);
486 }
487 EXPORT_SYMBOL(__dev_remove_pack);
488
489 /**
490  *      dev_remove_pack  - remove packet handler
491  *      @pt: packet type declaration
492  *
493  *      Remove a protocol handler that was previously added to the kernel
494  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
495  *      from the kernel lists and can be freed or reused once this function
496  *      returns.
497  *
498  *      This call sleeps to guarantee that no CPU is looking at the packet
499  *      type after return.
500  */
501 void dev_remove_pack(struct packet_type *pt)
502 {
503         __dev_remove_pack(pt);
504
505         synchronize_net();
506 }
507 EXPORT_SYMBOL(dev_remove_pack);
508
509
510 /**
511  *      dev_add_offload - register offload handlers
512  *      @po: protocol offload declaration
513  *
514  *      Add protocol offload handlers to the networking stack. The passed
515  *      &proto_offload is linked into kernel lists and may not be freed until
516  *      it has been removed from the kernel lists.
517  *
518  *      This call does not sleep therefore it can not
519  *      guarantee all CPU's that are in middle of receiving packets
520  *      will see the new offload handlers (until the next received packet).
521  */
522 void dev_add_offload(struct packet_offload *po)
523 {
524         struct packet_offload *elem;
525
526         spin_lock(&offload_lock);
527         list_for_each_entry(elem, &offload_base, list) {
528                 if (po->priority < elem->priority)
529                         break;
530         }
531         list_add_rcu(&po->list, elem->list.prev);
532         spin_unlock(&offload_lock);
533 }
534 EXPORT_SYMBOL(dev_add_offload);
535
536 /**
537  *      __dev_remove_offload     - remove offload handler
538  *      @po: packet offload declaration
539  *
540  *      Remove a protocol offload handler that was previously added to the
541  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
542  *      is removed from the kernel lists and can be freed or reused once this
543  *      function returns.
544  *
545  *      The packet type might still be in use by receivers
546  *      and must not be freed until after all the CPU's have gone
547  *      through a quiescent state.
548  */
549 static void __dev_remove_offload(struct packet_offload *po)
550 {
551         struct list_head *head = &offload_base;
552         struct packet_offload *po1;
553
554         spin_lock(&offload_lock);
555
556         list_for_each_entry(po1, head, list) {
557                 if (po == po1) {
558                         list_del_rcu(&po->list);
559                         goto out;
560                 }
561         }
562
563         pr_warn("dev_remove_offload: %p not found\n", po);
564 out:
565         spin_unlock(&offload_lock);
566 }
567
568 /**
569  *      dev_remove_offload       - remove packet offload handler
570  *      @po: packet offload declaration
571  *
572  *      Remove a packet offload handler that was previously added to the kernel
573  *      offload handlers by dev_add_offload(). The passed &offload_type is
574  *      removed from the kernel lists and can be freed or reused once this
575  *      function returns.
576  *
577  *      This call sleeps to guarantee that no CPU is looking at the packet
578  *      type after return.
579  */
580 void dev_remove_offload(struct packet_offload *po)
581 {
582         __dev_remove_offload(po);
583
584         synchronize_net();
585 }
586 EXPORT_SYMBOL(dev_remove_offload);
587
588 /******************************************************************************
589  *
590  *                    Device Boot-time Settings Routines
591  *
592  ******************************************************************************/
593
594 /* Boot time configuration table */
595 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
596
597 /**
598  *      netdev_boot_setup_add   - add new setup entry
599  *      @name: name of the device
600  *      @map: configured settings for the device
601  *
602  *      Adds new setup entry to the dev_boot_setup list.  The function
603  *      returns 0 on error and 1 on success.  This is a generic routine to
604  *      all netdevices.
605  */
606 static int netdev_boot_setup_add(char *name, struct ifmap *map)
607 {
608         struct netdev_boot_setup *s;
609         int i;
610
611         s = dev_boot_setup;
612         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
613                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
614                         memset(s[i].name, 0, sizeof(s[i].name));
615                         strlcpy(s[i].name, name, IFNAMSIZ);
616                         memcpy(&s[i].map, map, sizeof(s[i].map));
617                         break;
618                 }
619         }
620
621         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
622 }
623
624 /**
625  * netdev_boot_setup_check      - check boot time settings
626  * @dev: the netdevice
627  *
628  * Check boot time settings for the device.
629  * The found settings are set for the device to be used
630  * later in the device probing.
631  * Returns 0 if no settings found, 1 if they are.
632  */
633 int netdev_boot_setup_check(struct net_device *dev)
634 {
635         struct netdev_boot_setup *s = dev_boot_setup;
636         int i;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
639                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
640                     !strcmp(dev->name, s[i].name)) {
641                         dev->irq = s[i].map.irq;
642                         dev->base_addr = s[i].map.base_addr;
643                         dev->mem_start = s[i].map.mem_start;
644                         dev->mem_end = s[i].map.mem_end;
645                         return 1;
646                 }
647         }
648         return 0;
649 }
650 EXPORT_SYMBOL(netdev_boot_setup_check);
651
652
653 /**
654  * netdev_boot_base     - get address from boot time settings
655  * @prefix: prefix for network device
656  * @unit: id for network device
657  *
658  * Check boot time settings for the base address of device.
659  * The found settings are set for the device to be used
660  * later in the device probing.
661  * Returns 0 if no settings found.
662  */
663 unsigned long netdev_boot_base(const char *prefix, int unit)
664 {
665         const struct netdev_boot_setup *s = dev_boot_setup;
666         char name[IFNAMSIZ];
667         int i;
668
669         sprintf(name, "%s%d", prefix, unit);
670
671         /*
672          * If device already registered then return base of 1
673          * to indicate not to probe for this interface
674          */
675         if (__dev_get_by_name(&init_net, name))
676                 return 1;
677
678         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
679                 if (!strcmp(name, s[i].name))
680                         return s[i].map.base_addr;
681         return 0;
682 }
683
684 /*
685  * Saves at boot time configured settings for any netdevice.
686  */
687 int __init netdev_boot_setup(char *str)
688 {
689         int ints[5];
690         struct ifmap map;
691
692         str = get_options(str, ARRAY_SIZE(ints), ints);
693         if (!str || !*str)
694                 return 0;
695
696         /* Save settings */
697         memset(&map, 0, sizeof(map));
698         if (ints[0] > 0)
699                 map.irq = ints[1];
700         if (ints[0] > 1)
701                 map.base_addr = ints[2];
702         if (ints[0] > 2)
703                 map.mem_start = ints[3];
704         if (ints[0] > 3)
705                 map.mem_end = ints[4];
706
707         /* Add new entry to the list */
708         return netdev_boot_setup_add(str, &map);
709 }
710
711 __setup("netdev=", netdev_boot_setup);
712
713 /*******************************************************************************
714  *
715  *                          Device Interface Subroutines
716  *
717  *******************************************************************************/
718
719 /**
720  *      dev_get_iflink  - get 'iflink' value of a interface
721  *      @dev: targeted interface
722  *
723  *      Indicates the ifindex the interface is linked to.
724  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
725  */
726
727 int dev_get_iflink(const struct net_device *dev)
728 {
729         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
730                 return dev->netdev_ops->ndo_get_iflink(dev);
731
732         return dev->ifindex;
733 }
734 EXPORT_SYMBOL(dev_get_iflink);
735
736 /**
737  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
738  *      @dev: targeted interface
739  *      @skb: The packet.
740  *
741  *      For better visibility of tunnel traffic OVS needs to retrieve
742  *      egress tunnel information for a packet. Following API allows
743  *      user to get this info.
744  */
745 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
746 {
747         struct ip_tunnel_info *info;
748
749         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
750                 return -EINVAL;
751
752         info = skb_tunnel_info_unclone(skb);
753         if (!info)
754                 return -ENOMEM;
755         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
756                 return -EINVAL;
757
758         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
759 }
760 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
761
762 /**
763  *      __dev_get_by_name       - find a device by its name
764  *      @net: the applicable net namespace
765  *      @name: name to find
766  *
767  *      Find an interface by name. Must be called under RTNL semaphore
768  *      or @dev_base_lock. If the name is found a pointer to the device
769  *      is returned. If the name is not found then %NULL is returned. The
770  *      reference counters are not incremented so the caller must be
771  *      careful with locks.
772  */
773
774 struct net_device *__dev_get_by_name(struct net *net, const char *name)
775 {
776         struct netdev_name_node *node_name;
777
778         node_name = netdev_name_node_lookup(net, name);
779         return node_name ? node_name->dev : NULL;
780 }
781 EXPORT_SYMBOL(__dev_get_by_name);
782
783 /**
784  * dev_get_by_name_rcu  - find a device by its name
785  * @net: the applicable net namespace
786  * @name: name to find
787  *
788  * Find an interface by name.
789  * If the name is found a pointer to the device is returned.
790  * If the name is not found then %NULL is returned.
791  * The reference counters are not incremented so the caller must be
792  * careful with locks. The caller must hold RCU lock.
793  */
794
795 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
796 {
797         struct netdev_name_node *node_name;
798
799         node_name = netdev_name_node_lookup_rcu(net, name);
800         return node_name ? node_name->dev : NULL;
801 }
802 EXPORT_SYMBOL(dev_get_by_name_rcu);
803
804 /**
805  *      dev_get_by_name         - find a device by its name
806  *      @net: the applicable net namespace
807  *      @name: name to find
808  *
809  *      Find an interface by name. This can be called from any
810  *      context and does its own locking. The returned handle has
811  *      the usage count incremented and the caller must use dev_put() to
812  *      release it when it is no longer needed. %NULL is returned if no
813  *      matching device is found.
814  */
815
816 struct net_device *dev_get_by_name(struct net *net, const char *name)
817 {
818         struct net_device *dev;
819
820         rcu_read_lock();
821         dev = dev_get_by_name_rcu(net, name);
822         if (dev)
823                 dev_hold(dev);
824         rcu_read_unlock();
825         return dev;
826 }
827 EXPORT_SYMBOL(dev_get_by_name);
828
829 /**
830  *      __dev_get_by_index - find a device by its ifindex
831  *      @net: the applicable net namespace
832  *      @ifindex: index of device
833  *
834  *      Search for an interface by index. Returns %NULL if the device
835  *      is not found or a pointer to the device. The device has not
836  *      had its reference counter increased so the caller must be careful
837  *      about locking. The caller must hold either the RTNL semaphore
838  *      or @dev_base_lock.
839  */
840
841 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
842 {
843         struct net_device *dev;
844         struct hlist_head *head = dev_index_hash(net, ifindex);
845
846         hlist_for_each_entry(dev, head, index_hlist)
847                 if (dev->ifindex == ifindex)
848                         return dev;
849
850         return NULL;
851 }
852 EXPORT_SYMBOL(__dev_get_by_index);
853
854 /**
855  *      dev_get_by_index_rcu - find a device by its ifindex
856  *      @net: the applicable net namespace
857  *      @ifindex: index of device
858  *
859  *      Search for an interface by index. Returns %NULL if the device
860  *      is not found or a pointer to the device. The device has not
861  *      had its reference counter increased so the caller must be careful
862  *      about locking. The caller must hold RCU lock.
863  */
864
865 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
866 {
867         struct net_device *dev;
868         struct hlist_head *head = dev_index_hash(net, ifindex);
869
870         hlist_for_each_entry_rcu(dev, head, index_hlist)
871                 if (dev->ifindex == ifindex)
872                         return dev;
873
874         return NULL;
875 }
876 EXPORT_SYMBOL(dev_get_by_index_rcu);
877
878
879 /**
880  *      dev_get_by_index - find a device by its ifindex
881  *      @net: the applicable net namespace
882  *      @ifindex: index of device
883  *
884  *      Search for an interface by index. Returns NULL if the device
885  *      is not found or a pointer to the device. The device returned has
886  *      had a reference added and the pointer is safe until the user calls
887  *      dev_put to indicate they have finished with it.
888  */
889
890 struct net_device *dev_get_by_index(struct net *net, int ifindex)
891 {
892         struct net_device *dev;
893
894         rcu_read_lock();
895         dev = dev_get_by_index_rcu(net, ifindex);
896         if (dev)
897                 dev_hold(dev);
898         rcu_read_unlock();
899         return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_index);
902
903 /**
904  *      dev_get_by_napi_id - find a device by napi_id
905  *      @napi_id: ID of the NAPI struct
906  *
907  *      Search for an interface by NAPI ID. Returns %NULL if the device
908  *      is not found or a pointer to the device. The device has not had
909  *      its reference counter increased so the caller must be careful
910  *      about locking. The caller must hold RCU lock.
911  */
912
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915         struct napi_struct *napi;
916
917         WARN_ON_ONCE(!rcu_read_lock_held());
918
919         if (napi_id < MIN_NAPI_ID)
920                 return NULL;
921
922         napi = napi_by_id(napi_id);
923
924         return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927
928 /**
929  *      netdev_get_name - get a netdevice name, knowing its ifindex.
930  *      @net: network namespace
931  *      @name: a pointer to the buffer where the name will be stored.
932  *      @ifindex: the ifindex of the interface to get the name from.
933  *
934  *      The use of raw_seqcount_begin() and cond_resched() before
935  *      retrying is required as we want to give the writers a chance
936  *      to complete when CONFIG_PREEMPTION is not set.
937  */
938 int netdev_get_name(struct net *net, char *name, int ifindex)
939 {
940         struct net_device *dev;
941         unsigned int seq;
942
943 retry:
944         seq = raw_seqcount_begin(&devnet_rename_seq);
945         rcu_read_lock();
946         dev = dev_get_by_index_rcu(net, ifindex);
947         if (!dev) {
948                 rcu_read_unlock();
949                 return -ENODEV;
950         }
951
952         strcpy(name, dev->name);
953         rcu_read_unlock();
954         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
955                 cond_resched();
956                 goto retry;
957         }
958
959         return 0;
960 }
961
962 /**
963  *      dev_getbyhwaddr_rcu - find a device by its hardware address
964  *      @net: the applicable net namespace
965  *      @type: media type of device
966  *      @ha: hardware address
967  *
968  *      Search for an interface by MAC address. Returns NULL if the device
969  *      is not found or a pointer to the device.
970  *      The caller must hold RCU or RTNL.
971  *      The returned device has not had its ref count increased
972  *      and the caller must therefore be careful about locking
973  *
974  */
975
976 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
977                                        const char *ha)
978 {
979         struct net_device *dev;
980
981         for_each_netdev_rcu(net, dev)
982                 if (dev->type == type &&
983                     !memcmp(dev->dev_addr, ha, dev->addr_len))
984                         return dev;
985
986         return NULL;
987 }
988 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
989
990 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
991 {
992         struct net_device *dev;
993
994         ASSERT_RTNL();
995         for_each_netdev(net, dev)
996                 if (dev->type == type)
997                         return dev;
998
999         return NULL;
1000 }
1001 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1002
1003 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1004 {
1005         struct net_device *dev, *ret = NULL;
1006
1007         rcu_read_lock();
1008         for_each_netdev_rcu(net, dev)
1009                 if (dev->type == type) {
1010                         dev_hold(dev);
1011                         ret = dev;
1012                         break;
1013                 }
1014         rcu_read_unlock();
1015         return ret;
1016 }
1017 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1018
1019 /**
1020  *      __dev_get_by_flags - find any device with given flags
1021  *      @net: the applicable net namespace
1022  *      @if_flags: IFF_* values
1023  *      @mask: bitmask of bits in if_flags to check
1024  *
1025  *      Search for any interface with the given flags. Returns NULL if a device
1026  *      is not found or a pointer to the device. Must be called inside
1027  *      rtnl_lock(), and result refcount is unchanged.
1028  */
1029
1030 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1031                                       unsigned short mask)
1032 {
1033         struct net_device *dev, *ret;
1034
1035         ASSERT_RTNL();
1036
1037         ret = NULL;
1038         for_each_netdev(net, dev) {
1039                 if (((dev->flags ^ if_flags) & mask) == 0) {
1040                         ret = dev;
1041                         break;
1042                 }
1043         }
1044         return ret;
1045 }
1046 EXPORT_SYMBOL(__dev_get_by_flags);
1047
1048 /**
1049  *      dev_valid_name - check if name is okay for network device
1050  *      @name: name string
1051  *
1052  *      Network device names need to be valid file names to
1053  *      to allow sysfs to work.  We also disallow any kind of
1054  *      whitespace.
1055  */
1056 bool dev_valid_name(const char *name)
1057 {
1058         if (*name == '\0')
1059                 return false;
1060         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1061                 return false;
1062         if (!strcmp(name, ".") || !strcmp(name, ".."))
1063                 return false;
1064
1065         while (*name) {
1066                 if (*name == '/' || *name == ':' || isspace(*name))
1067                         return false;
1068                 name++;
1069         }
1070         return true;
1071 }
1072 EXPORT_SYMBOL(dev_valid_name);
1073
1074 /**
1075  *      __dev_alloc_name - allocate a name for a device
1076  *      @net: network namespace to allocate the device name in
1077  *      @name: name format string
1078  *      @buf:  scratch buffer and result name string
1079  *
1080  *      Passed a format string - eg "lt%d" it will try and find a suitable
1081  *      id. It scans list of devices to build up a free map, then chooses
1082  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *      while allocating the name and adding the device in order to avoid
1084  *      duplicates.
1085  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *      Returns the number of the unit assigned or a negative errno code.
1087  */
1088
1089 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1090 {
1091         int i = 0;
1092         const char *p;
1093         const int max_netdevices = 8*PAGE_SIZE;
1094         unsigned long *inuse;
1095         struct net_device *d;
1096
1097         if (!dev_valid_name(name))
1098                 return -EINVAL;
1099
1100         p = strchr(name, '%');
1101         if (p) {
1102                 /*
1103                  * Verify the string as this thing may have come from
1104                  * the user.  There must be either one "%d" and no other "%"
1105                  * characters.
1106                  */
1107                 if (p[1] != 'd' || strchr(p + 2, '%'))
1108                         return -EINVAL;
1109
1110                 /* Use one page as a bit array of possible slots */
1111                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1112                 if (!inuse)
1113                         return -ENOMEM;
1114
1115                 for_each_netdev(net, d) {
1116                         if (!sscanf(d->name, name, &i))
1117                                 continue;
1118                         if (i < 0 || i >= max_netdevices)
1119                                 continue;
1120
1121                         /*  avoid cases where sscanf is not exact inverse of printf */
1122                         snprintf(buf, IFNAMSIZ, name, i);
1123                         if (!strncmp(buf, d->name, IFNAMSIZ))
1124                                 set_bit(i, inuse);
1125                 }
1126
1127                 i = find_first_zero_bit(inuse, max_netdevices);
1128                 free_page((unsigned long) inuse);
1129         }
1130
1131         snprintf(buf, IFNAMSIZ, name, i);
1132         if (!__dev_get_by_name(net, buf))
1133                 return i;
1134
1135         /* It is possible to run out of possible slots
1136          * when the name is long and there isn't enough space left
1137          * for the digits, or if all bits are used.
1138          */
1139         return -ENFILE;
1140 }
1141
1142 static int dev_alloc_name_ns(struct net *net,
1143                              struct net_device *dev,
1144                              const char *name)
1145 {
1146         char buf[IFNAMSIZ];
1147         int ret;
1148
1149         BUG_ON(!net);
1150         ret = __dev_alloc_name(net, name, buf);
1151         if (ret >= 0)
1152                 strlcpy(dev->name, buf, IFNAMSIZ);
1153         return ret;
1154 }
1155
1156 /**
1157  *      dev_alloc_name - allocate a name for a device
1158  *      @dev: device
1159  *      @name: name format string
1160  *
1161  *      Passed a format string - eg "lt%d" it will try and find a suitable
1162  *      id. It scans list of devices to build up a free map, then chooses
1163  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1164  *      while allocating the name and adding the device in order to avoid
1165  *      duplicates.
1166  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167  *      Returns the number of the unit assigned or a negative errno code.
1168  */
1169
1170 int dev_alloc_name(struct net_device *dev, const char *name)
1171 {
1172         return dev_alloc_name_ns(dev_net(dev), dev, name);
1173 }
1174 EXPORT_SYMBOL(dev_alloc_name);
1175
1176 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1177                               const char *name)
1178 {
1179         BUG_ON(!net);
1180
1181         if (!dev_valid_name(name))
1182                 return -EINVAL;
1183
1184         if (strchr(name, '%'))
1185                 return dev_alloc_name_ns(net, dev, name);
1186         else if (__dev_get_by_name(net, name))
1187                 return -EEXIST;
1188         else if (dev->name != name)
1189                 strlcpy(dev->name, name, IFNAMSIZ);
1190
1191         return 0;
1192 }
1193
1194 /**
1195  *      dev_change_name - change name of a device
1196  *      @dev: device
1197  *      @newname: name (or format string) must be at least IFNAMSIZ
1198  *
1199  *      Change name of a device, can pass format strings "eth%d".
1200  *      for wildcarding.
1201  */
1202 int dev_change_name(struct net_device *dev, const char *newname)
1203 {
1204         unsigned char old_assign_type;
1205         char oldname[IFNAMSIZ];
1206         int err = 0;
1207         int ret;
1208         struct net *net;
1209
1210         ASSERT_RTNL();
1211         BUG_ON(!dev_net(dev));
1212
1213         net = dev_net(dev);
1214
1215         /* Some auto-enslaved devices e.g. failover slaves are
1216          * special, as userspace might rename the device after
1217          * the interface had been brought up and running since
1218          * the point kernel initiated auto-enslavement. Allow
1219          * live name change even when these slave devices are
1220          * up and running.
1221          *
1222          * Typically, users of these auto-enslaving devices
1223          * don't actually care about slave name change, as
1224          * they are supposed to operate on master interface
1225          * directly.
1226          */
1227         if (dev->flags & IFF_UP &&
1228             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1229                 return -EBUSY;
1230
1231         write_seqcount_begin(&devnet_rename_seq);
1232
1233         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1234                 write_seqcount_end(&devnet_rename_seq);
1235                 return 0;
1236         }
1237
1238         memcpy(oldname, dev->name, IFNAMSIZ);
1239
1240         err = dev_get_valid_name(net, dev, newname);
1241         if (err < 0) {
1242                 write_seqcount_end(&devnet_rename_seq);
1243                 return err;
1244         }
1245
1246         if (oldname[0] && !strchr(oldname, '%'))
1247                 netdev_info(dev, "renamed from %s\n", oldname);
1248
1249         old_assign_type = dev->name_assign_type;
1250         dev->name_assign_type = NET_NAME_RENAMED;
1251
1252 rollback:
1253         ret = device_rename(&dev->dev, dev->name);
1254         if (ret) {
1255                 memcpy(dev->name, oldname, IFNAMSIZ);
1256                 dev->name_assign_type = old_assign_type;
1257                 write_seqcount_end(&devnet_rename_seq);
1258                 return ret;
1259         }
1260
1261         write_seqcount_end(&devnet_rename_seq);
1262
1263         netdev_adjacent_rename_links(dev, oldname);
1264
1265         write_lock_bh(&dev_base_lock);
1266         netdev_name_node_del(dev->name_node);
1267         write_unlock_bh(&dev_base_lock);
1268
1269         synchronize_rcu();
1270
1271         write_lock_bh(&dev_base_lock);
1272         netdev_name_node_add(net, dev->name_node);
1273         write_unlock_bh(&dev_base_lock);
1274
1275         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1276         ret = notifier_to_errno(ret);
1277
1278         if (ret) {
1279                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1280                 if (err >= 0) {
1281                         err = ret;
1282                         write_seqcount_begin(&devnet_rename_seq);
1283                         memcpy(dev->name, oldname, IFNAMSIZ);
1284                         memcpy(oldname, newname, IFNAMSIZ);
1285                         dev->name_assign_type = old_assign_type;
1286                         old_assign_type = NET_NAME_RENAMED;
1287                         goto rollback;
1288                 } else {
1289                         pr_err("%s: name change rollback failed: %d\n",
1290                                dev->name, ret);
1291                 }
1292         }
1293
1294         return err;
1295 }
1296
1297 /**
1298  *      dev_set_alias - change ifalias of a device
1299  *      @dev: device
1300  *      @alias: name up to IFALIASZ
1301  *      @len: limit of bytes to copy from info
1302  *
1303  *      Set ifalias for a device,
1304  */
1305 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1306 {
1307         struct dev_ifalias *new_alias = NULL;
1308
1309         if (len >= IFALIASZ)
1310                 return -EINVAL;
1311
1312         if (len) {
1313                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1314                 if (!new_alias)
1315                         return -ENOMEM;
1316
1317                 memcpy(new_alias->ifalias, alias, len);
1318                 new_alias->ifalias[len] = 0;
1319         }
1320
1321         mutex_lock(&ifalias_mutex);
1322         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1323                                         mutex_is_locked(&ifalias_mutex));
1324         mutex_unlock(&ifalias_mutex);
1325
1326         if (new_alias)
1327                 kfree_rcu(new_alias, rcuhead);
1328
1329         return len;
1330 }
1331 EXPORT_SYMBOL(dev_set_alias);
1332
1333 /**
1334  *      dev_get_alias - get ifalias of a device
1335  *      @dev: device
1336  *      @name: buffer to store name of ifalias
1337  *      @len: size of buffer
1338  *
1339  *      get ifalias for a device.  Caller must make sure dev cannot go
1340  *      away,  e.g. rcu read lock or own a reference count to device.
1341  */
1342 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1343 {
1344         const struct dev_ifalias *alias;
1345         int ret = 0;
1346
1347         rcu_read_lock();
1348         alias = rcu_dereference(dev->ifalias);
1349         if (alias)
1350                 ret = snprintf(name, len, "%s", alias->ifalias);
1351         rcu_read_unlock();
1352
1353         return ret;
1354 }
1355
1356 /**
1357  *      netdev_features_change - device changes features
1358  *      @dev: device to cause notification
1359  *
1360  *      Called to indicate a device has changed features.
1361  */
1362 void netdev_features_change(struct net_device *dev)
1363 {
1364         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1365 }
1366 EXPORT_SYMBOL(netdev_features_change);
1367
1368 /**
1369  *      netdev_state_change - device changes state
1370  *      @dev: device to cause notification
1371  *
1372  *      Called to indicate a device has changed state. This function calls
1373  *      the notifier chains for netdev_chain and sends a NEWLINK message
1374  *      to the routing socket.
1375  */
1376 void netdev_state_change(struct net_device *dev)
1377 {
1378         if (dev->flags & IFF_UP) {
1379                 struct netdev_notifier_change_info change_info = {
1380                         .info.dev = dev,
1381                 };
1382
1383                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1384                                               &change_info.info);
1385                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1386         }
1387 }
1388 EXPORT_SYMBOL(netdev_state_change);
1389
1390 /**
1391  * netdev_notify_peers - notify network peers about existence of @dev
1392  * @dev: network device
1393  *
1394  * Generate traffic such that interested network peers are aware of
1395  * @dev, such as by generating a gratuitous ARP. This may be used when
1396  * a device wants to inform the rest of the network about some sort of
1397  * reconfiguration such as a failover event or virtual machine
1398  * migration.
1399  */
1400 void netdev_notify_peers(struct net_device *dev)
1401 {
1402         rtnl_lock();
1403         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1404         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1405         rtnl_unlock();
1406 }
1407 EXPORT_SYMBOL(netdev_notify_peers);
1408
1409 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1410 {
1411         const struct net_device_ops *ops = dev->netdev_ops;
1412         int ret;
1413
1414         ASSERT_RTNL();
1415
1416         if (!netif_device_present(dev))
1417                 return -ENODEV;
1418
1419         /* Block netpoll from trying to do any rx path servicing.
1420          * If we don't do this there is a chance ndo_poll_controller
1421          * or ndo_poll may be running while we open the device
1422          */
1423         netpoll_poll_disable(dev);
1424
1425         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1426         ret = notifier_to_errno(ret);
1427         if (ret)
1428                 return ret;
1429
1430         set_bit(__LINK_STATE_START, &dev->state);
1431
1432         if (ops->ndo_validate_addr)
1433                 ret = ops->ndo_validate_addr(dev);
1434
1435         if (!ret && ops->ndo_open)
1436                 ret = ops->ndo_open(dev);
1437
1438         netpoll_poll_enable(dev);
1439
1440         if (ret)
1441                 clear_bit(__LINK_STATE_START, &dev->state);
1442         else {
1443                 dev->flags |= IFF_UP;
1444                 dev_set_rx_mode(dev);
1445                 dev_activate(dev);
1446                 add_device_randomness(dev->dev_addr, dev->addr_len);
1447         }
1448
1449         return ret;
1450 }
1451
1452 /**
1453  *      dev_open        - prepare an interface for use.
1454  *      @dev: device to open
1455  *      @extack: netlink extended ack
1456  *
1457  *      Takes a device from down to up state. The device's private open
1458  *      function is invoked and then the multicast lists are loaded. Finally
1459  *      the device is moved into the up state and a %NETDEV_UP message is
1460  *      sent to the netdev notifier chain.
1461  *
1462  *      Calling this function on an active interface is a nop. On a failure
1463  *      a negative errno code is returned.
1464  */
1465 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1466 {
1467         int ret;
1468
1469         if (dev->flags & IFF_UP)
1470                 return 0;
1471
1472         ret = __dev_open(dev, extack);
1473         if (ret < 0)
1474                 return ret;
1475
1476         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1477         call_netdevice_notifiers(NETDEV_UP, dev);
1478
1479         return ret;
1480 }
1481 EXPORT_SYMBOL(dev_open);
1482
1483 static void __dev_close_many(struct list_head *head)
1484 {
1485         struct net_device *dev;
1486
1487         ASSERT_RTNL();
1488         might_sleep();
1489
1490         list_for_each_entry(dev, head, close_list) {
1491                 /* Temporarily disable netpoll until the interface is down */
1492                 netpoll_poll_disable(dev);
1493
1494                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1495
1496                 clear_bit(__LINK_STATE_START, &dev->state);
1497
1498                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1499                  * can be even on different cpu. So just clear netif_running().
1500                  *
1501                  * dev->stop() will invoke napi_disable() on all of it's
1502                  * napi_struct instances on this device.
1503                  */
1504                 smp_mb__after_atomic(); /* Commit netif_running(). */
1505         }
1506
1507         dev_deactivate_many(head);
1508
1509         list_for_each_entry(dev, head, close_list) {
1510                 const struct net_device_ops *ops = dev->netdev_ops;
1511
1512                 /*
1513                  *      Call the device specific close. This cannot fail.
1514                  *      Only if device is UP
1515                  *
1516                  *      We allow it to be called even after a DETACH hot-plug
1517                  *      event.
1518                  */
1519                 if (ops->ndo_stop)
1520                         ops->ndo_stop(dev);
1521
1522                 dev->flags &= ~IFF_UP;
1523                 netpoll_poll_enable(dev);
1524         }
1525 }
1526
1527 static void __dev_close(struct net_device *dev)
1528 {
1529         LIST_HEAD(single);
1530
1531         list_add(&dev->close_list, &single);
1532         __dev_close_many(&single);
1533         list_del(&single);
1534 }
1535
1536 void dev_close_many(struct list_head *head, bool unlink)
1537 {
1538         struct net_device *dev, *tmp;
1539
1540         /* Remove the devices that don't need to be closed */
1541         list_for_each_entry_safe(dev, tmp, head, close_list)
1542                 if (!(dev->flags & IFF_UP))
1543                         list_del_init(&dev->close_list);
1544
1545         __dev_close_many(head);
1546
1547         list_for_each_entry_safe(dev, tmp, head, close_list) {
1548                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1549                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1550                 if (unlink)
1551                         list_del_init(&dev->close_list);
1552         }
1553 }
1554 EXPORT_SYMBOL(dev_close_many);
1555
1556 /**
1557  *      dev_close - shutdown an interface.
1558  *      @dev: device to shutdown
1559  *
1560  *      This function moves an active device into down state. A
1561  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1562  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1563  *      chain.
1564  */
1565 void dev_close(struct net_device *dev)
1566 {
1567         if (dev->flags & IFF_UP) {
1568                 LIST_HEAD(single);
1569
1570                 list_add(&dev->close_list, &single);
1571                 dev_close_many(&single, true);
1572                 list_del(&single);
1573         }
1574 }
1575 EXPORT_SYMBOL(dev_close);
1576
1577
1578 /**
1579  *      dev_disable_lro - disable Large Receive Offload on a device
1580  *      @dev: device
1581  *
1582  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1583  *      called under RTNL.  This is needed if received packets may be
1584  *      forwarded to another interface.
1585  */
1586 void dev_disable_lro(struct net_device *dev)
1587 {
1588         struct net_device *lower_dev;
1589         struct list_head *iter;
1590
1591         dev->wanted_features &= ~NETIF_F_LRO;
1592         netdev_update_features(dev);
1593
1594         if (unlikely(dev->features & NETIF_F_LRO))
1595                 netdev_WARN(dev, "failed to disable LRO!\n");
1596
1597         netdev_for_each_lower_dev(dev, lower_dev, iter)
1598                 dev_disable_lro(lower_dev);
1599 }
1600 EXPORT_SYMBOL(dev_disable_lro);
1601
1602 /**
1603  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1604  *      @dev: device
1605  *
1606  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1607  *      called under RTNL.  This is needed if Generic XDP is installed on
1608  *      the device.
1609  */
1610 static void dev_disable_gro_hw(struct net_device *dev)
1611 {
1612         dev->wanted_features &= ~NETIF_F_GRO_HW;
1613         netdev_update_features(dev);
1614
1615         if (unlikely(dev->features & NETIF_F_GRO_HW))
1616                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1617 }
1618
1619 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1620 {
1621 #define N(val)                                          \
1622         case NETDEV_##val:                              \
1623                 return "NETDEV_" __stringify(val);
1624         switch (cmd) {
1625         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1626         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1627         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1628         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1629         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1630         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1631         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1632         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1633         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1634         N(PRE_CHANGEADDR)
1635         }
1636 #undef N
1637         return "UNKNOWN_NETDEV_EVENT";
1638 }
1639 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1640
1641 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1642                                    struct net_device *dev)
1643 {
1644         struct netdev_notifier_info info = {
1645                 .dev = dev,
1646         };
1647
1648         return nb->notifier_call(nb, val, &info);
1649 }
1650
1651 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1652                                              struct net_device *dev)
1653 {
1654         int err;
1655
1656         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1657         err = notifier_to_errno(err);
1658         if (err)
1659                 return err;
1660
1661         if (!(dev->flags & IFF_UP))
1662                 return 0;
1663
1664         call_netdevice_notifier(nb, NETDEV_UP, dev);
1665         return 0;
1666 }
1667
1668 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1669                                                 struct net_device *dev)
1670 {
1671         if (dev->flags & IFF_UP) {
1672                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1673                                         dev);
1674                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1675         }
1676         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1677 }
1678
1679 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1680                                                  struct net *net)
1681 {
1682         struct net_device *dev;
1683         int err;
1684
1685         for_each_netdev(net, dev) {
1686                 err = call_netdevice_register_notifiers(nb, dev);
1687                 if (err)
1688                         goto rollback;
1689         }
1690         return 0;
1691
1692 rollback:
1693         for_each_netdev_continue_reverse(net, dev)
1694                 call_netdevice_unregister_notifiers(nb, dev);
1695         return err;
1696 }
1697
1698 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1699                                                     struct net *net)
1700 {
1701         struct net_device *dev;
1702
1703         for_each_netdev(net, dev)
1704                 call_netdevice_unregister_notifiers(nb, dev);
1705 }
1706
1707 static int dev_boot_phase = 1;
1708
1709 /**
1710  * register_netdevice_notifier - register a network notifier block
1711  * @nb: notifier
1712  *
1713  * Register a notifier to be called when network device events occur.
1714  * The notifier passed is linked into the kernel structures and must
1715  * not be reused until it has been unregistered. A negative errno code
1716  * is returned on a failure.
1717  *
1718  * When registered all registration and up events are replayed
1719  * to the new notifier to allow device to have a race free
1720  * view of the network device list.
1721  */
1722
1723 int register_netdevice_notifier(struct notifier_block *nb)
1724 {
1725         struct net *net;
1726         int err;
1727
1728         /* Close race with setup_net() and cleanup_net() */
1729         down_write(&pernet_ops_rwsem);
1730         rtnl_lock();
1731         err = raw_notifier_chain_register(&netdev_chain, nb);
1732         if (err)
1733                 goto unlock;
1734         if (dev_boot_phase)
1735                 goto unlock;
1736         for_each_net(net) {
1737                 err = call_netdevice_register_net_notifiers(nb, net);
1738                 if (err)
1739                         goto rollback;
1740         }
1741
1742 unlock:
1743         rtnl_unlock();
1744         up_write(&pernet_ops_rwsem);
1745         return err;
1746
1747 rollback:
1748         for_each_net_continue_reverse(net)
1749                 call_netdevice_unregister_net_notifiers(nb, net);
1750
1751         raw_notifier_chain_unregister(&netdev_chain, nb);
1752         goto unlock;
1753 }
1754 EXPORT_SYMBOL(register_netdevice_notifier);
1755
1756 /**
1757  * unregister_netdevice_notifier - unregister a network notifier block
1758  * @nb: notifier
1759  *
1760  * Unregister a notifier previously registered by
1761  * register_netdevice_notifier(). The notifier is unlinked into the
1762  * kernel structures and may then be reused. A negative errno code
1763  * is returned on a failure.
1764  *
1765  * After unregistering unregister and down device events are synthesized
1766  * for all devices on the device list to the removed notifier to remove
1767  * the need for special case cleanup code.
1768  */
1769
1770 int unregister_netdevice_notifier(struct notifier_block *nb)
1771 {
1772         struct net *net;
1773         int err;
1774
1775         /* Close race with setup_net() and cleanup_net() */
1776         down_write(&pernet_ops_rwsem);
1777         rtnl_lock();
1778         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1779         if (err)
1780                 goto unlock;
1781
1782         for_each_net(net)
1783                 call_netdevice_unregister_net_notifiers(nb, net);
1784
1785 unlock:
1786         rtnl_unlock();
1787         up_write(&pernet_ops_rwsem);
1788         return err;
1789 }
1790 EXPORT_SYMBOL(unregister_netdevice_notifier);
1791
1792 static int __register_netdevice_notifier_net(struct net *net,
1793                                              struct notifier_block *nb,
1794                                              bool ignore_call_fail)
1795 {
1796         int err;
1797
1798         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1799         if (err)
1800                 return err;
1801         if (dev_boot_phase)
1802                 return 0;
1803
1804         err = call_netdevice_register_net_notifiers(nb, net);
1805         if (err && !ignore_call_fail)
1806                 goto chain_unregister;
1807
1808         return 0;
1809
1810 chain_unregister:
1811         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1812         return err;
1813 }
1814
1815 static int __unregister_netdevice_notifier_net(struct net *net,
1816                                                struct notifier_block *nb)
1817 {
1818         int err;
1819
1820         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1821         if (err)
1822                 return err;
1823
1824         call_netdevice_unregister_net_notifiers(nb, net);
1825         return 0;
1826 }
1827
1828 /**
1829  * register_netdevice_notifier_net - register a per-netns network notifier block
1830  * @net: network namespace
1831  * @nb: notifier
1832  *
1833  * Register a notifier to be called when network device events occur.
1834  * The notifier passed is linked into the kernel structures and must
1835  * not be reused until it has been unregistered. A negative errno code
1836  * is returned on a failure.
1837  *
1838  * When registered all registration and up events are replayed
1839  * to the new notifier to allow device to have a race free
1840  * view of the network device list.
1841  */
1842
1843 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1844 {
1845         int err;
1846
1847         rtnl_lock();
1848         err = __register_netdevice_notifier_net(net, nb, false);
1849         rtnl_unlock();
1850         return err;
1851 }
1852 EXPORT_SYMBOL(register_netdevice_notifier_net);
1853
1854 /**
1855  * unregister_netdevice_notifier_net - unregister a per-netns
1856  *                                     network notifier block
1857  * @net: network namespace
1858  * @nb: notifier
1859  *
1860  * Unregister a notifier previously registered by
1861  * register_netdevice_notifier(). The notifier is unlinked into the
1862  * kernel structures and may then be reused. A negative errno code
1863  * is returned on a failure.
1864  *
1865  * After unregistering unregister and down device events are synthesized
1866  * for all devices on the device list to the removed notifier to remove
1867  * the need for special case cleanup code.
1868  */
1869
1870 int unregister_netdevice_notifier_net(struct net *net,
1871                                       struct notifier_block *nb)
1872 {
1873         int err;
1874
1875         rtnl_lock();
1876         err = __unregister_netdevice_notifier_net(net, nb);
1877         rtnl_unlock();
1878         return err;
1879 }
1880 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1881
1882 int register_netdevice_notifier_dev_net(struct net_device *dev,
1883                                         struct notifier_block *nb,
1884                                         struct netdev_net_notifier *nn)
1885 {
1886         int err;
1887
1888         rtnl_lock();
1889         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1890         if (!err) {
1891                 nn->nb = nb;
1892                 list_add(&nn->list, &dev->net_notifier_list);
1893         }
1894         rtnl_unlock();
1895         return err;
1896 }
1897 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1898
1899 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1900                                           struct notifier_block *nb,
1901                                           struct netdev_net_notifier *nn)
1902 {
1903         int err;
1904
1905         rtnl_lock();
1906         list_del(&nn->list);
1907         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1908         rtnl_unlock();
1909         return err;
1910 }
1911 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1912
1913 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1914                                              struct net *net)
1915 {
1916         struct netdev_net_notifier *nn;
1917
1918         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1919                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1920                 __register_netdevice_notifier_net(net, nn->nb, true);
1921         }
1922 }
1923
1924 /**
1925  *      call_netdevice_notifiers_info - call all network notifier blocks
1926  *      @val: value passed unmodified to notifier function
1927  *      @info: notifier information data
1928  *
1929  *      Call all network notifier blocks.  Parameters and return value
1930  *      are as for raw_notifier_call_chain().
1931  */
1932
1933 static int call_netdevice_notifiers_info(unsigned long val,
1934                                          struct netdev_notifier_info *info)
1935 {
1936         struct net *net = dev_net(info->dev);
1937         int ret;
1938
1939         ASSERT_RTNL();
1940
1941         /* Run per-netns notifier block chain first, then run the global one.
1942          * Hopefully, one day, the global one is going to be removed after
1943          * all notifier block registrators get converted to be per-netns.
1944          */
1945         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1946         if (ret & NOTIFY_STOP_MASK)
1947                 return ret;
1948         return raw_notifier_call_chain(&netdev_chain, val, info);
1949 }
1950
1951 static int call_netdevice_notifiers_extack(unsigned long val,
1952                                            struct net_device *dev,
1953                                            struct netlink_ext_ack *extack)
1954 {
1955         struct netdev_notifier_info info = {
1956                 .dev = dev,
1957                 .extack = extack,
1958         };
1959
1960         return call_netdevice_notifiers_info(val, &info);
1961 }
1962
1963 /**
1964  *      call_netdevice_notifiers - call all network notifier blocks
1965  *      @val: value passed unmodified to notifier function
1966  *      @dev: net_device pointer passed unmodified to notifier function
1967  *
1968  *      Call all network notifier blocks.  Parameters and return value
1969  *      are as for raw_notifier_call_chain().
1970  */
1971
1972 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1973 {
1974         return call_netdevice_notifiers_extack(val, dev, NULL);
1975 }
1976 EXPORT_SYMBOL(call_netdevice_notifiers);
1977
1978 /**
1979  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1980  *      @val: value passed unmodified to notifier function
1981  *      @dev: net_device pointer passed unmodified to notifier function
1982  *      @arg: additional u32 argument passed to the notifier function
1983  *
1984  *      Call all network notifier blocks.  Parameters and return value
1985  *      are as for raw_notifier_call_chain().
1986  */
1987 static int call_netdevice_notifiers_mtu(unsigned long val,
1988                                         struct net_device *dev, u32 arg)
1989 {
1990         struct netdev_notifier_info_ext info = {
1991                 .info.dev = dev,
1992                 .ext.mtu = arg,
1993         };
1994
1995         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1996
1997         return call_netdevice_notifiers_info(val, &info.info);
1998 }
1999
2000 #ifdef CONFIG_NET_INGRESS
2001 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2002
2003 void net_inc_ingress_queue(void)
2004 {
2005         static_branch_inc(&ingress_needed_key);
2006 }
2007 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2008
2009 void net_dec_ingress_queue(void)
2010 {
2011         static_branch_dec(&ingress_needed_key);
2012 }
2013 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2014 #endif
2015
2016 #ifdef CONFIG_NET_EGRESS
2017 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2018
2019 void net_inc_egress_queue(void)
2020 {
2021         static_branch_inc(&egress_needed_key);
2022 }
2023 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2024
2025 void net_dec_egress_queue(void)
2026 {
2027         static_branch_dec(&egress_needed_key);
2028 }
2029 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2030 #endif
2031
2032 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2033 #ifdef CONFIG_JUMP_LABEL
2034 static atomic_t netstamp_needed_deferred;
2035 static atomic_t netstamp_wanted;
2036 static void netstamp_clear(struct work_struct *work)
2037 {
2038         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2039         int wanted;
2040
2041         wanted = atomic_add_return(deferred, &netstamp_wanted);
2042         if (wanted > 0)
2043                 static_branch_enable(&netstamp_needed_key);
2044         else
2045                 static_branch_disable(&netstamp_needed_key);
2046 }
2047 static DECLARE_WORK(netstamp_work, netstamp_clear);
2048 #endif
2049
2050 void net_enable_timestamp(void)
2051 {
2052 #ifdef CONFIG_JUMP_LABEL
2053         int wanted;
2054
2055         while (1) {
2056                 wanted = atomic_read(&netstamp_wanted);
2057                 if (wanted <= 0)
2058                         break;
2059                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2060                         return;
2061         }
2062         atomic_inc(&netstamp_needed_deferred);
2063         schedule_work(&netstamp_work);
2064 #else
2065         static_branch_inc(&netstamp_needed_key);
2066 #endif
2067 }
2068 EXPORT_SYMBOL(net_enable_timestamp);
2069
2070 void net_disable_timestamp(void)
2071 {
2072 #ifdef CONFIG_JUMP_LABEL
2073         int wanted;
2074
2075         while (1) {
2076                 wanted = atomic_read(&netstamp_wanted);
2077                 if (wanted <= 1)
2078                         break;
2079                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2080                         return;
2081         }
2082         atomic_dec(&netstamp_needed_deferred);
2083         schedule_work(&netstamp_work);
2084 #else
2085         static_branch_dec(&netstamp_needed_key);
2086 #endif
2087 }
2088 EXPORT_SYMBOL(net_disable_timestamp);
2089
2090 static inline void net_timestamp_set(struct sk_buff *skb)
2091 {
2092         skb->tstamp = 0;
2093         if (static_branch_unlikely(&netstamp_needed_key))
2094                 __net_timestamp(skb);
2095 }
2096
2097 #define net_timestamp_check(COND, SKB)                          \
2098         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2099                 if ((COND) && !(SKB)->tstamp)                   \
2100                         __net_timestamp(SKB);                   \
2101         }                                                       \
2102
2103 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2104 {
2105         unsigned int len;
2106
2107         if (!(dev->flags & IFF_UP))
2108                 return false;
2109
2110         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2111         if (skb->len <= len)
2112                 return true;
2113
2114         /* if TSO is enabled, we don't care about the length as the packet
2115          * could be forwarded without being segmented before
2116          */
2117         if (skb_is_gso(skb))
2118                 return true;
2119
2120         return false;
2121 }
2122 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2123
2124 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2125 {
2126         int ret = ____dev_forward_skb(dev, skb);
2127
2128         if (likely(!ret)) {
2129                 skb->protocol = eth_type_trans(skb, dev);
2130                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2131         }
2132
2133         return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136
2137 /**
2138  * dev_forward_skb - loopback an skb to another netif
2139  *
2140  * @dev: destination network device
2141  * @skb: buffer to forward
2142  *
2143  * return values:
2144  *      NET_RX_SUCCESS  (no congestion)
2145  *      NET_RX_DROP     (packet was dropped, but freed)
2146  *
2147  * dev_forward_skb can be used for injecting an skb from the
2148  * start_xmit function of one device into the receive queue
2149  * of another device.
2150  *
2151  * The receiving device may be in another namespace, so
2152  * we have to clear all information in the skb that could
2153  * impact namespace isolation.
2154  */
2155 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156 {
2157         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2158 }
2159 EXPORT_SYMBOL_GPL(dev_forward_skb);
2160
2161 static inline int deliver_skb(struct sk_buff *skb,
2162                               struct packet_type *pt_prev,
2163                               struct net_device *orig_dev)
2164 {
2165         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2166                 return -ENOMEM;
2167         refcount_inc(&skb->users);
2168         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2169 }
2170
2171 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2172                                           struct packet_type **pt,
2173                                           struct net_device *orig_dev,
2174                                           __be16 type,
2175                                           struct list_head *ptype_list)
2176 {
2177         struct packet_type *ptype, *pt_prev = *pt;
2178
2179         list_for_each_entry_rcu(ptype, ptype_list, list) {
2180                 if (ptype->type != type)
2181                         continue;
2182                 if (pt_prev)
2183                         deliver_skb(skb, pt_prev, orig_dev);
2184                 pt_prev = ptype;
2185         }
2186         *pt = pt_prev;
2187 }
2188
2189 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2190 {
2191         if (!ptype->af_packet_priv || !skb->sk)
2192                 return false;
2193
2194         if (ptype->id_match)
2195                 return ptype->id_match(ptype, skb->sk);
2196         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2197                 return true;
2198
2199         return false;
2200 }
2201
2202 /**
2203  * dev_nit_active - return true if any network interface taps are in use
2204  *
2205  * @dev: network device to check for the presence of taps
2206  */
2207 bool dev_nit_active(struct net_device *dev)
2208 {
2209         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2210 }
2211 EXPORT_SYMBOL_GPL(dev_nit_active);
2212
2213 /*
2214  *      Support routine. Sends outgoing frames to any network
2215  *      taps currently in use.
2216  */
2217
2218 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2219 {
2220         struct packet_type *ptype;
2221         struct sk_buff *skb2 = NULL;
2222         struct packet_type *pt_prev = NULL;
2223         struct list_head *ptype_list = &ptype_all;
2224
2225         rcu_read_lock();
2226 again:
2227         list_for_each_entry_rcu(ptype, ptype_list, list) {
2228                 if (ptype->ignore_outgoing)
2229                         continue;
2230
2231                 /* Never send packets back to the socket
2232                  * they originated from - MvS (miquels@drinkel.ow.org)
2233                  */
2234                 if (skb_loop_sk(ptype, skb))
2235                         continue;
2236
2237                 if (pt_prev) {
2238                         deliver_skb(skb2, pt_prev, skb->dev);
2239                         pt_prev = ptype;
2240                         continue;
2241                 }
2242
2243                 /* need to clone skb, done only once */
2244                 skb2 = skb_clone(skb, GFP_ATOMIC);
2245                 if (!skb2)
2246                         goto out_unlock;
2247
2248                 net_timestamp_set(skb2);
2249
2250                 /* skb->nh should be correctly
2251                  * set by sender, so that the second statement is
2252                  * just protection against buggy protocols.
2253                  */
2254                 skb_reset_mac_header(skb2);
2255
2256                 if (skb_network_header(skb2) < skb2->data ||
2257                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2258                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2259                                              ntohs(skb2->protocol),
2260                                              dev->name);
2261                         skb_reset_network_header(skb2);
2262                 }
2263
2264                 skb2->transport_header = skb2->network_header;
2265                 skb2->pkt_type = PACKET_OUTGOING;
2266                 pt_prev = ptype;
2267         }
2268
2269         if (ptype_list == &ptype_all) {
2270                 ptype_list = &dev->ptype_all;
2271                 goto again;
2272         }
2273 out_unlock:
2274         if (pt_prev) {
2275                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2276                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2277                 else
2278                         kfree_skb(skb2);
2279         }
2280         rcu_read_unlock();
2281 }
2282 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2283
2284 /**
2285  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2286  * @dev: Network device
2287  * @txq: number of queues available
2288  *
2289  * If real_num_tx_queues is changed the tc mappings may no longer be
2290  * valid. To resolve this verify the tc mapping remains valid and if
2291  * not NULL the mapping. With no priorities mapping to this
2292  * offset/count pair it will no longer be used. In the worst case TC0
2293  * is invalid nothing can be done so disable priority mappings. If is
2294  * expected that drivers will fix this mapping if they can before
2295  * calling netif_set_real_num_tx_queues.
2296  */
2297 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2298 {
2299         int i;
2300         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2301
2302         /* If TC0 is invalidated disable TC mapping */
2303         if (tc->offset + tc->count > txq) {
2304                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2305                 dev->num_tc = 0;
2306                 return;
2307         }
2308
2309         /* Invalidated prio to tc mappings set to TC0 */
2310         for (i = 1; i < TC_BITMASK + 1; i++) {
2311                 int q = netdev_get_prio_tc_map(dev, i);
2312
2313                 tc = &dev->tc_to_txq[q];
2314                 if (tc->offset + tc->count > txq) {
2315                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2316                                 i, q);
2317                         netdev_set_prio_tc_map(dev, i, 0);
2318                 }
2319         }
2320 }
2321
2322 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2323 {
2324         if (dev->num_tc) {
2325                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2326                 int i;
2327
2328                 /* walk through the TCs and see if it falls into any of them */
2329                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2330                         if ((txq - tc->offset) < tc->count)
2331                                 return i;
2332                 }
2333
2334                 /* didn't find it, just return -1 to indicate no match */
2335                 return -1;
2336         }
2337
2338         return 0;
2339 }
2340 EXPORT_SYMBOL(netdev_txq_to_tc);
2341
2342 #ifdef CONFIG_XPS
2343 struct static_key xps_needed __read_mostly;
2344 EXPORT_SYMBOL(xps_needed);
2345 struct static_key xps_rxqs_needed __read_mostly;
2346 EXPORT_SYMBOL(xps_rxqs_needed);
2347 static DEFINE_MUTEX(xps_map_mutex);
2348 #define xmap_dereference(P)             \
2349         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2350
2351 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2352                              int tci, u16 index)
2353 {
2354         struct xps_map *map = NULL;
2355         int pos;
2356
2357         if (dev_maps)
2358                 map = xmap_dereference(dev_maps->attr_map[tci]);
2359         if (!map)
2360                 return false;
2361
2362         for (pos = map->len; pos--;) {
2363                 if (map->queues[pos] != index)
2364                         continue;
2365
2366                 if (map->len > 1) {
2367                         map->queues[pos] = map->queues[--map->len];
2368                         break;
2369                 }
2370
2371                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2372                 kfree_rcu(map, rcu);
2373                 return false;
2374         }
2375
2376         return true;
2377 }
2378
2379 static bool remove_xps_queue_cpu(struct net_device *dev,
2380                                  struct xps_dev_maps *dev_maps,
2381                                  int cpu, u16 offset, u16 count)
2382 {
2383         int num_tc = dev->num_tc ? : 1;
2384         bool active = false;
2385         int tci;
2386
2387         for (tci = cpu * num_tc; num_tc--; tci++) {
2388                 int i, j;
2389
2390                 for (i = count, j = offset; i--; j++) {
2391                         if (!remove_xps_queue(dev_maps, tci, j))
2392                                 break;
2393                 }
2394
2395                 active |= i < 0;
2396         }
2397
2398         return active;
2399 }
2400
2401 static void reset_xps_maps(struct net_device *dev,
2402                            struct xps_dev_maps *dev_maps,
2403                            bool is_rxqs_map)
2404 {
2405         if (is_rxqs_map) {
2406                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2407                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2408         } else {
2409                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2410         }
2411         static_key_slow_dec_cpuslocked(&xps_needed);
2412         kfree_rcu(dev_maps, rcu);
2413 }
2414
2415 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2416                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2417                            u16 offset, u16 count, bool is_rxqs_map)
2418 {
2419         bool active = false;
2420         int i, j;
2421
2422         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2423              j < nr_ids;)
2424                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2425                                                count);
2426         if (!active)
2427                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2428
2429         if (!is_rxqs_map) {
2430                 for (i = offset + (count - 1); count--; i--) {
2431                         netdev_queue_numa_node_write(
2432                                 netdev_get_tx_queue(dev, i),
2433                                 NUMA_NO_NODE);
2434                 }
2435         }
2436 }
2437
2438 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2439                                    u16 count)
2440 {
2441         const unsigned long *possible_mask = NULL;
2442         struct xps_dev_maps *dev_maps;
2443         unsigned int nr_ids;
2444
2445         if (!static_key_false(&xps_needed))
2446                 return;
2447
2448         cpus_read_lock();
2449         mutex_lock(&xps_map_mutex);
2450
2451         if (static_key_false(&xps_rxqs_needed)) {
2452                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2453                 if (dev_maps) {
2454                         nr_ids = dev->num_rx_queues;
2455                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2456                                        offset, count, true);
2457                 }
2458         }
2459
2460         dev_maps = xmap_dereference(dev->xps_cpus_map);
2461         if (!dev_maps)
2462                 goto out_no_maps;
2463
2464         if (num_possible_cpus() > 1)
2465                 possible_mask = cpumask_bits(cpu_possible_mask);
2466         nr_ids = nr_cpu_ids;
2467         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2468                        false);
2469
2470 out_no_maps:
2471         mutex_unlock(&xps_map_mutex);
2472         cpus_read_unlock();
2473 }
2474
2475 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2476 {
2477         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2478 }
2479
2480 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2481                                       u16 index, bool is_rxqs_map)
2482 {
2483         struct xps_map *new_map;
2484         int alloc_len = XPS_MIN_MAP_ALLOC;
2485         int i, pos;
2486
2487         for (pos = 0; map && pos < map->len; pos++) {
2488                 if (map->queues[pos] != index)
2489                         continue;
2490                 return map;
2491         }
2492
2493         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2494         if (map) {
2495                 if (pos < map->alloc_len)
2496                         return map;
2497
2498                 alloc_len = map->alloc_len * 2;
2499         }
2500
2501         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2502          *  map
2503          */
2504         if (is_rxqs_map)
2505                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2506         else
2507                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2508                                        cpu_to_node(attr_index));
2509         if (!new_map)
2510                 return NULL;
2511
2512         for (i = 0; i < pos; i++)
2513                 new_map->queues[i] = map->queues[i];
2514         new_map->alloc_len = alloc_len;
2515         new_map->len = pos;
2516
2517         return new_map;
2518 }
2519
2520 /* Must be called under cpus_read_lock */
2521 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2522                           u16 index, bool is_rxqs_map)
2523 {
2524         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2525         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2526         int i, j, tci, numa_node_id = -2;
2527         int maps_sz, num_tc = 1, tc = 0;
2528         struct xps_map *map, *new_map;
2529         bool active = false;
2530         unsigned int nr_ids;
2531
2532         if (dev->num_tc) {
2533                 /* Do not allow XPS on subordinate device directly */
2534                 num_tc = dev->num_tc;
2535                 if (num_tc < 0)
2536                         return -EINVAL;
2537
2538                 /* If queue belongs to subordinate dev use its map */
2539                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2540
2541                 tc = netdev_txq_to_tc(dev, index);
2542                 if (tc < 0)
2543                         return -EINVAL;
2544         }
2545
2546         mutex_lock(&xps_map_mutex);
2547         if (is_rxqs_map) {
2548                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2549                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2550                 nr_ids = dev->num_rx_queues;
2551         } else {
2552                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2553                 if (num_possible_cpus() > 1) {
2554                         online_mask = cpumask_bits(cpu_online_mask);
2555                         possible_mask = cpumask_bits(cpu_possible_mask);
2556                 }
2557                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2558                 nr_ids = nr_cpu_ids;
2559         }
2560
2561         if (maps_sz < L1_CACHE_BYTES)
2562                 maps_sz = L1_CACHE_BYTES;
2563
2564         /* allocate memory for queue storage */
2565         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2566              j < nr_ids;) {
2567                 if (!new_dev_maps)
2568                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2569                 if (!new_dev_maps) {
2570                         mutex_unlock(&xps_map_mutex);
2571                         return -ENOMEM;
2572                 }
2573
2574                 tci = j * num_tc + tc;
2575                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2576                                  NULL;
2577
2578                 map = expand_xps_map(map, j, index, is_rxqs_map);
2579                 if (!map)
2580                         goto error;
2581
2582                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2583         }
2584
2585         if (!new_dev_maps)
2586                 goto out_no_new_maps;
2587
2588         if (!dev_maps) {
2589                 /* Increment static keys at most once per type */
2590                 static_key_slow_inc_cpuslocked(&xps_needed);
2591                 if (is_rxqs_map)
2592                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2593         }
2594
2595         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2596              j < nr_ids;) {
2597                 /* copy maps belonging to foreign traffic classes */
2598                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2599                         /* fill in the new device map from the old device map */
2600                         map = xmap_dereference(dev_maps->attr_map[tci]);
2601                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2602                 }
2603
2604                 /* We need to explicitly update tci as prevous loop
2605                  * could break out early if dev_maps is NULL.
2606                  */
2607                 tci = j * num_tc + tc;
2608
2609                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2610                     netif_attr_test_online(j, online_mask, nr_ids)) {
2611                         /* add tx-queue to CPU/rx-queue maps */
2612                         int pos = 0;
2613
2614                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2615                         while ((pos < map->len) && (map->queues[pos] != index))
2616                                 pos++;
2617
2618                         if (pos == map->len)
2619                                 map->queues[map->len++] = index;
2620 #ifdef CONFIG_NUMA
2621                         if (!is_rxqs_map) {
2622                                 if (numa_node_id == -2)
2623                                         numa_node_id = cpu_to_node(j);
2624                                 else if (numa_node_id != cpu_to_node(j))
2625                                         numa_node_id = -1;
2626                         }
2627 #endif
2628                 } else if (dev_maps) {
2629                         /* fill in the new device map from the old device map */
2630                         map = xmap_dereference(dev_maps->attr_map[tci]);
2631                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2632                 }
2633
2634                 /* copy maps belonging to foreign traffic classes */
2635                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2636                         /* fill in the new device map from the old device map */
2637                         map = xmap_dereference(dev_maps->attr_map[tci]);
2638                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2639                 }
2640         }
2641
2642         if (is_rxqs_map)
2643                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2644         else
2645                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2646
2647         /* Cleanup old maps */
2648         if (!dev_maps)
2649                 goto out_no_old_maps;
2650
2651         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2652              j < nr_ids;) {
2653                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2654                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2655                         map = xmap_dereference(dev_maps->attr_map[tci]);
2656                         if (map && map != new_map)
2657                                 kfree_rcu(map, rcu);
2658                 }
2659         }
2660
2661         kfree_rcu(dev_maps, rcu);
2662
2663 out_no_old_maps:
2664         dev_maps = new_dev_maps;
2665         active = true;
2666
2667 out_no_new_maps:
2668         if (!is_rxqs_map) {
2669                 /* update Tx queue numa node */
2670                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2671                                              (numa_node_id >= 0) ?
2672                                              numa_node_id : NUMA_NO_NODE);
2673         }
2674
2675         if (!dev_maps)
2676                 goto out_no_maps;
2677
2678         /* removes tx-queue from unused CPUs/rx-queues */
2679         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2680              j < nr_ids;) {
2681                 for (i = tc, tci = j * num_tc; i--; tci++)
2682                         active |= remove_xps_queue(dev_maps, tci, index);
2683                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2684                     !netif_attr_test_online(j, online_mask, nr_ids))
2685                         active |= remove_xps_queue(dev_maps, tci, index);
2686                 for (i = num_tc - tc, tci++; --i; tci++)
2687                         active |= remove_xps_queue(dev_maps, tci, index);
2688         }
2689
2690         /* free map if not active */
2691         if (!active)
2692                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2693
2694 out_no_maps:
2695         mutex_unlock(&xps_map_mutex);
2696
2697         return 0;
2698 error:
2699         /* remove any maps that we added */
2700         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2701              j < nr_ids;) {
2702                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2703                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2704                         map = dev_maps ?
2705                               xmap_dereference(dev_maps->attr_map[tci]) :
2706                               NULL;
2707                         if (new_map && new_map != map)
2708                                 kfree(new_map);
2709                 }
2710         }
2711
2712         mutex_unlock(&xps_map_mutex);
2713
2714         kfree(new_dev_maps);
2715         return -ENOMEM;
2716 }
2717 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2718
2719 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2720                         u16 index)
2721 {
2722         int ret;
2723
2724         cpus_read_lock();
2725         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2726         cpus_read_unlock();
2727
2728         return ret;
2729 }
2730 EXPORT_SYMBOL(netif_set_xps_queue);
2731
2732 #endif
2733 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2734 {
2735         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736
2737         /* Unbind any subordinate channels */
2738         while (txq-- != &dev->_tx[0]) {
2739                 if (txq->sb_dev)
2740                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2741         }
2742 }
2743
2744 void netdev_reset_tc(struct net_device *dev)
2745 {
2746 #ifdef CONFIG_XPS
2747         netif_reset_xps_queues_gt(dev, 0);
2748 #endif
2749         netdev_unbind_all_sb_channels(dev);
2750
2751         /* Reset TC configuration of device */
2752         dev->num_tc = 0;
2753         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2754         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2755 }
2756 EXPORT_SYMBOL(netdev_reset_tc);
2757
2758 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2759 {
2760         if (tc >= dev->num_tc)
2761                 return -EINVAL;
2762
2763 #ifdef CONFIG_XPS
2764         netif_reset_xps_queues(dev, offset, count);
2765 #endif
2766         dev->tc_to_txq[tc].count = count;
2767         dev->tc_to_txq[tc].offset = offset;
2768         return 0;
2769 }
2770 EXPORT_SYMBOL(netdev_set_tc_queue);
2771
2772 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2773 {
2774         if (num_tc > TC_MAX_QUEUE)
2775                 return -EINVAL;
2776
2777 #ifdef CONFIG_XPS
2778         netif_reset_xps_queues_gt(dev, 0);
2779 #endif
2780         netdev_unbind_all_sb_channels(dev);
2781
2782         dev->num_tc = num_tc;
2783         return 0;
2784 }
2785 EXPORT_SYMBOL(netdev_set_num_tc);
2786
2787 void netdev_unbind_sb_channel(struct net_device *dev,
2788                               struct net_device *sb_dev)
2789 {
2790         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2791
2792 #ifdef CONFIG_XPS
2793         netif_reset_xps_queues_gt(sb_dev, 0);
2794 #endif
2795         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2796         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2797
2798         while (txq-- != &dev->_tx[0]) {
2799                 if (txq->sb_dev == sb_dev)
2800                         txq->sb_dev = NULL;
2801         }
2802 }
2803 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2804
2805 int netdev_bind_sb_channel_queue(struct net_device *dev,
2806                                  struct net_device *sb_dev,
2807                                  u8 tc, u16 count, u16 offset)
2808 {
2809         /* Make certain the sb_dev and dev are already configured */
2810         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2811                 return -EINVAL;
2812
2813         /* We cannot hand out queues we don't have */
2814         if ((offset + count) > dev->real_num_tx_queues)
2815                 return -EINVAL;
2816
2817         /* Record the mapping */
2818         sb_dev->tc_to_txq[tc].count = count;
2819         sb_dev->tc_to_txq[tc].offset = offset;
2820
2821         /* Provide a way for Tx queue to find the tc_to_txq map or
2822          * XPS map for itself.
2823          */
2824         while (count--)
2825                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2826
2827         return 0;
2828 }
2829 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2830
2831 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2832 {
2833         /* Do not use a multiqueue device to represent a subordinate channel */
2834         if (netif_is_multiqueue(dev))
2835                 return -ENODEV;
2836
2837         /* We allow channels 1 - 32767 to be used for subordinate channels.
2838          * Channel 0 is meant to be "native" mode and used only to represent
2839          * the main root device. We allow writing 0 to reset the device back
2840          * to normal mode after being used as a subordinate channel.
2841          */
2842         if (channel > S16_MAX)
2843                 return -EINVAL;
2844
2845         dev->num_tc = -channel;
2846
2847         return 0;
2848 }
2849 EXPORT_SYMBOL(netdev_set_sb_channel);
2850
2851 /*
2852  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2853  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2854  */
2855 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2856 {
2857         bool disabling;
2858         int rc;
2859
2860         disabling = txq < dev->real_num_tx_queues;
2861
2862         if (txq < 1 || txq > dev->num_tx_queues)
2863                 return -EINVAL;
2864
2865         if (dev->reg_state == NETREG_REGISTERED ||
2866             dev->reg_state == NETREG_UNREGISTERING) {
2867                 ASSERT_RTNL();
2868
2869                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2870                                                   txq);
2871                 if (rc)
2872                         return rc;
2873
2874                 if (dev->num_tc)
2875                         netif_setup_tc(dev, txq);
2876
2877                 dev->real_num_tx_queues = txq;
2878
2879                 if (disabling) {
2880                         synchronize_net();
2881                         qdisc_reset_all_tx_gt(dev, txq);
2882 #ifdef CONFIG_XPS
2883                         netif_reset_xps_queues_gt(dev, txq);
2884 #endif
2885                 }
2886         } else {
2887                 dev->real_num_tx_queues = txq;
2888         }
2889
2890         return 0;
2891 }
2892 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2893
2894 #ifdef CONFIG_SYSFS
2895 /**
2896  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2897  *      @dev: Network device
2898  *      @rxq: Actual number of RX queues
2899  *
2900  *      This must be called either with the rtnl_lock held or before
2901  *      registration of the net device.  Returns 0 on success, or a
2902  *      negative error code.  If called before registration, it always
2903  *      succeeds.
2904  */
2905 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2906 {
2907         int rc;
2908
2909         if (rxq < 1 || rxq > dev->num_rx_queues)
2910                 return -EINVAL;
2911
2912         if (dev->reg_state == NETREG_REGISTERED) {
2913                 ASSERT_RTNL();
2914
2915                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2916                                                   rxq);
2917                 if (rc)
2918                         return rc;
2919         }
2920
2921         dev->real_num_rx_queues = rxq;
2922         return 0;
2923 }
2924 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2925 #endif
2926
2927 /**
2928  * netif_get_num_default_rss_queues - default number of RSS queues
2929  *
2930  * This routine should set an upper limit on the number of RSS queues
2931  * used by default by multiqueue devices.
2932  */
2933 int netif_get_num_default_rss_queues(void)
2934 {
2935         return is_kdump_kernel() ?
2936                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2937 }
2938 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2939
2940 static void __netif_reschedule(struct Qdisc *q)
2941 {
2942         struct softnet_data *sd;
2943         unsigned long flags;
2944
2945         local_irq_save(flags);
2946         sd = this_cpu_ptr(&softnet_data);
2947         q->next_sched = NULL;
2948         *sd->output_queue_tailp = q;
2949         sd->output_queue_tailp = &q->next_sched;
2950         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2951         local_irq_restore(flags);
2952 }
2953
2954 void __netif_schedule(struct Qdisc *q)
2955 {
2956         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2957                 __netif_reschedule(q);
2958 }
2959 EXPORT_SYMBOL(__netif_schedule);
2960
2961 struct dev_kfree_skb_cb {
2962         enum skb_free_reason reason;
2963 };
2964
2965 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2966 {
2967         return (struct dev_kfree_skb_cb *)skb->cb;
2968 }
2969
2970 void netif_schedule_queue(struct netdev_queue *txq)
2971 {
2972         rcu_read_lock();
2973         if (!netif_xmit_stopped(txq)) {
2974                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2975
2976                 __netif_schedule(q);
2977         }
2978         rcu_read_unlock();
2979 }
2980 EXPORT_SYMBOL(netif_schedule_queue);
2981
2982 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2983 {
2984         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2985                 struct Qdisc *q;
2986
2987                 rcu_read_lock();
2988                 q = rcu_dereference(dev_queue->qdisc);
2989                 __netif_schedule(q);
2990                 rcu_read_unlock();
2991         }
2992 }
2993 EXPORT_SYMBOL(netif_tx_wake_queue);
2994
2995 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2996 {
2997         unsigned long flags;
2998
2999         if (unlikely(!skb))
3000                 return;
3001
3002         if (likely(refcount_read(&skb->users) == 1)) {
3003                 smp_rmb();
3004                 refcount_set(&skb->users, 0);
3005         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3006                 return;
3007         }
3008         get_kfree_skb_cb(skb)->reason = reason;
3009         local_irq_save(flags);
3010         skb->next = __this_cpu_read(softnet_data.completion_queue);
3011         __this_cpu_write(softnet_data.completion_queue, skb);
3012         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3013         local_irq_restore(flags);
3014 }
3015 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3016
3017 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3018 {
3019         if (in_irq() || irqs_disabled())
3020                 __dev_kfree_skb_irq(skb, reason);
3021         else
3022                 dev_kfree_skb(skb);
3023 }
3024 EXPORT_SYMBOL(__dev_kfree_skb_any);
3025
3026
3027 /**
3028  * netif_device_detach - mark device as removed
3029  * @dev: network device
3030  *
3031  * Mark device as removed from system and therefore no longer available.
3032  */
3033 void netif_device_detach(struct net_device *dev)
3034 {
3035         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3036             netif_running(dev)) {
3037                 netif_tx_stop_all_queues(dev);
3038         }
3039 }
3040 EXPORT_SYMBOL(netif_device_detach);
3041
3042 /**
3043  * netif_device_attach - mark device as attached
3044  * @dev: network device
3045  *
3046  * Mark device as attached from system and restart if needed.
3047  */
3048 void netif_device_attach(struct net_device *dev)
3049 {
3050         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3051             netif_running(dev)) {
3052                 netif_tx_wake_all_queues(dev);
3053                 __netdev_watchdog_up(dev);
3054         }
3055 }
3056 EXPORT_SYMBOL(netif_device_attach);
3057
3058 /*
3059  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3060  * to be used as a distribution range.
3061  */
3062 static u16 skb_tx_hash(const struct net_device *dev,
3063                        const struct net_device *sb_dev,
3064                        struct sk_buff *skb)
3065 {
3066         u32 hash;
3067         u16 qoffset = 0;
3068         u16 qcount = dev->real_num_tx_queues;
3069
3070         if (dev->num_tc) {
3071                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3072
3073                 qoffset = sb_dev->tc_to_txq[tc].offset;
3074                 qcount = sb_dev->tc_to_txq[tc].count;
3075         }
3076
3077         if (skb_rx_queue_recorded(skb)) {
3078                 hash = skb_get_rx_queue(skb);
3079                 if (hash >= qoffset)
3080                         hash -= qoffset;
3081                 while (unlikely(hash >= qcount))
3082                         hash -= qcount;
3083                 return hash + qoffset;
3084         }
3085
3086         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3087 }
3088
3089 static void skb_warn_bad_offload(const struct sk_buff *skb)
3090 {
3091         static const netdev_features_t null_features;
3092         struct net_device *dev = skb->dev;
3093         const char *name = "";
3094
3095         if (!net_ratelimit())
3096                 return;
3097
3098         if (dev) {
3099                 if (dev->dev.parent)
3100                         name = dev_driver_string(dev->dev.parent);
3101                 else
3102                         name = netdev_name(dev);
3103         }
3104         skb_dump(KERN_WARNING, skb, false);
3105         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3106              name, dev ? &dev->features : &null_features,
3107              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3108 }
3109
3110 /*
3111  * Invalidate hardware checksum when packet is to be mangled, and
3112  * complete checksum manually on outgoing path.
3113  */
3114 int skb_checksum_help(struct sk_buff *skb)
3115 {
3116         __wsum csum;
3117         int ret = 0, offset;
3118
3119         if (skb->ip_summed == CHECKSUM_COMPLETE)
3120                 goto out_set_summed;
3121
3122         if (unlikely(skb_shinfo(skb)->gso_size)) {
3123                 skb_warn_bad_offload(skb);
3124                 return -EINVAL;
3125         }
3126
3127         /* Before computing a checksum, we should make sure no frag could
3128          * be modified by an external entity : checksum could be wrong.
3129          */
3130         if (skb_has_shared_frag(skb)) {
3131                 ret = __skb_linearize(skb);
3132                 if (ret)
3133                         goto out;
3134         }
3135
3136         offset = skb_checksum_start_offset(skb);
3137         BUG_ON(offset >= skb_headlen(skb));
3138         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3139
3140         offset += skb->csum_offset;
3141         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3142
3143         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3144         if (ret)
3145                 goto out;
3146
3147         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3148 out_set_summed:
3149         skb->ip_summed = CHECKSUM_NONE;
3150 out:
3151         return ret;
3152 }
3153 EXPORT_SYMBOL(skb_checksum_help);
3154
3155 int skb_crc32c_csum_help(struct sk_buff *skb)
3156 {
3157         __le32 crc32c_csum;
3158         int ret = 0, offset, start;
3159
3160         if (skb->ip_summed != CHECKSUM_PARTIAL)
3161                 goto out;
3162
3163         if (unlikely(skb_is_gso(skb)))
3164                 goto out;
3165
3166         /* Before computing a checksum, we should make sure no frag could
3167          * be modified by an external entity : checksum could be wrong.
3168          */
3169         if (unlikely(skb_has_shared_frag(skb))) {
3170                 ret = __skb_linearize(skb);
3171                 if (ret)
3172                         goto out;
3173         }
3174         start = skb_checksum_start_offset(skb);
3175         offset = start + offsetof(struct sctphdr, checksum);
3176         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3177                 ret = -EINVAL;
3178                 goto out;
3179         }
3180
3181         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3182         if (ret)
3183                 goto out;
3184
3185         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3186                                                   skb->len - start, ~(__u32)0,
3187                                                   crc32c_csum_stub));
3188         *(__le32 *)(skb->data + offset) = crc32c_csum;
3189         skb->ip_summed = CHECKSUM_NONE;
3190         skb->csum_not_inet = 0;
3191 out:
3192         return ret;
3193 }
3194
3195 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3196 {
3197         __be16 type = skb->protocol;
3198
3199         /* Tunnel gso handlers can set protocol to ethernet. */
3200         if (type == htons(ETH_P_TEB)) {
3201                 struct ethhdr *eth;
3202
3203                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3204                         return 0;
3205
3206                 eth = (struct ethhdr *)skb->data;
3207                 type = eth->h_proto;
3208         }
3209
3210         return __vlan_get_protocol(skb, type, depth);
3211 }
3212
3213 /**
3214  *      skb_mac_gso_segment - mac layer segmentation handler.
3215  *      @skb: buffer to segment
3216  *      @features: features for the output path (see dev->features)
3217  */
3218 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3219                                     netdev_features_t features)
3220 {
3221         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3222         struct packet_offload *ptype;
3223         int vlan_depth = skb->mac_len;
3224         __be16 type = skb_network_protocol(skb, &vlan_depth);
3225
3226         if (unlikely(!type))
3227                 return ERR_PTR(-EINVAL);
3228
3229         __skb_pull(skb, vlan_depth);
3230
3231         rcu_read_lock();
3232         list_for_each_entry_rcu(ptype, &offload_base, list) {
3233                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3234                         segs = ptype->callbacks.gso_segment(skb, features);
3235                         break;
3236                 }
3237         }
3238         rcu_read_unlock();
3239
3240         __skb_push(skb, skb->data - skb_mac_header(skb));
3241
3242         return segs;
3243 }
3244 EXPORT_SYMBOL(skb_mac_gso_segment);
3245
3246
3247 /* openvswitch calls this on rx path, so we need a different check.
3248  */
3249 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3250 {
3251         if (tx_path)
3252                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3253                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3254
3255         return skb->ip_summed == CHECKSUM_NONE;
3256 }
3257
3258 /**
3259  *      __skb_gso_segment - Perform segmentation on skb.
3260  *      @skb: buffer to segment
3261  *      @features: features for the output path (see dev->features)
3262  *      @tx_path: whether it is called in TX path
3263  *
3264  *      This function segments the given skb and returns a list of segments.
3265  *
3266  *      It may return NULL if the skb requires no segmentation.  This is
3267  *      only possible when GSO is used for verifying header integrity.
3268  *
3269  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3270  */
3271 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3272                                   netdev_features_t features, bool tx_path)
3273 {
3274         struct sk_buff *segs;
3275
3276         if (unlikely(skb_needs_check(skb, tx_path))) {
3277                 int err;
3278
3279                 /* We're going to init ->check field in TCP or UDP header */
3280                 err = skb_cow_head(skb, 0);
3281                 if (err < 0)
3282                         return ERR_PTR(err);
3283         }
3284
3285         /* Only report GSO partial support if it will enable us to
3286          * support segmentation on this frame without needing additional
3287          * work.
3288          */
3289         if (features & NETIF_F_GSO_PARTIAL) {
3290                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3291                 struct net_device *dev = skb->dev;
3292
3293                 partial_features |= dev->features & dev->gso_partial_features;
3294                 if (!skb_gso_ok(skb, features | partial_features))
3295                         features &= ~NETIF_F_GSO_PARTIAL;
3296         }
3297
3298         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3299                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3300
3301         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3302         SKB_GSO_CB(skb)->encap_level = 0;
3303
3304         skb_reset_mac_header(skb);
3305         skb_reset_mac_len(skb);
3306
3307         segs = skb_mac_gso_segment(skb, features);
3308
3309         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3310                 skb_warn_bad_offload(skb);
3311
3312         return segs;
3313 }
3314 EXPORT_SYMBOL(__skb_gso_segment);
3315
3316 /* Take action when hardware reception checksum errors are detected. */
3317 #ifdef CONFIG_BUG
3318 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3319 {
3320         if (net_ratelimit()) {
3321                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3322                 skb_dump(KERN_ERR, skb, true);
3323                 dump_stack();
3324         }
3325 }
3326 EXPORT_SYMBOL(netdev_rx_csum_fault);
3327 #endif
3328
3329 /* XXX: check that highmem exists at all on the given machine. */
3330 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3331 {
3332 #ifdef CONFIG_HIGHMEM
3333         int i;
3334
3335         if (!(dev->features & NETIF_F_HIGHDMA)) {
3336                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3337                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3338
3339                         if (PageHighMem(skb_frag_page(frag)))
3340                                 return 1;
3341                 }
3342         }
3343 #endif
3344         return 0;
3345 }
3346
3347 /* If MPLS offload request, verify we are testing hardware MPLS features
3348  * instead of standard features for the netdev.
3349  */
3350 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3351 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3352                                            netdev_features_t features,
3353                                            __be16 type)
3354 {
3355         if (eth_p_mpls(type))
3356                 features &= skb->dev->mpls_features;
3357
3358         return features;
3359 }
3360 #else
3361 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3362                                            netdev_features_t features,
3363                                            __be16 type)
3364 {
3365         return features;
3366 }
3367 #endif
3368
3369 static netdev_features_t harmonize_features(struct sk_buff *skb,
3370         netdev_features_t features)
3371 {
3372         int tmp;
3373         __be16 type;
3374
3375         type = skb_network_protocol(skb, &tmp);
3376         features = net_mpls_features(skb, features, type);
3377
3378         if (skb->ip_summed != CHECKSUM_NONE &&
3379             !can_checksum_protocol(features, type)) {
3380                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3381         }
3382         if (illegal_highdma(skb->dev, skb))
3383                 features &= ~NETIF_F_SG;
3384
3385         return features;
3386 }
3387
3388 netdev_features_t passthru_features_check(struct sk_buff *skb,
3389                                           struct net_device *dev,
3390                                           netdev_features_t features)
3391 {
3392         return features;
3393 }
3394 EXPORT_SYMBOL(passthru_features_check);
3395
3396 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3397                                              struct net_device *dev,
3398                                              netdev_features_t features)
3399 {
3400         return vlan_features_check(skb, features);
3401 }
3402
3403 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3404                                             struct net_device *dev,
3405                                             netdev_features_t features)
3406 {
3407         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3408
3409         if (gso_segs > dev->gso_max_segs)
3410                 return features & ~NETIF_F_GSO_MASK;
3411
3412         /* Support for GSO partial features requires software
3413          * intervention before we can actually process the packets
3414          * so we need to strip support for any partial features now
3415          * and we can pull them back in after we have partially
3416          * segmented the frame.
3417          */
3418         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3419                 features &= ~dev->gso_partial_features;
3420
3421         /* Make sure to clear the IPv4 ID mangling feature if the
3422          * IPv4 header has the potential to be fragmented.
3423          */
3424         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3425                 struct iphdr *iph = skb->encapsulation ?
3426                                     inner_ip_hdr(skb) : ip_hdr(skb);
3427
3428                 if (!(iph->frag_off & htons(IP_DF)))
3429                         features &= ~NETIF_F_TSO_MANGLEID;
3430         }
3431
3432         return features;
3433 }
3434
3435 netdev_features_t netif_skb_features(struct sk_buff *skb)
3436 {
3437         struct net_device *dev = skb->dev;
3438         netdev_features_t features = dev->features;
3439
3440         if (skb_is_gso(skb))
3441                 features = gso_features_check(skb, dev, features);
3442
3443         /* If encapsulation offload request, verify we are testing
3444          * hardware encapsulation features instead of standard
3445          * features for the netdev
3446          */
3447         if (skb->encapsulation)
3448                 features &= dev->hw_enc_features;
3449
3450         if (skb_vlan_tagged(skb))
3451                 features = netdev_intersect_features(features,
3452                                                      dev->vlan_features |
3453                                                      NETIF_F_HW_VLAN_CTAG_TX |
3454                                                      NETIF_F_HW_VLAN_STAG_TX);
3455
3456         if (dev->netdev_ops->ndo_features_check)
3457                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3458                                                                 features);
3459         else
3460                 features &= dflt_features_check(skb, dev, features);
3461
3462         return harmonize_features(skb, features);
3463 }
3464 EXPORT_SYMBOL(netif_skb_features);
3465
3466 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3467                     struct netdev_queue *txq, bool more)
3468 {
3469         unsigned int len;
3470         int rc;
3471
3472         if (dev_nit_active(dev))
3473                 dev_queue_xmit_nit(skb, dev);
3474
3475         len = skb->len;
3476         trace_net_dev_start_xmit(skb, dev);
3477         rc = netdev_start_xmit(skb, dev, txq, more);
3478         trace_net_dev_xmit(skb, rc, dev, len);
3479
3480         return rc;
3481 }
3482
3483 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3484                                     struct netdev_queue *txq, int *ret)
3485 {
3486         struct sk_buff *skb = first;
3487         int rc = NETDEV_TX_OK;
3488
3489         while (skb) {
3490                 struct sk_buff *next = skb->next;
3491
3492                 skb_mark_not_on_list(skb);
3493                 rc = xmit_one(skb, dev, txq, next != NULL);
3494                 if (unlikely(!dev_xmit_complete(rc))) {
3495                         skb->next = next;
3496                         goto out;
3497                 }
3498
3499                 skb = next;
3500                 if (netif_tx_queue_stopped(txq) && skb) {
3501                         rc = NETDEV_TX_BUSY;
3502                         break;
3503                 }
3504         }
3505
3506 out:
3507         *ret = rc;
3508         return skb;
3509 }
3510
3511 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3512                                           netdev_features_t features)
3513 {
3514         if (skb_vlan_tag_present(skb) &&
3515             !vlan_hw_offload_capable(features, skb->vlan_proto))
3516                 skb = __vlan_hwaccel_push_inside(skb);
3517         return skb;
3518 }
3519
3520 int skb_csum_hwoffload_help(struct sk_buff *skb,
3521                             const netdev_features_t features)
3522 {
3523         if (unlikely(skb->csum_not_inet))
3524                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3525                         skb_crc32c_csum_help(skb);
3526
3527         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3528 }
3529 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3530
3531 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3532 {
3533         netdev_features_t features;
3534
3535         features = netif_skb_features(skb);
3536         skb = validate_xmit_vlan(skb, features);
3537         if (unlikely(!skb))
3538                 goto out_null;
3539
3540         skb = sk_validate_xmit_skb(skb, dev);
3541         if (unlikely(!skb))
3542                 goto out_null;
3543
3544         if (netif_needs_gso(skb, features)) {
3545                 struct sk_buff *segs;
3546
3547                 segs = skb_gso_segment(skb, features);
3548                 if (IS_ERR(segs)) {
3549                         goto out_kfree_skb;
3550                 } else if (segs) {
3551                         consume_skb(skb);
3552                         skb = segs;
3553                 }
3554         } else {
3555                 if (skb_needs_linearize(skb, features) &&
3556                     __skb_linearize(skb))
3557                         goto out_kfree_skb;
3558
3559                 /* If packet is not checksummed and device does not
3560                  * support checksumming for this protocol, complete
3561                  * checksumming here.
3562                  */
3563                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3564                         if (skb->encapsulation)
3565                                 skb_set_inner_transport_header(skb,
3566                                                                skb_checksum_start_offset(skb));
3567                         else
3568                                 skb_set_transport_header(skb,
3569                                                          skb_checksum_start_offset(skb));
3570                         if (skb_csum_hwoffload_help(skb, features))
3571                                 goto out_kfree_skb;
3572                 }
3573         }
3574
3575         skb = validate_xmit_xfrm(skb, features, again);
3576
3577         return skb;
3578
3579 out_kfree_skb:
3580         kfree_skb(skb);
3581 out_null:
3582         atomic_long_inc(&dev->tx_dropped);
3583         return NULL;
3584 }
3585
3586 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3587 {
3588         struct sk_buff *next, *head = NULL, *tail;
3589
3590         for (; skb != NULL; skb = next) {
3591                 next = skb->next;
3592                 skb_mark_not_on_list(skb);
3593
3594                 /* in case skb wont be segmented, point to itself */
3595                 skb->prev = skb;
3596
3597                 skb = validate_xmit_skb(skb, dev, again);
3598                 if (!skb)
3599                         continue;
3600
3601                 if (!head)
3602                         head = skb;
3603                 else
3604                         tail->next = skb;
3605                 /* If skb was segmented, skb->prev points to
3606                  * the last segment. If not, it still contains skb.
3607                  */
3608                 tail = skb->prev;
3609         }
3610         return head;
3611 }
3612 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3613
3614 static void qdisc_pkt_len_init(struct sk_buff *skb)
3615 {
3616         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3617
3618         qdisc_skb_cb(skb)->pkt_len = skb->len;
3619
3620         /* To get more precise estimation of bytes sent on wire,
3621          * we add to pkt_len the headers size of all segments
3622          */
3623         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3624                 unsigned int hdr_len;
3625                 u16 gso_segs = shinfo->gso_segs;
3626
3627                 /* mac layer + network layer */
3628                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3629
3630                 /* + transport layer */
3631                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3632                         const struct tcphdr *th;
3633                         struct tcphdr _tcphdr;
3634
3635                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3636                                                 sizeof(_tcphdr), &_tcphdr);
3637                         if (likely(th))
3638                                 hdr_len += __tcp_hdrlen(th);
3639                 } else {
3640                         struct udphdr _udphdr;
3641
3642                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3643                                                sizeof(_udphdr), &_udphdr))
3644                                 hdr_len += sizeof(struct udphdr);
3645                 }
3646
3647                 if (shinfo->gso_type & SKB_GSO_DODGY)
3648                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3649                                                 shinfo->gso_size);
3650
3651                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3652         }
3653 }
3654
3655 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3656                                  struct net_device *dev,
3657                                  struct netdev_queue *txq)
3658 {
3659         spinlock_t *root_lock = qdisc_lock(q);
3660         struct sk_buff *to_free = NULL;
3661         bool contended;
3662         int rc;
3663
3664         qdisc_calculate_pkt_len(skb, q);
3665
3666         if (q->flags & TCQ_F_NOLOCK) {
3667                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3668                 qdisc_run(q);
3669
3670                 if (unlikely(to_free))
3671                         kfree_skb_list(to_free);
3672                 return rc;
3673         }
3674
3675         /*
3676          * Heuristic to force contended enqueues to serialize on a
3677          * separate lock before trying to get qdisc main lock.
3678          * This permits qdisc->running owner to get the lock more
3679          * often and dequeue packets faster.
3680          */
3681         contended = qdisc_is_running(q);
3682         if (unlikely(contended))
3683                 spin_lock(&q->busylock);
3684
3685         spin_lock(root_lock);
3686         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3687                 __qdisc_drop(skb, &to_free);
3688                 rc = NET_XMIT_DROP;
3689         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3690                    qdisc_run_begin(q)) {
3691                 /*
3692                  * This is a work-conserving queue; there are no old skbs
3693                  * waiting to be sent out; and the qdisc is not running -
3694                  * xmit the skb directly.
3695                  */
3696
3697                 qdisc_bstats_update(q, skb);
3698
3699                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3700                         if (unlikely(contended)) {
3701                                 spin_unlock(&q->busylock);
3702                                 contended = false;
3703                         }
3704                         __qdisc_run(q);
3705                 }
3706
3707                 qdisc_run_end(q);
3708                 rc = NET_XMIT_SUCCESS;
3709         } else {
3710                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3711                 if (qdisc_run_begin(q)) {
3712                         if (unlikely(contended)) {
3713                                 spin_unlock(&q->busylock);
3714                                 contended = false;
3715                         }
3716                         __qdisc_run(q);
3717                         qdisc_run_end(q);
3718                 }
3719         }
3720         spin_unlock(root_lock);
3721         if (unlikely(to_free))
3722                 kfree_skb_list(to_free);
3723         if (unlikely(contended))
3724                 spin_unlock(&q->busylock);
3725         return rc;
3726 }
3727
3728 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3729 static void skb_update_prio(struct sk_buff *skb)
3730 {
3731         const struct netprio_map *map;
3732         const struct sock *sk;
3733         unsigned int prioidx;
3734
3735         if (skb->priority)
3736                 return;
3737         map = rcu_dereference_bh(skb->dev->priomap);
3738         if (!map)
3739                 return;
3740         sk = skb_to_full_sk(skb);
3741         if (!sk)
3742                 return;
3743
3744         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3745
3746         if (prioidx < map->priomap_len)
3747                 skb->priority = map->priomap[prioidx];
3748 }
3749 #else
3750 #define skb_update_prio(skb)
3751 #endif
3752
3753 /**
3754  *      dev_loopback_xmit - loop back @skb
3755  *      @net: network namespace this loopback is happening in
3756  *      @sk:  sk needed to be a netfilter okfn
3757  *      @skb: buffer to transmit
3758  */
3759 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3760 {
3761         skb_reset_mac_header(skb);
3762         __skb_pull(skb, skb_network_offset(skb));
3763         skb->pkt_type = PACKET_LOOPBACK;
3764         skb->ip_summed = CHECKSUM_UNNECESSARY;
3765         WARN_ON(!skb_dst(skb));
3766         skb_dst_force(skb);
3767         netif_rx_ni(skb);
3768         return 0;
3769 }
3770 EXPORT_SYMBOL(dev_loopback_xmit);
3771
3772 #ifdef CONFIG_NET_EGRESS
3773 static struct sk_buff *
3774 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3775 {
3776         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3777         struct tcf_result cl_res;
3778
3779         if (!miniq)
3780                 return skb;
3781
3782         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3783         mini_qdisc_bstats_cpu_update(miniq, skb);
3784
3785         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3786         case TC_ACT_OK:
3787         case TC_ACT_RECLASSIFY:
3788                 skb->tc_index = TC_H_MIN(cl_res.classid);
3789                 break;
3790         case TC_ACT_SHOT:
3791                 mini_qdisc_qstats_cpu_drop(miniq);
3792                 *ret = NET_XMIT_DROP;
3793                 kfree_skb(skb);
3794                 return NULL;
3795         case TC_ACT_STOLEN:
3796         case TC_ACT_QUEUED:
3797         case TC_ACT_TRAP:
3798                 *ret = NET_XMIT_SUCCESS;
3799                 consume_skb(skb);
3800                 return NULL;
3801         case TC_ACT_REDIRECT:
3802                 /* No need to push/pop skb's mac_header here on egress! */
3803                 skb_do_redirect(skb);
3804                 *ret = NET_XMIT_SUCCESS;
3805                 return NULL;
3806         default:
3807                 break;
3808         }
3809
3810         return skb;
3811 }
3812 #endif /* CONFIG_NET_EGRESS */
3813
3814 #ifdef CONFIG_XPS
3815 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3816                                struct xps_dev_maps *dev_maps, unsigned int tci)
3817 {
3818         struct xps_map *map;
3819         int queue_index = -1;
3820
3821         if (dev->num_tc) {
3822                 tci *= dev->num_tc;
3823                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3824         }
3825
3826         map = rcu_dereference(dev_maps->attr_map[tci]);
3827         if (map) {
3828                 if (map->len == 1)
3829                         queue_index = map->queues[0];
3830                 else
3831                         queue_index = map->queues[reciprocal_scale(
3832                                                 skb_get_hash(skb), map->len)];
3833                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3834                         queue_index = -1;
3835         }
3836         return queue_index;
3837 }
3838 #endif
3839
3840 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3841                          struct sk_buff *skb)
3842 {
3843 #ifdef CONFIG_XPS
3844         struct xps_dev_maps *dev_maps;
3845         struct sock *sk = skb->sk;
3846         int queue_index = -1;
3847
3848         if (!static_key_false(&xps_needed))
3849                 return -1;
3850
3851         rcu_read_lock();
3852         if (!static_key_false(&xps_rxqs_needed))
3853                 goto get_cpus_map;
3854
3855         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3856         if (dev_maps) {
3857                 int tci = sk_rx_queue_get(sk);
3858
3859                 if (tci >= 0 && tci < dev->num_rx_queues)
3860                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3861                                                           tci);
3862         }
3863
3864 get_cpus_map:
3865         if (queue_index < 0) {
3866                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3867                 if (dev_maps) {
3868                         unsigned int tci = skb->sender_cpu - 1;
3869
3870                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3871                                                           tci);
3872                 }
3873         }
3874         rcu_read_unlock();
3875
3876         return queue_index;
3877 #else
3878         return -1;
3879 #endif
3880 }
3881
3882 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3883                      struct net_device *sb_dev)
3884 {
3885         return 0;
3886 }
3887 EXPORT_SYMBOL(dev_pick_tx_zero);
3888
3889 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3890                        struct net_device *sb_dev)
3891 {
3892         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3893 }
3894 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3895
3896 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3897                      struct net_device *sb_dev)
3898 {
3899         struct sock *sk = skb->sk;
3900         int queue_index = sk_tx_queue_get(sk);
3901
3902         sb_dev = sb_dev ? : dev;
3903
3904         if (queue_index < 0 || skb->ooo_okay ||
3905             queue_index >= dev->real_num_tx_queues) {
3906                 int new_index = get_xps_queue(dev, sb_dev, skb);
3907
3908                 if (new_index < 0)
3909                         new_index = skb_tx_hash(dev, sb_dev, skb);
3910
3911                 if (queue_index != new_index && sk &&
3912                     sk_fullsock(sk) &&
3913                     rcu_access_pointer(sk->sk_dst_cache))
3914                         sk_tx_queue_set(sk, new_index);
3915
3916                 queue_index = new_index;
3917         }
3918
3919         return queue_index;
3920 }
3921 EXPORT_SYMBOL(netdev_pick_tx);
3922
3923 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3924                                          struct sk_buff *skb,
3925                                          struct net_device *sb_dev)
3926 {
3927         int queue_index = 0;
3928
3929 #ifdef CONFIG_XPS
3930         u32 sender_cpu = skb->sender_cpu - 1;
3931
3932         if (sender_cpu >= (u32)NR_CPUS)
3933                 skb->sender_cpu = raw_smp_processor_id() + 1;
3934 #endif
3935
3936         if (dev->real_num_tx_queues != 1) {
3937                 const struct net_device_ops *ops = dev->netdev_ops;
3938
3939                 if (ops->ndo_select_queue)
3940                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3941                 else
3942                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3943
3944                 queue_index = netdev_cap_txqueue(dev, queue_index);
3945         }
3946
3947         skb_set_queue_mapping(skb, queue_index);
3948         return netdev_get_tx_queue(dev, queue_index);
3949 }
3950
3951 /**
3952  *      __dev_queue_xmit - transmit a buffer
3953  *      @skb: buffer to transmit
3954  *      @sb_dev: suboordinate device used for L2 forwarding offload
3955  *
3956  *      Queue a buffer for transmission to a network device. The caller must
3957  *      have set the device and priority and built the buffer before calling
3958  *      this function. The function can be called from an interrupt.
3959  *
3960  *      A negative errno code is returned on a failure. A success does not
3961  *      guarantee the frame will be transmitted as it may be dropped due
3962  *      to congestion or traffic shaping.
3963  *
3964  * -----------------------------------------------------------------------------------
3965  *      I notice this method can also return errors from the queue disciplines,
3966  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3967  *      be positive.
3968  *
3969  *      Regardless of the return value, the skb is consumed, so it is currently
3970  *      difficult to retry a send to this method.  (You can bump the ref count
3971  *      before sending to hold a reference for retry if you are careful.)
3972  *
3973  *      When calling this method, interrupts MUST be enabled.  This is because
3974  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3975  *          --BLG
3976  */
3977 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3978 {
3979         struct net_device *dev = skb->dev;
3980         struct netdev_queue *txq;
3981         struct Qdisc *q;
3982         int rc = -ENOMEM;
3983         bool again = false;
3984
3985         skb_reset_mac_header(skb);
3986
3987         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3988                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3989
3990         /* Disable soft irqs for various locks below. Also
3991          * stops preemption for RCU.
3992          */
3993         rcu_read_lock_bh();
3994
3995         skb_update_prio(skb);
3996
3997         qdisc_pkt_len_init(skb);
3998 #ifdef CONFIG_NET_CLS_ACT
3999         skb->tc_at_ingress = 0;
4000 # ifdef CONFIG_NET_EGRESS
4001         if (static_branch_unlikely(&egress_needed_key)) {
4002                 skb = sch_handle_egress(skb, &rc, dev);
4003                 if (!skb)
4004                         goto out;
4005         }
4006 # endif
4007 #endif
4008         /* If device/qdisc don't need skb->dst, release it right now while
4009          * its hot in this cpu cache.
4010          */
4011         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4012                 skb_dst_drop(skb);
4013         else
4014                 skb_dst_force(skb);
4015
4016         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4017         q = rcu_dereference_bh(txq->qdisc);
4018
4019         trace_net_dev_queue(skb);
4020         if (q->enqueue) {
4021                 rc = __dev_xmit_skb(skb, q, dev, txq);
4022                 goto out;
4023         }
4024
4025         /* The device has no queue. Common case for software devices:
4026          * loopback, all the sorts of tunnels...
4027
4028          * Really, it is unlikely that netif_tx_lock protection is necessary
4029          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4030          * counters.)
4031          * However, it is possible, that they rely on protection
4032          * made by us here.
4033
4034          * Check this and shot the lock. It is not prone from deadlocks.
4035          *Either shot noqueue qdisc, it is even simpler 8)
4036          */
4037         if (dev->flags & IFF_UP) {
4038                 int cpu = smp_processor_id(); /* ok because BHs are off */
4039
4040                 if (txq->xmit_lock_owner != cpu) {
4041                         if (dev_xmit_recursion())
4042                                 goto recursion_alert;
4043
4044                         skb = validate_xmit_skb(skb, dev, &again);
4045                         if (!skb)
4046                                 goto out;
4047
4048                         HARD_TX_LOCK(dev, txq, cpu);
4049
4050                         if (!netif_xmit_stopped(txq)) {
4051                                 dev_xmit_recursion_inc();
4052                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4053                                 dev_xmit_recursion_dec();
4054                                 if (dev_xmit_complete(rc)) {
4055                                         HARD_TX_UNLOCK(dev, txq);
4056                                         goto out;
4057                                 }
4058                         }
4059                         HARD_TX_UNLOCK(dev, txq);
4060                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4061                                              dev->name);
4062                 } else {
4063                         /* Recursion is detected! It is possible,
4064                          * unfortunately
4065                          */
4066 recursion_alert:
4067                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4068                                              dev->name);
4069                 }
4070         }
4071
4072         rc = -ENETDOWN;
4073         rcu_read_unlock_bh();
4074
4075         atomic_long_inc(&dev->tx_dropped);
4076         kfree_skb_list(skb);
4077         return rc;
4078 out:
4079         rcu_read_unlock_bh();
4080         return rc;
4081 }
4082
4083 int dev_queue_xmit(struct sk_buff *skb)
4084 {
4085         return __dev_queue_xmit(skb, NULL);
4086 }
4087 EXPORT_SYMBOL(dev_queue_xmit);
4088
4089 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4090 {
4091         return __dev_queue_xmit(skb, sb_dev);
4092 }
4093 EXPORT_SYMBOL(dev_queue_xmit_accel);
4094
4095 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4096 {
4097         struct net_device *dev = skb->dev;
4098         struct sk_buff *orig_skb = skb;
4099         struct netdev_queue *txq;
4100         int ret = NETDEV_TX_BUSY;
4101         bool again = false;
4102
4103         if (unlikely(!netif_running(dev) ||
4104                      !netif_carrier_ok(dev)))
4105                 goto drop;
4106
4107         skb = validate_xmit_skb_list(skb, dev, &again);
4108         if (skb != orig_skb)
4109                 goto drop;
4110
4111         skb_set_queue_mapping(skb, queue_id);
4112         txq = skb_get_tx_queue(dev, skb);
4113
4114         local_bh_disable();
4115
4116         HARD_TX_LOCK(dev, txq, smp_processor_id());
4117         if (!netif_xmit_frozen_or_drv_stopped(txq))
4118                 ret = netdev_start_xmit(skb, dev, txq, false);
4119         HARD_TX_UNLOCK(dev, txq);
4120
4121         local_bh_enable();
4122
4123         if (!dev_xmit_complete(ret))
4124                 kfree_skb(skb);
4125
4126         return ret;
4127 drop:
4128         atomic_long_inc(&dev->tx_dropped);
4129         kfree_skb_list(skb);
4130         return NET_XMIT_DROP;
4131 }
4132 EXPORT_SYMBOL(dev_direct_xmit);
4133
4134 /*************************************************************************
4135  *                      Receiver routines
4136  *************************************************************************/
4137
4138 int netdev_max_backlog __read_mostly = 1000;
4139 EXPORT_SYMBOL(netdev_max_backlog);
4140
4141 int netdev_tstamp_prequeue __read_mostly = 1;
4142 int netdev_budget __read_mostly = 300;
4143 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4144 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4145 int weight_p __read_mostly = 64;           /* old backlog weight */
4146 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4147 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4148 int dev_rx_weight __read_mostly = 64;
4149 int dev_tx_weight __read_mostly = 64;
4150 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4151 int gro_normal_batch __read_mostly = 8;
4152
4153 /* Called with irq disabled */
4154 static inline void ____napi_schedule(struct softnet_data *sd,
4155                                      struct napi_struct *napi)
4156 {
4157         list_add_tail(&napi->poll_list, &sd->poll_list);
4158         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4159 }
4160
4161 #ifdef CONFIG_RPS
4162
4163 /* One global table that all flow-based protocols share. */
4164 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4165 EXPORT_SYMBOL(rps_sock_flow_table);
4166 u32 rps_cpu_mask __read_mostly;
4167 EXPORT_SYMBOL(rps_cpu_mask);
4168
4169 struct static_key_false rps_needed __read_mostly;
4170 EXPORT_SYMBOL(rps_needed);
4171 struct static_key_false rfs_needed __read_mostly;
4172 EXPORT_SYMBOL(rfs_needed);
4173
4174 static struct rps_dev_flow *
4175 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4176             struct rps_dev_flow *rflow, u16 next_cpu)
4177 {
4178         if (next_cpu < nr_cpu_ids) {
4179 #ifdef CONFIG_RFS_ACCEL
4180                 struct netdev_rx_queue *rxqueue;
4181                 struct rps_dev_flow_table *flow_table;
4182                 struct rps_dev_flow *old_rflow;
4183                 u32 flow_id;
4184                 u16 rxq_index;
4185                 int rc;
4186
4187                 /* Should we steer this flow to a different hardware queue? */
4188                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4189                     !(dev->features & NETIF_F_NTUPLE))
4190                         goto out;
4191                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4192                 if (rxq_index == skb_get_rx_queue(skb))
4193                         goto out;
4194
4195                 rxqueue = dev->_rx + rxq_index;
4196                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4197                 if (!flow_table)
4198                         goto out;
4199                 flow_id = skb_get_hash(skb) & flow_table->mask;
4200                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4201                                                         rxq_index, flow_id);
4202                 if (rc < 0)
4203                         goto out;
4204                 old_rflow = rflow;
4205                 rflow = &flow_table->flows[flow_id];
4206                 rflow->filter = rc;
4207                 if (old_rflow->filter == rflow->filter)
4208                         old_rflow->filter = RPS_NO_FILTER;
4209         out:
4210 #endif
4211                 rflow->last_qtail =
4212                         per_cpu(softnet_data, next_cpu).input_queue_head;
4213         }
4214
4215         rflow->cpu = next_cpu;
4216         return rflow;
4217 }
4218
4219 /*
4220  * get_rps_cpu is called from netif_receive_skb and returns the target
4221  * CPU from the RPS map of the receiving queue for a given skb.
4222  * rcu_read_lock must be held on entry.
4223  */
4224 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4225                        struct rps_dev_flow **rflowp)
4226 {
4227         const struct rps_sock_flow_table *sock_flow_table;
4228         struct netdev_rx_queue *rxqueue = dev->_rx;
4229         struct rps_dev_flow_table *flow_table;
4230         struct rps_map *map;
4231         int cpu = -1;
4232         u32 tcpu;
4233         u32 hash;
4234
4235         if (skb_rx_queue_recorded(skb)) {
4236                 u16 index = skb_get_rx_queue(skb);
4237
4238                 if (unlikely(index >= dev->real_num_rx_queues)) {
4239                         WARN_ONCE(dev->real_num_rx_queues > 1,
4240                                   "%s received packet on queue %u, but number "
4241                                   "of RX queues is %u\n",
4242                                   dev->name, index, dev->real_num_rx_queues);
4243                         goto done;
4244                 }
4245                 rxqueue += index;
4246         }
4247
4248         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4249
4250         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4251         map = rcu_dereference(rxqueue->rps_map);
4252         if (!flow_table && !map)
4253                 goto done;
4254
4255         skb_reset_network_header(skb);
4256         hash = skb_get_hash(skb);
4257         if (!hash)
4258                 goto done;
4259
4260         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4261         if (flow_table && sock_flow_table) {
4262                 struct rps_dev_flow *rflow;
4263                 u32 next_cpu;
4264                 u32 ident;
4265
4266                 /* First check into global flow table if there is a match */
4267                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4268                 if ((ident ^ hash) & ~rps_cpu_mask)
4269                         goto try_rps;
4270
4271                 next_cpu = ident & rps_cpu_mask;
4272
4273                 /* OK, now we know there is a match,
4274                  * we can look at the local (per receive queue) flow table
4275                  */
4276                 rflow = &flow_table->flows[hash & flow_table->mask];
4277                 tcpu = rflow->cpu;
4278
4279                 /*
4280                  * If the desired CPU (where last recvmsg was done) is
4281                  * different from current CPU (one in the rx-queue flow
4282                  * table entry), switch if one of the following holds:
4283                  *   - Current CPU is unset (>= nr_cpu_ids).
4284                  *   - Current CPU is offline.
4285                  *   - The current CPU's queue tail has advanced beyond the
4286                  *     last packet that was enqueued using this table entry.
4287                  *     This guarantees that all previous packets for the flow
4288                  *     have been dequeued, thus preserving in order delivery.
4289                  */
4290                 if (unlikely(tcpu != next_cpu) &&
4291                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4292                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4293                       rflow->last_qtail)) >= 0)) {
4294                         tcpu = next_cpu;
4295                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4296                 }
4297
4298                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4299                         *rflowp = rflow;
4300                         cpu = tcpu;
4301                         goto done;
4302                 }
4303         }
4304
4305 try_rps:
4306
4307         if (map) {
4308                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4309                 if (cpu_online(tcpu)) {
4310                         cpu = tcpu;
4311                         goto done;
4312                 }
4313         }
4314
4315 done:
4316         return cpu;
4317 }
4318
4319 #ifdef CONFIG_RFS_ACCEL
4320
4321 /**
4322  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4323  * @dev: Device on which the filter was set
4324  * @rxq_index: RX queue index
4325  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4326  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4327  *
4328  * Drivers that implement ndo_rx_flow_steer() should periodically call
4329  * this function for each installed filter and remove the filters for
4330  * which it returns %true.
4331  */
4332 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4333                          u32 flow_id, u16 filter_id)
4334 {
4335         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4336         struct rps_dev_flow_table *flow_table;
4337         struct rps_dev_flow *rflow;
4338         bool expire = true;
4339         unsigned int cpu;
4340
4341         rcu_read_lock();
4342         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4343         if (flow_table && flow_id <= flow_table->mask) {
4344                 rflow = &flow_table->flows[flow_id];
4345                 cpu = READ_ONCE(rflow->cpu);
4346                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4347                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4348                            rflow->last_qtail) <
4349                      (int)(10 * flow_table->mask)))
4350                         expire = false;
4351         }
4352         rcu_read_unlock();
4353         return expire;
4354 }
4355 EXPORT_SYMBOL(rps_may_expire_flow);
4356
4357 #endif /* CONFIG_RFS_ACCEL */
4358
4359 /* Called from hardirq (IPI) context */
4360 static void rps_trigger_softirq(void *data)
4361 {
4362         struct softnet_data *sd = data;
4363
4364         ____napi_schedule(sd, &sd->backlog);
4365         sd->received_rps++;
4366 }
4367
4368 #endif /* CONFIG_RPS */
4369
4370 /*
4371  * Check if this softnet_data structure is another cpu one
4372  * If yes, queue it to our IPI list and return 1
4373  * If no, return 0
4374  */
4375 static int rps_ipi_queued(struct softnet_data *sd)
4376 {
4377 #ifdef CONFIG_RPS
4378         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4379
4380         if (sd != mysd) {
4381                 sd->rps_ipi_next = mysd->rps_ipi_list;
4382                 mysd->rps_ipi_list = sd;
4383
4384                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4385                 return 1;
4386         }
4387 #endif /* CONFIG_RPS */
4388         return 0;
4389 }
4390
4391 #ifdef CONFIG_NET_FLOW_LIMIT
4392 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4393 #endif
4394
4395 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4396 {
4397 #ifdef CONFIG_NET_FLOW_LIMIT
4398         struct sd_flow_limit *fl;
4399         struct softnet_data *sd;
4400         unsigned int old_flow, new_flow;
4401
4402         if (qlen < (netdev_max_backlog >> 1))
4403                 return false;
4404
4405         sd = this_cpu_ptr(&softnet_data);
4406
4407         rcu_read_lock();
4408         fl = rcu_dereference(sd->flow_limit);
4409         if (fl) {
4410                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4411                 old_flow = fl->history[fl->history_head];
4412                 fl->history[fl->history_head] = new_flow;
4413
4414                 fl->history_head++;
4415                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4416
4417                 if (likely(fl->buckets[old_flow]))
4418                         fl->buckets[old_flow]--;
4419
4420                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4421                         fl->count++;
4422                         rcu_read_unlock();
4423                         return true;
4424                 }
4425         }
4426         rcu_read_unlock();
4427 #endif
4428         return false;
4429 }
4430
4431 /*
4432  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4433  * queue (may be a remote CPU queue).
4434  */
4435 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4436                               unsigned int *qtail)
4437 {
4438         struct softnet_data *sd;
4439         unsigned long flags;
4440         unsigned int qlen;
4441
4442         sd = &per_cpu(softnet_data, cpu);
4443
4444         local_irq_save(flags);
4445
4446         rps_lock(sd);
4447         if (!netif_running(skb->dev))
4448                 goto drop;
4449         qlen = skb_queue_len(&sd->input_pkt_queue);
4450         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4451                 if (qlen) {
4452 enqueue:
4453                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4454                         input_queue_tail_incr_save(sd, qtail);
4455                         rps_unlock(sd);
4456                         local_irq_restore(flags);
4457                         return NET_RX_SUCCESS;
4458                 }
4459
4460                 /* Schedule NAPI for backlog device
4461                  * We can use non atomic operation since we own the queue lock
4462                  */
4463                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4464                         if (!rps_ipi_queued(sd))
4465                                 ____napi_schedule(sd, &sd->backlog);
4466                 }
4467                 goto enqueue;
4468         }
4469
4470 drop:
4471         sd->dropped++;
4472         rps_unlock(sd);
4473
4474         local_irq_restore(flags);
4475
4476         atomic_long_inc(&skb->dev->rx_dropped);
4477         kfree_skb(skb);
4478         return NET_RX_DROP;
4479 }
4480
4481 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4482 {
4483         struct net_device *dev = skb->dev;
4484         struct netdev_rx_queue *rxqueue;
4485
4486         rxqueue = dev->_rx;
4487
4488         if (skb_rx_queue_recorded(skb)) {
4489                 u16 index = skb_get_rx_queue(skb);
4490
4491                 if (unlikely(index >= dev->real_num_rx_queues)) {
4492                         WARN_ONCE(dev->real_num_rx_queues > 1,
4493                                   "%s received packet on queue %u, but number "
4494                                   "of RX queues is %u\n",
4495                                   dev->name, index, dev->real_num_rx_queues);
4496
4497                         return rxqueue; /* Return first rxqueue */
4498                 }
4499                 rxqueue += index;
4500         }
4501         return rxqueue;
4502 }
4503
4504 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4505                                      struct xdp_buff *xdp,
4506                                      struct bpf_prog *xdp_prog)
4507 {
4508         struct netdev_rx_queue *rxqueue;
4509         void *orig_data, *orig_data_end;
4510         u32 metalen, act = XDP_DROP;
4511         __be16 orig_eth_type;
4512         struct ethhdr *eth;
4513         bool orig_bcast;
4514         int hlen, off;
4515         u32 mac_len;
4516
4517         /* Reinjected packets coming from act_mirred or similar should
4518          * not get XDP generic processing.
4519          */
4520         if (skb_is_redirected(skb))
4521                 return XDP_PASS;
4522
4523         /* XDP packets must be linear and must have sufficient headroom
4524          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4525          * native XDP provides, thus we need to do it here as well.
4526          */
4527         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4528             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4529                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4530                 int troom = skb->tail + skb->data_len - skb->end;
4531
4532                 /* In case we have to go down the path and also linearize,
4533                  * then lets do the pskb_expand_head() work just once here.
4534                  */
4535                 if (pskb_expand_head(skb,
4536                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4537                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4538                         goto do_drop;
4539                 if (skb_linearize(skb))
4540                         goto do_drop;
4541         }
4542
4543         /* The XDP program wants to see the packet starting at the MAC
4544          * header.
4545          */
4546         mac_len = skb->data - skb_mac_header(skb);
4547         hlen = skb_headlen(skb) + mac_len;
4548         xdp->data = skb->data - mac_len;
4549         xdp->data_meta = xdp->data;
4550         xdp->data_end = xdp->data + hlen;
4551         xdp->data_hard_start = skb->data - skb_headroom(skb);
4552         orig_data_end = xdp->data_end;
4553         orig_data = xdp->data;
4554         eth = (struct ethhdr *)xdp->data;
4555         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4556         orig_eth_type = eth->h_proto;
4557
4558         rxqueue = netif_get_rxqueue(skb);
4559         xdp->rxq = &rxqueue->xdp_rxq;
4560
4561         act = bpf_prog_run_xdp(xdp_prog, xdp);
4562
4563         /* check if bpf_xdp_adjust_head was used */
4564         off = xdp->data - orig_data;
4565         if (off) {
4566                 if (off > 0)
4567                         __skb_pull(skb, off);
4568                 else if (off < 0)
4569                         __skb_push(skb, -off);
4570
4571                 skb->mac_header += off;
4572                 skb_reset_network_header(skb);
4573         }
4574
4575         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4576          * pckt.
4577          */
4578         off = orig_data_end - xdp->data_end;
4579         if (off != 0) {
4580                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4581                 skb->len -= off;
4582
4583         }
4584
4585         /* check if XDP changed eth hdr such SKB needs update */
4586         eth = (struct ethhdr *)xdp->data;
4587         if ((orig_eth_type != eth->h_proto) ||
4588             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4589                 __skb_push(skb, ETH_HLEN);
4590                 skb->protocol = eth_type_trans(skb, skb->dev);
4591         }
4592
4593         switch (act) {
4594         case XDP_REDIRECT:
4595         case XDP_TX:
4596                 __skb_push(skb, mac_len);
4597                 break;
4598         case XDP_PASS:
4599                 metalen = xdp->data - xdp->data_meta;
4600                 if (metalen)
4601                         skb_metadata_set(skb, metalen);
4602                 break;
4603         default:
4604                 bpf_warn_invalid_xdp_action(act);
4605                 /* fall through */
4606         case XDP_ABORTED:
4607                 trace_xdp_exception(skb->dev, xdp_prog, act);
4608                 /* fall through */
4609         case XDP_DROP:
4610         do_drop:
4611                 kfree_skb(skb);
4612                 break;
4613         }
4614
4615         return act;
4616 }
4617
4618 /* When doing generic XDP we have to bypass the qdisc layer and the
4619  * network taps in order to match in-driver-XDP behavior.
4620  */
4621 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4622 {
4623         struct net_device *dev = skb->dev;
4624         struct netdev_queue *txq;
4625         bool free_skb = true;
4626         int cpu, rc;
4627
4628         txq = netdev_core_pick_tx(dev, skb, NULL);
4629         cpu = smp_processor_id();
4630         HARD_TX_LOCK(dev, txq, cpu);
4631         if (!netif_xmit_stopped(txq)) {
4632                 rc = netdev_start_xmit(skb, dev, txq, 0);
4633                 if (dev_xmit_complete(rc))
4634                         free_skb = false;
4635         }
4636         HARD_TX_UNLOCK(dev, txq);
4637         if (free_skb) {
4638                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4639                 kfree_skb(skb);
4640         }
4641 }
4642
4643 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4644
4645 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4646 {
4647         if (xdp_prog) {
4648                 struct xdp_buff xdp;
4649                 u32 act;
4650                 int err;
4651
4652                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4653                 if (act != XDP_PASS) {
4654                         switch (act) {
4655                         case XDP_REDIRECT:
4656                                 err = xdp_do_generic_redirect(skb->dev, skb,
4657                                                               &xdp, xdp_prog);
4658                                 if (err)
4659                                         goto out_redir;
4660                                 break;
4661                         case XDP_TX:
4662                                 generic_xdp_tx(skb, xdp_prog);
4663                                 break;
4664                         }
4665                         return XDP_DROP;
4666                 }
4667         }
4668         return XDP_PASS;
4669 out_redir:
4670         kfree_skb(skb);
4671         return XDP_DROP;
4672 }
4673 EXPORT_SYMBOL_GPL(do_xdp_generic);
4674
4675 static int netif_rx_internal(struct sk_buff *skb)
4676 {
4677         int ret;
4678
4679         net_timestamp_check(netdev_tstamp_prequeue, skb);
4680
4681         trace_netif_rx(skb);
4682
4683 #ifdef CONFIG_RPS
4684         if (static_branch_unlikely(&rps_needed)) {
4685                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4686                 int cpu;
4687
4688                 preempt_disable();
4689                 rcu_read_lock();
4690
4691                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4692                 if (cpu < 0)
4693                         cpu = smp_processor_id();
4694
4695                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4696
4697                 rcu_read_unlock();
4698                 preempt_enable();
4699         } else
4700 #endif
4701         {
4702                 unsigned int qtail;
4703
4704                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4705                 put_cpu();
4706         }
4707         return ret;
4708 }
4709
4710 /**
4711  *      netif_rx        -       post buffer to the network code
4712  *      @skb: buffer to post
4713  *
4714  *      This function receives a packet from a device driver and queues it for
4715  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4716  *      may be dropped during processing for congestion control or by the
4717  *      protocol layers.
4718  *
4719  *      return values:
4720  *      NET_RX_SUCCESS  (no congestion)
4721  *      NET_RX_DROP     (packet was dropped)
4722  *
4723  */
4724
4725 int netif_rx(struct sk_buff *skb)
4726 {
4727         int ret;
4728
4729         trace_netif_rx_entry(skb);
4730
4731         ret = netif_rx_internal(skb);
4732         trace_netif_rx_exit(ret);
4733
4734         return ret;
4735 }
4736 EXPORT_SYMBOL(netif_rx);
4737
4738 int netif_rx_ni(struct sk_buff *skb)
4739 {
4740         int err;
4741
4742         trace_netif_rx_ni_entry(skb);
4743
4744         preempt_disable();
4745         err = netif_rx_internal(skb);
4746         if (local_softirq_pending())
4747                 do_softirq();
4748         preempt_enable();
4749         trace_netif_rx_ni_exit(err);
4750
4751         return err;
4752 }
4753 EXPORT_SYMBOL(netif_rx_ni);
4754
4755 static __latent_entropy void net_tx_action(struct softirq_action *h)
4756 {
4757         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4758
4759         if (sd->completion_queue) {
4760                 struct sk_buff *clist;
4761
4762                 local_irq_disable();
4763                 clist = sd->completion_queue;
4764                 sd->completion_queue = NULL;
4765                 local_irq_enable();
4766
4767                 while (clist) {
4768                         struct sk_buff *skb = clist;
4769
4770                         clist = clist->next;
4771
4772                         WARN_ON(refcount_read(&skb->users));
4773                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4774                                 trace_consume_skb(skb);
4775                         else
4776                                 trace_kfree_skb(skb, net_tx_action);
4777
4778                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4779                                 __kfree_skb(skb);
4780                         else
4781                                 __kfree_skb_defer(skb);
4782                 }
4783
4784                 __kfree_skb_flush();
4785         }
4786
4787         if (sd->output_queue) {
4788                 struct Qdisc *head;
4789
4790                 local_irq_disable();
4791                 head = sd->output_queue;
4792                 sd->output_queue = NULL;
4793                 sd->output_queue_tailp = &sd->output_queue;
4794                 local_irq_enable();
4795
4796                 while (head) {
4797                         struct Qdisc *q = head;
4798                         spinlock_t *root_lock = NULL;
4799
4800                         head = head->next_sched;
4801
4802                         if (!(q->flags & TCQ_F_NOLOCK)) {
4803                                 root_lock = qdisc_lock(q);
4804                                 spin_lock(root_lock);
4805                         }
4806                         /* We need to make sure head->next_sched is read
4807                          * before clearing __QDISC_STATE_SCHED
4808                          */
4809                         smp_mb__before_atomic();
4810                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4811                         qdisc_run(q);
4812                         if (root_lock)
4813                                 spin_unlock(root_lock);
4814                 }
4815         }
4816
4817         xfrm_dev_backlog(sd);
4818 }
4819
4820 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4821 /* This hook is defined here for ATM LANE */
4822 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4823                              unsigned char *addr) __read_mostly;
4824 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4825 #endif
4826
4827 static inline struct sk_buff *
4828 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4829                    struct net_device *orig_dev)
4830 {
4831 #ifdef CONFIG_NET_CLS_ACT
4832         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4833         struct tcf_result cl_res;
4834
4835         /* If there's at least one ingress present somewhere (so
4836          * we get here via enabled static key), remaining devices
4837          * that are not configured with an ingress qdisc will bail
4838          * out here.
4839          */
4840         if (!miniq)
4841                 return skb;
4842
4843         if (*pt_prev) {
4844                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4845                 *pt_prev = NULL;
4846         }
4847
4848         qdisc_skb_cb(skb)->pkt_len = skb->len;
4849         skb->tc_at_ingress = 1;
4850         mini_qdisc_bstats_cpu_update(miniq, skb);
4851
4852         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4853                                      &cl_res, false)) {
4854         case TC_ACT_OK:
4855         case TC_ACT_RECLASSIFY:
4856                 skb->tc_index = TC_H_MIN(cl_res.classid);
4857                 break;
4858         case TC_ACT_SHOT:
4859                 mini_qdisc_qstats_cpu_drop(miniq);
4860                 kfree_skb(skb);
4861                 return NULL;
4862         case TC_ACT_STOLEN:
4863         case TC_ACT_QUEUED:
4864         case TC_ACT_TRAP:
4865                 consume_skb(skb);
4866                 return NULL;
4867         case TC_ACT_REDIRECT:
4868                 /* skb_mac_header check was done by cls/act_bpf, so
4869                  * we can safely push the L2 header back before
4870                  * redirecting to another netdev
4871                  */
4872                 __skb_push(skb, skb->mac_len);
4873                 skb_do_redirect(skb);
4874                 return NULL;
4875         case TC_ACT_CONSUMED:
4876                 return NULL;
4877         default:
4878                 break;
4879         }
4880 #endif /* CONFIG_NET_CLS_ACT */
4881         return skb;
4882 }
4883
4884 /**
4885  *      netdev_is_rx_handler_busy - check if receive handler is registered
4886  *      @dev: device to check
4887  *
4888  *      Check if a receive handler is already registered for a given device.
4889  *      Return true if there one.
4890  *
4891  *      The caller must hold the rtnl_mutex.
4892  */
4893 bool netdev_is_rx_handler_busy(struct net_device *dev)
4894 {
4895         ASSERT_RTNL();
4896         return dev && rtnl_dereference(dev->rx_handler);
4897 }
4898 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4899
4900 /**
4901  *      netdev_rx_handler_register - register receive handler
4902  *      @dev: device to register a handler for
4903  *      @rx_handler: receive handler to register
4904  *      @rx_handler_data: data pointer that is used by rx handler
4905  *
4906  *      Register a receive handler for a device. This handler will then be
4907  *      called from __netif_receive_skb. A negative errno code is returned
4908  *      on a failure.
4909  *
4910  *      The caller must hold the rtnl_mutex.
4911  *
4912  *      For a general description of rx_handler, see enum rx_handler_result.
4913  */
4914 int netdev_rx_handler_register(struct net_device *dev,
4915                                rx_handler_func_t *rx_handler,
4916                                void *rx_handler_data)
4917 {
4918         if (netdev_is_rx_handler_busy(dev))
4919                 return -EBUSY;
4920
4921         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4922                 return -EINVAL;
4923
4924         /* Note: rx_handler_data must be set before rx_handler */
4925         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4926         rcu_assign_pointer(dev->rx_handler, rx_handler);
4927
4928         return 0;
4929 }
4930 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4931
4932 /**
4933  *      netdev_rx_handler_unregister - unregister receive handler
4934  *      @dev: device to unregister a handler from
4935  *
4936  *      Unregister a receive handler from a device.
4937  *
4938  *      The caller must hold the rtnl_mutex.
4939  */
4940 void netdev_rx_handler_unregister(struct net_device *dev)
4941 {
4942
4943         ASSERT_RTNL();
4944         RCU_INIT_POINTER(dev->rx_handler, NULL);
4945         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4946          * section has a guarantee to see a non NULL rx_handler_data
4947          * as well.
4948          */
4949         synchronize_net();
4950         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4951 }
4952 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4953
4954 /*
4955  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4956  * the special handling of PFMEMALLOC skbs.
4957  */
4958 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4959 {
4960         switch (skb->protocol) {
4961         case htons(ETH_P_ARP):
4962         case htons(ETH_P_IP):
4963         case htons(ETH_P_IPV6):
4964         case htons(ETH_P_8021Q):
4965         case htons(ETH_P_8021AD):
4966                 return true;
4967         default:
4968                 return false;
4969         }
4970 }
4971
4972 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4973                              int *ret, struct net_device *orig_dev)
4974 {
4975         if (nf_hook_ingress_active(skb)) {
4976                 int ingress_retval;
4977
4978                 if (*pt_prev) {
4979                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4980                         *pt_prev = NULL;
4981                 }
4982
4983                 rcu_read_lock();
4984                 ingress_retval = nf_hook_ingress(skb);
4985                 rcu_read_unlock();
4986                 return ingress_retval;
4987         }
4988         return 0;
4989 }
4990
4991 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4992                                     struct packet_type **ppt_prev)
4993 {
4994         struct packet_type *ptype, *pt_prev;
4995         rx_handler_func_t *rx_handler;
4996         struct net_device *orig_dev;
4997         bool deliver_exact = false;
4998         int ret = NET_RX_DROP;
4999         __be16 type;
5000
5001         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5002
5003         trace_netif_receive_skb(skb);
5004
5005         orig_dev = skb->dev;
5006
5007         skb_reset_network_header(skb);
5008         if (!skb_transport_header_was_set(skb))
5009                 skb_reset_transport_header(skb);
5010         skb_reset_mac_len(skb);
5011
5012         pt_prev = NULL;
5013
5014 another_round:
5015         skb->skb_iif = skb->dev->ifindex;
5016
5017         __this_cpu_inc(softnet_data.processed);
5018
5019         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5020                 int ret2;
5021
5022                 preempt_disable();
5023                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5024                 preempt_enable();
5025
5026                 if (ret2 != XDP_PASS)
5027                         return NET_RX_DROP;
5028                 skb_reset_mac_len(skb);
5029         }
5030
5031         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5032             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5033                 skb = skb_vlan_untag(skb);
5034                 if (unlikely(!skb))
5035                         goto out;
5036         }
5037
5038         if (skb_skip_tc_classify(skb))
5039                 goto skip_classify;
5040
5041         if (pfmemalloc)
5042                 goto skip_taps;
5043
5044         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5045                 if (pt_prev)
5046                         ret = deliver_skb(skb, pt_prev, orig_dev);
5047                 pt_prev = ptype;
5048         }
5049
5050         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5051                 if (pt_prev)
5052                         ret = deliver_skb(skb, pt_prev, orig_dev);
5053                 pt_prev = ptype;
5054         }
5055
5056 skip_taps:
5057 #ifdef CONFIG_NET_INGRESS
5058         if (static_branch_unlikely(&ingress_needed_key)) {
5059                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5060                 if (!skb)
5061                         goto out;
5062
5063                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5064                         goto out;
5065         }
5066 #endif
5067         skb_reset_redirect(skb);
5068 skip_classify:
5069         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5070                 goto drop;
5071
5072         if (skb_vlan_tag_present(skb)) {
5073                 if (pt_prev) {
5074                         ret = deliver_skb(skb, pt_prev, orig_dev);
5075                         pt_prev = NULL;
5076                 }
5077                 if (vlan_do_receive(&skb))
5078                         goto another_round;
5079                 else if (unlikely(!skb))
5080                         goto out;
5081         }
5082
5083         rx_handler = rcu_dereference(skb->dev->rx_handler);
5084         if (rx_handler) {
5085                 if (pt_prev) {
5086                         ret = deliver_skb(skb, pt_prev, orig_dev);
5087                         pt_prev = NULL;
5088                 }
5089                 switch (rx_handler(&skb)) {
5090                 case RX_HANDLER_CONSUMED:
5091                         ret = NET_RX_SUCCESS;
5092                         goto out;
5093                 case RX_HANDLER_ANOTHER:
5094                         goto another_round;
5095                 case RX_HANDLER_EXACT:
5096                         deliver_exact = true;
5097                 case RX_HANDLER_PASS:
5098                         break;
5099                 default:
5100                         BUG();
5101                 }
5102         }
5103
5104         if (unlikely(skb_vlan_tag_present(skb))) {
5105 check_vlan_id:
5106                 if (skb_vlan_tag_get_id(skb)) {
5107                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5108                          * find vlan device.
5109                          */
5110                         skb->pkt_type = PACKET_OTHERHOST;
5111                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5112                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5113                         /* Outer header is 802.1P with vlan 0, inner header is
5114                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5115                          * not find vlan dev for vlan id 0.
5116                          */
5117                         __vlan_hwaccel_clear_tag(skb);
5118                         skb = skb_vlan_untag(skb);
5119                         if (unlikely(!skb))
5120                                 goto out;
5121                         if (vlan_do_receive(&skb))
5122                                 /* After stripping off 802.1P header with vlan 0
5123                                  * vlan dev is found for inner header.
5124                                  */
5125                                 goto another_round;
5126                         else if (unlikely(!skb))
5127                                 goto out;
5128                         else
5129                                 /* We have stripped outer 802.1P vlan 0 header.
5130                                  * But could not find vlan dev.
5131                                  * check again for vlan id to set OTHERHOST.
5132                                  */
5133                                 goto check_vlan_id;
5134                 }
5135                 /* Note: we might in the future use prio bits
5136                  * and set skb->priority like in vlan_do_receive()
5137                  * For the time being, just ignore Priority Code Point
5138                  */
5139                 __vlan_hwaccel_clear_tag(skb);
5140         }
5141
5142         type = skb->protocol;
5143
5144         /* deliver only exact match when indicated */
5145         if (likely(!deliver_exact)) {
5146                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5147                                        &ptype_base[ntohs(type) &
5148                                                    PTYPE_HASH_MASK]);
5149         }
5150
5151         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5152                                &orig_dev->ptype_specific);
5153
5154         if (unlikely(skb->dev != orig_dev)) {
5155                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5156                                        &skb->dev->ptype_specific);
5157         }
5158
5159         if (pt_prev) {
5160                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5161                         goto drop;
5162                 *ppt_prev = pt_prev;
5163         } else {
5164 drop:
5165                 if (!deliver_exact)
5166                         atomic_long_inc(&skb->dev->rx_dropped);
5167                 else
5168                         atomic_long_inc(&skb->dev->rx_nohandler);
5169                 kfree_skb(skb);
5170                 /* Jamal, now you will not able to escape explaining
5171                  * me how you were going to use this. :-)
5172                  */
5173                 ret = NET_RX_DROP;
5174         }
5175
5176 out:
5177         return ret;
5178 }
5179
5180 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5181 {
5182         struct net_device *orig_dev = skb->dev;
5183         struct packet_type *pt_prev = NULL;
5184         int ret;
5185
5186         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5187         if (pt_prev)
5188                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5189                                          skb->dev, pt_prev, orig_dev);
5190         return ret;
5191 }
5192
5193 /**
5194  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5195  *      @skb: buffer to process
5196  *
5197  *      More direct receive version of netif_receive_skb().  It should
5198  *      only be used by callers that have a need to skip RPS and Generic XDP.
5199  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5200  *
5201  *      This function may only be called from softirq context and interrupts
5202  *      should be enabled.
5203  *
5204  *      Return values (usually ignored):
5205  *      NET_RX_SUCCESS: no congestion
5206  *      NET_RX_DROP: packet was dropped
5207  */
5208 int netif_receive_skb_core(struct sk_buff *skb)
5209 {
5210         int ret;
5211
5212         rcu_read_lock();
5213         ret = __netif_receive_skb_one_core(skb, false);
5214         rcu_read_unlock();
5215
5216         return ret;
5217 }
5218 EXPORT_SYMBOL(netif_receive_skb_core);
5219
5220 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5221                                                   struct packet_type *pt_prev,
5222                                                   struct net_device *orig_dev)
5223 {
5224         struct sk_buff *skb, *next;
5225
5226         if (!pt_prev)
5227                 return;
5228         if (list_empty(head))
5229                 return;
5230         if (pt_prev->list_func != NULL)
5231                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5232                                    ip_list_rcv, head, pt_prev, orig_dev);
5233         else
5234                 list_for_each_entry_safe(skb, next, head, list) {
5235                         skb_list_del_init(skb);
5236                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5237                 }
5238 }
5239
5240 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5241 {
5242         /* Fast-path assumptions:
5243          * - There is no RX handler.
5244          * - Only one packet_type matches.
5245          * If either of these fails, we will end up doing some per-packet
5246          * processing in-line, then handling the 'last ptype' for the whole
5247          * sublist.  This can't cause out-of-order delivery to any single ptype,
5248          * because the 'last ptype' must be constant across the sublist, and all
5249          * other ptypes are handled per-packet.
5250          */
5251         /* Current (common) ptype of sublist */
5252         struct packet_type *pt_curr = NULL;
5253         /* Current (common) orig_dev of sublist */
5254         struct net_device *od_curr = NULL;
5255         struct list_head sublist;
5256         struct sk_buff *skb, *next;
5257
5258         INIT_LIST_HEAD(&sublist);
5259         list_for_each_entry_safe(skb, next, head, list) {
5260                 struct net_device *orig_dev = skb->dev;
5261                 struct packet_type *pt_prev = NULL;
5262
5263                 skb_list_del_init(skb);
5264                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5265                 if (!pt_prev)
5266                         continue;
5267                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5268                         /* dispatch old sublist */
5269                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5270                         /* start new sublist */
5271                         INIT_LIST_HEAD(&sublist);
5272                         pt_curr = pt_prev;
5273                         od_curr = orig_dev;
5274                 }
5275                 list_add_tail(&skb->list, &sublist);
5276         }
5277
5278         /* dispatch final sublist */
5279         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5280 }
5281
5282 static int __netif_receive_skb(struct sk_buff *skb)
5283 {
5284         int ret;
5285
5286         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5287                 unsigned int noreclaim_flag;
5288
5289                 /*
5290                  * PFMEMALLOC skbs are special, they should
5291                  * - be delivered to SOCK_MEMALLOC sockets only
5292                  * - stay away from userspace
5293                  * - have bounded memory usage
5294                  *
5295                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5296                  * context down to all allocation sites.
5297                  */
5298                 noreclaim_flag = memalloc_noreclaim_save();
5299                 ret = __netif_receive_skb_one_core(skb, true);
5300                 memalloc_noreclaim_restore(noreclaim_flag);
5301         } else
5302                 ret = __netif_receive_skb_one_core(skb, false);
5303
5304         return ret;
5305 }
5306
5307 static void __netif_receive_skb_list(struct list_head *head)
5308 {
5309         unsigned long noreclaim_flag = 0;
5310         struct sk_buff *skb, *next;
5311         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5312
5313         list_for_each_entry_safe(skb, next, head, list) {
5314                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5315                         struct list_head sublist;
5316
5317                         /* Handle the previous sublist */
5318                         list_cut_before(&sublist, head, &skb->list);
5319                         if (!list_empty(&sublist))
5320                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5321                         pfmemalloc = !pfmemalloc;
5322                         /* See comments in __netif_receive_skb */
5323                         if (pfmemalloc)
5324                                 noreclaim_flag = memalloc_noreclaim_save();
5325                         else
5326                                 memalloc_noreclaim_restore(noreclaim_flag);
5327                 }
5328         }
5329         /* Handle the remaining sublist */
5330         if (!list_empty(head))
5331                 __netif_receive_skb_list_core(head, pfmemalloc);
5332         /* Restore pflags */
5333         if (pfmemalloc)
5334                 memalloc_noreclaim_restore(noreclaim_flag);
5335 }
5336
5337 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5338 {
5339         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5340         struct bpf_prog *new = xdp->prog;
5341         int ret = 0;
5342
5343         switch (xdp->command) {
5344         case XDP_SETUP_PROG:
5345                 rcu_assign_pointer(dev->xdp_prog, new);
5346                 if (old)
5347                         bpf_prog_put(old);
5348
5349                 if (old && !new) {
5350                         static_branch_dec(&generic_xdp_needed_key);
5351                 } else if (new && !old) {
5352                         static_branch_inc(&generic_xdp_needed_key);
5353                         dev_disable_lro(dev);
5354                         dev_disable_gro_hw(dev);
5355                 }
5356                 break;
5357
5358         case XDP_QUERY_PROG:
5359                 xdp->prog_id = old ? old->aux->id : 0;
5360                 break;
5361
5362         default:
5363                 ret = -EINVAL;
5364                 break;
5365         }
5366
5367         return ret;
5368 }
5369
5370 static int netif_receive_skb_internal(struct sk_buff *skb)
5371 {
5372         int ret;
5373
5374         net_timestamp_check(netdev_tstamp_prequeue, skb);
5375
5376         if (skb_defer_rx_timestamp(skb))
5377                 return NET_RX_SUCCESS;
5378
5379         rcu_read_lock();
5380 #ifdef CONFIG_RPS
5381         if (static_branch_unlikely(&rps_needed)) {
5382                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5383                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5384
5385                 if (cpu >= 0) {
5386                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5387                         rcu_read_unlock();
5388                         return ret;
5389                 }
5390         }
5391 #endif
5392         ret = __netif_receive_skb(skb);
5393         rcu_read_unlock();
5394         return ret;
5395 }
5396
5397 static void netif_receive_skb_list_internal(struct list_head *head)
5398 {
5399         struct sk_buff *skb, *next;
5400         struct list_head sublist;
5401
5402         INIT_LIST_HEAD(&sublist);
5403         list_for_each_entry_safe(skb, next, head, list) {
5404                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5405                 skb_list_del_init(skb);
5406                 if (!skb_defer_rx_timestamp(skb))
5407                         list_add_tail(&skb->list, &sublist);
5408         }
5409         list_splice_init(&sublist, head);
5410
5411         rcu_read_lock();
5412 #ifdef CONFIG_RPS
5413         if (static_branch_unlikely(&rps_needed)) {
5414                 list_for_each_entry_safe(skb, next, head, list) {
5415                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5416                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5417
5418                         if (cpu >= 0) {
5419                                 /* Will be handled, remove from list */
5420                                 skb_list_del_init(skb);
5421                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5422                         }
5423                 }
5424         }
5425 #endif
5426         __netif_receive_skb_list(head);
5427         rcu_read_unlock();
5428 }
5429
5430 /**
5431  *      netif_receive_skb - process receive buffer from network
5432  *      @skb: buffer to process
5433  *
5434  *      netif_receive_skb() is the main receive data processing function.
5435  *      It always succeeds. The buffer may be dropped during processing
5436  *      for congestion control or by the protocol layers.
5437  *
5438  *      This function may only be called from softirq context and interrupts
5439  *      should be enabled.
5440  *
5441  *      Return values (usually ignored):
5442  *      NET_RX_SUCCESS: no congestion
5443  *      NET_RX_DROP: packet was dropped
5444  */
5445 int netif_receive_skb(struct sk_buff *skb)
5446 {
5447         int ret;
5448
5449         trace_netif_receive_skb_entry(skb);
5450
5451         ret = netif_receive_skb_internal(skb);
5452         trace_netif_receive_skb_exit(ret);
5453
5454         return ret;
5455 }
5456 EXPORT_SYMBOL(netif_receive_skb);
5457
5458 /**
5459  *      netif_receive_skb_list - process many receive buffers from network
5460  *      @head: list of skbs to process.
5461  *
5462  *      Since return value of netif_receive_skb() is normally ignored, and
5463  *      wouldn't be meaningful for a list, this function returns void.
5464  *
5465  *      This function may only be called from softirq context and interrupts
5466  *      should be enabled.
5467  */
5468 void netif_receive_skb_list(struct list_head *head)
5469 {
5470         struct sk_buff *skb;
5471
5472         if (list_empty(head))
5473                 return;
5474         if (trace_netif_receive_skb_list_entry_enabled()) {
5475                 list_for_each_entry(skb, head, list)
5476                         trace_netif_receive_skb_list_entry(skb);
5477         }
5478         netif_receive_skb_list_internal(head);
5479         trace_netif_receive_skb_list_exit(0);
5480 }
5481 EXPORT_SYMBOL(netif_receive_skb_list);
5482
5483 DEFINE_PER_CPU(struct work_struct, flush_works);
5484
5485 /* Network device is going away, flush any packets still pending */
5486 static void flush_backlog(struct work_struct *work)
5487 {
5488         struct sk_buff *skb, *tmp;
5489         struct softnet_data *sd;
5490
5491         local_bh_disable();
5492         sd = this_cpu_ptr(&softnet_data);
5493
5494         local_irq_disable();
5495         rps_lock(sd);
5496         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5497                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5498                         __skb_unlink(skb, &sd->input_pkt_queue);
5499                         kfree_skb(skb);
5500                         input_queue_head_incr(sd);
5501                 }
5502         }
5503         rps_unlock(sd);
5504         local_irq_enable();
5505
5506         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5507                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5508                         __skb_unlink(skb, &sd->process_queue);
5509                         kfree_skb(skb);
5510                         input_queue_head_incr(sd);
5511                 }
5512         }
5513         local_bh_enable();
5514 }
5515
5516 static void flush_all_backlogs(void)
5517 {
5518         unsigned int cpu;
5519
5520         get_online_cpus();
5521
5522         for_each_online_cpu(cpu)
5523                 queue_work_on(cpu, system_highpri_wq,
5524                               per_cpu_ptr(&flush_works, cpu));
5525
5526         for_each_online_cpu(cpu)
5527                 flush_work(per_cpu_ptr(&flush_works, cpu));
5528
5529         put_online_cpus();
5530 }
5531
5532 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5533 static void gro_normal_list(struct napi_struct *napi)
5534 {
5535         if (!napi->rx_count)
5536                 return;
5537         netif_receive_skb_list_internal(&napi->rx_list);
5538         INIT_LIST_HEAD(&napi->rx_list);
5539         napi->rx_count = 0;
5540 }
5541
5542 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5543  * pass the whole batch up to the stack.
5544  */
5545 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5546 {
5547         list_add_tail(&skb->list, &napi->rx_list);
5548         if (++napi->rx_count >= gro_normal_batch)
5549                 gro_normal_list(napi);
5550 }
5551
5552 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5553 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5554 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5555 {
5556         struct packet_offload *ptype;
5557         __be16 type = skb->protocol;
5558         struct list_head *head = &offload_base;
5559         int err = -ENOENT;
5560
5561         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5562
5563         if (NAPI_GRO_CB(skb)->count == 1) {
5564                 skb_shinfo(skb)->gso_size = 0;
5565                 goto out;
5566         }
5567
5568         rcu_read_lock();
5569         list_for_each_entry_rcu(ptype, head, list) {
5570                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5571                         continue;
5572
5573                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5574                                          ipv6_gro_complete, inet_gro_complete,
5575                                          skb, 0);
5576                 break;
5577         }
5578         rcu_read_unlock();
5579
5580         if (err) {
5581                 WARN_ON(&ptype->list == head);
5582                 kfree_skb(skb);
5583                 return NET_RX_SUCCESS;
5584         }
5585
5586 out:
5587         gro_normal_one(napi, skb);
5588         return NET_RX_SUCCESS;
5589 }
5590
5591 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5592                                    bool flush_old)
5593 {
5594         struct list_head *head = &napi->gro_hash[index].list;
5595         struct sk_buff *skb, *p;
5596
5597         list_for_each_entry_safe_reverse(skb, p, head, list) {
5598                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5599                         return;
5600                 skb_list_del_init(skb);
5601                 napi_gro_complete(napi, skb);
5602                 napi->gro_hash[index].count--;
5603         }
5604
5605         if (!napi->gro_hash[index].count)
5606                 __clear_bit(index, &napi->gro_bitmask);
5607 }
5608
5609 /* napi->gro_hash[].list contains packets ordered by age.
5610  * youngest packets at the head of it.
5611  * Complete skbs in reverse order to reduce latencies.
5612  */
5613 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5614 {
5615         unsigned long bitmask = napi->gro_bitmask;
5616         unsigned int i, base = ~0U;
5617
5618         while ((i = ffs(bitmask)) != 0) {
5619                 bitmask >>= i;
5620                 base += i;
5621                 __napi_gro_flush_chain(napi, base, flush_old);
5622         }
5623 }
5624 EXPORT_SYMBOL(napi_gro_flush);
5625
5626 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5627                                           struct sk_buff *skb)
5628 {
5629         unsigned int maclen = skb->dev->hard_header_len;
5630         u32 hash = skb_get_hash_raw(skb);
5631         struct list_head *head;
5632         struct sk_buff *p;
5633
5634         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5635         list_for_each_entry(p, head, list) {
5636                 unsigned long diffs;
5637
5638                 NAPI_GRO_CB(p)->flush = 0;
5639
5640                 if (hash != skb_get_hash_raw(p)) {
5641                         NAPI_GRO_CB(p)->same_flow = 0;
5642                         continue;
5643                 }
5644
5645                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5646                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5647                 if (skb_vlan_tag_present(p))
5648                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5649                 diffs |= skb_metadata_dst_cmp(p, skb);
5650                 diffs |= skb_metadata_differs(p, skb);
5651                 if (maclen == ETH_HLEN)
5652                         diffs |= compare_ether_header(skb_mac_header(p),
5653                                                       skb_mac_header(skb));
5654                 else if (!diffs)
5655                         diffs = memcmp(skb_mac_header(p),
5656                                        skb_mac_header(skb),
5657                                        maclen);
5658                 NAPI_GRO_CB(p)->same_flow = !diffs;
5659         }
5660
5661         return head;
5662 }
5663
5664 static void skb_gro_reset_offset(struct sk_buff *skb)
5665 {
5666         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5667         const skb_frag_t *frag0 = &pinfo->frags[0];
5668
5669         NAPI_GRO_CB(skb)->data_offset = 0;
5670         NAPI_GRO_CB(skb)->frag0 = NULL;
5671         NAPI_GRO_CB(skb)->frag0_len = 0;
5672
5673         if (!skb_headlen(skb) && pinfo->nr_frags &&
5674             !PageHighMem(skb_frag_page(frag0))) {
5675                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5676                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5677                                                     skb_frag_size(frag0),
5678                                                     skb->end - skb->tail);
5679         }
5680 }
5681
5682 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5683 {
5684         struct skb_shared_info *pinfo = skb_shinfo(skb);
5685
5686         BUG_ON(skb->end - skb->tail < grow);
5687
5688         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5689
5690         skb->data_len -= grow;
5691         skb->tail += grow;
5692
5693         skb_frag_off_add(&pinfo->frags[0], grow);
5694         skb_frag_size_sub(&pinfo->frags[0], grow);
5695
5696         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5697                 skb_frag_unref(skb, 0);
5698                 memmove(pinfo->frags, pinfo->frags + 1,
5699                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5700         }
5701 }
5702
5703 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5704 {
5705         struct sk_buff *oldest;
5706
5707         oldest = list_last_entry(head, struct sk_buff, list);
5708
5709         /* We are called with head length >= MAX_GRO_SKBS, so this is
5710          * impossible.
5711          */
5712         if (WARN_ON_ONCE(!oldest))
5713                 return;
5714
5715         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5716          * SKB to the chain.
5717          */
5718         skb_list_del_init(oldest);
5719         napi_gro_complete(napi, oldest);
5720 }
5721
5722 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5723                                                            struct sk_buff *));
5724 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5725                                                            struct sk_buff *));
5726 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5727 {
5728         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5729         struct list_head *head = &offload_base;
5730         struct packet_offload *ptype;
5731         __be16 type = skb->protocol;
5732         struct list_head *gro_head;
5733         struct sk_buff *pp = NULL;
5734         enum gro_result ret;
5735         int same_flow;
5736         int grow;
5737
5738         if (netif_elide_gro(skb->dev))
5739                 goto normal;
5740
5741         gro_head = gro_list_prepare(napi, skb);
5742
5743         rcu_read_lock();
5744         list_for_each_entry_rcu(ptype, head, list) {
5745                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5746                         continue;
5747
5748                 skb_set_network_header(skb, skb_gro_offset(skb));
5749                 skb_reset_mac_len(skb);
5750                 NAPI_GRO_CB(skb)->same_flow = 0;
5751                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5752                 NAPI_GRO_CB(skb)->free = 0;
5753                 NAPI_GRO_CB(skb)->encap_mark = 0;
5754                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5755                 NAPI_GRO_CB(skb)->is_fou = 0;
5756                 NAPI_GRO_CB(skb)->is_atomic = 1;
5757                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5758
5759                 /* Setup for GRO checksum validation */
5760                 switch (skb->ip_summed) {
5761                 case CHECKSUM_COMPLETE:
5762                         NAPI_GRO_CB(skb)->csum = skb->csum;
5763                         NAPI_GRO_CB(skb)->csum_valid = 1;
5764                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5765                         break;
5766                 case CHECKSUM_UNNECESSARY:
5767                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5768                         NAPI_GRO_CB(skb)->csum_valid = 0;
5769                         break;
5770                 default:
5771                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5772                         NAPI_GRO_CB(skb)->csum_valid = 0;
5773                 }
5774
5775                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5776                                         ipv6_gro_receive, inet_gro_receive,
5777                                         gro_head, skb);
5778                 break;
5779         }
5780         rcu_read_unlock();
5781
5782         if (&ptype->list == head)
5783                 goto normal;
5784
5785         if (PTR_ERR(pp) == -EINPROGRESS) {
5786                 ret = GRO_CONSUMED;
5787                 goto ok;
5788         }
5789
5790         same_flow = NAPI_GRO_CB(skb)->same_flow;
5791         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5792
5793         if (pp) {
5794                 skb_list_del_init(pp);
5795                 napi_gro_complete(napi, pp);
5796                 napi->gro_hash[hash].count--;
5797         }
5798
5799         if (same_flow)
5800                 goto ok;
5801
5802         if (NAPI_GRO_CB(skb)->flush)
5803                 goto normal;
5804
5805         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5806                 gro_flush_oldest(napi, gro_head);
5807         } else {
5808                 napi->gro_hash[hash].count++;
5809         }
5810         NAPI_GRO_CB(skb)->count = 1;
5811         NAPI_GRO_CB(skb)->age = jiffies;
5812         NAPI_GRO_CB(skb)->last = skb;
5813         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5814         list_add(&skb->list, gro_head);
5815         ret = GRO_HELD;
5816
5817 pull:
5818         grow = skb_gro_offset(skb) - skb_headlen(skb);
5819         if (grow > 0)
5820                 gro_pull_from_frag0(skb, grow);
5821 ok:
5822         if (napi->gro_hash[hash].count) {
5823                 if (!test_bit(hash, &napi->gro_bitmask))
5824                         __set_bit(hash, &napi->gro_bitmask);
5825         } else if (test_bit(hash, &napi->gro_bitmask)) {
5826                 __clear_bit(hash, &napi->gro_bitmask);
5827         }
5828
5829         return ret;
5830
5831 normal:
5832         ret = GRO_NORMAL;
5833         goto pull;
5834 }
5835
5836 struct packet_offload *gro_find_receive_by_type(__be16 type)
5837 {
5838         struct list_head *offload_head = &offload_base;
5839         struct packet_offload *ptype;
5840
5841         list_for_each_entry_rcu(ptype, offload_head, list) {
5842                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5843                         continue;
5844                 return ptype;
5845         }
5846         return NULL;
5847 }
5848 EXPORT_SYMBOL(gro_find_receive_by_type);
5849
5850 struct packet_offload *gro_find_complete_by_type(__be16 type)
5851 {
5852         struct list_head *offload_head = &offload_base;
5853         struct packet_offload *ptype;
5854
5855         list_for_each_entry_rcu(ptype, offload_head, list) {
5856                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5857                         continue;
5858                 return ptype;
5859         }
5860         return NULL;
5861 }
5862 EXPORT_SYMBOL(gro_find_complete_by_type);
5863
5864 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5865 {
5866         skb_dst_drop(skb);
5867         skb_ext_put(skb);
5868         kmem_cache_free(skbuff_head_cache, skb);
5869 }
5870
5871 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5872                                     struct sk_buff *skb,
5873                                     gro_result_t ret)
5874 {
5875         switch (ret) {
5876         case GRO_NORMAL:
5877                 gro_normal_one(napi, skb);
5878                 break;
5879
5880         case GRO_DROP:
5881                 kfree_skb(skb);
5882                 break;
5883
5884         case GRO_MERGED_FREE:
5885                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5886                         napi_skb_free_stolen_head(skb);
5887                 else
5888                         __kfree_skb(skb);
5889                 break;
5890
5891         case GRO_HELD:
5892         case GRO_MERGED:
5893         case GRO_CONSUMED:
5894                 break;
5895         }
5896
5897         return ret;
5898 }
5899
5900 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5901 {
5902         gro_result_t ret;
5903
5904         skb_mark_napi_id(skb, napi);
5905         trace_napi_gro_receive_entry(skb);
5906
5907         skb_gro_reset_offset(skb);
5908
5909         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5910         trace_napi_gro_receive_exit(ret);
5911
5912         return ret;
5913 }
5914 EXPORT_SYMBOL(napi_gro_receive);
5915
5916 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5917 {
5918         if (unlikely(skb->pfmemalloc)) {
5919                 consume_skb(skb);
5920                 return;
5921         }
5922         __skb_pull(skb, skb_headlen(skb));
5923         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5924         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5925         __vlan_hwaccel_clear_tag(skb);
5926         skb->dev = napi->dev;
5927         skb->skb_iif = 0;
5928
5929         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5930         skb->pkt_type = PACKET_HOST;
5931
5932         skb->encapsulation = 0;
5933         skb_shinfo(skb)->gso_type = 0;
5934         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5935         skb_ext_reset(skb);
5936
5937         napi->skb = skb;
5938 }
5939
5940 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5941 {
5942         struct sk_buff *skb = napi->skb;
5943
5944         if (!skb) {
5945                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5946                 if (skb) {
5947                         napi->skb = skb;
5948                         skb_mark_napi_id(skb, napi);
5949                 }
5950         }
5951         return skb;
5952 }
5953 EXPORT_SYMBOL(napi_get_frags);
5954
5955 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5956                                       struct sk_buff *skb,
5957                                       gro_result_t ret)
5958 {
5959         switch (ret) {
5960         case GRO_NORMAL:
5961         case GRO_HELD:
5962                 __skb_push(skb, ETH_HLEN);
5963                 skb->protocol = eth_type_trans(skb, skb->dev);
5964                 if (ret == GRO_NORMAL)
5965                         gro_normal_one(napi, skb);
5966                 break;
5967
5968         case GRO_DROP:
5969                 napi_reuse_skb(napi, skb);
5970                 break;
5971
5972         case GRO_MERGED_FREE:
5973                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5974                         napi_skb_free_stolen_head(skb);
5975                 else
5976                         napi_reuse_skb(napi, skb);
5977                 break;
5978
5979         case GRO_MERGED:
5980         case GRO_CONSUMED:
5981                 break;
5982         }
5983
5984         return ret;
5985 }
5986
5987 /* Upper GRO stack assumes network header starts at gro_offset=0
5988  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5989  * We copy ethernet header into skb->data to have a common layout.
5990  */
5991 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5992 {
5993         struct sk_buff *skb = napi->skb;
5994         const struct ethhdr *eth;
5995         unsigned int hlen = sizeof(*eth);
5996
5997         napi->skb = NULL;
5998
5999         skb_reset_mac_header(skb);
6000         skb_gro_reset_offset(skb);
6001
6002         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6003                 eth = skb_gro_header_slow(skb, hlen, 0);
6004                 if (unlikely(!eth)) {
6005                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6006                                              __func__, napi->dev->name);
6007                         napi_reuse_skb(napi, skb);
6008                         return NULL;
6009                 }
6010         } else {
6011                 eth = (const struct ethhdr *)skb->data;
6012                 gro_pull_from_frag0(skb, hlen);
6013                 NAPI_GRO_CB(skb)->frag0 += hlen;
6014                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6015         }
6016         __skb_pull(skb, hlen);
6017
6018         /*
6019          * This works because the only protocols we care about don't require
6020          * special handling.
6021          * We'll fix it up properly in napi_frags_finish()
6022          */
6023         skb->protocol = eth->h_proto;
6024
6025         return skb;
6026 }
6027
6028 gro_result_t napi_gro_frags(struct napi_struct *napi)
6029 {
6030         gro_result_t ret;
6031         struct sk_buff *skb = napi_frags_skb(napi);
6032
6033         if (!skb)
6034                 return GRO_DROP;
6035
6036         trace_napi_gro_frags_entry(skb);
6037
6038         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6039         trace_napi_gro_frags_exit(ret);
6040
6041         return ret;
6042 }
6043 EXPORT_SYMBOL(napi_gro_frags);
6044
6045 /* Compute the checksum from gro_offset and return the folded value
6046  * after adding in any pseudo checksum.
6047  */
6048 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6049 {
6050         __wsum wsum;
6051         __sum16 sum;
6052
6053         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6054
6055         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6056         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6057         /* See comments in __skb_checksum_complete(). */
6058         if (likely(!sum)) {
6059                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6060                     !skb->csum_complete_sw)
6061                         netdev_rx_csum_fault(skb->dev, skb);
6062         }
6063
6064         NAPI_GRO_CB(skb)->csum = wsum;
6065         NAPI_GRO_CB(skb)->csum_valid = 1;
6066
6067         return sum;
6068 }
6069 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6070
6071 static void net_rps_send_ipi(struct softnet_data *remsd)
6072 {
6073 #ifdef CONFIG_RPS
6074         while (remsd) {
6075                 struct softnet_data *next = remsd->rps_ipi_next;
6076
6077                 if (cpu_online(remsd->cpu))
6078                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6079                 remsd = next;
6080         }
6081 #endif
6082 }
6083
6084 /*
6085  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6086  * Note: called with local irq disabled, but exits with local irq enabled.
6087  */
6088 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6089 {
6090 #ifdef CONFIG_RPS
6091         struct softnet_data *remsd = sd->rps_ipi_list;
6092
6093         if (remsd) {
6094                 sd->rps_ipi_list = NULL;
6095
6096                 local_irq_enable();
6097
6098                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6099                 net_rps_send_ipi(remsd);
6100         } else
6101 #endif
6102                 local_irq_enable();
6103 }
6104
6105 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6106 {
6107 #ifdef CONFIG_RPS
6108         return sd->rps_ipi_list != NULL;
6109 #else
6110         return false;
6111 #endif
6112 }
6113
6114 static int process_backlog(struct napi_struct *napi, int quota)
6115 {
6116         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6117         bool again = true;
6118         int work = 0;
6119
6120         /* Check if we have pending ipi, its better to send them now,
6121          * not waiting net_rx_action() end.
6122          */
6123         if (sd_has_rps_ipi_waiting(sd)) {
6124                 local_irq_disable();
6125                 net_rps_action_and_irq_enable(sd);
6126         }
6127
6128         napi->weight = dev_rx_weight;
6129         while (again) {
6130                 struct sk_buff *skb;
6131
6132                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6133                         rcu_read_lock();
6134                         __netif_receive_skb(skb);
6135                         rcu_read_unlock();
6136                         input_queue_head_incr(sd);
6137                         if (++work >= quota)
6138                                 return work;
6139
6140                 }
6141
6142                 local_irq_disable();
6143                 rps_lock(sd);
6144                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6145                         /*
6146                          * Inline a custom version of __napi_complete().
6147                          * only current cpu owns and manipulates this napi,
6148                          * and NAPI_STATE_SCHED is the only possible flag set
6149                          * on backlog.
6150                          * We can use a plain write instead of clear_bit(),
6151                          * and we dont need an smp_mb() memory barrier.
6152                          */
6153                         napi->state = 0;
6154                         again = false;
6155                 } else {
6156                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6157                                                    &sd->process_queue);
6158                 }
6159                 rps_unlock(sd);
6160                 local_irq_enable();
6161         }
6162
6163         return work;
6164 }
6165
6166 /**
6167  * __napi_schedule - schedule for receive
6168  * @n: entry to schedule
6169  *
6170  * The entry's receive function will be scheduled to run.
6171  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6172  */
6173 void __napi_schedule(struct napi_struct *n)
6174 {
6175         unsigned long flags;
6176
6177         local_irq_save(flags);
6178         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6179         local_irq_restore(flags);
6180 }
6181 EXPORT_SYMBOL(__napi_schedule);
6182
6183 /**
6184  *      napi_schedule_prep - check if napi can be scheduled
6185  *      @n: napi context
6186  *
6187  * Test if NAPI routine is already running, and if not mark
6188  * it as running.  This is used as a condition variable
6189  * insure only one NAPI poll instance runs.  We also make
6190  * sure there is no pending NAPI disable.
6191  */
6192 bool napi_schedule_prep(struct napi_struct *n)
6193 {
6194         unsigned long val, new;
6195
6196         do {
6197                 val = READ_ONCE(n->state);
6198                 if (unlikely(val & NAPIF_STATE_DISABLE))
6199                         return false;
6200                 new = val | NAPIF_STATE_SCHED;
6201
6202                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6203                  * This was suggested by Alexander Duyck, as compiler
6204                  * emits better code than :
6205                  * if (val & NAPIF_STATE_SCHED)
6206                  *     new |= NAPIF_STATE_MISSED;
6207                  */
6208                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6209                                                    NAPIF_STATE_MISSED;
6210         } while (cmpxchg(&n->state, val, new) != val);
6211
6212         return !(val & NAPIF_STATE_SCHED);
6213 }
6214 EXPORT_SYMBOL(napi_schedule_prep);
6215
6216 /**
6217  * __napi_schedule_irqoff - schedule for receive
6218  * @n: entry to schedule
6219  *
6220  * Variant of __napi_schedule() assuming hard irqs are masked
6221  */
6222 void __napi_schedule_irqoff(struct napi_struct *n)
6223 {
6224         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6225 }
6226 EXPORT_SYMBOL(__napi_schedule_irqoff);
6227
6228 bool napi_complete_done(struct napi_struct *n, int work_done)
6229 {
6230         unsigned long flags, val, new;
6231
6232         /*
6233          * 1) Don't let napi dequeue from the cpu poll list
6234          *    just in case its running on a different cpu.
6235          * 2) If we are busy polling, do nothing here, we have
6236          *    the guarantee we will be called later.
6237          */
6238         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6239                                  NAPIF_STATE_IN_BUSY_POLL)))
6240                 return false;
6241
6242         if (n->gro_bitmask) {
6243                 unsigned long timeout = 0;
6244
6245                 if (work_done)
6246                         timeout = n->dev->gro_flush_timeout;
6247
6248                 /* When the NAPI instance uses a timeout and keeps postponing
6249                  * it, we need to bound somehow the time packets are kept in
6250                  * the GRO layer
6251                  */
6252                 napi_gro_flush(n, !!timeout);
6253                 if (timeout)
6254                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6255                                       HRTIMER_MODE_REL_PINNED);
6256         }
6257
6258         gro_normal_list(n);
6259
6260         if (unlikely(!list_empty(&n->poll_list))) {
6261                 /* If n->poll_list is not empty, we need to mask irqs */
6262                 local_irq_save(flags);
6263                 list_del_init(&n->poll_list);
6264                 local_irq_restore(flags);
6265         }
6266
6267         do {
6268                 val = READ_ONCE(n->state);
6269
6270                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6271
6272                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6273
6274                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6275                  * because we will call napi->poll() one more time.
6276                  * This C code was suggested by Alexander Duyck to help gcc.
6277                  */
6278                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6279                                                     NAPIF_STATE_SCHED;
6280         } while (cmpxchg(&n->state, val, new) != val);
6281
6282         if (unlikely(val & NAPIF_STATE_MISSED)) {
6283                 __napi_schedule(n);
6284                 return false;
6285         }
6286
6287         return true;
6288 }
6289 EXPORT_SYMBOL(napi_complete_done);
6290
6291 /* must be called under rcu_read_lock(), as we dont take a reference */
6292 static struct napi_struct *napi_by_id(unsigned int napi_id)
6293 {
6294         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6295         struct napi_struct *napi;
6296
6297         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6298                 if (napi->napi_id == napi_id)
6299                         return napi;
6300
6301         return NULL;
6302 }
6303
6304 #if defined(CONFIG_NET_RX_BUSY_POLL)
6305
6306 #define BUSY_POLL_BUDGET 8
6307
6308 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6309 {
6310         int rc;
6311
6312         /* Busy polling means there is a high chance device driver hard irq
6313          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6314          * set in napi_schedule_prep().
6315          * Since we are about to call napi->poll() once more, we can safely
6316          * clear NAPI_STATE_MISSED.
6317          *
6318          * Note: x86 could use a single "lock and ..." instruction
6319          * to perform these two clear_bit()
6320          */
6321         clear_bit(NAPI_STATE_MISSED, &napi->state);
6322         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6323
6324         local_bh_disable();
6325
6326         /* All we really want here is to re-enable device interrupts.
6327          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6328          */
6329         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6330         /* We can't gro_normal_list() here, because napi->poll() might have
6331          * rearmed the napi (napi_complete_done()) in which case it could
6332          * already be running on another CPU.
6333          */
6334         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6335         netpoll_poll_unlock(have_poll_lock);
6336         if (rc == BUSY_POLL_BUDGET) {
6337                 /* As the whole budget was spent, we still own the napi so can
6338                  * safely handle the rx_list.
6339                  */
6340                 gro_normal_list(napi);
6341                 __napi_schedule(napi);
6342         }
6343         local_bh_enable();
6344 }
6345
6346 void napi_busy_loop(unsigned int napi_id,
6347                     bool (*loop_end)(void *, unsigned long),
6348                     void *loop_end_arg)
6349 {
6350         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6351         int (*napi_poll)(struct napi_struct *napi, int budget);
6352         void *have_poll_lock = NULL;
6353         struct napi_struct *napi;
6354
6355 restart:
6356         napi_poll = NULL;
6357
6358         rcu_read_lock();
6359
6360         napi = napi_by_id(napi_id);
6361         if (!napi)
6362                 goto out;
6363
6364         preempt_disable();
6365         for (;;) {
6366                 int work = 0;
6367
6368                 local_bh_disable();
6369                 if (!napi_poll) {
6370                         unsigned long val = READ_ONCE(napi->state);
6371
6372                         /* If multiple threads are competing for this napi,
6373                          * we avoid dirtying napi->state as much as we can.
6374                          */
6375                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6376                                    NAPIF_STATE_IN_BUSY_POLL))
6377                                 goto count;
6378                         if (cmpxchg(&napi->state, val,
6379                                     val | NAPIF_STATE_IN_BUSY_POLL |
6380                                           NAPIF_STATE_SCHED) != val)
6381                                 goto count;
6382                         have_poll_lock = netpoll_poll_lock(napi);
6383                         napi_poll = napi->poll;
6384                 }
6385                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6386                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6387                 gro_normal_list(napi);
6388 count:
6389                 if (work > 0)
6390                         __NET_ADD_STATS(dev_net(napi->dev),
6391                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6392                 local_bh_enable();
6393
6394                 if (!loop_end || loop_end(loop_end_arg, start_time))
6395                         break;
6396
6397                 if (unlikely(need_resched())) {
6398                         if (napi_poll)
6399                                 busy_poll_stop(napi, have_poll_lock);
6400                         preempt_enable();
6401                         rcu_read_unlock();
6402                         cond_resched();
6403                         if (loop_end(loop_end_arg, start_time))
6404                                 return;
6405                         goto restart;
6406                 }
6407                 cpu_relax();
6408         }
6409         if (napi_poll)
6410                 busy_poll_stop(napi, have_poll_lock);
6411         preempt_enable();
6412 out:
6413         rcu_read_unlock();
6414 }
6415 EXPORT_SYMBOL(napi_busy_loop);
6416
6417 #endif /* CONFIG_NET_RX_BUSY_POLL */
6418
6419 static void napi_hash_add(struct napi_struct *napi)
6420 {
6421         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6422             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6423                 return;
6424
6425         spin_lock(&napi_hash_lock);
6426
6427         /* 0..NR_CPUS range is reserved for sender_cpu use */
6428         do {
6429                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6430                         napi_gen_id = MIN_NAPI_ID;
6431         } while (napi_by_id(napi_gen_id));
6432         napi->napi_id = napi_gen_id;
6433
6434         hlist_add_head_rcu(&napi->napi_hash_node,
6435                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6436
6437         spin_unlock(&napi_hash_lock);
6438 }
6439
6440 /* Warning : caller is responsible to make sure rcu grace period
6441  * is respected before freeing memory containing @napi
6442  */
6443 bool napi_hash_del(struct napi_struct *napi)
6444 {
6445         bool rcu_sync_needed = false;
6446
6447         spin_lock(&napi_hash_lock);
6448
6449         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6450                 rcu_sync_needed = true;
6451                 hlist_del_rcu(&napi->napi_hash_node);
6452         }
6453         spin_unlock(&napi_hash_lock);
6454         return rcu_sync_needed;
6455 }
6456 EXPORT_SYMBOL_GPL(napi_hash_del);
6457
6458 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6459 {
6460         struct napi_struct *napi;
6461
6462         napi = container_of(timer, struct napi_struct, timer);
6463
6464         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6465          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6466          */
6467         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6468             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6469                 __napi_schedule_irqoff(napi);
6470
6471         return HRTIMER_NORESTART;
6472 }
6473
6474 static void init_gro_hash(struct napi_struct *napi)
6475 {
6476         int i;
6477
6478         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6479                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6480                 napi->gro_hash[i].count = 0;
6481         }
6482         napi->gro_bitmask = 0;
6483 }
6484
6485 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6486                     int (*poll)(struct napi_struct *, int), int weight)
6487 {
6488         INIT_LIST_HEAD(&napi->poll_list);
6489         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6490         napi->timer.function = napi_watchdog;
6491         init_gro_hash(napi);
6492         napi->skb = NULL;
6493         INIT_LIST_HEAD(&napi->rx_list);
6494         napi->rx_count = 0;
6495         napi->poll = poll;
6496         if (weight > NAPI_POLL_WEIGHT)
6497                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6498                                 weight);
6499         napi->weight = weight;
6500         list_add(&napi->dev_list, &dev->napi_list);
6501         napi->dev = dev;
6502 #ifdef CONFIG_NETPOLL
6503         napi->poll_owner = -1;
6504 #endif
6505         set_bit(NAPI_STATE_SCHED, &napi->state);
6506         napi_hash_add(napi);
6507 }
6508 EXPORT_SYMBOL(netif_napi_add);
6509
6510 void napi_disable(struct napi_struct *n)
6511 {
6512         might_sleep();
6513         set_bit(NAPI_STATE_DISABLE, &n->state);
6514
6515         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6516                 msleep(1);
6517         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6518                 msleep(1);
6519
6520         hrtimer_cancel(&n->timer);
6521
6522         clear_bit(NAPI_STATE_DISABLE, &n->state);
6523 }
6524 EXPORT_SYMBOL(napi_disable);
6525
6526 static void flush_gro_hash(struct napi_struct *napi)
6527 {
6528         int i;
6529
6530         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6531                 struct sk_buff *skb, *n;
6532
6533                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6534                         kfree_skb(skb);
6535                 napi->gro_hash[i].count = 0;
6536         }
6537 }
6538
6539 /* Must be called in process context */
6540 void netif_napi_del(struct napi_struct *napi)
6541 {
6542         might_sleep();
6543         if (napi_hash_del(napi))
6544                 synchronize_net();
6545         list_del_init(&napi->dev_list);
6546         napi_free_frags(napi);
6547
6548         flush_gro_hash(napi);
6549         napi->gro_bitmask = 0;
6550 }
6551 EXPORT_SYMBOL(netif_napi_del);
6552
6553 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6554 {
6555         void *have;
6556         int work, weight;
6557
6558         list_del_init(&n->poll_list);
6559
6560         have = netpoll_poll_lock(n);
6561
6562         weight = n->weight;
6563
6564         /* This NAPI_STATE_SCHED test is for avoiding a race
6565          * with netpoll's poll_napi().  Only the entity which
6566          * obtains the lock and sees NAPI_STATE_SCHED set will
6567          * actually make the ->poll() call.  Therefore we avoid
6568          * accidentally calling ->poll() when NAPI is not scheduled.
6569          */
6570         work = 0;
6571         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6572                 work = n->poll(n, weight);
6573                 trace_napi_poll(n, work, weight);
6574         }
6575
6576         WARN_ON_ONCE(work > weight);
6577
6578         if (likely(work < weight))
6579                 goto out_unlock;
6580
6581         /* Drivers must not modify the NAPI state if they
6582          * consume the entire weight.  In such cases this code
6583          * still "owns" the NAPI instance and therefore can
6584          * move the instance around on the list at-will.
6585          */
6586         if (unlikely(napi_disable_pending(n))) {
6587                 napi_complete(n);
6588                 goto out_unlock;
6589         }
6590
6591         if (n->gro_bitmask) {
6592                 /* flush too old packets
6593                  * If HZ < 1000, flush all packets.
6594                  */
6595                 napi_gro_flush(n, HZ >= 1000);
6596         }
6597
6598         gro_normal_list(n);
6599
6600         /* Some drivers may have called napi_schedule
6601          * prior to exhausting their budget.
6602          */
6603         if (unlikely(!list_empty(&n->poll_list))) {
6604                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6605                              n->dev ? n->dev->name : "backlog");
6606                 goto out_unlock;
6607         }
6608
6609         list_add_tail(&n->poll_list, repoll);
6610
6611 out_unlock:
6612         netpoll_poll_unlock(have);
6613
6614         return work;
6615 }
6616
6617 static __latent_entropy void net_rx_action(struct softirq_action *h)
6618 {
6619         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6620         unsigned long time_limit = jiffies +
6621                 usecs_to_jiffies(netdev_budget_usecs);
6622         int budget = netdev_budget;
6623         LIST_HEAD(list);
6624         LIST_HEAD(repoll);
6625
6626         local_irq_disable();
6627         list_splice_init(&sd->poll_list, &list);
6628         local_irq_enable();
6629
6630         for (;;) {
6631                 struct napi_struct *n;
6632
6633                 if (list_empty(&list)) {
6634                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6635                                 goto out;
6636                         break;
6637                 }
6638
6639                 n = list_first_entry(&list, struct napi_struct, poll_list);
6640                 budget -= napi_poll(n, &repoll);
6641
6642                 /* If softirq window is exhausted then punt.
6643                  * Allow this to run for 2 jiffies since which will allow
6644                  * an average latency of 1.5/HZ.
6645                  */
6646                 if (unlikely(budget <= 0 ||
6647                              time_after_eq(jiffies, time_limit))) {
6648                         sd->time_squeeze++;
6649                         break;
6650                 }
6651         }
6652
6653         local_irq_disable();
6654
6655         list_splice_tail_init(&sd->poll_list, &list);
6656         list_splice_tail(&repoll, &list);
6657         list_splice(&list, &sd->poll_list);
6658         if (!list_empty(&sd->poll_list))
6659                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6660
6661         net_rps_action_and_irq_enable(sd);
6662 out:
6663         __kfree_skb_flush();
6664 }
6665
6666 struct netdev_adjacent {
6667         struct net_device *dev;
6668
6669         /* upper master flag, there can only be one master device per list */
6670         bool master;
6671
6672         /* lookup ignore flag */
6673         bool ignore;
6674
6675         /* counter for the number of times this device was added to us */
6676         u16 ref_nr;
6677
6678         /* private field for the users */
6679         void *private;
6680
6681         struct list_head list;
6682         struct rcu_head rcu;
6683 };
6684
6685 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6686                                                  struct list_head *adj_list)
6687 {
6688         struct netdev_adjacent *adj;
6689
6690         list_for_each_entry(adj, adj_list, list) {
6691                 if (adj->dev == adj_dev)
6692                         return adj;
6693         }
6694         return NULL;
6695 }
6696
6697 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6698 {
6699         struct net_device *dev = data;
6700
6701         return upper_dev == dev;
6702 }
6703
6704 /**
6705  * netdev_has_upper_dev - Check if device is linked to an upper device
6706  * @dev: device
6707  * @upper_dev: upper device to check
6708  *
6709  * Find out if a device is linked to specified upper device and return true
6710  * in case it is. Note that this checks only immediate upper device,
6711  * not through a complete stack of devices. The caller must hold the RTNL lock.
6712  */
6713 bool netdev_has_upper_dev(struct net_device *dev,
6714                           struct net_device *upper_dev)
6715 {
6716         ASSERT_RTNL();
6717
6718         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6719                                              upper_dev);
6720 }
6721 EXPORT_SYMBOL(netdev_has_upper_dev);
6722
6723 /**
6724  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6725  * @dev: device
6726  * @upper_dev: upper device to check
6727  *
6728  * Find out if a device is linked to specified upper device and return true
6729  * in case it is. Note that this checks the entire upper device chain.
6730  * The caller must hold rcu lock.
6731  */
6732
6733 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6734                                   struct net_device *upper_dev)
6735 {
6736         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6737                                                upper_dev);
6738 }
6739 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6740
6741 /**
6742  * netdev_has_any_upper_dev - Check if device is linked to some device
6743  * @dev: device
6744  *
6745  * Find out if a device is linked to an upper device and return true in case
6746  * it is. The caller must hold the RTNL lock.
6747  */
6748 bool netdev_has_any_upper_dev(struct net_device *dev)
6749 {
6750         ASSERT_RTNL();
6751
6752         return !list_empty(&dev->adj_list.upper);
6753 }
6754 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6755
6756 /**
6757  * netdev_master_upper_dev_get - Get master upper device
6758  * @dev: device
6759  *
6760  * Find a master upper device and return pointer to it or NULL in case
6761  * it's not there. The caller must hold the RTNL lock.
6762  */
6763 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6764 {
6765         struct netdev_adjacent *upper;
6766
6767         ASSERT_RTNL();
6768
6769         if (list_empty(&dev->adj_list.upper))
6770                 return NULL;
6771
6772         upper = list_first_entry(&dev->adj_list.upper,
6773                                  struct netdev_adjacent, list);
6774         if (likely(upper->master))
6775                 return upper->dev;
6776         return NULL;
6777 }
6778 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6779
6780 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6781 {
6782         struct netdev_adjacent *upper;
6783
6784         ASSERT_RTNL();
6785
6786         if (list_empty(&dev->adj_list.upper))
6787                 return NULL;
6788
6789         upper = list_first_entry(&dev->adj_list.upper,
6790                                  struct netdev_adjacent, list);
6791         if (likely(upper->master) && !upper->ignore)
6792                 return upper->dev;
6793         return NULL;
6794 }
6795
6796 /**
6797  * netdev_has_any_lower_dev - Check if device is linked to some device
6798  * @dev: device
6799  *
6800  * Find out if a device is linked to a lower device and return true in case
6801  * it is. The caller must hold the RTNL lock.
6802  */
6803 static bool netdev_has_any_lower_dev(struct net_device *dev)
6804 {
6805         ASSERT_RTNL();
6806
6807         return !list_empty(&dev->adj_list.lower);
6808 }
6809
6810 void *netdev_adjacent_get_private(struct list_head *adj_list)
6811 {
6812         struct netdev_adjacent *adj;
6813
6814         adj = list_entry(adj_list, struct netdev_adjacent, list);
6815
6816         return adj->private;
6817 }
6818 EXPORT_SYMBOL(netdev_adjacent_get_private);
6819
6820 /**
6821  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6822  * @dev: device
6823  * @iter: list_head ** of the current position
6824  *
6825  * Gets the next device from the dev's upper list, starting from iter
6826  * position. The caller must hold RCU read lock.
6827  */
6828 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6829                                                  struct list_head **iter)
6830 {
6831         struct netdev_adjacent *upper;
6832
6833         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6834
6835         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6836
6837         if (&upper->list == &dev->adj_list.upper)
6838                 return NULL;
6839
6840         *iter = &upper->list;
6841
6842         return upper->dev;
6843 }
6844 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6845
6846 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6847                                                   struct list_head **iter,
6848                                                   bool *ignore)
6849 {
6850         struct netdev_adjacent *upper;
6851
6852         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6853
6854         if (&upper->list == &dev->adj_list.upper)
6855                 return NULL;
6856
6857         *iter = &upper->list;
6858         *ignore = upper->ignore;
6859
6860         return upper->dev;
6861 }
6862
6863 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6864                                                     struct list_head **iter)
6865 {
6866         struct netdev_adjacent *upper;
6867
6868         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6869
6870         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6871
6872         if (&upper->list == &dev->adj_list.upper)
6873                 return NULL;
6874
6875         *iter = &upper->list;
6876
6877         return upper->dev;
6878 }
6879
6880 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6881                                        int (*fn)(struct net_device *dev,
6882                                                  void *data),
6883                                        void *data)
6884 {
6885         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6886         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6887         int ret, cur = 0;
6888         bool ignore;
6889
6890         now = dev;
6891         iter = &dev->adj_list.upper;
6892
6893         while (1) {
6894                 if (now != dev) {
6895                         ret = fn(now, data);
6896                         if (ret)
6897                                 return ret;
6898                 }
6899
6900                 next = NULL;
6901                 while (1) {
6902                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6903                         if (!udev)
6904                                 break;
6905                         if (ignore)
6906                                 continue;
6907
6908                         next = udev;
6909                         niter = &udev->adj_list.upper;
6910                         dev_stack[cur] = now;
6911                         iter_stack[cur++] = iter;
6912                         break;
6913                 }
6914
6915                 if (!next) {
6916                         if (!cur)
6917                                 return 0;
6918                         next = dev_stack[--cur];
6919                         niter = iter_stack[cur];
6920                 }
6921
6922                 now = next;
6923                 iter = niter;
6924         }
6925
6926         return 0;
6927 }
6928
6929 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6930                                   int (*fn)(struct net_device *dev,
6931                                             void *data),
6932                                   void *data)
6933 {
6934         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6935         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6936         int ret, cur = 0;
6937
6938         now = dev;
6939         iter = &dev->adj_list.upper;
6940
6941         while (1) {
6942                 if (now != dev) {
6943                         ret = fn(now, data);
6944                         if (ret)
6945                                 return ret;
6946                 }
6947
6948                 next = NULL;
6949                 while (1) {
6950                         udev = netdev_next_upper_dev_rcu(now, &iter);
6951                         if (!udev)
6952                                 break;
6953
6954                         next = udev;
6955                         niter = &udev->adj_list.upper;
6956                         dev_stack[cur] = now;
6957                         iter_stack[cur++] = iter;
6958                         break;
6959                 }
6960
6961                 if (!next) {
6962                         if (!cur)
6963                                 return 0;
6964                         next = dev_stack[--cur];
6965                         niter = iter_stack[cur];
6966                 }
6967
6968                 now = next;
6969                 iter = niter;
6970         }
6971
6972         return 0;
6973 }
6974 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6975
6976 static bool __netdev_has_upper_dev(struct net_device *dev,
6977                                    struct net_device *upper_dev)
6978 {
6979         ASSERT_RTNL();
6980
6981         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6982                                            upper_dev);
6983 }
6984
6985 /**
6986  * netdev_lower_get_next_private - Get the next ->private from the
6987  *                                 lower neighbour list
6988  * @dev: device
6989  * @iter: list_head ** of the current position
6990  *
6991  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6992  * list, starting from iter position. The caller must hold either hold the
6993  * RTNL lock or its own locking that guarantees that the neighbour lower
6994  * list will remain unchanged.
6995  */
6996 void *netdev_lower_get_next_private(struct net_device *dev,
6997                                     struct list_head **iter)
6998 {
6999         struct netdev_adjacent *lower;
7000
7001         lower = list_entry(*iter, struct netdev_adjacent, list);
7002
7003         if (&lower->list == &dev->adj_list.lower)
7004                 return NULL;
7005
7006         *iter = lower->list.next;
7007
7008         return lower->private;
7009 }
7010 EXPORT_SYMBOL(netdev_lower_get_next_private);
7011
7012 /**
7013  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7014  *                                     lower neighbour list, RCU
7015  *                                     variant
7016  * @dev: device
7017  * @iter: list_head ** of the current position
7018  *
7019  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7020  * list, starting from iter position. The caller must hold RCU read lock.
7021  */
7022 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7023                                         struct list_head **iter)
7024 {
7025         struct netdev_adjacent *lower;
7026
7027         WARN_ON_ONCE(!rcu_read_lock_held());
7028
7029         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7030
7031         if (&lower->list == &dev->adj_list.lower)
7032                 return NULL;
7033
7034         *iter = &lower->list;
7035
7036         return lower->private;
7037 }
7038 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7039
7040 /**
7041  * netdev_lower_get_next - Get the next device from the lower neighbour
7042  *                         list
7043  * @dev: device
7044  * @iter: list_head ** of the current position
7045  *
7046  * Gets the next netdev_adjacent from the dev's lower neighbour
7047  * list, starting from iter position. The caller must hold RTNL lock or
7048  * its own locking that guarantees that the neighbour lower
7049  * list will remain unchanged.
7050  */
7051 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7052 {
7053         struct netdev_adjacent *lower;
7054
7055         lower = list_entry(*iter, struct netdev_adjacent, list);
7056
7057         if (&lower->list == &dev->adj_list.lower)
7058                 return NULL;
7059
7060         *iter = lower->list.next;
7061
7062         return lower->dev;
7063 }
7064 EXPORT_SYMBOL(netdev_lower_get_next);
7065
7066 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7067                                                 struct list_head **iter)
7068 {
7069         struct netdev_adjacent *lower;
7070
7071         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7072
7073         if (&lower->list == &dev->adj_list.lower)
7074                 return NULL;
7075
7076         *iter = &lower->list;
7077
7078         return lower->dev;
7079 }
7080
7081 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7082                                                   struct list_head **iter,
7083                                                   bool *ignore)
7084 {
7085         struct netdev_adjacent *lower;
7086
7087         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7088
7089         if (&lower->list == &dev->adj_list.lower)
7090                 return NULL;
7091
7092         *iter = &lower->list;
7093         *ignore = lower->ignore;
7094
7095         return lower->dev;
7096 }
7097
7098 int netdev_walk_all_lower_dev(struct net_device *dev,
7099                               int (*fn)(struct net_device *dev,
7100                                         void *data),
7101                               void *data)
7102 {
7103         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7104         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7105         int ret, cur = 0;
7106
7107         now = dev;
7108         iter = &dev->adj_list.lower;
7109
7110         while (1) {
7111                 if (now != dev) {
7112                         ret = fn(now, data);
7113                         if (ret)
7114                                 return ret;
7115                 }
7116
7117                 next = NULL;
7118                 while (1) {
7119                         ldev = netdev_next_lower_dev(now, &iter);
7120                         if (!ldev)
7121                                 break;
7122
7123                         next = ldev;
7124                         niter = &ldev->adj_list.lower;
7125                         dev_stack[cur] = now;
7126                         iter_stack[cur++] = iter;
7127                         break;
7128                 }
7129
7130                 if (!next) {
7131                         if (!cur)
7132                                 return 0;
7133                         next = dev_stack[--cur];
7134                         niter = iter_stack[cur];
7135                 }
7136
7137                 now = next;
7138                 iter = niter;
7139         }
7140
7141         return 0;
7142 }
7143 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7144
7145 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7146                                        int (*fn)(struct net_device *dev,
7147                                                  void *data),
7148                                        void *data)
7149 {
7150         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7151         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7152         int ret, cur = 0;
7153         bool ignore;
7154
7155         now = dev;
7156         iter = &dev->adj_list.lower;
7157
7158         while (1) {
7159                 if (now != dev) {
7160                         ret = fn(now, data);
7161                         if (ret)
7162                                 return ret;
7163                 }
7164
7165                 next = NULL;
7166                 while (1) {
7167                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7168                         if (!ldev)
7169                                 break;
7170                         if (ignore)
7171                                 continue;
7172
7173                         next = ldev;
7174                         niter = &ldev->adj_list.lower;
7175                         dev_stack[cur] = now;
7176                         iter_stack[cur++] = iter;
7177                         break;
7178                 }
7179
7180                 if (!next) {
7181                         if (!cur)
7182                                 return 0;
7183                         next = dev_stack[--cur];
7184                         niter = iter_stack[cur];
7185                 }
7186
7187                 now = next;
7188                 iter = niter;
7189         }
7190
7191         return 0;
7192 }
7193
7194 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7195                                              struct list_head **iter)
7196 {
7197         struct netdev_adjacent *lower;
7198
7199         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7200         if (&lower->list == &dev->adj_list.lower)
7201                 return NULL;
7202
7203         *iter = &lower->list;
7204
7205         return lower->dev;
7206 }
7207 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7208
7209 static u8 __netdev_upper_depth(struct net_device *dev)
7210 {
7211         struct net_device *udev;
7212         struct list_head *iter;
7213         u8 max_depth = 0;
7214         bool ignore;
7215
7216         for (iter = &dev->adj_list.upper,
7217              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7218              udev;
7219              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7220                 if (ignore)
7221                         continue;
7222                 if (max_depth < udev->upper_level)
7223                         max_depth = udev->upper_level;
7224         }
7225
7226         return max_depth;
7227 }
7228
7229 static u8 __netdev_lower_depth(struct net_device *dev)
7230 {
7231         struct net_device *ldev;
7232         struct list_head *iter;
7233         u8 max_depth = 0;
7234         bool ignore;
7235
7236         for (iter = &dev->adj_list.lower,
7237              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7238              ldev;
7239              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7240                 if (ignore)
7241                         continue;
7242                 if (max_depth < ldev->lower_level)
7243                         max_depth = ldev->lower_level;
7244         }
7245
7246         return max_depth;
7247 }
7248
7249 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7250 {
7251         dev->upper_level = __netdev_upper_depth(dev) + 1;
7252         return 0;
7253 }
7254
7255 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7256 {
7257         dev->lower_level = __netdev_lower_depth(dev) + 1;
7258         return 0;
7259 }
7260
7261 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7262                                   int (*fn)(struct net_device *dev,
7263                                             void *data),
7264                                   void *data)
7265 {
7266         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7267         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7268         int ret, cur = 0;
7269
7270         now = dev;
7271         iter = &dev->adj_list.lower;
7272
7273         while (1) {
7274                 if (now != dev) {
7275                         ret = fn(now, data);
7276                         if (ret)
7277                                 return ret;
7278                 }
7279
7280                 next = NULL;
7281                 while (1) {
7282                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7283                         if (!ldev)
7284                                 break;
7285
7286                         next = ldev;
7287                         niter = &ldev->adj_list.lower;
7288                         dev_stack[cur] = now;
7289                         iter_stack[cur++] = iter;
7290                         break;
7291                 }
7292
7293                 if (!next) {
7294                         if (!cur)
7295                                 return 0;
7296                         next = dev_stack[--cur];
7297                         niter = iter_stack[cur];
7298                 }
7299
7300                 now = next;
7301                 iter = niter;
7302         }
7303
7304         return 0;
7305 }
7306 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7307
7308 /**
7309  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7310  *                                     lower neighbour list, RCU
7311  *                                     variant
7312  * @dev: device
7313  *
7314  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7315  * list. The caller must hold RCU read lock.
7316  */
7317 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7318 {
7319         struct netdev_adjacent *lower;
7320
7321         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7322                         struct netdev_adjacent, list);
7323         if (lower)
7324                 return lower->private;
7325         return NULL;
7326 }
7327 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7328
7329 /**
7330  * netdev_master_upper_dev_get_rcu - Get master upper device
7331  * @dev: device
7332  *
7333  * Find a master upper device and return pointer to it or NULL in case
7334  * it's not there. The caller must hold the RCU read lock.
7335  */
7336 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7337 {
7338         struct netdev_adjacent *upper;
7339
7340         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7341                                        struct netdev_adjacent, list);
7342         if (upper && likely(upper->master))
7343                 return upper->dev;
7344         return NULL;
7345 }
7346 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7347
7348 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7349                               struct net_device *adj_dev,
7350                               struct list_head *dev_list)
7351 {
7352         char linkname[IFNAMSIZ+7];
7353
7354         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7355                 "upper_%s" : "lower_%s", adj_dev->name);
7356         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7357                                  linkname);
7358 }
7359 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7360                                char *name,
7361                                struct list_head *dev_list)
7362 {
7363         char linkname[IFNAMSIZ+7];
7364
7365         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7366                 "upper_%s" : "lower_%s", name);
7367         sysfs_remove_link(&(dev->dev.kobj), linkname);
7368 }
7369
7370 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7371                                                  struct net_device *adj_dev,
7372                                                  struct list_head *dev_list)
7373 {
7374         return (dev_list == &dev->adj_list.upper ||
7375                 dev_list == &dev->adj_list.lower) &&
7376                 net_eq(dev_net(dev), dev_net(adj_dev));
7377 }
7378
7379 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7380                                         struct net_device *adj_dev,
7381                                         struct list_head *dev_list,
7382                                         void *private, bool master)
7383 {
7384         struct netdev_adjacent *adj;
7385         int ret;
7386
7387         adj = __netdev_find_adj(adj_dev, dev_list);
7388
7389         if (adj) {
7390                 adj->ref_nr += 1;
7391                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7392                          dev->name, adj_dev->name, adj->ref_nr);
7393
7394                 return 0;
7395         }
7396
7397         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7398         if (!adj)
7399                 return -ENOMEM;
7400
7401         adj->dev = adj_dev;
7402         adj->master = master;
7403         adj->ref_nr = 1;
7404         adj->private = private;
7405         adj->ignore = false;
7406         dev_hold(adj_dev);
7407
7408         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7409                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7410
7411         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7412                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7413                 if (ret)
7414                         goto free_adj;
7415         }
7416
7417         /* Ensure that master link is always the first item in list. */
7418         if (master) {
7419                 ret = sysfs_create_link(&(dev->dev.kobj),
7420                                         &(adj_dev->dev.kobj), "master");
7421                 if (ret)
7422                         goto remove_symlinks;
7423
7424                 list_add_rcu(&adj->list, dev_list);
7425         } else {
7426                 list_add_tail_rcu(&adj->list, dev_list);
7427         }
7428
7429         return 0;
7430
7431 remove_symlinks:
7432         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7433                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7434 free_adj:
7435         kfree(adj);
7436         dev_put(adj_dev);
7437
7438         return ret;
7439 }
7440
7441 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7442                                          struct net_device *adj_dev,
7443                                          u16 ref_nr,
7444                                          struct list_head *dev_list)
7445 {
7446         struct netdev_adjacent *adj;
7447
7448         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7449                  dev->name, adj_dev->name, ref_nr);
7450
7451         adj = __netdev_find_adj(adj_dev, dev_list);
7452
7453         if (!adj) {
7454                 pr_err("Adjacency does not exist for device %s from %s\n",
7455                        dev->name, adj_dev->name);
7456                 WARN_ON(1);
7457                 return;
7458         }
7459
7460         if (adj->ref_nr > ref_nr) {
7461                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7462                          dev->name, adj_dev->name, ref_nr,
7463                          adj->ref_nr - ref_nr);
7464                 adj->ref_nr -= ref_nr;
7465                 return;
7466         }
7467
7468         if (adj->master)
7469                 sysfs_remove_link(&(dev->dev.kobj), "master");
7470
7471         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7472                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7473
7474         list_del_rcu(&adj->list);
7475         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7476                  adj_dev->name, dev->name, adj_dev->name);
7477         dev_put(adj_dev);
7478         kfree_rcu(adj, rcu);
7479 }
7480
7481 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7482                                             struct net_device *upper_dev,
7483                                             struct list_head *up_list,
7484                                             struct list_head *down_list,
7485                                             void *private, bool master)
7486 {
7487         int ret;
7488
7489         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7490                                            private, master);
7491         if (ret)
7492                 return ret;
7493
7494         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7495                                            private, false);
7496         if (ret) {
7497                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7498                 return ret;
7499         }
7500
7501         return 0;
7502 }
7503
7504 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7505                                                struct net_device *upper_dev,
7506                                                u16 ref_nr,
7507                                                struct list_head *up_list,
7508                                                struct list_head *down_list)
7509 {
7510         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7511         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7512 }
7513
7514 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7515                                                 struct net_device *upper_dev,
7516                                                 void *private, bool master)
7517 {
7518         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7519                                                 &dev->adj_list.upper,
7520                                                 &upper_dev->adj_list.lower,
7521                                                 private, master);
7522 }
7523
7524 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7525                                                    struct net_device *upper_dev)
7526 {
7527         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7528                                            &dev->adj_list.upper,
7529                                            &upper_dev->adj_list.lower);
7530 }
7531
7532 static int __netdev_upper_dev_link(struct net_device *dev,
7533                                    struct net_device *upper_dev, bool master,
7534                                    void *upper_priv, void *upper_info,
7535                                    struct netlink_ext_ack *extack)
7536 {
7537         struct netdev_notifier_changeupper_info changeupper_info = {
7538                 .info = {
7539                         .dev = dev,
7540                         .extack = extack,
7541                 },
7542                 .upper_dev = upper_dev,
7543                 .master = master,
7544                 .linking = true,
7545                 .upper_info = upper_info,
7546         };
7547         struct net_device *master_dev;
7548         int ret = 0;
7549
7550         ASSERT_RTNL();
7551
7552         if (dev == upper_dev)
7553                 return -EBUSY;
7554
7555         /* To prevent loops, check if dev is not upper device to upper_dev. */
7556         if (__netdev_has_upper_dev(upper_dev, dev))
7557                 return -EBUSY;
7558
7559         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7560                 return -EMLINK;
7561
7562         if (!master) {
7563                 if (__netdev_has_upper_dev(dev, upper_dev))
7564                         return -EEXIST;
7565         } else {
7566                 master_dev = __netdev_master_upper_dev_get(dev);
7567                 if (master_dev)
7568                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7569         }
7570
7571         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7572                                             &changeupper_info.info);
7573         ret = notifier_to_errno(ret);
7574         if (ret)
7575                 return ret;
7576
7577         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7578                                                    master);
7579         if (ret)
7580                 return ret;
7581
7582         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7583                                             &changeupper_info.info);
7584         ret = notifier_to_errno(ret);
7585         if (ret)
7586                 goto rollback;
7587
7588         __netdev_update_upper_level(dev, NULL);
7589         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7590
7591         __netdev_update_lower_level(upper_dev, NULL);
7592         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7593                                     NULL);
7594
7595         return 0;
7596
7597 rollback:
7598         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7599
7600         return ret;
7601 }
7602
7603 /**
7604  * netdev_upper_dev_link - Add a link to the upper device
7605  * @dev: device
7606  * @upper_dev: new upper device
7607  * @extack: netlink extended ack
7608  *
7609  * Adds a link to device which is upper to this one. The caller must hold
7610  * the RTNL lock. On a failure a negative errno code is returned.
7611  * On success the reference counts are adjusted and the function
7612  * returns zero.
7613  */
7614 int netdev_upper_dev_link(struct net_device *dev,
7615                           struct net_device *upper_dev,
7616                           struct netlink_ext_ack *extack)
7617 {
7618         return __netdev_upper_dev_link(dev, upper_dev, false,
7619                                        NULL, NULL, extack);
7620 }
7621 EXPORT_SYMBOL(netdev_upper_dev_link);
7622
7623 /**
7624  * netdev_master_upper_dev_link - Add a master link to the upper device
7625  * @dev: device
7626  * @upper_dev: new upper device
7627  * @upper_priv: upper device private
7628  * @upper_info: upper info to be passed down via notifier
7629  * @extack: netlink extended ack
7630  *
7631  * Adds a link to device which is upper to this one. In this case, only
7632  * one master upper device can be linked, although other non-master devices
7633  * might be linked as well. The caller must hold the RTNL lock.
7634  * On a failure a negative errno code is returned. On success the reference
7635  * counts are adjusted and the function returns zero.
7636  */
7637 int netdev_master_upper_dev_link(struct net_device *dev,
7638                                  struct net_device *upper_dev,
7639                                  void *upper_priv, void *upper_info,
7640                                  struct netlink_ext_ack *extack)
7641 {
7642         return __netdev_upper_dev_link(dev, upper_dev, true,
7643                                        upper_priv, upper_info, extack);
7644 }
7645 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7646
7647 /**
7648  * netdev_upper_dev_unlink - Removes a link to upper device
7649  * @dev: device
7650  * @upper_dev: new upper device
7651  *
7652  * Removes a link to device which is upper to this one. The caller must hold
7653  * the RTNL lock.
7654  */
7655 void netdev_upper_dev_unlink(struct net_device *dev,
7656                              struct net_device *upper_dev)
7657 {
7658         struct netdev_notifier_changeupper_info changeupper_info = {
7659                 .info = {
7660                         .dev = dev,
7661                 },
7662                 .upper_dev = upper_dev,
7663                 .linking = false,
7664         };
7665
7666         ASSERT_RTNL();
7667
7668         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7669
7670         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7671                                       &changeupper_info.info);
7672
7673         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7674
7675         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7676                                       &changeupper_info.info);
7677
7678         __netdev_update_upper_level(dev, NULL);
7679         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7680
7681         __netdev_update_lower_level(upper_dev, NULL);
7682         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7683                                     NULL);
7684 }
7685 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7686
7687 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7688                                       struct net_device *lower_dev,
7689                                       bool val)
7690 {
7691         struct netdev_adjacent *adj;
7692
7693         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7694         if (adj)
7695                 adj->ignore = val;
7696
7697         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7698         if (adj)
7699                 adj->ignore = val;
7700 }
7701
7702 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7703                                         struct net_device *lower_dev)
7704 {
7705         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7706 }
7707
7708 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7709                                        struct net_device *lower_dev)
7710 {
7711         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7712 }
7713
7714 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7715                                    struct net_device *new_dev,
7716                                    struct net_device *dev,
7717                                    struct netlink_ext_ack *extack)
7718 {
7719         int err;
7720
7721         if (!new_dev)
7722                 return 0;
7723
7724         if (old_dev && new_dev != old_dev)
7725                 netdev_adjacent_dev_disable(dev, old_dev);
7726
7727         err = netdev_upper_dev_link(new_dev, dev, extack);
7728         if (err) {
7729                 if (old_dev && new_dev != old_dev)
7730                         netdev_adjacent_dev_enable(dev, old_dev);
7731                 return err;
7732         }
7733
7734         return 0;
7735 }
7736 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7737
7738 void netdev_adjacent_change_commit(struct net_device *old_dev,
7739                                    struct net_device *new_dev,
7740                                    struct net_device *dev)
7741 {
7742         if (!new_dev || !old_dev)
7743                 return;
7744
7745         if (new_dev == old_dev)
7746                 return;
7747
7748         netdev_adjacent_dev_enable(dev, old_dev);
7749         netdev_upper_dev_unlink(old_dev, dev);
7750 }
7751 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7752
7753 void netdev_adjacent_change_abort(struct net_device *old_dev,
7754                                   struct net_device *new_dev,
7755                                   struct net_device *dev)
7756 {
7757         if (!new_dev)
7758                 return;
7759
7760         if (old_dev && new_dev != old_dev)
7761                 netdev_adjacent_dev_enable(dev, old_dev);
7762
7763         netdev_upper_dev_unlink(new_dev, dev);
7764 }
7765 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7766
7767 /**
7768  * netdev_bonding_info_change - Dispatch event about slave change
7769  * @dev: device
7770  * @bonding_info: info to dispatch
7771  *
7772  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7773  * The caller must hold the RTNL lock.
7774  */
7775 void netdev_bonding_info_change(struct net_device *dev,
7776                                 struct netdev_bonding_info *bonding_info)
7777 {
7778         struct netdev_notifier_bonding_info info = {
7779                 .info.dev = dev,
7780         };
7781
7782         memcpy(&info.bonding_info, bonding_info,
7783                sizeof(struct netdev_bonding_info));
7784         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7785                                       &info.info);
7786 }
7787 EXPORT_SYMBOL(netdev_bonding_info_change);
7788
7789 static void netdev_adjacent_add_links(struct net_device *dev)
7790 {
7791         struct netdev_adjacent *iter;
7792
7793         struct net *net = dev_net(dev);
7794
7795         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7796                 if (!net_eq(net, dev_net(iter->dev)))
7797                         continue;
7798                 netdev_adjacent_sysfs_add(iter->dev, dev,
7799                                           &iter->dev->adj_list.lower);
7800                 netdev_adjacent_sysfs_add(dev, iter->dev,
7801                                           &dev->adj_list.upper);
7802         }
7803
7804         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7805                 if (!net_eq(net, dev_net(iter->dev)))
7806                         continue;
7807                 netdev_adjacent_sysfs_add(iter->dev, dev,
7808                                           &iter->dev->adj_list.upper);
7809                 netdev_adjacent_sysfs_add(dev, iter->dev,
7810                                           &dev->adj_list.lower);
7811         }
7812 }
7813
7814 static void netdev_adjacent_del_links(struct net_device *dev)
7815 {
7816         struct netdev_adjacent *iter;
7817
7818         struct net *net = dev_net(dev);
7819
7820         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7821                 if (!net_eq(net, dev_net(iter->dev)))
7822                         continue;
7823                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7824                                           &iter->dev->adj_list.lower);
7825                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7826                                           &dev->adj_list.upper);
7827         }
7828
7829         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7830                 if (!net_eq(net, dev_net(iter->dev)))
7831                         continue;
7832                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7833                                           &iter->dev->adj_list.upper);
7834                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7835                                           &dev->adj_list.lower);
7836         }
7837 }
7838
7839 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7840 {
7841         struct netdev_adjacent *iter;
7842
7843         struct net *net = dev_net(dev);
7844
7845         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7846                 if (!net_eq(net, dev_net(iter->dev)))
7847                         continue;
7848                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7849                                           &iter->dev->adj_list.lower);
7850                 netdev_adjacent_sysfs_add(iter->dev, dev,
7851                                           &iter->dev->adj_list.lower);
7852         }
7853
7854         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7855                 if (!net_eq(net, dev_net(iter->dev)))
7856                         continue;
7857                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7858                                           &iter->dev->adj_list.upper);
7859                 netdev_adjacent_sysfs_add(iter->dev, dev,
7860                                           &iter->dev->adj_list.upper);
7861         }
7862 }
7863
7864 void *netdev_lower_dev_get_private(struct net_device *dev,
7865                                    struct net_device *lower_dev)
7866 {
7867         struct netdev_adjacent *lower;
7868
7869         if (!lower_dev)
7870                 return NULL;
7871         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7872         if (!lower)
7873                 return NULL;
7874
7875         return lower->private;
7876 }
7877 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7878
7879
7880 /**
7881  * netdev_lower_change - Dispatch event about lower device state change
7882  * @lower_dev: device
7883  * @lower_state_info: state to dispatch
7884  *
7885  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7886  * The caller must hold the RTNL lock.
7887  */
7888 void netdev_lower_state_changed(struct net_device *lower_dev,
7889                                 void *lower_state_info)
7890 {
7891         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7892                 .info.dev = lower_dev,
7893         };
7894
7895         ASSERT_RTNL();
7896         changelowerstate_info.lower_state_info = lower_state_info;
7897         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7898                                       &changelowerstate_info.info);
7899 }
7900 EXPORT_SYMBOL(netdev_lower_state_changed);
7901
7902 static void dev_change_rx_flags(struct net_device *dev, int flags)
7903 {
7904         const struct net_device_ops *ops = dev->netdev_ops;
7905
7906         if (ops->ndo_change_rx_flags)
7907                 ops->ndo_change_rx_flags(dev, flags);
7908 }
7909
7910 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7911 {
7912         unsigned int old_flags = dev->flags;
7913         kuid_t uid;
7914         kgid_t gid;
7915
7916         ASSERT_RTNL();
7917
7918         dev->flags |= IFF_PROMISC;
7919         dev->promiscuity += inc;
7920         if (dev->promiscuity == 0) {
7921                 /*
7922                  * Avoid overflow.
7923                  * If inc causes overflow, untouch promisc and return error.
7924                  */
7925                 if (inc < 0)
7926                         dev->flags &= ~IFF_PROMISC;
7927                 else {
7928                         dev->promiscuity -= inc;
7929                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7930                                 dev->name);
7931                         return -EOVERFLOW;
7932                 }
7933         }
7934         if (dev->flags != old_flags) {
7935                 pr_info("device %s %s promiscuous mode\n",
7936                         dev->name,
7937                         dev->flags & IFF_PROMISC ? "entered" : "left");
7938                 if (audit_enabled) {
7939                         current_uid_gid(&uid, &gid);
7940                         audit_log(audit_context(), GFP_ATOMIC,
7941                                   AUDIT_ANOM_PROMISCUOUS,
7942                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7943                                   dev->name, (dev->flags & IFF_PROMISC),
7944                                   (old_flags & IFF_PROMISC),
7945                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7946                                   from_kuid(&init_user_ns, uid),
7947                                   from_kgid(&init_user_ns, gid),
7948                                   audit_get_sessionid(current));
7949                 }
7950
7951                 dev_change_rx_flags(dev, IFF_PROMISC);
7952         }
7953         if (notify)
7954                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7955         return 0;
7956 }
7957
7958 /**
7959  *      dev_set_promiscuity     - update promiscuity count on a device
7960  *      @dev: device
7961  *      @inc: modifier
7962  *
7963  *      Add or remove promiscuity from a device. While the count in the device
7964  *      remains above zero the interface remains promiscuous. Once it hits zero
7965  *      the device reverts back to normal filtering operation. A negative inc
7966  *      value is used to drop promiscuity on the device.
7967  *      Return 0 if successful or a negative errno code on error.
7968  */
7969 int dev_set_promiscuity(struct net_device *dev, int inc)
7970 {
7971         unsigned int old_flags = dev->flags;
7972         int err;
7973
7974         err = __dev_set_promiscuity(dev, inc, true);
7975         if (err < 0)
7976                 return err;
7977         if (dev->flags != old_flags)
7978                 dev_set_rx_mode(dev);
7979         return err;
7980 }
7981 EXPORT_SYMBOL(dev_set_promiscuity);
7982
7983 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7984 {
7985         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7986
7987         ASSERT_RTNL();
7988
7989         dev->flags |= IFF_ALLMULTI;
7990         dev->allmulti += inc;
7991         if (dev->allmulti == 0) {
7992                 /*
7993                  * Avoid overflow.
7994                  * If inc causes overflow, untouch allmulti and return error.
7995                  */
7996                 if (inc < 0)
7997                         dev->flags &= ~IFF_ALLMULTI;
7998                 else {
7999                         dev->allmulti -= inc;
8000                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8001                                 dev->name);
8002                         return -EOVERFLOW;
8003                 }
8004         }
8005         if (dev->flags ^ old_flags) {
8006                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8007                 dev_set_rx_mode(dev);
8008                 if (notify)
8009                         __dev_notify_flags(dev, old_flags,
8010                                            dev->gflags ^ old_gflags);
8011         }
8012         return 0;
8013 }
8014
8015 /**
8016  *      dev_set_allmulti        - update allmulti count on a device
8017  *      @dev: device
8018  *      @inc: modifier
8019  *
8020  *      Add or remove reception of all multicast frames to a device. While the
8021  *      count in the device remains above zero the interface remains listening
8022  *      to all interfaces. Once it hits zero the device reverts back to normal
8023  *      filtering operation. A negative @inc value is used to drop the counter
8024  *      when releasing a resource needing all multicasts.
8025  *      Return 0 if successful or a negative errno code on error.
8026  */
8027
8028 int dev_set_allmulti(struct net_device *dev, int inc)
8029 {
8030         return __dev_set_allmulti(dev, inc, true);
8031 }
8032 EXPORT_SYMBOL(dev_set_allmulti);
8033
8034 /*
8035  *      Upload unicast and multicast address lists to device and
8036  *      configure RX filtering. When the device doesn't support unicast
8037  *      filtering it is put in promiscuous mode while unicast addresses
8038  *      are present.
8039  */
8040 void __dev_set_rx_mode(struct net_device *dev)
8041 {
8042         const struct net_device_ops *ops = dev->netdev_ops;
8043
8044         /* dev_open will call this function so the list will stay sane. */
8045         if (!(dev->flags&IFF_UP))
8046                 return;
8047
8048         if (!netif_device_present(dev))
8049                 return;
8050
8051         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8052                 /* Unicast addresses changes may only happen under the rtnl,
8053                  * therefore calling __dev_set_promiscuity here is safe.
8054                  */
8055                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8056                         __dev_set_promiscuity(dev, 1, false);
8057                         dev->uc_promisc = true;
8058                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8059                         __dev_set_promiscuity(dev, -1, false);
8060                         dev->uc_promisc = false;
8061                 }
8062         }
8063
8064         if (ops->ndo_set_rx_mode)
8065                 ops->ndo_set_rx_mode(dev);
8066 }
8067
8068 void dev_set_rx_mode(struct net_device *dev)
8069 {
8070         netif_addr_lock_bh(dev);
8071         __dev_set_rx_mode(dev);
8072         netif_addr_unlock_bh(dev);
8073 }
8074
8075 /**
8076  *      dev_get_flags - get flags reported to userspace
8077  *      @dev: device
8078  *
8079  *      Get the combination of flag bits exported through APIs to userspace.
8080  */
8081 unsigned int dev_get_flags(const struct net_device *dev)
8082 {
8083         unsigned int flags;
8084
8085         flags = (dev->flags & ~(IFF_PROMISC |
8086                                 IFF_ALLMULTI |
8087                                 IFF_RUNNING |
8088                                 IFF_LOWER_UP |
8089                                 IFF_DORMANT)) |
8090                 (dev->gflags & (IFF_PROMISC |
8091                                 IFF_ALLMULTI));
8092
8093         if (netif_running(dev)) {
8094                 if (netif_oper_up(dev))
8095                         flags |= IFF_RUNNING;
8096                 if (netif_carrier_ok(dev))
8097                         flags |= IFF_LOWER_UP;
8098                 if (netif_dormant(dev))
8099                         flags |= IFF_DORMANT;
8100         }
8101
8102         return flags;
8103 }
8104 EXPORT_SYMBOL(dev_get_flags);
8105
8106 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8107                        struct netlink_ext_ack *extack)
8108 {
8109         unsigned int old_flags = dev->flags;
8110         int ret;
8111
8112         ASSERT_RTNL();
8113
8114         /*
8115          *      Set the flags on our device.
8116          */
8117
8118         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8119                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8120                                IFF_AUTOMEDIA)) |
8121                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8122                                     IFF_ALLMULTI));
8123
8124         /*
8125          *      Load in the correct multicast list now the flags have changed.
8126          */
8127
8128         if ((old_flags ^ flags) & IFF_MULTICAST)
8129                 dev_change_rx_flags(dev, IFF_MULTICAST);
8130
8131         dev_set_rx_mode(dev);
8132
8133         /*
8134          *      Have we downed the interface. We handle IFF_UP ourselves
8135          *      according to user attempts to set it, rather than blindly
8136          *      setting it.
8137          */
8138
8139         ret = 0;
8140         if ((old_flags ^ flags) & IFF_UP) {
8141                 if (old_flags & IFF_UP)
8142                         __dev_close(dev);
8143                 else
8144                         ret = __dev_open(dev, extack);
8145         }
8146
8147         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8148                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8149                 unsigned int old_flags = dev->flags;
8150
8151                 dev->gflags ^= IFF_PROMISC;
8152
8153                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8154                         if (dev->flags != old_flags)
8155                                 dev_set_rx_mode(dev);
8156         }
8157
8158         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8159          * is important. Some (broken) drivers set IFF_PROMISC, when
8160          * IFF_ALLMULTI is requested not asking us and not reporting.
8161          */
8162         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8163                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8164
8165                 dev->gflags ^= IFF_ALLMULTI;
8166                 __dev_set_allmulti(dev, inc, false);
8167         }
8168
8169         return ret;
8170 }
8171
8172 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8173                         unsigned int gchanges)
8174 {
8175         unsigned int changes = dev->flags ^ old_flags;
8176
8177         if (gchanges)
8178                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8179
8180         if (changes & IFF_UP) {
8181                 if (dev->flags & IFF_UP)
8182                         call_netdevice_notifiers(NETDEV_UP, dev);
8183                 else
8184                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8185         }
8186
8187         if (dev->flags & IFF_UP &&
8188             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8189                 struct netdev_notifier_change_info change_info = {
8190                         .info = {
8191                                 .dev = dev,
8192                         },
8193                         .flags_changed = changes,
8194                 };
8195
8196                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8197         }
8198 }
8199
8200 /**
8201  *      dev_change_flags - change device settings
8202  *      @dev: device
8203  *      @flags: device state flags
8204  *      @extack: netlink extended ack
8205  *
8206  *      Change settings on device based state flags. The flags are
8207  *      in the userspace exported format.
8208  */
8209 int dev_change_flags(struct net_device *dev, unsigned int flags,
8210                      struct netlink_ext_ack *extack)
8211 {
8212         int ret;
8213         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8214
8215         ret = __dev_change_flags(dev, flags, extack);
8216         if (ret < 0)
8217                 return ret;
8218
8219         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8220         __dev_notify_flags(dev, old_flags, changes);
8221         return ret;
8222 }
8223 EXPORT_SYMBOL(dev_change_flags);
8224
8225 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8226 {
8227         const struct net_device_ops *ops = dev->netdev_ops;
8228
8229         if (ops->ndo_change_mtu)
8230                 return ops->ndo_change_mtu(dev, new_mtu);
8231
8232         /* Pairs with all the lockless reads of dev->mtu in the stack */
8233         WRITE_ONCE(dev->mtu, new_mtu);
8234         return 0;
8235 }
8236 EXPORT_SYMBOL(__dev_set_mtu);
8237
8238 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8239                      struct netlink_ext_ack *extack)
8240 {
8241         /* MTU must be positive, and in range */
8242         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8243                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8244                 return -EINVAL;
8245         }
8246
8247         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8248                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8249                 return -EINVAL;
8250         }
8251         return 0;
8252 }
8253
8254 /**
8255  *      dev_set_mtu_ext - Change maximum transfer unit
8256  *      @dev: device
8257  *      @new_mtu: new transfer unit
8258  *      @extack: netlink extended ack
8259  *
8260  *      Change the maximum transfer size of the network device.
8261  */
8262 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8263                     struct netlink_ext_ack *extack)
8264 {
8265         int err, orig_mtu;
8266
8267         if (new_mtu == dev->mtu)
8268                 return 0;
8269
8270         err = dev_validate_mtu(dev, new_mtu, extack);
8271         if (err)
8272                 return err;
8273
8274         if (!netif_device_present(dev))
8275                 return -ENODEV;
8276
8277         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8278         err = notifier_to_errno(err);
8279         if (err)
8280                 return err;
8281
8282         orig_mtu = dev->mtu;
8283         err = __dev_set_mtu(dev, new_mtu);
8284
8285         if (!err) {
8286                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8287                                                    orig_mtu);
8288                 err = notifier_to_errno(err);
8289                 if (err) {
8290                         /* setting mtu back and notifying everyone again,
8291                          * so that they have a chance to revert changes.
8292                          */
8293                         __dev_set_mtu(dev, orig_mtu);
8294                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8295                                                      new_mtu);
8296                 }
8297         }
8298         return err;
8299 }
8300
8301 int dev_set_mtu(struct net_device *dev, int new_mtu)
8302 {
8303         struct netlink_ext_ack extack;
8304         int err;
8305
8306         memset(&extack, 0, sizeof(extack));
8307         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8308         if (err && extack._msg)
8309                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8310         return err;
8311 }
8312 EXPORT_SYMBOL(dev_set_mtu);
8313
8314 /**
8315  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8316  *      @dev: device
8317  *      @new_len: new tx queue length
8318  */
8319 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8320 {
8321         unsigned int orig_len = dev->tx_queue_len;
8322         int res;
8323
8324         if (new_len != (unsigned int)new_len)
8325                 return -ERANGE;
8326
8327         if (new_len != orig_len) {
8328                 dev->tx_queue_len = new_len;
8329                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8330                 res = notifier_to_errno(res);
8331                 if (res)
8332                         goto err_rollback;
8333                 res = dev_qdisc_change_tx_queue_len(dev);
8334                 if (res)
8335                         goto err_rollback;
8336         }
8337
8338         return 0;
8339
8340 err_rollback:
8341         netdev_err(dev, "refused to change device tx_queue_len\n");
8342         dev->tx_queue_len = orig_len;
8343         return res;
8344 }
8345
8346 /**
8347  *      dev_set_group - Change group this device belongs to
8348  *      @dev: device
8349  *      @new_group: group this device should belong to
8350  */
8351 void dev_set_group(struct net_device *dev, int new_group)
8352 {
8353         dev->group = new_group;
8354 }
8355 EXPORT_SYMBOL(dev_set_group);
8356
8357 /**
8358  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8359  *      @dev: device
8360  *      @addr: new address
8361  *      @extack: netlink extended ack
8362  */
8363 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8364                               struct netlink_ext_ack *extack)
8365 {
8366         struct netdev_notifier_pre_changeaddr_info info = {
8367                 .info.dev = dev,
8368                 .info.extack = extack,
8369                 .dev_addr = addr,
8370         };
8371         int rc;
8372
8373         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8374         return notifier_to_errno(rc);
8375 }
8376 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8377
8378 /**
8379  *      dev_set_mac_address - Change Media Access Control Address
8380  *      @dev: device
8381  *      @sa: new address
8382  *      @extack: netlink extended ack
8383  *
8384  *      Change the hardware (MAC) address of the device
8385  */
8386 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8387                         struct netlink_ext_ack *extack)
8388 {
8389         const struct net_device_ops *ops = dev->netdev_ops;
8390         int err;
8391
8392         if (!ops->ndo_set_mac_address)
8393                 return -EOPNOTSUPP;
8394         if (sa->sa_family != dev->type)
8395                 return -EINVAL;
8396         if (!netif_device_present(dev))
8397                 return -ENODEV;
8398         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8399         if (err)
8400                 return err;
8401         err = ops->ndo_set_mac_address(dev, sa);
8402         if (err)
8403                 return err;
8404         dev->addr_assign_type = NET_ADDR_SET;
8405         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8406         add_device_randomness(dev->dev_addr, dev->addr_len);
8407         return 0;
8408 }
8409 EXPORT_SYMBOL(dev_set_mac_address);
8410
8411 /**
8412  *      dev_change_carrier - Change device carrier
8413  *      @dev: device
8414  *      @new_carrier: new value
8415  *
8416  *      Change device carrier
8417  */
8418 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8419 {
8420         const struct net_device_ops *ops = dev->netdev_ops;
8421
8422         if (!ops->ndo_change_carrier)
8423                 return -EOPNOTSUPP;
8424         if (!netif_device_present(dev))
8425                 return -ENODEV;
8426         return ops->ndo_change_carrier(dev, new_carrier);
8427 }
8428 EXPORT_SYMBOL(dev_change_carrier);
8429
8430 /**
8431  *      dev_get_phys_port_id - Get device physical port ID
8432  *      @dev: device
8433  *      @ppid: port ID
8434  *
8435  *      Get device physical port ID
8436  */
8437 int dev_get_phys_port_id(struct net_device *dev,
8438                          struct netdev_phys_item_id *ppid)
8439 {
8440         const struct net_device_ops *ops = dev->netdev_ops;
8441
8442         if (!ops->ndo_get_phys_port_id)
8443                 return -EOPNOTSUPP;
8444         return ops->ndo_get_phys_port_id(dev, ppid);
8445 }
8446 EXPORT_SYMBOL(dev_get_phys_port_id);
8447
8448 /**
8449  *      dev_get_phys_port_name - Get device physical port name
8450  *      @dev: device
8451  *      @name: port name
8452  *      @len: limit of bytes to copy to name
8453  *
8454  *      Get device physical port name
8455  */
8456 int dev_get_phys_port_name(struct net_device *dev,
8457                            char *name, size_t len)
8458 {
8459         const struct net_device_ops *ops = dev->netdev_ops;
8460         int err;
8461
8462         if (ops->ndo_get_phys_port_name) {
8463                 err = ops->ndo_get_phys_port_name(dev, name, len);
8464                 if (err != -EOPNOTSUPP)
8465                         return err;
8466         }
8467         return devlink_compat_phys_port_name_get(dev, name, len);
8468 }
8469 EXPORT_SYMBOL(dev_get_phys_port_name);
8470
8471 /**
8472  *      dev_get_port_parent_id - Get the device's port parent identifier
8473  *      @dev: network device
8474  *      @ppid: pointer to a storage for the port's parent identifier
8475  *      @recurse: allow/disallow recursion to lower devices
8476  *
8477  *      Get the devices's port parent identifier
8478  */
8479 int dev_get_port_parent_id(struct net_device *dev,
8480                            struct netdev_phys_item_id *ppid,
8481                            bool recurse)
8482 {
8483         const struct net_device_ops *ops = dev->netdev_ops;
8484         struct netdev_phys_item_id first = { };
8485         struct net_device *lower_dev;
8486         struct list_head *iter;
8487         int err;
8488
8489         if (ops->ndo_get_port_parent_id) {
8490                 err = ops->ndo_get_port_parent_id(dev, ppid);
8491                 if (err != -EOPNOTSUPP)
8492                         return err;
8493         }
8494
8495         err = devlink_compat_switch_id_get(dev, ppid);
8496         if (!err || err != -EOPNOTSUPP)
8497                 return err;
8498
8499         if (!recurse)
8500                 return -EOPNOTSUPP;
8501
8502         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8503                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8504                 if (err)
8505                         break;
8506                 if (!first.id_len)
8507                         first = *ppid;
8508                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8509                         return -ENODATA;
8510         }
8511
8512         return err;
8513 }
8514 EXPORT_SYMBOL(dev_get_port_parent_id);
8515
8516 /**
8517  *      netdev_port_same_parent_id - Indicate if two network devices have
8518  *      the same port parent identifier
8519  *      @a: first network device
8520  *      @b: second network device
8521  */
8522 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8523 {
8524         struct netdev_phys_item_id a_id = { };
8525         struct netdev_phys_item_id b_id = { };
8526
8527         if (dev_get_port_parent_id(a, &a_id, true) ||
8528             dev_get_port_parent_id(b, &b_id, true))
8529                 return false;
8530
8531         return netdev_phys_item_id_same(&a_id, &b_id);
8532 }
8533 EXPORT_SYMBOL(netdev_port_same_parent_id);
8534
8535 /**
8536  *      dev_change_proto_down - update protocol port state information
8537  *      @dev: device
8538  *      @proto_down: new value
8539  *
8540  *      This info can be used by switch drivers to set the phys state of the
8541  *      port.
8542  */
8543 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8544 {
8545         const struct net_device_ops *ops = dev->netdev_ops;
8546
8547         if (!ops->ndo_change_proto_down)
8548                 return -EOPNOTSUPP;
8549         if (!netif_device_present(dev))
8550                 return -ENODEV;
8551         return ops->ndo_change_proto_down(dev, proto_down);
8552 }
8553 EXPORT_SYMBOL(dev_change_proto_down);
8554
8555 /**
8556  *      dev_change_proto_down_generic - generic implementation for
8557  *      ndo_change_proto_down that sets carrier according to
8558  *      proto_down.
8559  *
8560  *      @dev: device
8561  *      @proto_down: new value
8562  */
8563 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8564 {
8565         if (proto_down)
8566                 netif_carrier_off(dev);
8567         else
8568                 netif_carrier_on(dev);
8569         dev->proto_down = proto_down;
8570         return 0;
8571 }
8572 EXPORT_SYMBOL(dev_change_proto_down_generic);
8573
8574 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8575                     enum bpf_netdev_command cmd)
8576 {
8577         struct netdev_bpf xdp;
8578
8579         if (!bpf_op)
8580                 return 0;
8581
8582         memset(&xdp, 0, sizeof(xdp));
8583         xdp.command = cmd;
8584
8585         /* Query must always succeed. */
8586         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8587
8588         return xdp.prog_id;
8589 }
8590
8591 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8592                            struct netlink_ext_ack *extack, u32 flags,
8593                            struct bpf_prog *prog)
8594 {
8595         bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8596         struct bpf_prog *prev_prog = NULL;
8597         struct netdev_bpf xdp;
8598         int err;
8599
8600         if (non_hw) {
8601                 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8602                                                            XDP_QUERY_PROG));
8603                 if (IS_ERR(prev_prog))
8604                         prev_prog = NULL;
8605         }
8606
8607         memset(&xdp, 0, sizeof(xdp));
8608         if (flags & XDP_FLAGS_HW_MODE)
8609                 xdp.command = XDP_SETUP_PROG_HW;
8610         else
8611                 xdp.command = XDP_SETUP_PROG;
8612         xdp.extack = extack;
8613         xdp.flags = flags;
8614         xdp.prog = prog;
8615
8616         err = bpf_op(dev, &xdp);
8617         if (!err && non_hw)
8618                 bpf_prog_change_xdp(prev_prog, prog);
8619
8620         if (prev_prog)
8621                 bpf_prog_put(prev_prog);
8622
8623         return err;
8624 }
8625
8626 static void dev_xdp_uninstall(struct net_device *dev)
8627 {
8628         struct netdev_bpf xdp;
8629         bpf_op_t ndo_bpf;
8630
8631         /* Remove generic XDP */
8632         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8633
8634         /* Remove from the driver */
8635         ndo_bpf = dev->netdev_ops->ndo_bpf;
8636         if (!ndo_bpf)
8637                 return;
8638
8639         memset(&xdp, 0, sizeof(xdp));
8640         xdp.command = XDP_QUERY_PROG;
8641         WARN_ON(ndo_bpf(dev, &xdp));
8642         if (xdp.prog_id)
8643                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8644                                         NULL));
8645
8646         /* Remove HW offload */
8647         memset(&xdp, 0, sizeof(xdp));
8648         xdp.command = XDP_QUERY_PROG_HW;
8649         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8650                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8651                                         NULL));
8652 }
8653
8654 /**
8655  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8656  *      @dev: device
8657  *      @extack: netlink extended ack
8658  *      @fd: new program fd or negative value to clear
8659  *      @expected_fd: old program fd that userspace expects to replace or clear
8660  *      @flags: xdp-related flags
8661  *
8662  *      Set or clear a bpf program for a device
8663  */
8664 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8665                       int fd, int expected_fd, u32 flags)
8666 {
8667         const struct net_device_ops *ops = dev->netdev_ops;
8668         enum bpf_netdev_command query;
8669         u32 prog_id, expected_id = 0;
8670         bpf_op_t bpf_op, bpf_chk;
8671         struct bpf_prog *prog;
8672         bool offload;
8673         int err;
8674
8675         ASSERT_RTNL();
8676
8677         offload = flags & XDP_FLAGS_HW_MODE;
8678         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8679
8680         bpf_op = bpf_chk = ops->ndo_bpf;
8681         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8682                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8683                 return -EOPNOTSUPP;
8684         }
8685         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8686                 bpf_op = generic_xdp_install;
8687         if (bpf_op == bpf_chk)
8688                 bpf_chk = generic_xdp_install;
8689
8690         prog_id = __dev_xdp_query(dev, bpf_op, query);
8691         if (flags & XDP_FLAGS_REPLACE) {
8692                 if (expected_fd >= 0) {
8693                         prog = bpf_prog_get_type_dev(expected_fd,
8694                                                      BPF_PROG_TYPE_XDP,
8695                                                      bpf_op == ops->ndo_bpf);
8696                         if (IS_ERR(prog))
8697                                 return PTR_ERR(prog);
8698                         expected_id = prog->aux->id;
8699                         bpf_prog_put(prog);
8700                 }
8701
8702                 if (prog_id != expected_id) {
8703                         NL_SET_ERR_MSG(extack, "Active program does not match expected");
8704                         return -EEXIST;
8705                 }
8706         }
8707         if (fd >= 0) {
8708                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8709                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8710                         return -EEXIST;
8711                 }
8712
8713                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8714                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8715                         return -EBUSY;
8716                 }
8717
8718                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8719                                              bpf_op == ops->ndo_bpf);
8720                 if (IS_ERR(prog))
8721                         return PTR_ERR(prog);
8722
8723                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8724                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8725                         bpf_prog_put(prog);
8726                         return -EINVAL;
8727                 }
8728
8729                 /* prog->aux->id may be 0 for orphaned device-bound progs */
8730                 if (prog->aux->id && prog->aux->id == prog_id) {
8731                         bpf_prog_put(prog);
8732                         return 0;
8733                 }
8734         } else {
8735                 if (!prog_id)
8736                         return 0;
8737                 prog = NULL;
8738         }
8739
8740         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8741         if (err < 0 && prog)
8742                 bpf_prog_put(prog);
8743
8744         return err;
8745 }
8746
8747 /**
8748  *      dev_new_index   -       allocate an ifindex
8749  *      @net: the applicable net namespace
8750  *
8751  *      Returns a suitable unique value for a new device interface
8752  *      number.  The caller must hold the rtnl semaphore or the
8753  *      dev_base_lock to be sure it remains unique.
8754  */
8755 static int dev_new_index(struct net *net)
8756 {
8757         int ifindex = net->ifindex;
8758
8759         for (;;) {
8760                 if (++ifindex <= 0)
8761                         ifindex = 1;
8762                 if (!__dev_get_by_index(net, ifindex))
8763                         return net->ifindex = ifindex;
8764         }
8765 }
8766
8767 /* Delayed registration/unregisteration */
8768 static LIST_HEAD(net_todo_list);
8769 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8770
8771 static void net_set_todo(struct net_device *dev)
8772 {
8773         list_add_tail(&dev->todo_list, &net_todo_list);
8774         dev_net(dev)->dev_unreg_count++;
8775 }
8776
8777 static void rollback_registered_many(struct list_head *head)
8778 {
8779         struct net_device *dev, *tmp;
8780         LIST_HEAD(close_head);
8781
8782         BUG_ON(dev_boot_phase);
8783         ASSERT_RTNL();
8784
8785         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8786                 /* Some devices call without registering
8787                  * for initialization unwind. Remove those
8788                  * devices and proceed with the remaining.
8789                  */
8790                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8791                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8792                                  dev->name, dev);
8793
8794                         WARN_ON(1);
8795                         list_del(&dev->unreg_list);
8796                         continue;
8797                 }
8798                 dev->dismantle = true;
8799                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8800         }
8801
8802         /* If device is running, close it first. */
8803         list_for_each_entry(dev, head, unreg_list)
8804                 list_add_tail(&dev->close_list, &close_head);
8805         dev_close_many(&close_head, true);
8806
8807         list_for_each_entry(dev, head, unreg_list) {
8808                 /* And unlink it from device chain. */
8809                 unlist_netdevice(dev);
8810
8811                 dev->reg_state = NETREG_UNREGISTERING;
8812         }
8813         flush_all_backlogs();
8814
8815         synchronize_net();
8816
8817         list_for_each_entry(dev, head, unreg_list) {
8818                 struct sk_buff *skb = NULL;
8819
8820                 /* Shutdown queueing discipline. */
8821                 dev_shutdown(dev);
8822
8823                 dev_xdp_uninstall(dev);
8824
8825                 /* Notify protocols, that we are about to destroy
8826                  * this device. They should clean all the things.
8827                  */
8828                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8829
8830                 if (!dev->rtnl_link_ops ||
8831                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8832                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8833                                                      GFP_KERNEL, NULL, 0);
8834
8835                 /*
8836                  *      Flush the unicast and multicast chains
8837                  */
8838                 dev_uc_flush(dev);
8839                 dev_mc_flush(dev);
8840
8841                 netdev_name_node_alt_flush(dev);
8842                 netdev_name_node_free(dev->name_node);
8843
8844                 if (dev->netdev_ops->ndo_uninit)
8845                         dev->netdev_ops->ndo_uninit(dev);
8846
8847                 if (skb)
8848                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8849
8850                 /* Notifier chain MUST detach us all upper devices. */
8851                 WARN_ON(netdev_has_any_upper_dev(dev));
8852                 WARN_ON(netdev_has_any_lower_dev(dev));
8853
8854                 /* Remove entries from kobject tree */
8855                 netdev_unregister_kobject(dev);
8856 #ifdef CONFIG_XPS
8857                 /* Remove XPS queueing entries */
8858                 netif_reset_xps_queues_gt(dev, 0);
8859 #endif
8860         }
8861
8862         synchronize_net();
8863
8864         list_for_each_entry(dev, head, unreg_list)
8865                 dev_put(dev);
8866 }
8867
8868 static void rollback_registered(struct net_device *dev)
8869 {
8870         LIST_HEAD(single);
8871
8872         list_add(&dev->unreg_list, &single);
8873         rollback_registered_many(&single);
8874         list_del(&single);
8875 }
8876
8877 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8878         struct net_device *upper, netdev_features_t features)
8879 {
8880         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8881         netdev_features_t feature;
8882         int feature_bit;
8883
8884         for_each_netdev_feature(upper_disables, feature_bit) {
8885                 feature = __NETIF_F_BIT(feature_bit);
8886                 if (!(upper->wanted_features & feature)
8887                     && (features & feature)) {
8888                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8889                                    &feature, upper->name);
8890                         features &= ~feature;
8891                 }
8892         }
8893
8894         return features;
8895 }
8896
8897 static void netdev_sync_lower_features(struct net_device *upper,
8898         struct net_device *lower, netdev_features_t features)
8899 {
8900         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8901         netdev_features_t feature;
8902         int feature_bit;
8903
8904         for_each_netdev_feature(upper_disables, feature_bit) {
8905                 feature = __NETIF_F_BIT(feature_bit);
8906                 if (!(features & feature) && (lower->features & feature)) {
8907                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8908                                    &feature, lower->name);
8909                         lower->wanted_features &= ~feature;
8910                         netdev_update_features(lower);
8911
8912                         if (unlikely(lower->features & feature))
8913                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8914                                             &feature, lower->name);
8915                 }
8916         }
8917 }
8918
8919 static netdev_features_t netdev_fix_features(struct net_device *dev,
8920         netdev_features_t features)
8921 {
8922         /* Fix illegal checksum combinations */
8923         if ((features & NETIF_F_HW_CSUM) &&
8924             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8925                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8926                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8927         }
8928
8929         /* TSO requires that SG is present as well. */
8930         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8931                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8932                 features &= ~NETIF_F_ALL_TSO;
8933         }
8934
8935         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8936                                         !(features & NETIF_F_IP_CSUM)) {
8937                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8938                 features &= ~NETIF_F_TSO;
8939                 features &= ~NETIF_F_TSO_ECN;
8940         }
8941
8942         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8943                                          !(features & NETIF_F_IPV6_CSUM)) {
8944                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8945                 features &= ~NETIF_F_TSO6;
8946         }
8947
8948         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8949         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8950                 features &= ~NETIF_F_TSO_MANGLEID;
8951
8952         /* TSO ECN requires that TSO is present as well. */
8953         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8954                 features &= ~NETIF_F_TSO_ECN;
8955
8956         /* Software GSO depends on SG. */
8957         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8958                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8959                 features &= ~NETIF_F_GSO;
8960         }
8961
8962         /* GSO partial features require GSO partial be set */
8963         if ((features & dev->gso_partial_features) &&
8964             !(features & NETIF_F_GSO_PARTIAL)) {
8965                 netdev_dbg(dev,
8966                            "Dropping partially supported GSO features since no GSO partial.\n");
8967                 features &= ~dev->gso_partial_features;
8968         }
8969
8970         if (!(features & NETIF_F_RXCSUM)) {
8971                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8972                  * successfully merged by hardware must also have the
8973                  * checksum verified by hardware.  If the user does not
8974                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8975                  */
8976                 if (features & NETIF_F_GRO_HW) {
8977                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8978                         features &= ~NETIF_F_GRO_HW;
8979                 }
8980         }
8981
8982         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8983         if (features & NETIF_F_RXFCS) {
8984                 if (features & NETIF_F_LRO) {
8985                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8986                         features &= ~NETIF_F_LRO;
8987                 }
8988
8989                 if (features & NETIF_F_GRO_HW) {
8990                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8991                         features &= ~NETIF_F_GRO_HW;
8992                 }
8993         }
8994
8995         return features;
8996 }
8997
8998 int __netdev_update_features(struct net_device *dev)
8999 {
9000         struct net_device *upper, *lower;
9001         netdev_features_t features;
9002         struct list_head *iter;
9003         int err = -1;
9004
9005         ASSERT_RTNL();
9006
9007         features = netdev_get_wanted_features(dev);
9008
9009         if (dev->netdev_ops->ndo_fix_features)
9010                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9011
9012         /* driver might be less strict about feature dependencies */
9013         features = netdev_fix_features(dev, features);
9014
9015         /* some features can't be enabled if they're off an an upper device */
9016         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9017                 features = netdev_sync_upper_features(dev, upper, features);
9018
9019         if (dev->features == features)
9020                 goto sync_lower;
9021
9022         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9023                 &dev->features, &features);
9024
9025         if (dev->netdev_ops->ndo_set_features)
9026                 err = dev->netdev_ops->ndo_set_features(dev, features);
9027         else
9028                 err = 0;
9029
9030         if (unlikely(err < 0)) {
9031                 netdev_err(dev,
9032                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9033                         err, &features, &dev->features);
9034                 /* return non-0 since some features might have changed and
9035                  * it's better to fire a spurious notification than miss it
9036                  */
9037                 return -1;
9038         }
9039
9040 sync_lower:
9041         /* some features must be disabled on lower devices when disabled
9042          * on an upper device (think: bonding master or bridge)
9043          */
9044         netdev_for_each_lower_dev(dev, lower, iter)
9045                 netdev_sync_lower_features(dev, lower, features);
9046
9047         if (!err) {
9048                 netdev_features_t diff = features ^ dev->features;
9049
9050                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9051                         /* udp_tunnel_{get,drop}_rx_info both need
9052                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9053                          * device, or they won't do anything.
9054                          * Thus we need to update dev->features
9055                          * *before* calling udp_tunnel_get_rx_info,
9056                          * but *after* calling udp_tunnel_drop_rx_info.
9057                          */
9058                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9059                                 dev->features = features;
9060                                 udp_tunnel_get_rx_info(dev);
9061                         } else {
9062                                 udp_tunnel_drop_rx_info(dev);
9063                         }
9064                 }
9065
9066                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9067                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9068                                 dev->features = features;
9069                                 err |= vlan_get_rx_ctag_filter_info(dev);
9070                         } else {
9071                                 vlan_drop_rx_ctag_filter_info(dev);
9072                         }
9073                 }
9074
9075                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9076                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9077                                 dev->features = features;
9078                                 err |= vlan_get_rx_stag_filter_info(dev);
9079                         } else {
9080                                 vlan_drop_rx_stag_filter_info(dev);
9081                         }
9082                 }
9083
9084                 dev->features = features;
9085         }
9086
9087         return err < 0 ? 0 : 1;
9088 }
9089
9090 /**
9091  *      netdev_update_features - recalculate device features
9092  *      @dev: the device to check
9093  *
9094  *      Recalculate dev->features set and send notifications if it
9095  *      has changed. Should be called after driver or hardware dependent
9096  *      conditions might have changed that influence the features.
9097  */
9098 void netdev_update_features(struct net_device *dev)
9099 {
9100         if (__netdev_update_features(dev))
9101                 netdev_features_change(dev);
9102 }
9103 EXPORT_SYMBOL(netdev_update_features);
9104
9105 /**
9106  *      netdev_change_features - recalculate device features
9107  *      @dev: the device to check
9108  *
9109  *      Recalculate dev->features set and send notifications even
9110  *      if they have not changed. Should be called instead of
9111  *      netdev_update_features() if also dev->vlan_features might
9112  *      have changed to allow the changes to be propagated to stacked
9113  *      VLAN devices.
9114  */
9115 void netdev_change_features(struct net_device *dev)
9116 {
9117         __netdev_update_features(dev);
9118         netdev_features_change(dev);
9119 }
9120 EXPORT_SYMBOL(netdev_change_features);
9121
9122 /**
9123  *      netif_stacked_transfer_operstate -      transfer operstate
9124  *      @rootdev: the root or lower level device to transfer state from
9125  *      @dev: the device to transfer operstate to
9126  *
9127  *      Transfer operational state from root to device. This is normally
9128  *      called when a stacking relationship exists between the root
9129  *      device and the device(a leaf device).
9130  */
9131 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9132                                         struct net_device *dev)
9133 {
9134         if (rootdev->operstate == IF_OPER_DORMANT)
9135                 netif_dormant_on(dev);
9136         else
9137                 netif_dormant_off(dev);
9138
9139         if (netif_carrier_ok(rootdev))
9140                 netif_carrier_on(dev);
9141         else
9142                 netif_carrier_off(dev);
9143 }
9144 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9145
9146 static int netif_alloc_rx_queues(struct net_device *dev)
9147 {
9148         unsigned int i, count = dev->num_rx_queues;
9149         struct netdev_rx_queue *rx;
9150         size_t sz = count * sizeof(*rx);
9151         int err = 0;
9152
9153         BUG_ON(count < 1);
9154
9155         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9156         if (!rx)
9157                 return -ENOMEM;
9158
9159         dev->_rx = rx;
9160
9161         for (i = 0; i < count; i++) {
9162                 rx[i].dev = dev;
9163
9164                 /* XDP RX-queue setup */
9165                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9166                 if (err < 0)
9167                         goto err_rxq_info;
9168         }
9169         return 0;
9170
9171 err_rxq_info:
9172         /* Rollback successful reg's and free other resources */
9173         while (i--)
9174                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9175         kvfree(dev->_rx);
9176         dev->_rx = NULL;
9177         return err;
9178 }
9179
9180 static void netif_free_rx_queues(struct net_device *dev)
9181 {
9182         unsigned int i, count = dev->num_rx_queues;
9183
9184         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9185         if (!dev->_rx)
9186                 return;
9187
9188         for (i = 0; i < count; i++)
9189                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9190
9191         kvfree(dev->_rx);
9192 }
9193
9194 static void netdev_init_one_queue(struct net_device *dev,
9195                                   struct netdev_queue *queue, void *_unused)
9196 {
9197         /* Initialize queue lock */
9198         spin_lock_init(&queue->_xmit_lock);
9199         lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9200         queue->xmit_lock_owner = -1;
9201         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9202         queue->dev = dev;
9203 #ifdef CONFIG_BQL
9204         dql_init(&queue->dql, HZ);
9205 #endif
9206 }
9207
9208 static void netif_free_tx_queues(struct net_device *dev)
9209 {
9210         kvfree(dev->_tx);
9211 }
9212
9213 static int netif_alloc_netdev_queues(struct net_device *dev)
9214 {
9215         unsigned int count = dev->num_tx_queues;
9216         struct netdev_queue *tx;
9217         size_t sz = count * sizeof(*tx);
9218
9219         if (count < 1 || count > 0xffff)
9220                 return -EINVAL;
9221
9222         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9223         if (!tx)
9224                 return -ENOMEM;
9225
9226         dev->_tx = tx;
9227
9228         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9229         spin_lock_init(&dev->tx_global_lock);
9230
9231         return 0;
9232 }
9233
9234 void netif_tx_stop_all_queues(struct net_device *dev)
9235 {
9236         unsigned int i;
9237
9238         for (i = 0; i < dev->num_tx_queues; i++) {
9239                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9240
9241                 netif_tx_stop_queue(txq);
9242         }
9243 }
9244 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9245
9246 static void netdev_register_lockdep_key(struct net_device *dev)
9247 {
9248         lockdep_register_key(&dev->qdisc_tx_busylock_key);
9249         lockdep_register_key(&dev->qdisc_running_key);
9250         lockdep_register_key(&dev->qdisc_xmit_lock_key);
9251         lockdep_register_key(&dev->addr_list_lock_key);
9252 }
9253
9254 static void netdev_unregister_lockdep_key(struct net_device *dev)
9255 {
9256         lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9257         lockdep_unregister_key(&dev->qdisc_running_key);
9258         lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9259         lockdep_unregister_key(&dev->addr_list_lock_key);
9260 }
9261
9262 void netdev_update_lockdep_key(struct net_device *dev)
9263 {
9264         lockdep_unregister_key(&dev->addr_list_lock_key);
9265         lockdep_register_key(&dev->addr_list_lock_key);
9266
9267         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9268 }
9269 EXPORT_SYMBOL(netdev_update_lockdep_key);
9270
9271 /**
9272  *      register_netdevice      - register a network device
9273  *      @dev: device to register
9274  *
9275  *      Take a completed network device structure and add it to the kernel
9276  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9277  *      chain. 0 is returned on success. A negative errno code is returned
9278  *      on a failure to set up the device, or if the name is a duplicate.
9279  *
9280  *      Callers must hold the rtnl semaphore. You may want
9281  *      register_netdev() instead of this.
9282  *
9283  *      BUGS:
9284  *      The locking appears insufficient to guarantee two parallel registers
9285  *      will not get the same name.
9286  */
9287
9288 int register_netdevice(struct net_device *dev)
9289 {
9290         int ret;
9291         struct net *net = dev_net(dev);
9292
9293         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9294                      NETDEV_FEATURE_COUNT);
9295         BUG_ON(dev_boot_phase);
9296         ASSERT_RTNL();
9297
9298         might_sleep();
9299
9300         /* When net_device's are persistent, this will be fatal. */
9301         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9302         BUG_ON(!net);
9303
9304         ret = ethtool_check_ops(dev->ethtool_ops);
9305         if (ret)
9306                 return ret;
9307
9308         spin_lock_init(&dev->addr_list_lock);
9309         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9310
9311         ret = dev_get_valid_name(net, dev, dev->name);
9312         if (ret < 0)
9313                 goto out;
9314
9315         ret = -ENOMEM;
9316         dev->name_node = netdev_name_node_head_alloc(dev);
9317         if (!dev->name_node)
9318                 goto out;
9319
9320         /* Init, if this function is available */
9321         if (dev->netdev_ops->ndo_init) {
9322                 ret = dev->netdev_ops->ndo_init(dev);
9323                 if (ret) {
9324                         if (ret > 0)
9325                                 ret = -EIO;
9326                         goto err_free_name;
9327                 }
9328         }
9329
9330         if (((dev->hw_features | dev->features) &
9331              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9332             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9333              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9334                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9335                 ret = -EINVAL;
9336                 goto err_uninit;
9337         }
9338
9339         ret = -EBUSY;
9340         if (!dev->ifindex)
9341                 dev->ifindex = dev_new_index(net);
9342         else if (__dev_get_by_index(net, dev->ifindex))
9343                 goto err_uninit;
9344
9345         /* Transfer changeable features to wanted_features and enable
9346          * software offloads (GSO and GRO).
9347          */
9348         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9349         dev->features |= NETIF_F_SOFT_FEATURES;
9350
9351         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9352                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9353                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9354         }
9355
9356         dev->wanted_features = dev->features & dev->hw_features;
9357
9358         if (!(dev->flags & IFF_LOOPBACK))
9359                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9360
9361         /* If IPv4 TCP segmentation offload is supported we should also
9362          * allow the device to enable segmenting the frame with the option
9363          * of ignoring a static IP ID value.  This doesn't enable the
9364          * feature itself but allows the user to enable it later.
9365          */
9366         if (dev->hw_features & NETIF_F_TSO)
9367                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9368         if (dev->vlan_features & NETIF_F_TSO)
9369                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9370         if (dev->mpls_features & NETIF_F_TSO)
9371                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9372         if (dev->hw_enc_features & NETIF_F_TSO)
9373                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9374
9375         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9376          */
9377         dev->vlan_features |= NETIF_F_HIGHDMA;
9378
9379         /* Make NETIF_F_SG inheritable to tunnel devices.
9380          */
9381         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9382
9383         /* Make NETIF_F_SG inheritable to MPLS.
9384          */
9385         dev->mpls_features |= NETIF_F_SG;
9386
9387         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9388         ret = notifier_to_errno(ret);
9389         if (ret)
9390                 goto err_uninit;
9391
9392         ret = netdev_register_kobject(dev);
9393         if (ret) {
9394                 dev->reg_state = NETREG_UNREGISTERED;
9395                 goto err_uninit;
9396         }
9397         dev->reg_state = NETREG_REGISTERED;
9398
9399         __netdev_update_features(dev);
9400
9401         /*
9402          *      Default initial state at registry is that the
9403          *      device is present.
9404          */
9405
9406         set_bit(__LINK_STATE_PRESENT, &dev->state);
9407
9408         linkwatch_init_dev(dev);
9409
9410         dev_init_scheduler(dev);
9411         dev_hold(dev);
9412         list_netdevice(dev);
9413         add_device_randomness(dev->dev_addr, dev->addr_len);
9414
9415         /* If the device has permanent device address, driver should
9416          * set dev_addr and also addr_assign_type should be set to
9417          * NET_ADDR_PERM (default value).
9418          */
9419         if (dev->addr_assign_type == NET_ADDR_PERM)
9420                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9421
9422         /* Notify protocols, that a new device appeared. */
9423         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9424         ret = notifier_to_errno(ret);
9425         if (ret) {
9426                 rollback_registered(dev);
9427                 rcu_barrier();
9428
9429                 dev->reg_state = NETREG_UNREGISTERED;
9430         }
9431         /*
9432          *      Prevent userspace races by waiting until the network
9433          *      device is fully setup before sending notifications.
9434          */
9435         if (!dev->rtnl_link_ops ||
9436             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9437                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9438
9439 out:
9440         return ret;
9441
9442 err_uninit:
9443         if (dev->netdev_ops->ndo_uninit)
9444                 dev->netdev_ops->ndo_uninit(dev);
9445         if (dev->priv_destructor)
9446                 dev->priv_destructor(dev);
9447 err_free_name:
9448         netdev_name_node_free(dev->name_node);
9449         goto out;
9450 }
9451 EXPORT_SYMBOL(register_netdevice);
9452
9453 /**
9454  *      init_dummy_netdev       - init a dummy network device for NAPI
9455  *      @dev: device to init
9456  *
9457  *      This takes a network device structure and initialize the minimum
9458  *      amount of fields so it can be used to schedule NAPI polls without
9459  *      registering a full blown interface. This is to be used by drivers
9460  *      that need to tie several hardware interfaces to a single NAPI
9461  *      poll scheduler due to HW limitations.
9462  */
9463 int init_dummy_netdev(struct net_device *dev)
9464 {
9465         /* Clear everything. Note we don't initialize spinlocks
9466          * are they aren't supposed to be taken by any of the
9467          * NAPI code and this dummy netdev is supposed to be
9468          * only ever used for NAPI polls
9469          */
9470         memset(dev, 0, sizeof(struct net_device));
9471
9472         /* make sure we BUG if trying to hit standard
9473          * register/unregister code path
9474          */
9475         dev->reg_state = NETREG_DUMMY;
9476
9477         /* NAPI wants this */
9478         INIT_LIST_HEAD(&dev->napi_list);
9479
9480         /* a dummy interface is started by default */
9481         set_bit(__LINK_STATE_PRESENT, &dev->state);
9482         set_bit(__LINK_STATE_START, &dev->state);
9483
9484         /* napi_busy_loop stats accounting wants this */
9485         dev_net_set(dev, &init_net);
9486
9487         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9488          * because users of this 'device' dont need to change
9489          * its refcount.
9490          */
9491
9492         return 0;
9493 }
9494 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9495
9496
9497 /**
9498  *      register_netdev - register a network device
9499  *      @dev: device to register
9500  *
9501  *      Take a completed network device structure and add it to the kernel
9502  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9503  *      chain. 0 is returned on success. A negative errno code is returned
9504  *      on a failure to set up the device, or if the name is a duplicate.
9505  *
9506  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9507  *      and expands the device name if you passed a format string to
9508  *      alloc_netdev.
9509  */
9510 int register_netdev(struct net_device *dev)
9511 {
9512         int err;
9513
9514         if (rtnl_lock_killable())
9515                 return -EINTR;
9516         err = register_netdevice(dev);
9517         rtnl_unlock();
9518         return err;
9519 }
9520 EXPORT_SYMBOL(register_netdev);
9521
9522 int netdev_refcnt_read(const struct net_device *dev)
9523 {
9524         int i, refcnt = 0;
9525
9526         for_each_possible_cpu(i)
9527                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9528         return refcnt;
9529 }
9530 EXPORT_SYMBOL(netdev_refcnt_read);
9531
9532 /**
9533  * netdev_wait_allrefs - wait until all references are gone.
9534  * @dev: target net_device
9535  *
9536  * This is called when unregistering network devices.
9537  *
9538  * Any protocol or device that holds a reference should register
9539  * for netdevice notification, and cleanup and put back the
9540  * reference if they receive an UNREGISTER event.
9541  * We can get stuck here if buggy protocols don't correctly
9542  * call dev_put.
9543  */
9544 static void netdev_wait_allrefs(struct net_device *dev)
9545 {
9546         unsigned long rebroadcast_time, warning_time;
9547         int refcnt;
9548
9549         linkwatch_forget_dev(dev);
9550
9551         rebroadcast_time = warning_time = jiffies;
9552         refcnt = netdev_refcnt_read(dev);
9553
9554         while (refcnt != 0) {
9555                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9556                         rtnl_lock();
9557
9558                         /* Rebroadcast unregister notification */
9559                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9560
9561                         __rtnl_unlock();
9562                         rcu_barrier();
9563                         rtnl_lock();
9564
9565                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9566                                      &dev->state)) {
9567                                 /* We must not have linkwatch events
9568                                  * pending on unregister. If this
9569                                  * happens, we simply run the queue
9570                                  * unscheduled, resulting in a noop
9571                                  * for this device.
9572                                  */
9573                                 linkwatch_run_queue();
9574                         }
9575
9576                         __rtnl_unlock();
9577
9578                         rebroadcast_time = jiffies;
9579                 }
9580
9581                 msleep(250);
9582
9583                 refcnt = netdev_refcnt_read(dev);
9584
9585                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9586                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9587                                  dev->name, refcnt);
9588                         warning_time = jiffies;
9589                 }
9590         }
9591 }
9592
9593 /* The sequence is:
9594  *
9595  *      rtnl_lock();
9596  *      ...
9597  *      register_netdevice(x1);
9598  *      register_netdevice(x2);
9599  *      ...
9600  *      unregister_netdevice(y1);
9601  *      unregister_netdevice(y2);
9602  *      ...
9603  *      rtnl_unlock();
9604  *      free_netdev(y1);
9605  *      free_netdev(y2);
9606  *
9607  * We are invoked by rtnl_unlock().
9608  * This allows us to deal with problems:
9609  * 1) We can delete sysfs objects which invoke hotplug
9610  *    without deadlocking with linkwatch via keventd.
9611  * 2) Since we run with the RTNL semaphore not held, we can sleep
9612  *    safely in order to wait for the netdev refcnt to drop to zero.
9613  *
9614  * We must not return until all unregister events added during
9615  * the interval the lock was held have been completed.
9616  */
9617 void netdev_run_todo(void)
9618 {
9619         struct list_head list;
9620
9621         /* Snapshot list, allow later requests */
9622         list_replace_init(&net_todo_list, &list);
9623
9624         __rtnl_unlock();
9625
9626
9627         /* Wait for rcu callbacks to finish before next phase */
9628         if (!list_empty(&list))
9629                 rcu_barrier();
9630
9631         while (!list_empty(&list)) {
9632                 struct net_device *dev
9633                         = list_first_entry(&list, struct net_device, todo_list);
9634                 list_del(&dev->todo_list);
9635
9636                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9637                         pr_err("network todo '%s' but state %d\n",
9638                                dev->name, dev->reg_state);
9639                         dump_stack();
9640                         continue;
9641                 }
9642
9643                 dev->reg_state = NETREG_UNREGISTERED;
9644
9645                 netdev_wait_allrefs(dev);
9646
9647                 /* paranoia */
9648                 BUG_ON(netdev_refcnt_read(dev));
9649                 BUG_ON(!list_empty(&dev->ptype_all));
9650                 BUG_ON(!list_empty(&dev->ptype_specific));
9651                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9652                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9653 #if IS_ENABLED(CONFIG_DECNET)
9654                 WARN_ON(dev->dn_ptr);
9655 #endif
9656                 if (dev->priv_destructor)
9657                         dev->priv_destructor(dev);
9658                 if (dev->needs_free_netdev)
9659                         free_netdev(dev);
9660
9661                 /* Report a network device has been unregistered */
9662                 rtnl_lock();
9663                 dev_net(dev)->dev_unreg_count--;
9664                 __rtnl_unlock();
9665                 wake_up(&netdev_unregistering_wq);
9666
9667                 /* Free network device */
9668                 kobject_put(&dev->dev.kobj);
9669         }
9670 }
9671
9672 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9673  * all the same fields in the same order as net_device_stats, with only
9674  * the type differing, but rtnl_link_stats64 may have additional fields
9675  * at the end for newer counters.
9676  */
9677 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9678                              const struct net_device_stats *netdev_stats)
9679 {
9680 #if BITS_PER_LONG == 64
9681         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9682         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9683         /* zero out counters that only exist in rtnl_link_stats64 */
9684         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9685                sizeof(*stats64) - sizeof(*netdev_stats));
9686 #else
9687         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9688         const unsigned long *src = (const unsigned long *)netdev_stats;
9689         u64 *dst = (u64 *)stats64;
9690
9691         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9692         for (i = 0; i < n; i++)
9693                 dst[i] = src[i];
9694         /* zero out counters that only exist in rtnl_link_stats64 */
9695         memset((char *)stats64 + n * sizeof(u64), 0,
9696                sizeof(*stats64) - n * sizeof(u64));
9697 #endif
9698 }
9699 EXPORT_SYMBOL(netdev_stats_to_stats64);
9700
9701 /**
9702  *      dev_get_stats   - get network device statistics
9703  *      @dev: device to get statistics from
9704  *      @storage: place to store stats
9705  *
9706  *      Get network statistics from device. Return @storage.
9707  *      The device driver may provide its own method by setting
9708  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9709  *      otherwise the internal statistics structure is used.
9710  */
9711 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9712                                         struct rtnl_link_stats64 *storage)
9713 {
9714         const struct net_device_ops *ops = dev->netdev_ops;
9715
9716         if (ops->ndo_get_stats64) {
9717                 memset(storage, 0, sizeof(*storage));
9718                 ops->ndo_get_stats64(dev, storage);
9719         } else if (ops->ndo_get_stats) {
9720                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9721         } else {
9722                 netdev_stats_to_stats64(storage, &dev->stats);
9723         }
9724         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9725         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9726         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9727         return storage;
9728 }
9729 EXPORT_SYMBOL(dev_get_stats);
9730
9731 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9732 {
9733         struct netdev_queue *queue = dev_ingress_queue(dev);
9734
9735 #ifdef CONFIG_NET_CLS_ACT
9736         if (queue)
9737                 return queue;
9738         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9739         if (!queue)
9740                 return NULL;
9741         netdev_init_one_queue(dev, queue, NULL);
9742         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9743         queue->qdisc_sleeping = &noop_qdisc;
9744         rcu_assign_pointer(dev->ingress_queue, queue);
9745 #endif
9746         return queue;
9747 }
9748
9749 static const struct ethtool_ops default_ethtool_ops;
9750
9751 void netdev_set_default_ethtool_ops(struct net_device *dev,
9752                                     const struct ethtool_ops *ops)
9753 {
9754         if (dev->ethtool_ops == &default_ethtool_ops)
9755                 dev->ethtool_ops = ops;
9756 }
9757 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9758
9759 void netdev_freemem(struct net_device *dev)
9760 {
9761         char *addr = (char *)dev - dev->padded;
9762
9763         kvfree(addr);
9764 }
9765
9766 /**
9767  * alloc_netdev_mqs - allocate network device
9768  * @sizeof_priv: size of private data to allocate space for
9769  * @name: device name format string
9770  * @name_assign_type: origin of device name
9771  * @setup: callback to initialize device
9772  * @txqs: the number of TX subqueues to allocate
9773  * @rxqs: the number of RX subqueues to allocate
9774  *
9775  * Allocates a struct net_device with private data area for driver use
9776  * and performs basic initialization.  Also allocates subqueue structs
9777  * for each queue on the device.
9778  */
9779 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9780                 unsigned char name_assign_type,
9781                 void (*setup)(struct net_device *),
9782                 unsigned int txqs, unsigned int rxqs)
9783 {
9784         struct net_device *dev;
9785         unsigned int alloc_size;
9786         struct net_device *p;
9787
9788         BUG_ON(strlen(name) >= sizeof(dev->name));
9789
9790         if (txqs < 1) {
9791                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9792                 return NULL;
9793         }
9794
9795         if (rxqs < 1) {
9796                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9797                 return NULL;
9798         }
9799
9800         alloc_size = sizeof(struct net_device);
9801         if (sizeof_priv) {
9802                 /* ensure 32-byte alignment of private area */
9803                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9804                 alloc_size += sizeof_priv;
9805         }
9806         /* ensure 32-byte alignment of whole construct */
9807         alloc_size += NETDEV_ALIGN - 1;
9808
9809         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9810         if (!p)
9811                 return NULL;
9812
9813         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9814         dev->padded = (char *)dev - (char *)p;
9815
9816         dev->pcpu_refcnt = alloc_percpu(int);
9817         if (!dev->pcpu_refcnt)
9818                 goto free_dev;
9819
9820         if (dev_addr_init(dev))
9821                 goto free_pcpu;
9822
9823         dev_mc_init(dev);
9824         dev_uc_init(dev);
9825
9826         dev_net_set(dev, &init_net);
9827
9828         netdev_register_lockdep_key(dev);
9829
9830         dev->gso_max_size = GSO_MAX_SIZE;
9831         dev->gso_max_segs = GSO_MAX_SEGS;
9832         dev->upper_level = 1;
9833         dev->lower_level = 1;
9834
9835         INIT_LIST_HEAD(&dev->napi_list);
9836         INIT_LIST_HEAD(&dev->unreg_list);
9837         INIT_LIST_HEAD(&dev->close_list);
9838         INIT_LIST_HEAD(&dev->link_watch_list);
9839         INIT_LIST_HEAD(&dev->adj_list.upper);
9840         INIT_LIST_HEAD(&dev->adj_list.lower);
9841         INIT_LIST_HEAD(&dev->ptype_all);
9842         INIT_LIST_HEAD(&dev->ptype_specific);
9843         INIT_LIST_HEAD(&dev->net_notifier_list);
9844 #ifdef CONFIG_NET_SCHED
9845         hash_init(dev->qdisc_hash);
9846 #endif
9847         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9848         setup(dev);
9849
9850         if (!dev->tx_queue_len) {
9851                 dev->priv_flags |= IFF_NO_QUEUE;
9852                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9853         }
9854
9855         dev->num_tx_queues = txqs;
9856         dev->real_num_tx_queues = txqs;
9857         if (netif_alloc_netdev_queues(dev))
9858                 goto free_all;
9859
9860         dev->num_rx_queues = rxqs;
9861         dev->real_num_rx_queues = rxqs;
9862         if (netif_alloc_rx_queues(dev))
9863                 goto free_all;
9864
9865         strcpy(dev->name, name);
9866         dev->name_assign_type = name_assign_type;
9867         dev->group = INIT_NETDEV_GROUP;
9868         if (!dev->ethtool_ops)
9869                 dev->ethtool_ops = &default_ethtool_ops;
9870
9871         nf_hook_ingress_init(dev);
9872
9873         return dev;
9874
9875 free_all:
9876         free_netdev(dev);
9877         return NULL;
9878
9879 free_pcpu:
9880         free_percpu(dev->pcpu_refcnt);
9881 free_dev:
9882         netdev_freemem(dev);
9883         return NULL;
9884 }
9885 EXPORT_SYMBOL(alloc_netdev_mqs);
9886
9887 /**
9888  * free_netdev - free network device
9889  * @dev: device
9890  *
9891  * This function does the last stage of destroying an allocated device
9892  * interface. The reference to the device object is released. If this
9893  * is the last reference then it will be freed.Must be called in process
9894  * context.
9895  */
9896 void free_netdev(struct net_device *dev)
9897 {
9898         struct napi_struct *p, *n;
9899
9900         might_sleep();
9901         netif_free_tx_queues(dev);
9902         netif_free_rx_queues(dev);
9903
9904         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9905
9906         /* Flush device addresses */
9907         dev_addr_flush(dev);
9908
9909         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9910                 netif_napi_del(p);
9911
9912         free_percpu(dev->pcpu_refcnt);
9913         dev->pcpu_refcnt = NULL;
9914         free_percpu(dev->xdp_bulkq);
9915         dev->xdp_bulkq = NULL;
9916
9917         netdev_unregister_lockdep_key(dev);
9918
9919         /*  Compatibility with error handling in drivers */
9920         if (dev->reg_state == NETREG_UNINITIALIZED) {
9921                 netdev_freemem(dev);
9922                 return;
9923         }
9924
9925         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9926         dev->reg_state = NETREG_RELEASED;
9927
9928         /* will free via device release */
9929         put_device(&dev->dev);
9930 }
9931 EXPORT_SYMBOL(free_netdev);
9932
9933 /**
9934  *      synchronize_net -  Synchronize with packet receive processing
9935  *
9936  *      Wait for packets currently being received to be done.
9937  *      Does not block later packets from starting.
9938  */
9939 void synchronize_net(void)
9940 {
9941         might_sleep();
9942         if (rtnl_is_locked())
9943                 synchronize_rcu_expedited();
9944         else
9945                 synchronize_rcu();
9946 }
9947 EXPORT_SYMBOL(synchronize_net);
9948
9949 /**
9950  *      unregister_netdevice_queue - remove device from the kernel
9951  *      @dev: device
9952  *      @head: list
9953  *
9954  *      This function shuts down a device interface and removes it
9955  *      from the kernel tables.
9956  *      If head not NULL, device is queued to be unregistered later.
9957  *
9958  *      Callers must hold the rtnl semaphore.  You may want
9959  *      unregister_netdev() instead of this.
9960  */
9961
9962 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9963 {
9964         ASSERT_RTNL();
9965
9966         if (head) {
9967                 list_move_tail(&dev->unreg_list, head);
9968         } else {
9969                 rollback_registered(dev);
9970                 /* Finish processing unregister after unlock */
9971                 net_set_todo(dev);
9972         }
9973 }
9974 EXPORT_SYMBOL(unregister_netdevice_queue);
9975
9976 /**
9977  *      unregister_netdevice_many - unregister many devices
9978  *      @head: list of devices
9979  *
9980  *  Note: As most callers use a stack allocated list_head,
9981  *  we force a list_del() to make sure stack wont be corrupted later.
9982  */
9983 void unregister_netdevice_many(struct list_head *head)
9984 {
9985         struct net_device *dev;
9986
9987         if (!list_empty(head)) {
9988                 rollback_registered_many(head);
9989                 list_for_each_entry(dev, head, unreg_list)
9990                         net_set_todo(dev);
9991                 list_del(head);
9992         }
9993 }
9994 EXPORT_SYMBOL(unregister_netdevice_many);
9995
9996 /**
9997  *      unregister_netdev - remove device from the kernel
9998  *      @dev: device
9999  *
10000  *      This function shuts down a device interface and removes it
10001  *      from the kernel tables.
10002  *
10003  *      This is just a wrapper for unregister_netdevice that takes
10004  *      the rtnl semaphore.  In general you want to use this and not
10005  *      unregister_netdevice.
10006  */
10007 void unregister_netdev(struct net_device *dev)
10008 {
10009         rtnl_lock();
10010         unregister_netdevice(dev);
10011         rtnl_unlock();
10012 }
10013 EXPORT_SYMBOL(unregister_netdev);
10014
10015 /**
10016  *      dev_change_net_namespace - move device to different nethost namespace
10017  *      @dev: device
10018  *      @net: network namespace
10019  *      @pat: If not NULL name pattern to try if the current device name
10020  *            is already taken in the destination network namespace.
10021  *
10022  *      This function shuts down a device interface and moves it
10023  *      to a new network namespace. On success 0 is returned, on
10024  *      a failure a netagive errno code is returned.
10025  *
10026  *      Callers must hold the rtnl semaphore.
10027  */
10028
10029 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10030 {
10031         struct net *net_old = dev_net(dev);
10032         int err, new_nsid, new_ifindex;
10033
10034         ASSERT_RTNL();
10035
10036         /* Don't allow namespace local devices to be moved. */
10037         err = -EINVAL;
10038         if (dev->features & NETIF_F_NETNS_LOCAL)
10039                 goto out;
10040
10041         /* Ensure the device has been registrered */
10042         if (dev->reg_state != NETREG_REGISTERED)
10043                 goto out;
10044
10045         /* Get out if there is nothing todo */
10046         err = 0;
10047         if (net_eq(net_old, net))
10048                 goto out;
10049
10050         /* Pick the destination device name, and ensure
10051          * we can use it in the destination network namespace.
10052          */
10053         err = -EEXIST;
10054         if (__dev_get_by_name(net, dev->name)) {
10055                 /* We get here if we can't use the current device name */
10056                 if (!pat)
10057                         goto out;
10058                 err = dev_get_valid_name(net, dev, pat);
10059                 if (err < 0)
10060                         goto out;
10061         }
10062
10063         /*
10064          * And now a mini version of register_netdevice unregister_netdevice.
10065          */
10066
10067         /* If device is running close it first. */
10068         dev_close(dev);
10069
10070         /* And unlink it from device chain */
10071         unlist_netdevice(dev);
10072
10073         synchronize_net();
10074
10075         /* Shutdown queueing discipline. */
10076         dev_shutdown(dev);
10077
10078         /* Notify protocols, that we are about to destroy
10079          * this device. They should clean all the things.
10080          *
10081          * Note that dev->reg_state stays at NETREG_REGISTERED.
10082          * This is wanted because this way 8021q and macvlan know
10083          * the device is just moving and can keep their slaves up.
10084          */
10085         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10086         rcu_barrier();
10087
10088         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10089         /* If there is an ifindex conflict assign a new one */
10090         if (__dev_get_by_index(net, dev->ifindex))
10091                 new_ifindex = dev_new_index(net);
10092         else
10093                 new_ifindex = dev->ifindex;
10094
10095         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10096                             new_ifindex);
10097
10098         /*
10099          *      Flush the unicast and multicast chains
10100          */
10101         dev_uc_flush(dev);
10102         dev_mc_flush(dev);
10103
10104         /* Send a netdev-removed uevent to the old namespace */
10105         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10106         netdev_adjacent_del_links(dev);
10107
10108         /* Move per-net netdevice notifiers that are following the netdevice */
10109         move_netdevice_notifiers_dev_net(dev, net);
10110
10111         /* Actually switch the network namespace */
10112         dev_net_set(dev, net);
10113         dev->ifindex = new_ifindex;
10114
10115         /* Send a netdev-add uevent to the new namespace */
10116         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10117         netdev_adjacent_add_links(dev);
10118
10119         /* Fixup kobjects */
10120         err = device_rename(&dev->dev, dev->name);
10121         WARN_ON(err);
10122
10123         /* Adapt owner in case owning user namespace of target network
10124          * namespace is different from the original one.
10125          */
10126         err = netdev_change_owner(dev, net_old, net);
10127         WARN_ON(err);
10128
10129         /* Add the device back in the hashes */
10130         list_netdevice(dev);
10131
10132         /* Notify protocols, that a new device appeared. */
10133         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10134
10135         /*
10136          *      Prevent userspace races by waiting until the network
10137          *      device is fully setup before sending notifications.
10138          */
10139         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10140
10141         synchronize_net();
10142         err = 0;
10143 out:
10144         return err;
10145 }
10146 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10147
10148 static int dev_cpu_dead(unsigned int oldcpu)
10149 {
10150         struct sk_buff **list_skb;
10151         struct sk_buff *skb;
10152         unsigned int cpu;
10153         struct softnet_data *sd, *oldsd, *remsd = NULL;
10154
10155         local_irq_disable();
10156         cpu = smp_processor_id();
10157         sd = &per_cpu(softnet_data, cpu);
10158         oldsd = &per_cpu(softnet_data, oldcpu);
10159
10160         /* Find end of our completion_queue. */
10161         list_skb = &sd->completion_queue;
10162         while (*list_skb)
10163                 list_skb = &(*list_skb)->next;
10164         /* Append completion queue from offline CPU. */
10165         *list_skb = oldsd->completion_queue;
10166         oldsd->completion_queue = NULL;
10167
10168         /* Append output queue from offline CPU. */
10169         if (oldsd->output_queue) {
10170                 *sd->output_queue_tailp = oldsd->output_queue;
10171                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10172                 oldsd->output_queue = NULL;
10173                 oldsd->output_queue_tailp = &oldsd->output_queue;
10174         }
10175         /* Append NAPI poll list from offline CPU, with one exception :
10176          * process_backlog() must be called by cpu owning percpu backlog.
10177          * We properly handle process_queue & input_pkt_queue later.
10178          */
10179         while (!list_empty(&oldsd->poll_list)) {
10180                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10181                                                             struct napi_struct,
10182                                                             poll_list);
10183
10184                 list_del_init(&napi->poll_list);
10185                 if (napi->poll == process_backlog)
10186                         napi->state = 0;
10187                 else
10188                         ____napi_schedule(sd, napi);
10189         }
10190
10191         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10192         local_irq_enable();
10193
10194 #ifdef CONFIG_RPS
10195         remsd = oldsd->rps_ipi_list;
10196         oldsd->rps_ipi_list = NULL;
10197 #endif
10198         /* send out pending IPI's on offline CPU */
10199         net_rps_send_ipi(remsd);
10200
10201         /* Process offline CPU's input_pkt_queue */
10202         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10203                 netif_rx_ni(skb);
10204                 input_queue_head_incr(oldsd);
10205         }
10206         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10207                 netif_rx_ni(skb);
10208                 input_queue_head_incr(oldsd);
10209         }
10210
10211         return 0;
10212 }
10213
10214 /**
10215  *      netdev_increment_features - increment feature set by one
10216  *      @all: current feature set
10217  *      @one: new feature set
10218  *      @mask: mask feature set
10219  *
10220  *      Computes a new feature set after adding a device with feature set
10221  *      @one to the master device with current feature set @all.  Will not
10222  *      enable anything that is off in @mask. Returns the new feature set.
10223  */
10224 netdev_features_t netdev_increment_features(netdev_features_t all,
10225         netdev_features_t one, netdev_features_t mask)
10226 {
10227         if (mask & NETIF_F_HW_CSUM)
10228                 mask |= NETIF_F_CSUM_MASK;
10229         mask |= NETIF_F_VLAN_CHALLENGED;
10230
10231         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10232         all &= one | ~NETIF_F_ALL_FOR_ALL;
10233
10234         /* If one device supports hw checksumming, set for all. */
10235         if (all & NETIF_F_HW_CSUM)
10236                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10237
10238         return all;
10239 }
10240 EXPORT_SYMBOL(netdev_increment_features);
10241
10242 static struct hlist_head * __net_init netdev_create_hash(void)
10243 {
10244         int i;
10245         struct hlist_head *hash;
10246
10247         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10248         if (hash != NULL)
10249                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10250                         INIT_HLIST_HEAD(&hash[i]);
10251
10252         return hash;
10253 }
10254
10255 /* Initialize per network namespace state */
10256 static int __net_init netdev_init(struct net *net)
10257 {
10258         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10259                      8 * sizeof_field(struct napi_struct, gro_bitmask));
10260
10261         if (net != &init_net)
10262                 INIT_LIST_HEAD(&net->dev_base_head);
10263
10264         net->dev_name_head = netdev_create_hash();
10265         if (net->dev_name_head == NULL)
10266                 goto err_name;
10267
10268         net->dev_index_head = netdev_create_hash();
10269         if (net->dev_index_head == NULL)
10270                 goto err_idx;
10271
10272         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10273
10274         return 0;
10275
10276 err_idx:
10277         kfree(net->dev_name_head);
10278 err_name:
10279         return -ENOMEM;
10280 }
10281
10282 /**
10283  *      netdev_drivername - network driver for the device
10284  *      @dev: network device
10285  *
10286  *      Determine network driver for device.
10287  */
10288 const char *netdev_drivername(const struct net_device *dev)
10289 {
10290         const struct device_driver *driver;
10291         const struct device *parent;
10292         const char *empty = "";
10293
10294         parent = dev->dev.parent;
10295         if (!parent)
10296                 return empty;
10297
10298         driver = parent->driver;
10299         if (driver && driver->name)
10300                 return driver->name;
10301         return empty;
10302 }
10303
10304 static void __netdev_printk(const char *level, const struct net_device *dev,
10305                             struct va_format *vaf)
10306 {
10307         if (dev && dev->dev.parent) {
10308                 dev_printk_emit(level[1] - '0',
10309                                 dev->dev.parent,
10310                                 "%s %s %s%s: %pV",
10311                                 dev_driver_string(dev->dev.parent),
10312                                 dev_name(dev->dev.parent),
10313                                 netdev_name(dev), netdev_reg_state(dev),
10314                                 vaf);
10315         } else if (dev) {
10316                 printk("%s%s%s: %pV",
10317                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
10318         } else {
10319                 printk("%s(NULL net_device): %pV", level, vaf);
10320         }
10321 }
10322
10323 void netdev_printk(const char *level, const struct net_device *dev,
10324                    const char *format, ...)
10325 {
10326         struct va_format vaf;
10327         va_list args;
10328
10329         va_start(args, format);
10330
10331         vaf.fmt = format;
10332         vaf.va = &args;
10333
10334         __netdev_printk(level, dev, &vaf);
10335
10336         va_end(args);
10337 }
10338 EXPORT_SYMBOL(netdev_printk);
10339
10340 #define define_netdev_printk_level(func, level)                 \
10341 void func(const struct net_device *dev, const char *fmt, ...)   \
10342 {                                                               \
10343         struct va_format vaf;                                   \
10344         va_list args;                                           \
10345                                                                 \
10346         va_start(args, fmt);                                    \
10347                                                                 \
10348         vaf.fmt = fmt;                                          \
10349         vaf.va = &args;                                         \
10350                                                                 \
10351         __netdev_printk(level, dev, &vaf);                      \
10352                                                                 \
10353         va_end(args);                                           \
10354 }                                                               \
10355 EXPORT_SYMBOL(func);
10356
10357 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10358 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10359 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10360 define_netdev_printk_level(netdev_err, KERN_ERR);
10361 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10362 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10363 define_netdev_printk_level(netdev_info, KERN_INFO);
10364
10365 static void __net_exit netdev_exit(struct net *net)
10366 {
10367         kfree(net->dev_name_head);
10368         kfree(net->dev_index_head);
10369         if (net != &init_net)
10370                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10371 }
10372
10373 static struct pernet_operations __net_initdata netdev_net_ops = {
10374         .init = netdev_init,
10375         .exit = netdev_exit,
10376 };
10377
10378 static void __net_exit default_device_exit(struct net *net)
10379 {
10380         struct net_device *dev, *aux;
10381         /*
10382          * Push all migratable network devices back to the
10383          * initial network namespace
10384          */
10385         rtnl_lock();
10386         for_each_netdev_safe(net, dev, aux) {
10387                 int err;
10388                 char fb_name[IFNAMSIZ];
10389
10390                 /* Ignore unmoveable devices (i.e. loopback) */
10391                 if (dev->features & NETIF_F_NETNS_LOCAL)
10392                         continue;
10393
10394                 /* Leave virtual devices for the generic cleanup */
10395                 if (dev->rtnl_link_ops)
10396                         continue;
10397
10398                 /* Push remaining network devices to init_net */
10399                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10400                 if (__dev_get_by_name(&init_net, fb_name))
10401                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10402                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10403                 if (err) {
10404                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10405                                  __func__, dev->name, err);
10406                         BUG();
10407                 }
10408         }
10409         rtnl_unlock();
10410 }
10411
10412 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10413 {
10414         /* Return with the rtnl_lock held when there are no network
10415          * devices unregistering in any network namespace in net_list.
10416          */
10417         struct net *net;
10418         bool unregistering;
10419         DEFINE_WAIT_FUNC(wait, woken_wake_function);
10420
10421         add_wait_queue(&netdev_unregistering_wq, &wait);
10422         for (;;) {
10423                 unregistering = false;
10424                 rtnl_lock();
10425                 list_for_each_entry(net, net_list, exit_list) {
10426                         if (net->dev_unreg_count > 0) {
10427                                 unregistering = true;
10428                                 break;
10429                         }
10430                 }
10431                 if (!unregistering)
10432                         break;
10433                 __rtnl_unlock();
10434
10435                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10436         }
10437         remove_wait_queue(&netdev_unregistering_wq, &wait);
10438 }
10439
10440 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10441 {
10442         /* At exit all network devices most be removed from a network
10443          * namespace.  Do this in the reverse order of registration.
10444          * Do this across as many network namespaces as possible to
10445          * improve batching efficiency.
10446          */
10447         struct net_device *dev;
10448         struct net *net;
10449         LIST_HEAD(dev_kill_list);
10450
10451         /* To prevent network device cleanup code from dereferencing
10452          * loopback devices or network devices that have been freed
10453          * wait here for all pending unregistrations to complete,
10454          * before unregistring the loopback device and allowing the
10455          * network namespace be freed.
10456          *
10457          * The netdev todo list containing all network devices
10458          * unregistrations that happen in default_device_exit_batch
10459          * will run in the rtnl_unlock() at the end of
10460          * default_device_exit_batch.
10461          */
10462         rtnl_lock_unregistering(net_list);
10463         list_for_each_entry(net, net_list, exit_list) {
10464                 for_each_netdev_reverse(net, dev) {
10465                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10466                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10467                         else
10468                                 unregister_netdevice_queue(dev, &dev_kill_list);
10469                 }
10470         }
10471         unregister_netdevice_many(&dev_kill_list);
10472         rtnl_unlock();
10473 }
10474
10475 static struct pernet_operations __net_initdata default_device_ops = {
10476         .exit = default_device_exit,
10477         .exit_batch = default_device_exit_batch,
10478 };
10479
10480 /*
10481  *      Initialize the DEV module. At boot time this walks the device list and
10482  *      unhooks any devices that fail to initialise (normally hardware not
10483  *      present) and leaves us with a valid list of present and active devices.
10484  *
10485  */
10486
10487 /*
10488  *       This is called single threaded during boot, so no need
10489  *       to take the rtnl semaphore.
10490  */
10491 static int __init net_dev_init(void)
10492 {
10493         int i, rc = -ENOMEM;
10494
10495         BUG_ON(!dev_boot_phase);
10496
10497         if (dev_proc_init())
10498                 goto out;
10499
10500         if (netdev_kobject_init())
10501                 goto out;
10502
10503         INIT_LIST_HEAD(&ptype_all);
10504         for (i = 0; i < PTYPE_HASH_SIZE; i++)
10505                 INIT_LIST_HEAD(&ptype_base[i]);
10506
10507         INIT_LIST_HEAD(&offload_base);
10508
10509         if (register_pernet_subsys(&netdev_net_ops))
10510                 goto out;
10511
10512         /*
10513          *      Initialise the packet receive queues.
10514          */
10515
10516         for_each_possible_cpu(i) {
10517                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10518                 struct softnet_data *sd = &per_cpu(softnet_data, i);
10519
10520                 INIT_WORK(flush, flush_backlog);
10521
10522                 skb_queue_head_init(&sd->input_pkt_queue);
10523                 skb_queue_head_init(&sd->process_queue);
10524 #ifdef CONFIG_XFRM_OFFLOAD
10525                 skb_queue_head_init(&sd->xfrm_backlog);
10526 #endif
10527                 INIT_LIST_HEAD(&sd->poll_list);
10528                 sd->output_queue_tailp = &sd->output_queue;
10529 #ifdef CONFIG_RPS
10530                 sd->csd.func = rps_trigger_softirq;
10531                 sd->csd.info = sd;
10532                 sd->cpu = i;
10533 #endif
10534
10535                 init_gro_hash(&sd->backlog);
10536                 sd->backlog.poll = process_backlog;
10537                 sd->backlog.weight = weight_p;
10538         }
10539
10540         dev_boot_phase = 0;
10541
10542         /* The loopback device is special if any other network devices
10543          * is present in a network namespace the loopback device must
10544          * be present. Since we now dynamically allocate and free the
10545          * loopback device ensure this invariant is maintained by
10546          * keeping the loopback device as the first device on the
10547          * list of network devices.  Ensuring the loopback devices
10548          * is the first device that appears and the last network device
10549          * that disappears.
10550          */
10551         if (register_pernet_device(&loopback_net_ops))
10552                 goto out;
10553
10554         if (register_pernet_device(&default_device_ops))
10555                 goto out;
10556
10557         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10558         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10559
10560         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10561                                        NULL, dev_cpu_dead);
10562         WARN_ON(rc < 0);
10563         rc = 0;
10564 out:
10565         return rc;
10566 }
10567
10568 subsys_initcall(net_dev_init);