1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
146 #include "net-sysfs.h"
148 #define MAX_GRO_SKBS 8
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly; /* Taps */
157 static struct list_head offload_base __read_mostly;
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 struct net_device *dev,
164 struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173 * Writers must hold the rtnl semaphore while they loop through the
174 * dev_base_head list, and hold dev_base_lock for writing when they do the
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
189 static DEFINE_MUTEX(ifalias_mutex);
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 static seqcount_t devnet_rename_seq;
199 static inline void dev_base_seq_inc(struct net *net)
201 while (++net->dev_base_seq == 0)
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 static inline void rps_lock(struct softnet_data *sd)
220 spin_lock(&sd->input_pkt_queue.lock);
224 static inline void rps_unlock(struct softnet_data *sd)
227 spin_unlock(&sd->input_pkt_queue.lock);
231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
234 struct netdev_name_node *name_node;
236 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
239 INIT_HLIST_NODE(&name_node->hlist);
240 name_node->dev = dev;
241 name_node->name = name;
245 static struct netdev_name_node *
246 netdev_name_node_head_alloc(struct net_device *dev)
248 struct netdev_name_node *name_node;
250 name_node = netdev_name_node_alloc(dev, dev->name);
253 INIT_LIST_HEAD(&name_node->list);
257 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 static void netdev_name_node_add(struct net *net,
263 struct netdev_name_node *name_node)
265 hlist_add_head_rcu(&name_node->hlist,
266 dev_name_hash(net, name_node->name));
269 static void netdev_name_node_del(struct netdev_name_node *name_node)
271 hlist_del_rcu(&name_node->hlist);
274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
277 struct hlist_head *head = dev_name_hash(net, name);
278 struct netdev_name_node *name_node;
280 hlist_for_each_entry(name_node, head, hlist)
281 if (!strcmp(name_node->name, name))
286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
289 struct hlist_head *head = dev_name_hash(net, name);
290 struct netdev_name_node *name_node;
292 hlist_for_each_entry_rcu(name_node, head, hlist)
293 if (!strcmp(name_node->name, name))
298 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
300 struct netdev_name_node *name_node;
301 struct net *net = dev_net(dev);
303 name_node = netdev_name_node_lookup(net, name);
306 name_node = netdev_name_node_alloc(dev, name);
309 netdev_name_node_add(net, name_node);
310 /* The node that holds dev->name acts as a head of per-device list. */
311 list_add_tail(&name_node->list, &dev->name_node->list);
315 EXPORT_SYMBOL(netdev_name_node_alt_create);
317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
319 list_del(&name_node->list);
320 netdev_name_node_del(name_node);
321 kfree(name_node->name);
322 netdev_name_node_free(name_node);
325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
327 struct netdev_name_node *name_node;
328 struct net *net = dev_net(dev);
330 name_node = netdev_name_node_lookup(net, name);
333 /* lookup might have found our primary name or a name belonging
336 if (name_node == dev->name_node || name_node->dev != dev)
339 __netdev_name_node_alt_destroy(name_node);
343 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
345 static void netdev_name_node_alt_flush(struct net_device *dev)
347 struct netdev_name_node *name_node, *tmp;
349 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350 __netdev_name_node_alt_destroy(name_node);
353 /* Device list insertion */
354 static void list_netdevice(struct net_device *dev)
356 struct net *net = dev_net(dev);
360 write_lock_bh(&dev_base_lock);
361 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
362 netdev_name_node_add(net, dev->name_node);
363 hlist_add_head_rcu(&dev->index_hlist,
364 dev_index_hash(net, dev->ifindex));
365 write_unlock_bh(&dev_base_lock);
367 dev_base_seq_inc(net);
370 /* Device list removal
371 * caller must respect a RCU grace period before freeing/reusing dev
373 static void unlist_netdevice(struct net_device *dev)
377 /* Unlink dev from the device chain */
378 write_lock_bh(&dev_base_lock);
379 list_del_rcu(&dev->dev_list);
380 netdev_name_node_del(dev->name_node);
381 hlist_del_rcu(&dev->index_hlist);
382 write_unlock_bh(&dev_base_lock);
384 dev_base_seq_inc(dev_net(dev));
391 static RAW_NOTIFIER_HEAD(netdev_chain);
394 * Device drivers call our routines to queue packets here. We empty the
395 * queue in the local softnet handler.
398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
399 EXPORT_PER_CPU_SYMBOL(softnet_data);
401 /*******************************************************************************
403 * Protocol management and registration routines
405 *******************************************************************************/
409 * Add a protocol ID to the list. Now that the input handler is
410 * smarter we can dispense with all the messy stuff that used to be
413 * BEWARE!!! Protocol handlers, mangling input packets,
414 * MUST BE last in hash buckets and checking protocol handlers
415 * MUST start from promiscuous ptype_all chain in net_bh.
416 * It is true now, do not change it.
417 * Explanation follows: if protocol handler, mangling packet, will
418 * be the first on list, it is not able to sense, that packet
419 * is cloned and should be copied-on-write, so that it will
420 * change it and subsequent readers will get broken packet.
424 static inline struct list_head *ptype_head(const struct packet_type *pt)
426 if (pt->type == htons(ETH_P_ALL))
427 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
429 return pt->dev ? &pt->dev->ptype_specific :
430 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
434 * dev_add_pack - add packet handler
435 * @pt: packet type declaration
437 * Add a protocol handler to the networking stack. The passed &packet_type
438 * is linked into kernel lists and may not be freed until it has been
439 * removed from the kernel lists.
441 * This call does not sleep therefore it can not
442 * guarantee all CPU's that are in middle of receiving packets
443 * will see the new packet type (until the next received packet).
446 void dev_add_pack(struct packet_type *pt)
448 struct list_head *head = ptype_head(pt);
450 spin_lock(&ptype_lock);
451 list_add_rcu(&pt->list, head);
452 spin_unlock(&ptype_lock);
454 EXPORT_SYMBOL(dev_add_pack);
457 * __dev_remove_pack - remove packet handler
458 * @pt: packet type declaration
460 * Remove a protocol handler that was previously added to the kernel
461 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
462 * from the kernel lists and can be freed or reused once this function
465 * The packet type might still be in use by receivers
466 * and must not be freed until after all the CPU's have gone
467 * through a quiescent state.
469 void __dev_remove_pack(struct packet_type *pt)
471 struct list_head *head = ptype_head(pt);
472 struct packet_type *pt1;
474 spin_lock(&ptype_lock);
476 list_for_each_entry(pt1, head, list) {
478 list_del_rcu(&pt->list);
483 pr_warn("dev_remove_pack: %p not found\n", pt);
485 spin_unlock(&ptype_lock);
487 EXPORT_SYMBOL(__dev_remove_pack);
490 * dev_remove_pack - remove packet handler
491 * @pt: packet type declaration
493 * Remove a protocol handler that was previously added to the kernel
494 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
495 * from the kernel lists and can be freed or reused once this function
498 * This call sleeps to guarantee that no CPU is looking at the packet
501 void dev_remove_pack(struct packet_type *pt)
503 __dev_remove_pack(pt);
507 EXPORT_SYMBOL(dev_remove_pack);
511 * dev_add_offload - register offload handlers
512 * @po: protocol offload declaration
514 * Add protocol offload handlers to the networking stack. The passed
515 * &proto_offload is linked into kernel lists and may not be freed until
516 * it has been removed from the kernel lists.
518 * This call does not sleep therefore it can not
519 * guarantee all CPU's that are in middle of receiving packets
520 * will see the new offload handlers (until the next received packet).
522 void dev_add_offload(struct packet_offload *po)
524 struct packet_offload *elem;
526 spin_lock(&offload_lock);
527 list_for_each_entry(elem, &offload_base, list) {
528 if (po->priority < elem->priority)
531 list_add_rcu(&po->list, elem->list.prev);
532 spin_unlock(&offload_lock);
534 EXPORT_SYMBOL(dev_add_offload);
537 * __dev_remove_offload - remove offload handler
538 * @po: packet offload declaration
540 * Remove a protocol offload handler that was previously added to the
541 * kernel offload handlers by dev_add_offload(). The passed &offload_type
542 * is removed from the kernel lists and can be freed or reused once this
545 * The packet type might still be in use by receivers
546 * and must not be freed until after all the CPU's have gone
547 * through a quiescent state.
549 static void __dev_remove_offload(struct packet_offload *po)
551 struct list_head *head = &offload_base;
552 struct packet_offload *po1;
554 spin_lock(&offload_lock);
556 list_for_each_entry(po1, head, list) {
558 list_del_rcu(&po->list);
563 pr_warn("dev_remove_offload: %p not found\n", po);
565 spin_unlock(&offload_lock);
569 * dev_remove_offload - remove packet offload handler
570 * @po: packet offload declaration
572 * Remove a packet offload handler that was previously added to the kernel
573 * offload handlers by dev_add_offload(). The passed &offload_type is
574 * removed from the kernel lists and can be freed or reused once this
577 * This call sleeps to guarantee that no CPU is looking at the packet
580 void dev_remove_offload(struct packet_offload *po)
582 __dev_remove_offload(po);
586 EXPORT_SYMBOL(dev_remove_offload);
588 /******************************************************************************
590 * Device Boot-time Settings Routines
592 ******************************************************************************/
594 /* Boot time configuration table */
595 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
598 * netdev_boot_setup_add - add new setup entry
599 * @name: name of the device
600 * @map: configured settings for the device
602 * Adds new setup entry to the dev_boot_setup list. The function
603 * returns 0 on error and 1 on success. This is a generic routine to
606 static int netdev_boot_setup_add(char *name, struct ifmap *map)
608 struct netdev_boot_setup *s;
612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
613 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
614 memset(s[i].name, 0, sizeof(s[i].name));
615 strlcpy(s[i].name, name, IFNAMSIZ);
616 memcpy(&s[i].map, map, sizeof(s[i].map));
621 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
625 * netdev_boot_setup_check - check boot time settings
626 * @dev: the netdevice
628 * Check boot time settings for the device.
629 * The found settings are set for the device to be used
630 * later in the device probing.
631 * Returns 0 if no settings found, 1 if they are.
633 int netdev_boot_setup_check(struct net_device *dev)
635 struct netdev_boot_setup *s = dev_boot_setup;
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
639 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
640 !strcmp(dev->name, s[i].name)) {
641 dev->irq = s[i].map.irq;
642 dev->base_addr = s[i].map.base_addr;
643 dev->mem_start = s[i].map.mem_start;
644 dev->mem_end = s[i].map.mem_end;
650 EXPORT_SYMBOL(netdev_boot_setup_check);
654 * netdev_boot_base - get address from boot time settings
655 * @prefix: prefix for network device
656 * @unit: id for network device
658 * Check boot time settings for the base address of device.
659 * The found settings are set for the device to be used
660 * later in the device probing.
661 * Returns 0 if no settings found.
663 unsigned long netdev_boot_base(const char *prefix, int unit)
665 const struct netdev_boot_setup *s = dev_boot_setup;
669 sprintf(name, "%s%d", prefix, unit);
672 * If device already registered then return base of 1
673 * to indicate not to probe for this interface
675 if (__dev_get_by_name(&init_net, name))
678 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
679 if (!strcmp(name, s[i].name))
680 return s[i].map.base_addr;
685 * Saves at boot time configured settings for any netdevice.
687 int __init netdev_boot_setup(char *str)
692 str = get_options(str, ARRAY_SIZE(ints), ints);
697 memset(&map, 0, sizeof(map));
701 map.base_addr = ints[2];
703 map.mem_start = ints[3];
705 map.mem_end = ints[4];
707 /* Add new entry to the list */
708 return netdev_boot_setup_add(str, &map);
711 __setup("netdev=", netdev_boot_setup);
713 /*******************************************************************************
715 * Device Interface Subroutines
717 *******************************************************************************/
720 * dev_get_iflink - get 'iflink' value of a interface
721 * @dev: targeted interface
723 * Indicates the ifindex the interface is linked to.
724 * Physical interfaces have the same 'ifindex' and 'iflink' values.
727 int dev_get_iflink(const struct net_device *dev)
729 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
730 return dev->netdev_ops->ndo_get_iflink(dev);
734 EXPORT_SYMBOL(dev_get_iflink);
737 * dev_fill_metadata_dst - Retrieve tunnel egress information.
738 * @dev: targeted interface
741 * For better visibility of tunnel traffic OVS needs to retrieve
742 * egress tunnel information for a packet. Following API allows
743 * user to get this info.
745 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
747 struct ip_tunnel_info *info;
749 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
752 info = skb_tunnel_info_unclone(skb);
755 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
758 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
760 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
763 * __dev_get_by_name - find a device by its name
764 * @net: the applicable net namespace
765 * @name: name to find
767 * Find an interface by name. Must be called under RTNL semaphore
768 * or @dev_base_lock. If the name is found a pointer to the device
769 * is returned. If the name is not found then %NULL is returned. The
770 * reference counters are not incremented so the caller must be
771 * careful with locks.
774 struct net_device *__dev_get_by_name(struct net *net, const char *name)
776 struct netdev_name_node *node_name;
778 node_name = netdev_name_node_lookup(net, name);
779 return node_name ? node_name->dev : NULL;
781 EXPORT_SYMBOL(__dev_get_by_name);
784 * dev_get_by_name_rcu - find a device by its name
785 * @net: the applicable net namespace
786 * @name: name to find
788 * Find an interface by name.
789 * If the name is found a pointer to the device is returned.
790 * If the name is not found then %NULL is returned.
791 * The reference counters are not incremented so the caller must be
792 * careful with locks. The caller must hold RCU lock.
795 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
797 struct netdev_name_node *node_name;
799 node_name = netdev_name_node_lookup_rcu(net, name);
800 return node_name ? node_name->dev : NULL;
802 EXPORT_SYMBOL(dev_get_by_name_rcu);
805 * dev_get_by_name - find a device by its name
806 * @net: the applicable net namespace
807 * @name: name to find
809 * Find an interface by name. This can be called from any
810 * context and does its own locking. The returned handle has
811 * the usage count incremented and the caller must use dev_put() to
812 * release it when it is no longer needed. %NULL is returned if no
813 * matching device is found.
816 struct net_device *dev_get_by_name(struct net *net, const char *name)
818 struct net_device *dev;
821 dev = dev_get_by_name_rcu(net, name);
827 EXPORT_SYMBOL(dev_get_by_name);
830 * __dev_get_by_index - find a device by its ifindex
831 * @net: the applicable net namespace
832 * @ifindex: index of device
834 * Search for an interface by index. Returns %NULL if the device
835 * is not found or a pointer to the device. The device has not
836 * had its reference counter increased so the caller must be careful
837 * about locking. The caller must hold either the RTNL semaphore
841 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
843 struct net_device *dev;
844 struct hlist_head *head = dev_index_hash(net, ifindex);
846 hlist_for_each_entry(dev, head, index_hlist)
847 if (dev->ifindex == ifindex)
852 EXPORT_SYMBOL(__dev_get_by_index);
855 * dev_get_by_index_rcu - find a device by its ifindex
856 * @net: the applicable net namespace
857 * @ifindex: index of device
859 * Search for an interface by index. Returns %NULL if the device
860 * is not found or a pointer to the device. The device has not
861 * had its reference counter increased so the caller must be careful
862 * about locking. The caller must hold RCU lock.
865 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
867 struct net_device *dev;
868 struct hlist_head *head = dev_index_hash(net, ifindex);
870 hlist_for_each_entry_rcu(dev, head, index_hlist)
871 if (dev->ifindex == ifindex)
876 EXPORT_SYMBOL(dev_get_by_index_rcu);
880 * dev_get_by_index - find a device by its ifindex
881 * @net: the applicable net namespace
882 * @ifindex: index of device
884 * Search for an interface by index. Returns NULL if the device
885 * is not found or a pointer to the device. The device returned has
886 * had a reference added and the pointer is safe until the user calls
887 * dev_put to indicate they have finished with it.
890 struct net_device *dev_get_by_index(struct net *net, int ifindex)
892 struct net_device *dev;
895 dev = dev_get_by_index_rcu(net, ifindex);
901 EXPORT_SYMBOL(dev_get_by_index);
904 * dev_get_by_napi_id - find a device by napi_id
905 * @napi_id: ID of the NAPI struct
907 * Search for an interface by NAPI ID. Returns %NULL if the device
908 * is not found or a pointer to the device. The device has not had
909 * its reference counter increased so the caller must be careful
910 * about locking. The caller must hold RCU lock.
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
915 struct napi_struct *napi;
917 WARN_ON_ONCE(!rcu_read_lock_held());
919 if (napi_id < MIN_NAPI_ID)
922 napi = napi_by_id(napi_id);
924 return napi ? napi->dev : NULL;
926 EXPORT_SYMBOL(dev_get_by_napi_id);
929 * netdev_get_name - get a netdevice name, knowing its ifindex.
930 * @net: network namespace
931 * @name: a pointer to the buffer where the name will be stored.
932 * @ifindex: the ifindex of the interface to get the name from.
934 * The use of raw_seqcount_begin() and cond_resched() before
935 * retrying is required as we want to give the writers a chance
936 * to complete when CONFIG_PREEMPTION is not set.
938 int netdev_get_name(struct net *net, char *name, int ifindex)
940 struct net_device *dev;
944 seq = raw_seqcount_begin(&devnet_rename_seq);
946 dev = dev_get_by_index_rcu(net, ifindex);
952 strcpy(name, dev->name);
954 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
963 * dev_getbyhwaddr_rcu - find a device by its hardware address
964 * @net: the applicable net namespace
965 * @type: media type of device
966 * @ha: hardware address
968 * Search for an interface by MAC address. Returns NULL if the device
969 * is not found or a pointer to the device.
970 * The caller must hold RCU or RTNL.
971 * The returned device has not had its ref count increased
972 * and the caller must therefore be careful about locking
976 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
979 struct net_device *dev;
981 for_each_netdev_rcu(net, dev)
982 if (dev->type == type &&
983 !memcmp(dev->dev_addr, ha, dev->addr_len))
988 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
990 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
992 struct net_device *dev;
995 for_each_netdev(net, dev)
996 if (dev->type == type)
1001 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1003 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1005 struct net_device *dev, *ret = NULL;
1008 for_each_netdev_rcu(net, dev)
1009 if (dev->type == type) {
1017 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1020 * __dev_get_by_flags - find any device with given flags
1021 * @net: the applicable net namespace
1022 * @if_flags: IFF_* values
1023 * @mask: bitmask of bits in if_flags to check
1025 * Search for any interface with the given flags. Returns NULL if a device
1026 * is not found or a pointer to the device. Must be called inside
1027 * rtnl_lock(), and result refcount is unchanged.
1030 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1031 unsigned short mask)
1033 struct net_device *dev, *ret;
1038 for_each_netdev(net, dev) {
1039 if (((dev->flags ^ if_flags) & mask) == 0) {
1046 EXPORT_SYMBOL(__dev_get_by_flags);
1049 * dev_valid_name - check if name is okay for network device
1050 * @name: name string
1052 * Network device names need to be valid file names to
1053 * to allow sysfs to work. We also disallow any kind of
1056 bool dev_valid_name(const char *name)
1060 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1062 if (!strcmp(name, ".") || !strcmp(name, ".."))
1066 if (*name == '/' || *name == ':' || isspace(*name))
1072 EXPORT_SYMBOL(dev_valid_name);
1075 * __dev_alloc_name - allocate a name for a device
1076 * @net: network namespace to allocate the device name in
1077 * @name: name format string
1078 * @buf: scratch buffer and result name string
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1089 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1093 const int max_netdevices = 8*PAGE_SIZE;
1094 unsigned long *inuse;
1095 struct net_device *d;
1097 if (!dev_valid_name(name))
1100 p = strchr(name, '%');
1103 * Verify the string as this thing may have come from
1104 * the user. There must be either one "%d" and no other "%"
1107 if (p[1] != 'd' || strchr(p + 2, '%'))
1110 /* Use one page as a bit array of possible slots */
1111 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1115 for_each_netdev(net, d) {
1116 if (!sscanf(d->name, name, &i))
1118 if (i < 0 || i >= max_netdevices)
1121 /* avoid cases where sscanf is not exact inverse of printf */
1122 snprintf(buf, IFNAMSIZ, name, i);
1123 if (!strncmp(buf, d->name, IFNAMSIZ))
1127 i = find_first_zero_bit(inuse, max_netdevices);
1128 free_page((unsigned long) inuse);
1131 snprintf(buf, IFNAMSIZ, name, i);
1132 if (!__dev_get_by_name(net, buf))
1135 /* It is possible to run out of possible slots
1136 * when the name is long and there isn't enough space left
1137 * for the digits, or if all bits are used.
1142 static int dev_alloc_name_ns(struct net *net,
1143 struct net_device *dev,
1150 ret = __dev_alloc_name(net, name, buf);
1152 strlcpy(dev->name, buf, IFNAMSIZ);
1157 * dev_alloc_name - allocate a name for a device
1159 * @name: name format string
1161 * Passed a format string - eg "lt%d" it will try and find a suitable
1162 * id. It scans list of devices to build up a free map, then chooses
1163 * the first empty slot. The caller must hold the dev_base or rtnl lock
1164 * while allocating the name and adding the device in order to avoid
1166 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167 * Returns the number of the unit assigned or a negative errno code.
1170 int dev_alloc_name(struct net_device *dev, const char *name)
1172 return dev_alloc_name_ns(dev_net(dev), dev, name);
1174 EXPORT_SYMBOL(dev_alloc_name);
1176 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1181 if (!dev_valid_name(name))
1184 if (strchr(name, '%'))
1185 return dev_alloc_name_ns(net, dev, name);
1186 else if (__dev_get_by_name(net, name))
1188 else if (dev->name != name)
1189 strlcpy(dev->name, name, IFNAMSIZ);
1195 * dev_change_name - change name of a device
1197 * @newname: name (or format string) must be at least IFNAMSIZ
1199 * Change name of a device, can pass format strings "eth%d".
1202 int dev_change_name(struct net_device *dev, const char *newname)
1204 unsigned char old_assign_type;
1205 char oldname[IFNAMSIZ];
1211 BUG_ON(!dev_net(dev));
1215 /* Some auto-enslaved devices e.g. failover slaves are
1216 * special, as userspace might rename the device after
1217 * the interface had been brought up and running since
1218 * the point kernel initiated auto-enslavement. Allow
1219 * live name change even when these slave devices are
1222 * Typically, users of these auto-enslaving devices
1223 * don't actually care about slave name change, as
1224 * they are supposed to operate on master interface
1227 if (dev->flags & IFF_UP &&
1228 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1231 write_seqcount_begin(&devnet_rename_seq);
1233 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1234 write_seqcount_end(&devnet_rename_seq);
1238 memcpy(oldname, dev->name, IFNAMSIZ);
1240 err = dev_get_valid_name(net, dev, newname);
1242 write_seqcount_end(&devnet_rename_seq);
1246 if (oldname[0] && !strchr(oldname, '%'))
1247 netdev_info(dev, "renamed from %s\n", oldname);
1249 old_assign_type = dev->name_assign_type;
1250 dev->name_assign_type = NET_NAME_RENAMED;
1253 ret = device_rename(&dev->dev, dev->name);
1255 memcpy(dev->name, oldname, IFNAMSIZ);
1256 dev->name_assign_type = old_assign_type;
1257 write_seqcount_end(&devnet_rename_seq);
1261 write_seqcount_end(&devnet_rename_seq);
1263 netdev_adjacent_rename_links(dev, oldname);
1265 write_lock_bh(&dev_base_lock);
1266 netdev_name_node_del(dev->name_node);
1267 write_unlock_bh(&dev_base_lock);
1271 write_lock_bh(&dev_base_lock);
1272 netdev_name_node_add(net, dev->name_node);
1273 write_unlock_bh(&dev_base_lock);
1275 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1276 ret = notifier_to_errno(ret);
1279 /* err >= 0 after dev_alloc_name() or stores the first errno */
1282 write_seqcount_begin(&devnet_rename_seq);
1283 memcpy(dev->name, oldname, IFNAMSIZ);
1284 memcpy(oldname, newname, IFNAMSIZ);
1285 dev->name_assign_type = old_assign_type;
1286 old_assign_type = NET_NAME_RENAMED;
1289 pr_err("%s: name change rollback failed: %d\n",
1298 * dev_set_alias - change ifalias of a device
1300 * @alias: name up to IFALIASZ
1301 * @len: limit of bytes to copy from info
1303 * Set ifalias for a device,
1305 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1307 struct dev_ifalias *new_alias = NULL;
1309 if (len >= IFALIASZ)
1313 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1317 memcpy(new_alias->ifalias, alias, len);
1318 new_alias->ifalias[len] = 0;
1321 mutex_lock(&ifalias_mutex);
1322 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1323 mutex_is_locked(&ifalias_mutex));
1324 mutex_unlock(&ifalias_mutex);
1327 kfree_rcu(new_alias, rcuhead);
1331 EXPORT_SYMBOL(dev_set_alias);
1334 * dev_get_alias - get ifalias of a device
1336 * @name: buffer to store name of ifalias
1337 * @len: size of buffer
1339 * get ifalias for a device. Caller must make sure dev cannot go
1340 * away, e.g. rcu read lock or own a reference count to device.
1342 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1344 const struct dev_ifalias *alias;
1348 alias = rcu_dereference(dev->ifalias);
1350 ret = snprintf(name, len, "%s", alias->ifalias);
1357 * netdev_features_change - device changes features
1358 * @dev: device to cause notification
1360 * Called to indicate a device has changed features.
1362 void netdev_features_change(struct net_device *dev)
1364 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1366 EXPORT_SYMBOL(netdev_features_change);
1369 * netdev_state_change - device changes state
1370 * @dev: device to cause notification
1372 * Called to indicate a device has changed state. This function calls
1373 * the notifier chains for netdev_chain and sends a NEWLINK message
1374 * to the routing socket.
1376 void netdev_state_change(struct net_device *dev)
1378 if (dev->flags & IFF_UP) {
1379 struct netdev_notifier_change_info change_info = {
1383 call_netdevice_notifiers_info(NETDEV_CHANGE,
1385 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1388 EXPORT_SYMBOL(netdev_state_change);
1391 * netdev_notify_peers - notify network peers about existence of @dev
1392 * @dev: network device
1394 * Generate traffic such that interested network peers are aware of
1395 * @dev, such as by generating a gratuitous ARP. This may be used when
1396 * a device wants to inform the rest of the network about some sort of
1397 * reconfiguration such as a failover event or virtual machine
1400 void netdev_notify_peers(struct net_device *dev)
1403 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1404 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1407 EXPORT_SYMBOL(netdev_notify_peers);
1409 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1411 const struct net_device_ops *ops = dev->netdev_ops;
1416 if (!netif_device_present(dev))
1419 /* Block netpoll from trying to do any rx path servicing.
1420 * If we don't do this there is a chance ndo_poll_controller
1421 * or ndo_poll may be running while we open the device
1423 netpoll_poll_disable(dev);
1425 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1426 ret = notifier_to_errno(ret);
1430 set_bit(__LINK_STATE_START, &dev->state);
1432 if (ops->ndo_validate_addr)
1433 ret = ops->ndo_validate_addr(dev);
1435 if (!ret && ops->ndo_open)
1436 ret = ops->ndo_open(dev);
1438 netpoll_poll_enable(dev);
1441 clear_bit(__LINK_STATE_START, &dev->state);
1443 dev->flags |= IFF_UP;
1444 dev_set_rx_mode(dev);
1446 add_device_randomness(dev->dev_addr, dev->addr_len);
1453 * dev_open - prepare an interface for use.
1454 * @dev: device to open
1455 * @extack: netlink extended ack
1457 * Takes a device from down to up state. The device's private open
1458 * function is invoked and then the multicast lists are loaded. Finally
1459 * the device is moved into the up state and a %NETDEV_UP message is
1460 * sent to the netdev notifier chain.
1462 * Calling this function on an active interface is a nop. On a failure
1463 * a negative errno code is returned.
1465 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1469 if (dev->flags & IFF_UP)
1472 ret = __dev_open(dev, extack);
1476 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1477 call_netdevice_notifiers(NETDEV_UP, dev);
1481 EXPORT_SYMBOL(dev_open);
1483 static void __dev_close_many(struct list_head *head)
1485 struct net_device *dev;
1490 list_for_each_entry(dev, head, close_list) {
1491 /* Temporarily disable netpoll until the interface is down */
1492 netpoll_poll_disable(dev);
1494 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1496 clear_bit(__LINK_STATE_START, &dev->state);
1498 /* Synchronize to scheduled poll. We cannot touch poll list, it
1499 * can be even on different cpu. So just clear netif_running().
1501 * dev->stop() will invoke napi_disable() on all of it's
1502 * napi_struct instances on this device.
1504 smp_mb__after_atomic(); /* Commit netif_running(). */
1507 dev_deactivate_many(head);
1509 list_for_each_entry(dev, head, close_list) {
1510 const struct net_device_ops *ops = dev->netdev_ops;
1513 * Call the device specific close. This cannot fail.
1514 * Only if device is UP
1516 * We allow it to be called even after a DETACH hot-plug
1522 dev->flags &= ~IFF_UP;
1523 netpoll_poll_enable(dev);
1527 static void __dev_close(struct net_device *dev)
1531 list_add(&dev->close_list, &single);
1532 __dev_close_many(&single);
1536 void dev_close_many(struct list_head *head, bool unlink)
1538 struct net_device *dev, *tmp;
1540 /* Remove the devices that don't need to be closed */
1541 list_for_each_entry_safe(dev, tmp, head, close_list)
1542 if (!(dev->flags & IFF_UP))
1543 list_del_init(&dev->close_list);
1545 __dev_close_many(head);
1547 list_for_each_entry_safe(dev, tmp, head, close_list) {
1548 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1549 call_netdevice_notifiers(NETDEV_DOWN, dev);
1551 list_del_init(&dev->close_list);
1554 EXPORT_SYMBOL(dev_close_many);
1557 * dev_close - shutdown an interface.
1558 * @dev: device to shutdown
1560 * This function moves an active device into down state. A
1561 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1562 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1565 void dev_close(struct net_device *dev)
1567 if (dev->flags & IFF_UP) {
1570 list_add(&dev->close_list, &single);
1571 dev_close_many(&single, true);
1575 EXPORT_SYMBOL(dev_close);
1579 * dev_disable_lro - disable Large Receive Offload on a device
1582 * Disable Large Receive Offload (LRO) on a net device. Must be
1583 * called under RTNL. This is needed if received packets may be
1584 * forwarded to another interface.
1586 void dev_disable_lro(struct net_device *dev)
1588 struct net_device *lower_dev;
1589 struct list_head *iter;
1591 dev->wanted_features &= ~NETIF_F_LRO;
1592 netdev_update_features(dev);
1594 if (unlikely(dev->features & NETIF_F_LRO))
1595 netdev_WARN(dev, "failed to disable LRO!\n");
1597 netdev_for_each_lower_dev(dev, lower_dev, iter)
1598 dev_disable_lro(lower_dev);
1600 EXPORT_SYMBOL(dev_disable_lro);
1603 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1606 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1607 * called under RTNL. This is needed if Generic XDP is installed on
1610 static void dev_disable_gro_hw(struct net_device *dev)
1612 dev->wanted_features &= ~NETIF_F_GRO_HW;
1613 netdev_update_features(dev);
1615 if (unlikely(dev->features & NETIF_F_GRO_HW))
1616 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1619 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1622 case NETDEV_##val: \
1623 return "NETDEV_" __stringify(val);
1625 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1626 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1627 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1628 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1629 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1630 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1631 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1632 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1633 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1637 return "UNKNOWN_NETDEV_EVENT";
1639 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1641 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1642 struct net_device *dev)
1644 struct netdev_notifier_info info = {
1648 return nb->notifier_call(nb, val, &info);
1651 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1652 struct net_device *dev)
1656 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1657 err = notifier_to_errno(err);
1661 if (!(dev->flags & IFF_UP))
1664 call_netdevice_notifier(nb, NETDEV_UP, dev);
1668 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1669 struct net_device *dev)
1671 if (dev->flags & IFF_UP) {
1672 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1674 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1676 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1679 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1682 struct net_device *dev;
1685 for_each_netdev(net, dev) {
1686 err = call_netdevice_register_notifiers(nb, dev);
1693 for_each_netdev_continue_reverse(net, dev)
1694 call_netdevice_unregister_notifiers(nb, dev);
1698 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1701 struct net_device *dev;
1703 for_each_netdev(net, dev)
1704 call_netdevice_unregister_notifiers(nb, dev);
1707 static int dev_boot_phase = 1;
1710 * register_netdevice_notifier - register a network notifier block
1713 * Register a notifier to be called when network device events occur.
1714 * The notifier passed is linked into the kernel structures and must
1715 * not be reused until it has been unregistered. A negative errno code
1716 * is returned on a failure.
1718 * When registered all registration and up events are replayed
1719 * to the new notifier to allow device to have a race free
1720 * view of the network device list.
1723 int register_netdevice_notifier(struct notifier_block *nb)
1728 /* Close race with setup_net() and cleanup_net() */
1729 down_write(&pernet_ops_rwsem);
1731 err = raw_notifier_chain_register(&netdev_chain, nb);
1737 err = call_netdevice_register_net_notifiers(nb, net);
1744 up_write(&pernet_ops_rwsem);
1748 for_each_net_continue_reverse(net)
1749 call_netdevice_unregister_net_notifiers(nb, net);
1751 raw_notifier_chain_unregister(&netdev_chain, nb);
1754 EXPORT_SYMBOL(register_netdevice_notifier);
1757 * unregister_netdevice_notifier - unregister a network notifier block
1760 * Unregister a notifier previously registered by
1761 * register_netdevice_notifier(). The notifier is unlinked into the
1762 * kernel structures and may then be reused. A negative errno code
1763 * is returned on a failure.
1765 * After unregistering unregister and down device events are synthesized
1766 * for all devices on the device list to the removed notifier to remove
1767 * the need for special case cleanup code.
1770 int unregister_netdevice_notifier(struct notifier_block *nb)
1775 /* Close race with setup_net() and cleanup_net() */
1776 down_write(&pernet_ops_rwsem);
1778 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1783 call_netdevice_unregister_net_notifiers(nb, net);
1787 up_write(&pernet_ops_rwsem);
1790 EXPORT_SYMBOL(unregister_netdevice_notifier);
1792 static int __register_netdevice_notifier_net(struct net *net,
1793 struct notifier_block *nb,
1794 bool ignore_call_fail)
1798 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1804 err = call_netdevice_register_net_notifiers(nb, net);
1805 if (err && !ignore_call_fail)
1806 goto chain_unregister;
1811 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1815 static int __unregister_netdevice_notifier_net(struct net *net,
1816 struct notifier_block *nb)
1820 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1824 call_netdevice_unregister_net_notifiers(nb, net);
1829 * register_netdevice_notifier_net - register a per-netns network notifier block
1830 * @net: network namespace
1833 * Register a notifier to be called when network device events occur.
1834 * The notifier passed is linked into the kernel structures and must
1835 * not be reused until it has been unregistered. A negative errno code
1836 * is returned on a failure.
1838 * When registered all registration and up events are replayed
1839 * to the new notifier to allow device to have a race free
1840 * view of the network device list.
1843 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1848 err = __register_netdevice_notifier_net(net, nb, false);
1852 EXPORT_SYMBOL(register_netdevice_notifier_net);
1855 * unregister_netdevice_notifier_net - unregister a per-netns
1856 * network notifier block
1857 * @net: network namespace
1860 * Unregister a notifier previously registered by
1861 * register_netdevice_notifier(). The notifier is unlinked into the
1862 * kernel structures and may then be reused. A negative errno code
1863 * is returned on a failure.
1865 * After unregistering unregister and down device events are synthesized
1866 * for all devices on the device list to the removed notifier to remove
1867 * the need for special case cleanup code.
1870 int unregister_netdevice_notifier_net(struct net *net,
1871 struct notifier_block *nb)
1876 err = __unregister_netdevice_notifier_net(net, nb);
1880 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1882 int register_netdevice_notifier_dev_net(struct net_device *dev,
1883 struct notifier_block *nb,
1884 struct netdev_net_notifier *nn)
1889 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1892 list_add(&nn->list, &dev->net_notifier_list);
1897 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1899 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1900 struct notifier_block *nb,
1901 struct netdev_net_notifier *nn)
1906 list_del(&nn->list);
1907 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1911 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1913 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1916 struct netdev_net_notifier *nn;
1918 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1919 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1920 __register_netdevice_notifier_net(net, nn->nb, true);
1925 * call_netdevice_notifiers_info - call all network notifier blocks
1926 * @val: value passed unmodified to notifier function
1927 * @info: notifier information data
1929 * Call all network notifier blocks. Parameters and return value
1930 * are as for raw_notifier_call_chain().
1933 static int call_netdevice_notifiers_info(unsigned long val,
1934 struct netdev_notifier_info *info)
1936 struct net *net = dev_net(info->dev);
1941 /* Run per-netns notifier block chain first, then run the global one.
1942 * Hopefully, one day, the global one is going to be removed after
1943 * all notifier block registrators get converted to be per-netns.
1945 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1946 if (ret & NOTIFY_STOP_MASK)
1948 return raw_notifier_call_chain(&netdev_chain, val, info);
1951 static int call_netdevice_notifiers_extack(unsigned long val,
1952 struct net_device *dev,
1953 struct netlink_ext_ack *extack)
1955 struct netdev_notifier_info info = {
1960 return call_netdevice_notifiers_info(val, &info);
1964 * call_netdevice_notifiers - call all network notifier blocks
1965 * @val: value passed unmodified to notifier function
1966 * @dev: net_device pointer passed unmodified to notifier function
1968 * Call all network notifier blocks. Parameters and return value
1969 * are as for raw_notifier_call_chain().
1972 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1974 return call_netdevice_notifiers_extack(val, dev, NULL);
1976 EXPORT_SYMBOL(call_netdevice_notifiers);
1979 * call_netdevice_notifiers_mtu - call all network notifier blocks
1980 * @val: value passed unmodified to notifier function
1981 * @dev: net_device pointer passed unmodified to notifier function
1982 * @arg: additional u32 argument passed to the notifier function
1984 * Call all network notifier blocks. Parameters and return value
1985 * are as for raw_notifier_call_chain().
1987 static int call_netdevice_notifiers_mtu(unsigned long val,
1988 struct net_device *dev, u32 arg)
1990 struct netdev_notifier_info_ext info = {
1995 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1997 return call_netdevice_notifiers_info(val, &info.info);
2000 #ifdef CONFIG_NET_INGRESS
2001 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2003 void net_inc_ingress_queue(void)
2005 static_branch_inc(&ingress_needed_key);
2007 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2009 void net_dec_ingress_queue(void)
2011 static_branch_dec(&ingress_needed_key);
2013 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2016 #ifdef CONFIG_NET_EGRESS
2017 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2019 void net_inc_egress_queue(void)
2021 static_branch_inc(&egress_needed_key);
2023 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2025 void net_dec_egress_queue(void)
2027 static_branch_dec(&egress_needed_key);
2029 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2032 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2033 #ifdef CONFIG_JUMP_LABEL
2034 static atomic_t netstamp_needed_deferred;
2035 static atomic_t netstamp_wanted;
2036 static void netstamp_clear(struct work_struct *work)
2038 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2041 wanted = atomic_add_return(deferred, &netstamp_wanted);
2043 static_branch_enable(&netstamp_needed_key);
2045 static_branch_disable(&netstamp_needed_key);
2047 static DECLARE_WORK(netstamp_work, netstamp_clear);
2050 void net_enable_timestamp(void)
2052 #ifdef CONFIG_JUMP_LABEL
2056 wanted = atomic_read(&netstamp_wanted);
2059 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2062 atomic_inc(&netstamp_needed_deferred);
2063 schedule_work(&netstamp_work);
2065 static_branch_inc(&netstamp_needed_key);
2068 EXPORT_SYMBOL(net_enable_timestamp);
2070 void net_disable_timestamp(void)
2072 #ifdef CONFIG_JUMP_LABEL
2076 wanted = atomic_read(&netstamp_wanted);
2079 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2082 atomic_dec(&netstamp_needed_deferred);
2083 schedule_work(&netstamp_work);
2085 static_branch_dec(&netstamp_needed_key);
2088 EXPORT_SYMBOL(net_disable_timestamp);
2090 static inline void net_timestamp_set(struct sk_buff *skb)
2093 if (static_branch_unlikely(&netstamp_needed_key))
2094 __net_timestamp(skb);
2097 #define net_timestamp_check(COND, SKB) \
2098 if (static_branch_unlikely(&netstamp_needed_key)) { \
2099 if ((COND) && !(SKB)->tstamp) \
2100 __net_timestamp(SKB); \
2103 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2107 if (!(dev->flags & IFF_UP))
2110 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2111 if (skb->len <= len)
2114 /* if TSO is enabled, we don't care about the length as the packet
2115 * could be forwarded without being segmented before
2117 if (skb_is_gso(skb))
2122 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2124 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2126 int ret = ____dev_forward_skb(dev, skb);
2129 skb->protocol = eth_type_trans(skb, dev);
2130 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2135 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2138 * dev_forward_skb - loopback an skb to another netif
2140 * @dev: destination network device
2141 * @skb: buffer to forward
2144 * NET_RX_SUCCESS (no congestion)
2145 * NET_RX_DROP (packet was dropped, but freed)
2147 * dev_forward_skb can be used for injecting an skb from the
2148 * start_xmit function of one device into the receive queue
2149 * of another device.
2151 * The receiving device may be in another namespace, so
2152 * we have to clear all information in the skb that could
2153 * impact namespace isolation.
2155 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2157 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2159 EXPORT_SYMBOL_GPL(dev_forward_skb);
2161 static inline int deliver_skb(struct sk_buff *skb,
2162 struct packet_type *pt_prev,
2163 struct net_device *orig_dev)
2165 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2167 refcount_inc(&skb->users);
2168 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2171 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2172 struct packet_type **pt,
2173 struct net_device *orig_dev,
2175 struct list_head *ptype_list)
2177 struct packet_type *ptype, *pt_prev = *pt;
2179 list_for_each_entry_rcu(ptype, ptype_list, list) {
2180 if (ptype->type != type)
2183 deliver_skb(skb, pt_prev, orig_dev);
2189 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2191 if (!ptype->af_packet_priv || !skb->sk)
2194 if (ptype->id_match)
2195 return ptype->id_match(ptype, skb->sk);
2196 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2203 * dev_nit_active - return true if any network interface taps are in use
2205 * @dev: network device to check for the presence of taps
2207 bool dev_nit_active(struct net_device *dev)
2209 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2211 EXPORT_SYMBOL_GPL(dev_nit_active);
2214 * Support routine. Sends outgoing frames to any network
2215 * taps currently in use.
2218 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2220 struct packet_type *ptype;
2221 struct sk_buff *skb2 = NULL;
2222 struct packet_type *pt_prev = NULL;
2223 struct list_head *ptype_list = &ptype_all;
2227 list_for_each_entry_rcu(ptype, ptype_list, list) {
2228 if (ptype->ignore_outgoing)
2231 /* Never send packets back to the socket
2232 * they originated from - MvS (miquels@drinkel.ow.org)
2234 if (skb_loop_sk(ptype, skb))
2238 deliver_skb(skb2, pt_prev, skb->dev);
2243 /* need to clone skb, done only once */
2244 skb2 = skb_clone(skb, GFP_ATOMIC);
2248 net_timestamp_set(skb2);
2250 /* skb->nh should be correctly
2251 * set by sender, so that the second statement is
2252 * just protection against buggy protocols.
2254 skb_reset_mac_header(skb2);
2256 if (skb_network_header(skb2) < skb2->data ||
2257 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2258 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2259 ntohs(skb2->protocol),
2261 skb_reset_network_header(skb2);
2264 skb2->transport_header = skb2->network_header;
2265 skb2->pkt_type = PACKET_OUTGOING;
2269 if (ptype_list == &ptype_all) {
2270 ptype_list = &dev->ptype_all;
2275 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2276 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2282 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2285 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2286 * @dev: Network device
2287 * @txq: number of queues available
2289 * If real_num_tx_queues is changed the tc mappings may no longer be
2290 * valid. To resolve this verify the tc mapping remains valid and if
2291 * not NULL the mapping. With no priorities mapping to this
2292 * offset/count pair it will no longer be used. In the worst case TC0
2293 * is invalid nothing can be done so disable priority mappings. If is
2294 * expected that drivers will fix this mapping if they can before
2295 * calling netif_set_real_num_tx_queues.
2297 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2300 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2302 /* If TC0 is invalidated disable TC mapping */
2303 if (tc->offset + tc->count > txq) {
2304 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2309 /* Invalidated prio to tc mappings set to TC0 */
2310 for (i = 1; i < TC_BITMASK + 1; i++) {
2311 int q = netdev_get_prio_tc_map(dev, i);
2313 tc = &dev->tc_to_txq[q];
2314 if (tc->offset + tc->count > txq) {
2315 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2317 netdev_set_prio_tc_map(dev, i, 0);
2322 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2325 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2328 /* walk through the TCs and see if it falls into any of them */
2329 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2330 if ((txq - tc->offset) < tc->count)
2334 /* didn't find it, just return -1 to indicate no match */
2340 EXPORT_SYMBOL(netdev_txq_to_tc);
2343 struct static_key xps_needed __read_mostly;
2344 EXPORT_SYMBOL(xps_needed);
2345 struct static_key xps_rxqs_needed __read_mostly;
2346 EXPORT_SYMBOL(xps_rxqs_needed);
2347 static DEFINE_MUTEX(xps_map_mutex);
2348 #define xmap_dereference(P) \
2349 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2351 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2354 struct xps_map *map = NULL;
2358 map = xmap_dereference(dev_maps->attr_map[tci]);
2362 for (pos = map->len; pos--;) {
2363 if (map->queues[pos] != index)
2367 map->queues[pos] = map->queues[--map->len];
2371 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2372 kfree_rcu(map, rcu);
2379 static bool remove_xps_queue_cpu(struct net_device *dev,
2380 struct xps_dev_maps *dev_maps,
2381 int cpu, u16 offset, u16 count)
2383 int num_tc = dev->num_tc ? : 1;
2384 bool active = false;
2387 for (tci = cpu * num_tc; num_tc--; tci++) {
2390 for (i = count, j = offset; i--; j++) {
2391 if (!remove_xps_queue(dev_maps, tci, j))
2401 static void reset_xps_maps(struct net_device *dev,
2402 struct xps_dev_maps *dev_maps,
2406 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2407 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2409 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2411 static_key_slow_dec_cpuslocked(&xps_needed);
2412 kfree_rcu(dev_maps, rcu);
2415 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2416 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2417 u16 offset, u16 count, bool is_rxqs_map)
2419 bool active = false;
2422 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2424 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2427 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2430 for (i = offset + (count - 1); count--; i--) {
2431 netdev_queue_numa_node_write(
2432 netdev_get_tx_queue(dev, i),
2438 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2441 const unsigned long *possible_mask = NULL;
2442 struct xps_dev_maps *dev_maps;
2443 unsigned int nr_ids;
2445 if (!static_key_false(&xps_needed))
2449 mutex_lock(&xps_map_mutex);
2451 if (static_key_false(&xps_rxqs_needed)) {
2452 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2454 nr_ids = dev->num_rx_queues;
2455 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2456 offset, count, true);
2460 dev_maps = xmap_dereference(dev->xps_cpus_map);
2464 if (num_possible_cpus() > 1)
2465 possible_mask = cpumask_bits(cpu_possible_mask);
2466 nr_ids = nr_cpu_ids;
2467 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2471 mutex_unlock(&xps_map_mutex);
2475 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2477 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2480 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2481 u16 index, bool is_rxqs_map)
2483 struct xps_map *new_map;
2484 int alloc_len = XPS_MIN_MAP_ALLOC;
2487 for (pos = 0; map && pos < map->len; pos++) {
2488 if (map->queues[pos] != index)
2493 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2495 if (pos < map->alloc_len)
2498 alloc_len = map->alloc_len * 2;
2501 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2505 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2507 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2508 cpu_to_node(attr_index));
2512 for (i = 0; i < pos; i++)
2513 new_map->queues[i] = map->queues[i];
2514 new_map->alloc_len = alloc_len;
2520 /* Must be called under cpus_read_lock */
2521 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2522 u16 index, bool is_rxqs_map)
2524 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2525 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2526 int i, j, tci, numa_node_id = -2;
2527 int maps_sz, num_tc = 1, tc = 0;
2528 struct xps_map *map, *new_map;
2529 bool active = false;
2530 unsigned int nr_ids;
2533 /* Do not allow XPS on subordinate device directly */
2534 num_tc = dev->num_tc;
2538 /* If queue belongs to subordinate dev use its map */
2539 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2541 tc = netdev_txq_to_tc(dev, index);
2546 mutex_lock(&xps_map_mutex);
2548 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2549 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2550 nr_ids = dev->num_rx_queues;
2552 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2553 if (num_possible_cpus() > 1) {
2554 online_mask = cpumask_bits(cpu_online_mask);
2555 possible_mask = cpumask_bits(cpu_possible_mask);
2557 dev_maps = xmap_dereference(dev->xps_cpus_map);
2558 nr_ids = nr_cpu_ids;
2561 if (maps_sz < L1_CACHE_BYTES)
2562 maps_sz = L1_CACHE_BYTES;
2564 /* allocate memory for queue storage */
2565 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2568 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2569 if (!new_dev_maps) {
2570 mutex_unlock(&xps_map_mutex);
2574 tci = j * num_tc + tc;
2575 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2578 map = expand_xps_map(map, j, index, is_rxqs_map);
2582 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2586 goto out_no_new_maps;
2589 /* Increment static keys at most once per type */
2590 static_key_slow_inc_cpuslocked(&xps_needed);
2592 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2595 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2597 /* copy maps belonging to foreign traffic classes */
2598 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2599 /* fill in the new device map from the old device map */
2600 map = xmap_dereference(dev_maps->attr_map[tci]);
2601 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2604 /* We need to explicitly update tci as prevous loop
2605 * could break out early if dev_maps is NULL.
2607 tci = j * num_tc + tc;
2609 if (netif_attr_test_mask(j, mask, nr_ids) &&
2610 netif_attr_test_online(j, online_mask, nr_ids)) {
2611 /* add tx-queue to CPU/rx-queue maps */
2614 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2615 while ((pos < map->len) && (map->queues[pos] != index))
2618 if (pos == map->len)
2619 map->queues[map->len++] = index;
2622 if (numa_node_id == -2)
2623 numa_node_id = cpu_to_node(j);
2624 else if (numa_node_id != cpu_to_node(j))
2628 } else if (dev_maps) {
2629 /* fill in the new device map from the old device map */
2630 map = xmap_dereference(dev_maps->attr_map[tci]);
2631 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2634 /* copy maps belonging to foreign traffic classes */
2635 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2636 /* fill in the new device map from the old device map */
2637 map = xmap_dereference(dev_maps->attr_map[tci]);
2638 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2643 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2645 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2647 /* Cleanup old maps */
2649 goto out_no_old_maps;
2651 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2653 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2654 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2655 map = xmap_dereference(dev_maps->attr_map[tci]);
2656 if (map && map != new_map)
2657 kfree_rcu(map, rcu);
2661 kfree_rcu(dev_maps, rcu);
2664 dev_maps = new_dev_maps;
2669 /* update Tx queue numa node */
2670 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2671 (numa_node_id >= 0) ?
2672 numa_node_id : NUMA_NO_NODE);
2678 /* removes tx-queue from unused CPUs/rx-queues */
2679 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2681 for (i = tc, tci = j * num_tc; i--; tci++)
2682 active |= remove_xps_queue(dev_maps, tci, index);
2683 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2684 !netif_attr_test_online(j, online_mask, nr_ids))
2685 active |= remove_xps_queue(dev_maps, tci, index);
2686 for (i = num_tc - tc, tci++; --i; tci++)
2687 active |= remove_xps_queue(dev_maps, tci, index);
2690 /* free map if not active */
2692 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2695 mutex_unlock(&xps_map_mutex);
2699 /* remove any maps that we added */
2700 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2702 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2703 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2705 xmap_dereference(dev_maps->attr_map[tci]) :
2707 if (new_map && new_map != map)
2712 mutex_unlock(&xps_map_mutex);
2714 kfree(new_dev_maps);
2717 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2719 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2725 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2730 EXPORT_SYMBOL(netif_set_xps_queue);
2733 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2735 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2737 /* Unbind any subordinate channels */
2738 while (txq-- != &dev->_tx[0]) {
2740 netdev_unbind_sb_channel(dev, txq->sb_dev);
2744 void netdev_reset_tc(struct net_device *dev)
2747 netif_reset_xps_queues_gt(dev, 0);
2749 netdev_unbind_all_sb_channels(dev);
2751 /* Reset TC configuration of device */
2753 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2754 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2756 EXPORT_SYMBOL(netdev_reset_tc);
2758 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2760 if (tc >= dev->num_tc)
2764 netif_reset_xps_queues(dev, offset, count);
2766 dev->tc_to_txq[tc].count = count;
2767 dev->tc_to_txq[tc].offset = offset;
2770 EXPORT_SYMBOL(netdev_set_tc_queue);
2772 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2774 if (num_tc > TC_MAX_QUEUE)
2778 netif_reset_xps_queues_gt(dev, 0);
2780 netdev_unbind_all_sb_channels(dev);
2782 dev->num_tc = num_tc;
2785 EXPORT_SYMBOL(netdev_set_num_tc);
2787 void netdev_unbind_sb_channel(struct net_device *dev,
2788 struct net_device *sb_dev)
2790 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2793 netif_reset_xps_queues_gt(sb_dev, 0);
2795 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2796 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2798 while (txq-- != &dev->_tx[0]) {
2799 if (txq->sb_dev == sb_dev)
2803 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2805 int netdev_bind_sb_channel_queue(struct net_device *dev,
2806 struct net_device *sb_dev,
2807 u8 tc, u16 count, u16 offset)
2809 /* Make certain the sb_dev and dev are already configured */
2810 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2813 /* We cannot hand out queues we don't have */
2814 if ((offset + count) > dev->real_num_tx_queues)
2817 /* Record the mapping */
2818 sb_dev->tc_to_txq[tc].count = count;
2819 sb_dev->tc_to_txq[tc].offset = offset;
2821 /* Provide a way for Tx queue to find the tc_to_txq map or
2822 * XPS map for itself.
2825 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2829 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2831 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2833 /* Do not use a multiqueue device to represent a subordinate channel */
2834 if (netif_is_multiqueue(dev))
2837 /* We allow channels 1 - 32767 to be used for subordinate channels.
2838 * Channel 0 is meant to be "native" mode and used only to represent
2839 * the main root device. We allow writing 0 to reset the device back
2840 * to normal mode after being used as a subordinate channel.
2842 if (channel > S16_MAX)
2845 dev->num_tc = -channel;
2849 EXPORT_SYMBOL(netdev_set_sb_channel);
2852 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2853 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2855 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2860 disabling = txq < dev->real_num_tx_queues;
2862 if (txq < 1 || txq > dev->num_tx_queues)
2865 if (dev->reg_state == NETREG_REGISTERED ||
2866 dev->reg_state == NETREG_UNREGISTERING) {
2869 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2875 netif_setup_tc(dev, txq);
2877 dev->real_num_tx_queues = txq;
2881 qdisc_reset_all_tx_gt(dev, txq);
2883 netif_reset_xps_queues_gt(dev, txq);
2887 dev->real_num_tx_queues = txq;
2892 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2896 * netif_set_real_num_rx_queues - set actual number of RX queues used
2897 * @dev: Network device
2898 * @rxq: Actual number of RX queues
2900 * This must be called either with the rtnl_lock held or before
2901 * registration of the net device. Returns 0 on success, or a
2902 * negative error code. If called before registration, it always
2905 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2909 if (rxq < 1 || rxq > dev->num_rx_queues)
2912 if (dev->reg_state == NETREG_REGISTERED) {
2915 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2921 dev->real_num_rx_queues = rxq;
2924 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2928 * netif_get_num_default_rss_queues - default number of RSS queues
2930 * This routine should set an upper limit on the number of RSS queues
2931 * used by default by multiqueue devices.
2933 int netif_get_num_default_rss_queues(void)
2935 return is_kdump_kernel() ?
2936 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2938 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2940 static void __netif_reschedule(struct Qdisc *q)
2942 struct softnet_data *sd;
2943 unsigned long flags;
2945 local_irq_save(flags);
2946 sd = this_cpu_ptr(&softnet_data);
2947 q->next_sched = NULL;
2948 *sd->output_queue_tailp = q;
2949 sd->output_queue_tailp = &q->next_sched;
2950 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2951 local_irq_restore(flags);
2954 void __netif_schedule(struct Qdisc *q)
2956 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2957 __netif_reschedule(q);
2959 EXPORT_SYMBOL(__netif_schedule);
2961 struct dev_kfree_skb_cb {
2962 enum skb_free_reason reason;
2965 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2967 return (struct dev_kfree_skb_cb *)skb->cb;
2970 void netif_schedule_queue(struct netdev_queue *txq)
2973 if (!netif_xmit_stopped(txq)) {
2974 struct Qdisc *q = rcu_dereference(txq->qdisc);
2976 __netif_schedule(q);
2980 EXPORT_SYMBOL(netif_schedule_queue);
2982 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2984 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2988 q = rcu_dereference(dev_queue->qdisc);
2989 __netif_schedule(q);
2993 EXPORT_SYMBOL(netif_tx_wake_queue);
2995 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2997 unsigned long flags;
3002 if (likely(refcount_read(&skb->users) == 1)) {
3004 refcount_set(&skb->users, 0);
3005 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3008 get_kfree_skb_cb(skb)->reason = reason;
3009 local_irq_save(flags);
3010 skb->next = __this_cpu_read(softnet_data.completion_queue);
3011 __this_cpu_write(softnet_data.completion_queue, skb);
3012 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3013 local_irq_restore(flags);
3015 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3017 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3019 if (in_irq() || irqs_disabled())
3020 __dev_kfree_skb_irq(skb, reason);
3024 EXPORT_SYMBOL(__dev_kfree_skb_any);
3028 * netif_device_detach - mark device as removed
3029 * @dev: network device
3031 * Mark device as removed from system and therefore no longer available.
3033 void netif_device_detach(struct net_device *dev)
3035 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3036 netif_running(dev)) {
3037 netif_tx_stop_all_queues(dev);
3040 EXPORT_SYMBOL(netif_device_detach);
3043 * netif_device_attach - mark device as attached
3044 * @dev: network device
3046 * Mark device as attached from system and restart if needed.
3048 void netif_device_attach(struct net_device *dev)
3050 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3051 netif_running(dev)) {
3052 netif_tx_wake_all_queues(dev);
3053 __netdev_watchdog_up(dev);
3056 EXPORT_SYMBOL(netif_device_attach);
3059 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3060 * to be used as a distribution range.
3062 static u16 skb_tx_hash(const struct net_device *dev,
3063 const struct net_device *sb_dev,
3064 struct sk_buff *skb)
3068 u16 qcount = dev->real_num_tx_queues;
3071 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3073 qoffset = sb_dev->tc_to_txq[tc].offset;
3074 qcount = sb_dev->tc_to_txq[tc].count;
3077 if (skb_rx_queue_recorded(skb)) {
3078 hash = skb_get_rx_queue(skb);
3079 if (hash >= qoffset)
3081 while (unlikely(hash >= qcount))
3083 return hash + qoffset;
3086 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3089 static void skb_warn_bad_offload(const struct sk_buff *skb)
3091 static const netdev_features_t null_features;
3092 struct net_device *dev = skb->dev;
3093 const char *name = "";
3095 if (!net_ratelimit())
3099 if (dev->dev.parent)
3100 name = dev_driver_string(dev->dev.parent);
3102 name = netdev_name(dev);
3104 skb_dump(KERN_WARNING, skb, false);
3105 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3106 name, dev ? &dev->features : &null_features,
3107 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3111 * Invalidate hardware checksum when packet is to be mangled, and
3112 * complete checksum manually on outgoing path.
3114 int skb_checksum_help(struct sk_buff *skb)
3117 int ret = 0, offset;
3119 if (skb->ip_summed == CHECKSUM_COMPLETE)
3120 goto out_set_summed;
3122 if (unlikely(skb_shinfo(skb)->gso_size)) {
3123 skb_warn_bad_offload(skb);
3127 /* Before computing a checksum, we should make sure no frag could
3128 * be modified by an external entity : checksum could be wrong.
3130 if (skb_has_shared_frag(skb)) {
3131 ret = __skb_linearize(skb);
3136 offset = skb_checksum_start_offset(skb);
3137 BUG_ON(offset >= skb_headlen(skb));
3138 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3140 offset += skb->csum_offset;
3141 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3143 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3147 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3149 skb->ip_summed = CHECKSUM_NONE;
3153 EXPORT_SYMBOL(skb_checksum_help);
3155 int skb_crc32c_csum_help(struct sk_buff *skb)
3158 int ret = 0, offset, start;
3160 if (skb->ip_summed != CHECKSUM_PARTIAL)
3163 if (unlikely(skb_is_gso(skb)))
3166 /* Before computing a checksum, we should make sure no frag could
3167 * be modified by an external entity : checksum could be wrong.
3169 if (unlikely(skb_has_shared_frag(skb))) {
3170 ret = __skb_linearize(skb);
3174 start = skb_checksum_start_offset(skb);
3175 offset = start + offsetof(struct sctphdr, checksum);
3176 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3181 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3185 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3186 skb->len - start, ~(__u32)0,
3188 *(__le32 *)(skb->data + offset) = crc32c_csum;
3189 skb->ip_summed = CHECKSUM_NONE;
3190 skb->csum_not_inet = 0;
3195 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3197 __be16 type = skb->protocol;
3199 /* Tunnel gso handlers can set protocol to ethernet. */
3200 if (type == htons(ETH_P_TEB)) {
3203 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3206 eth = (struct ethhdr *)skb->data;
3207 type = eth->h_proto;
3210 return __vlan_get_protocol(skb, type, depth);
3214 * skb_mac_gso_segment - mac layer segmentation handler.
3215 * @skb: buffer to segment
3216 * @features: features for the output path (see dev->features)
3218 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3219 netdev_features_t features)
3221 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3222 struct packet_offload *ptype;
3223 int vlan_depth = skb->mac_len;
3224 __be16 type = skb_network_protocol(skb, &vlan_depth);
3226 if (unlikely(!type))
3227 return ERR_PTR(-EINVAL);
3229 __skb_pull(skb, vlan_depth);
3232 list_for_each_entry_rcu(ptype, &offload_base, list) {
3233 if (ptype->type == type && ptype->callbacks.gso_segment) {
3234 segs = ptype->callbacks.gso_segment(skb, features);
3240 __skb_push(skb, skb->data - skb_mac_header(skb));
3244 EXPORT_SYMBOL(skb_mac_gso_segment);
3247 /* openvswitch calls this on rx path, so we need a different check.
3249 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3252 return skb->ip_summed != CHECKSUM_PARTIAL &&
3253 skb->ip_summed != CHECKSUM_UNNECESSARY;
3255 return skb->ip_summed == CHECKSUM_NONE;
3259 * __skb_gso_segment - Perform segmentation on skb.
3260 * @skb: buffer to segment
3261 * @features: features for the output path (see dev->features)
3262 * @tx_path: whether it is called in TX path
3264 * This function segments the given skb and returns a list of segments.
3266 * It may return NULL if the skb requires no segmentation. This is
3267 * only possible when GSO is used for verifying header integrity.
3269 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3271 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3272 netdev_features_t features, bool tx_path)
3274 struct sk_buff *segs;
3276 if (unlikely(skb_needs_check(skb, tx_path))) {
3279 /* We're going to init ->check field in TCP or UDP header */
3280 err = skb_cow_head(skb, 0);
3282 return ERR_PTR(err);
3285 /* Only report GSO partial support if it will enable us to
3286 * support segmentation on this frame without needing additional
3289 if (features & NETIF_F_GSO_PARTIAL) {
3290 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3291 struct net_device *dev = skb->dev;
3293 partial_features |= dev->features & dev->gso_partial_features;
3294 if (!skb_gso_ok(skb, features | partial_features))
3295 features &= ~NETIF_F_GSO_PARTIAL;
3298 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3299 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3301 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3302 SKB_GSO_CB(skb)->encap_level = 0;
3304 skb_reset_mac_header(skb);
3305 skb_reset_mac_len(skb);
3307 segs = skb_mac_gso_segment(skb, features);
3309 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3310 skb_warn_bad_offload(skb);
3314 EXPORT_SYMBOL(__skb_gso_segment);
3316 /* Take action when hardware reception checksum errors are detected. */
3318 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3320 if (net_ratelimit()) {
3321 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3322 skb_dump(KERN_ERR, skb, true);
3326 EXPORT_SYMBOL(netdev_rx_csum_fault);
3329 /* XXX: check that highmem exists at all on the given machine. */
3330 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3332 #ifdef CONFIG_HIGHMEM
3335 if (!(dev->features & NETIF_F_HIGHDMA)) {
3336 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3337 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3339 if (PageHighMem(skb_frag_page(frag)))
3347 /* If MPLS offload request, verify we are testing hardware MPLS features
3348 * instead of standard features for the netdev.
3350 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3351 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3352 netdev_features_t features,
3355 if (eth_p_mpls(type))
3356 features &= skb->dev->mpls_features;
3361 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3362 netdev_features_t features,
3369 static netdev_features_t harmonize_features(struct sk_buff *skb,
3370 netdev_features_t features)
3375 type = skb_network_protocol(skb, &tmp);
3376 features = net_mpls_features(skb, features, type);
3378 if (skb->ip_summed != CHECKSUM_NONE &&
3379 !can_checksum_protocol(features, type)) {
3380 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3382 if (illegal_highdma(skb->dev, skb))
3383 features &= ~NETIF_F_SG;
3388 netdev_features_t passthru_features_check(struct sk_buff *skb,
3389 struct net_device *dev,
3390 netdev_features_t features)
3394 EXPORT_SYMBOL(passthru_features_check);
3396 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3397 struct net_device *dev,
3398 netdev_features_t features)
3400 return vlan_features_check(skb, features);
3403 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3404 struct net_device *dev,
3405 netdev_features_t features)
3407 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3409 if (gso_segs > dev->gso_max_segs)
3410 return features & ~NETIF_F_GSO_MASK;
3412 /* Support for GSO partial features requires software
3413 * intervention before we can actually process the packets
3414 * so we need to strip support for any partial features now
3415 * and we can pull them back in after we have partially
3416 * segmented the frame.
3418 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3419 features &= ~dev->gso_partial_features;
3421 /* Make sure to clear the IPv4 ID mangling feature if the
3422 * IPv4 header has the potential to be fragmented.
3424 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3425 struct iphdr *iph = skb->encapsulation ?
3426 inner_ip_hdr(skb) : ip_hdr(skb);
3428 if (!(iph->frag_off & htons(IP_DF)))
3429 features &= ~NETIF_F_TSO_MANGLEID;
3435 netdev_features_t netif_skb_features(struct sk_buff *skb)
3437 struct net_device *dev = skb->dev;
3438 netdev_features_t features = dev->features;
3440 if (skb_is_gso(skb))
3441 features = gso_features_check(skb, dev, features);
3443 /* If encapsulation offload request, verify we are testing
3444 * hardware encapsulation features instead of standard
3445 * features for the netdev
3447 if (skb->encapsulation)
3448 features &= dev->hw_enc_features;
3450 if (skb_vlan_tagged(skb))
3451 features = netdev_intersect_features(features,
3452 dev->vlan_features |
3453 NETIF_F_HW_VLAN_CTAG_TX |
3454 NETIF_F_HW_VLAN_STAG_TX);
3456 if (dev->netdev_ops->ndo_features_check)
3457 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3460 features &= dflt_features_check(skb, dev, features);
3462 return harmonize_features(skb, features);
3464 EXPORT_SYMBOL(netif_skb_features);
3466 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3467 struct netdev_queue *txq, bool more)
3472 if (dev_nit_active(dev))
3473 dev_queue_xmit_nit(skb, dev);
3476 trace_net_dev_start_xmit(skb, dev);
3477 rc = netdev_start_xmit(skb, dev, txq, more);
3478 trace_net_dev_xmit(skb, rc, dev, len);
3483 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3484 struct netdev_queue *txq, int *ret)
3486 struct sk_buff *skb = first;
3487 int rc = NETDEV_TX_OK;
3490 struct sk_buff *next = skb->next;
3492 skb_mark_not_on_list(skb);
3493 rc = xmit_one(skb, dev, txq, next != NULL);
3494 if (unlikely(!dev_xmit_complete(rc))) {
3500 if (netif_tx_queue_stopped(txq) && skb) {
3501 rc = NETDEV_TX_BUSY;
3511 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3512 netdev_features_t features)
3514 if (skb_vlan_tag_present(skb) &&
3515 !vlan_hw_offload_capable(features, skb->vlan_proto))
3516 skb = __vlan_hwaccel_push_inside(skb);
3520 int skb_csum_hwoffload_help(struct sk_buff *skb,
3521 const netdev_features_t features)
3523 if (unlikely(skb->csum_not_inet))
3524 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3525 skb_crc32c_csum_help(skb);
3527 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3529 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3531 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3533 netdev_features_t features;
3535 features = netif_skb_features(skb);
3536 skb = validate_xmit_vlan(skb, features);
3540 skb = sk_validate_xmit_skb(skb, dev);
3544 if (netif_needs_gso(skb, features)) {
3545 struct sk_buff *segs;
3547 segs = skb_gso_segment(skb, features);
3555 if (skb_needs_linearize(skb, features) &&
3556 __skb_linearize(skb))
3559 /* If packet is not checksummed and device does not
3560 * support checksumming for this protocol, complete
3561 * checksumming here.
3563 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3564 if (skb->encapsulation)
3565 skb_set_inner_transport_header(skb,
3566 skb_checksum_start_offset(skb));
3568 skb_set_transport_header(skb,
3569 skb_checksum_start_offset(skb));
3570 if (skb_csum_hwoffload_help(skb, features))
3575 skb = validate_xmit_xfrm(skb, features, again);
3582 atomic_long_inc(&dev->tx_dropped);
3586 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3588 struct sk_buff *next, *head = NULL, *tail;
3590 for (; skb != NULL; skb = next) {
3592 skb_mark_not_on_list(skb);
3594 /* in case skb wont be segmented, point to itself */
3597 skb = validate_xmit_skb(skb, dev, again);
3605 /* If skb was segmented, skb->prev points to
3606 * the last segment. If not, it still contains skb.
3612 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3614 static void qdisc_pkt_len_init(struct sk_buff *skb)
3616 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3618 qdisc_skb_cb(skb)->pkt_len = skb->len;
3620 /* To get more precise estimation of bytes sent on wire,
3621 * we add to pkt_len the headers size of all segments
3623 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3624 unsigned int hdr_len;
3625 u16 gso_segs = shinfo->gso_segs;
3627 /* mac layer + network layer */
3628 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3630 /* + transport layer */
3631 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3632 const struct tcphdr *th;
3633 struct tcphdr _tcphdr;
3635 th = skb_header_pointer(skb, skb_transport_offset(skb),
3636 sizeof(_tcphdr), &_tcphdr);
3638 hdr_len += __tcp_hdrlen(th);
3640 struct udphdr _udphdr;
3642 if (skb_header_pointer(skb, skb_transport_offset(skb),
3643 sizeof(_udphdr), &_udphdr))
3644 hdr_len += sizeof(struct udphdr);
3647 if (shinfo->gso_type & SKB_GSO_DODGY)
3648 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3651 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3655 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3656 struct net_device *dev,
3657 struct netdev_queue *txq)
3659 spinlock_t *root_lock = qdisc_lock(q);
3660 struct sk_buff *to_free = NULL;
3664 qdisc_calculate_pkt_len(skb, q);
3666 if (q->flags & TCQ_F_NOLOCK) {
3667 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3670 if (unlikely(to_free))
3671 kfree_skb_list(to_free);
3676 * Heuristic to force contended enqueues to serialize on a
3677 * separate lock before trying to get qdisc main lock.
3678 * This permits qdisc->running owner to get the lock more
3679 * often and dequeue packets faster.
3681 contended = qdisc_is_running(q);
3682 if (unlikely(contended))
3683 spin_lock(&q->busylock);
3685 spin_lock(root_lock);
3686 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3687 __qdisc_drop(skb, &to_free);
3689 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3690 qdisc_run_begin(q)) {
3692 * This is a work-conserving queue; there are no old skbs
3693 * waiting to be sent out; and the qdisc is not running -
3694 * xmit the skb directly.
3697 qdisc_bstats_update(q, skb);
3699 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3700 if (unlikely(contended)) {
3701 spin_unlock(&q->busylock);
3708 rc = NET_XMIT_SUCCESS;
3710 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3711 if (qdisc_run_begin(q)) {
3712 if (unlikely(contended)) {
3713 spin_unlock(&q->busylock);
3720 spin_unlock(root_lock);
3721 if (unlikely(to_free))
3722 kfree_skb_list(to_free);
3723 if (unlikely(contended))
3724 spin_unlock(&q->busylock);
3728 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3729 static void skb_update_prio(struct sk_buff *skb)
3731 const struct netprio_map *map;
3732 const struct sock *sk;
3733 unsigned int prioidx;
3737 map = rcu_dereference_bh(skb->dev->priomap);
3740 sk = skb_to_full_sk(skb);
3744 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3746 if (prioidx < map->priomap_len)
3747 skb->priority = map->priomap[prioidx];
3750 #define skb_update_prio(skb)
3754 * dev_loopback_xmit - loop back @skb
3755 * @net: network namespace this loopback is happening in
3756 * @sk: sk needed to be a netfilter okfn
3757 * @skb: buffer to transmit
3759 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3761 skb_reset_mac_header(skb);
3762 __skb_pull(skb, skb_network_offset(skb));
3763 skb->pkt_type = PACKET_LOOPBACK;
3764 skb->ip_summed = CHECKSUM_UNNECESSARY;
3765 WARN_ON(!skb_dst(skb));
3770 EXPORT_SYMBOL(dev_loopback_xmit);
3772 #ifdef CONFIG_NET_EGRESS
3773 static struct sk_buff *
3774 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3776 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3777 struct tcf_result cl_res;
3782 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3783 mini_qdisc_bstats_cpu_update(miniq, skb);
3785 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3787 case TC_ACT_RECLASSIFY:
3788 skb->tc_index = TC_H_MIN(cl_res.classid);
3791 mini_qdisc_qstats_cpu_drop(miniq);
3792 *ret = NET_XMIT_DROP;
3798 *ret = NET_XMIT_SUCCESS;
3801 case TC_ACT_REDIRECT:
3802 /* No need to push/pop skb's mac_header here on egress! */
3803 skb_do_redirect(skb);
3804 *ret = NET_XMIT_SUCCESS;
3812 #endif /* CONFIG_NET_EGRESS */
3815 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3816 struct xps_dev_maps *dev_maps, unsigned int tci)
3818 struct xps_map *map;
3819 int queue_index = -1;
3823 tci += netdev_get_prio_tc_map(dev, skb->priority);
3826 map = rcu_dereference(dev_maps->attr_map[tci]);
3829 queue_index = map->queues[0];
3831 queue_index = map->queues[reciprocal_scale(
3832 skb_get_hash(skb), map->len)];
3833 if (unlikely(queue_index >= dev->real_num_tx_queues))
3840 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3841 struct sk_buff *skb)
3844 struct xps_dev_maps *dev_maps;
3845 struct sock *sk = skb->sk;
3846 int queue_index = -1;
3848 if (!static_key_false(&xps_needed))
3852 if (!static_key_false(&xps_rxqs_needed))
3855 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3857 int tci = sk_rx_queue_get(sk);
3859 if (tci >= 0 && tci < dev->num_rx_queues)
3860 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3865 if (queue_index < 0) {
3866 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3868 unsigned int tci = skb->sender_cpu - 1;
3870 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3882 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3883 struct net_device *sb_dev)
3887 EXPORT_SYMBOL(dev_pick_tx_zero);
3889 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3890 struct net_device *sb_dev)
3892 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3894 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3896 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3897 struct net_device *sb_dev)
3899 struct sock *sk = skb->sk;
3900 int queue_index = sk_tx_queue_get(sk);
3902 sb_dev = sb_dev ? : dev;
3904 if (queue_index < 0 || skb->ooo_okay ||
3905 queue_index >= dev->real_num_tx_queues) {
3906 int new_index = get_xps_queue(dev, sb_dev, skb);
3909 new_index = skb_tx_hash(dev, sb_dev, skb);
3911 if (queue_index != new_index && sk &&
3913 rcu_access_pointer(sk->sk_dst_cache))
3914 sk_tx_queue_set(sk, new_index);
3916 queue_index = new_index;
3921 EXPORT_SYMBOL(netdev_pick_tx);
3923 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3924 struct sk_buff *skb,
3925 struct net_device *sb_dev)
3927 int queue_index = 0;
3930 u32 sender_cpu = skb->sender_cpu - 1;
3932 if (sender_cpu >= (u32)NR_CPUS)
3933 skb->sender_cpu = raw_smp_processor_id() + 1;
3936 if (dev->real_num_tx_queues != 1) {
3937 const struct net_device_ops *ops = dev->netdev_ops;
3939 if (ops->ndo_select_queue)
3940 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3942 queue_index = netdev_pick_tx(dev, skb, sb_dev);
3944 queue_index = netdev_cap_txqueue(dev, queue_index);
3947 skb_set_queue_mapping(skb, queue_index);
3948 return netdev_get_tx_queue(dev, queue_index);
3952 * __dev_queue_xmit - transmit a buffer
3953 * @skb: buffer to transmit
3954 * @sb_dev: suboordinate device used for L2 forwarding offload
3956 * Queue a buffer for transmission to a network device. The caller must
3957 * have set the device and priority and built the buffer before calling
3958 * this function. The function can be called from an interrupt.
3960 * A negative errno code is returned on a failure. A success does not
3961 * guarantee the frame will be transmitted as it may be dropped due
3962 * to congestion or traffic shaping.
3964 * -----------------------------------------------------------------------------------
3965 * I notice this method can also return errors from the queue disciplines,
3966 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3969 * Regardless of the return value, the skb is consumed, so it is currently
3970 * difficult to retry a send to this method. (You can bump the ref count
3971 * before sending to hold a reference for retry if you are careful.)
3973 * When calling this method, interrupts MUST be enabled. This is because
3974 * the BH enable code must have IRQs enabled so that it will not deadlock.
3977 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3979 struct net_device *dev = skb->dev;
3980 struct netdev_queue *txq;
3985 skb_reset_mac_header(skb);
3987 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3988 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3990 /* Disable soft irqs for various locks below. Also
3991 * stops preemption for RCU.
3995 skb_update_prio(skb);
3997 qdisc_pkt_len_init(skb);
3998 #ifdef CONFIG_NET_CLS_ACT
3999 skb->tc_at_ingress = 0;
4000 # ifdef CONFIG_NET_EGRESS
4001 if (static_branch_unlikely(&egress_needed_key)) {
4002 skb = sch_handle_egress(skb, &rc, dev);
4008 /* If device/qdisc don't need skb->dst, release it right now while
4009 * its hot in this cpu cache.
4011 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4016 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4017 q = rcu_dereference_bh(txq->qdisc);
4019 trace_net_dev_queue(skb);
4021 rc = __dev_xmit_skb(skb, q, dev, txq);
4025 /* The device has no queue. Common case for software devices:
4026 * loopback, all the sorts of tunnels...
4028 * Really, it is unlikely that netif_tx_lock protection is necessary
4029 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4031 * However, it is possible, that they rely on protection
4034 * Check this and shot the lock. It is not prone from deadlocks.
4035 *Either shot noqueue qdisc, it is even simpler 8)
4037 if (dev->flags & IFF_UP) {
4038 int cpu = smp_processor_id(); /* ok because BHs are off */
4040 if (txq->xmit_lock_owner != cpu) {
4041 if (dev_xmit_recursion())
4042 goto recursion_alert;
4044 skb = validate_xmit_skb(skb, dev, &again);
4048 HARD_TX_LOCK(dev, txq, cpu);
4050 if (!netif_xmit_stopped(txq)) {
4051 dev_xmit_recursion_inc();
4052 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4053 dev_xmit_recursion_dec();
4054 if (dev_xmit_complete(rc)) {
4055 HARD_TX_UNLOCK(dev, txq);
4059 HARD_TX_UNLOCK(dev, txq);
4060 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4063 /* Recursion is detected! It is possible,
4067 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4073 rcu_read_unlock_bh();
4075 atomic_long_inc(&dev->tx_dropped);
4076 kfree_skb_list(skb);
4079 rcu_read_unlock_bh();
4083 int dev_queue_xmit(struct sk_buff *skb)
4085 return __dev_queue_xmit(skb, NULL);
4087 EXPORT_SYMBOL(dev_queue_xmit);
4089 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4091 return __dev_queue_xmit(skb, sb_dev);
4093 EXPORT_SYMBOL(dev_queue_xmit_accel);
4095 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4097 struct net_device *dev = skb->dev;
4098 struct sk_buff *orig_skb = skb;
4099 struct netdev_queue *txq;
4100 int ret = NETDEV_TX_BUSY;
4103 if (unlikely(!netif_running(dev) ||
4104 !netif_carrier_ok(dev)))
4107 skb = validate_xmit_skb_list(skb, dev, &again);
4108 if (skb != orig_skb)
4111 skb_set_queue_mapping(skb, queue_id);
4112 txq = skb_get_tx_queue(dev, skb);
4116 HARD_TX_LOCK(dev, txq, smp_processor_id());
4117 if (!netif_xmit_frozen_or_drv_stopped(txq))
4118 ret = netdev_start_xmit(skb, dev, txq, false);
4119 HARD_TX_UNLOCK(dev, txq);
4123 if (!dev_xmit_complete(ret))
4128 atomic_long_inc(&dev->tx_dropped);
4129 kfree_skb_list(skb);
4130 return NET_XMIT_DROP;
4132 EXPORT_SYMBOL(dev_direct_xmit);
4134 /*************************************************************************
4136 *************************************************************************/
4138 int netdev_max_backlog __read_mostly = 1000;
4139 EXPORT_SYMBOL(netdev_max_backlog);
4141 int netdev_tstamp_prequeue __read_mostly = 1;
4142 int netdev_budget __read_mostly = 300;
4143 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4144 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4145 int weight_p __read_mostly = 64; /* old backlog weight */
4146 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4147 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4148 int dev_rx_weight __read_mostly = 64;
4149 int dev_tx_weight __read_mostly = 64;
4150 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4151 int gro_normal_batch __read_mostly = 8;
4153 /* Called with irq disabled */
4154 static inline void ____napi_schedule(struct softnet_data *sd,
4155 struct napi_struct *napi)
4157 list_add_tail(&napi->poll_list, &sd->poll_list);
4158 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4163 /* One global table that all flow-based protocols share. */
4164 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4165 EXPORT_SYMBOL(rps_sock_flow_table);
4166 u32 rps_cpu_mask __read_mostly;
4167 EXPORT_SYMBOL(rps_cpu_mask);
4169 struct static_key_false rps_needed __read_mostly;
4170 EXPORT_SYMBOL(rps_needed);
4171 struct static_key_false rfs_needed __read_mostly;
4172 EXPORT_SYMBOL(rfs_needed);
4174 static struct rps_dev_flow *
4175 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4176 struct rps_dev_flow *rflow, u16 next_cpu)
4178 if (next_cpu < nr_cpu_ids) {
4179 #ifdef CONFIG_RFS_ACCEL
4180 struct netdev_rx_queue *rxqueue;
4181 struct rps_dev_flow_table *flow_table;
4182 struct rps_dev_flow *old_rflow;
4187 /* Should we steer this flow to a different hardware queue? */
4188 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4189 !(dev->features & NETIF_F_NTUPLE))
4191 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4192 if (rxq_index == skb_get_rx_queue(skb))
4195 rxqueue = dev->_rx + rxq_index;
4196 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4199 flow_id = skb_get_hash(skb) & flow_table->mask;
4200 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4201 rxq_index, flow_id);
4205 rflow = &flow_table->flows[flow_id];
4207 if (old_rflow->filter == rflow->filter)
4208 old_rflow->filter = RPS_NO_FILTER;
4212 per_cpu(softnet_data, next_cpu).input_queue_head;
4215 rflow->cpu = next_cpu;
4220 * get_rps_cpu is called from netif_receive_skb and returns the target
4221 * CPU from the RPS map of the receiving queue for a given skb.
4222 * rcu_read_lock must be held on entry.
4224 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4225 struct rps_dev_flow **rflowp)
4227 const struct rps_sock_flow_table *sock_flow_table;
4228 struct netdev_rx_queue *rxqueue = dev->_rx;
4229 struct rps_dev_flow_table *flow_table;
4230 struct rps_map *map;
4235 if (skb_rx_queue_recorded(skb)) {
4236 u16 index = skb_get_rx_queue(skb);
4238 if (unlikely(index >= dev->real_num_rx_queues)) {
4239 WARN_ONCE(dev->real_num_rx_queues > 1,
4240 "%s received packet on queue %u, but number "
4241 "of RX queues is %u\n",
4242 dev->name, index, dev->real_num_rx_queues);
4248 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4250 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4251 map = rcu_dereference(rxqueue->rps_map);
4252 if (!flow_table && !map)
4255 skb_reset_network_header(skb);
4256 hash = skb_get_hash(skb);
4260 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4261 if (flow_table && sock_flow_table) {
4262 struct rps_dev_flow *rflow;
4266 /* First check into global flow table if there is a match */
4267 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4268 if ((ident ^ hash) & ~rps_cpu_mask)
4271 next_cpu = ident & rps_cpu_mask;
4273 /* OK, now we know there is a match,
4274 * we can look at the local (per receive queue) flow table
4276 rflow = &flow_table->flows[hash & flow_table->mask];
4280 * If the desired CPU (where last recvmsg was done) is
4281 * different from current CPU (one in the rx-queue flow
4282 * table entry), switch if one of the following holds:
4283 * - Current CPU is unset (>= nr_cpu_ids).
4284 * - Current CPU is offline.
4285 * - The current CPU's queue tail has advanced beyond the
4286 * last packet that was enqueued using this table entry.
4287 * This guarantees that all previous packets for the flow
4288 * have been dequeued, thus preserving in order delivery.
4290 if (unlikely(tcpu != next_cpu) &&
4291 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4292 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4293 rflow->last_qtail)) >= 0)) {
4295 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4298 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4308 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4309 if (cpu_online(tcpu)) {
4319 #ifdef CONFIG_RFS_ACCEL
4322 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4323 * @dev: Device on which the filter was set
4324 * @rxq_index: RX queue index
4325 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4326 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4328 * Drivers that implement ndo_rx_flow_steer() should periodically call
4329 * this function for each installed filter and remove the filters for
4330 * which it returns %true.
4332 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4333 u32 flow_id, u16 filter_id)
4335 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4336 struct rps_dev_flow_table *flow_table;
4337 struct rps_dev_flow *rflow;
4342 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4343 if (flow_table && flow_id <= flow_table->mask) {
4344 rflow = &flow_table->flows[flow_id];
4345 cpu = READ_ONCE(rflow->cpu);
4346 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4347 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4348 rflow->last_qtail) <
4349 (int)(10 * flow_table->mask)))
4355 EXPORT_SYMBOL(rps_may_expire_flow);
4357 #endif /* CONFIG_RFS_ACCEL */
4359 /* Called from hardirq (IPI) context */
4360 static void rps_trigger_softirq(void *data)
4362 struct softnet_data *sd = data;
4364 ____napi_schedule(sd, &sd->backlog);
4368 #endif /* CONFIG_RPS */
4371 * Check if this softnet_data structure is another cpu one
4372 * If yes, queue it to our IPI list and return 1
4375 static int rps_ipi_queued(struct softnet_data *sd)
4378 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4381 sd->rps_ipi_next = mysd->rps_ipi_list;
4382 mysd->rps_ipi_list = sd;
4384 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4387 #endif /* CONFIG_RPS */
4391 #ifdef CONFIG_NET_FLOW_LIMIT
4392 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4395 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4397 #ifdef CONFIG_NET_FLOW_LIMIT
4398 struct sd_flow_limit *fl;
4399 struct softnet_data *sd;
4400 unsigned int old_flow, new_flow;
4402 if (qlen < (netdev_max_backlog >> 1))
4405 sd = this_cpu_ptr(&softnet_data);
4408 fl = rcu_dereference(sd->flow_limit);
4410 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4411 old_flow = fl->history[fl->history_head];
4412 fl->history[fl->history_head] = new_flow;
4415 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4417 if (likely(fl->buckets[old_flow]))
4418 fl->buckets[old_flow]--;
4420 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4432 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4433 * queue (may be a remote CPU queue).
4435 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4436 unsigned int *qtail)
4438 struct softnet_data *sd;
4439 unsigned long flags;
4442 sd = &per_cpu(softnet_data, cpu);
4444 local_irq_save(flags);
4447 if (!netif_running(skb->dev))
4449 qlen = skb_queue_len(&sd->input_pkt_queue);
4450 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4453 __skb_queue_tail(&sd->input_pkt_queue, skb);
4454 input_queue_tail_incr_save(sd, qtail);
4456 local_irq_restore(flags);
4457 return NET_RX_SUCCESS;
4460 /* Schedule NAPI for backlog device
4461 * We can use non atomic operation since we own the queue lock
4463 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4464 if (!rps_ipi_queued(sd))
4465 ____napi_schedule(sd, &sd->backlog);
4474 local_irq_restore(flags);
4476 atomic_long_inc(&skb->dev->rx_dropped);
4481 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4483 struct net_device *dev = skb->dev;
4484 struct netdev_rx_queue *rxqueue;
4488 if (skb_rx_queue_recorded(skb)) {
4489 u16 index = skb_get_rx_queue(skb);
4491 if (unlikely(index >= dev->real_num_rx_queues)) {
4492 WARN_ONCE(dev->real_num_rx_queues > 1,
4493 "%s received packet on queue %u, but number "
4494 "of RX queues is %u\n",
4495 dev->name, index, dev->real_num_rx_queues);
4497 return rxqueue; /* Return first rxqueue */
4504 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4505 struct xdp_buff *xdp,
4506 struct bpf_prog *xdp_prog)
4508 struct netdev_rx_queue *rxqueue;
4509 void *orig_data, *orig_data_end;
4510 u32 metalen, act = XDP_DROP;
4511 __be16 orig_eth_type;
4517 /* Reinjected packets coming from act_mirred or similar should
4518 * not get XDP generic processing.
4520 if (skb_is_redirected(skb))
4523 /* XDP packets must be linear and must have sufficient headroom
4524 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4525 * native XDP provides, thus we need to do it here as well.
4527 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4528 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4529 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4530 int troom = skb->tail + skb->data_len - skb->end;
4532 /* In case we have to go down the path and also linearize,
4533 * then lets do the pskb_expand_head() work just once here.
4535 if (pskb_expand_head(skb,
4536 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4537 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4539 if (skb_linearize(skb))
4543 /* The XDP program wants to see the packet starting at the MAC
4546 mac_len = skb->data - skb_mac_header(skb);
4547 hlen = skb_headlen(skb) + mac_len;
4548 xdp->data = skb->data - mac_len;
4549 xdp->data_meta = xdp->data;
4550 xdp->data_end = xdp->data + hlen;
4551 xdp->data_hard_start = skb->data - skb_headroom(skb);
4552 orig_data_end = xdp->data_end;
4553 orig_data = xdp->data;
4554 eth = (struct ethhdr *)xdp->data;
4555 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4556 orig_eth_type = eth->h_proto;
4558 rxqueue = netif_get_rxqueue(skb);
4559 xdp->rxq = &rxqueue->xdp_rxq;
4561 act = bpf_prog_run_xdp(xdp_prog, xdp);
4563 /* check if bpf_xdp_adjust_head was used */
4564 off = xdp->data - orig_data;
4567 __skb_pull(skb, off);
4569 __skb_push(skb, -off);
4571 skb->mac_header += off;
4572 skb_reset_network_header(skb);
4575 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4578 off = orig_data_end - xdp->data_end;
4580 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4585 /* check if XDP changed eth hdr such SKB needs update */
4586 eth = (struct ethhdr *)xdp->data;
4587 if ((orig_eth_type != eth->h_proto) ||
4588 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4589 __skb_push(skb, ETH_HLEN);
4590 skb->protocol = eth_type_trans(skb, skb->dev);
4596 __skb_push(skb, mac_len);
4599 metalen = xdp->data - xdp->data_meta;
4601 skb_metadata_set(skb, metalen);
4604 bpf_warn_invalid_xdp_action(act);
4607 trace_xdp_exception(skb->dev, xdp_prog, act);
4618 /* When doing generic XDP we have to bypass the qdisc layer and the
4619 * network taps in order to match in-driver-XDP behavior.
4621 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4623 struct net_device *dev = skb->dev;
4624 struct netdev_queue *txq;
4625 bool free_skb = true;
4628 txq = netdev_core_pick_tx(dev, skb, NULL);
4629 cpu = smp_processor_id();
4630 HARD_TX_LOCK(dev, txq, cpu);
4631 if (!netif_xmit_stopped(txq)) {
4632 rc = netdev_start_xmit(skb, dev, txq, 0);
4633 if (dev_xmit_complete(rc))
4636 HARD_TX_UNLOCK(dev, txq);
4638 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4643 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4645 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4648 struct xdp_buff xdp;
4652 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4653 if (act != XDP_PASS) {
4656 err = xdp_do_generic_redirect(skb->dev, skb,
4662 generic_xdp_tx(skb, xdp_prog);
4673 EXPORT_SYMBOL_GPL(do_xdp_generic);
4675 static int netif_rx_internal(struct sk_buff *skb)
4679 net_timestamp_check(netdev_tstamp_prequeue, skb);
4681 trace_netif_rx(skb);
4684 if (static_branch_unlikely(&rps_needed)) {
4685 struct rps_dev_flow voidflow, *rflow = &voidflow;
4691 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4693 cpu = smp_processor_id();
4695 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4704 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4711 * netif_rx - post buffer to the network code
4712 * @skb: buffer to post
4714 * This function receives a packet from a device driver and queues it for
4715 * the upper (protocol) levels to process. It always succeeds. The buffer
4716 * may be dropped during processing for congestion control or by the
4720 * NET_RX_SUCCESS (no congestion)
4721 * NET_RX_DROP (packet was dropped)
4725 int netif_rx(struct sk_buff *skb)
4729 trace_netif_rx_entry(skb);
4731 ret = netif_rx_internal(skb);
4732 trace_netif_rx_exit(ret);
4736 EXPORT_SYMBOL(netif_rx);
4738 int netif_rx_ni(struct sk_buff *skb)
4742 trace_netif_rx_ni_entry(skb);
4745 err = netif_rx_internal(skb);
4746 if (local_softirq_pending())
4749 trace_netif_rx_ni_exit(err);
4753 EXPORT_SYMBOL(netif_rx_ni);
4755 static __latent_entropy void net_tx_action(struct softirq_action *h)
4757 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4759 if (sd->completion_queue) {
4760 struct sk_buff *clist;
4762 local_irq_disable();
4763 clist = sd->completion_queue;
4764 sd->completion_queue = NULL;
4768 struct sk_buff *skb = clist;
4770 clist = clist->next;
4772 WARN_ON(refcount_read(&skb->users));
4773 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4774 trace_consume_skb(skb);
4776 trace_kfree_skb(skb, net_tx_action);
4778 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4781 __kfree_skb_defer(skb);
4784 __kfree_skb_flush();
4787 if (sd->output_queue) {
4790 local_irq_disable();
4791 head = sd->output_queue;
4792 sd->output_queue = NULL;
4793 sd->output_queue_tailp = &sd->output_queue;
4797 struct Qdisc *q = head;
4798 spinlock_t *root_lock = NULL;
4800 head = head->next_sched;
4802 if (!(q->flags & TCQ_F_NOLOCK)) {
4803 root_lock = qdisc_lock(q);
4804 spin_lock(root_lock);
4806 /* We need to make sure head->next_sched is read
4807 * before clearing __QDISC_STATE_SCHED
4809 smp_mb__before_atomic();
4810 clear_bit(__QDISC_STATE_SCHED, &q->state);
4813 spin_unlock(root_lock);
4817 xfrm_dev_backlog(sd);
4820 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4821 /* This hook is defined here for ATM LANE */
4822 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4823 unsigned char *addr) __read_mostly;
4824 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4827 static inline struct sk_buff *
4828 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4829 struct net_device *orig_dev)
4831 #ifdef CONFIG_NET_CLS_ACT
4832 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4833 struct tcf_result cl_res;
4835 /* If there's at least one ingress present somewhere (so
4836 * we get here via enabled static key), remaining devices
4837 * that are not configured with an ingress qdisc will bail
4844 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4848 qdisc_skb_cb(skb)->pkt_len = skb->len;
4849 skb->tc_at_ingress = 1;
4850 mini_qdisc_bstats_cpu_update(miniq, skb);
4852 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4855 case TC_ACT_RECLASSIFY:
4856 skb->tc_index = TC_H_MIN(cl_res.classid);
4859 mini_qdisc_qstats_cpu_drop(miniq);
4867 case TC_ACT_REDIRECT:
4868 /* skb_mac_header check was done by cls/act_bpf, so
4869 * we can safely push the L2 header back before
4870 * redirecting to another netdev
4872 __skb_push(skb, skb->mac_len);
4873 skb_do_redirect(skb);
4875 case TC_ACT_CONSUMED:
4880 #endif /* CONFIG_NET_CLS_ACT */
4885 * netdev_is_rx_handler_busy - check if receive handler is registered
4886 * @dev: device to check
4888 * Check if a receive handler is already registered for a given device.
4889 * Return true if there one.
4891 * The caller must hold the rtnl_mutex.
4893 bool netdev_is_rx_handler_busy(struct net_device *dev)
4896 return dev && rtnl_dereference(dev->rx_handler);
4898 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4901 * netdev_rx_handler_register - register receive handler
4902 * @dev: device to register a handler for
4903 * @rx_handler: receive handler to register
4904 * @rx_handler_data: data pointer that is used by rx handler
4906 * Register a receive handler for a device. This handler will then be
4907 * called from __netif_receive_skb. A negative errno code is returned
4910 * The caller must hold the rtnl_mutex.
4912 * For a general description of rx_handler, see enum rx_handler_result.
4914 int netdev_rx_handler_register(struct net_device *dev,
4915 rx_handler_func_t *rx_handler,
4916 void *rx_handler_data)
4918 if (netdev_is_rx_handler_busy(dev))
4921 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4924 /* Note: rx_handler_data must be set before rx_handler */
4925 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4926 rcu_assign_pointer(dev->rx_handler, rx_handler);
4930 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4933 * netdev_rx_handler_unregister - unregister receive handler
4934 * @dev: device to unregister a handler from
4936 * Unregister a receive handler from a device.
4938 * The caller must hold the rtnl_mutex.
4940 void netdev_rx_handler_unregister(struct net_device *dev)
4944 RCU_INIT_POINTER(dev->rx_handler, NULL);
4945 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4946 * section has a guarantee to see a non NULL rx_handler_data
4950 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4952 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4955 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4956 * the special handling of PFMEMALLOC skbs.
4958 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4960 switch (skb->protocol) {
4961 case htons(ETH_P_ARP):
4962 case htons(ETH_P_IP):
4963 case htons(ETH_P_IPV6):
4964 case htons(ETH_P_8021Q):
4965 case htons(ETH_P_8021AD):
4972 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4973 int *ret, struct net_device *orig_dev)
4975 if (nf_hook_ingress_active(skb)) {
4979 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4984 ingress_retval = nf_hook_ingress(skb);
4986 return ingress_retval;
4991 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4992 struct packet_type **ppt_prev)
4994 struct packet_type *ptype, *pt_prev;
4995 rx_handler_func_t *rx_handler;
4996 struct net_device *orig_dev;
4997 bool deliver_exact = false;
4998 int ret = NET_RX_DROP;
5001 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5003 trace_netif_receive_skb(skb);
5005 orig_dev = skb->dev;
5007 skb_reset_network_header(skb);
5008 if (!skb_transport_header_was_set(skb))
5009 skb_reset_transport_header(skb);
5010 skb_reset_mac_len(skb);
5015 skb->skb_iif = skb->dev->ifindex;
5017 __this_cpu_inc(softnet_data.processed);
5019 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5023 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5026 if (ret2 != XDP_PASS)
5028 skb_reset_mac_len(skb);
5031 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5032 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5033 skb = skb_vlan_untag(skb);
5038 if (skb_skip_tc_classify(skb))
5044 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5046 ret = deliver_skb(skb, pt_prev, orig_dev);
5050 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5052 ret = deliver_skb(skb, pt_prev, orig_dev);
5057 #ifdef CONFIG_NET_INGRESS
5058 if (static_branch_unlikely(&ingress_needed_key)) {
5059 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5063 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5067 skb_reset_redirect(skb);
5069 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5072 if (skb_vlan_tag_present(skb)) {
5074 ret = deliver_skb(skb, pt_prev, orig_dev);
5077 if (vlan_do_receive(&skb))
5079 else if (unlikely(!skb))
5083 rx_handler = rcu_dereference(skb->dev->rx_handler);
5086 ret = deliver_skb(skb, pt_prev, orig_dev);
5089 switch (rx_handler(&skb)) {
5090 case RX_HANDLER_CONSUMED:
5091 ret = NET_RX_SUCCESS;
5093 case RX_HANDLER_ANOTHER:
5095 case RX_HANDLER_EXACT:
5096 deliver_exact = true;
5097 case RX_HANDLER_PASS:
5104 if (unlikely(skb_vlan_tag_present(skb))) {
5106 if (skb_vlan_tag_get_id(skb)) {
5107 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5110 skb->pkt_type = PACKET_OTHERHOST;
5111 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5112 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5113 /* Outer header is 802.1P with vlan 0, inner header is
5114 * 802.1Q or 802.1AD and vlan_do_receive() above could
5115 * not find vlan dev for vlan id 0.
5117 __vlan_hwaccel_clear_tag(skb);
5118 skb = skb_vlan_untag(skb);
5121 if (vlan_do_receive(&skb))
5122 /* After stripping off 802.1P header with vlan 0
5123 * vlan dev is found for inner header.
5126 else if (unlikely(!skb))
5129 /* We have stripped outer 802.1P vlan 0 header.
5130 * But could not find vlan dev.
5131 * check again for vlan id to set OTHERHOST.
5135 /* Note: we might in the future use prio bits
5136 * and set skb->priority like in vlan_do_receive()
5137 * For the time being, just ignore Priority Code Point
5139 __vlan_hwaccel_clear_tag(skb);
5142 type = skb->protocol;
5144 /* deliver only exact match when indicated */
5145 if (likely(!deliver_exact)) {
5146 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5147 &ptype_base[ntohs(type) &
5151 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5152 &orig_dev->ptype_specific);
5154 if (unlikely(skb->dev != orig_dev)) {
5155 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5156 &skb->dev->ptype_specific);
5160 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5162 *ppt_prev = pt_prev;
5166 atomic_long_inc(&skb->dev->rx_dropped);
5168 atomic_long_inc(&skb->dev->rx_nohandler);
5170 /* Jamal, now you will not able to escape explaining
5171 * me how you were going to use this. :-)
5180 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5182 struct net_device *orig_dev = skb->dev;
5183 struct packet_type *pt_prev = NULL;
5186 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5188 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5189 skb->dev, pt_prev, orig_dev);
5194 * netif_receive_skb_core - special purpose version of netif_receive_skb
5195 * @skb: buffer to process
5197 * More direct receive version of netif_receive_skb(). It should
5198 * only be used by callers that have a need to skip RPS and Generic XDP.
5199 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5201 * This function may only be called from softirq context and interrupts
5202 * should be enabled.
5204 * Return values (usually ignored):
5205 * NET_RX_SUCCESS: no congestion
5206 * NET_RX_DROP: packet was dropped
5208 int netif_receive_skb_core(struct sk_buff *skb)
5213 ret = __netif_receive_skb_one_core(skb, false);
5218 EXPORT_SYMBOL(netif_receive_skb_core);
5220 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5221 struct packet_type *pt_prev,
5222 struct net_device *orig_dev)
5224 struct sk_buff *skb, *next;
5228 if (list_empty(head))
5230 if (pt_prev->list_func != NULL)
5231 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5232 ip_list_rcv, head, pt_prev, orig_dev);
5234 list_for_each_entry_safe(skb, next, head, list) {
5235 skb_list_del_init(skb);
5236 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5240 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5242 /* Fast-path assumptions:
5243 * - There is no RX handler.
5244 * - Only one packet_type matches.
5245 * If either of these fails, we will end up doing some per-packet
5246 * processing in-line, then handling the 'last ptype' for the whole
5247 * sublist. This can't cause out-of-order delivery to any single ptype,
5248 * because the 'last ptype' must be constant across the sublist, and all
5249 * other ptypes are handled per-packet.
5251 /* Current (common) ptype of sublist */
5252 struct packet_type *pt_curr = NULL;
5253 /* Current (common) orig_dev of sublist */
5254 struct net_device *od_curr = NULL;
5255 struct list_head sublist;
5256 struct sk_buff *skb, *next;
5258 INIT_LIST_HEAD(&sublist);
5259 list_for_each_entry_safe(skb, next, head, list) {
5260 struct net_device *orig_dev = skb->dev;
5261 struct packet_type *pt_prev = NULL;
5263 skb_list_del_init(skb);
5264 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5267 if (pt_curr != pt_prev || od_curr != orig_dev) {
5268 /* dispatch old sublist */
5269 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5270 /* start new sublist */
5271 INIT_LIST_HEAD(&sublist);
5275 list_add_tail(&skb->list, &sublist);
5278 /* dispatch final sublist */
5279 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5282 static int __netif_receive_skb(struct sk_buff *skb)
5286 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5287 unsigned int noreclaim_flag;
5290 * PFMEMALLOC skbs are special, they should
5291 * - be delivered to SOCK_MEMALLOC sockets only
5292 * - stay away from userspace
5293 * - have bounded memory usage
5295 * Use PF_MEMALLOC as this saves us from propagating the allocation
5296 * context down to all allocation sites.
5298 noreclaim_flag = memalloc_noreclaim_save();
5299 ret = __netif_receive_skb_one_core(skb, true);
5300 memalloc_noreclaim_restore(noreclaim_flag);
5302 ret = __netif_receive_skb_one_core(skb, false);
5307 static void __netif_receive_skb_list(struct list_head *head)
5309 unsigned long noreclaim_flag = 0;
5310 struct sk_buff *skb, *next;
5311 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5313 list_for_each_entry_safe(skb, next, head, list) {
5314 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5315 struct list_head sublist;
5317 /* Handle the previous sublist */
5318 list_cut_before(&sublist, head, &skb->list);
5319 if (!list_empty(&sublist))
5320 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5321 pfmemalloc = !pfmemalloc;
5322 /* See comments in __netif_receive_skb */
5324 noreclaim_flag = memalloc_noreclaim_save();
5326 memalloc_noreclaim_restore(noreclaim_flag);
5329 /* Handle the remaining sublist */
5330 if (!list_empty(head))
5331 __netif_receive_skb_list_core(head, pfmemalloc);
5332 /* Restore pflags */
5334 memalloc_noreclaim_restore(noreclaim_flag);
5337 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5339 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5340 struct bpf_prog *new = xdp->prog;
5343 switch (xdp->command) {
5344 case XDP_SETUP_PROG:
5345 rcu_assign_pointer(dev->xdp_prog, new);
5350 static_branch_dec(&generic_xdp_needed_key);
5351 } else if (new && !old) {
5352 static_branch_inc(&generic_xdp_needed_key);
5353 dev_disable_lro(dev);
5354 dev_disable_gro_hw(dev);
5358 case XDP_QUERY_PROG:
5359 xdp->prog_id = old ? old->aux->id : 0;
5370 static int netif_receive_skb_internal(struct sk_buff *skb)
5374 net_timestamp_check(netdev_tstamp_prequeue, skb);
5376 if (skb_defer_rx_timestamp(skb))
5377 return NET_RX_SUCCESS;
5381 if (static_branch_unlikely(&rps_needed)) {
5382 struct rps_dev_flow voidflow, *rflow = &voidflow;
5383 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5386 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5392 ret = __netif_receive_skb(skb);
5397 static void netif_receive_skb_list_internal(struct list_head *head)
5399 struct sk_buff *skb, *next;
5400 struct list_head sublist;
5402 INIT_LIST_HEAD(&sublist);
5403 list_for_each_entry_safe(skb, next, head, list) {
5404 net_timestamp_check(netdev_tstamp_prequeue, skb);
5405 skb_list_del_init(skb);
5406 if (!skb_defer_rx_timestamp(skb))
5407 list_add_tail(&skb->list, &sublist);
5409 list_splice_init(&sublist, head);
5413 if (static_branch_unlikely(&rps_needed)) {
5414 list_for_each_entry_safe(skb, next, head, list) {
5415 struct rps_dev_flow voidflow, *rflow = &voidflow;
5416 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5419 /* Will be handled, remove from list */
5420 skb_list_del_init(skb);
5421 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5426 __netif_receive_skb_list(head);
5431 * netif_receive_skb - process receive buffer from network
5432 * @skb: buffer to process
5434 * netif_receive_skb() is the main receive data processing function.
5435 * It always succeeds. The buffer may be dropped during processing
5436 * for congestion control or by the protocol layers.
5438 * This function may only be called from softirq context and interrupts
5439 * should be enabled.
5441 * Return values (usually ignored):
5442 * NET_RX_SUCCESS: no congestion
5443 * NET_RX_DROP: packet was dropped
5445 int netif_receive_skb(struct sk_buff *skb)
5449 trace_netif_receive_skb_entry(skb);
5451 ret = netif_receive_skb_internal(skb);
5452 trace_netif_receive_skb_exit(ret);
5456 EXPORT_SYMBOL(netif_receive_skb);
5459 * netif_receive_skb_list - process many receive buffers from network
5460 * @head: list of skbs to process.
5462 * Since return value of netif_receive_skb() is normally ignored, and
5463 * wouldn't be meaningful for a list, this function returns void.
5465 * This function may only be called from softirq context and interrupts
5466 * should be enabled.
5468 void netif_receive_skb_list(struct list_head *head)
5470 struct sk_buff *skb;
5472 if (list_empty(head))
5474 if (trace_netif_receive_skb_list_entry_enabled()) {
5475 list_for_each_entry(skb, head, list)
5476 trace_netif_receive_skb_list_entry(skb);
5478 netif_receive_skb_list_internal(head);
5479 trace_netif_receive_skb_list_exit(0);
5481 EXPORT_SYMBOL(netif_receive_skb_list);
5483 DEFINE_PER_CPU(struct work_struct, flush_works);
5485 /* Network device is going away, flush any packets still pending */
5486 static void flush_backlog(struct work_struct *work)
5488 struct sk_buff *skb, *tmp;
5489 struct softnet_data *sd;
5492 sd = this_cpu_ptr(&softnet_data);
5494 local_irq_disable();
5496 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5497 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5498 __skb_unlink(skb, &sd->input_pkt_queue);
5500 input_queue_head_incr(sd);
5506 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5507 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5508 __skb_unlink(skb, &sd->process_queue);
5510 input_queue_head_incr(sd);
5516 static void flush_all_backlogs(void)
5522 for_each_online_cpu(cpu)
5523 queue_work_on(cpu, system_highpri_wq,
5524 per_cpu_ptr(&flush_works, cpu));
5526 for_each_online_cpu(cpu)
5527 flush_work(per_cpu_ptr(&flush_works, cpu));
5532 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5533 static void gro_normal_list(struct napi_struct *napi)
5535 if (!napi->rx_count)
5537 netif_receive_skb_list_internal(&napi->rx_list);
5538 INIT_LIST_HEAD(&napi->rx_list);
5542 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5543 * pass the whole batch up to the stack.
5545 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5547 list_add_tail(&skb->list, &napi->rx_list);
5548 if (++napi->rx_count >= gro_normal_batch)
5549 gro_normal_list(napi);
5552 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5553 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5554 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5556 struct packet_offload *ptype;
5557 __be16 type = skb->protocol;
5558 struct list_head *head = &offload_base;
5561 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5563 if (NAPI_GRO_CB(skb)->count == 1) {
5564 skb_shinfo(skb)->gso_size = 0;
5569 list_for_each_entry_rcu(ptype, head, list) {
5570 if (ptype->type != type || !ptype->callbacks.gro_complete)
5573 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5574 ipv6_gro_complete, inet_gro_complete,
5581 WARN_ON(&ptype->list == head);
5583 return NET_RX_SUCCESS;
5587 gro_normal_one(napi, skb);
5588 return NET_RX_SUCCESS;
5591 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5594 struct list_head *head = &napi->gro_hash[index].list;
5595 struct sk_buff *skb, *p;
5597 list_for_each_entry_safe_reverse(skb, p, head, list) {
5598 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5600 skb_list_del_init(skb);
5601 napi_gro_complete(napi, skb);
5602 napi->gro_hash[index].count--;
5605 if (!napi->gro_hash[index].count)
5606 __clear_bit(index, &napi->gro_bitmask);
5609 /* napi->gro_hash[].list contains packets ordered by age.
5610 * youngest packets at the head of it.
5611 * Complete skbs in reverse order to reduce latencies.
5613 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5615 unsigned long bitmask = napi->gro_bitmask;
5616 unsigned int i, base = ~0U;
5618 while ((i = ffs(bitmask)) != 0) {
5621 __napi_gro_flush_chain(napi, base, flush_old);
5624 EXPORT_SYMBOL(napi_gro_flush);
5626 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5627 struct sk_buff *skb)
5629 unsigned int maclen = skb->dev->hard_header_len;
5630 u32 hash = skb_get_hash_raw(skb);
5631 struct list_head *head;
5634 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5635 list_for_each_entry(p, head, list) {
5636 unsigned long diffs;
5638 NAPI_GRO_CB(p)->flush = 0;
5640 if (hash != skb_get_hash_raw(p)) {
5641 NAPI_GRO_CB(p)->same_flow = 0;
5645 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5646 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5647 if (skb_vlan_tag_present(p))
5648 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5649 diffs |= skb_metadata_dst_cmp(p, skb);
5650 diffs |= skb_metadata_differs(p, skb);
5651 if (maclen == ETH_HLEN)
5652 diffs |= compare_ether_header(skb_mac_header(p),
5653 skb_mac_header(skb));
5655 diffs = memcmp(skb_mac_header(p),
5656 skb_mac_header(skb),
5658 NAPI_GRO_CB(p)->same_flow = !diffs;
5664 static void skb_gro_reset_offset(struct sk_buff *skb)
5666 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5667 const skb_frag_t *frag0 = &pinfo->frags[0];
5669 NAPI_GRO_CB(skb)->data_offset = 0;
5670 NAPI_GRO_CB(skb)->frag0 = NULL;
5671 NAPI_GRO_CB(skb)->frag0_len = 0;
5673 if (!skb_headlen(skb) && pinfo->nr_frags &&
5674 !PageHighMem(skb_frag_page(frag0))) {
5675 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5676 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5677 skb_frag_size(frag0),
5678 skb->end - skb->tail);
5682 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5684 struct skb_shared_info *pinfo = skb_shinfo(skb);
5686 BUG_ON(skb->end - skb->tail < grow);
5688 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5690 skb->data_len -= grow;
5693 skb_frag_off_add(&pinfo->frags[0], grow);
5694 skb_frag_size_sub(&pinfo->frags[0], grow);
5696 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5697 skb_frag_unref(skb, 0);
5698 memmove(pinfo->frags, pinfo->frags + 1,
5699 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5703 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5705 struct sk_buff *oldest;
5707 oldest = list_last_entry(head, struct sk_buff, list);
5709 /* We are called with head length >= MAX_GRO_SKBS, so this is
5712 if (WARN_ON_ONCE(!oldest))
5715 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5718 skb_list_del_init(oldest);
5719 napi_gro_complete(napi, oldest);
5722 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5724 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5726 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5728 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5729 struct list_head *head = &offload_base;
5730 struct packet_offload *ptype;
5731 __be16 type = skb->protocol;
5732 struct list_head *gro_head;
5733 struct sk_buff *pp = NULL;
5734 enum gro_result ret;
5738 if (netif_elide_gro(skb->dev))
5741 gro_head = gro_list_prepare(napi, skb);
5744 list_for_each_entry_rcu(ptype, head, list) {
5745 if (ptype->type != type || !ptype->callbacks.gro_receive)
5748 skb_set_network_header(skb, skb_gro_offset(skb));
5749 skb_reset_mac_len(skb);
5750 NAPI_GRO_CB(skb)->same_flow = 0;
5751 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5752 NAPI_GRO_CB(skb)->free = 0;
5753 NAPI_GRO_CB(skb)->encap_mark = 0;
5754 NAPI_GRO_CB(skb)->recursion_counter = 0;
5755 NAPI_GRO_CB(skb)->is_fou = 0;
5756 NAPI_GRO_CB(skb)->is_atomic = 1;
5757 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5759 /* Setup for GRO checksum validation */
5760 switch (skb->ip_summed) {
5761 case CHECKSUM_COMPLETE:
5762 NAPI_GRO_CB(skb)->csum = skb->csum;
5763 NAPI_GRO_CB(skb)->csum_valid = 1;
5764 NAPI_GRO_CB(skb)->csum_cnt = 0;
5766 case CHECKSUM_UNNECESSARY:
5767 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5768 NAPI_GRO_CB(skb)->csum_valid = 0;
5771 NAPI_GRO_CB(skb)->csum_cnt = 0;
5772 NAPI_GRO_CB(skb)->csum_valid = 0;
5775 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5776 ipv6_gro_receive, inet_gro_receive,
5782 if (&ptype->list == head)
5785 if (PTR_ERR(pp) == -EINPROGRESS) {
5790 same_flow = NAPI_GRO_CB(skb)->same_flow;
5791 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5794 skb_list_del_init(pp);
5795 napi_gro_complete(napi, pp);
5796 napi->gro_hash[hash].count--;
5802 if (NAPI_GRO_CB(skb)->flush)
5805 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5806 gro_flush_oldest(napi, gro_head);
5808 napi->gro_hash[hash].count++;
5810 NAPI_GRO_CB(skb)->count = 1;
5811 NAPI_GRO_CB(skb)->age = jiffies;
5812 NAPI_GRO_CB(skb)->last = skb;
5813 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5814 list_add(&skb->list, gro_head);
5818 grow = skb_gro_offset(skb) - skb_headlen(skb);
5820 gro_pull_from_frag0(skb, grow);
5822 if (napi->gro_hash[hash].count) {
5823 if (!test_bit(hash, &napi->gro_bitmask))
5824 __set_bit(hash, &napi->gro_bitmask);
5825 } else if (test_bit(hash, &napi->gro_bitmask)) {
5826 __clear_bit(hash, &napi->gro_bitmask);
5836 struct packet_offload *gro_find_receive_by_type(__be16 type)
5838 struct list_head *offload_head = &offload_base;
5839 struct packet_offload *ptype;
5841 list_for_each_entry_rcu(ptype, offload_head, list) {
5842 if (ptype->type != type || !ptype->callbacks.gro_receive)
5848 EXPORT_SYMBOL(gro_find_receive_by_type);
5850 struct packet_offload *gro_find_complete_by_type(__be16 type)
5852 struct list_head *offload_head = &offload_base;
5853 struct packet_offload *ptype;
5855 list_for_each_entry_rcu(ptype, offload_head, list) {
5856 if (ptype->type != type || !ptype->callbacks.gro_complete)
5862 EXPORT_SYMBOL(gro_find_complete_by_type);
5864 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5868 kmem_cache_free(skbuff_head_cache, skb);
5871 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5872 struct sk_buff *skb,
5877 gro_normal_one(napi, skb);
5884 case GRO_MERGED_FREE:
5885 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5886 napi_skb_free_stolen_head(skb);
5900 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5904 skb_mark_napi_id(skb, napi);
5905 trace_napi_gro_receive_entry(skb);
5907 skb_gro_reset_offset(skb);
5909 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5910 trace_napi_gro_receive_exit(ret);
5914 EXPORT_SYMBOL(napi_gro_receive);
5916 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5918 if (unlikely(skb->pfmemalloc)) {
5922 __skb_pull(skb, skb_headlen(skb));
5923 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5924 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5925 __vlan_hwaccel_clear_tag(skb);
5926 skb->dev = napi->dev;
5929 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5930 skb->pkt_type = PACKET_HOST;
5932 skb->encapsulation = 0;
5933 skb_shinfo(skb)->gso_type = 0;
5934 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5940 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5942 struct sk_buff *skb = napi->skb;
5945 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5948 skb_mark_napi_id(skb, napi);
5953 EXPORT_SYMBOL(napi_get_frags);
5955 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5956 struct sk_buff *skb,
5962 __skb_push(skb, ETH_HLEN);
5963 skb->protocol = eth_type_trans(skb, skb->dev);
5964 if (ret == GRO_NORMAL)
5965 gro_normal_one(napi, skb);
5969 napi_reuse_skb(napi, skb);
5972 case GRO_MERGED_FREE:
5973 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5974 napi_skb_free_stolen_head(skb);
5976 napi_reuse_skb(napi, skb);
5987 /* Upper GRO stack assumes network header starts at gro_offset=0
5988 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5989 * We copy ethernet header into skb->data to have a common layout.
5991 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5993 struct sk_buff *skb = napi->skb;
5994 const struct ethhdr *eth;
5995 unsigned int hlen = sizeof(*eth);
5999 skb_reset_mac_header(skb);
6000 skb_gro_reset_offset(skb);
6002 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6003 eth = skb_gro_header_slow(skb, hlen, 0);
6004 if (unlikely(!eth)) {
6005 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6006 __func__, napi->dev->name);
6007 napi_reuse_skb(napi, skb);
6011 eth = (const struct ethhdr *)skb->data;
6012 gro_pull_from_frag0(skb, hlen);
6013 NAPI_GRO_CB(skb)->frag0 += hlen;
6014 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6016 __skb_pull(skb, hlen);
6019 * This works because the only protocols we care about don't require
6021 * We'll fix it up properly in napi_frags_finish()
6023 skb->protocol = eth->h_proto;
6028 gro_result_t napi_gro_frags(struct napi_struct *napi)
6031 struct sk_buff *skb = napi_frags_skb(napi);
6036 trace_napi_gro_frags_entry(skb);
6038 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6039 trace_napi_gro_frags_exit(ret);
6043 EXPORT_SYMBOL(napi_gro_frags);
6045 /* Compute the checksum from gro_offset and return the folded value
6046 * after adding in any pseudo checksum.
6048 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6053 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6055 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6056 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6057 /* See comments in __skb_checksum_complete(). */
6059 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6060 !skb->csum_complete_sw)
6061 netdev_rx_csum_fault(skb->dev, skb);
6064 NAPI_GRO_CB(skb)->csum = wsum;
6065 NAPI_GRO_CB(skb)->csum_valid = 1;
6069 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6071 static void net_rps_send_ipi(struct softnet_data *remsd)
6075 struct softnet_data *next = remsd->rps_ipi_next;
6077 if (cpu_online(remsd->cpu))
6078 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6085 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6086 * Note: called with local irq disabled, but exits with local irq enabled.
6088 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6091 struct softnet_data *remsd = sd->rps_ipi_list;
6094 sd->rps_ipi_list = NULL;
6098 /* Send pending IPI's to kick RPS processing on remote cpus. */
6099 net_rps_send_ipi(remsd);
6105 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6108 return sd->rps_ipi_list != NULL;
6114 static int process_backlog(struct napi_struct *napi, int quota)
6116 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6120 /* Check if we have pending ipi, its better to send them now,
6121 * not waiting net_rx_action() end.
6123 if (sd_has_rps_ipi_waiting(sd)) {
6124 local_irq_disable();
6125 net_rps_action_and_irq_enable(sd);
6128 napi->weight = dev_rx_weight;
6130 struct sk_buff *skb;
6132 while ((skb = __skb_dequeue(&sd->process_queue))) {
6134 __netif_receive_skb(skb);
6136 input_queue_head_incr(sd);
6137 if (++work >= quota)
6142 local_irq_disable();
6144 if (skb_queue_empty(&sd->input_pkt_queue)) {
6146 * Inline a custom version of __napi_complete().
6147 * only current cpu owns and manipulates this napi,
6148 * and NAPI_STATE_SCHED is the only possible flag set
6150 * We can use a plain write instead of clear_bit(),
6151 * and we dont need an smp_mb() memory barrier.
6156 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6157 &sd->process_queue);
6167 * __napi_schedule - schedule for receive
6168 * @n: entry to schedule
6170 * The entry's receive function will be scheduled to run.
6171 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6173 void __napi_schedule(struct napi_struct *n)
6175 unsigned long flags;
6177 local_irq_save(flags);
6178 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6179 local_irq_restore(flags);
6181 EXPORT_SYMBOL(__napi_schedule);
6184 * napi_schedule_prep - check if napi can be scheduled
6187 * Test if NAPI routine is already running, and if not mark
6188 * it as running. This is used as a condition variable
6189 * insure only one NAPI poll instance runs. We also make
6190 * sure there is no pending NAPI disable.
6192 bool napi_schedule_prep(struct napi_struct *n)
6194 unsigned long val, new;
6197 val = READ_ONCE(n->state);
6198 if (unlikely(val & NAPIF_STATE_DISABLE))
6200 new = val | NAPIF_STATE_SCHED;
6202 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6203 * This was suggested by Alexander Duyck, as compiler
6204 * emits better code than :
6205 * if (val & NAPIF_STATE_SCHED)
6206 * new |= NAPIF_STATE_MISSED;
6208 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6210 } while (cmpxchg(&n->state, val, new) != val);
6212 return !(val & NAPIF_STATE_SCHED);
6214 EXPORT_SYMBOL(napi_schedule_prep);
6217 * __napi_schedule_irqoff - schedule for receive
6218 * @n: entry to schedule
6220 * Variant of __napi_schedule() assuming hard irqs are masked
6222 void __napi_schedule_irqoff(struct napi_struct *n)
6224 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6226 EXPORT_SYMBOL(__napi_schedule_irqoff);
6228 bool napi_complete_done(struct napi_struct *n, int work_done)
6230 unsigned long flags, val, new;
6233 * 1) Don't let napi dequeue from the cpu poll list
6234 * just in case its running on a different cpu.
6235 * 2) If we are busy polling, do nothing here, we have
6236 * the guarantee we will be called later.
6238 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6239 NAPIF_STATE_IN_BUSY_POLL)))
6242 if (n->gro_bitmask) {
6243 unsigned long timeout = 0;
6246 timeout = n->dev->gro_flush_timeout;
6248 /* When the NAPI instance uses a timeout and keeps postponing
6249 * it, we need to bound somehow the time packets are kept in
6252 napi_gro_flush(n, !!timeout);
6254 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6255 HRTIMER_MODE_REL_PINNED);
6260 if (unlikely(!list_empty(&n->poll_list))) {
6261 /* If n->poll_list is not empty, we need to mask irqs */
6262 local_irq_save(flags);
6263 list_del_init(&n->poll_list);
6264 local_irq_restore(flags);
6268 val = READ_ONCE(n->state);
6270 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6272 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6274 /* If STATE_MISSED was set, leave STATE_SCHED set,
6275 * because we will call napi->poll() one more time.
6276 * This C code was suggested by Alexander Duyck to help gcc.
6278 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6280 } while (cmpxchg(&n->state, val, new) != val);
6282 if (unlikely(val & NAPIF_STATE_MISSED)) {
6289 EXPORT_SYMBOL(napi_complete_done);
6291 /* must be called under rcu_read_lock(), as we dont take a reference */
6292 static struct napi_struct *napi_by_id(unsigned int napi_id)
6294 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6295 struct napi_struct *napi;
6297 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6298 if (napi->napi_id == napi_id)
6304 #if defined(CONFIG_NET_RX_BUSY_POLL)
6306 #define BUSY_POLL_BUDGET 8
6308 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6312 /* Busy polling means there is a high chance device driver hard irq
6313 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6314 * set in napi_schedule_prep().
6315 * Since we are about to call napi->poll() once more, we can safely
6316 * clear NAPI_STATE_MISSED.
6318 * Note: x86 could use a single "lock and ..." instruction
6319 * to perform these two clear_bit()
6321 clear_bit(NAPI_STATE_MISSED, &napi->state);
6322 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6326 /* All we really want here is to re-enable device interrupts.
6327 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6329 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6330 /* We can't gro_normal_list() here, because napi->poll() might have
6331 * rearmed the napi (napi_complete_done()) in which case it could
6332 * already be running on another CPU.
6334 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6335 netpoll_poll_unlock(have_poll_lock);
6336 if (rc == BUSY_POLL_BUDGET) {
6337 /* As the whole budget was spent, we still own the napi so can
6338 * safely handle the rx_list.
6340 gro_normal_list(napi);
6341 __napi_schedule(napi);
6346 void napi_busy_loop(unsigned int napi_id,
6347 bool (*loop_end)(void *, unsigned long),
6350 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6351 int (*napi_poll)(struct napi_struct *napi, int budget);
6352 void *have_poll_lock = NULL;
6353 struct napi_struct *napi;
6360 napi = napi_by_id(napi_id);
6370 unsigned long val = READ_ONCE(napi->state);
6372 /* If multiple threads are competing for this napi,
6373 * we avoid dirtying napi->state as much as we can.
6375 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6376 NAPIF_STATE_IN_BUSY_POLL))
6378 if (cmpxchg(&napi->state, val,
6379 val | NAPIF_STATE_IN_BUSY_POLL |
6380 NAPIF_STATE_SCHED) != val)
6382 have_poll_lock = netpoll_poll_lock(napi);
6383 napi_poll = napi->poll;
6385 work = napi_poll(napi, BUSY_POLL_BUDGET);
6386 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6387 gro_normal_list(napi);
6390 __NET_ADD_STATS(dev_net(napi->dev),
6391 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6394 if (!loop_end || loop_end(loop_end_arg, start_time))
6397 if (unlikely(need_resched())) {
6399 busy_poll_stop(napi, have_poll_lock);
6403 if (loop_end(loop_end_arg, start_time))
6410 busy_poll_stop(napi, have_poll_lock);
6415 EXPORT_SYMBOL(napi_busy_loop);
6417 #endif /* CONFIG_NET_RX_BUSY_POLL */
6419 static void napi_hash_add(struct napi_struct *napi)
6421 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6422 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6425 spin_lock(&napi_hash_lock);
6427 /* 0..NR_CPUS range is reserved for sender_cpu use */
6429 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6430 napi_gen_id = MIN_NAPI_ID;
6431 } while (napi_by_id(napi_gen_id));
6432 napi->napi_id = napi_gen_id;
6434 hlist_add_head_rcu(&napi->napi_hash_node,
6435 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6437 spin_unlock(&napi_hash_lock);
6440 /* Warning : caller is responsible to make sure rcu grace period
6441 * is respected before freeing memory containing @napi
6443 bool napi_hash_del(struct napi_struct *napi)
6445 bool rcu_sync_needed = false;
6447 spin_lock(&napi_hash_lock);
6449 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6450 rcu_sync_needed = true;
6451 hlist_del_rcu(&napi->napi_hash_node);
6453 spin_unlock(&napi_hash_lock);
6454 return rcu_sync_needed;
6456 EXPORT_SYMBOL_GPL(napi_hash_del);
6458 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6460 struct napi_struct *napi;
6462 napi = container_of(timer, struct napi_struct, timer);
6464 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6465 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6467 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6468 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6469 __napi_schedule_irqoff(napi);
6471 return HRTIMER_NORESTART;
6474 static void init_gro_hash(struct napi_struct *napi)
6478 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6479 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6480 napi->gro_hash[i].count = 0;
6482 napi->gro_bitmask = 0;
6485 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6486 int (*poll)(struct napi_struct *, int), int weight)
6488 INIT_LIST_HEAD(&napi->poll_list);
6489 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6490 napi->timer.function = napi_watchdog;
6491 init_gro_hash(napi);
6493 INIT_LIST_HEAD(&napi->rx_list);
6496 if (weight > NAPI_POLL_WEIGHT)
6497 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6499 napi->weight = weight;
6500 list_add(&napi->dev_list, &dev->napi_list);
6502 #ifdef CONFIG_NETPOLL
6503 napi->poll_owner = -1;
6505 set_bit(NAPI_STATE_SCHED, &napi->state);
6506 napi_hash_add(napi);
6508 EXPORT_SYMBOL(netif_napi_add);
6510 void napi_disable(struct napi_struct *n)
6513 set_bit(NAPI_STATE_DISABLE, &n->state);
6515 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6517 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6520 hrtimer_cancel(&n->timer);
6522 clear_bit(NAPI_STATE_DISABLE, &n->state);
6524 EXPORT_SYMBOL(napi_disable);
6526 static void flush_gro_hash(struct napi_struct *napi)
6530 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6531 struct sk_buff *skb, *n;
6533 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6535 napi->gro_hash[i].count = 0;
6539 /* Must be called in process context */
6540 void netif_napi_del(struct napi_struct *napi)
6543 if (napi_hash_del(napi))
6545 list_del_init(&napi->dev_list);
6546 napi_free_frags(napi);
6548 flush_gro_hash(napi);
6549 napi->gro_bitmask = 0;
6551 EXPORT_SYMBOL(netif_napi_del);
6553 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6558 list_del_init(&n->poll_list);
6560 have = netpoll_poll_lock(n);
6564 /* This NAPI_STATE_SCHED test is for avoiding a race
6565 * with netpoll's poll_napi(). Only the entity which
6566 * obtains the lock and sees NAPI_STATE_SCHED set will
6567 * actually make the ->poll() call. Therefore we avoid
6568 * accidentally calling ->poll() when NAPI is not scheduled.
6571 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6572 work = n->poll(n, weight);
6573 trace_napi_poll(n, work, weight);
6576 WARN_ON_ONCE(work > weight);
6578 if (likely(work < weight))
6581 /* Drivers must not modify the NAPI state if they
6582 * consume the entire weight. In such cases this code
6583 * still "owns" the NAPI instance and therefore can
6584 * move the instance around on the list at-will.
6586 if (unlikely(napi_disable_pending(n))) {
6591 if (n->gro_bitmask) {
6592 /* flush too old packets
6593 * If HZ < 1000, flush all packets.
6595 napi_gro_flush(n, HZ >= 1000);
6600 /* Some drivers may have called napi_schedule
6601 * prior to exhausting their budget.
6603 if (unlikely(!list_empty(&n->poll_list))) {
6604 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6605 n->dev ? n->dev->name : "backlog");
6609 list_add_tail(&n->poll_list, repoll);
6612 netpoll_poll_unlock(have);
6617 static __latent_entropy void net_rx_action(struct softirq_action *h)
6619 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6620 unsigned long time_limit = jiffies +
6621 usecs_to_jiffies(netdev_budget_usecs);
6622 int budget = netdev_budget;
6626 local_irq_disable();
6627 list_splice_init(&sd->poll_list, &list);
6631 struct napi_struct *n;
6633 if (list_empty(&list)) {
6634 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6639 n = list_first_entry(&list, struct napi_struct, poll_list);
6640 budget -= napi_poll(n, &repoll);
6642 /* If softirq window is exhausted then punt.
6643 * Allow this to run for 2 jiffies since which will allow
6644 * an average latency of 1.5/HZ.
6646 if (unlikely(budget <= 0 ||
6647 time_after_eq(jiffies, time_limit))) {
6653 local_irq_disable();
6655 list_splice_tail_init(&sd->poll_list, &list);
6656 list_splice_tail(&repoll, &list);
6657 list_splice(&list, &sd->poll_list);
6658 if (!list_empty(&sd->poll_list))
6659 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6661 net_rps_action_and_irq_enable(sd);
6663 __kfree_skb_flush();
6666 struct netdev_adjacent {
6667 struct net_device *dev;
6669 /* upper master flag, there can only be one master device per list */
6672 /* lookup ignore flag */
6675 /* counter for the number of times this device was added to us */
6678 /* private field for the users */
6681 struct list_head list;
6682 struct rcu_head rcu;
6685 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6686 struct list_head *adj_list)
6688 struct netdev_adjacent *adj;
6690 list_for_each_entry(adj, adj_list, list) {
6691 if (adj->dev == adj_dev)
6697 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6699 struct net_device *dev = data;
6701 return upper_dev == dev;
6705 * netdev_has_upper_dev - Check if device is linked to an upper device
6707 * @upper_dev: upper device to check
6709 * Find out if a device is linked to specified upper device and return true
6710 * in case it is. Note that this checks only immediate upper device,
6711 * not through a complete stack of devices. The caller must hold the RTNL lock.
6713 bool netdev_has_upper_dev(struct net_device *dev,
6714 struct net_device *upper_dev)
6718 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6721 EXPORT_SYMBOL(netdev_has_upper_dev);
6724 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6726 * @upper_dev: upper device to check
6728 * Find out if a device is linked to specified upper device and return true
6729 * in case it is. Note that this checks the entire upper device chain.
6730 * The caller must hold rcu lock.
6733 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6734 struct net_device *upper_dev)
6736 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6739 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6742 * netdev_has_any_upper_dev - Check if device is linked to some device
6745 * Find out if a device is linked to an upper device and return true in case
6746 * it is. The caller must hold the RTNL lock.
6748 bool netdev_has_any_upper_dev(struct net_device *dev)
6752 return !list_empty(&dev->adj_list.upper);
6754 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6757 * netdev_master_upper_dev_get - Get master upper device
6760 * Find a master upper device and return pointer to it or NULL in case
6761 * it's not there. The caller must hold the RTNL lock.
6763 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6765 struct netdev_adjacent *upper;
6769 if (list_empty(&dev->adj_list.upper))
6772 upper = list_first_entry(&dev->adj_list.upper,
6773 struct netdev_adjacent, list);
6774 if (likely(upper->master))
6778 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6780 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6782 struct netdev_adjacent *upper;
6786 if (list_empty(&dev->adj_list.upper))
6789 upper = list_first_entry(&dev->adj_list.upper,
6790 struct netdev_adjacent, list);
6791 if (likely(upper->master) && !upper->ignore)
6797 * netdev_has_any_lower_dev - Check if device is linked to some device
6800 * Find out if a device is linked to a lower device and return true in case
6801 * it is. The caller must hold the RTNL lock.
6803 static bool netdev_has_any_lower_dev(struct net_device *dev)
6807 return !list_empty(&dev->adj_list.lower);
6810 void *netdev_adjacent_get_private(struct list_head *adj_list)
6812 struct netdev_adjacent *adj;
6814 adj = list_entry(adj_list, struct netdev_adjacent, list);
6816 return adj->private;
6818 EXPORT_SYMBOL(netdev_adjacent_get_private);
6821 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6823 * @iter: list_head ** of the current position
6825 * Gets the next device from the dev's upper list, starting from iter
6826 * position. The caller must hold RCU read lock.
6828 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6829 struct list_head **iter)
6831 struct netdev_adjacent *upper;
6833 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6835 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6837 if (&upper->list == &dev->adj_list.upper)
6840 *iter = &upper->list;
6844 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6846 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6847 struct list_head **iter,
6850 struct netdev_adjacent *upper;
6852 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6854 if (&upper->list == &dev->adj_list.upper)
6857 *iter = &upper->list;
6858 *ignore = upper->ignore;
6863 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6864 struct list_head **iter)
6866 struct netdev_adjacent *upper;
6868 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6870 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6872 if (&upper->list == &dev->adj_list.upper)
6875 *iter = &upper->list;
6880 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6881 int (*fn)(struct net_device *dev,
6885 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6886 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6891 iter = &dev->adj_list.upper;
6895 ret = fn(now, data);
6902 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6909 niter = &udev->adj_list.upper;
6910 dev_stack[cur] = now;
6911 iter_stack[cur++] = iter;
6918 next = dev_stack[--cur];
6919 niter = iter_stack[cur];
6929 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6930 int (*fn)(struct net_device *dev,
6934 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6935 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6939 iter = &dev->adj_list.upper;
6943 ret = fn(now, data);
6950 udev = netdev_next_upper_dev_rcu(now, &iter);
6955 niter = &udev->adj_list.upper;
6956 dev_stack[cur] = now;
6957 iter_stack[cur++] = iter;
6964 next = dev_stack[--cur];
6965 niter = iter_stack[cur];
6974 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6976 static bool __netdev_has_upper_dev(struct net_device *dev,
6977 struct net_device *upper_dev)
6981 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6986 * netdev_lower_get_next_private - Get the next ->private from the
6987 * lower neighbour list
6989 * @iter: list_head ** of the current position
6991 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6992 * list, starting from iter position. The caller must hold either hold the
6993 * RTNL lock or its own locking that guarantees that the neighbour lower
6994 * list will remain unchanged.
6996 void *netdev_lower_get_next_private(struct net_device *dev,
6997 struct list_head **iter)
6999 struct netdev_adjacent *lower;
7001 lower = list_entry(*iter, struct netdev_adjacent, list);
7003 if (&lower->list == &dev->adj_list.lower)
7006 *iter = lower->list.next;
7008 return lower->private;
7010 EXPORT_SYMBOL(netdev_lower_get_next_private);
7013 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7014 * lower neighbour list, RCU
7017 * @iter: list_head ** of the current position
7019 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7020 * list, starting from iter position. The caller must hold RCU read lock.
7022 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7023 struct list_head **iter)
7025 struct netdev_adjacent *lower;
7027 WARN_ON_ONCE(!rcu_read_lock_held());
7029 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7031 if (&lower->list == &dev->adj_list.lower)
7034 *iter = &lower->list;
7036 return lower->private;
7038 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7041 * netdev_lower_get_next - Get the next device from the lower neighbour
7044 * @iter: list_head ** of the current position
7046 * Gets the next netdev_adjacent from the dev's lower neighbour
7047 * list, starting from iter position. The caller must hold RTNL lock or
7048 * its own locking that guarantees that the neighbour lower
7049 * list will remain unchanged.
7051 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7053 struct netdev_adjacent *lower;
7055 lower = list_entry(*iter, struct netdev_adjacent, list);
7057 if (&lower->list == &dev->adj_list.lower)
7060 *iter = lower->list.next;
7064 EXPORT_SYMBOL(netdev_lower_get_next);
7066 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7067 struct list_head **iter)
7069 struct netdev_adjacent *lower;
7071 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7073 if (&lower->list == &dev->adj_list.lower)
7076 *iter = &lower->list;
7081 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7082 struct list_head **iter,
7085 struct netdev_adjacent *lower;
7087 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7089 if (&lower->list == &dev->adj_list.lower)
7092 *iter = &lower->list;
7093 *ignore = lower->ignore;
7098 int netdev_walk_all_lower_dev(struct net_device *dev,
7099 int (*fn)(struct net_device *dev,
7103 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7104 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7108 iter = &dev->adj_list.lower;
7112 ret = fn(now, data);
7119 ldev = netdev_next_lower_dev(now, &iter);
7124 niter = &ldev->adj_list.lower;
7125 dev_stack[cur] = now;
7126 iter_stack[cur++] = iter;
7133 next = dev_stack[--cur];
7134 niter = iter_stack[cur];
7143 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7145 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7146 int (*fn)(struct net_device *dev,
7150 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7151 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7156 iter = &dev->adj_list.lower;
7160 ret = fn(now, data);
7167 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7174 niter = &ldev->adj_list.lower;
7175 dev_stack[cur] = now;
7176 iter_stack[cur++] = iter;
7183 next = dev_stack[--cur];
7184 niter = iter_stack[cur];
7194 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7195 struct list_head **iter)
7197 struct netdev_adjacent *lower;
7199 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7200 if (&lower->list == &dev->adj_list.lower)
7203 *iter = &lower->list;
7207 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7209 static u8 __netdev_upper_depth(struct net_device *dev)
7211 struct net_device *udev;
7212 struct list_head *iter;
7216 for (iter = &dev->adj_list.upper,
7217 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7219 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7222 if (max_depth < udev->upper_level)
7223 max_depth = udev->upper_level;
7229 static u8 __netdev_lower_depth(struct net_device *dev)
7231 struct net_device *ldev;
7232 struct list_head *iter;
7236 for (iter = &dev->adj_list.lower,
7237 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7239 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7242 if (max_depth < ldev->lower_level)
7243 max_depth = ldev->lower_level;
7249 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7251 dev->upper_level = __netdev_upper_depth(dev) + 1;
7255 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7257 dev->lower_level = __netdev_lower_depth(dev) + 1;
7261 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7262 int (*fn)(struct net_device *dev,
7266 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7267 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7271 iter = &dev->adj_list.lower;
7275 ret = fn(now, data);
7282 ldev = netdev_next_lower_dev_rcu(now, &iter);
7287 niter = &ldev->adj_list.lower;
7288 dev_stack[cur] = now;
7289 iter_stack[cur++] = iter;
7296 next = dev_stack[--cur];
7297 niter = iter_stack[cur];
7306 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7309 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7310 * lower neighbour list, RCU
7314 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7315 * list. The caller must hold RCU read lock.
7317 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7319 struct netdev_adjacent *lower;
7321 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7322 struct netdev_adjacent, list);
7324 return lower->private;
7327 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7330 * netdev_master_upper_dev_get_rcu - Get master upper device
7333 * Find a master upper device and return pointer to it or NULL in case
7334 * it's not there. The caller must hold the RCU read lock.
7336 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7338 struct netdev_adjacent *upper;
7340 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7341 struct netdev_adjacent, list);
7342 if (upper && likely(upper->master))
7346 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7348 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7349 struct net_device *adj_dev,
7350 struct list_head *dev_list)
7352 char linkname[IFNAMSIZ+7];
7354 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7355 "upper_%s" : "lower_%s", adj_dev->name);
7356 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7359 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7361 struct list_head *dev_list)
7363 char linkname[IFNAMSIZ+7];
7365 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7366 "upper_%s" : "lower_%s", name);
7367 sysfs_remove_link(&(dev->dev.kobj), linkname);
7370 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7371 struct net_device *adj_dev,
7372 struct list_head *dev_list)
7374 return (dev_list == &dev->adj_list.upper ||
7375 dev_list == &dev->adj_list.lower) &&
7376 net_eq(dev_net(dev), dev_net(adj_dev));
7379 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7380 struct net_device *adj_dev,
7381 struct list_head *dev_list,
7382 void *private, bool master)
7384 struct netdev_adjacent *adj;
7387 adj = __netdev_find_adj(adj_dev, dev_list);
7391 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7392 dev->name, adj_dev->name, adj->ref_nr);
7397 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7402 adj->master = master;
7404 adj->private = private;
7405 adj->ignore = false;
7408 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7409 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7411 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7412 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7417 /* Ensure that master link is always the first item in list. */
7419 ret = sysfs_create_link(&(dev->dev.kobj),
7420 &(adj_dev->dev.kobj), "master");
7422 goto remove_symlinks;
7424 list_add_rcu(&adj->list, dev_list);
7426 list_add_tail_rcu(&adj->list, dev_list);
7432 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7433 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7441 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7442 struct net_device *adj_dev,
7444 struct list_head *dev_list)
7446 struct netdev_adjacent *adj;
7448 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7449 dev->name, adj_dev->name, ref_nr);
7451 adj = __netdev_find_adj(adj_dev, dev_list);
7454 pr_err("Adjacency does not exist for device %s from %s\n",
7455 dev->name, adj_dev->name);
7460 if (adj->ref_nr > ref_nr) {
7461 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7462 dev->name, adj_dev->name, ref_nr,
7463 adj->ref_nr - ref_nr);
7464 adj->ref_nr -= ref_nr;
7469 sysfs_remove_link(&(dev->dev.kobj), "master");
7471 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7472 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7474 list_del_rcu(&adj->list);
7475 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7476 adj_dev->name, dev->name, adj_dev->name);
7478 kfree_rcu(adj, rcu);
7481 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7482 struct net_device *upper_dev,
7483 struct list_head *up_list,
7484 struct list_head *down_list,
7485 void *private, bool master)
7489 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7494 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7497 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7504 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7505 struct net_device *upper_dev,
7507 struct list_head *up_list,
7508 struct list_head *down_list)
7510 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7511 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7514 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7515 struct net_device *upper_dev,
7516 void *private, bool master)
7518 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7519 &dev->adj_list.upper,
7520 &upper_dev->adj_list.lower,
7524 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7525 struct net_device *upper_dev)
7527 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7528 &dev->adj_list.upper,
7529 &upper_dev->adj_list.lower);
7532 static int __netdev_upper_dev_link(struct net_device *dev,
7533 struct net_device *upper_dev, bool master,
7534 void *upper_priv, void *upper_info,
7535 struct netlink_ext_ack *extack)
7537 struct netdev_notifier_changeupper_info changeupper_info = {
7542 .upper_dev = upper_dev,
7545 .upper_info = upper_info,
7547 struct net_device *master_dev;
7552 if (dev == upper_dev)
7555 /* To prevent loops, check if dev is not upper device to upper_dev. */
7556 if (__netdev_has_upper_dev(upper_dev, dev))
7559 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7563 if (__netdev_has_upper_dev(dev, upper_dev))
7566 master_dev = __netdev_master_upper_dev_get(dev);
7568 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7571 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7572 &changeupper_info.info);
7573 ret = notifier_to_errno(ret);
7577 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7582 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7583 &changeupper_info.info);
7584 ret = notifier_to_errno(ret);
7588 __netdev_update_upper_level(dev, NULL);
7589 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7591 __netdev_update_lower_level(upper_dev, NULL);
7592 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7598 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7604 * netdev_upper_dev_link - Add a link to the upper device
7606 * @upper_dev: new upper device
7607 * @extack: netlink extended ack
7609 * Adds a link to device which is upper to this one. The caller must hold
7610 * the RTNL lock. On a failure a negative errno code is returned.
7611 * On success the reference counts are adjusted and the function
7614 int netdev_upper_dev_link(struct net_device *dev,
7615 struct net_device *upper_dev,
7616 struct netlink_ext_ack *extack)
7618 return __netdev_upper_dev_link(dev, upper_dev, false,
7619 NULL, NULL, extack);
7621 EXPORT_SYMBOL(netdev_upper_dev_link);
7624 * netdev_master_upper_dev_link - Add a master link to the upper device
7626 * @upper_dev: new upper device
7627 * @upper_priv: upper device private
7628 * @upper_info: upper info to be passed down via notifier
7629 * @extack: netlink extended ack
7631 * Adds a link to device which is upper to this one. In this case, only
7632 * one master upper device can be linked, although other non-master devices
7633 * might be linked as well. The caller must hold the RTNL lock.
7634 * On a failure a negative errno code is returned. On success the reference
7635 * counts are adjusted and the function returns zero.
7637 int netdev_master_upper_dev_link(struct net_device *dev,
7638 struct net_device *upper_dev,
7639 void *upper_priv, void *upper_info,
7640 struct netlink_ext_ack *extack)
7642 return __netdev_upper_dev_link(dev, upper_dev, true,
7643 upper_priv, upper_info, extack);
7645 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7648 * netdev_upper_dev_unlink - Removes a link to upper device
7650 * @upper_dev: new upper device
7652 * Removes a link to device which is upper to this one. The caller must hold
7655 void netdev_upper_dev_unlink(struct net_device *dev,
7656 struct net_device *upper_dev)
7658 struct netdev_notifier_changeupper_info changeupper_info = {
7662 .upper_dev = upper_dev,
7668 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7670 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7671 &changeupper_info.info);
7673 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7675 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7676 &changeupper_info.info);
7678 __netdev_update_upper_level(dev, NULL);
7679 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7681 __netdev_update_lower_level(upper_dev, NULL);
7682 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7685 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7687 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7688 struct net_device *lower_dev,
7691 struct netdev_adjacent *adj;
7693 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7697 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7702 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7703 struct net_device *lower_dev)
7705 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7708 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7709 struct net_device *lower_dev)
7711 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7714 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7715 struct net_device *new_dev,
7716 struct net_device *dev,
7717 struct netlink_ext_ack *extack)
7724 if (old_dev && new_dev != old_dev)
7725 netdev_adjacent_dev_disable(dev, old_dev);
7727 err = netdev_upper_dev_link(new_dev, dev, extack);
7729 if (old_dev && new_dev != old_dev)
7730 netdev_adjacent_dev_enable(dev, old_dev);
7736 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7738 void netdev_adjacent_change_commit(struct net_device *old_dev,
7739 struct net_device *new_dev,
7740 struct net_device *dev)
7742 if (!new_dev || !old_dev)
7745 if (new_dev == old_dev)
7748 netdev_adjacent_dev_enable(dev, old_dev);
7749 netdev_upper_dev_unlink(old_dev, dev);
7751 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7753 void netdev_adjacent_change_abort(struct net_device *old_dev,
7754 struct net_device *new_dev,
7755 struct net_device *dev)
7760 if (old_dev && new_dev != old_dev)
7761 netdev_adjacent_dev_enable(dev, old_dev);
7763 netdev_upper_dev_unlink(new_dev, dev);
7765 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7768 * netdev_bonding_info_change - Dispatch event about slave change
7770 * @bonding_info: info to dispatch
7772 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7773 * The caller must hold the RTNL lock.
7775 void netdev_bonding_info_change(struct net_device *dev,
7776 struct netdev_bonding_info *bonding_info)
7778 struct netdev_notifier_bonding_info info = {
7782 memcpy(&info.bonding_info, bonding_info,
7783 sizeof(struct netdev_bonding_info));
7784 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7787 EXPORT_SYMBOL(netdev_bonding_info_change);
7789 static void netdev_adjacent_add_links(struct net_device *dev)
7791 struct netdev_adjacent *iter;
7793 struct net *net = dev_net(dev);
7795 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7796 if (!net_eq(net, dev_net(iter->dev)))
7798 netdev_adjacent_sysfs_add(iter->dev, dev,
7799 &iter->dev->adj_list.lower);
7800 netdev_adjacent_sysfs_add(dev, iter->dev,
7801 &dev->adj_list.upper);
7804 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7805 if (!net_eq(net, dev_net(iter->dev)))
7807 netdev_adjacent_sysfs_add(iter->dev, dev,
7808 &iter->dev->adj_list.upper);
7809 netdev_adjacent_sysfs_add(dev, iter->dev,
7810 &dev->adj_list.lower);
7814 static void netdev_adjacent_del_links(struct net_device *dev)
7816 struct netdev_adjacent *iter;
7818 struct net *net = dev_net(dev);
7820 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7821 if (!net_eq(net, dev_net(iter->dev)))
7823 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7824 &iter->dev->adj_list.lower);
7825 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7826 &dev->adj_list.upper);
7829 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7830 if (!net_eq(net, dev_net(iter->dev)))
7832 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7833 &iter->dev->adj_list.upper);
7834 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7835 &dev->adj_list.lower);
7839 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7841 struct netdev_adjacent *iter;
7843 struct net *net = dev_net(dev);
7845 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7846 if (!net_eq(net, dev_net(iter->dev)))
7848 netdev_adjacent_sysfs_del(iter->dev, oldname,
7849 &iter->dev->adj_list.lower);
7850 netdev_adjacent_sysfs_add(iter->dev, dev,
7851 &iter->dev->adj_list.lower);
7854 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7855 if (!net_eq(net, dev_net(iter->dev)))
7857 netdev_adjacent_sysfs_del(iter->dev, oldname,
7858 &iter->dev->adj_list.upper);
7859 netdev_adjacent_sysfs_add(iter->dev, dev,
7860 &iter->dev->adj_list.upper);
7864 void *netdev_lower_dev_get_private(struct net_device *dev,
7865 struct net_device *lower_dev)
7867 struct netdev_adjacent *lower;
7871 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7875 return lower->private;
7877 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7881 * netdev_lower_change - Dispatch event about lower device state change
7882 * @lower_dev: device
7883 * @lower_state_info: state to dispatch
7885 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7886 * The caller must hold the RTNL lock.
7888 void netdev_lower_state_changed(struct net_device *lower_dev,
7889 void *lower_state_info)
7891 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7892 .info.dev = lower_dev,
7896 changelowerstate_info.lower_state_info = lower_state_info;
7897 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7898 &changelowerstate_info.info);
7900 EXPORT_SYMBOL(netdev_lower_state_changed);
7902 static void dev_change_rx_flags(struct net_device *dev, int flags)
7904 const struct net_device_ops *ops = dev->netdev_ops;
7906 if (ops->ndo_change_rx_flags)
7907 ops->ndo_change_rx_flags(dev, flags);
7910 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7912 unsigned int old_flags = dev->flags;
7918 dev->flags |= IFF_PROMISC;
7919 dev->promiscuity += inc;
7920 if (dev->promiscuity == 0) {
7923 * If inc causes overflow, untouch promisc and return error.
7926 dev->flags &= ~IFF_PROMISC;
7928 dev->promiscuity -= inc;
7929 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7934 if (dev->flags != old_flags) {
7935 pr_info("device %s %s promiscuous mode\n",
7937 dev->flags & IFF_PROMISC ? "entered" : "left");
7938 if (audit_enabled) {
7939 current_uid_gid(&uid, &gid);
7940 audit_log(audit_context(), GFP_ATOMIC,
7941 AUDIT_ANOM_PROMISCUOUS,
7942 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7943 dev->name, (dev->flags & IFF_PROMISC),
7944 (old_flags & IFF_PROMISC),
7945 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7946 from_kuid(&init_user_ns, uid),
7947 from_kgid(&init_user_ns, gid),
7948 audit_get_sessionid(current));
7951 dev_change_rx_flags(dev, IFF_PROMISC);
7954 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7959 * dev_set_promiscuity - update promiscuity count on a device
7963 * Add or remove promiscuity from a device. While the count in the device
7964 * remains above zero the interface remains promiscuous. Once it hits zero
7965 * the device reverts back to normal filtering operation. A negative inc
7966 * value is used to drop promiscuity on the device.
7967 * Return 0 if successful or a negative errno code on error.
7969 int dev_set_promiscuity(struct net_device *dev, int inc)
7971 unsigned int old_flags = dev->flags;
7974 err = __dev_set_promiscuity(dev, inc, true);
7977 if (dev->flags != old_flags)
7978 dev_set_rx_mode(dev);
7981 EXPORT_SYMBOL(dev_set_promiscuity);
7983 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7985 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7989 dev->flags |= IFF_ALLMULTI;
7990 dev->allmulti += inc;
7991 if (dev->allmulti == 0) {
7994 * If inc causes overflow, untouch allmulti and return error.
7997 dev->flags &= ~IFF_ALLMULTI;
7999 dev->allmulti -= inc;
8000 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8005 if (dev->flags ^ old_flags) {
8006 dev_change_rx_flags(dev, IFF_ALLMULTI);
8007 dev_set_rx_mode(dev);
8009 __dev_notify_flags(dev, old_flags,
8010 dev->gflags ^ old_gflags);
8016 * dev_set_allmulti - update allmulti count on a device
8020 * Add or remove reception of all multicast frames to a device. While the
8021 * count in the device remains above zero the interface remains listening
8022 * to all interfaces. Once it hits zero the device reverts back to normal
8023 * filtering operation. A negative @inc value is used to drop the counter
8024 * when releasing a resource needing all multicasts.
8025 * Return 0 if successful or a negative errno code on error.
8028 int dev_set_allmulti(struct net_device *dev, int inc)
8030 return __dev_set_allmulti(dev, inc, true);
8032 EXPORT_SYMBOL(dev_set_allmulti);
8035 * Upload unicast and multicast address lists to device and
8036 * configure RX filtering. When the device doesn't support unicast
8037 * filtering it is put in promiscuous mode while unicast addresses
8040 void __dev_set_rx_mode(struct net_device *dev)
8042 const struct net_device_ops *ops = dev->netdev_ops;
8044 /* dev_open will call this function so the list will stay sane. */
8045 if (!(dev->flags&IFF_UP))
8048 if (!netif_device_present(dev))
8051 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8052 /* Unicast addresses changes may only happen under the rtnl,
8053 * therefore calling __dev_set_promiscuity here is safe.
8055 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8056 __dev_set_promiscuity(dev, 1, false);
8057 dev->uc_promisc = true;
8058 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8059 __dev_set_promiscuity(dev, -1, false);
8060 dev->uc_promisc = false;
8064 if (ops->ndo_set_rx_mode)
8065 ops->ndo_set_rx_mode(dev);
8068 void dev_set_rx_mode(struct net_device *dev)
8070 netif_addr_lock_bh(dev);
8071 __dev_set_rx_mode(dev);
8072 netif_addr_unlock_bh(dev);
8076 * dev_get_flags - get flags reported to userspace
8079 * Get the combination of flag bits exported through APIs to userspace.
8081 unsigned int dev_get_flags(const struct net_device *dev)
8085 flags = (dev->flags & ~(IFF_PROMISC |
8090 (dev->gflags & (IFF_PROMISC |
8093 if (netif_running(dev)) {
8094 if (netif_oper_up(dev))
8095 flags |= IFF_RUNNING;
8096 if (netif_carrier_ok(dev))
8097 flags |= IFF_LOWER_UP;
8098 if (netif_dormant(dev))
8099 flags |= IFF_DORMANT;
8104 EXPORT_SYMBOL(dev_get_flags);
8106 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8107 struct netlink_ext_ack *extack)
8109 unsigned int old_flags = dev->flags;
8115 * Set the flags on our device.
8118 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8119 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8121 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8125 * Load in the correct multicast list now the flags have changed.
8128 if ((old_flags ^ flags) & IFF_MULTICAST)
8129 dev_change_rx_flags(dev, IFF_MULTICAST);
8131 dev_set_rx_mode(dev);
8134 * Have we downed the interface. We handle IFF_UP ourselves
8135 * according to user attempts to set it, rather than blindly
8140 if ((old_flags ^ flags) & IFF_UP) {
8141 if (old_flags & IFF_UP)
8144 ret = __dev_open(dev, extack);
8147 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8148 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8149 unsigned int old_flags = dev->flags;
8151 dev->gflags ^= IFF_PROMISC;
8153 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8154 if (dev->flags != old_flags)
8155 dev_set_rx_mode(dev);
8158 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8159 * is important. Some (broken) drivers set IFF_PROMISC, when
8160 * IFF_ALLMULTI is requested not asking us and not reporting.
8162 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8163 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8165 dev->gflags ^= IFF_ALLMULTI;
8166 __dev_set_allmulti(dev, inc, false);
8172 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8173 unsigned int gchanges)
8175 unsigned int changes = dev->flags ^ old_flags;
8178 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8180 if (changes & IFF_UP) {
8181 if (dev->flags & IFF_UP)
8182 call_netdevice_notifiers(NETDEV_UP, dev);
8184 call_netdevice_notifiers(NETDEV_DOWN, dev);
8187 if (dev->flags & IFF_UP &&
8188 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8189 struct netdev_notifier_change_info change_info = {
8193 .flags_changed = changes,
8196 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8201 * dev_change_flags - change device settings
8203 * @flags: device state flags
8204 * @extack: netlink extended ack
8206 * Change settings on device based state flags. The flags are
8207 * in the userspace exported format.
8209 int dev_change_flags(struct net_device *dev, unsigned int flags,
8210 struct netlink_ext_ack *extack)
8213 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8215 ret = __dev_change_flags(dev, flags, extack);
8219 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8220 __dev_notify_flags(dev, old_flags, changes);
8223 EXPORT_SYMBOL(dev_change_flags);
8225 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8227 const struct net_device_ops *ops = dev->netdev_ops;
8229 if (ops->ndo_change_mtu)
8230 return ops->ndo_change_mtu(dev, new_mtu);
8232 /* Pairs with all the lockless reads of dev->mtu in the stack */
8233 WRITE_ONCE(dev->mtu, new_mtu);
8236 EXPORT_SYMBOL(__dev_set_mtu);
8238 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8239 struct netlink_ext_ack *extack)
8241 /* MTU must be positive, and in range */
8242 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8243 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8247 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8248 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8255 * dev_set_mtu_ext - Change maximum transfer unit
8257 * @new_mtu: new transfer unit
8258 * @extack: netlink extended ack
8260 * Change the maximum transfer size of the network device.
8262 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8263 struct netlink_ext_ack *extack)
8267 if (new_mtu == dev->mtu)
8270 err = dev_validate_mtu(dev, new_mtu, extack);
8274 if (!netif_device_present(dev))
8277 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8278 err = notifier_to_errno(err);
8282 orig_mtu = dev->mtu;
8283 err = __dev_set_mtu(dev, new_mtu);
8286 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8288 err = notifier_to_errno(err);
8290 /* setting mtu back and notifying everyone again,
8291 * so that they have a chance to revert changes.
8293 __dev_set_mtu(dev, orig_mtu);
8294 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8301 int dev_set_mtu(struct net_device *dev, int new_mtu)
8303 struct netlink_ext_ack extack;
8306 memset(&extack, 0, sizeof(extack));
8307 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8308 if (err && extack._msg)
8309 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8312 EXPORT_SYMBOL(dev_set_mtu);
8315 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8317 * @new_len: new tx queue length
8319 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8321 unsigned int orig_len = dev->tx_queue_len;
8324 if (new_len != (unsigned int)new_len)
8327 if (new_len != orig_len) {
8328 dev->tx_queue_len = new_len;
8329 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8330 res = notifier_to_errno(res);
8333 res = dev_qdisc_change_tx_queue_len(dev);
8341 netdev_err(dev, "refused to change device tx_queue_len\n");
8342 dev->tx_queue_len = orig_len;
8347 * dev_set_group - Change group this device belongs to
8349 * @new_group: group this device should belong to
8351 void dev_set_group(struct net_device *dev, int new_group)
8353 dev->group = new_group;
8355 EXPORT_SYMBOL(dev_set_group);
8358 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8360 * @addr: new address
8361 * @extack: netlink extended ack
8363 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8364 struct netlink_ext_ack *extack)
8366 struct netdev_notifier_pre_changeaddr_info info = {
8368 .info.extack = extack,
8373 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8374 return notifier_to_errno(rc);
8376 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8379 * dev_set_mac_address - Change Media Access Control Address
8382 * @extack: netlink extended ack
8384 * Change the hardware (MAC) address of the device
8386 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8387 struct netlink_ext_ack *extack)
8389 const struct net_device_ops *ops = dev->netdev_ops;
8392 if (!ops->ndo_set_mac_address)
8394 if (sa->sa_family != dev->type)
8396 if (!netif_device_present(dev))
8398 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8401 err = ops->ndo_set_mac_address(dev, sa);
8404 dev->addr_assign_type = NET_ADDR_SET;
8405 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8406 add_device_randomness(dev->dev_addr, dev->addr_len);
8409 EXPORT_SYMBOL(dev_set_mac_address);
8412 * dev_change_carrier - Change device carrier
8414 * @new_carrier: new value
8416 * Change device carrier
8418 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8420 const struct net_device_ops *ops = dev->netdev_ops;
8422 if (!ops->ndo_change_carrier)
8424 if (!netif_device_present(dev))
8426 return ops->ndo_change_carrier(dev, new_carrier);
8428 EXPORT_SYMBOL(dev_change_carrier);
8431 * dev_get_phys_port_id - Get device physical port ID
8435 * Get device physical port ID
8437 int dev_get_phys_port_id(struct net_device *dev,
8438 struct netdev_phys_item_id *ppid)
8440 const struct net_device_ops *ops = dev->netdev_ops;
8442 if (!ops->ndo_get_phys_port_id)
8444 return ops->ndo_get_phys_port_id(dev, ppid);
8446 EXPORT_SYMBOL(dev_get_phys_port_id);
8449 * dev_get_phys_port_name - Get device physical port name
8452 * @len: limit of bytes to copy to name
8454 * Get device physical port name
8456 int dev_get_phys_port_name(struct net_device *dev,
8457 char *name, size_t len)
8459 const struct net_device_ops *ops = dev->netdev_ops;
8462 if (ops->ndo_get_phys_port_name) {
8463 err = ops->ndo_get_phys_port_name(dev, name, len);
8464 if (err != -EOPNOTSUPP)
8467 return devlink_compat_phys_port_name_get(dev, name, len);
8469 EXPORT_SYMBOL(dev_get_phys_port_name);
8472 * dev_get_port_parent_id - Get the device's port parent identifier
8473 * @dev: network device
8474 * @ppid: pointer to a storage for the port's parent identifier
8475 * @recurse: allow/disallow recursion to lower devices
8477 * Get the devices's port parent identifier
8479 int dev_get_port_parent_id(struct net_device *dev,
8480 struct netdev_phys_item_id *ppid,
8483 const struct net_device_ops *ops = dev->netdev_ops;
8484 struct netdev_phys_item_id first = { };
8485 struct net_device *lower_dev;
8486 struct list_head *iter;
8489 if (ops->ndo_get_port_parent_id) {
8490 err = ops->ndo_get_port_parent_id(dev, ppid);
8491 if (err != -EOPNOTSUPP)
8495 err = devlink_compat_switch_id_get(dev, ppid);
8496 if (!err || err != -EOPNOTSUPP)
8502 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8503 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8508 else if (memcmp(&first, ppid, sizeof(*ppid)))
8514 EXPORT_SYMBOL(dev_get_port_parent_id);
8517 * netdev_port_same_parent_id - Indicate if two network devices have
8518 * the same port parent identifier
8519 * @a: first network device
8520 * @b: second network device
8522 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8524 struct netdev_phys_item_id a_id = { };
8525 struct netdev_phys_item_id b_id = { };
8527 if (dev_get_port_parent_id(a, &a_id, true) ||
8528 dev_get_port_parent_id(b, &b_id, true))
8531 return netdev_phys_item_id_same(&a_id, &b_id);
8533 EXPORT_SYMBOL(netdev_port_same_parent_id);
8536 * dev_change_proto_down - update protocol port state information
8538 * @proto_down: new value
8540 * This info can be used by switch drivers to set the phys state of the
8543 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8545 const struct net_device_ops *ops = dev->netdev_ops;
8547 if (!ops->ndo_change_proto_down)
8549 if (!netif_device_present(dev))
8551 return ops->ndo_change_proto_down(dev, proto_down);
8553 EXPORT_SYMBOL(dev_change_proto_down);
8556 * dev_change_proto_down_generic - generic implementation for
8557 * ndo_change_proto_down that sets carrier according to
8561 * @proto_down: new value
8563 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8566 netif_carrier_off(dev);
8568 netif_carrier_on(dev);
8569 dev->proto_down = proto_down;
8572 EXPORT_SYMBOL(dev_change_proto_down_generic);
8574 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8575 enum bpf_netdev_command cmd)
8577 struct netdev_bpf xdp;
8582 memset(&xdp, 0, sizeof(xdp));
8585 /* Query must always succeed. */
8586 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8591 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8592 struct netlink_ext_ack *extack, u32 flags,
8593 struct bpf_prog *prog)
8595 bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8596 struct bpf_prog *prev_prog = NULL;
8597 struct netdev_bpf xdp;
8601 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8603 if (IS_ERR(prev_prog))
8607 memset(&xdp, 0, sizeof(xdp));
8608 if (flags & XDP_FLAGS_HW_MODE)
8609 xdp.command = XDP_SETUP_PROG_HW;
8611 xdp.command = XDP_SETUP_PROG;
8612 xdp.extack = extack;
8616 err = bpf_op(dev, &xdp);
8618 bpf_prog_change_xdp(prev_prog, prog);
8621 bpf_prog_put(prev_prog);
8626 static void dev_xdp_uninstall(struct net_device *dev)
8628 struct netdev_bpf xdp;
8631 /* Remove generic XDP */
8632 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8634 /* Remove from the driver */
8635 ndo_bpf = dev->netdev_ops->ndo_bpf;
8639 memset(&xdp, 0, sizeof(xdp));
8640 xdp.command = XDP_QUERY_PROG;
8641 WARN_ON(ndo_bpf(dev, &xdp));
8643 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8646 /* Remove HW offload */
8647 memset(&xdp, 0, sizeof(xdp));
8648 xdp.command = XDP_QUERY_PROG_HW;
8649 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8650 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8655 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8657 * @extack: netlink extended ack
8658 * @fd: new program fd or negative value to clear
8659 * @expected_fd: old program fd that userspace expects to replace or clear
8660 * @flags: xdp-related flags
8662 * Set or clear a bpf program for a device
8664 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8665 int fd, int expected_fd, u32 flags)
8667 const struct net_device_ops *ops = dev->netdev_ops;
8668 enum bpf_netdev_command query;
8669 u32 prog_id, expected_id = 0;
8670 bpf_op_t bpf_op, bpf_chk;
8671 struct bpf_prog *prog;
8677 offload = flags & XDP_FLAGS_HW_MODE;
8678 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8680 bpf_op = bpf_chk = ops->ndo_bpf;
8681 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8682 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8685 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8686 bpf_op = generic_xdp_install;
8687 if (bpf_op == bpf_chk)
8688 bpf_chk = generic_xdp_install;
8690 prog_id = __dev_xdp_query(dev, bpf_op, query);
8691 if (flags & XDP_FLAGS_REPLACE) {
8692 if (expected_fd >= 0) {
8693 prog = bpf_prog_get_type_dev(expected_fd,
8695 bpf_op == ops->ndo_bpf);
8697 return PTR_ERR(prog);
8698 expected_id = prog->aux->id;
8702 if (prog_id != expected_id) {
8703 NL_SET_ERR_MSG(extack, "Active program does not match expected");
8708 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8709 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8713 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8714 NL_SET_ERR_MSG(extack, "XDP program already attached");
8718 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8719 bpf_op == ops->ndo_bpf);
8721 return PTR_ERR(prog);
8723 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8724 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8729 /* prog->aux->id may be 0 for orphaned device-bound progs */
8730 if (prog->aux->id && prog->aux->id == prog_id) {
8740 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8741 if (err < 0 && prog)
8748 * dev_new_index - allocate an ifindex
8749 * @net: the applicable net namespace
8751 * Returns a suitable unique value for a new device interface
8752 * number. The caller must hold the rtnl semaphore or the
8753 * dev_base_lock to be sure it remains unique.
8755 static int dev_new_index(struct net *net)
8757 int ifindex = net->ifindex;
8762 if (!__dev_get_by_index(net, ifindex))
8763 return net->ifindex = ifindex;
8767 /* Delayed registration/unregisteration */
8768 static LIST_HEAD(net_todo_list);
8769 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8771 static void net_set_todo(struct net_device *dev)
8773 list_add_tail(&dev->todo_list, &net_todo_list);
8774 dev_net(dev)->dev_unreg_count++;
8777 static void rollback_registered_many(struct list_head *head)
8779 struct net_device *dev, *tmp;
8780 LIST_HEAD(close_head);
8782 BUG_ON(dev_boot_phase);
8785 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8786 /* Some devices call without registering
8787 * for initialization unwind. Remove those
8788 * devices and proceed with the remaining.
8790 if (dev->reg_state == NETREG_UNINITIALIZED) {
8791 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8795 list_del(&dev->unreg_list);
8798 dev->dismantle = true;
8799 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8802 /* If device is running, close it first. */
8803 list_for_each_entry(dev, head, unreg_list)
8804 list_add_tail(&dev->close_list, &close_head);
8805 dev_close_many(&close_head, true);
8807 list_for_each_entry(dev, head, unreg_list) {
8808 /* And unlink it from device chain. */
8809 unlist_netdevice(dev);
8811 dev->reg_state = NETREG_UNREGISTERING;
8813 flush_all_backlogs();
8817 list_for_each_entry(dev, head, unreg_list) {
8818 struct sk_buff *skb = NULL;
8820 /* Shutdown queueing discipline. */
8823 dev_xdp_uninstall(dev);
8825 /* Notify protocols, that we are about to destroy
8826 * this device. They should clean all the things.
8828 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8830 if (!dev->rtnl_link_ops ||
8831 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8832 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8833 GFP_KERNEL, NULL, 0);
8836 * Flush the unicast and multicast chains
8841 netdev_name_node_alt_flush(dev);
8842 netdev_name_node_free(dev->name_node);
8844 if (dev->netdev_ops->ndo_uninit)
8845 dev->netdev_ops->ndo_uninit(dev);
8848 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8850 /* Notifier chain MUST detach us all upper devices. */
8851 WARN_ON(netdev_has_any_upper_dev(dev));
8852 WARN_ON(netdev_has_any_lower_dev(dev));
8854 /* Remove entries from kobject tree */
8855 netdev_unregister_kobject(dev);
8857 /* Remove XPS queueing entries */
8858 netif_reset_xps_queues_gt(dev, 0);
8864 list_for_each_entry(dev, head, unreg_list)
8868 static void rollback_registered(struct net_device *dev)
8872 list_add(&dev->unreg_list, &single);
8873 rollback_registered_many(&single);
8877 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8878 struct net_device *upper, netdev_features_t features)
8880 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8881 netdev_features_t feature;
8884 for_each_netdev_feature(upper_disables, feature_bit) {
8885 feature = __NETIF_F_BIT(feature_bit);
8886 if (!(upper->wanted_features & feature)
8887 && (features & feature)) {
8888 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8889 &feature, upper->name);
8890 features &= ~feature;
8897 static void netdev_sync_lower_features(struct net_device *upper,
8898 struct net_device *lower, netdev_features_t features)
8900 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8901 netdev_features_t feature;
8904 for_each_netdev_feature(upper_disables, feature_bit) {
8905 feature = __NETIF_F_BIT(feature_bit);
8906 if (!(features & feature) && (lower->features & feature)) {
8907 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8908 &feature, lower->name);
8909 lower->wanted_features &= ~feature;
8910 netdev_update_features(lower);
8912 if (unlikely(lower->features & feature))
8913 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8914 &feature, lower->name);
8919 static netdev_features_t netdev_fix_features(struct net_device *dev,
8920 netdev_features_t features)
8922 /* Fix illegal checksum combinations */
8923 if ((features & NETIF_F_HW_CSUM) &&
8924 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8925 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8926 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8929 /* TSO requires that SG is present as well. */
8930 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8931 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8932 features &= ~NETIF_F_ALL_TSO;
8935 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8936 !(features & NETIF_F_IP_CSUM)) {
8937 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8938 features &= ~NETIF_F_TSO;
8939 features &= ~NETIF_F_TSO_ECN;
8942 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8943 !(features & NETIF_F_IPV6_CSUM)) {
8944 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8945 features &= ~NETIF_F_TSO6;
8948 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8949 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8950 features &= ~NETIF_F_TSO_MANGLEID;
8952 /* TSO ECN requires that TSO is present as well. */
8953 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8954 features &= ~NETIF_F_TSO_ECN;
8956 /* Software GSO depends on SG. */
8957 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8958 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8959 features &= ~NETIF_F_GSO;
8962 /* GSO partial features require GSO partial be set */
8963 if ((features & dev->gso_partial_features) &&
8964 !(features & NETIF_F_GSO_PARTIAL)) {
8966 "Dropping partially supported GSO features since no GSO partial.\n");
8967 features &= ~dev->gso_partial_features;
8970 if (!(features & NETIF_F_RXCSUM)) {
8971 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8972 * successfully merged by hardware must also have the
8973 * checksum verified by hardware. If the user does not
8974 * want to enable RXCSUM, logically, we should disable GRO_HW.
8976 if (features & NETIF_F_GRO_HW) {
8977 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8978 features &= ~NETIF_F_GRO_HW;
8982 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8983 if (features & NETIF_F_RXFCS) {
8984 if (features & NETIF_F_LRO) {
8985 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8986 features &= ~NETIF_F_LRO;
8989 if (features & NETIF_F_GRO_HW) {
8990 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8991 features &= ~NETIF_F_GRO_HW;
8998 int __netdev_update_features(struct net_device *dev)
9000 struct net_device *upper, *lower;
9001 netdev_features_t features;
9002 struct list_head *iter;
9007 features = netdev_get_wanted_features(dev);
9009 if (dev->netdev_ops->ndo_fix_features)
9010 features = dev->netdev_ops->ndo_fix_features(dev, features);
9012 /* driver might be less strict about feature dependencies */
9013 features = netdev_fix_features(dev, features);
9015 /* some features can't be enabled if they're off an an upper device */
9016 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9017 features = netdev_sync_upper_features(dev, upper, features);
9019 if (dev->features == features)
9022 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9023 &dev->features, &features);
9025 if (dev->netdev_ops->ndo_set_features)
9026 err = dev->netdev_ops->ndo_set_features(dev, features);
9030 if (unlikely(err < 0)) {
9032 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9033 err, &features, &dev->features);
9034 /* return non-0 since some features might have changed and
9035 * it's better to fire a spurious notification than miss it
9041 /* some features must be disabled on lower devices when disabled
9042 * on an upper device (think: bonding master or bridge)
9044 netdev_for_each_lower_dev(dev, lower, iter)
9045 netdev_sync_lower_features(dev, lower, features);
9048 netdev_features_t diff = features ^ dev->features;
9050 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9051 /* udp_tunnel_{get,drop}_rx_info both need
9052 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9053 * device, or they won't do anything.
9054 * Thus we need to update dev->features
9055 * *before* calling udp_tunnel_get_rx_info,
9056 * but *after* calling udp_tunnel_drop_rx_info.
9058 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9059 dev->features = features;
9060 udp_tunnel_get_rx_info(dev);
9062 udp_tunnel_drop_rx_info(dev);
9066 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9067 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9068 dev->features = features;
9069 err |= vlan_get_rx_ctag_filter_info(dev);
9071 vlan_drop_rx_ctag_filter_info(dev);
9075 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9076 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9077 dev->features = features;
9078 err |= vlan_get_rx_stag_filter_info(dev);
9080 vlan_drop_rx_stag_filter_info(dev);
9084 dev->features = features;
9087 return err < 0 ? 0 : 1;
9091 * netdev_update_features - recalculate device features
9092 * @dev: the device to check
9094 * Recalculate dev->features set and send notifications if it
9095 * has changed. Should be called after driver or hardware dependent
9096 * conditions might have changed that influence the features.
9098 void netdev_update_features(struct net_device *dev)
9100 if (__netdev_update_features(dev))
9101 netdev_features_change(dev);
9103 EXPORT_SYMBOL(netdev_update_features);
9106 * netdev_change_features - recalculate device features
9107 * @dev: the device to check
9109 * Recalculate dev->features set and send notifications even
9110 * if they have not changed. Should be called instead of
9111 * netdev_update_features() if also dev->vlan_features might
9112 * have changed to allow the changes to be propagated to stacked
9115 void netdev_change_features(struct net_device *dev)
9117 __netdev_update_features(dev);
9118 netdev_features_change(dev);
9120 EXPORT_SYMBOL(netdev_change_features);
9123 * netif_stacked_transfer_operstate - transfer operstate
9124 * @rootdev: the root or lower level device to transfer state from
9125 * @dev: the device to transfer operstate to
9127 * Transfer operational state from root to device. This is normally
9128 * called when a stacking relationship exists between the root
9129 * device and the device(a leaf device).
9131 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9132 struct net_device *dev)
9134 if (rootdev->operstate == IF_OPER_DORMANT)
9135 netif_dormant_on(dev);
9137 netif_dormant_off(dev);
9139 if (netif_carrier_ok(rootdev))
9140 netif_carrier_on(dev);
9142 netif_carrier_off(dev);
9144 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9146 static int netif_alloc_rx_queues(struct net_device *dev)
9148 unsigned int i, count = dev->num_rx_queues;
9149 struct netdev_rx_queue *rx;
9150 size_t sz = count * sizeof(*rx);
9155 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9161 for (i = 0; i < count; i++) {
9164 /* XDP RX-queue setup */
9165 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9172 /* Rollback successful reg's and free other resources */
9174 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9180 static void netif_free_rx_queues(struct net_device *dev)
9182 unsigned int i, count = dev->num_rx_queues;
9184 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9188 for (i = 0; i < count; i++)
9189 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9194 static void netdev_init_one_queue(struct net_device *dev,
9195 struct netdev_queue *queue, void *_unused)
9197 /* Initialize queue lock */
9198 spin_lock_init(&queue->_xmit_lock);
9199 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9200 queue->xmit_lock_owner = -1;
9201 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9204 dql_init(&queue->dql, HZ);
9208 static void netif_free_tx_queues(struct net_device *dev)
9213 static int netif_alloc_netdev_queues(struct net_device *dev)
9215 unsigned int count = dev->num_tx_queues;
9216 struct netdev_queue *tx;
9217 size_t sz = count * sizeof(*tx);
9219 if (count < 1 || count > 0xffff)
9222 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9228 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9229 spin_lock_init(&dev->tx_global_lock);
9234 void netif_tx_stop_all_queues(struct net_device *dev)
9238 for (i = 0; i < dev->num_tx_queues; i++) {
9239 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9241 netif_tx_stop_queue(txq);
9244 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9246 static void netdev_register_lockdep_key(struct net_device *dev)
9248 lockdep_register_key(&dev->qdisc_tx_busylock_key);
9249 lockdep_register_key(&dev->qdisc_running_key);
9250 lockdep_register_key(&dev->qdisc_xmit_lock_key);
9251 lockdep_register_key(&dev->addr_list_lock_key);
9254 static void netdev_unregister_lockdep_key(struct net_device *dev)
9256 lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9257 lockdep_unregister_key(&dev->qdisc_running_key);
9258 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9259 lockdep_unregister_key(&dev->addr_list_lock_key);
9262 void netdev_update_lockdep_key(struct net_device *dev)
9264 lockdep_unregister_key(&dev->addr_list_lock_key);
9265 lockdep_register_key(&dev->addr_list_lock_key);
9267 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9269 EXPORT_SYMBOL(netdev_update_lockdep_key);
9272 * register_netdevice - register a network device
9273 * @dev: device to register
9275 * Take a completed network device structure and add it to the kernel
9276 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9277 * chain. 0 is returned on success. A negative errno code is returned
9278 * on a failure to set up the device, or if the name is a duplicate.
9280 * Callers must hold the rtnl semaphore. You may want
9281 * register_netdev() instead of this.
9284 * The locking appears insufficient to guarantee two parallel registers
9285 * will not get the same name.
9288 int register_netdevice(struct net_device *dev)
9291 struct net *net = dev_net(dev);
9293 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9294 NETDEV_FEATURE_COUNT);
9295 BUG_ON(dev_boot_phase);
9300 /* When net_device's are persistent, this will be fatal. */
9301 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9304 ret = ethtool_check_ops(dev->ethtool_ops);
9308 spin_lock_init(&dev->addr_list_lock);
9309 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9311 ret = dev_get_valid_name(net, dev, dev->name);
9316 dev->name_node = netdev_name_node_head_alloc(dev);
9317 if (!dev->name_node)
9320 /* Init, if this function is available */
9321 if (dev->netdev_ops->ndo_init) {
9322 ret = dev->netdev_ops->ndo_init(dev);
9330 if (((dev->hw_features | dev->features) &
9331 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9332 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9333 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9334 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9341 dev->ifindex = dev_new_index(net);
9342 else if (__dev_get_by_index(net, dev->ifindex))
9345 /* Transfer changeable features to wanted_features and enable
9346 * software offloads (GSO and GRO).
9348 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9349 dev->features |= NETIF_F_SOFT_FEATURES;
9351 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9352 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9353 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9356 dev->wanted_features = dev->features & dev->hw_features;
9358 if (!(dev->flags & IFF_LOOPBACK))
9359 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9361 /* If IPv4 TCP segmentation offload is supported we should also
9362 * allow the device to enable segmenting the frame with the option
9363 * of ignoring a static IP ID value. This doesn't enable the
9364 * feature itself but allows the user to enable it later.
9366 if (dev->hw_features & NETIF_F_TSO)
9367 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9368 if (dev->vlan_features & NETIF_F_TSO)
9369 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9370 if (dev->mpls_features & NETIF_F_TSO)
9371 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9372 if (dev->hw_enc_features & NETIF_F_TSO)
9373 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9375 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9377 dev->vlan_features |= NETIF_F_HIGHDMA;
9379 /* Make NETIF_F_SG inheritable to tunnel devices.
9381 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9383 /* Make NETIF_F_SG inheritable to MPLS.
9385 dev->mpls_features |= NETIF_F_SG;
9387 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9388 ret = notifier_to_errno(ret);
9392 ret = netdev_register_kobject(dev);
9394 dev->reg_state = NETREG_UNREGISTERED;
9397 dev->reg_state = NETREG_REGISTERED;
9399 __netdev_update_features(dev);
9402 * Default initial state at registry is that the
9403 * device is present.
9406 set_bit(__LINK_STATE_PRESENT, &dev->state);
9408 linkwatch_init_dev(dev);
9410 dev_init_scheduler(dev);
9412 list_netdevice(dev);
9413 add_device_randomness(dev->dev_addr, dev->addr_len);
9415 /* If the device has permanent device address, driver should
9416 * set dev_addr and also addr_assign_type should be set to
9417 * NET_ADDR_PERM (default value).
9419 if (dev->addr_assign_type == NET_ADDR_PERM)
9420 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9422 /* Notify protocols, that a new device appeared. */
9423 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9424 ret = notifier_to_errno(ret);
9426 rollback_registered(dev);
9429 dev->reg_state = NETREG_UNREGISTERED;
9432 * Prevent userspace races by waiting until the network
9433 * device is fully setup before sending notifications.
9435 if (!dev->rtnl_link_ops ||
9436 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9437 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9443 if (dev->netdev_ops->ndo_uninit)
9444 dev->netdev_ops->ndo_uninit(dev);
9445 if (dev->priv_destructor)
9446 dev->priv_destructor(dev);
9448 netdev_name_node_free(dev->name_node);
9451 EXPORT_SYMBOL(register_netdevice);
9454 * init_dummy_netdev - init a dummy network device for NAPI
9455 * @dev: device to init
9457 * This takes a network device structure and initialize the minimum
9458 * amount of fields so it can be used to schedule NAPI polls without
9459 * registering a full blown interface. This is to be used by drivers
9460 * that need to tie several hardware interfaces to a single NAPI
9461 * poll scheduler due to HW limitations.
9463 int init_dummy_netdev(struct net_device *dev)
9465 /* Clear everything. Note we don't initialize spinlocks
9466 * are they aren't supposed to be taken by any of the
9467 * NAPI code and this dummy netdev is supposed to be
9468 * only ever used for NAPI polls
9470 memset(dev, 0, sizeof(struct net_device));
9472 /* make sure we BUG if trying to hit standard
9473 * register/unregister code path
9475 dev->reg_state = NETREG_DUMMY;
9477 /* NAPI wants this */
9478 INIT_LIST_HEAD(&dev->napi_list);
9480 /* a dummy interface is started by default */
9481 set_bit(__LINK_STATE_PRESENT, &dev->state);
9482 set_bit(__LINK_STATE_START, &dev->state);
9484 /* napi_busy_loop stats accounting wants this */
9485 dev_net_set(dev, &init_net);
9487 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9488 * because users of this 'device' dont need to change
9494 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9498 * register_netdev - register a network device
9499 * @dev: device to register
9501 * Take a completed network device structure and add it to the kernel
9502 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9503 * chain. 0 is returned on success. A negative errno code is returned
9504 * on a failure to set up the device, or if the name is a duplicate.
9506 * This is a wrapper around register_netdevice that takes the rtnl semaphore
9507 * and expands the device name if you passed a format string to
9510 int register_netdev(struct net_device *dev)
9514 if (rtnl_lock_killable())
9516 err = register_netdevice(dev);
9520 EXPORT_SYMBOL(register_netdev);
9522 int netdev_refcnt_read(const struct net_device *dev)
9526 for_each_possible_cpu(i)
9527 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9530 EXPORT_SYMBOL(netdev_refcnt_read);
9533 * netdev_wait_allrefs - wait until all references are gone.
9534 * @dev: target net_device
9536 * This is called when unregistering network devices.
9538 * Any protocol or device that holds a reference should register
9539 * for netdevice notification, and cleanup and put back the
9540 * reference if they receive an UNREGISTER event.
9541 * We can get stuck here if buggy protocols don't correctly
9544 static void netdev_wait_allrefs(struct net_device *dev)
9546 unsigned long rebroadcast_time, warning_time;
9549 linkwatch_forget_dev(dev);
9551 rebroadcast_time = warning_time = jiffies;
9552 refcnt = netdev_refcnt_read(dev);
9554 while (refcnt != 0) {
9555 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9558 /* Rebroadcast unregister notification */
9559 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9565 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9567 /* We must not have linkwatch events
9568 * pending on unregister. If this
9569 * happens, we simply run the queue
9570 * unscheduled, resulting in a noop
9573 linkwatch_run_queue();
9578 rebroadcast_time = jiffies;
9583 refcnt = netdev_refcnt_read(dev);
9585 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9586 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9588 warning_time = jiffies;
9597 * register_netdevice(x1);
9598 * register_netdevice(x2);
9600 * unregister_netdevice(y1);
9601 * unregister_netdevice(y2);
9607 * We are invoked by rtnl_unlock().
9608 * This allows us to deal with problems:
9609 * 1) We can delete sysfs objects which invoke hotplug
9610 * without deadlocking with linkwatch via keventd.
9611 * 2) Since we run with the RTNL semaphore not held, we can sleep
9612 * safely in order to wait for the netdev refcnt to drop to zero.
9614 * We must not return until all unregister events added during
9615 * the interval the lock was held have been completed.
9617 void netdev_run_todo(void)
9619 struct list_head list;
9621 /* Snapshot list, allow later requests */
9622 list_replace_init(&net_todo_list, &list);
9627 /* Wait for rcu callbacks to finish before next phase */
9628 if (!list_empty(&list))
9631 while (!list_empty(&list)) {
9632 struct net_device *dev
9633 = list_first_entry(&list, struct net_device, todo_list);
9634 list_del(&dev->todo_list);
9636 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9637 pr_err("network todo '%s' but state %d\n",
9638 dev->name, dev->reg_state);
9643 dev->reg_state = NETREG_UNREGISTERED;
9645 netdev_wait_allrefs(dev);
9648 BUG_ON(netdev_refcnt_read(dev));
9649 BUG_ON(!list_empty(&dev->ptype_all));
9650 BUG_ON(!list_empty(&dev->ptype_specific));
9651 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9652 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9653 #if IS_ENABLED(CONFIG_DECNET)
9654 WARN_ON(dev->dn_ptr);
9656 if (dev->priv_destructor)
9657 dev->priv_destructor(dev);
9658 if (dev->needs_free_netdev)
9661 /* Report a network device has been unregistered */
9663 dev_net(dev)->dev_unreg_count--;
9665 wake_up(&netdev_unregistering_wq);
9667 /* Free network device */
9668 kobject_put(&dev->dev.kobj);
9672 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9673 * all the same fields in the same order as net_device_stats, with only
9674 * the type differing, but rtnl_link_stats64 may have additional fields
9675 * at the end for newer counters.
9677 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9678 const struct net_device_stats *netdev_stats)
9680 #if BITS_PER_LONG == 64
9681 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9682 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9683 /* zero out counters that only exist in rtnl_link_stats64 */
9684 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9685 sizeof(*stats64) - sizeof(*netdev_stats));
9687 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9688 const unsigned long *src = (const unsigned long *)netdev_stats;
9689 u64 *dst = (u64 *)stats64;
9691 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9692 for (i = 0; i < n; i++)
9694 /* zero out counters that only exist in rtnl_link_stats64 */
9695 memset((char *)stats64 + n * sizeof(u64), 0,
9696 sizeof(*stats64) - n * sizeof(u64));
9699 EXPORT_SYMBOL(netdev_stats_to_stats64);
9702 * dev_get_stats - get network device statistics
9703 * @dev: device to get statistics from
9704 * @storage: place to store stats
9706 * Get network statistics from device. Return @storage.
9707 * The device driver may provide its own method by setting
9708 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9709 * otherwise the internal statistics structure is used.
9711 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9712 struct rtnl_link_stats64 *storage)
9714 const struct net_device_ops *ops = dev->netdev_ops;
9716 if (ops->ndo_get_stats64) {
9717 memset(storage, 0, sizeof(*storage));
9718 ops->ndo_get_stats64(dev, storage);
9719 } else if (ops->ndo_get_stats) {
9720 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9722 netdev_stats_to_stats64(storage, &dev->stats);
9724 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9725 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9726 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9729 EXPORT_SYMBOL(dev_get_stats);
9731 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9733 struct netdev_queue *queue = dev_ingress_queue(dev);
9735 #ifdef CONFIG_NET_CLS_ACT
9738 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9741 netdev_init_one_queue(dev, queue, NULL);
9742 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9743 queue->qdisc_sleeping = &noop_qdisc;
9744 rcu_assign_pointer(dev->ingress_queue, queue);
9749 static const struct ethtool_ops default_ethtool_ops;
9751 void netdev_set_default_ethtool_ops(struct net_device *dev,
9752 const struct ethtool_ops *ops)
9754 if (dev->ethtool_ops == &default_ethtool_ops)
9755 dev->ethtool_ops = ops;
9757 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9759 void netdev_freemem(struct net_device *dev)
9761 char *addr = (char *)dev - dev->padded;
9767 * alloc_netdev_mqs - allocate network device
9768 * @sizeof_priv: size of private data to allocate space for
9769 * @name: device name format string
9770 * @name_assign_type: origin of device name
9771 * @setup: callback to initialize device
9772 * @txqs: the number of TX subqueues to allocate
9773 * @rxqs: the number of RX subqueues to allocate
9775 * Allocates a struct net_device with private data area for driver use
9776 * and performs basic initialization. Also allocates subqueue structs
9777 * for each queue on the device.
9779 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9780 unsigned char name_assign_type,
9781 void (*setup)(struct net_device *),
9782 unsigned int txqs, unsigned int rxqs)
9784 struct net_device *dev;
9785 unsigned int alloc_size;
9786 struct net_device *p;
9788 BUG_ON(strlen(name) >= sizeof(dev->name));
9791 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9796 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9800 alloc_size = sizeof(struct net_device);
9802 /* ensure 32-byte alignment of private area */
9803 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9804 alloc_size += sizeof_priv;
9806 /* ensure 32-byte alignment of whole construct */
9807 alloc_size += NETDEV_ALIGN - 1;
9809 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9813 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9814 dev->padded = (char *)dev - (char *)p;
9816 dev->pcpu_refcnt = alloc_percpu(int);
9817 if (!dev->pcpu_refcnt)
9820 if (dev_addr_init(dev))
9826 dev_net_set(dev, &init_net);
9828 netdev_register_lockdep_key(dev);
9830 dev->gso_max_size = GSO_MAX_SIZE;
9831 dev->gso_max_segs = GSO_MAX_SEGS;
9832 dev->upper_level = 1;
9833 dev->lower_level = 1;
9835 INIT_LIST_HEAD(&dev->napi_list);
9836 INIT_LIST_HEAD(&dev->unreg_list);
9837 INIT_LIST_HEAD(&dev->close_list);
9838 INIT_LIST_HEAD(&dev->link_watch_list);
9839 INIT_LIST_HEAD(&dev->adj_list.upper);
9840 INIT_LIST_HEAD(&dev->adj_list.lower);
9841 INIT_LIST_HEAD(&dev->ptype_all);
9842 INIT_LIST_HEAD(&dev->ptype_specific);
9843 INIT_LIST_HEAD(&dev->net_notifier_list);
9844 #ifdef CONFIG_NET_SCHED
9845 hash_init(dev->qdisc_hash);
9847 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9850 if (!dev->tx_queue_len) {
9851 dev->priv_flags |= IFF_NO_QUEUE;
9852 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9855 dev->num_tx_queues = txqs;
9856 dev->real_num_tx_queues = txqs;
9857 if (netif_alloc_netdev_queues(dev))
9860 dev->num_rx_queues = rxqs;
9861 dev->real_num_rx_queues = rxqs;
9862 if (netif_alloc_rx_queues(dev))
9865 strcpy(dev->name, name);
9866 dev->name_assign_type = name_assign_type;
9867 dev->group = INIT_NETDEV_GROUP;
9868 if (!dev->ethtool_ops)
9869 dev->ethtool_ops = &default_ethtool_ops;
9871 nf_hook_ingress_init(dev);
9880 free_percpu(dev->pcpu_refcnt);
9882 netdev_freemem(dev);
9885 EXPORT_SYMBOL(alloc_netdev_mqs);
9888 * free_netdev - free network device
9891 * This function does the last stage of destroying an allocated device
9892 * interface. The reference to the device object is released. If this
9893 * is the last reference then it will be freed.Must be called in process
9896 void free_netdev(struct net_device *dev)
9898 struct napi_struct *p, *n;
9901 netif_free_tx_queues(dev);
9902 netif_free_rx_queues(dev);
9904 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9906 /* Flush device addresses */
9907 dev_addr_flush(dev);
9909 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9912 free_percpu(dev->pcpu_refcnt);
9913 dev->pcpu_refcnt = NULL;
9914 free_percpu(dev->xdp_bulkq);
9915 dev->xdp_bulkq = NULL;
9917 netdev_unregister_lockdep_key(dev);
9919 /* Compatibility with error handling in drivers */
9920 if (dev->reg_state == NETREG_UNINITIALIZED) {
9921 netdev_freemem(dev);
9925 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9926 dev->reg_state = NETREG_RELEASED;
9928 /* will free via device release */
9929 put_device(&dev->dev);
9931 EXPORT_SYMBOL(free_netdev);
9934 * synchronize_net - Synchronize with packet receive processing
9936 * Wait for packets currently being received to be done.
9937 * Does not block later packets from starting.
9939 void synchronize_net(void)
9942 if (rtnl_is_locked())
9943 synchronize_rcu_expedited();
9947 EXPORT_SYMBOL(synchronize_net);
9950 * unregister_netdevice_queue - remove device from the kernel
9954 * This function shuts down a device interface and removes it
9955 * from the kernel tables.
9956 * If head not NULL, device is queued to be unregistered later.
9958 * Callers must hold the rtnl semaphore. You may want
9959 * unregister_netdev() instead of this.
9962 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9967 list_move_tail(&dev->unreg_list, head);
9969 rollback_registered(dev);
9970 /* Finish processing unregister after unlock */
9974 EXPORT_SYMBOL(unregister_netdevice_queue);
9977 * unregister_netdevice_many - unregister many devices
9978 * @head: list of devices
9980 * Note: As most callers use a stack allocated list_head,
9981 * we force a list_del() to make sure stack wont be corrupted later.
9983 void unregister_netdevice_many(struct list_head *head)
9985 struct net_device *dev;
9987 if (!list_empty(head)) {
9988 rollback_registered_many(head);
9989 list_for_each_entry(dev, head, unreg_list)
9994 EXPORT_SYMBOL(unregister_netdevice_many);
9997 * unregister_netdev - remove device from the kernel
10000 * This function shuts down a device interface and removes it
10001 * from the kernel tables.
10003 * This is just a wrapper for unregister_netdevice that takes
10004 * the rtnl semaphore. In general you want to use this and not
10005 * unregister_netdevice.
10007 void unregister_netdev(struct net_device *dev)
10010 unregister_netdevice(dev);
10013 EXPORT_SYMBOL(unregister_netdev);
10016 * dev_change_net_namespace - move device to different nethost namespace
10018 * @net: network namespace
10019 * @pat: If not NULL name pattern to try if the current device name
10020 * is already taken in the destination network namespace.
10022 * This function shuts down a device interface and moves it
10023 * to a new network namespace. On success 0 is returned, on
10024 * a failure a netagive errno code is returned.
10026 * Callers must hold the rtnl semaphore.
10029 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10031 struct net *net_old = dev_net(dev);
10032 int err, new_nsid, new_ifindex;
10036 /* Don't allow namespace local devices to be moved. */
10038 if (dev->features & NETIF_F_NETNS_LOCAL)
10041 /* Ensure the device has been registrered */
10042 if (dev->reg_state != NETREG_REGISTERED)
10045 /* Get out if there is nothing todo */
10047 if (net_eq(net_old, net))
10050 /* Pick the destination device name, and ensure
10051 * we can use it in the destination network namespace.
10054 if (__dev_get_by_name(net, dev->name)) {
10055 /* We get here if we can't use the current device name */
10058 err = dev_get_valid_name(net, dev, pat);
10064 * And now a mini version of register_netdevice unregister_netdevice.
10067 /* If device is running close it first. */
10070 /* And unlink it from device chain */
10071 unlist_netdevice(dev);
10075 /* Shutdown queueing discipline. */
10078 /* Notify protocols, that we are about to destroy
10079 * this device. They should clean all the things.
10081 * Note that dev->reg_state stays at NETREG_REGISTERED.
10082 * This is wanted because this way 8021q and macvlan know
10083 * the device is just moving and can keep their slaves up.
10085 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10088 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10089 /* If there is an ifindex conflict assign a new one */
10090 if (__dev_get_by_index(net, dev->ifindex))
10091 new_ifindex = dev_new_index(net);
10093 new_ifindex = dev->ifindex;
10095 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10099 * Flush the unicast and multicast chains
10104 /* Send a netdev-removed uevent to the old namespace */
10105 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10106 netdev_adjacent_del_links(dev);
10108 /* Move per-net netdevice notifiers that are following the netdevice */
10109 move_netdevice_notifiers_dev_net(dev, net);
10111 /* Actually switch the network namespace */
10112 dev_net_set(dev, net);
10113 dev->ifindex = new_ifindex;
10115 /* Send a netdev-add uevent to the new namespace */
10116 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10117 netdev_adjacent_add_links(dev);
10119 /* Fixup kobjects */
10120 err = device_rename(&dev->dev, dev->name);
10123 /* Adapt owner in case owning user namespace of target network
10124 * namespace is different from the original one.
10126 err = netdev_change_owner(dev, net_old, net);
10129 /* Add the device back in the hashes */
10130 list_netdevice(dev);
10132 /* Notify protocols, that a new device appeared. */
10133 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10136 * Prevent userspace races by waiting until the network
10137 * device is fully setup before sending notifications.
10139 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10146 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10148 static int dev_cpu_dead(unsigned int oldcpu)
10150 struct sk_buff **list_skb;
10151 struct sk_buff *skb;
10153 struct softnet_data *sd, *oldsd, *remsd = NULL;
10155 local_irq_disable();
10156 cpu = smp_processor_id();
10157 sd = &per_cpu(softnet_data, cpu);
10158 oldsd = &per_cpu(softnet_data, oldcpu);
10160 /* Find end of our completion_queue. */
10161 list_skb = &sd->completion_queue;
10163 list_skb = &(*list_skb)->next;
10164 /* Append completion queue from offline CPU. */
10165 *list_skb = oldsd->completion_queue;
10166 oldsd->completion_queue = NULL;
10168 /* Append output queue from offline CPU. */
10169 if (oldsd->output_queue) {
10170 *sd->output_queue_tailp = oldsd->output_queue;
10171 sd->output_queue_tailp = oldsd->output_queue_tailp;
10172 oldsd->output_queue = NULL;
10173 oldsd->output_queue_tailp = &oldsd->output_queue;
10175 /* Append NAPI poll list from offline CPU, with one exception :
10176 * process_backlog() must be called by cpu owning percpu backlog.
10177 * We properly handle process_queue & input_pkt_queue later.
10179 while (!list_empty(&oldsd->poll_list)) {
10180 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10181 struct napi_struct,
10184 list_del_init(&napi->poll_list);
10185 if (napi->poll == process_backlog)
10188 ____napi_schedule(sd, napi);
10191 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10192 local_irq_enable();
10195 remsd = oldsd->rps_ipi_list;
10196 oldsd->rps_ipi_list = NULL;
10198 /* send out pending IPI's on offline CPU */
10199 net_rps_send_ipi(remsd);
10201 /* Process offline CPU's input_pkt_queue */
10202 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10204 input_queue_head_incr(oldsd);
10206 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10208 input_queue_head_incr(oldsd);
10215 * netdev_increment_features - increment feature set by one
10216 * @all: current feature set
10217 * @one: new feature set
10218 * @mask: mask feature set
10220 * Computes a new feature set after adding a device with feature set
10221 * @one to the master device with current feature set @all. Will not
10222 * enable anything that is off in @mask. Returns the new feature set.
10224 netdev_features_t netdev_increment_features(netdev_features_t all,
10225 netdev_features_t one, netdev_features_t mask)
10227 if (mask & NETIF_F_HW_CSUM)
10228 mask |= NETIF_F_CSUM_MASK;
10229 mask |= NETIF_F_VLAN_CHALLENGED;
10231 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10232 all &= one | ~NETIF_F_ALL_FOR_ALL;
10234 /* If one device supports hw checksumming, set for all. */
10235 if (all & NETIF_F_HW_CSUM)
10236 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10240 EXPORT_SYMBOL(netdev_increment_features);
10242 static struct hlist_head * __net_init netdev_create_hash(void)
10245 struct hlist_head *hash;
10247 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10249 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10250 INIT_HLIST_HEAD(&hash[i]);
10255 /* Initialize per network namespace state */
10256 static int __net_init netdev_init(struct net *net)
10258 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10259 8 * sizeof_field(struct napi_struct, gro_bitmask));
10261 if (net != &init_net)
10262 INIT_LIST_HEAD(&net->dev_base_head);
10264 net->dev_name_head = netdev_create_hash();
10265 if (net->dev_name_head == NULL)
10268 net->dev_index_head = netdev_create_hash();
10269 if (net->dev_index_head == NULL)
10272 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10277 kfree(net->dev_name_head);
10283 * netdev_drivername - network driver for the device
10284 * @dev: network device
10286 * Determine network driver for device.
10288 const char *netdev_drivername(const struct net_device *dev)
10290 const struct device_driver *driver;
10291 const struct device *parent;
10292 const char *empty = "";
10294 parent = dev->dev.parent;
10298 driver = parent->driver;
10299 if (driver && driver->name)
10300 return driver->name;
10304 static void __netdev_printk(const char *level, const struct net_device *dev,
10305 struct va_format *vaf)
10307 if (dev && dev->dev.parent) {
10308 dev_printk_emit(level[1] - '0',
10311 dev_driver_string(dev->dev.parent),
10312 dev_name(dev->dev.parent),
10313 netdev_name(dev), netdev_reg_state(dev),
10316 printk("%s%s%s: %pV",
10317 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10319 printk("%s(NULL net_device): %pV", level, vaf);
10323 void netdev_printk(const char *level, const struct net_device *dev,
10324 const char *format, ...)
10326 struct va_format vaf;
10329 va_start(args, format);
10334 __netdev_printk(level, dev, &vaf);
10338 EXPORT_SYMBOL(netdev_printk);
10340 #define define_netdev_printk_level(func, level) \
10341 void func(const struct net_device *dev, const char *fmt, ...) \
10343 struct va_format vaf; \
10346 va_start(args, fmt); \
10351 __netdev_printk(level, dev, &vaf); \
10355 EXPORT_SYMBOL(func);
10357 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10358 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10359 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10360 define_netdev_printk_level(netdev_err, KERN_ERR);
10361 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10362 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10363 define_netdev_printk_level(netdev_info, KERN_INFO);
10365 static void __net_exit netdev_exit(struct net *net)
10367 kfree(net->dev_name_head);
10368 kfree(net->dev_index_head);
10369 if (net != &init_net)
10370 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10373 static struct pernet_operations __net_initdata netdev_net_ops = {
10374 .init = netdev_init,
10375 .exit = netdev_exit,
10378 static void __net_exit default_device_exit(struct net *net)
10380 struct net_device *dev, *aux;
10382 * Push all migratable network devices back to the
10383 * initial network namespace
10386 for_each_netdev_safe(net, dev, aux) {
10388 char fb_name[IFNAMSIZ];
10390 /* Ignore unmoveable devices (i.e. loopback) */
10391 if (dev->features & NETIF_F_NETNS_LOCAL)
10394 /* Leave virtual devices for the generic cleanup */
10395 if (dev->rtnl_link_ops)
10398 /* Push remaining network devices to init_net */
10399 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10400 if (__dev_get_by_name(&init_net, fb_name))
10401 snprintf(fb_name, IFNAMSIZ, "dev%%d");
10402 err = dev_change_net_namespace(dev, &init_net, fb_name);
10404 pr_emerg("%s: failed to move %s to init_net: %d\n",
10405 __func__, dev->name, err);
10412 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10414 /* Return with the rtnl_lock held when there are no network
10415 * devices unregistering in any network namespace in net_list.
10418 bool unregistering;
10419 DEFINE_WAIT_FUNC(wait, woken_wake_function);
10421 add_wait_queue(&netdev_unregistering_wq, &wait);
10423 unregistering = false;
10425 list_for_each_entry(net, net_list, exit_list) {
10426 if (net->dev_unreg_count > 0) {
10427 unregistering = true;
10431 if (!unregistering)
10435 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10437 remove_wait_queue(&netdev_unregistering_wq, &wait);
10440 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10442 /* At exit all network devices most be removed from a network
10443 * namespace. Do this in the reverse order of registration.
10444 * Do this across as many network namespaces as possible to
10445 * improve batching efficiency.
10447 struct net_device *dev;
10449 LIST_HEAD(dev_kill_list);
10451 /* To prevent network device cleanup code from dereferencing
10452 * loopback devices or network devices that have been freed
10453 * wait here for all pending unregistrations to complete,
10454 * before unregistring the loopback device and allowing the
10455 * network namespace be freed.
10457 * The netdev todo list containing all network devices
10458 * unregistrations that happen in default_device_exit_batch
10459 * will run in the rtnl_unlock() at the end of
10460 * default_device_exit_batch.
10462 rtnl_lock_unregistering(net_list);
10463 list_for_each_entry(net, net_list, exit_list) {
10464 for_each_netdev_reverse(net, dev) {
10465 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10466 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10468 unregister_netdevice_queue(dev, &dev_kill_list);
10471 unregister_netdevice_many(&dev_kill_list);
10475 static struct pernet_operations __net_initdata default_device_ops = {
10476 .exit = default_device_exit,
10477 .exit_batch = default_device_exit_batch,
10481 * Initialize the DEV module. At boot time this walks the device list and
10482 * unhooks any devices that fail to initialise (normally hardware not
10483 * present) and leaves us with a valid list of present and active devices.
10488 * This is called single threaded during boot, so no need
10489 * to take the rtnl semaphore.
10491 static int __init net_dev_init(void)
10493 int i, rc = -ENOMEM;
10495 BUG_ON(!dev_boot_phase);
10497 if (dev_proc_init())
10500 if (netdev_kobject_init())
10503 INIT_LIST_HEAD(&ptype_all);
10504 for (i = 0; i < PTYPE_HASH_SIZE; i++)
10505 INIT_LIST_HEAD(&ptype_base[i]);
10507 INIT_LIST_HEAD(&offload_base);
10509 if (register_pernet_subsys(&netdev_net_ops))
10513 * Initialise the packet receive queues.
10516 for_each_possible_cpu(i) {
10517 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10518 struct softnet_data *sd = &per_cpu(softnet_data, i);
10520 INIT_WORK(flush, flush_backlog);
10522 skb_queue_head_init(&sd->input_pkt_queue);
10523 skb_queue_head_init(&sd->process_queue);
10524 #ifdef CONFIG_XFRM_OFFLOAD
10525 skb_queue_head_init(&sd->xfrm_backlog);
10527 INIT_LIST_HEAD(&sd->poll_list);
10528 sd->output_queue_tailp = &sd->output_queue;
10530 sd->csd.func = rps_trigger_softirq;
10535 init_gro_hash(&sd->backlog);
10536 sd->backlog.poll = process_backlog;
10537 sd->backlog.weight = weight_p;
10540 dev_boot_phase = 0;
10542 /* The loopback device is special if any other network devices
10543 * is present in a network namespace the loopback device must
10544 * be present. Since we now dynamically allocate and free the
10545 * loopback device ensure this invariant is maintained by
10546 * keeping the loopback device as the first device on the
10547 * list of network devices. Ensuring the loopback devices
10548 * is the first device that appears and the last network device
10551 if (register_pernet_device(&loopback_net_ops))
10554 if (register_pernet_device(&default_device_ops))
10557 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10558 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10560 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10561 NULL, dev_cpu_dead);
10568 subsys_initcall(net_dev_init);