Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[platform/kernel/linux-rpi.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147
148 #include "net-sysfs.h"
149
150 /* Instead of increasing this, you should create a hash table. */
151 #define MAX_GRO_SKBS 8
152
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;       /* Taps */
160 static struct list_head offload_base __read_mostly;
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct net_device *dev,
165                                          struct netdev_notifier_info *info);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 /* protects napi_hash addition/deletion and napi_gen_id */
191 static DEFINE_SPINLOCK(napi_hash_lock);
192
193 static unsigned int napi_gen_id = NR_CPUS;
194 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
195
196 static seqcount_t devnet_rename_seq;
197
198 static inline void dev_base_seq_inc(struct net *net)
199 {
200         while (++net->dev_base_seq == 0)
201                 ;
202 }
203
204 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
205 {
206         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
207
208         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
209 }
210
211 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
212 {
213         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
214 }
215
216 static inline void rps_lock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219         spin_lock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222
223 static inline void rps_unlock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226         spin_unlock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
230 /* Device list insertion */
231 static void list_netdevice(struct net_device *dev)
232 {
233         struct net *net = dev_net(dev);
234
235         ASSERT_RTNL();
236
237         write_lock_bh(&dev_base_lock);
238         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
239         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
240         hlist_add_head_rcu(&dev->index_hlist,
241                            dev_index_hash(net, dev->ifindex));
242         write_unlock_bh(&dev_base_lock);
243
244         dev_base_seq_inc(net);
245 }
246
247 /* Device list removal
248  * caller must respect a RCU grace period before freeing/reusing dev
249  */
250 static void unlist_netdevice(struct net_device *dev)
251 {
252         ASSERT_RTNL();
253
254         /* Unlink dev from the device chain */
255         write_lock_bh(&dev_base_lock);
256         list_del_rcu(&dev->dev_list);
257         hlist_del_rcu(&dev->name_hlist);
258         hlist_del_rcu(&dev->index_hlist);
259         write_unlock_bh(&dev_base_lock);
260
261         dev_base_seq_inc(dev_net(dev));
262 }
263
264 /*
265  *      Our notifier list
266  */
267
268 static RAW_NOTIFIER_HEAD(netdev_chain);
269
270 /*
271  *      Device drivers call our routines to queue packets here. We empty the
272  *      queue in the local softnet handler.
273  */
274
275 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
276 EXPORT_PER_CPU_SYMBOL(softnet_data);
277
278 #ifdef CONFIG_LOCKDEP
279 /*
280  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
281  * according to dev->type
282  */
283 static const unsigned short netdev_lock_type[] = {
284          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
285          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
286          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
287          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
288          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
289          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
290          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
291          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
292          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
293          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
294          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
295          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
296          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
297          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
298          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
299
300 static const char *const netdev_lock_name[] = {
301         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
302         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
303         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
304         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
305         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
306         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
307         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
308         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
309         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
310         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
311         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
312         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
313         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
314         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
315         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
316
317 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
318 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
319
320 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
321 {
322         int i;
323
324         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
325                 if (netdev_lock_type[i] == dev_type)
326                         return i;
327         /* the last key is used by default */
328         return ARRAY_SIZE(netdev_lock_type) - 1;
329 }
330
331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332                                                  unsigned short dev_type)
333 {
334         int i;
335
336         i = netdev_lock_pos(dev_type);
337         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
338                                    netdev_lock_name[i]);
339 }
340
341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342 {
343         int i;
344
345         i = netdev_lock_pos(dev->type);
346         lockdep_set_class_and_name(&dev->addr_list_lock,
347                                    &netdev_addr_lock_key[i],
348                                    netdev_lock_name[i]);
349 }
350 #else
351 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
352                                                  unsigned short dev_type)
353 {
354 }
355 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
356 {
357 }
358 #endif
359
360 /*******************************************************************************
361  *
362  *              Protocol management and registration routines
363  *
364  *******************************************************************************/
365
366
367 /*
368  *      Add a protocol ID to the list. Now that the input handler is
369  *      smarter we can dispense with all the messy stuff that used to be
370  *      here.
371  *
372  *      BEWARE!!! Protocol handlers, mangling input packets,
373  *      MUST BE last in hash buckets and checking protocol handlers
374  *      MUST start from promiscuous ptype_all chain in net_bh.
375  *      It is true now, do not change it.
376  *      Explanation follows: if protocol handler, mangling packet, will
377  *      be the first on list, it is not able to sense, that packet
378  *      is cloned and should be copied-on-write, so that it will
379  *      change it and subsequent readers will get broken packet.
380  *                                                      --ANK (980803)
381  */
382
383 static inline struct list_head *ptype_head(const struct packet_type *pt)
384 {
385         if (pt->type == htons(ETH_P_ALL))
386                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
387         else
388                 return pt->dev ? &pt->dev->ptype_specific :
389                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
390 }
391
392 /**
393  *      dev_add_pack - add packet handler
394  *      @pt: packet type declaration
395  *
396  *      Add a protocol handler to the networking stack. The passed &packet_type
397  *      is linked into kernel lists and may not be freed until it has been
398  *      removed from the kernel lists.
399  *
400  *      This call does not sleep therefore it can not
401  *      guarantee all CPU's that are in middle of receiving packets
402  *      will see the new packet type (until the next received packet).
403  */
404
405 void dev_add_pack(struct packet_type *pt)
406 {
407         struct list_head *head = ptype_head(pt);
408
409         spin_lock(&ptype_lock);
410         list_add_rcu(&pt->list, head);
411         spin_unlock(&ptype_lock);
412 }
413 EXPORT_SYMBOL(dev_add_pack);
414
415 /**
416  *      __dev_remove_pack        - remove packet handler
417  *      @pt: packet type declaration
418  *
419  *      Remove a protocol handler that was previously added to the kernel
420  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
421  *      from the kernel lists and can be freed or reused once this function
422  *      returns.
423  *
424  *      The packet type might still be in use by receivers
425  *      and must not be freed until after all the CPU's have gone
426  *      through a quiescent state.
427  */
428 void __dev_remove_pack(struct packet_type *pt)
429 {
430         struct list_head *head = ptype_head(pt);
431         struct packet_type *pt1;
432
433         spin_lock(&ptype_lock);
434
435         list_for_each_entry(pt1, head, list) {
436                 if (pt == pt1) {
437                         list_del_rcu(&pt->list);
438                         goto out;
439                 }
440         }
441
442         pr_warn("dev_remove_pack: %p not found\n", pt);
443 out:
444         spin_unlock(&ptype_lock);
445 }
446 EXPORT_SYMBOL(__dev_remove_pack);
447
448 /**
449  *      dev_remove_pack  - remove packet handler
450  *      @pt: packet type declaration
451  *
452  *      Remove a protocol handler that was previously added to the kernel
453  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
454  *      from the kernel lists and can be freed or reused once this function
455  *      returns.
456  *
457  *      This call sleeps to guarantee that no CPU is looking at the packet
458  *      type after return.
459  */
460 void dev_remove_pack(struct packet_type *pt)
461 {
462         __dev_remove_pack(pt);
463
464         synchronize_net();
465 }
466 EXPORT_SYMBOL(dev_remove_pack);
467
468
469 /**
470  *      dev_add_offload - register offload handlers
471  *      @po: protocol offload declaration
472  *
473  *      Add protocol offload handlers to the networking stack. The passed
474  *      &proto_offload is linked into kernel lists and may not be freed until
475  *      it has been removed from the kernel lists.
476  *
477  *      This call does not sleep therefore it can not
478  *      guarantee all CPU's that are in middle of receiving packets
479  *      will see the new offload handlers (until the next received packet).
480  */
481 void dev_add_offload(struct packet_offload *po)
482 {
483         struct packet_offload *elem;
484
485         spin_lock(&offload_lock);
486         list_for_each_entry(elem, &offload_base, list) {
487                 if (po->priority < elem->priority)
488                         break;
489         }
490         list_add_rcu(&po->list, elem->list.prev);
491         spin_unlock(&offload_lock);
492 }
493 EXPORT_SYMBOL(dev_add_offload);
494
495 /**
496  *      __dev_remove_offload     - remove offload handler
497  *      @po: packet offload declaration
498  *
499  *      Remove a protocol offload handler that was previously added to the
500  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
501  *      is removed from the kernel lists and can be freed or reused once this
502  *      function returns.
503  *
504  *      The packet type might still be in use by receivers
505  *      and must not be freed until after all the CPU's have gone
506  *      through a quiescent state.
507  */
508 static void __dev_remove_offload(struct packet_offload *po)
509 {
510         struct list_head *head = &offload_base;
511         struct packet_offload *po1;
512
513         spin_lock(&offload_lock);
514
515         list_for_each_entry(po1, head, list) {
516                 if (po == po1) {
517                         list_del_rcu(&po->list);
518                         goto out;
519                 }
520         }
521
522         pr_warn("dev_remove_offload: %p not found\n", po);
523 out:
524         spin_unlock(&offload_lock);
525 }
526
527 /**
528  *      dev_remove_offload       - remove packet offload handler
529  *      @po: packet offload declaration
530  *
531  *      Remove a packet offload handler that was previously added to the kernel
532  *      offload handlers by dev_add_offload(). The passed &offload_type is
533  *      removed from the kernel lists and can be freed or reused once this
534  *      function returns.
535  *
536  *      This call sleeps to guarantee that no CPU is looking at the packet
537  *      type after return.
538  */
539 void dev_remove_offload(struct packet_offload *po)
540 {
541         __dev_remove_offload(po);
542
543         synchronize_net();
544 }
545 EXPORT_SYMBOL(dev_remove_offload);
546
547 /******************************************************************************
548  *
549  *                    Device Boot-time Settings Routines
550  *
551  ******************************************************************************/
552
553 /* Boot time configuration table */
554 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
555
556 /**
557  *      netdev_boot_setup_add   - add new setup entry
558  *      @name: name of the device
559  *      @map: configured settings for the device
560  *
561  *      Adds new setup entry to the dev_boot_setup list.  The function
562  *      returns 0 on error and 1 on success.  This is a generic routine to
563  *      all netdevices.
564  */
565 static int netdev_boot_setup_add(char *name, struct ifmap *map)
566 {
567         struct netdev_boot_setup *s;
568         int i;
569
570         s = dev_boot_setup;
571         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
572                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
573                         memset(s[i].name, 0, sizeof(s[i].name));
574                         strlcpy(s[i].name, name, IFNAMSIZ);
575                         memcpy(&s[i].map, map, sizeof(s[i].map));
576                         break;
577                 }
578         }
579
580         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
581 }
582
583 /**
584  * netdev_boot_setup_check      - check boot time settings
585  * @dev: the netdevice
586  *
587  * Check boot time settings for the device.
588  * The found settings are set for the device to be used
589  * later in the device probing.
590  * Returns 0 if no settings found, 1 if they are.
591  */
592 int netdev_boot_setup_check(struct net_device *dev)
593 {
594         struct netdev_boot_setup *s = dev_boot_setup;
595         int i;
596
597         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
598                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
599                     !strcmp(dev->name, s[i].name)) {
600                         dev->irq = s[i].map.irq;
601                         dev->base_addr = s[i].map.base_addr;
602                         dev->mem_start = s[i].map.mem_start;
603                         dev->mem_end = s[i].map.mem_end;
604                         return 1;
605                 }
606         }
607         return 0;
608 }
609 EXPORT_SYMBOL(netdev_boot_setup_check);
610
611
612 /**
613  * netdev_boot_base     - get address from boot time settings
614  * @prefix: prefix for network device
615  * @unit: id for network device
616  *
617  * Check boot time settings for the base address of device.
618  * The found settings are set for the device to be used
619  * later in the device probing.
620  * Returns 0 if no settings found.
621  */
622 unsigned long netdev_boot_base(const char *prefix, int unit)
623 {
624         const struct netdev_boot_setup *s = dev_boot_setup;
625         char name[IFNAMSIZ];
626         int i;
627
628         sprintf(name, "%s%d", prefix, unit);
629
630         /*
631          * If device already registered then return base of 1
632          * to indicate not to probe for this interface
633          */
634         if (__dev_get_by_name(&init_net, name))
635                 return 1;
636
637         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
638                 if (!strcmp(name, s[i].name))
639                         return s[i].map.base_addr;
640         return 0;
641 }
642
643 /*
644  * Saves at boot time configured settings for any netdevice.
645  */
646 int __init netdev_boot_setup(char *str)
647 {
648         int ints[5];
649         struct ifmap map;
650
651         str = get_options(str, ARRAY_SIZE(ints), ints);
652         if (!str || !*str)
653                 return 0;
654
655         /* Save settings */
656         memset(&map, 0, sizeof(map));
657         if (ints[0] > 0)
658                 map.irq = ints[1];
659         if (ints[0] > 1)
660                 map.base_addr = ints[2];
661         if (ints[0] > 2)
662                 map.mem_start = ints[3];
663         if (ints[0] > 3)
664                 map.mem_end = ints[4];
665
666         /* Add new entry to the list */
667         return netdev_boot_setup_add(str, &map);
668 }
669
670 __setup("netdev=", netdev_boot_setup);
671
672 /*******************************************************************************
673  *
674  *                          Device Interface Subroutines
675  *
676  *******************************************************************************/
677
678 /**
679  *      dev_get_iflink  - get 'iflink' value of a interface
680  *      @dev: targeted interface
681  *
682  *      Indicates the ifindex the interface is linked to.
683  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
684  */
685
686 int dev_get_iflink(const struct net_device *dev)
687 {
688         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
689                 return dev->netdev_ops->ndo_get_iflink(dev);
690
691         return dev->ifindex;
692 }
693 EXPORT_SYMBOL(dev_get_iflink);
694
695 /**
696  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
697  *      @dev: targeted interface
698  *      @skb: The packet.
699  *
700  *      For better visibility of tunnel traffic OVS needs to retrieve
701  *      egress tunnel information for a packet. Following API allows
702  *      user to get this info.
703  */
704 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
705 {
706         struct ip_tunnel_info *info;
707
708         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
709                 return -EINVAL;
710
711         info = skb_tunnel_info_unclone(skb);
712         if (!info)
713                 return -ENOMEM;
714         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
715                 return -EINVAL;
716
717         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
720
721 /**
722  *      __dev_get_by_name       - find a device by its name
723  *      @net: the applicable net namespace
724  *      @name: name to find
725  *
726  *      Find an interface by name. Must be called under RTNL semaphore
727  *      or @dev_base_lock. If the name is found a pointer to the device
728  *      is returned. If the name is not found then %NULL is returned. The
729  *      reference counters are not incremented so the caller must be
730  *      careful with locks.
731  */
732
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735         struct net_device *dev;
736         struct hlist_head *head = dev_name_hash(net, name);
737
738         hlist_for_each_entry(dev, head, name_hlist)
739                 if (!strncmp(dev->name, name, IFNAMSIZ))
740                         return dev;
741
742         return NULL;
743 }
744 EXPORT_SYMBOL(__dev_get_by_name);
745
746 /**
747  * dev_get_by_name_rcu  - find a device by its name
748  * @net: the applicable net namespace
749  * @name: name to find
750  *
751  * Find an interface by name.
752  * If the name is found a pointer to the device is returned.
753  * If the name is not found then %NULL is returned.
754  * The reference counters are not incremented so the caller must be
755  * careful with locks. The caller must hold RCU lock.
756  */
757
758 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
759 {
760         struct net_device *dev;
761         struct hlist_head *head = dev_name_hash(net, name);
762
763         hlist_for_each_entry_rcu(dev, head, name_hlist)
764                 if (!strncmp(dev->name, name, IFNAMSIZ))
765                         return dev;
766
767         return NULL;
768 }
769 EXPORT_SYMBOL(dev_get_by_name_rcu);
770
771 /**
772  *      dev_get_by_name         - find a device by its name
773  *      @net: the applicable net namespace
774  *      @name: name to find
775  *
776  *      Find an interface by name. This can be called from any
777  *      context and does its own locking. The returned handle has
778  *      the usage count incremented and the caller must use dev_put() to
779  *      release it when it is no longer needed. %NULL is returned if no
780  *      matching device is found.
781  */
782
783 struct net_device *dev_get_by_name(struct net *net, const char *name)
784 {
785         struct net_device *dev;
786
787         rcu_read_lock();
788         dev = dev_get_by_name_rcu(net, name);
789         if (dev)
790                 dev_hold(dev);
791         rcu_read_unlock();
792         return dev;
793 }
794 EXPORT_SYMBOL(dev_get_by_name);
795
796 /**
797  *      __dev_get_by_index - find a device by its ifindex
798  *      @net: the applicable net namespace
799  *      @ifindex: index of device
800  *
801  *      Search for an interface by index. Returns %NULL if the device
802  *      is not found or a pointer to the device. The device has not
803  *      had its reference counter increased so the caller must be careful
804  *      about locking. The caller must hold either the RTNL semaphore
805  *      or @dev_base_lock.
806  */
807
808 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
809 {
810         struct net_device *dev;
811         struct hlist_head *head = dev_index_hash(net, ifindex);
812
813         hlist_for_each_entry(dev, head, index_hlist)
814                 if (dev->ifindex == ifindex)
815                         return dev;
816
817         return NULL;
818 }
819 EXPORT_SYMBOL(__dev_get_by_index);
820
821 /**
822  *      dev_get_by_index_rcu - find a device by its ifindex
823  *      @net: the applicable net namespace
824  *      @ifindex: index of device
825  *
826  *      Search for an interface by index. Returns %NULL if the device
827  *      is not found or a pointer to the device. The device has not
828  *      had its reference counter increased so the caller must be careful
829  *      about locking. The caller must hold RCU lock.
830  */
831
832 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
833 {
834         struct net_device *dev;
835         struct hlist_head *head = dev_index_hash(net, ifindex);
836
837         hlist_for_each_entry_rcu(dev, head, index_hlist)
838                 if (dev->ifindex == ifindex)
839                         return dev;
840
841         return NULL;
842 }
843 EXPORT_SYMBOL(dev_get_by_index_rcu);
844
845
846 /**
847  *      dev_get_by_index - find a device by its ifindex
848  *      @net: the applicable net namespace
849  *      @ifindex: index of device
850  *
851  *      Search for an interface by index. Returns NULL if the device
852  *      is not found or a pointer to the device. The device returned has
853  *      had a reference added and the pointer is safe until the user calls
854  *      dev_put to indicate they have finished with it.
855  */
856
857 struct net_device *dev_get_by_index(struct net *net, int ifindex)
858 {
859         struct net_device *dev;
860
861         rcu_read_lock();
862         dev = dev_get_by_index_rcu(net, ifindex);
863         if (dev)
864                 dev_hold(dev);
865         rcu_read_unlock();
866         return dev;
867 }
868 EXPORT_SYMBOL(dev_get_by_index);
869
870 /**
871  *      dev_get_by_napi_id - find a device by napi_id
872  *      @napi_id: ID of the NAPI struct
873  *
874  *      Search for an interface by NAPI ID. Returns %NULL if the device
875  *      is not found or a pointer to the device. The device has not had
876  *      its reference counter increased so the caller must be careful
877  *      about locking. The caller must hold RCU lock.
878  */
879
880 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
881 {
882         struct napi_struct *napi;
883
884         WARN_ON_ONCE(!rcu_read_lock_held());
885
886         if (napi_id < MIN_NAPI_ID)
887                 return NULL;
888
889         napi = napi_by_id(napi_id);
890
891         return napi ? napi->dev : NULL;
892 }
893 EXPORT_SYMBOL(dev_get_by_napi_id);
894
895 /**
896  *      netdev_get_name - get a netdevice name, knowing its ifindex.
897  *      @net: network namespace
898  *      @name: a pointer to the buffer where the name will be stored.
899  *      @ifindex: the ifindex of the interface to get the name from.
900  *
901  *      The use of raw_seqcount_begin() and cond_resched() before
902  *      retrying is required as we want to give the writers a chance
903  *      to complete when CONFIG_PREEMPT is not set.
904  */
905 int netdev_get_name(struct net *net, char *name, int ifindex)
906 {
907         struct net_device *dev;
908         unsigned int seq;
909
910 retry:
911         seq = raw_seqcount_begin(&devnet_rename_seq);
912         rcu_read_lock();
913         dev = dev_get_by_index_rcu(net, ifindex);
914         if (!dev) {
915                 rcu_read_unlock();
916                 return -ENODEV;
917         }
918
919         strcpy(name, dev->name);
920         rcu_read_unlock();
921         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
922                 cond_resched();
923                 goto retry;
924         }
925
926         return 0;
927 }
928
929 /**
930  *      dev_getbyhwaddr_rcu - find a device by its hardware address
931  *      @net: the applicable net namespace
932  *      @type: media type of device
933  *      @ha: hardware address
934  *
935  *      Search for an interface by MAC address. Returns NULL if the device
936  *      is not found or a pointer to the device.
937  *      The caller must hold RCU or RTNL.
938  *      The returned device has not had its ref count increased
939  *      and the caller must therefore be careful about locking
940  *
941  */
942
943 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
944                                        const char *ha)
945 {
946         struct net_device *dev;
947
948         for_each_netdev_rcu(net, dev)
949                 if (dev->type == type &&
950                     !memcmp(dev->dev_addr, ha, dev->addr_len))
951                         return dev;
952
953         return NULL;
954 }
955 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
956
957 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
958 {
959         struct net_device *dev;
960
961         ASSERT_RTNL();
962         for_each_netdev(net, dev)
963                 if (dev->type == type)
964                         return dev;
965
966         return NULL;
967 }
968 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
969
970 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
971 {
972         struct net_device *dev, *ret = NULL;
973
974         rcu_read_lock();
975         for_each_netdev_rcu(net, dev)
976                 if (dev->type == type) {
977                         dev_hold(dev);
978                         ret = dev;
979                         break;
980                 }
981         rcu_read_unlock();
982         return ret;
983 }
984 EXPORT_SYMBOL(dev_getfirstbyhwtype);
985
986 /**
987  *      __dev_get_by_flags - find any device with given flags
988  *      @net: the applicable net namespace
989  *      @if_flags: IFF_* values
990  *      @mask: bitmask of bits in if_flags to check
991  *
992  *      Search for any interface with the given flags. Returns NULL if a device
993  *      is not found or a pointer to the device. Must be called inside
994  *      rtnl_lock(), and result refcount is unchanged.
995  */
996
997 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
998                                       unsigned short mask)
999 {
1000         struct net_device *dev, *ret;
1001
1002         ASSERT_RTNL();
1003
1004         ret = NULL;
1005         for_each_netdev(net, dev) {
1006                 if (((dev->flags ^ if_flags) & mask) == 0) {
1007                         ret = dev;
1008                         break;
1009                 }
1010         }
1011         return ret;
1012 }
1013 EXPORT_SYMBOL(__dev_get_by_flags);
1014
1015 /**
1016  *      dev_valid_name - check if name is okay for network device
1017  *      @name: name string
1018  *
1019  *      Network device names need to be valid file names to
1020  *      to allow sysfs to work.  We also disallow any kind of
1021  *      whitespace.
1022  */
1023 bool dev_valid_name(const char *name)
1024 {
1025         if (*name == '\0')
1026                 return false;
1027         if (strlen(name) >= IFNAMSIZ)
1028                 return false;
1029         if (!strcmp(name, ".") || !strcmp(name, ".."))
1030                 return false;
1031
1032         while (*name) {
1033                 if (*name == '/' || *name == ':' || isspace(*name))
1034                         return false;
1035                 name++;
1036         }
1037         return true;
1038 }
1039 EXPORT_SYMBOL(dev_valid_name);
1040
1041 /**
1042  *      __dev_alloc_name - allocate a name for a device
1043  *      @net: network namespace to allocate the device name in
1044  *      @name: name format string
1045  *      @buf:  scratch buffer and result name string
1046  *
1047  *      Passed a format string - eg "lt%d" it will try and find a suitable
1048  *      id. It scans list of devices to build up a free map, then chooses
1049  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1050  *      while allocating the name and adding the device in order to avoid
1051  *      duplicates.
1052  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1053  *      Returns the number of the unit assigned or a negative errno code.
1054  */
1055
1056 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1057 {
1058         int i = 0;
1059         const char *p;
1060         const int max_netdevices = 8*PAGE_SIZE;
1061         unsigned long *inuse;
1062         struct net_device *d;
1063
1064         p = strnchr(name, IFNAMSIZ-1, '%');
1065         if (p) {
1066                 /*
1067                  * Verify the string as this thing may have come from
1068                  * the user.  There must be either one "%d" and no other "%"
1069                  * characters.
1070                  */
1071                 if (p[1] != 'd' || strchr(p + 2, '%'))
1072                         return -EINVAL;
1073
1074                 /* Use one page as a bit array of possible slots */
1075                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1076                 if (!inuse)
1077                         return -ENOMEM;
1078
1079                 for_each_netdev(net, d) {
1080                         if (!sscanf(d->name, name, &i))
1081                                 continue;
1082                         if (i < 0 || i >= max_netdevices)
1083                                 continue;
1084
1085                         /*  avoid cases where sscanf is not exact inverse of printf */
1086                         snprintf(buf, IFNAMSIZ, name, i);
1087                         if (!strncmp(buf, d->name, IFNAMSIZ))
1088                                 set_bit(i, inuse);
1089                 }
1090
1091                 i = find_first_zero_bit(inuse, max_netdevices);
1092                 free_page((unsigned long) inuse);
1093         }
1094
1095         if (buf != name)
1096                 snprintf(buf, IFNAMSIZ, name, i);
1097         if (!__dev_get_by_name(net, buf))
1098                 return i;
1099
1100         /* It is possible to run out of possible slots
1101          * when the name is long and there isn't enough space left
1102          * for the digits, or if all bits are used.
1103          */
1104         return -ENFILE;
1105 }
1106
1107 /**
1108  *      dev_alloc_name - allocate a name for a device
1109  *      @dev: device
1110  *      @name: name format string
1111  *
1112  *      Passed a format string - eg "lt%d" it will try and find a suitable
1113  *      id. It scans list of devices to build up a free map, then chooses
1114  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *      while allocating the name and adding the device in order to avoid
1116  *      duplicates.
1117  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *      Returns the number of the unit assigned or a negative errno code.
1119  */
1120
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123         char buf[IFNAMSIZ];
1124         struct net *net;
1125         int ret;
1126
1127         BUG_ON(!dev_net(dev));
1128         net = dev_net(dev);
1129         ret = __dev_alloc_name(net, name, buf);
1130         if (ret >= 0)
1131                 strlcpy(dev->name, buf, IFNAMSIZ);
1132         return ret;
1133 }
1134 EXPORT_SYMBOL(dev_alloc_name);
1135
1136 static int dev_alloc_name_ns(struct net *net,
1137                              struct net_device *dev,
1138                              const char *name)
1139 {
1140         char buf[IFNAMSIZ];
1141         int ret;
1142
1143         ret = __dev_alloc_name(net, name, buf);
1144         if (ret >= 0)
1145                 strlcpy(dev->name, buf, IFNAMSIZ);
1146         return ret;
1147 }
1148
1149 static int dev_get_valid_name(struct net *net,
1150                               struct net_device *dev,
1151                               const char *name)
1152 {
1153         BUG_ON(!net);
1154
1155         if (!dev_valid_name(name))
1156                 return -EINVAL;
1157
1158         if (strchr(name, '%'))
1159                 return dev_alloc_name_ns(net, dev, name);
1160         else if (__dev_get_by_name(net, name))
1161                 return -EEXIST;
1162         else if (dev->name != name)
1163                 strlcpy(dev->name, name, IFNAMSIZ);
1164
1165         return 0;
1166 }
1167
1168 /**
1169  *      dev_change_name - change name of a device
1170  *      @dev: device
1171  *      @newname: name (or format string) must be at least IFNAMSIZ
1172  *
1173  *      Change name of a device, can pass format strings "eth%d".
1174  *      for wildcarding.
1175  */
1176 int dev_change_name(struct net_device *dev, const char *newname)
1177 {
1178         unsigned char old_assign_type;
1179         char oldname[IFNAMSIZ];
1180         int err = 0;
1181         int ret;
1182         struct net *net;
1183
1184         ASSERT_RTNL();
1185         BUG_ON(!dev_net(dev));
1186
1187         net = dev_net(dev);
1188         if (dev->flags & IFF_UP)
1189                 return -EBUSY;
1190
1191         write_seqcount_begin(&devnet_rename_seq);
1192
1193         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1194                 write_seqcount_end(&devnet_rename_seq);
1195                 return 0;
1196         }
1197
1198         memcpy(oldname, dev->name, IFNAMSIZ);
1199
1200         err = dev_get_valid_name(net, dev, newname);
1201         if (err < 0) {
1202                 write_seqcount_end(&devnet_rename_seq);
1203                 return err;
1204         }
1205
1206         if (oldname[0] && !strchr(oldname, '%'))
1207                 netdev_info(dev, "renamed from %s\n", oldname);
1208
1209         old_assign_type = dev->name_assign_type;
1210         dev->name_assign_type = NET_NAME_RENAMED;
1211
1212 rollback:
1213         ret = device_rename(&dev->dev, dev->name);
1214         if (ret) {
1215                 memcpy(dev->name, oldname, IFNAMSIZ);
1216                 dev->name_assign_type = old_assign_type;
1217                 write_seqcount_end(&devnet_rename_seq);
1218                 return ret;
1219         }
1220
1221         write_seqcount_end(&devnet_rename_seq);
1222
1223         netdev_adjacent_rename_links(dev, oldname);
1224
1225         write_lock_bh(&dev_base_lock);
1226         hlist_del_rcu(&dev->name_hlist);
1227         write_unlock_bh(&dev_base_lock);
1228
1229         synchronize_rcu();
1230
1231         write_lock_bh(&dev_base_lock);
1232         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1233         write_unlock_bh(&dev_base_lock);
1234
1235         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1236         ret = notifier_to_errno(ret);
1237
1238         if (ret) {
1239                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1240                 if (err >= 0) {
1241                         err = ret;
1242                         write_seqcount_begin(&devnet_rename_seq);
1243                         memcpy(dev->name, oldname, IFNAMSIZ);
1244                         memcpy(oldname, newname, IFNAMSIZ);
1245                         dev->name_assign_type = old_assign_type;
1246                         old_assign_type = NET_NAME_RENAMED;
1247                         goto rollback;
1248                 } else {
1249                         pr_err("%s: name change rollback failed: %d\n",
1250                                dev->name, ret);
1251                 }
1252         }
1253
1254         return err;
1255 }
1256
1257 /**
1258  *      dev_set_alias - change ifalias of a device
1259  *      @dev: device
1260  *      @alias: name up to IFALIASZ
1261  *      @len: limit of bytes to copy from info
1262  *
1263  *      Set ifalias for a device,
1264  */
1265 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1266 {
1267         char *new_ifalias;
1268
1269         ASSERT_RTNL();
1270
1271         if (len >= IFALIASZ)
1272                 return -EINVAL;
1273
1274         if (!len) {
1275                 kfree(dev->ifalias);
1276                 dev->ifalias = NULL;
1277                 return 0;
1278         }
1279
1280         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1281         if (!new_ifalias)
1282                 return -ENOMEM;
1283         dev->ifalias = new_ifalias;
1284         memcpy(dev->ifalias, alias, len);
1285         dev->ifalias[len] = 0;
1286
1287         return len;
1288 }
1289
1290
1291 /**
1292  *      netdev_features_change - device changes features
1293  *      @dev: device to cause notification
1294  *
1295  *      Called to indicate a device has changed features.
1296  */
1297 void netdev_features_change(struct net_device *dev)
1298 {
1299         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1300 }
1301 EXPORT_SYMBOL(netdev_features_change);
1302
1303 /**
1304  *      netdev_state_change - device changes state
1305  *      @dev: device to cause notification
1306  *
1307  *      Called to indicate a device has changed state. This function calls
1308  *      the notifier chains for netdev_chain and sends a NEWLINK message
1309  *      to the routing socket.
1310  */
1311 void netdev_state_change(struct net_device *dev)
1312 {
1313         if (dev->flags & IFF_UP) {
1314                 struct netdev_notifier_change_info change_info;
1315
1316                 change_info.flags_changed = 0;
1317                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1318                                               &change_info.info);
1319                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1320         }
1321 }
1322 EXPORT_SYMBOL(netdev_state_change);
1323
1324 /**
1325  * netdev_notify_peers - notify network peers about existence of @dev
1326  * @dev: network device
1327  *
1328  * Generate traffic such that interested network peers are aware of
1329  * @dev, such as by generating a gratuitous ARP. This may be used when
1330  * a device wants to inform the rest of the network about some sort of
1331  * reconfiguration such as a failover event or virtual machine
1332  * migration.
1333  */
1334 void netdev_notify_peers(struct net_device *dev)
1335 {
1336         rtnl_lock();
1337         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1338         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1339         rtnl_unlock();
1340 }
1341 EXPORT_SYMBOL(netdev_notify_peers);
1342
1343 static int __dev_open(struct net_device *dev)
1344 {
1345         const struct net_device_ops *ops = dev->netdev_ops;
1346         int ret;
1347
1348         ASSERT_RTNL();
1349
1350         if (!netif_device_present(dev))
1351                 return -ENODEV;
1352
1353         /* Block netpoll from trying to do any rx path servicing.
1354          * If we don't do this there is a chance ndo_poll_controller
1355          * or ndo_poll may be running while we open the device
1356          */
1357         netpoll_poll_disable(dev);
1358
1359         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1360         ret = notifier_to_errno(ret);
1361         if (ret)
1362                 return ret;
1363
1364         set_bit(__LINK_STATE_START, &dev->state);
1365
1366         if (ops->ndo_validate_addr)
1367                 ret = ops->ndo_validate_addr(dev);
1368
1369         if (!ret && ops->ndo_open)
1370                 ret = ops->ndo_open(dev);
1371
1372         netpoll_poll_enable(dev);
1373
1374         if (ret)
1375                 clear_bit(__LINK_STATE_START, &dev->state);
1376         else {
1377                 dev->flags |= IFF_UP;
1378                 dev_set_rx_mode(dev);
1379                 dev_activate(dev);
1380                 add_device_randomness(dev->dev_addr, dev->addr_len);
1381         }
1382
1383         return ret;
1384 }
1385
1386 /**
1387  *      dev_open        - prepare an interface for use.
1388  *      @dev:   device to open
1389  *
1390  *      Takes a device from down to up state. The device's private open
1391  *      function is invoked and then the multicast lists are loaded. Finally
1392  *      the device is moved into the up state and a %NETDEV_UP message is
1393  *      sent to the netdev notifier chain.
1394  *
1395  *      Calling this function on an active interface is a nop. On a failure
1396  *      a negative errno code is returned.
1397  */
1398 int dev_open(struct net_device *dev)
1399 {
1400         int ret;
1401
1402         if (dev->flags & IFF_UP)
1403                 return 0;
1404
1405         ret = __dev_open(dev);
1406         if (ret < 0)
1407                 return ret;
1408
1409         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1410         call_netdevice_notifiers(NETDEV_UP, dev);
1411
1412         return ret;
1413 }
1414 EXPORT_SYMBOL(dev_open);
1415
1416 static void __dev_close_many(struct list_head *head)
1417 {
1418         struct net_device *dev;
1419
1420         ASSERT_RTNL();
1421         might_sleep();
1422
1423         list_for_each_entry(dev, head, close_list) {
1424                 /* Temporarily disable netpoll until the interface is down */
1425                 netpoll_poll_disable(dev);
1426
1427                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1428
1429                 clear_bit(__LINK_STATE_START, &dev->state);
1430
1431                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1432                  * can be even on different cpu. So just clear netif_running().
1433                  *
1434                  * dev->stop() will invoke napi_disable() on all of it's
1435                  * napi_struct instances on this device.
1436                  */
1437                 smp_mb__after_atomic(); /* Commit netif_running(). */
1438         }
1439
1440         dev_deactivate_many(head);
1441
1442         list_for_each_entry(dev, head, close_list) {
1443                 const struct net_device_ops *ops = dev->netdev_ops;
1444
1445                 /*
1446                  *      Call the device specific close. This cannot fail.
1447                  *      Only if device is UP
1448                  *
1449                  *      We allow it to be called even after a DETACH hot-plug
1450                  *      event.
1451                  */
1452                 if (ops->ndo_stop)
1453                         ops->ndo_stop(dev);
1454
1455                 dev->flags &= ~IFF_UP;
1456                 netpoll_poll_enable(dev);
1457         }
1458 }
1459
1460 static void __dev_close(struct net_device *dev)
1461 {
1462         LIST_HEAD(single);
1463
1464         list_add(&dev->close_list, &single);
1465         __dev_close_many(&single);
1466         list_del(&single);
1467 }
1468
1469 void dev_close_many(struct list_head *head, bool unlink)
1470 {
1471         struct net_device *dev, *tmp;
1472
1473         /* Remove the devices that don't need to be closed */
1474         list_for_each_entry_safe(dev, tmp, head, close_list)
1475                 if (!(dev->flags & IFF_UP))
1476                         list_del_init(&dev->close_list);
1477
1478         __dev_close_many(head);
1479
1480         list_for_each_entry_safe(dev, tmp, head, close_list) {
1481                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1482                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1483                 if (unlink)
1484                         list_del_init(&dev->close_list);
1485         }
1486 }
1487 EXPORT_SYMBOL(dev_close_many);
1488
1489 /**
1490  *      dev_close - shutdown an interface.
1491  *      @dev: device to shutdown
1492  *
1493  *      This function moves an active device into down state. A
1494  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1495  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1496  *      chain.
1497  */
1498 void dev_close(struct net_device *dev)
1499 {
1500         if (dev->flags & IFF_UP) {
1501                 LIST_HEAD(single);
1502
1503                 list_add(&dev->close_list, &single);
1504                 dev_close_many(&single, true);
1505                 list_del(&single);
1506         }
1507 }
1508 EXPORT_SYMBOL(dev_close);
1509
1510
1511 /**
1512  *      dev_disable_lro - disable Large Receive Offload on a device
1513  *      @dev: device
1514  *
1515  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1516  *      called under RTNL.  This is needed if received packets may be
1517  *      forwarded to another interface.
1518  */
1519 void dev_disable_lro(struct net_device *dev)
1520 {
1521         struct net_device *lower_dev;
1522         struct list_head *iter;
1523
1524         dev->wanted_features &= ~NETIF_F_LRO;
1525         netdev_update_features(dev);
1526
1527         if (unlikely(dev->features & NETIF_F_LRO))
1528                 netdev_WARN(dev, "failed to disable LRO!\n");
1529
1530         netdev_for_each_lower_dev(dev, lower_dev, iter)
1531                 dev_disable_lro(lower_dev);
1532 }
1533 EXPORT_SYMBOL(dev_disable_lro);
1534
1535 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1536                                    struct net_device *dev)
1537 {
1538         struct netdev_notifier_info info;
1539
1540         netdev_notifier_info_init(&info, dev);
1541         return nb->notifier_call(nb, val, &info);
1542 }
1543
1544 static int dev_boot_phase = 1;
1545
1546 /**
1547  * register_netdevice_notifier - register a network notifier block
1548  * @nb: notifier
1549  *
1550  * Register a notifier to be called when network device events occur.
1551  * The notifier passed is linked into the kernel structures and must
1552  * not be reused until it has been unregistered. A negative errno code
1553  * is returned on a failure.
1554  *
1555  * When registered all registration and up events are replayed
1556  * to the new notifier to allow device to have a race free
1557  * view of the network device list.
1558  */
1559
1560 int register_netdevice_notifier(struct notifier_block *nb)
1561 {
1562         struct net_device *dev;
1563         struct net_device *last;
1564         struct net *net;
1565         int err;
1566
1567         rtnl_lock();
1568         err = raw_notifier_chain_register(&netdev_chain, nb);
1569         if (err)
1570                 goto unlock;
1571         if (dev_boot_phase)
1572                 goto unlock;
1573         for_each_net(net) {
1574                 for_each_netdev(net, dev) {
1575                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1576                         err = notifier_to_errno(err);
1577                         if (err)
1578                                 goto rollback;
1579
1580                         if (!(dev->flags & IFF_UP))
1581                                 continue;
1582
1583                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1584                 }
1585         }
1586
1587 unlock:
1588         rtnl_unlock();
1589         return err;
1590
1591 rollback:
1592         last = dev;
1593         for_each_net(net) {
1594                 for_each_netdev(net, dev) {
1595                         if (dev == last)
1596                                 goto outroll;
1597
1598                         if (dev->flags & IFF_UP) {
1599                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1600                                                         dev);
1601                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1602                         }
1603                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1604                 }
1605         }
1606
1607 outroll:
1608         raw_notifier_chain_unregister(&netdev_chain, nb);
1609         goto unlock;
1610 }
1611 EXPORT_SYMBOL(register_netdevice_notifier);
1612
1613 /**
1614  * unregister_netdevice_notifier - unregister a network notifier block
1615  * @nb: notifier
1616  *
1617  * Unregister a notifier previously registered by
1618  * register_netdevice_notifier(). The notifier is unlinked into the
1619  * kernel structures and may then be reused. A negative errno code
1620  * is returned on a failure.
1621  *
1622  * After unregistering unregister and down device events are synthesized
1623  * for all devices on the device list to the removed notifier to remove
1624  * the need for special case cleanup code.
1625  */
1626
1627 int unregister_netdevice_notifier(struct notifier_block *nb)
1628 {
1629         struct net_device *dev;
1630         struct net *net;
1631         int err;
1632
1633         rtnl_lock();
1634         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1635         if (err)
1636                 goto unlock;
1637
1638         for_each_net(net) {
1639                 for_each_netdev(net, dev) {
1640                         if (dev->flags & IFF_UP) {
1641                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1642                                                         dev);
1643                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1644                         }
1645                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1646                 }
1647         }
1648 unlock:
1649         rtnl_unlock();
1650         return err;
1651 }
1652 EXPORT_SYMBOL(unregister_netdevice_notifier);
1653
1654 /**
1655  *      call_netdevice_notifiers_info - call all network notifier blocks
1656  *      @val: value passed unmodified to notifier function
1657  *      @dev: net_device pointer passed unmodified to notifier function
1658  *      @info: notifier information data
1659  *
1660  *      Call all network notifier blocks.  Parameters and return value
1661  *      are as for raw_notifier_call_chain().
1662  */
1663
1664 static int call_netdevice_notifiers_info(unsigned long val,
1665                                          struct net_device *dev,
1666                                          struct netdev_notifier_info *info)
1667 {
1668         ASSERT_RTNL();
1669         netdev_notifier_info_init(info, dev);
1670         return raw_notifier_call_chain(&netdev_chain, val, info);
1671 }
1672
1673 /**
1674  *      call_netdevice_notifiers - call all network notifier blocks
1675  *      @val: value passed unmodified to notifier function
1676  *      @dev: net_device pointer passed unmodified to notifier function
1677  *
1678  *      Call all network notifier blocks.  Parameters and return value
1679  *      are as for raw_notifier_call_chain().
1680  */
1681
1682 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1683 {
1684         struct netdev_notifier_info info;
1685
1686         return call_netdevice_notifiers_info(val, dev, &info);
1687 }
1688 EXPORT_SYMBOL(call_netdevice_notifiers);
1689
1690 #ifdef CONFIG_NET_INGRESS
1691 static struct static_key ingress_needed __read_mostly;
1692
1693 void net_inc_ingress_queue(void)
1694 {
1695         static_key_slow_inc(&ingress_needed);
1696 }
1697 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1698
1699 void net_dec_ingress_queue(void)
1700 {
1701         static_key_slow_dec(&ingress_needed);
1702 }
1703 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1704 #endif
1705
1706 #ifdef CONFIG_NET_EGRESS
1707 static struct static_key egress_needed __read_mostly;
1708
1709 void net_inc_egress_queue(void)
1710 {
1711         static_key_slow_inc(&egress_needed);
1712 }
1713 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1714
1715 void net_dec_egress_queue(void)
1716 {
1717         static_key_slow_dec(&egress_needed);
1718 }
1719 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1720 #endif
1721
1722 static struct static_key netstamp_needed __read_mostly;
1723 #ifdef HAVE_JUMP_LABEL
1724 static atomic_t netstamp_needed_deferred;
1725 static atomic_t netstamp_wanted;
1726 static void netstamp_clear(struct work_struct *work)
1727 {
1728         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1729         int wanted;
1730
1731         wanted = atomic_add_return(deferred, &netstamp_wanted);
1732         if (wanted > 0)
1733                 static_key_enable(&netstamp_needed);
1734         else
1735                 static_key_disable(&netstamp_needed);
1736 }
1737 static DECLARE_WORK(netstamp_work, netstamp_clear);
1738 #endif
1739
1740 void net_enable_timestamp(void)
1741 {
1742 #ifdef HAVE_JUMP_LABEL
1743         int wanted;
1744
1745         while (1) {
1746                 wanted = atomic_read(&netstamp_wanted);
1747                 if (wanted <= 0)
1748                         break;
1749                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1750                         return;
1751         }
1752         atomic_inc(&netstamp_needed_deferred);
1753         schedule_work(&netstamp_work);
1754 #else
1755         static_key_slow_inc(&netstamp_needed);
1756 #endif
1757 }
1758 EXPORT_SYMBOL(net_enable_timestamp);
1759
1760 void net_disable_timestamp(void)
1761 {
1762 #ifdef HAVE_JUMP_LABEL
1763         int wanted;
1764
1765         while (1) {
1766                 wanted = atomic_read(&netstamp_wanted);
1767                 if (wanted <= 1)
1768                         break;
1769                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1770                         return;
1771         }
1772         atomic_dec(&netstamp_needed_deferred);
1773         schedule_work(&netstamp_work);
1774 #else
1775         static_key_slow_dec(&netstamp_needed);
1776 #endif
1777 }
1778 EXPORT_SYMBOL(net_disable_timestamp);
1779
1780 static inline void net_timestamp_set(struct sk_buff *skb)
1781 {
1782         skb->tstamp = 0;
1783         if (static_key_false(&netstamp_needed))
1784                 __net_timestamp(skb);
1785 }
1786
1787 #define net_timestamp_check(COND, SKB)                  \
1788         if (static_key_false(&netstamp_needed)) {               \
1789                 if ((COND) && !(SKB)->tstamp)   \
1790                         __net_timestamp(SKB);           \
1791         }                                               \
1792
1793 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1794 {
1795         unsigned int len;
1796
1797         if (!(dev->flags & IFF_UP))
1798                 return false;
1799
1800         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1801         if (skb->len <= len)
1802                 return true;
1803
1804         /* if TSO is enabled, we don't care about the length as the packet
1805          * could be forwarded without being segmented before
1806          */
1807         if (skb_is_gso(skb))
1808                 return true;
1809
1810         return false;
1811 }
1812 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1813
1814 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1815 {
1816         int ret = ____dev_forward_skb(dev, skb);
1817
1818         if (likely(!ret)) {
1819                 skb->protocol = eth_type_trans(skb, dev);
1820                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1821         }
1822
1823         return ret;
1824 }
1825 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1826
1827 /**
1828  * dev_forward_skb - loopback an skb to another netif
1829  *
1830  * @dev: destination network device
1831  * @skb: buffer to forward
1832  *
1833  * return values:
1834  *      NET_RX_SUCCESS  (no congestion)
1835  *      NET_RX_DROP     (packet was dropped, but freed)
1836  *
1837  * dev_forward_skb can be used for injecting an skb from the
1838  * start_xmit function of one device into the receive queue
1839  * of another device.
1840  *
1841  * The receiving device may be in another namespace, so
1842  * we have to clear all information in the skb that could
1843  * impact namespace isolation.
1844  */
1845 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1846 {
1847         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1848 }
1849 EXPORT_SYMBOL_GPL(dev_forward_skb);
1850
1851 static inline int deliver_skb(struct sk_buff *skb,
1852                               struct packet_type *pt_prev,
1853                               struct net_device *orig_dev)
1854 {
1855         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1856                 return -ENOMEM;
1857         refcount_inc(&skb->users);
1858         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1859 }
1860
1861 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1862                                           struct packet_type **pt,
1863                                           struct net_device *orig_dev,
1864                                           __be16 type,
1865                                           struct list_head *ptype_list)
1866 {
1867         struct packet_type *ptype, *pt_prev = *pt;
1868
1869         list_for_each_entry_rcu(ptype, ptype_list, list) {
1870                 if (ptype->type != type)
1871                         continue;
1872                 if (pt_prev)
1873                         deliver_skb(skb, pt_prev, orig_dev);
1874                 pt_prev = ptype;
1875         }
1876         *pt = pt_prev;
1877 }
1878
1879 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1880 {
1881         if (!ptype->af_packet_priv || !skb->sk)
1882                 return false;
1883
1884         if (ptype->id_match)
1885                 return ptype->id_match(ptype, skb->sk);
1886         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1887                 return true;
1888
1889         return false;
1890 }
1891
1892 /*
1893  *      Support routine. Sends outgoing frames to any network
1894  *      taps currently in use.
1895  */
1896
1897 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1898 {
1899         struct packet_type *ptype;
1900         struct sk_buff *skb2 = NULL;
1901         struct packet_type *pt_prev = NULL;
1902         struct list_head *ptype_list = &ptype_all;
1903
1904         rcu_read_lock();
1905 again:
1906         list_for_each_entry_rcu(ptype, ptype_list, list) {
1907                 /* Never send packets back to the socket
1908                  * they originated from - MvS (miquels@drinkel.ow.org)
1909                  */
1910                 if (skb_loop_sk(ptype, skb))
1911                         continue;
1912
1913                 if (pt_prev) {
1914                         deliver_skb(skb2, pt_prev, skb->dev);
1915                         pt_prev = ptype;
1916                         continue;
1917                 }
1918
1919                 /* need to clone skb, done only once */
1920                 skb2 = skb_clone(skb, GFP_ATOMIC);
1921                 if (!skb2)
1922                         goto out_unlock;
1923
1924                 net_timestamp_set(skb2);
1925
1926                 /* skb->nh should be correctly
1927                  * set by sender, so that the second statement is
1928                  * just protection against buggy protocols.
1929                  */
1930                 skb_reset_mac_header(skb2);
1931
1932                 if (skb_network_header(skb2) < skb2->data ||
1933                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1934                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1935                                              ntohs(skb2->protocol),
1936                                              dev->name);
1937                         skb_reset_network_header(skb2);
1938                 }
1939
1940                 skb2->transport_header = skb2->network_header;
1941                 skb2->pkt_type = PACKET_OUTGOING;
1942                 pt_prev = ptype;
1943         }
1944
1945         if (ptype_list == &ptype_all) {
1946                 ptype_list = &dev->ptype_all;
1947                 goto again;
1948         }
1949 out_unlock:
1950         if (pt_prev)
1951                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1952         rcu_read_unlock();
1953 }
1954 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1955
1956 /**
1957  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1958  * @dev: Network device
1959  * @txq: number of queues available
1960  *
1961  * If real_num_tx_queues is changed the tc mappings may no longer be
1962  * valid. To resolve this verify the tc mapping remains valid and if
1963  * not NULL the mapping. With no priorities mapping to this
1964  * offset/count pair it will no longer be used. In the worst case TC0
1965  * is invalid nothing can be done so disable priority mappings. If is
1966  * expected that drivers will fix this mapping if they can before
1967  * calling netif_set_real_num_tx_queues.
1968  */
1969 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1970 {
1971         int i;
1972         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1973
1974         /* If TC0 is invalidated disable TC mapping */
1975         if (tc->offset + tc->count > txq) {
1976                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1977                 dev->num_tc = 0;
1978                 return;
1979         }
1980
1981         /* Invalidated prio to tc mappings set to TC0 */
1982         for (i = 1; i < TC_BITMASK + 1; i++) {
1983                 int q = netdev_get_prio_tc_map(dev, i);
1984
1985                 tc = &dev->tc_to_txq[q];
1986                 if (tc->offset + tc->count > txq) {
1987                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1988                                 i, q);
1989                         netdev_set_prio_tc_map(dev, i, 0);
1990                 }
1991         }
1992 }
1993
1994 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1995 {
1996         if (dev->num_tc) {
1997                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1998                 int i;
1999
2000                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2001                         if ((txq - tc->offset) < tc->count)
2002                                 return i;
2003                 }
2004
2005                 return -1;
2006         }
2007
2008         return 0;
2009 }
2010
2011 #ifdef CONFIG_XPS
2012 static DEFINE_MUTEX(xps_map_mutex);
2013 #define xmap_dereference(P)             \
2014         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2015
2016 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2017                              int tci, u16 index)
2018 {
2019         struct xps_map *map = NULL;
2020         int pos;
2021
2022         if (dev_maps)
2023                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2024         if (!map)
2025                 return false;
2026
2027         for (pos = map->len; pos--;) {
2028                 if (map->queues[pos] != index)
2029                         continue;
2030
2031                 if (map->len > 1) {
2032                         map->queues[pos] = map->queues[--map->len];
2033                         break;
2034                 }
2035
2036                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2037                 kfree_rcu(map, rcu);
2038                 return false;
2039         }
2040
2041         return true;
2042 }
2043
2044 static bool remove_xps_queue_cpu(struct net_device *dev,
2045                                  struct xps_dev_maps *dev_maps,
2046                                  int cpu, u16 offset, u16 count)
2047 {
2048         int num_tc = dev->num_tc ? : 1;
2049         bool active = false;
2050         int tci;
2051
2052         for (tci = cpu * num_tc; num_tc--; tci++) {
2053                 int i, j;
2054
2055                 for (i = count, j = offset; i--; j++) {
2056                         if (!remove_xps_queue(dev_maps, cpu, j))
2057                                 break;
2058                 }
2059
2060                 active |= i < 0;
2061         }
2062
2063         return active;
2064 }
2065
2066 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2067                                    u16 count)
2068 {
2069         struct xps_dev_maps *dev_maps;
2070         int cpu, i;
2071         bool active = false;
2072
2073         mutex_lock(&xps_map_mutex);
2074         dev_maps = xmap_dereference(dev->xps_maps);
2075
2076         if (!dev_maps)
2077                 goto out_no_maps;
2078
2079         for_each_possible_cpu(cpu)
2080                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2081                                                offset, count);
2082
2083         if (!active) {
2084                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2085                 kfree_rcu(dev_maps, rcu);
2086         }
2087
2088         for (i = offset + (count - 1); count--; i--)
2089                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2090                                              NUMA_NO_NODE);
2091
2092 out_no_maps:
2093         mutex_unlock(&xps_map_mutex);
2094 }
2095
2096 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2097 {
2098         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2099 }
2100
2101 static struct xps_map *expand_xps_map(struct xps_map *map,
2102                                       int cpu, u16 index)
2103 {
2104         struct xps_map *new_map;
2105         int alloc_len = XPS_MIN_MAP_ALLOC;
2106         int i, pos;
2107
2108         for (pos = 0; map && pos < map->len; pos++) {
2109                 if (map->queues[pos] != index)
2110                         continue;
2111                 return map;
2112         }
2113
2114         /* Need to add queue to this CPU's existing map */
2115         if (map) {
2116                 if (pos < map->alloc_len)
2117                         return map;
2118
2119                 alloc_len = map->alloc_len * 2;
2120         }
2121
2122         /* Need to allocate new map to store queue on this CPU's map */
2123         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2124                                cpu_to_node(cpu));
2125         if (!new_map)
2126                 return NULL;
2127
2128         for (i = 0; i < pos; i++)
2129                 new_map->queues[i] = map->queues[i];
2130         new_map->alloc_len = alloc_len;
2131         new_map->len = pos;
2132
2133         return new_map;
2134 }
2135
2136 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2137                         u16 index)
2138 {
2139         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2140         int i, cpu, tci, numa_node_id = -2;
2141         int maps_sz, num_tc = 1, tc = 0;
2142         struct xps_map *map, *new_map;
2143         bool active = false;
2144
2145         if (dev->num_tc) {
2146                 num_tc = dev->num_tc;
2147                 tc = netdev_txq_to_tc(dev, index);
2148                 if (tc < 0)
2149                         return -EINVAL;
2150         }
2151
2152         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2153         if (maps_sz < L1_CACHE_BYTES)
2154                 maps_sz = L1_CACHE_BYTES;
2155
2156         mutex_lock(&xps_map_mutex);
2157
2158         dev_maps = xmap_dereference(dev->xps_maps);
2159
2160         /* allocate memory for queue storage */
2161         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2162                 if (!new_dev_maps)
2163                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2164                 if (!new_dev_maps) {
2165                         mutex_unlock(&xps_map_mutex);
2166                         return -ENOMEM;
2167                 }
2168
2169                 tci = cpu * num_tc + tc;
2170                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2171                                  NULL;
2172
2173                 map = expand_xps_map(map, cpu, index);
2174                 if (!map)
2175                         goto error;
2176
2177                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2178         }
2179
2180         if (!new_dev_maps)
2181                 goto out_no_new_maps;
2182
2183         for_each_possible_cpu(cpu) {
2184                 /* copy maps belonging to foreign traffic classes */
2185                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2186                         /* fill in the new device map from the old device map */
2187                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2188                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2189                 }
2190
2191                 /* We need to explicitly update tci as prevous loop
2192                  * could break out early if dev_maps is NULL.
2193                  */
2194                 tci = cpu * num_tc + tc;
2195
2196                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2197                         /* add queue to CPU maps */
2198                         int pos = 0;
2199
2200                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2201                         while ((pos < map->len) && (map->queues[pos] != index))
2202                                 pos++;
2203
2204                         if (pos == map->len)
2205                                 map->queues[map->len++] = index;
2206 #ifdef CONFIG_NUMA
2207                         if (numa_node_id == -2)
2208                                 numa_node_id = cpu_to_node(cpu);
2209                         else if (numa_node_id != cpu_to_node(cpu))
2210                                 numa_node_id = -1;
2211 #endif
2212                 } else if (dev_maps) {
2213                         /* fill in the new device map from the old device map */
2214                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2215                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2216                 }
2217
2218                 /* copy maps belonging to foreign traffic classes */
2219                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2220                         /* fill in the new device map from the old device map */
2221                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2222                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2223                 }
2224         }
2225
2226         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2227
2228         /* Cleanup old maps */
2229         if (!dev_maps)
2230                 goto out_no_old_maps;
2231
2232         for_each_possible_cpu(cpu) {
2233                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2234                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2235                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2236                         if (map && map != new_map)
2237                                 kfree_rcu(map, rcu);
2238                 }
2239         }
2240
2241         kfree_rcu(dev_maps, rcu);
2242
2243 out_no_old_maps:
2244         dev_maps = new_dev_maps;
2245         active = true;
2246
2247 out_no_new_maps:
2248         /* update Tx queue numa node */
2249         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2250                                      (numa_node_id >= 0) ? numa_node_id :
2251                                      NUMA_NO_NODE);
2252
2253         if (!dev_maps)
2254                 goto out_no_maps;
2255
2256         /* removes queue from unused CPUs */
2257         for_each_possible_cpu(cpu) {
2258                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2259                         active |= remove_xps_queue(dev_maps, tci, index);
2260                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2261                         active |= remove_xps_queue(dev_maps, tci, index);
2262                 for (i = num_tc - tc, tci++; --i; tci++)
2263                         active |= remove_xps_queue(dev_maps, tci, index);
2264         }
2265
2266         /* free map if not active */
2267         if (!active) {
2268                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2269                 kfree_rcu(dev_maps, rcu);
2270         }
2271
2272 out_no_maps:
2273         mutex_unlock(&xps_map_mutex);
2274
2275         return 0;
2276 error:
2277         /* remove any maps that we added */
2278         for_each_possible_cpu(cpu) {
2279                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2280                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2281                         map = dev_maps ?
2282                               xmap_dereference(dev_maps->cpu_map[tci]) :
2283                               NULL;
2284                         if (new_map && new_map != map)
2285                                 kfree(new_map);
2286                 }
2287         }
2288
2289         mutex_unlock(&xps_map_mutex);
2290
2291         kfree(new_dev_maps);
2292         return -ENOMEM;
2293 }
2294 EXPORT_SYMBOL(netif_set_xps_queue);
2295
2296 #endif
2297 void netdev_reset_tc(struct net_device *dev)
2298 {
2299 #ifdef CONFIG_XPS
2300         netif_reset_xps_queues_gt(dev, 0);
2301 #endif
2302         dev->num_tc = 0;
2303         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2304         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2305 }
2306 EXPORT_SYMBOL(netdev_reset_tc);
2307
2308 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2309 {
2310         if (tc >= dev->num_tc)
2311                 return -EINVAL;
2312
2313 #ifdef CONFIG_XPS
2314         netif_reset_xps_queues(dev, offset, count);
2315 #endif
2316         dev->tc_to_txq[tc].count = count;
2317         dev->tc_to_txq[tc].offset = offset;
2318         return 0;
2319 }
2320 EXPORT_SYMBOL(netdev_set_tc_queue);
2321
2322 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2323 {
2324         if (num_tc > TC_MAX_QUEUE)
2325                 return -EINVAL;
2326
2327 #ifdef CONFIG_XPS
2328         netif_reset_xps_queues_gt(dev, 0);
2329 #endif
2330         dev->num_tc = num_tc;
2331         return 0;
2332 }
2333 EXPORT_SYMBOL(netdev_set_num_tc);
2334
2335 /*
2336  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2337  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2338  */
2339 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2340 {
2341         int rc;
2342
2343         if (txq < 1 || txq > dev->num_tx_queues)
2344                 return -EINVAL;
2345
2346         if (dev->reg_state == NETREG_REGISTERED ||
2347             dev->reg_state == NETREG_UNREGISTERING) {
2348                 ASSERT_RTNL();
2349
2350                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2351                                                   txq);
2352                 if (rc)
2353                         return rc;
2354
2355                 if (dev->num_tc)
2356                         netif_setup_tc(dev, txq);
2357
2358                 if (txq < dev->real_num_tx_queues) {
2359                         qdisc_reset_all_tx_gt(dev, txq);
2360 #ifdef CONFIG_XPS
2361                         netif_reset_xps_queues_gt(dev, txq);
2362 #endif
2363                 }
2364         }
2365
2366         dev->real_num_tx_queues = txq;
2367         return 0;
2368 }
2369 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2370
2371 #ifdef CONFIG_SYSFS
2372 /**
2373  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2374  *      @dev: Network device
2375  *      @rxq: Actual number of RX queues
2376  *
2377  *      This must be called either with the rtnl_lock held or before
2378  *      registration of the net device.  Returns 0 on success, or a
2379  *      negative error code.  If called before registration, it always
2380  *      succeeds.
2381  */
2382 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2383 {
2384         int rc;
2385
2386         if (rxq < 1 || rxq > dev->num_rx_queues)
2387                 return -EINVAL;
2388
2389         if (dev->reg_state == NETREG_REGISTERED) {
2390                 ASSERT_RTNL();
2391
2392                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2393                                                   rxq);
2394                 if (rc)
2395                         return rc;
2396         }
2397
2398         dev->real_num_rx_queues = rxq;
2399         return 0;
2400 }
2401 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2402 #endif
2403
2404 /**
2405  * netif_get_num_default_rss_queues - default number of RSS queues
2406  *
2407  * This routine should set an upper limit on the number of RSS queues
2408  * used by default by multiqueue devices.
2409  */
2410 int netif_get_num_default_rss_queues(void)
2411 {
2412         return is_kdump_kernel() ?
2413                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2414 }
2415 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2416
2417 static void __netif_reschedule(struct Qdisc *q)
2418 {
2419         struct softnet_data *sd;
2420         unsigned long flags;
2421
2422         local_irq_save(flags);
2423         sd = this_cpu_ptr(&softnet_data);
2424         q->next_sched = NULL;
2425         *sd->output_queue_tailp = q;
2426         sd->output_queue_tailp = &q->next_sched;
2427         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2428         local_irq_restore(flags);
2429 }
2430
2431 void __netif_schedule(struct Qdisc *q)
2432 {
2433         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2434                 __netif_reschedule(q);
2435 }
2436 EXPORT_SYMBOL(__netif_schedule);
2437
2438 struct dev_kfree_skb_cb {
2439         enum skb_free_reason reason;
2440 };
2441
2442 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2443 {
2444         return (struct dev_kfree_skb_cb *)skb->cb;
2445 }
2446
2447 void netif_schedule_queue(struct netdev_queue *txq)
2448 {
2449         rcu_read_lock();
2450         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2451                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2452
2453                 __netif_schedule(q);
2454         }
2455         rcu_read_unlock();
2456 }
2457 EXPORT_SYMBOL(netif_schedule_queue);
2458
2459 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2460 {
2461         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2462                 struct Qdisc *q;
2463
2464                 rcu_read_lock();
2465                 q = rcu_dereference(dev_queue->qdisc);
2466                 __netif_schedule(q);
2467                 rcu_read_unlock();
2468         }
2469 }
2470 EXPORT_SYMBOL(netif_tx_wake_queue);
2471
2472 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2473 {
2474         unsigned long flags;
2475
2476         if (unlikely(!skb))
2477                 return;
2478
2479         if (likely(refcount_read(&skb->users) == 1)) {
2480                 smp_rmb();
2481                 refcount_set(&skb->users, 0);
2482         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2483                 return;
2484         }
2485         get_kfree_skb_cb(skb)->reason = reason;
2486         local_irq_save(flags);
2487         skb->next = __this_cpu_read(softnet_data.completion_queue);
2488         __this_cpu_write(softnet_data.completion_queue, skb);
2489         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2490         local_irq_restore(flags);
2491 }
2492 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2493
2494 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2495 {
2496         if (in_irq() || irqs_disabled())
2497                 __dev_kfree_skb_irq(skb, reason);
2498         else
2499                 dev_kfree_skb(skb);
2500 }
2501 EXPORT_SYMBOL(__dev_kfree_skb_any);
2502
2503
2504 /**
2505  * netif_device_detach - mark device as removed
2506  * @dev: network device
2507  *
2508  * Mark device as removed from system and therefore no longer available.
2509  */
2510 void netif_device_detach(struct net_device *dev)
2511 {
2512         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2513             netif_running(dev)) {
2514                 netif_tx_stop_all_queues(dev);
2515         }
2516 }
2517 EXPORT_SYMBOL(netif_device_detach);
2518
2519 /**
2520  * netif_device_attach - mark device as attached
2521  * @dev: network device
2522  *
2523  * Mark device as attached from system and restart if needed.
2524  */
2525 void netif_device_attach(struct net_device *dev)
2526 {
2527         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2528             netif_running(dev)) {
2529                 netif_tx_wake_all_queues(dev);
2530                 __netdev_watchdog_up(dev);
2531         }
2532 }
2533 EXPORT_SYMBOL(netif_device_attach);
2534
2535 /*
2536  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2537  * to be used as a distribution range.
2538  */
2539 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2540                   unsigned int num_tx_queues)
2541 {
2542         u32 hash;
2543         u16 qoffset = 0;
2544         u16 qcount = num_tx_queues;
2545
2546         if (skb_rx_queue_recorded(skb)) {
2547                 hash = skb_get_rx_queue(skb);
2548                 while (unlikely(hash >= num_tx_queues))
2549                         hash -= num_tx_queues;
2550                 return hash;
2551         }
2552
2553         if (dev->num_tc) {
2554                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2555
2556                 qoffset = dev->tc_to_txq[tc].offset;
2557                 qcount = dev->tc_to_txq[tc].count;
2558         }
2559
2560         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2561 }
2562 EXPORT_SYMBOL(__skb_tx_hash);
2563
2564 static void skb_warn_bad_offload(const struct sk_buff *skb)
2565 {
2566         static const netdev_features_t null_features;
2567         struct net_device *dev = skb->dev;
2568         const char *name = "";
2569
2570         if (!net_ratelimit())
2571                 return;
2572
2573         if (dev) {
2574                 if (dev->dev.parent)
2575                         name = dev_driver_string(dev->dev.parent);
2576                 else
2577                         name = netdev_name(dev);
2578         }
2579         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2580              "gso_type=%d ip_summed=%d\n",
2581              name, dev ? &dev->features : &null_features,
2582              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2583              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2584              skb_shinfo(skb)->gso_type, skb->ip_summed);
2585 }
2586
2587 /*
2588  * Invalidate hardware checksum when packet is to be mangled, and
2589  * complete checksum manually on outgoing path.
2590  */
2591 int skb_checksum_help(struct sk_buff *skb)
2592 {
2593         __wsum csum;
2594         int ret = 0, offset;
2595
2596         if (skb->ip_summed == CHECKSUM_COMPLETE)
2597                 goto out_set_summed;
2598
2599         if (unlikely(skb_shinfo(skb)->gso_size)) {
2600                 skb_warn_bad_offload(skb);
2601                 return -EINVAL;
2602         }
2603
2604         /* Before computing a checksum, we should make sure no frag could
2605          * be modified by an external entity : checksum could be wrong.
2606          */
2607         if (skb_has_shared_frag(skb)) {
2608                 ret = __skb_linearize(skb);
2609                 if (ret)
2610                         goto out;
2611         }
2612
2613         offset = skb_checksum_start_offset(skb);
2614         BUG_ON(offset >= skb_headlen(skb));
2615         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2616
2617         offset += skb->csum_offset;
2618         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2619
2620         if (skb_cloned(skb) &&
2621             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2622                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2623                 if (ret)
2624                         goto out;
2625         }
2626
2627         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2628 out_set_summed:
2629         skb->ip_summed = CHECKSUM_NONE;
2630 out:
2631         return ret;
2632 }
2633 EXPORT_SYMBOL(skb_checksum_help);
2634
2635 int skb_crc32c_csum_help(struct sk_buff *skb)
2636 {
2637         __le32 crc32c_csum;
2638         int ret = 0, offset, start;
2639
2640         if (skb->ip_summed != CHECKSUM_PARTIAL)
2641                 goto out;
2642
2643         if (unlikely(skb_is_gso(skb)))
2644                 goto out;
2645
2646         /* Before computing a checksum, we should make sure no frag could
2647          * be modified by an external entity : checksum could be wrong.
2648          */
2649         if (unlikely(skb_has_shared_frag(skb))) {
2650                 ret = __skb_linearize(skb);
2651                 if (ret)
2652                         goto out;
2653         }
2654         start = skb_checksum_start_offset(skb);
2655         offset = start + offsetof(struct sctphdr, checksum);
2656         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2657                 ret = -EINVAL;
2658                 goto out;
2659         }
2660         if (skb_cloned(skb) &&
2661             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2662                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2663                 if (ret)
2664                         goto out;
2665         }
2666         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2667                                                   skb->len - start, ~(__u32)0,
2668                                                   crc32c_csum_stub));
2669         *(__le32 *)(skb->data + offset) = crc32c_csum;
2670         skb->ip_summed = CHECKSUM_NONE;
2671         skb->csum_not_inet = 0;
2672 out:
2673         return ret;
2674 }
2675
2676 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2677 {
2678         __be16 type = skb->protocol;
2679
2680         /* Tunnel gso handlers can set protocol to ethernet. */
2681         if (type == htons(ETH_P_TEB)) {
2682                 struct ethhdr *eth;
2683
2684                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2685                         return 0;
2686
2687                 eth = (struct ethhdr *)skb_mac_header(skb);
2688                 type = eth->h_proto;
2689         }
2690
2691         return __vlan_get_protocol(skb, type, depth);
2692 }
2693
2694 /**
2695  *      skb_mac_gso_segment - mac layer segmentation handler.
2696  *      @skb: buffer to segment
2697  *      @features: features for the output path (see dev->features)
2698  */
2699 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2700                                     netdev_features_t features)
2701 {
2702         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2703         struct packet_offload *ptype;
2704         int vlan_depth = skb->mac_len;
2705         __be16 type = skb_network_protocol(skb, &vlan_depth);
2706
2707         if (unlikely(!type))
2708                 return ERR_PTR(-EINVAL);
2709
2710         __skb_pull(skb, vlan_depth);
2711
2712         rcu_read_lock();
2713         list_for_each_entry_rcu(ptype, &offload_base, list) {
2714                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2715                         segs = ptype->callbacks.gso_segment(skb, features);
2716                         break;
2717                 }
2718         }
2719         rcu_read_unlock();
2720
2721         __skb_push(skb, skb->data - skb_mac_header(skb));
2722
2723         return segs;
2724 }
2725 EXPORT_SYMBOL(skb_mac_gso_segment);
2726
2727
2728 /* openvswitch calls this on rx path, so we need a different check.
2729  */
2730 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2731 {
2732         if (tx_path)
2733                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2734                        skb->ip_summed != CHECKSUM_NONE;
2735
2736         return skb->ip_summed == CHECKSUM_NONE;
2737 }
2738
2739 /**
2740  *      __skb_gso_segment - Perform segmentation on skb.
2741  *      @skb: buffer to segment
2742  *      @features: features for the output path (see dev->features)
2743  *      @tx_path: whether it is called in TX path
2744  *
2745  *      This function segments the given skb and returns a list of segments.
2746  *
2747  *      It may return NULL if the skb requires no segmentation.  This is
2748  *      only possible when GSO is used for verifying header integrity.
2749  *
2750  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2751  */
2752 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2753                                   netdev_features_t features, bool tx_path)
2754 {
2755         struct sk_buff *segs;
2756
2757         if (unlikely(skb_needs_check(skb, tx_path))) {
2758                 int err;
2759
2760                 /* We're going to init ->check field in TCP or UDP header */
2761                 err = skb_cow_head(skb, 0);
2762                 if (err < 0)
2763                         return ERR_PTR(err);
2764         }
2765
2766         /* Only report GSO partial support if it will enable us to
2767          * support segmentation on this frame without needing additional
2768          * work.
2769          */
2770         if (features & NETIF_F_GSO_PARTIAL) {
2771                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2772                 struct net_device *dev = skb->dev;
2773
2774                 partial_features |= dev->features & dev->gso_partial_features;
2775                 if (!skb_gso_ok(skb, features | partial_features))
2776                         features &= ~NETIF_F_GSO_PARTIAL;
2777         }
2778
2779         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2780                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2781
2782         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2783         SKB_GSO_CB(skb)->encap_level = 0;
2784
2785         skb_reset_mac_header(skb);
2786         skb_reset_mac_len(skb);
2787
2788         segs = skb_mac_gso_segment(skb, features);
2789
2790         if (unlikely(skb_needs_check(skb, tx_path)))
2791                 skb_warn_bad_offload(skb);
2792
2793         return segs;
2794 }
2795 EXPORT_SYMBOL(__skb_gso_segment);
2796
2797 /* Take action when hardware reception checksum errors are detected. */
2798 #ifdef CONFIG_BUG
2799 void netdev_rx_csum_fault(struct net_device *dev)
2800 {
2801         if (net_ratelimit()) {
2802                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2803                 dump_stack();
2804         }
2805 }
2806 EXPORT_SYMBOL(netdev_rx_csum_fault);
2807 #endif
2808
2809 /* Actually, we should eliminate this check as soon as we know, that:
2810  * 1. IOMMU is present and allows to map all the memory.
2811  * 2. No high memory really exists on this machine.
2812  */
2813
2814 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2815 {
2816 #ifdef CONFIG_HIGHMEM
2817         int i;
2818
2819         if (!(dev->features & NETIF_F_HIGHDMA)) {
2820                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2821                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2822
2823                         if (PageHighMem(skb_frag_page(frag)))
2824                                 return 1;
2825                 }
2826         }
2827
2828         if (PCI_DMA_BUS_IS_PHYS) {
2829                 struct device *pdev = dev->dev.parent;
2830
2831                 if (!pdev)
2832                         return 0;
2833                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2834                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2835                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2836
2837                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2838                                 return 1;
2839                 }
2840         }
2841 #endif
2842         return 0;
2843 }
2844
2845 /* If MPLS offload request, verify we are testing hardware MPLS features
2846  * instead of standard features for the netdev.
2847  */
2848 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2849 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2850                                            netdev_features_t features,
2851                                            __be16 type)
2852 {
2853         if (eth_p_mpls(type))
2854                 features &= skb->dev->mpls_features;
2855
2856         return features;
2857 }
2858 #else
2859 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2860                                            netdev_features_t features,
2861                                            __be16 type)
2862 {
2863         return features;
2864 }
2865 #endif
2866
2867 static netdev_features_t harmonize_features(struct sk_buff *skb,
2868         netdev_features_t features)
2869 {
2870         int tmp;
2871         __be16 type;
2872
2873         type = skb_network_protocol(skb, &tmp);
2874         features = net_mpls_features(skb, features, type);
2875
2876         if (skb->ip_summed != CHECKSUM_NONE &&
2877             !can_checksum_protocol(features, type)) {
2878                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2879         }
2880         if (illegal_highdma(skb->dev, skb))
2881                 features &= ~NETIF_F_SG;
2882
2883         return features;
2884 }
2885
2886 netdev_features_t passthru_features_check(struct sk_buff *skb,
2887                                           struct net_device *dev,
2888                                           netdev_features_t features)
2889 {
2890         return features;
2891 }
2892 EXPORT_SYMBOL(passthru_features_check);
2893
2894 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2895                                              struct net_device *dev,
2896                                              netdev_features_t features)
2897 {
2898         return vlan_features_check(skb, features);
2899 }
2900
2901 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2902                                             struct net_device *dev,
2903                                             netdev_features_t features)
2904 {
2905         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2906
2907         if (gso_segs > dev->gso_max_segs)
2908                 return features & ~NETIF_F_GSO_MASK;
2909
2910         /* Support for GSO partial features requires software
2911          * intervention before we can actually process the packets
2912          * so we need to strip support for any partial features now
2913          * and we can pull them back in after we have partially
2914          * segmented the frame.
2915          */
2916         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2917                 features &= ~dev->gso_partial_features;
2918
2919         /* Make sure to clear the IPv4 ID mangling feature if the
2920          * IPv4 header has the potential to be fragmented.
2921          */
2922         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2923                 struct iphdr *iph = skb->encapsulation ?
2924                                     inner_ip_hdr(skb) : ip_hdr(skb);
2925
2926                 if (!(iph->frag_off & htons(IP_DF)))
2927                         features &= ~NETIF_F_TSO_MANGLEID;
2928         }
2929
2930         return features;
2931 }
2932
2933 netdev_features_t netif_skb_features(struct sk_buff *skb)
2934 {
2935         struct net_device *dev = skb->dev;
2936         netdev_features_t features = dev->features;
2937
2938         if (skb_is_gso(skb))
2939                 features = gso_features_check(skb, dev, features);
2940
2941         /* If encapsulation offload request, verify we are testing
2942          * hardware encapsulation features instead of standard
2943          * features for the netdev
2944          */
2945         if (skb->encapsulation)
2946                 features &= dev->hw_enc_features;
2947
2948         if (skb_vlan_tagged(skb))
2949                 features = netdev_intersect_features(features,
2950                                                      dev->vlan_features |
2951                                                      NETIF_F_HW_VLAN_CTAG_TX |
2952                                                      NETIF_F_HW_VLAN_STAG_TX);
2953
2954         if (dev->netdev_ops->ndo_features_check)
2955                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2956                                                                 features);
2957         else
2958                 features &= dflt_features_check(skb, dev, features);
2959
2960         return harmonize_features(skb, features);
2961 }
2962 EXPORT_SYMBOL(netif_skb_features);
2963
2964 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2965                     struct netdev_queue *txq, bool more)
2966 {
2967         unsigned int len;
2968         int rc;
2969
2970         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2971                 dev_queue_xmit_nit(skb, dev);
2972
2973         len = skb->len;
2974         trace_net_dev_start_xmit(skb, dev);
2975         rc = netdev_start_xmit(skb, dev, txq, more);
2976         trace_net_dev_xmit(skb, rc, dev, len);
2977
2978         return rc;
2979 }
2980
2981 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2982                                     struct netdev_queue *txq, int *ret)
2983 {
2984         struct sk_buff *skb = first;
2985         int rc = NETDEV_TX_OK;
2986
2987         while (skb) {
2988                 struct sk_buff *next = skb->next;
2989
2990                 skb->next = NULL;
2991                 rc = xmit_one(skb, dev, txq, next != NULL);
2992                 if (unlikely(!dev_xmit_complete(rc))) {
2993                         skb->next = next;
2994                         goto out;
2995                 }
2996
2997                 skb = next;
2998                 if (netif_xmit_stopped(txq) && skb) {
2999                         rc = NETDEV_TX_BUSY;
3000                         break;
3001                 }
3002         }
3003
3004 out:
3005         *ret = rc;
3006         return skb;
3007 }
3008
3009 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3010                                           netdev_features_t features)
3011 {
3012         if (skb_vlan_tag_present(skb) &&
3013             !vlan_hw_offload_capable(features, skb->vlan_proto))
3014                 skb = __vlan_hwaccel_push_inside(skb);
3015         return skb;
3016 }
3017
3018 int skb_csum_hwoffload_help(struct sk_buff *skb,
3019                             const netdev_features_t features)
3020 {
3021         if (unlikely(skb->csum_not_inet))
3022                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3023                         skb_crc32c_csum_help(skb);
3024
3025         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3026 }
3027 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3028
3029 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3030 {
3031         netdev_features_t features;
3032
3033         features = netif_skb_features(skb);
3034         skb = validate_xmit_vlan(skb, features);
3035         if (unlikely(!skb))
3036                 goto out_null;
3037
3038         if (netif_needs_gso(skb, features)) {
3039                 struct sk_buff *segs;
3040
3041                 segs = skb_gso_segment(skb, features);
3042                 if (IS_ERR(segs)) {
3043                         goto out_kfree_skb;
3044                 } else if (segs) {
3045                         consume_skb(skb);
3046                         skb = segs;
3047                 }
3048         } else {
3049                 if (skb_needs_linearize(skb, features) &&
3050                     __skb_linearize(skb))
3051                         goto out_kfree_skb;
3052
3053                 if (validate_xmit_xfrm(skb, features))
3054                         goto out_kfree_skb;
3055
3056                 /* If packet is not checksummed and device does not
3057                  * support checksumming for this protocol, complete
3058                  * checksumming here.
3059                  */
3060                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3061                         if (skb->encapsulation)
3062                                 skb_set_inner_transport_header(skb,
3063                                                                skb_checksum_start_offset(skb));
3064                         else
3065                                 skb_set_transport_header(skb,
3066                                                          skb_checksum_start_offset(skb));
3067                         if (skb_csum_hwoffload_help(skb, features))
3068                                 goto out_kfree_skb;
3069                 }
3070         }
3071
3072         return skb;
3073
3074 out_kfree_skb:
3075         kfree_skb(skb);
3076 out_null:
3077         atomic_long_inc(&dev->tx_dropped);
3078         return NULL;
3079 }
3080
3081 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3082 {
3083         struct sk_buff *next, *head = NULL, *tail;
3084
3085         for (; skb != NULL; skb = next) {
3086                 next = skb->next;
3087                 skb->next = NULL;
3088
3089                 /* in case skb wont be segmented, point to itself */
3090                 skb->prev = skb;
3091
3092                 skb = validate_xmit_skb(skb, dev);
3093                 if (!skb)
3094                         continue;
3095
3096                 if (!head)
3097                         head = skb;
3098                 else
3099                         tail->next = skb;
3100                 /* If skb was segmented, skb->prev points to
3101                  * the last segment. If not, it still contains skb.
3102                  */
3103                 tail = skb->prev;
3104         }
3105         return head;
3106 }
3107 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3108
3109 static void qdisc_pkt_len_init(struct sk_buff *skb)
3110 {
3111         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3112
3113         qdisc_skb_cb(skb)->pkt_len = skb->len;
3114
3115         /* To get more precise estimation of bytes sent on wire,
3116          * we add to pkt_len the headers size of all segments
3117          */
3118         if (shinfo->gso_size)  {
3119                 unsigned int hdr_len;
3120                 u16 gso_segs = shinfo->gso_segs;
3121
3122                 /* mac layer + network layer */
3123                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3124
3125                 /* + transport layer */
3126                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3127                         hdr_len += tcp_hdrlen(skb);
3128                 else
3129                         hdr_len += sizeof(struct udphdr);
3130
3131                 if (shinfo->gso_type & SKB_GSO_DODGY)
3132                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3133                                                 shinfo->gso_size);
3134
3135                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3136         }
3137 }
3138
3139 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3140                                  struct net_device *dev,
3141                                  struct netdev_queue *txq)
3142 {
3143         spinlock_t *root_lock = qdisc_lock(q);
3144         struct sk_buff *to_free = NULL;
3145         bool contended;
3146         int rc;
3147
3148         qdisc_calculate_pkt_len(skb, q);
3149         /*
3150          * Heuristic to force contended enqueues to serialize on a
3151          * separate lock before trying to get qdisc main lock.
3152          * This permits qdisc->running owner to get the lock more
3153          * often and dequeue packets faster.
3154          */
3155         contended = qdisc_is_running(q);
3156         if (unlikely(contended))
3157                 spin_lock(&q->busylock);
3158
3159         spin_lock(root_lock);
3160         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3161                 __qdisc_drop(skb, &to_free);
3162                 rc = NET_XMIT_DROP;
3163         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3164                    qdisc_run_begin(q)) {
3165                 /*
3166                  * This is a work-conserving queue; there are no old skbs
3167                  * waiting to be sent out; and the qdisc is not running -
3168                  * xmit the skb directly.
3169                  */
3170
3171                 qdisc_bstats_update(q, skb);
3172
3173                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3174                         if (unlikely(contended)) {
3175                                 spin_unlock(&q->busylock);
3176                                 contended = false;
3177                         }
3178                         __qdisc_run(q);
3179                 } else
3180                         qdisc_run_end(q);
3181
3182                 rc = NET_XMIT_SUCCESS;
3183         } else {
3184                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3185                 if (qdisc_run_begin(q)) {
3186                         if (unlikely(contended)) {
3187                                 spin_unlock(&q->busylock);
3188                                 contended = false;
3189                         }
3190                         __qdisc_run(q);
3191                 }
3192         }
3193         spin_unlock(root_lock);
3194         if (unlikely(to_free))
3195                 kfree_skb_list(to_free);
3196         if (unlikely(contended))
3197                 spin_unlock(&q->busylock);
3198         return rc;
3199 }
3200
3201 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3202 static void skb_update_prio(struct sk_buff *skb)
3203 {
3204         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3205
3206         if (!skb->priority && skb->sk && map) {
3207                 unsigned int prioidx =
3208                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3209
3210                 if (prioidx < map->priomap_len)
3211                         skb->priority = map->priomap[prioidx];
3212         }
3213 }
3214 #else
3215 #define skb_update_prio(skb)
3216 #endif
3217
3218 DEFINE_PER_CPU(int, xmit_recursion);
3219 EXPORT_SYMBOL(xmit_recursion);
3220
3221 /**
3222  *      dev_loopback_xmit - loop back @skb
3223  *      @net: network namespace this loopback is happening in
3224  *      @sk:  sk needed to be a netfilter okfn
3225  *      @skb: buffer to transmit
3226  */
3227 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3228 {
3229         skb_reset_mac_header(skb);
3230         __skb_pull(skb, skb_network_offset(skb));
3231         skb->pkt_type = PACKET_LOOPBACK;
3232         skb->ip_summed = CHECKSUM_UNNECESSARY;
3233         WARN_ON(!skb_dst(skb));
3234         skb_dst_force(skb);
3235         netif_rx_ni(skb);
3236         return 0;
3237 }
3238 EXPORT_SYMBOL(dev_loopback_xmit);
3239
3240 #ifdef CONFIG_NET_EGRESS
3241 static struct sk_buff *
3242 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3243 {
3244         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3245         struct tcf_result cl_res;
3246
3247         if (!cl)
3248                 return skb;
3249
3250         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3251         qdisc_bstats_cpu_update(cl->q, skb);
3252
3253         switch (tcf_classify(skb, cl, &cl_res, false)) {
3254         case TC_ACT_OK:
3255         case TC_ACT_RECLASSIFY:
3256                 skb->tc_index = TC_H_MIN(cl_res.classid);
3257                 break;
3258         case TC_ACT_SHOT:
3259                 qdisc_qstats_cpu_drop(cl->q);
3260                 *ret = NET_XMIT_DROP;
3261                 kfree_skb(skb);
3262                 return NULL;
3263         case TC_ACT_STOLEN:
3264         case TC_ACT_QUEUED:
3265         case TC_ACT_TRAP:
3266                 *ret = NET_XMIT_SUCCESS;
3267                 consume_skb(skb);
3268                 return NULL;
3269         case TC_ACT_REDIRECT:
3270                 /* No need to push/pop skb's mac_header here on egress! */
3271                 skb_do_redirect(skb);
3272                 *ret = NET_XMIT_SUCCESS;
3273                 return NULL;
3274         default:
3275                 break;
3276         }
3277
3278         return skb;
3279 }
3280 #endif /* CONFIG_NET_EGRESS */
3281
3282 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3283 {
3284 #ifdef CONFIG_XPS
3285         struct xps_dev_maps *dev_maps;
3286         struct xps_map *map;
3287         int queue_index = -1;
3288
3289         rcu_read_lock();
3290         dev_maps = rcu_dereference(dev->xps_maps);
3291         if (dev_maps) {
3292                 unsigned int tci = skb->sender_cpu - 1;
3293
3294                 if (dev->num_tc) {
3295                         tci *= dev->num_tc;
3296                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3297                 }
3298
3299                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3300                 if (map) {
3301                         if (map->len == 1)
3302                                 queue_index = map->queues[0];
3303                         else
3304                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3305                                                                            map->len)];
3306                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3307                                 queue_index = -1;
3308                 }
3309         }
3310         rcu_read_unlock();
3311
3312         return queue_index;
3313 #else
3314         return -1;
3315 #endif
3316 }
3317
3318 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3319 {
3320         struct sock *sk = skb->sk;
3321         int queue_index = sk_tx_queue_get(sk);
3322
3323         if (queue_index < 0 || skb->ooo_okay ||
3324             queue_index >= dev->real_num_tx_queues) {
3325                 int new_index = get_xps_queue(dev, skb);
3326
3327                 if (new_index < 0)
3328                         new_index = skb_tx_hash(dev, skb);
3329
3330                 if (queue_index != new_index && sk &&
3331                     sk_fullsock(sk) &&
3332                     rcu_access_pointer(sk->sk_dst_cache))
3333                         sk_tx_queue_set(sk, new_index);
3334
3335                 queue_index = new_index;
3336         }
3337
3338         return queue_index;
3339 }
3340
3341 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3342                                     struct sk_buff *skb,
3343                                     void *accel_priv)
3344 {
3345         int queue_index = 0;
3346
3347 #ifdef CONFIG_XPS
3348         u32 sender_cpu = skb->sender_cpu - 1;
3349
3350         if (sender_cpu >= (u32)NR_CPUS)
3351                 skb->sender_cpu = raw_smp_processor_id() + 1;
3352 #endif
3353
3354         if (dev->real_num_tx_queues != 1) {
3355                 const struct net_device_ops *ops = dev->netdev_ops;
3356
3357                 if (ops->ndo_select_queue)
3358                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3359                                                             __netdev_pick_tx);
3360                 else
3361                         queue_index = __netdev_pick_tx(dev, skb);
3362
3363                 if (!accel_priv)
3364                         queue_index = netdev_cap_txqueue(dev, queue_index);
3365         }
3366
3367         skb_set_queue_mapping(skb, queue_index);
3368         return netdev_get_tx_queue(dev, queue_index);
3369 }
3370
3371 /**
3372  *      __dev_queue_xmit - transmit a buffer
3373  *      @skb: buffer to transmit
3374  *      @accel_priv: private data used for L2 forwarding offload
3375  *
3376  *      Queue a buffer for transmission to a network device. The caller must
3377  *      have set the device and priority and built the buffer before calling
3378  *      this function. The function can be called from an interrupt.
3379  *
3380  *      A negative errno code is returned on a failure. A success does not
3381  *      guarantee the frame will be transmitted as it may be dropped due
3382  *      to congestion or traffic shaping.
3383  *
3384  * -----------------------------------------------------------------------------------
3385  *      I notice this method can also return errors from the queue disciplines,
3386  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3387  *      be positive.
3388  *
3389  *      Regardless of the return value, the skb is consumed, so it is currently
3390  *      difficult to retry a send to this method.  (You can bump the ref count
3391  *      before sending to hold a reference for retry if you are careful.)
3392  *
3393  *      When calling this method, interrupts MUST be enabled.  This is because
3394  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3395  *          --BLG
3396  */
3397 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3398 {
3399         struct net_device *dev = skb->dev;
3400         struct netdev_queue *txq;
3401         struct Qdisc *q;
3402         int rc = -ENOMEM;
3403
3404         skb_reset_mac_header(skb);
3405
3406         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3407                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3408
3409         /* Disable soft irqs for various locks below. Also
3410          * stops preemption for RCU.
3411          */
3412         rcu_read_lock_bh();
3413
3414         skb_update_prio(skb);
3415
3416         qdisc_pkt_len_init(skb);
3417 #ifdef CONFIG_NET_CLS_ACT
3418         skb->tc_at_ingress = 0;
3419 # ifdef CONFIG_NET_EGRESS
3420         if (static_key_false(&egress_needed)) {
3421                 skb = sch_handle_egress(skb, &rc, dev);
3422                 if (!skb)
3423                         goto out;
3424         }
3425 # endif
3426 #endif
3427         /* If device/qdisc don't need skb->dst, release it right now while
3428          * its hot in this cpu cache.
3429          */
3430         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3431                 skb_dst_drop(skb);
3432         else
3433                 skb_dst_force(skb);
3434
3435         txq = netdev_pick_tx(dev, skb, accel_priv);
3436         q = rcu_dereference_bh(txq->qdisc);
3437
3438         trace_net_dev_queue(skb);
3439         if (q->enqueue) {
3440                 rc = __dev_xmit_skb(skb, q, dev, txq);
3441                 goto out;
3442         }
3443
3444         /* The device has no queue. Common case for software devices:
3445          * loopback, all the sorts of tunnels...
3446
3447          * Really, it is unlikely that netif_tx_lock protection is necessary
3448          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3449          * counters.)
3450          * However, it is possible, that they rely on protection
3451          * made by us here.
3452
3453          * Check this and shot the lock. It is not prone from deadlocks.
3454          *Either shot noqueue qdisc, it is even simpler 8)
3455          */
3456         if (dev->flags & IFF_UP) {
3457                 int cpu = smp_processor_id(); /* ok because BHs are off */
3458
3459                 if (txq->xmit_lock_owner != cpu) {
3460                         if (unlikely(__this_cpu_read(xmit_recursion) >
3461                                      XMIT_RECURSION_LIMIT))
3462                                 goto recursion_alert;
3463
3464                         skb = validate_xmit_skb(skb, dev);
3465                         if (!skb)
3466                                 goto out;
3467
3468                         HARD_TX_LOCK(dev, txq, cpu);
3469
3470                         if (!netif_xmit_stopped(txq)) {
3471                                 __this_cpu_inc(xmit_recursion);
3472                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3473                                 __this_cpu_dec(xmit_recursion);
3474                                 if (dev_xmit_complete(rc)) {
3475                                         HARD_TX_UNLOCK(dev, txq);
3476                                         goto out;
3477                                 }
3478                         }
3479                         HARD_TX_UNLOCK(dev, txq);
3480                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3481                                              dev->name);
3482                 } else {
3483                         /* Recursion is detected! It is possible,
3484                          * unfortunately
3485                          */
3486 recursion_alert:
3487                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3488                                              dev->name);
3489                 }
3490         }
3491
3492         rc = -ENETDOWN;
3493         rcu_read_unlock_bh();
3494
3495         atomic_long_inc(&dev->tx_dropped);
3496         kfree_skb_list(skb);
3497         return rc;
3498 out:
3499         rcu_read_unlock_bh();
3500         return rc;
3501 }
3502
3503 int dev_queue_xmit(struct sk_buff *skb)
3504 {
3505         return __dev_queue_xmit(skb, NULL);
3506 }
3507 EXPORT_SYMBOL(dev_queue_xmit);
3508
3509 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3510 {
3511         return __dev_queue_xmit(skb, accel_priv);
3512 }
3513 EXPORT_SYMBOL(dev_queue_xmit_accel);
3514
3515
3516 /*************************************************************************
3517  *                      Receiver routines
3518  *************************************************************************/
3519
3520 int netdev_max_backlog __read_mostly = 1000;
3521 EXPORT_SYMBOL(netdev_max_backlog);
3522
3523 int netdev_tstamp_prequeue __read_mostly = 1;
3524 int netdev_budget __read_mostly = 300;
3525 unsigned int __read_mostly netdev_budget_usecs = 2000;
3526 int weight_p __read_mostly = 64;           /* old backlog weight */
3527 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3528 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3529 int dev_rx_weight __read_mostly = 64;
3530 int dev_tx_weight __read_mostly = 64;
3531
3532 /* Called with irq disabled */
3533 static inline void ____napi_schedule(struct softnet_data *sd,
3534                                      struct napi_struct *napi)
3535 {
3536         list_add_tail(&napi->poll_list, &sd->poll_list);
3537         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3538 }
3539
3540 #ifdef CONFIG_RPS
3541
3542 /* One global table that all flow-based protocols share. */
3543 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3544 EXPORT_SYMBOL(rps_sock_flow_table);
3545 u32 rps_cpu_mask __read_mostly;
3546 EXPORT_SYMBOL(rps_cpu_mask);
3547
3548 struct static_key rps_needed __read_mostly;
3549 EXPORT_SYMBOL(rps_needed);
3550 struct static_key rfs_needed __read_mostly;
3551 EXPORT_SYMBOL(rfs_needed);
3552
3553 static struct rps_dev_flow *
3554 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3555             struct rps_dev_flow *rflow, u16 next_cpu)
3556 {
3557         if (next_cpu < nr_cpu_ids) {
3558 #ifdef CONFIG_RFS_ACCEL
3559                 struct netdev_rx_queue *rxqueue;
3560                 struct rps_dev_flow_table *flow_table;
3561                 struct rps_dev_flow *old_rflow;
3562                 u32 flow_id;
3563                 u16 rxq_index;
3564                 int rc;
3565
3566                 /* Should we steer this flow to a different hardware queue? */
3567                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3568                     !(dev->features & NETIF_F_NTUPLE))
3569                         goto out;
3570                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3571                 if (rxq_index == skb_get_rx_queue(skb))
3572                         goto out;
3573
3574                 rxqueue = dev->_rx + rxq_index;
3575                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3576                 if (!flow_table)
3577                         goto out;
3578                 flow_id = skb_get_hash(skb) & flow_table->mask;
3579                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3580                                                         rxq_index, flow_id);
3581                 if (rc < 0)
3582                         goto out;
3583                 old_rflow = rflow;
3584                 rflow = &flow_table->flows[flow_id];
3585                 rflow->filter = rc;
3586                 if (old_rflow->filter == rflow->filter)
3587                         old_rflow->filter = RPS_NO_FILTER;
3588         out:
3589 #endif
3590                 rflow->last_qtail =
3591                         per_cpu(softnet_data, next_cpu).input_queue_head;
3592         }
3593
3594         rflow->cpu = next_cpu;
3595         return rflow;
3596 }
3597
3598 /*
3599  * get_rps_cpu is called from netif_receive_skb and returns the target
3600  * CPU from the RPS map of the receiving queue for a given skb.
3601  * rcu_read_lock must be held on entry.
3602  */
3603 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3604                        struct rps_dev_flow **rflowp)
3605 {
3606         const struct rps_sock_flow_table *sock_flow_table;
3607         struct netdev_rx_queue *rxqueue = dev->_rx;
3608         struct rps_dev_flow_table *flow_table;
3609         struct rps_map *map;
3610         int cpu = -1;
3611         u32 tcpu;
3612         u32 hash;
3613
3614         if (skb_rx_queue_recorded(skb)) {
3615                 u16 index = skb_get_rx_queue(skb);
3616
3617                 if (unlikely(index >= dev->real_num_rx_queues)) {
3618                         WARN_ONCE(dev->real_num_rx_queues > 1,
3619                                   "%s received packet on queue %u, but number "
3620                                   "of RX queues is %u\n",
3621                                   dev->name, index, dev->real_num_rx_queues);
3622                         goto done;
3623                 }
3624                 rxqueue += index;
3625         }
3626
3627         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3628
3629         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3630         map = rcu_dereference(rxqueue->rps_map);
3631         if (!flow_table && !map)
3632                 goto done;
3633
3634         skb_reset_network_header(skb);
3635         hash = skb_get_hash(skb);
3636         if (!hash)
3637                 goto done;
3638
3639         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3640         if (flow_table && sock_flow_table) {
3641                 struct rps_dev_flow *rflow;
3642                 u32 next_cpu;
3643                 u32 ident;
3644
3645                 /* First check into global flow table if there is a match */
3646                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3647                 if ((ident ^ hash) & ~rps_cpu_mask)
3648                         goto try_rps;
3649
3650                 next_cpu = ident & rps_cpu_mask;
3651
3652                 /* OK, now we know there is a match,
3653                  * we can look at the local (per receive queue) flow table
3654                  */
3655                 rflow = &flow_table->flows[hash & flow_table->mask];
3656                 tcpu = rflow->cpu;
3657
3658                 /*
3659                  * If the desired CPU (where last recvmsg was done) is
3660                  * different from current CPU (one in the rx-queue flow
3661                  * table entry), switch if one of the following holds:
3662                  *   - Current CPU is unset (>= nr_cpu_ids).
3663                  *   - Current CPU is offline.
3664                  *   - The current CPU's queue tail has advanced beyond the
3665                  *     last packet that was enqueued using this table entry.
3666                  *     This guarantees that all previous packets for the flow
3667                  *     have been dequeued, thus preserving in order delivery.
3668                  */
3669                 if (unlikely(tcpu != next_cpu) &&
3670                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3671                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3672                       rflow->last_qtail)) >= 0)) {
3673                         tcpu = next_cpu;
3674                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3675                 }
3676
3677                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3678                         *rflowp = rflow;
3679                         cpu = tcpu;
3680                         goto done;
3681                 }
3682         }
3683
3684 try_rps:
3685
3686         if (map) {
3687                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3688                 if (cpu_online(tcpu)) {
3689                         cpu = tcpu;
3690                         goto done;
3691                 }
3692         }
3693
3694 done:
3695         return cpu;
3696 }
3697
3698 #ifdef CONFIG_RFS_ACCEL
3699
3700 /**
3701  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3702  * @dev: Device on which the filter was set
3703  * @rxq_index: RX queue index
3704  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3705  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3706  *
3707  * Drivers that implement ndo_rx_flow_steer() should periodically call
3708  * this function for each installed filter and remove the filters for
3709  * which it returns %true.
3710  */
3711 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3712                          u32 flow_id, u16 filter_id)
3713 {
3714         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3715         struct rps_dev_flow_table *flow_table;
3716         struct rps_dev_flow *rflow;
3717         bool expire = true;
3718         unsigned int cpu;
3719
3720         rcu_read_lock();
3721         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3722         if (flow_table && flow_id <= flow_table->mask) {
3723                 rflow = &flow_table->flows[flow_id];
3724                 cpu = ACCESS_ONCE(rflow->cpu);
3725                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3726                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3727                            rflow->last_qtail) <
3728                      (int)(10 * flow_table->mask)))
3729                         expire = false;
3730         }
3731         rcu_read_unlock();
3732         return expire;
3733 }
3734 EXPORT_SYMBOL(rps_may_expire_flow);
3735
3736 #endif /* CONFIG_RFS_ACCEL */
3737
3738 /* Called from hardirq (IPI) context */
3739 static void rps_trigger_softirq(void *data)
3740 {
3741         struct softnet_data *sd = data;
3742
3743         ____napi_schedule(sd, &sd->backlog);
3744         sd->received_rps++;
3745 }
3746
3747 #endif /* CONFIG_RPS */
3748
3749 /*
3750  * Check if this softnet_data structure is another cpu one
3751  * If yes, queue it to our IPI list and return 1
3752  * If no, return 0
3753  */
3754 static int rps_ipi_queued(struct softnet_data *sd)
3755 {
3756 #ifdef CONFIG_RPS
3757         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3758
3759         if (sd != mysd) {
3760                 sd->rps_ipi_next = mysd->rps_ipi_list;
3761                 mysd->rps_ipi_list = sd;
3762
3763                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3764                 return 1;
3765         }
3766 #endif /* CONFIG_RPS */
3767         return 0;
3768 }
3769
3770 #ifdef CONFIG_NET_FLOW_LIMIT
3771 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3772 #endif
3773
3774 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3775 {
3776 #ifdef CONFIG_NET_FLOW_LIMIT
3777         struct sd_flow_limit *fl;
3778         struct softnet_data *sd;
3779         unsigned int old_flow, new_flow;
3780
3781         if (qlen < (netdev_max_backlog >> 1))
3782                 return false;
3783
3784         sd = this_cpu_ptr(&softnet_data);
3785
3786         rcu_read_lock();
3787         fl = rcu_dereference(sd->flow_limit);
3788         if (fl) {
3789                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3790                 old_flow = fl->history[fl->history_head];
3791                 fl->history[fl->history_head] = new_flow;
3792
3793                 fl->history_head++;
3794                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3795
3796                 if (likely(fl->buckets[old_flow]))
3797                         fl->buckets[old_flow]--;
3798
3799                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3800                         fl->count++;
3801                         rcu_read_unlock();
3802                         return true;
3803                 }
3804         }
3805         rcu_read_unlock();
3806 #endif
3807         return false;
3808 }
3809
3810 /*
3811  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3812  * queue (may be a remote CPU queue).
3813  */
3814 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3815                               unsigned int *qtail)
3816 {
3817         struct softnet_data *sd;
3818         unsigned long flags;
3819         unsigned int qlen;
3820
3821         sd = &per_cpu(softnet_data, cpu);
3822
3823         local_irq_save(flags);
3824
3825         rps_lock(sd);
3826         if (!netif_running(skb->dev))
3827                 goto drop;
3828         qlen = skb_queue_len(&sd->input_pkt_queue);
3829         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3830                 if (qlen) {
3831 enqueue:
3832                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3833                         input_queue_tail_incr_save(sd, qtail);
3834                         rps_unlock(sd);
3835                         local_irq_restore(flags);
3836                         return NET_RX_SUCCESS;
3837                 }
3838
3839                 /* Schedule NAPI for backlog device
3840                  * We can use non atomic operation since we own the queue lock
3841                  */
3842                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3843                         if (!rps_ipi_queued(sd))
3844                                 ____napi_schedule(sd, &sd->backlog);
3845                 }
3846                 goto enqueue;
3847         }
3848
3849 drop:
3850         sd->dropped++;
3851         rps_unlock(sd);
3852
3853         local_irq_restore(flags);
3854
3855         atomic_long_inc(&skb->dev->rx_dropped);
3856         kfree_skb(skb);
3857         return NET_RX_DROP;
3858 }
3859
3860 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3861                                      struct bpf_prog *xdp_prog)
3862 {
3863         struct xdp_buff xdp;
3864         u32 act = XDP_DROP;
3865         void *orig_data;
3866         int hlen, off;
3867         u32 mac_len;
3868
3869         /* Reinjected packets coming from act_mirred or similar should
3870          * not get XDP generic processing.
3871          */
3872         if (skb_cloned(skb))
3873                 return XDP_PASS;
3874
3875         if (skb_linearize(skb))
3876                 goto do_drop;
3877
3878         /* The XDP program wants to see the packet starting at the MAC
3879          * header.
3880          */
3881         mac_len = skb->data - skb_mac_header(skb);
3882         hlen = skb_headlen(skb) + mac_len;
3883         xdp.data = skb->data - mac_len;
3884         xdp.data_end = xdp.data + hlen;
3885         xdp.data_hard_start = skb->data - skb_headroom(skb);
3886         orig_data = xdp.data;
3887
3888         act = bpf_prog_run_xdp(xdp_prog, &xdp);
3889
3890         off = xdp.data - orig_data;
3891         if (off > 0)
3892                 __skb_pull(skb, off);
3893         else if (off < 0)
3894                 __skb_push(skb, -off);
3895
3896         switch (act) {
3897         case XDP_REDIRECT:
3898         case XDP_TX:
3899                 __skb_push(skb, mac_len);
3900                 /* fall through */
3901         case XDP_PASS:
3902                 break;
3903
3904         default:
3905                 bpf_warn_invalid_xdp_action(act);
3906                 /* fall through */
3907         case XDP_ABORTED:
3908                 trace_xdp_exception(skb->dev, xdp_prog, act);
3909                 /* fall through */
3910         case XDP_DROP:
3911         do_drop:
3912                 kfree_skb(skb);
3913                 break;
3914         }
3915
3916         return act;
3917 }
3918
3919 /* When doing generic XDP we have to bypass the qdisc layer and the
3920  * network taps in order to match in-driver-XDP behavior.
3921  */
3922 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3923 {
3924         struct net_device *dev = skb->dev;
3925         struct netdev_queue *txq;
3926         bool free_skb = true;
3927         int cpu, rc;
3928
3929         txq = netdev_pick_tx(dev, skb, NULL);
3930         cpu = smp_processor_id();
3931         HARD_TX_LOCK(dev, txq, cpu);
3932         if (!netif_xmit_stopped(txq)) {
3933                 rc = netdev_start_xmit(skb, dev, txq, 0);
3934                 if (dev_xmit_complete(rc))
3935                         free_skb = false;
3936         }
3937         HARD_TX_UNLOCK(dev, txq);
3938         if (free_skb) {
3939                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3940                 kfree_skb(skb);
3941         }
3942 }
3943
3944 static struct static_key generic_xdp_needed __read_mostly;
3945
3946 static int do_xdp_generic(struct sk_buff *skb)
3947 {
3948         struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
3949
3950         if (xdp_prog) {
3951                 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
3952                 int err;
3953
3954                 if (act != XDP_PASS) {
3955                         switch (act) {
3956                         case XDP_REDIRECT:
3957                                 err = xdp_do_generic_redirect(skb->dev, skb);
3958                                 if (err)
3959                                         goto out_redir;
3960                         /* fallthru to submit skb */
3961                         case XDP_TX:
3962                                 generic_xdp_tx(skb, xdp_prog);
3963                                 break;
3964                         }
3965                         return XDP_DROP;
3966                 }
3967         }
3968         return XDP_PASS;
3969 out_redir:
3970         trace_xdp_exception(skb->dev, xdp_prog, XDP_REDIRECT);
3971         kfree_skb(skb);
3972         return XDP_DROP;
3973 }
3974
3975 static int netif_rx_internal(struct sk_buff *skb)
3976 {
3977         int ret;
3978
3979         net_timestamp_check(netdev_tstamp_prequeue, skb);
3980
3981         trace_netif_rx(skb);
3982
3983         if (static_key_false(&generic_xdp_needed)) {
3984                 int ret = do_xdp_generic(skb);
3985
3986                 /* Consider XDP consuming the packet a success from
3987                  * the netdev point of view we do not want to count
3988                  * this as an error.
3989                  */
3990                 if (ret != XDP_PASS)
3991                         return NET_RX_SUCCESS;
3992         }
3993
3994 #ifdef CONFIG_RPS
3995         if (static_key_false(&rps_needed)) {
3996                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3997                 int cpu;
3998
3999                 preempt_disable();
4000                 rcu_read_lock();
4001
4002                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4003                 if (cpu < 0)
4004                         cpu = smp_processor_id();
4005
4006                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4007
4008                 rcu_read_unlock();
4009                 preempt_enable();
4010         } else
4011 #endif
4012         {
4013                 unsigned int qtail;
4014
4015                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4016                 put_cpu();
4017         }
4018         return ret;
4019 }
4020
4021 /**
4022  *      netif_rx        -       post buffer to the network code
4023  *      @skb: buffer to post
4024  *
4025  *      This function receives a packet from a device driver and queues it for
4026  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4027  *      may be dropped during processing for congestion control or by the
4028  *      protocol layers.
4029  *
4030  *      return values:
4031  *      NET_RX_SUCCESS  (no congestion)
4032  *      NET_RX_DROP     (packet was dropped)
4033  *
4034  */
4035
4036 int netif_rx(struct sk_buff *skb)
4037 {
4038         trace_netif_rx_entry(skb);
4039
4040         return netif_rx_internal(skb);
4041 }
4042 EXPORT_SYMBOL(netif_rx);
4043
4044 int netif_rx_ni(struct sk_buff *skb)
4045 {
4046         int err;
4047
4048         trace_netif_rx_ni_entry(skb);
4049
4050         preempt_disable();
4051         err = netif_rx_internal(skb);
4052         if (local_softirq_pending())
4053                 do_softirq();
4054         preempt_enable();
4055
4056         return err;
4057 }
4058 EXPORT_SYMBOL(netif_rx_ni);
4059
4060 static __latent_entropy void net_tx_action(struct softirq_action *h)
4061 {
4062         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4063
4064         if (sd->completion_queue) {
4065                 struct sk_buff *clist;
4066
4067                 local_irq_disable();
4068                 clist = sd->completion_queue;
4069                 sd->completion_queue = NULL;
4070                 local_irq_enable();
4071
4072                 while (clist) {
4073                         struct sk_buff *skb = clist;
4074
4075                         clist = clist->next;
4076
4077                         WARN_ON(refcount_read(&skb->users));
4078                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4079                                 trace_consume_skb(skb);
4080                         else
4081                                 trace_kfree_skb(skb, net_tx_action);
4082
4083                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4084                                 __kfree_skb(skb);
4085                         else
4086                                 __kfree_skb_defer(skb);
4087                 }
4088
4089                 __kfree_skb_flush();
4090         }
4091
4092         if (sd->output_queue) {
4093                 struct Qdisc *head;
4094
4095                 local_irq_disable();
4096                 head = sd->output_queue;
4097                 sd->output_queue = NULL;
4098                 sd->output_queue_tailp = &sd->output_queue;
4099                 local_irq_enable();
4100
4101                 while (head) {
4102                         struct Qdisc *q = head;
4103                         spinlock_t *root_lock;
4104
4105                         head = head->next_sched;
4106
4107                         root_lock = qdisc_lock(q);
4108                         spin_lock(root_lock);
4109                         /* We need to make sure head->next_sched is read
4110                          * before clearing __QDISC_STATE_SCHED
4111                          */
4112                         smp_mb__before_atomic();
4113                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4114                         qdisc_run(q);
4115                         spin_unlock(root_lock);
4116                 }
4117         }
4118 }
4119
4120 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4121 /* This hook is defined here for ATM LANE */
4122 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4123                              unsigned char *addr) __read_mostly;
4124 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4125 #endif
4126
4127 static inline struct sk_buff *
4128 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4129                    struct net_device *orig_dev)
4130 {
4131 #ifdef CONFIG_NET_CLS_ACT
4132         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4133         struct tcf_result cl_res;
4134
4135         /* If there's at least one ingress present somewhere (so
4136          * we get here via enabled static key), remaining devices
4137          * that are not configured with an ingress qdisc will bail
4138          * out here.
4139          */
4140         if (!cl)
4141                 return skb;
4142         if (*pt_prev) {
4143                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4144                 *pt_prev = NULL;
4145         }
4146
4147         qdisc_skb_cb(skb)->pkt_len = skb->len;
4148         skb->tc_at_ingress = 1;
4149         qdisc_bstats_cpu_update(cl->q, skb);
4150
4151         switch (tcf_classify(skb, cl, &cl_res, false)) {
4152         case TC_ACT_OK:
4153         case TC_ACT_RECLASSIFY:
4154                 skb->tc_index = TC_H_MIN(cl_res.classid);
4155                 break;
4156         case TC_ACT_SHOT:
4157                 qdisc_qstats_cpu_drop(cl->q);
4158                 kfree_skb(skb);
4159                 return NULL;
4160         case TC_ACT_STOLEN:
4161         case TC_ACT_QUEUED:
4162         case TC_ACT_TRAP:
4163                 consume_skb(skb);
4164                 return NULL;
4165         case TC_ACT_REDIRECT:
4166                 /* skb_mac_header check was done by cls/act_bpf, so
4167                  * we can safely push the L2 header back before
4168                  * redirecting to another netdev
4169                  */
4170                 __skb_push(skb, skb->mac_len);
4171                 skb_do_redirect(skb);
4172                 return NULL;
4173         default:
4174                 break;
4175         }
4176 #endif /* CONFIG_NET_CLS_ACT */
4177         return skb;
4178 }
4179
4180 /**
4181  *      netdev_is_rx_handler_busy - check if receive handler is registered
4182  *      @dev: device to check
4183  *
4184  *      Check if a receive handler is already registered for a given device.
4185  *      Return true if there one.
4186  *
4187  *      The caller must hold the rtnl_mutex.
4188  */
4189 bool netdev_is_rx_handler_busy(struct net_device *dev)
4190 {
4191         ASSERT_RTNL();
4192         return dev && rtnl_dereference(dev->rx_handler);
4193 }
4194 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4195
4196 /**
4197  *      netdev_rx_handler_register - register receive handler
4198  *      @dev: device to register a handler for
4199  *      @rx_handler: receive handler to register
4200  *      @rx_handler_data: data pointer that is used by rx handler
4201  *
4202  *      Register a receive handler for a device. This handler will then be
4203  *      called from __netif_receive_skb. A negative errno code is returned
4204  *      on a failure.
4205  *
4206  *      The caller must hold the rtnl_mutex.
4207  *
4208  *      For a general description of rx_handler, see enum rx_handler_result.
4209  */
4210 int netdev_rx_handler_register(struct net_device *dev,
4211                                rx_handler_func_t *rx_handler,
4212                                void *rx_handler_data)
4213 {
4214         if (netdev_is_rx_handler_busy(dev))
4215                 return -EBUSY;
4216
4217         /* Note: rx_handler_data must be set before rx_handler */
4218         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4219         rcu_assign_pointer(dev->rx_handler, rx_handler);
4220
4221         return 0;
4222 }
4223 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4224
4225 /**
4226  *      netdev_rx_handler_unregister - unregister receive handler
4227  *      @dev: device to unregister a handler from
4228  *
4229  *      Unregister a receive handler from a device.
4230  *
4231  *      The caller must hold the rtnl_mutex.
4232  */
4233 void netdev_rx_handler_unregister(struct net_device *dev)
4234 {
4235
4236         ASSERT_RTNL();
4237         RCU_INIT_POINTER(dev->rx_handler, NULL);
4238         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4239          * section has a guarantee to see a non NULL rx_handler_data
4240          * as well.
4241          */
4242         synchronize_net();
4243         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4244 }
4245 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4246
4247 /*
4248  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4249  * the special handling of PFMEMALLOC skbs.
4250  */
4251 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4252 {
4253         switch (skb->protocol) {
4254         case htons(ETH_P_ARP):
4255         case htons(ETH_P_IP):
4256         case htons(ETH_P_IPV6):
4257         case htons(ETH_P_8021Q):
4258         case htons(ETH_P_8021AD):
4259                 return true;
4260         default:
4261                 return false;
4262         }
4263 }
4264
4265 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4266                              int *ret, struct net_device *orig_dev)
4267 {
4268 #ifdef CONFIG_NETFILTER_INGRESS
4269         if (nf_hook_ingress_active(skb)) {
4270                 int ingress_retval;
4271
4272                 if (*pt_prev) {
4273                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4274                         *pt_prev = NULL;
4275                 }
4276
4277                 rcu_read_lock();
4278                 ingress_retval = nf_hook_ingress(skb);
4279                 rcu_read_unlock();
4280                 return ingress_retval;
4281         }
4282 #endif /* CONFIG_NETFILTER_INGRESS */
4283         return 0;
4284 }
4285
4286 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4287 {
4288         struct packet_type *ptype, *pt_prev;
4289         rx_handler_func_t *rx_handler;
4290         struct net_device *orig_dev;
4291         bool deliver_exact = false;
4292         int ret = NET_RX_DROP;
4293         __be16 type;
4294
4295         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4296
4297         trace_netif_receive_skb(skb);
4298
4299         orig_dev = skb->dev;
4300
4301         skb_reset_network_header(skb);
4302         if (!skb_transport_header_was_set(skb))
4303                 skb_reset_transport_header(skb);
4304         skb_reset_mac_len(skb);
4305
4306         pt_prev = NULL;
4307
4308 another_round:
4309         skb->skb_iif = skb->dev->ifindex;
4310
4311         __this_cpu_inc(softnet_data.processed);
4312
4313         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4314             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4315                 skb = skb_vlan_untag(skb);
4316                 if (unlikely(!skb))
4317                         goto out;
4318         }
4319
4320         if (skb_skip_tc_classify(skb))
4321                 goto skip_classify;
4322
4323         if (pfmemalloc)
4324                 goto skip_taps;
4325
4326         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4327                 if (pt_prev)
4328                         ret = deliver_skb(skb, pt_prev, orig_dev);
4329                 pt_prev = ptype;
4330         }
4331
4332         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4333                 if (pt_prev)
4334                         ret = deliver_skb(skb, pt_prev, orig_dev);
4335                 pt_prev = ptype;
4336         }
4337
4338 skip_taps:
4339 #ifdef CONFIG_NET_INGRESS
4340         if (static_key_false(&ingress_needed)) {
4341                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4342                 if (!skb)
4343                         goto out;
4344
4345                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4346                         goto out;
4347         }
4348 #endif
4349         skb_reset_tc(skb);
4350 skip_classify:
4351         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4352                 goto drop;
4353
4354         if (skb_vlan_tag_present(skb)) {
4355                 if (pt_prev) {
4356                         ret = deliver_skb(skb, pt_prev, orig_dev);
4357                         pt_prev = NULL;
4358                 }
4359                 if (vlan_do_receive(&skb))
4360                         goto another_round;
4361                 else if (unlikely(!skb))
4362                         goto out;
4363         }
4364
4365         rx_handler = rcu_dereference(skb->dev->rx_handler);
4366         if (rx_handler) {
4367                 if (pt_prev) {
4368                         ret = deliver_skb(skb, pt_prev, orig_dev);
4369                         pt_prev = NULL;
4370                 }
4371                 switch (rx_handler(&skb)) {
4372                 case RX_HANDLER_CONSUMED:
4373                         ret = NET_RX_SUCCESS;
4374                         goto out;
4375                 case RX_HANDLER_ANOTHER:
4376                         goto another_round;
4377                 case RX_HANDLER_EXACT:
4378                         deliver_exact = true;
4379                 case RX_HANDLER_PASS:
4380                         break;
4381                 default:
4382                         BUG();
4383                 }
4384         }
4385
4386         if (unlikely(skb_vlan_tag_present(skb))) {
4387                 if (skb_vlan_tag_get_id(skb))
4388                         skb->pkt_type = PACKET_OTHERHOST;
4389                 /* Note: we might in the future use prio bits
4390                  * and set skb->priority like in vlan_do_receive()
4391                  * For the time being, just ignore Priority Code Point
4392                  */
4393                 skb->vlan_tci = 0;
4394         }
4395
4396         type = skb->protocol;
4397
4398         /* deliver only exact match when indicated */
4399         if (likely(!deliver_exact)) {
4400                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4401                                        &ptype_base[ntohs(type) &
4402                                                    PTYPE_HASH_MASK]);
4403         }
4404
4405         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4406                                &orig_dev->ptype_specific);
4407
4408         if (unlikely(skb->dev != orig_dev)) {
4409                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4410                                        &skb->dev->ptype_specific);
4411         }
4412
4413         if (pt_prev) {
4414                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4415                         goto drop;
4416                 else
4417                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4418         } else {
4419 drop:
4420                 if (!deliver_exact)
4421                         atomic_long_inc(&skb->dev->rx_dropped);
4422                 else
4423                         atomic_long_inc(&skb->dev->rx_nohandler);
4424                 kfree_skb(skb);
4425                 /* Jamal, now you will not able to escape explaining
4426                  * me how you were going to use this. :-)
4427                  */
4428                 ret = NET_RX_DROP;
4429         }
4430
4431 out:
4432         return ret;
4433 }
4434
4435 static int __netif_receive_skb(struct sk_buff *skb)
4436 {
4437         int ret;
4438
4439         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4440                 unsigned int noreclaim_flag;
4441
4442                 /*
4443                  * PFMEMALLOC skbs are special, they should
4444                  * - be delivered to SOCK_MEMALLOC sockets only
4445                  * - stay away from userspace
4446                  * - have bounded memory usage
4447                  *
4448                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4449                  * context down to all allocation sites.
4450                  */
4451                 noreclaim_flag = memalloc_noreclaim_save();
4452                 ret = __netif_receive_skb_core(skb, true);
4453                 memalloc_noreclaim_restore(noreclaim_flag);
4454         } else
4455                 ret = __netif_receive_skb_core(skb, false);
4456
4457         return ret;
4458 }
4459
4460 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4461 {
4462         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4463         struct bpf_prog *new = xdp->prog;
4464         int ret = 0;
4465
4466         switch (xdp->command) {
4467         case XDP_SETUP_PROG:
4468                 rcu_assign_pointer(dev->xdp_prog, new);
4469                 if (old)
4470                         bpf_prog_put(old);
4471
4472                 if (old && !new) {
4473                         static_key_slow_dec(&generic_xdp_needed);
4474                 } else if (new && !old) {
4475                         static_key_slow_inc(&generic_xdp_needed);
4476                         dev_disable_lro(dev);
4477                 }
4478                 break;
4479
4480         case XDP_QUERY_PROG:
4481                 xdp->prog_attached = !!old;
4482                 xdp->prog_id = old ? old->aux->id : 0;
4483                 break;
4484
4485         default:
4486                 ret = -EINVAL;
4487                 break;
4488         }
4489
4490         return ret;
4491 }
4492
4493 static int netif_receive_skb_internal(struct sk_buff *skb)
4494 {
4495         int ret;
4496
4497         net_timestamp_check(netdev_tstamp_prequeue, skb);
4498
4499         if (skb_defer_rx_timestamp(skb))
4500                 return NET_RX_SUCCESS;
4501
4502         rcu_read_lock();
4503
4504         if (static_key_false(&generic_xdp_needed)) {
4505                 int ret = do_xdp_generic(skb);
4506
4507                 if (ret != XDP_PASS) {
4508                         rcu_read_unlock();
4509                         return NET_RX_DROP;
4510                 }
4511         }
4512
4513 #ifdef CONFIG_RPS
4514         if (static_key_false(&rps_needed)) {
4515                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4516                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4517
4518                 if (cpu >= 0) {
4519                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4520                         rcu_read_unlock();
4521                         return ret;
4522                 }
4523         }
4524 #endif
4525         ret = __netif_receive_skb(skb);
4526         rcu_read_unlock();
4527         return ret;
4528 }
4529
4530 /**
4531  *      netif_receive_skb - process receive buffer from network
4532  *      @skb: buffer to process
4533  *
4534  *      netif_receive_skb() is the main receive data processing function.
4535  *      It always succeeds. The buffer may be dropped during processing
4536  *      for congestion control or by the protocol layers.
4537  *
4538  *      This function may only be called from softirq context and interrupts
4539  *      should be enabled.
4540  *
4541  *      Return values (usually ignored):
4542  *      NET_RX_SUCCESS: no congestion
4543  *      NET_RX_DROP: packet was dropped
4544  */
4545 int netif_receive_skb(struct sk_buff *skb)
4546 {
4547         trace_netif_receive_skb_entry(skb);
4548
4549         return netif_receive_skb_internal(skb);
4550 }
4551 EXPORT_SYMBOL(netif_receive_skb);
4552
4553 DEFINE_PER_CPU(struct work_struct, flush_works);
4554
4555 /* Network device is going away, flush any packets still pending */
4556 static void flush_backlog(struct work_struct *work)
4557 {
4558         struct sk_buff *skb, *tmp;
4559         struct softnet_data *sd;
4560
4561         local_bh_disable();
4562         sd = this_cpu_ptr(&softnet_data);
4563
4564         local_irq_disable();
4565         rps_lock(sd);
4566         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4567                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4568                         __skb_unlink(skb, &sd->input_pkt_queue);
4569                         kfree_skb(skb);
4570                         input_queue_head_incr(sd);
4571                 }
4572         }
4573         rps_unlock(sd);
4574         local_irq_enable();
4575
4576         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4577                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4578                         __skb_unlink(skb, &sd->process_queue);
4579                         kfree_skb(skb);
4580                         input_queue_head_incr(sd);
4581                 }
4582         }
4583         local_bh_enable();
4584 }
4585
4586 static void flush_all_backlogs(void)
4587 {
4588         unsigned int cpu;
4589
4590         get_online_cpus();
4591
4592         for_each_online_cpu(cpu)
4593                 queue_work_on(cpu, system_highpri_wq,
4594                               per_cpu_ptr(&flush_works, cpu));
4595
4596         for_each_online_cpu(cpu)
4597                 flush_work(per_cpu_ptr(&flush_works, cpu));
4598
4599         put_online_cpus();
4600 }
4601
4602 static int napi_gro_complete(struct sk_buff *skb)
4603 {
4604         struct packet_offload *ptype;
4605         __be16 type = skb->protocol;
4606         struct list_head *head = &offload_base;
4607         int err = -ENOENT;
4608
4609         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4610
4611         if (NAPI_GRO_CB(skb)->count == 1) {
4612                 skb_shinfo(skb)->gso_size = 0;
4613                 goto out;
4614         }
4615
4616         rcu_read_lock();
4617         list_for_each_entry_rcu(ptype, head, list) {
4618                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4619                         continue;
4620
4621                 err = ptype->callbacks.gro_complete(skb, 0);
4622                 break;
4623         }
4624         rcu_read_unlock();
4625
4626         if (err) {
4627                 WARN_ON(&ptype->list == head);
4628                 kfree_skb(skb);
4629                 return NET_RX_SUCCESS;
4630         }
4631
4632 out:
4633         return netif_receive_skb_internal(skb);
4634 }
4635
4636 /* napi->gro_list contains packets ordered by age.
4637  * youngest packets at the head of it.
4638  * Complete skbs in reverse order to reduce latencies.
4639  */
4640 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4641 {
4642         struct sk_buff *skb, *prev = NULL;
4643
4644         /* scan list and build reverse chain */
4645         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4646                 skb->prev = prev;
4647                 prev = skb;
4648         }
4649
4650         for (skb = prev; skb; skb = prev) {
4651                 skb->next = NULL;
4652
4653                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4654                         return;
4655
4656                 prev = skb->prev;
4657                 napi_gro_complete(skb);
4658                 napi->gro_count--;
4659         }
4660
4661         napi->gro_list = NULL;
4662 }
4663 EXPORT_SYMBOL(napi_gro_flush);
4664
4665 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4666 {
4667         struct sk_buff *p;
4668         unsigned int maclen = skb->dev->hard_header_len;
4669         u32 hash = skb_get_hash_raw(skb);
4670
4671         for (p = napi->gro_list; p; p = p->next) {
4672                 unsigned long diffs;
4673
4674                 NAPI_GRO_CB(p)->flush = 0;
4675
4676                 if (hash != skb_get_hash_raw(p)) {
4677                         NAPI_GRO_CB(p)->same_flow = 0;
4678                         continue;
4679                 }
4680
4681                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4682                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4683                 diffs |= skb_metadata_dst_cmp(p, skb);
4684                 if (maclen == ETH_HLEN)
4685                         diffs |= compare_ether_header(skb_mac_header(p),
4686                                                       skb_mac_header(skb));
4687                 else if (!diffs)
4688                         diffs = memcmp(skb_mac_header(p),
4689                                        skb_mac_header(skb),
4690                                        maclen);
4691                 NAPI_GRO_CB(p)->same_flow = !diffs;
4692         }
4693 }
4694
4695 static void skb_gro_reset_offset(struct sk_buff *skb)
4696 {
4697         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4698         const skb_frag_t *frag0 = &pinfo->frags[0];
4699
4700         NAPI_GRO_CB(skb)->data_offset = 0;
4701         NAPI_GRO_CB(skb)->frag0 = NULL;
4702         NAPI_GRO_CB(skb)->frag0_len = 0;
4703
4704         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4705             pinfo->nr_frags &&
4706             !PageHighMem(skb_frag_page(frag0))) {
4707                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4708                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4709                                                     skb_frag_size(frag0),
4710                                                     skb->end - skb->tail);
4711         }
4712 }
4713
4714 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4715 {
4716         struct skb_shared_info *pinfo = skb_shinfo(skb);
4717
4718         BUG_ON(skb->end - skb->tail < grow);
4719
4720         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4721
4722         skb->data_len -= grow;
4723         skb->tail += grow;
4724
4725         pinfo->frags[0].page_offset += grow;
4726         skb_frag_size_sub(&pinfo->frags[0], grow);
4727
4728         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4729                 skb_frag_unref(skb, 0);
4730                 memmove(pinfo->frags, pinfo->frags + 1,
4731                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4732         }
4733 }
4734
4735 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4736 {
4737         struct sk_buff **pp = NULL;
4738         struct packet_offload *ptype;
4739         __be16 type = skb->protocol;
4740         struct list_head *head = &offload_base;
4741         int same_flow;
4742         enum gro_result ret;
4743         int grow;
4744
4745         if (netif_elide_gro(skb->dev))
4746                 goto normal;
4747
4748         gro_list_prepare(napi, skb);
4749
4750         rcu_read_lock();
4751         list_for_each_entry_rcu(ptype, head, list) {
4752                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4753                         continue;
4754
4755                 skb_set_network_header(skb, skb_gro_offset(skb));
4756                 skb_reset_mac_len(skb);
4757                 NAPI_GRO_CB(skb)->same_flow = 0;
4758                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4759                 NAPI_GRO_CB(skb)->free = 0;
4760                 NAPI_GRO_CB(skb)->encap_mark = 0;
4761                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4762                 NAPI_GRO_CB(skb)->is_fou = 0;
4763                 NAPI_GRO_CB(skb)->is_atomic = 1;
4764                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4765
4766                 /* Setup for GRO checksum validation */
4767                 switch (skb->ip_summed) {
4768                 case CHECKSUM_COMPLETE:
4769                         NAPI_GRO_CB(skb)->csum = skb->csum;
4770                         NAPI_GRO_CB(skb)->csum_valid = 1;
4771                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4772                         break;
4773                 case CHECKSUM_UNNECESSARY:
4774                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4775                         NAPI_GRO_CB(skb)->csum_valid = 0;
4776                         break;
4777                 default:
4778                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4779                         NAPI_GRO_CB(skb)->csum_valid = 0;
4780                 }
4781
4782                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4783                 break;
4784         }
4785         rcu_read_unlock();
4786
4787         if (&ptype->list == head)
4788                 goto normal;
4789
4790         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4791                 ret = GRO_CONSUMED;
4792                 goto ok;
4793         }
4794
4795         same_flow = NAPI_GRO_CB(skb)->same_flow;
4796         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4797
4798         if (pp) {
4799                 struct sk_buff *nskb = *pp;
4800
4801                 *pp = nskb->next;
4802                 nskb->next = NULL;
4803                 napi_gro_complete(nskb);
4804                 napi->gro_count--;
4805         }
4806
4807         if (same_flow)
4808                 goto ok;
4809
4810         if (NAPI_GRO_CB(skb)->flush)
4811                 goto normal;
4812
4813         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4814                 struct sk_buff *nskb = napi->gro_list;
4815
4816                 /* locate the end of the list to select the 'oldest' flow */
4817                 while (nskb->next) {
4818                         pp = &nskb->next;
4819                         nskb = *pp;
4820                 }
4821                 *pp = NULL;
4822                 nskb->next = NULL;
4823                 napi_gro_complete(nskb);
4824         } else {
4825                 napi->gro_count++;
4826         }
4827         NAPI_GRO_CB(skb)->count = 1;
4828         NAPI_GRO_CB(skb)->age = jiffies;
4829         NAPI_GRO_CB(skb)->last = skb;
4830         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4831         skb->next = napi->gro_list;
4832         napi->gro_list = skb;
4833         ret = GRO_HELD;
4834
4835 pull:
4836         grow = skb_gro_offset(skb) - skb_headlen(skb);
4837         if (grow > 0)
4838                 gro_pull_from_frag0(skb, grow);
4839 ok:
4840         return ret;
4841
4842 normal:
4843         ret = GRO_NORMAL;
4844         goto pull;
4845 }
4846
4847 struct packet_offload *gro_find_receive_by_type(__be16 type)
4848 {
4849         struct list_head *offload_head = &offload_base;
4850         struct packet_offload *ptype;
4851
4852         list_for_each_entry_rcu(ptype, offload_head, list) {
4853                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4854                         continue;
4855                 return ptype;
4856         }
4857         return NULL;
4858 }
4859 EXPORT_SYMBOL(gro_find_receive_by_type);
4860
4861 struct packet_offload *gro_find_complete_by_type(__be16 type)
4862 {
4863         struct list_head *offload_head = &offload_base;
4864         struct packet_offload *ptype;
4865
4866         list_for_each_entry_rcu(ptype, offload_head, list) {
4867                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4868                         continue;
4869                 return ptype;
4870         }
4871         return NULL;
4872 }
4873 EXPORT_SYMBOL(gro_find_complete_by_type);
4874
4875 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4876 {
4877         skb_dst_drop(skb);
4878         secpath_reset(skb);
4879         kmem_cache_free(skbuff_head_cache, skb);
4880 }
4881
4882 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4883 {
4884         switch (ret) {
4885         case GRO_NORMAL:
4886                 if (netif_receive_skb_internal(skb))
4887                         ret = GRO_DROP;
4888                 break;
4889
4890         case GRO_DROP:
4891                 kfree_skb(skb);
4892                 break;
4893
4894         case GRO_MERGED_FREE:
4895                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4896                         napi_skb_free_stolen_head(skb);
4897                 else
4898                         __kfree_skb(skb);
4899                 break;
4900
4901         case GRO_HELD:
4902         case GRO_MERGED:
4903         case GRO_CONSUMED:
4904                 break;
4905         }
4906
4907         return ret;
4908 }
4909
4910 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4911 {
4912         skb_mark_napi_id(skb, napi);
4913         trace_napi_gro_receive_entry(skb);
4914
4915         skb_gro_reset_offset(skb);
4916
4917         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4918 }
4919 EXPORT_SYMBOL(napi_gro_receive);
4920
4921 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4922 {
4923         if (unlikely(skb->pfmemalloc)) {
4924                 consume_skb(skb);
4925                 return;
4926         }
4927         __skb_pull(skb, skb_headlen(skb));
4928         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4929         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4930         skb->vlan_tci = 0;
4931         skb->dev = napi->dev;
4932         skb->skb_iif = 0;
4933         skb->encapsulation = 0;
4934         skb_shinfo(skb)->gso_type = 0;
4935         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4936         secpath_reset(skb);
4937
4938         napi->skb = skb;
4939 }
4940
4941 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4942 {
4943         struct sk_buff *skb = napi->skb;
4944
4945         if (!skb) {
4946                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4947                 if (skb) {
4948                         napi->skb = skb;
4949                         skb_mark_napi_id(skb, napi);
4950                 }
4951         }
4952         return skb;
4953 }
4954 EXPORT_SYMBOL(napi_get_frags);
4955
4956 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4957                                       struct sk_buff *skb,
4958                                       gro_result_t ret)
4959 {
4960         switch (ret) {
4961         case GRO_NORMAL:
4962         case GRO_HELD:
4963                 __skb_push(skb, ETH_HLEN);
4964                 skb->protocol = eth_type_trans(skb, skb->dev);
4965                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4966                         ret = GRO_DROP;
4967                 break;
4968
4969         case GRO_DROP:
4970                 napi_reuse_skb(napi, skb);
4971                 break;
4972
4973         case GRO_MERGED_FREE:
4974                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4975                         napi_skb_free_stolen_head(skb);
4976                 else
4977                         napi_reuse_skb(napi, skb);
4978                 break;
4979
4980         case GRO_MERGED:
4981         case GRO_CONSUMED:
4982                 break;
4983         }
4984
4985         return ret;
4986 }
4987
4988 /* Upper GRO stack assumes network header starts at gro_offset=0
4989  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4990  * We copy ethernet header into skb->data to have a common layout.
4991  */
4992 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4993 {
4994         struct sk_buff *skb = napi->skb;
4995         const struct ethhdr *eth;
4996         unsigned int hlen = sizeof(*eth);
4997
4998         napi->skb = NULL;
4999
5000         skb_reset_mac_header(skb);
5001         skb_gro_reset_offset(skb);
5002
5003         eth = skb_gro_header_fast(skb, 0);
5004         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5005                 eth = skb_gro_header_slow(skb, hlen, 0);
5006                 if (unlikely(!eth)) {
5007                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5008                                              __func__, napi->dev->name);
5009                         napi_reuse_skb(napi, skb);
5010                         return NULL;
5011                 }
5012         } else {
5013                 gro_pull_from_frag0(skb, hlen);
5014                 NAPI_GRO_CB(skb)->frag0 += hlen;
5015                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5016         }
5017         __skb_pull(skb, hlen);
5018
5019         /*
5020          * This works because the only protocols we care about don't require
5021          * special handling.
5022          * We'll fix it up properly in napi_frags_finish()
5023          */
5024         skb->protocol = eth->h_proto;
5025
5026         return skb;
5027 }
5028
5029 gro_result_t napi_gro_frags(struct napi_struct *napi)
5030 {
5031         struct sk_buff *skb = napi_frags_skb(napi);
5032
5033         if (!skb)
5034                 return GRO_DROP;
5035
5036         trace_napi_gro_frags_entry(skb);
5037
5038         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5039 }
5040 EXPORT_SYMBOL(napi_gro_frags);
5041
5042 /* Compute the checksum from gro_offset and return the folded value
5043  * after adding in any pseudo checksum.
5044  */
5045 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5046 {
5047         __wsum wsum;
5048         __sum16 sum;
5049
5050         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5051
5052         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5053         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5054         if (likely(!sum)) {
5055                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5056                     !skb->csum_complete_sw)
5057                         netdev_rx_csum_fault(skb->dev);
5058         }
5059
5060         NAPI_GRO_CB(skb)->csum = wsum;
5061         NAPI_GRO_CB(skb)->csum_valid = 1;
5062
5063         return sum;
5064 }
5065 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5066
5067 static void net_rps_send_ipi(struct softnet_data *remsd)
5068 {
5069 #ifdef CONFIG_RPS
5070         while (remsd) {
5071                 struct softnet_data *next = remsd->rps_ipi_next;
5072
5073                 if (cpu_online(remsd->cpu))
5074                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5075                 remsd = next;
5076         }
5077 #endif
5078 }
5079
5080 /*
5081  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5082  * Note: called with local irq disabled, but exits with local irq enabled.
5083  */
5084 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5085 {
5086 #ifdef CONFIG_RPS
5087         struct softnet_data *remsd = sd->rps_ipi_list;
5088
5089         if (remsd) {
5090                 sd->rps_ipi_list = NULL;
5091
5092                 local_irq_enable();
5093
5094                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5095                 net_rps_send_ipi(remsd);
5096         } else
5097 #endif
5098                 local_irq_enable();
5099 }
5100
5101 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5102 {
5103 #ifdef CONFIG_RPS
5104         return sd->rps_ipi_list != NULL;
5105 #else
5106         return false;
5107 #endif
5108 }
5109
5110 static int process_backlog(struct napi_struct *napi, int quota)
5111 {
5112         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5113         bool again = true;
5114         int work = 0;
5115
5116         /* Check if we have pending ipi, its better to send them now,
5117          * not waiting net_rx_action() end.
5118          */
5119         if (sd_has_rps_ipi_waiting(sd)) {
5120                 local_irq_disable();
5121                 net_rps_action_and_irq_enable(sd);
5122         }
5123
5124         napi->weight = dev_rx_weight;
5125         while (again) {
5126                 struct sk_buff *skb;
5127
5128                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5129                         rcu_read_lock();
5130                         __netif_receive_skb(skb);
5131                         rcu_read_unlock();
5132                         input_queue_head_incr(sd);
5133                         if (++work >= quota)
5134                                 return work;
5135
5136                 }
5137
5138                 local_irq_disable();
5139                 rps_lock(sd);
5140                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5141                         /*
5142                          * Inline a custom version of __napi_complete().
5143                          * only current cpu owns and manipulates this napi,
5144                          * and NAPI_STATE_SCHED is the only possible flag set
5145                          * on backlog.
5146                          * We can use a plain write instead of clear_bit(),
5147                          * and we dont need an smp_mb() memory barrier.
5148                          */
5149                         napi->state = 0;
5150                         again = false;
5151                 } else {
5152                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5153                                                    &sd->process_queue);
5154                 }
5155                 rps_unlock(sd);
5156                 local_irq_enable();
5157         }
5158
5159         return work;
5160 }
5161
5162 /**
5163  * __napi_schedule - schedule for receive
5164  * @n: entry to schedule
5165  *
5166  * The entry's receive function will be scheduled to run.
5167  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5168  */
5169 void __napi_schedule(struct napi_struct *n)
5170 {
5171         unsigned long flags;
5172
5173         local_irq_save(flags);
5174         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5175         local_irq_restore(flags);
5176 }
5177 EXPORT_SYMBOL(__napi_schedule);
5178
5179 /**
5180  *      napi_schedule_prep - check if napi can be scheduled
5181  *      @n: napi context
5182  *
5183  * Test if NAPI routine is already running, and if not mark
5184  * it as running.  This is used as a condition variable
5185  * insure only one NAPI poll instance runs.  We also make
5186  * sure there is no pending NAPI disable.
5187  */
5188 bool napi_schedule_prep(struct napi_struct *n)
5189 {
5190         unsigned long val, new;
5191
5192         do {
5193                 val = READ_ONCE(n->state);
5194                 if (unlikely(val & NAPIF_STATE_DISABLE))
5195                         return false;
5196                 new = val | NAPIF_STATE_SCHED;
5197
5198                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5199                  * This was suggested by Alexander Duyck, as compiler
5200                  * emits better code than :
5201                  * if (val & NAPIF_STATE_SCHED)
5202                  *     new |= NAPIF_STATE_MISSED;
5203                  */
5204                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5205                                                    NAPIF_STATE_MISSED;
5206         } while (cmpxchg(&n->state, val, new) != val);
5207
5208         return !(val & NAPIF_STATE_SCHED);
5209 }
5210 EXPORT_SYMBOL(napi_schedule_prep);
5211
5212 /**
5213  * __napi_schedule_irqoff - schedule for receive
5214  * @n: entry to schedule
5215  *
5216  * Variant of __napi_schedule() assuming hard irqs are masked
5217  */
5218 void __napi_schedule_irqoff(struct napi_struct *n)
5219 {
5220         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5221 }
5222 EXPORT_SYMBOL(__napi_schedule_irqoff);
5223
5224 bool napi_complete_done(struct napi_struct *n, int work_done)
5225 {
5226         unsigned long flags, val, new;
5227
5228         /*
5229          * 1) Don't let napi dequeue from the cpu poll list
5230          *    just in case its running on a different cpu.
5231          * 2) If we are busy polling, do nothing here, we have
5232          *    the guarantee we will be called later.
5233          */
5234         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5235                                  NAPIF_STATE_IN_BUSY_POLL)))
5236                 return false;
5237
5238         if (n->gro_list) {
5239                 unsigned long timeout = 0;
5240
5241                 if (work_done)
5242                         timeout = n->dev->gro_flush_timeout;
5243
5244                 if (timeout)
5245                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5246                                       HRTIMER_MODE_REL_PINNED);
5247                 else
5248                         napi_gro_flush(n, false);
5249         }
5250         if (unlikely(!list_empty(&n->poll_list))) {
5251                 /* If n->poll_list is not empty, we need to mask irqs */
5252                 local_irq_save(flags);
5253                 list_del_init(&n->poll_list);
5254                 local_irq_restore(flags);
5255         }
5256
5257         do {
5258                 val = READ_ONCE(n->state);
5259
5260                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5261
5262                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5263
5264                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5265                  * because we will call napi->poll() one more time.
5266                  * This C code was suggested by Alexander Duyck to help gcc.
5267                  */
5268                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5269                                                     NAPIF_STATE_SCHED;
5270         } while (cmpxchg(&n->state, val, new) != val);
5271
5272         if (unlikely(val & NAPIF_STATE_MISSED)) {
5273                 __napi_schedule(n);
5274                 return false;
5275         }
5276
5277         return true;
5278 }
5279 EXPORT_SYMBOL(napi_complete_done);
5280
5281 /* must be called under rcu_read_lock(), as we dont take a reference */
5282 static struct napi_struct *napi_by_id(unsigned int napi_id)
5283 {
5284         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5285         struct napi_struct *napi;
5286
5287         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5288                 if (napi->napi_id == napi_id)
5289                         return napi;
5290
5291         return NULL;
5292 }
5293
5294 #if defined(CONFIG_NET_RX_BUSY_POLL)
5295
5296 #define BUSY_POLL_BUDGET 8
5297
5298 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5299 {
5300         int rc;
5301
5302         /* Busy polling means there is a high chance device driver hard irq
5303          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5304          * set in napi_schedule_prep().
5305          * Since we are about to call napi->poll() once more, we can safely
5306          * clear NAPI_STATE_MISSED.
5307          *
5308          * Note: x86 could use a single "lock and ..." instruction
5309          * to perform these two clear_bit()
5310          */
5311         clear_bit(NAPI_STATE_MISSED, &napi->state);
5312         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5313
5314         local_bh_disable();
5315
5316         /* All we really want here is to re-enable device interrupts.
5317          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5318          */
5319         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5320         netpoll_poll_unlock(have_poll_lock);
5321         if (rc == BUSY_POLL_BUDGET)
5322                 __napi_schedule(napi);
5323         local_bh_enable();
5324 }
5325
5326 void napi_busy_loop(unsigned int napi_id,
5327                     bool (*loop_end)(void *, unsigned long),
5328                     void *loop_end_arg)
5329 {
5330         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5331         int (*napi_poll)(struct napi_struct *napi, int budget);
5332         void *have_poll_lock = NULL;
5333         struct napi_struct *napi;
5334
5335 restart:
5336         napi_poll = NULL;
5337
5338         rcu_read_lock();
5339
5340         napi = napi_by_id(napi_id);
5341         if (!napi)
5342                 goto out;
5343
5344         preempt_disable();
5345         for (;;) {
5346                 int work = 0;
5347
5348                 local_bh_disable();
5349                 if (!napi_poll) {
5350                         unsigned long val = READ_ONCE(napi->state);
5351
5352                         /* If multiple threads are competing for this napi,
5353                          * we avoid dirtying napi->state as much as we can.
5354                          */
5355                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5356                                    NAPIF_STATE_IN_BUSY_POLL))
5357                                 goto count;
5358                         if (cmpxchg(&napi->state, val,
5359                                     val | NAPIF_STATE_IN_BUSY_POLL |
5360                                           NAPIF_STATE_SCHED) != val)
5361                                 goto count;
5362                         have_poll_lock = netpoll_poll_lock(napi);
5363                         napi_poll = napi->poll;
5364                 }
5365                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5366                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5367 count:
5368                 if (work > 0)
5369                         __NET_ADD_STATS(dev_net(napi->dev),
5370                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5371                 local_bh_enable();
5372
5373                 if (!loop_end || loop_end(loop_end_arg, start_time))
5374                         break;
5375
5376                 if (unlikely(need_resched())) {
5377                         if (napi_poll)
5378                                 busy_poll_stop(napi, have_poll_lock);
5379                         preempt_enable();
5380                         rcu_read_unlock();
5381                         cond_resched();
5382                         if (loop_end(loop_end_arg, start_time))
5383                                 return;
5384                         goto restart;
5385                 }
5386                 cpu_relax();
5387         }
5388         if (napi_poll)
5389                 busy_poll_stop(napi, have_poll_lock);
5390         preempt_enable();
5391 out:
5392         rcu_read_unlock();
5393 }
5394 EXPORT_SYMBOL(napi_busy_loop);
5395
5396 #endif /* CONFIG_NET_RX_BUSY_POLL */
5397
5398 static void napi_hash_add(struct napi_struct *napi)
5399 {
5400         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5401             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5402                 return;
5403
5404         spin_lock(&napi_hash_lock);
5405
5406         /* 0..NR_CPUS range is reserved for sender_cpu use */
5407         do {
5408                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5409                         napi_gen_id = MIN_NAPI_ID;
5410         } while (napi_by_id(napi_gen_id));
5411         napi->napi_id = napi_gen_id;
5412
5413         hlist_add_head_rcu(&napi->napi_hash_node,
5414                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5415
5416         spin_unlock(&napi_hash_lock);
5417 }
5418
5419 /* Warning : caller is responsible to make sure rcu grace period
5420  * is respected before freeing memory containing @napi
5421  */
5422 bool napi_hash_del(struct napi_struct *napi)
5423 {
5424         bool rcu_sync_needed = false;
5425
5426         spin_lock(&napi_hash_lock);
5427
5428         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5429                 rcu_sync_needed = true;
5430                 hlist_del_rcu(&napi->napi_hash_node);
5431         }
5432         spin_unlock(&napi_hash_lock);
5433         return rcu_sync_needed;
5434 }
5435 EXPORT_SYMBOL_GPL(napi_hash_del);
5436
5437 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5438 {
5439         struct napi_struct *napi;
5440
5441         napi = container_of(timer, struct napi_struct, timer);
5442
5443         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5444          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5445          */
5446         if (napi->gro_list && !napi_disable_pending(napi) &&
5447             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5448                 __napi_schedule_irqoff(napi);
5449
5450         return HRTIMER_NORESTART;
5451 }
5452
5453 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5454                     int (*poll)(struct napi_struct *, int), int weight)
5455 {
5456         INIT_LIST_HEAD(&napi->poll_list);
5457         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5458         napi->timer.function = napi_watchdog;
5459         napi->gro_count = 0;
5460         napi->gro_list = NULL;
5461         napi->skb = NULL;
5462         napi->poll = poll;
5463         if (weight > NAPI_POLL_WEIGHT)
5464                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5465                             weight, dev->name);
5466         napi->weight = weight;
5467         list_add(&napi->dev_list, &dev->napi_list);
5468         napi->dev = dev;
5469 #ifdef CONFIG_NETPOLL
5470         napi->poll_owner = -1;
5471 #endif
5472         set_bit(NAPI_STATE_SCHED, &napi->state);
5473         napi_hash_add(napi);
5474 }
5475 EXPORT_SYMBOL(netif_napi_add);
5476
5477 void napi_disable(struct napi_struct *n)
5478 {
5479         might_sleep();
5480         set_bit(NAPI_STATE_DISABLE, &n->state);
5481
5482         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5483                 msleep(1);
5484         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5485                 msleep(1);
5486
5487         hrtimer_cancel(&n->timer);
5488
5489         clear_bit(NAPI_STATE_DISABLE, &n->state);
5490 }
5491 EXPORT_SYMBOL(napi_disable);
5492
5493 /* Must be called in process context */
5494 void netif_napi_del(struct napi_struct *napi)
5495 {
5496         might_sleep();
5497         if (napi_hash_del(napi))
5498                 synchronize_net();
5499         list_del_init(&napi->dev_list);
5500         napi_free_frags(napi);
5501
5502         kfree_skb_list(napi->gro_list);
5503         napi->gro_list = NULL;
5504         napi->gro_count = 0;
5505 }
5506 EXPORT_SYMBOL(netif_napi_del);
5507
5508 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5509 {
5510         void *have;
5511         int work, weight;
5512
5513         list_del_init(&n->poll_list);
5514
5515         have = netpoll_poll_lock(n);
5516
5517         weight = n->weight;
5518
5519         /* This NAPI_STATE_SCHED test is for avoiding a race
5520          * with netpoll's poll_napi().  Only the entity which
5521          * obtains the lock and sees NAPI_STATE_SCHED set will
5522          * actually make the ->poll() call.  Therefore we avoid
5523          * accidentally calling ->poll() when NAPI is not scheduled.
5524          */
5525         work = 0;
5526         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5527                 work = n->poll(n, weight);
5528                 trace_napi_poll(n, work, weight);
5529         }
5530
5531         WARN_ON_ONCE(work > weight);
5532
5533         if (likely(work < weight))
5534                 goto out_unlock;
5535
5536         /* Drivers must not modify the NAPI state if they
5537          * consume the entire weight.  In such cases this code
5538          * still "owns" the NAPI instance and therefore can
5539          * move the instance around on the list at-will.
5540          */
5541         if (unlikely(napi_disable_pending(n))) {
5542                 napi_complete(n);
5543                 goto out_unlock;
5544         }
5545
5546         if (n->gro_list) {
5547                 /* flush too old packets
5548                  * If HZ < 1000, flush all packets.
5549                  */
5550                 napi_gro_flush(n, HZ >= 1000);
5551         }
5552
5553         /* Some drivers may have called napi_schedule
5554          * prior to exhausting their budget.
5555          */
5556         if (unlikely(!list_empty(&n->poll_list))) {
5557                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5558                              n->dev ? n->dev->name : "backlog");
5559                 goto out_unlock;
5560         }
5561
5562         list_add_tail(&n->poll_list, repoll);
5563
5564 out_unlock:
5565         netpoll_poll_unlock(have);
5566
5567         return work;
5568 }
5569
5570 static __latent_entropy void net_rx_action(struct softirq_action *h)
5571 {
5572         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5573         unsigned long time_limit = jiffies +
5574                 usecs_to_jiffies(netdev_budget_usecs);
5575         int budget = netdev_budget;
5576         LIST_HEAD(list);
5577         LIST_HEAD(repoll);
5578
5579         local_irq_disable();
5580         list_splice_init(&sd->poll_list, &list);
5581         local_irq_enable();
5582
5583         for (;;) {
5584                 struct napi_struct *n;
5585
5586                 if (list_empty(&list)) {
5587                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5588                                 goto out;
5589                         break;
5590                 }
5591
5592                 n = list_first_entry(&list, struct napi_struct, poll_list);
5593                 budget -= napi_poll(n, &repoll);
5594
5595                 /* If softirq window is exhausted then punt.
5596                  * Allow this to run for 2 jiffies since which will allow
5597                  * an average latency of 1.5/HZ.
5598                  */
5599                 if (unlikely(budget <= 0 ||
5600                              time_after_eq(jiffies, time_limit))) {
5601                         sd->time_squeeze++;
5602                         break;
5603                 }
5604         }
5605
5606         local_irq_disable();
5607
5608         list_splice_tail_init(&sd->poll_list, &list);
5609         list_splice_tail(&repoll, &list);
5610         list_splice(&list, &sd->poll_list);
5611         if (!list_empty(&sd->poll_list))
5612                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5613
5614         net_rps_action_and_irq_enable(sd);
5615 out:
5616         __kfree_skb_flush();
5617 }
5618
5619 struct netdev_adjacent {
5620         struct net_device *dev;
5621
5622         /* upper master flag, there can only be one master device per list */
5623         bool master;
5624
5625         /* counter for the number of times this device was added to us */
5626         u16 ref_nr;
5627
5628         /* private field for the users */
5629         void *private;
5630
5631         struct list_head list;
5632         struct rcu_head rcu;
5633 };
5634
5635 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5636                                                  struct list_head *adj_list)
5637 {
5638         struct netdev_adjacent *adj;
5639
5640         list_for_each_entry(adj, adj_list, list) {
5641                 if (adj->dev == adj_dev)
5642                         return adj;
5643         }
5644         return NULL;
5645 }
5646
5647 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5648 {
5649         struct net_device *dev = data;
5650
5651         return upper_dev == dev;
5652 }
5653
5654 /**
5655  * netdev_has_upper_dev - Check if device is linked to an upper device
5656  * @dev: device
5657  * @upper_dev: upper device to check
5658  *
5659  * Find out if a device is linked to specified upper device and return true
5660  * in case it is. Note that this checks only immediate upper device,
5661  * not through a complete stack of devices. The caller must hold the RTNL lock.
5662  */
5663 bool netdev_has_upper_dev(struct net_device *dev,
5664                           struct net_device *upper_dev)
5665 {
5666         ASSERT_RTNL();
5667
5668         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5669                                              upper_dev);
5670 }
5671 EXPORT_SYMBOL(netdev_has_upper_dev);
5672
5673 /**
5674  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5675  * @dev: device
5676  * @upper_dev: upper device to check
5677  *
5678  * Find out if a device is linked to specified upper device and return true
5679  * in case it is. Note that this checks the entire upper device chain.
5680  * The caller must hold rcu lock.
5681  */
5682
5683 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5684                                   struct net_device *upper_dev)
5685 {
5686         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5687                                                upper_dev);
5688 }
5689 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5690
5691 /**
5692  * netdev_has_any_upper_dev - Check if device is linked to some device
5693  * @dev: device
5694  *
5695  * Find out if a device is linked to an upper device and return true in case
5696  * it is. The caller must hold the RTNL lock.
5697  */
5698 static bool netdev_has_any_upper_dev(struct net_device *dev)
5699 {
5700         ASSERT_RTNL();
5701
5702         return !list_empty(&dev->adj_list.upper);
5703 }
5704
5705 /**
5706  * netdev_master_upper_dev_get - Get master upper device
5707  * @dev: device
5708  *
5709  * Find a master upper device and return pointer to it or NULL in case
5710  * it's not there. The caller must hold the RTNL lock.
5711  */
5712 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5713 {
5714         struct netdev_adjacent *upper;
5715
5716         ASSERT_RTNL();
5717
5718         if (list_empty(&dev->adj_list.upper))
5719                 return NULL;
5720
5721         upper = list_first_entry(&dev->adj_list.upper,
5722                                  struct netdev_adjacent, list);
5723         if (likely(upper->master))
5724                 return upper->dev;
5725         return NULL;
5726 }
5727 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5728
5729 /**
5730  * netdev_has_any_lower_dev - Check if device is linked to some device
5731  * @dev: device
5732  *
5733  * Find out if a device is linked to a lower device and return true in case
5734  * it is. The caller must hold the RTNL lock.
5735  */
5736 static bool netdev_has_any_lower_dev(struct net_device *dev)
5737 {
5738         ASSERT_RTNL();
5739
5740         return !list_empty(&dev->adj_list.lower);
5741 }
5742
5743 void *netdev_adjacent_get_private(struct list_head *adj_list)
5744 {
5745         struct netdev_adjacent *adj;
5746
5747         adj = list_entry(adj_list, struct netdev_adjacent, list);
5748
5749         return adj->private;
5750 }
5751 EXPORT_SYMBOL(netdev_adjacent_get_private);
5752
5753 /**
5754  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5755  * @dev: device
5756  * @iter: list_head ** of the current position
5757  *
5758  * Gets the next device from the dev's upper list, starting from iter
5759  * position. The caller must hold RCU read lock.
5760  */
5761 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5762                                                  struct list_head **iter)
5763 {
5764         struct netdev_adjacent *upper;
5765
5766         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5767
5768         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5769
5770         if (&upper->list == &dev->adj_list.upper)
5771                 return NULL;
5772
5773         *iter = &upper->list;
5774
5775         return upper->dev;
5776 }
5777 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5778
5779 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5780                                                     struct list_head **iter)
5781 {
5782         struct netdev_adjacent *upper;
5783
5784         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5785
5786         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5787
5788         if (&upper->list == &dev->adj_list.upper)
5789                 return NULL;
5790
5791         *iter = &upper->list;
5792
5793         return upper->dev;
5794 }
5795
5796 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5797                                   int (*fn)(struct net_device *dev,
5798                                             void *data),
5799                                   void *data)
5800 {
5801         struct net_device *udev;
5802         struct list_head *iter;
5803         int ret;
5804
5805         for (iter = &dev->adj_list.upper,
5806              udev = netdev_next_upper_dev_rcu(dev, &iter);
5807              udev;
5808              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5809                 /* first is the upper device itself */
5810                 ret = fn(udev, data);
5811                 if (ret)
5812                         return ret;
5813
5814                 /* then look at all of its upper devices */
5815                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5816                 if (ret)
5817                         return ret;
5818         }
5819
5820         return 0;
5821 }
5822 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5823
5824 /**
5825  * netdev_lower_get_next_private - Get the next ->private from the
5826  *                                 lower neighbour list
5827  * @dev: device
5828  * @iter: list_head ** of the current position
5829  *
5830  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5831  * list, starting from iter position. The caller must hold either hold the
5832  * RTNL lock or its own locking that guarantees that the neighbour lower
5833  * list will remain unchanged.
5834  */
5835 void *netdev_lower_get_next_private(struct net_device *dev,
5836                                     struct list_head **iter)
5837 {
5838         struct netdev_adjacent *lower;
5839
5840         lower = list_entry(*iter, struct netdev_adjacent, list);
5841
5842         if (&lower->list == &dev->adj_list.lower)
5843                 return NULL;
5844
5845         *iter = lower->list.next;
5846
5847         return lower->private;
5848 }
5849 EXPORT_SYMBOL(netdev_lower_get_next_private);
5850
5851 /**
5852  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5853  *                                     lower neighbour list, RCU
5854  *                                     variant
5855  * @dev: device
5856  * @iter: list_head ** of the current position
5857  *
5858  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5859  * list, starting from iter position. The caller must hold RCU read lock.
5860  */
5861 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5862                                         struct list_head **iter)
5863 {
5864         struct netdev_adjacent *lower;
5865
5866         WARN_ON_ONCE(!rcu_read_lock_held());
5867
5868         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5869
5870         if (&lower->list == &dev->adj_list.lower)
5871                 return NULL;
5872
5873         *iter = &lower->list;
5874
5875         return lower->private;
5876 }
5877 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5878
5879 /**
5880  * netdev_lower_get_next - Get the next device from the lower neighbour
5881  *                         list
5882  * @dev: device
5883  * @iter: list_head ** of the current position
5884  *
5885  * Gets the next netdev_adjacent from the dev's lower neighbour
5886  * list, starting from iter position. The caller must hold RTNL lock or
5887  * its own locking that guarantees that the neighbour lower
5888  * list will remain unchanged.
5889  */
5890 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5891 {
5892         struct netdev_adjacent *lower;
5893
5894         lower = list_entry(*iter, struct netdev_adjacent, list);
5895
5896         if (&lower->list == &dev->adj_list.lower)
5897                 return NULL;
5898
5899         *iter = lower->list.next;
5900
5901         return lower->dev;
5902 }
5903 EXPORT_SYMBOL(netdev_lower_get_next);
5904
5905 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5906                                                 struct list_head **iter)
5907 {
5908         struct netdev_adjacent *lower;
5909
5910         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5911
5912         if (&lower->list == &dev->adj_list.lower)
5913                 return NULL;
5914
5915         *iter = &lower->list;
5916
5917         return lower->dev;
5918 }
5919
5920 int netdev_walk_all_lower_dev(struct net_device *dev,
5921                               int (*fn)(struct net_device *dev,
5922                                         void *data),
5923                               void *data)
5924 {
5925         struct net_device *ldev;
5926         struct list_head *iter;
5927         int ret;
5928
5929         for (iter = &dev->adj_list.lower,
5930              ldev = netdev_next_lower_dev(dev, &iter);
5931              ldev;
5932              ldev = netdev_next_lower_dev(dev, &iter)) {
5933                 /* first is the lower device itself */
5934                 ret = fn(ldev, data);
5935                 if (ret)
5936                         return ret;
5937
5938                 /* then look at all of its lower devices */
5939                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5940                 if (ret)
5941                         return ret;
5942         }
5943
5944         return 0;
5945 }
5946 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5947
5948 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5949                                                     struct list_head **iter)
5950 {
5951         struct netdev_adjacent *lower;
5952
5953         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5954         if (&lower->list == &dev->adj_list.lower)
5955                 return NULL;
5956
5957         *iter = &lower->list;
5958
5959         return lower->dev;
5960 }
5961
5962 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5963                                   int (*fn)(struct net_device *dev,
5964                                             void *data),
5965                                   void *data)
5966 {
5967         struct net_device *ldev;
5968         struct list_head *iter;
5969         int ret;
5970
5971         for (iter = &dev->adj_list.lower,
5972              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5973              ldev;
5974              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5975                 /* first is the lower device itself */
5976                 ret = fn(ldev, data);
5977                 if (ret)
5978                         return ret;
5979
5980                 /* then look at all of its lower devices */
5981                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5982                 if (ret)
5983                         return ret;
5984         }
5985
5986         return 0;
5987 }
5988 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5989
5990 /**
5991  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5992  *                                     lower neighbour list, RCU
5993  *                                     variant
5994  * @dev: device
5995  *
5996  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5997  * list. The caller must hold RCU read lock.
5998  */
5999 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6000 {
6001         struct netdev_adjacent *lower;
6002
6003         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6004                         struct netdev_adjacent, list);
6005         if (lower)
6006                 return lower->private;
6007         return NULL;
6008 }
6009 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6010
6011 /**
6012  * netdev_master_upper_dev_get_rcu - Get master upper device
6013  * @dev: device
6014  *
6015  * Find a master upper device and return pointer to it or NULL in case
6016  * it's not there. The caller must hold the RCU read lock.
6017  */
6018 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6019 {
6020         struct netdev_adjacent *upper;
6021
6022         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6023                                        struct netdev_adjacent, list);
6024         if (upper && likely(upper->master))
6025                 return upper->dev;
6026         return NULL;
6027 }
6028 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6029
6030 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6031                               struct net_device *adj_dev,
6032                               struct list_head *dev_list)
6033 {
6034         char linkname[IFNAMSIZ+7];
6035
6036         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6037                 "upper_%s" : "lower_%s", adj_dev->name);
6038         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6039                                  linkname);
6040 }
6041 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6042                                char *name,
6043                                struct list_head *dev_list)
6044 {
6045         char linkname[IFNAMSIZ+7];
6046
6047         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6048                 "upper_%s" : "lower_%s", name);
6049         sysfs_remove_link(&(dev->dev.kobj), linkname);
6050 }
6051
6052 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6053                                                  struct net_device *adj_dev,
6054                                                  struct list_head *dev_list)
6055 {
6056         return (dev_list == &dev->adj_list.upper ||
6057                 dev_list == &dev->adj_list.lower) &&
6058                 net_eq(dev_net(dev), dev_net(adj_dev));
6059 }
6060
6061 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6062                                         struct net_device *adj_dev,
6063                                         struct list_head *dev_list,
6064                                         void *private, bool master)
6065 {
6066         struct netdev_adjacent *adj;
6067         int ret;
6068
6069         adj = __netdev_find_adj(adj_dev, dev_list);
6070
6071         if (adj) {
6072                 adj->ref_nr += 1;
6073                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6074                          dev->name, adj_dev->name, adj->ref_nr);
6075
6076                 return 0;
6077         }
6078
6079         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6080         if (!adj)
6081                 return -ENOMEM;
6082
6083         adj->dev = adj_dev;
6084         adj->master = master;
6085         adj->ref_nr = 1;
6086         adj->private = private;
6087         dev_hold(adj_dev);
6088
6089         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6090                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6091
6092         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6093                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6094                 if (ret)
6095                         goto free_adj;
6096         }
6097
6098         /* Ensure that master link is always the first item in list. */
6099         if (master) {
6100                 ret = sysfs_create_link(&(dev->dev.kobj),
6101                                         &(adj_dev->dev.kobj), "master");
6102                 if (ret)
6103                         goto remove_symlinks;
6104
6105                 list_add_rcu(&adj->list, dev_list);
6106         } else {
6107                 list_add_tail_rcu(&adj->list, dev_list);
6108         }
6109
6110         return 0;
6111
6112 remove_symlinks:
6113         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6114                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6115 free_adj:
6116         kfree(adj);
6117         dev_put(adj_dev);
6118
6119         return ret;
6120 }
6121
6122 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6123                                          struct net_device *adj_dev,
6124                                          u16 ref_nr,
6125                                          struct list_head *dev_list)
6126 {
6127         struct netdev_adjacent *adj;
6128
6129         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6130                  dev->name, adj_dev->name, ref_nr);
6131
6132         adj = __netdev_find_adj(adj_dev, dev_list);
6133
6134         if (!adj) {
6135                 pr_err("Adjacency does not exist for device %s from %s\n",
6136                        dev->name, adj_dev->name);
6137                 WARN_ON(1);
6138                 return;
6139         }
6140
6141         if (adj->ref_nr > ref_nr) {
6142                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6143                          dev->name, adj_dev->name, ref_nr,
6144                          adj->ref_nr - ref_nr);
6145                 adj->ref_nr -= ref_nr;
6146                 return;
6147         }
6148
6149         if (adj->master)
6150                 sysfs_remove_link(&(dev->dev.kobj), "master");
6151
6152         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6153                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6154
6155         list_del_rcu(&adj->list);
6156         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6157                  adj_dev->name, dev->name, adj_dev->name);
6158         dev_put(adj_dev);
6159         kfree_rcu(adj, rcu);
6160 }
6161
6162 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6163                                             struct net_device *upper_dev,
6164                                             struct list_head *up_list,
6165                                             struct list_head *down_list,
6166                                             void *private, bool master)
6167 {
6168         int ret;
6169
6170         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6171                                            private, master);
6172         if (ret)
6173                 return ret;
6174
6175         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6176                                            private, false);
6177         if (ret) {
6178                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6179                 return ret;
6180         }
6181
6182         return 0;
6183 }
6184
6185 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6186                                                struct net_device *upper_dev,
6187                                                u16 ref_nr,
6188                                                struct list_head *up_list,
6189                                                struct list_head *down_list)
6190 {
6191         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6192         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6193 }
6194
6195 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6196                                                 struct net_device *upper_dev,
6197                                                 void *private, bool master)
6198 {
6199         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6200                                                 &dev->adj_list.upper,
6201                                                 &upper_dev->adj_list.lower,
6202                                                 private, master);
6203 }
6204
6205 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6206                                                    struct net_device *upper_dev)
6207 {
6208         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6209                                            &dev->adj_list.upper,
6210                                            &upper_dev->adj_list.lower);
6211 }
6212
6213 static int __netdev_upper_dev_link(struct net_device *dev,
6214                                    struct net_device *upper_dev, bool master,
6215                                    void *upper_priv, void *upper_info)
6216 {
6217         struct netdev_notifier_changeupper_info changeupper_info;
6218         int ret = 0;
6219
6220         ASSERT_RTNL();
6221
6222         if (dev == upper_dev)
6223                 return -EBUSY;
6224
6225         /* To prevent loops, check if dev is not upper device to upper_dev. */
6226         if (netdev_has_upper_dev(upper_dev, dev))
6227                 return -EBUSY;
6228
6229         if (netdev_has_upper_dev(dev, upper_dev))
6230                 return -EEXIST;
6231
6232         if (master && netdev_master_upper_dev_get(dev))
6233                 return -EBUSY;
6234
6235         changeupper_info.upper_dev = upper_dev;
6236         changeupper_info.master = master;
6237         changeupper_info.linking = true;
6238         changeupper_info.upper_info = upper_info;
6239
6240         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6241                                             &changeupper_info.info);
6242         ret = notifier_to_errno(ret);
6243         if (ret)
6244                 return ret;
6245
6246         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6247                                                    master);
6248         if (ret)
6249                 return ret;
6250
6251         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6252                                             &changeupper_info.info);
6253         ret = notifier_to_errno(ret);
6254         if (ret)
6255                 goto rollback;
6256
6257         return 0;
6258
6259 rollback:
6260         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6261
6262         return ret;
6263 }
6264
6265 /**
6266  * netdev_upper_dev_link - Add a link to the upper device
6267  * @dev: device
6268  * @upper_dev: new upper device
6269  *
6270  * Adds a link to device which is upper to this one. The caller must hold
6271  * the RTNL lock. On a failure a negative errno code is returned.
6272  * On success the reference counts are adjusted and the function
6273  * returns zero.
6274  */
6275 int netdev_upper_dev_link(struct net_device *dev,
6276                           struct net_device *upper_dev)
6277 {
6278         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6279 }
6280 EXPORT_SYMBOL(netdev_upper_dev_link);
6281
6282 /**
6283  * netdev_master_upper_dev_link - Add a master link to the upper device
6284  * @dev: device
6285  * @upper_dev: new upper device
6286  * @upper_priv: upper device private
6287  * @upper_info: upper info to be passed down via notifier
6288  *
6289  * Adds a link to device which is upper to this one. In this case, only
6290  * one master upper device can be linked, although other non-master devices
6291  * might be linked as well. The caller must hold the RTNL lock.
6292  * On a failure a negative errno code is returned. On success the reference
6293  * counts are adjusted and the function returns zero.
6294  */
6295 int netdev_master_upper_dev_link(struct net_device *dev,
6296                                  struct net_device *upper_dev,
6297                                  void *upper_priv, void *upper_info)
6298 {
6299         return __netdev_upper_dev_link(dev, upper_dev, true,
6300                                        upper_priv, upper_info);
6301 }
6302 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6303
6304 /**
6305  * netdev_upper_dev_unlink - Removes a link to upper device
6306  * @dev: device
6307  * @upper_dev: new upper device
6308  *
6309  * Removes a link to device which is upper to this one. The caller must hold
6310  * the RTNL lock.
6311  */
6312 void netdev_upper_dev_unlink(struct net_device *dev,
6313                              struct net_device *upper_dev)
6314 {
6315         struct netdev_notifier_changeupper_info changeupper_info;
6316
6317         ASSERT_RTNL();
6318
6319         changeupper_info.upper_dev = upper_dev;
6320         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6321         changeupper_info.linking = false;
6322
6323         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6324                                       &changeupper_info.info);
6325
6326         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6327
6328         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6329                                       &changeupper_info.info);
6330 }
6331 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6332
6333 /**
6334  * netdev_bonding_info_change - Dispatch event about slave change
6335  * @dev: device
6336  * @bonding_info: info to dispatch
6337  *
6338  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6339  * The caller must hold the RTNL lock.
6340  */
6341 void netdev_bonding_info_change(struct net_device *dev,
6342                                 struct netdev_bonding_info *bonding_info)
6343 {
6344         struct netdev_notifier_bonding_info     info;
6345
6346         memcpy(&info.bonding_info, bonding_info,
6347                sizeof(struct netdev_bonding_info));
6348         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6349                                       &info.info);
6350 }
6351 EXPORT_SYMBOL(netdev_bonding_info_change);
6352
6353 static void netdev_adjacent_add_links(struct net_device *dev)
6354 {
6355         struct netdev_adjacent *iter;
6356
6357         struct net *net = dev_net(dev);
6358
6359         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6360                 if (!net_eq(net, dev_net(iter->dev)))
6361                         continue;
6362                 netdev_adjacent_sysfs_add(iter->dev, dev,
6363                                           &iter->dev->adj_list.lower);
6364                 netdev_adjacent_sysfs_add(dev, iter->dev,
6365                                           &dev->adj_list.upper);
6366         }
6367
6368         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6369                 if (!net_eq(net, dev_net(iter->dev)))
6370                         continue;
6371                 netdev_adjacent_sysfs_add(iter->dev, dev,
6372                                           &iter->dev->adj_list.upper);
6373                 netdev_adjacent_sysfs_add(dev, iter->dev,
6374                                           &dev->adj_list.lower);
6375         }
6376 }
6377
6378 static void netdev_adjacent_del_links(struct net_device *dev)
6379 {
6380         struct netdev_adjacent *iter;
6381
6382         struct net *net = dev_net(dev);
6383
6384         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6385                 if (!net_eq(net, dev_net(iter->dev)))
6386                         continue;
6387                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6388                                           &iter->dev->adj_list.lower);
6389                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6390                                           &dev->adj_list.upper);
6391         }
6392
6393         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6394                 if (!net_eq(net, dev_net(iter->dev)))
6395                         continue;
6396                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6397                                           &iter->dev->adj_list.upper);
6398                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6399                                           &dev->adj_list.lower);
6400         }
6401 }
6402
6403 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6404 {
6405         struct netdev_adjacent *iter;
6406
6407         struct net *net = dev_net(dev);
6408
6409         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6410                 if (!net_eq(net, dev_net(iter->dev)))
6411                         continue;
6412                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6413                                           &iter->dev->adj_list.lower);
6414                 netdev_adjacent_sysfs_add(iter->dev, dev,
6415                                           &iter->dev->adj_list.lower);
6416         }
6417
6418         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6419                 if (!net_eq(net, dev_net(iter->dev)))
6420                         continue;
6421                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6422                                           &iter->dev->adj_list.upper);
6423                 netdev_adjacent_sysfs_add(iter->dev, dev,
6424                                           &iter->dev->adj_list.upper);
6425         }
6426 }
6427
6428 void *netdev_lower_dev_get_private(struct net_device *dev,
6429                                    struct net_device *lower_dev)
6430 {
6431         struct netdev_adjacent *lower;
6432
6433         if (!lower_dev)
6434                 return NULL;
6435         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6436         if (!lower)
6437                 return NULL;
6438
6439         return lower->private;
6440 }
6441 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6442
6443
6444 int dev_get_nest_level(struct net_device *dev)
6445 {
6446         struct net_device *lower = NULL;
6447         struct list_head *iter;
6448         int max_nest = -1;
6449         int nest;
6450
6451         ASSERT_RTNL();
6452
6453         netdev_for_each_lower_dev(dev, lower, iter) {
6454                 nest = dev_get_nest_level(lower);
6455                 if (max_nest < nest)
6456                         max_nest = nest;
6457         }
6458
6459         return max_nest + 1;
6460 }
6461 EXPORT_SYMBOL(dev_get_nest_level);
6462
6463 /**
6464  * netdev_lower_change - Dispatch event about lower device state change
6465  * @lower_dev: device
6466  * @lower_state_info: state to dispatch
6467  *
6468  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6469  * The caller must hold the RTNL lock.
6470  */
6471 void netdev_lower_state_changed(struct net_device *lower_dev,
6472                                 void *lower_state_info)
6473 {
6474         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6475
6476         ASSERT_RTNL();
6477         changelowerstate_info.lower_state_info = lower_state_info;
6478         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6479                                       &changelowerstate_info.info);
6480 }
6481 EXPORT_SYMBOL(netdev_lower_state_changed);
6482
6483 static void dev_change_rx_flags(struct net_device *dev, int flags)
6484 {
6485         const struct net_device_ops *ops = dev->netdev_ops;
6486
6487         if (ops->ndo_change_rx_flags)
6488                 ops->ndo_change_rx_flags(dev, flags);
6489 }
6490
6491 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6492 {
6493         unsigned int old_flags = dev->flags;
6494         kuid_t uid;
6495         kgid_t gid;
6496
6497         ASSERT_RTNL();
6498
6499         dev->flags |= IFF_PROMISC;
6500         dev->promiscuity += inc;
6501         if (dev->promiscuity == 0) {
6502                 /*
6503                  * Avoid overflow.
6504                  * If inc causes overflow, untouch promisc and return error.
6505                  */
6506                 if (inc < 0)
6507                         dev->flags &= ~IFF_PROMISC;
6508                 else {
6509                         dev->promiscuity -= inc;
6510                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6511                                 dev->name);
6512                         return -EOVERFLOW;
6513                 }
6514         }
6515         if (dev->flags != old_flags) {
6516                 pr_info("device %s %s promiscuous mode\n",
6517                         dev->name,
6518                         dev->flags & IFF_PROMISC ? "entered" : "left");
6519                 if (audit_enabled) {
6520                         current_uid_gid(&uid, &gid);
6521                         audit_log(current->audit_context, GFP_ATOMIC,
6522                                 AUDIT_ANOM_PROMISCUOUS,
6523                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6524                                 dev->name, (dev->flags & IFF_PROMISC),
6525                                 (old_flags & IFF_PROMISC),
6526                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6527                                 from_kuid(&init_user_ns, uid),
6528                                 from_kgid(&init_user_ns, gid),
6529                                 audit_get_sessionid(current));
6530                 }
6531
6532                 dev_change_rx_flags(dev, IFF_PROMISC);
6533         }
6534         if (notify)
6535                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6536         return 0;
6537 }
6538
6539 /**
6540  *      dev_set_promiscuity     - update promiscuity count on a device
6541  *      @dev: device
6542  *      @inc: modifier
6543  *
6544  *      Add or remove promiscuity from a device. While the count in the device
6545  *      remains above zero the interface remains promiscuous. Once it hits zero
6546  *      the device reverts back to normal filtering operation. A negative inc
6547  *      value is used to drop promiscuity on the device.
6548  *      Return 0 if successful or a negative errno code on error.
6549  */
6550 int dev_set_promiscuity(struct net_device *dev, int inc)
6551 {
6552         unsigned int old_flags = dev->flags;
6553         int err;
6554
6555         err = __dev_set_promiscuity(dev, inc, true);
6556         if (err < 0)
6557                 return err;
6558         if (dev->flags != old_flags)
6559                 dev_set_rx_mode(dev);
6560         return err;
6561 }
6562 EXPORT_SYMBOL(dev_set_promiscuity);
6563
6564 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6565 {
6566         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6567
6568         ASSERT_RTNL();
6569
6570         dev->flags |= IFF_ALLMULTI;
6571         dev->allmulti += inc;
6572         if (dev->allmulti == 0) {
6573                 /*
6574                  * Avoid overflow.
6575                  * If inc causes overflow, untouch allmulti and return error.
6576                  */
6577                 if (inc < 0)
6578                         dev->flags &= ~IFF_ALLMULTI;
6579                 else {
6580                         dev->allmulti -= inc;
6581                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6582                                 dev->name);
6583                         return -EOVERFLOW;
6584                 }
6585         }
6586         if (dev->flags ^ old_flags) {
6587                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6588                 dev_set_rx_mode(dev);
6589                 if (notify)
6590                         __dev_notify_flags(dev, old_flags,
6591                                            dev->gflags ^ old_gflags);
6592         }
6593         return 0;
6594 }
6595
6596 /**
6597  *      dev_set_allmulti        - update allmulti count on a device
6598  *      @dev: device
6599  *      @inc: modifier
6600  *
6601  *      Add or remove reception of all multicast frames to a device. While the
6602  *      count in the device remains above zero the interface remains listening
6603  *      to all interfaces. Once it hits zero the device reverts back to normal
6604  *      filtering operation. A negative @inc value is used to drop the counter
6605  *      when releasing a resource needing all multicasts.
6606  *      Return 0 if successful or a negative errno code on error.
6607  */
6608
6609 int dev_set_allmulti(struct net_device *dev, int inc)
6610 {
6611         return __dev_set_allmulti(dev, inc, true);
6612 }
6613 EXPORT_SYMBOL(dev_set_allmulti);
6614
6615 /*
6616  *      Upload unicast and multicast address lists to device and
6617  *      configure RX filtering. When the device doesn't support unicast
6618  *      filtering it is put in promiscuous mode while unicast addresses
6619  *      are present.
6620  */
6621 void __dev_set_rx_mode(struct net_device *dev)
6622 {
6623         const struct net_device_ops *ops = dev->netdev_ops;
6624
6625         /* dev_open will call this function so the list will stay sane. */
6626         if (!(dev->flags&IFF_UP))
6627                 return;
6628
6629         if (!netif_device_present(dev))
6630                 return;
6631
6632         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6633                 /* Unicast addresses changes may only happen under the rtnl,
6634                  * therefore calling __dev_set_promiscuity here is safe.
6635                  */
6636                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6637                         __dev_set_promiscuity(dev, 1, false);
6638                         dev->uc_promisc = true;
6639                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6640                         __dev_set_promiscuity(dev, -1, false);
6641                         dev->uc_promisc = false;
6642                 }
6643         }
6644
6645         if (ops->ndo_set_rx_mode)
6646                 ops->ndo_set_rx_mode(dev);
6647 }
6648
6649 void dev_set_rx_mode(struct net_device *dev)
6650 {
6651         netif_addr_lock_bh(dev);
6652         __dev_set_rx_mode(dev);
6653         netif_addr_unlock_bh(dev);
6654 }
6655
6656 /**
6657  *      dev_get_flags - get flags reported to userspace
6658  *      @dev: device
6659  *
6660  *      Get the combination of flag bits exported through APIs to userspace.
6661  */
6662 unsigned int dev_get_flags(const struct net_device *dev)
6663 {
6664         unsigned int flags;
6665
6666         flags = (dev->flags & ~(IFF_PROMISC |
6667                                 IFF_ALLMULTI |
6668                                 IFF_RUNNING |
6669                                 IFF_LOWER_UP |
6670                                 IFF_DORMANT)) |
6671                 (dev->gflags & (IFF_PROMISC |
6672                                 IFF_ALLMULTI));
6673
6674         if (netif_running(dev)) {
6675                 if (netif_oper_up(dev))
6676                         flags |= IFF_RUNNING;
6677                 if (netif_carrier_ok(dev))
6678                         flags |= IFF_LOWER_UP;
6679                 if (netif_dormant(dev))
6680                         flags |= IFF_DORMANT;
6681         }
6682
6683         return flags;
6684 }
6685 EXPORT_SYMBOL(dev_get_flags);
6686
6687 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6688 {
6689         unsigned int old_flags = dev->flags;
6690         int ret;
6691
6692         ASSERT_RTNL();
6693
6694         /*
6695          *      Set the flags on our device.
6696          */
6697
6698         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6699                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6700                                IFF_AUTOMEDIA)) |
6701                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6702                                     IFF_ALLMULTI));
6703
6704         /*
6705          *      Load in the correct multicast list now the flags have changed.
6706          */
6707
6708         if ((old_flags ^ flags) & IFF_MULTICAST)
6709                 dev_change_rx_flags(dev, IFF_MULTICAST);
6710
6711         dev_set_rx_mode(dev);
6712
6713         /*
6714          *      Have we downed the interface. We handle IFF_UP ourselves
6715          *      according to user attempts to set it, rather than blindly
6716          *      setting it.
6717          */
6718
6719         ret = 0;
6720         if ((old_flags ^ flags) & IFF_UP) {
6721                 if (old_flags & IFF_UP)
6722                         __dev_close(dev);
6723                 else
6724                         ret = __dev_open(dev);
6725         }
6726
6727         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6728                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6729                 unsigned int old_flags = dev->flags;
6730
6731                 dev->gflags ^= IFF_PROMISC;
6732
6733                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6734                         if (dev->flags != old_flags)
6735                                 dev_set_rx_mode(dev);
6736         }
6737
6738         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6739          * is important. Some (broken) drivers set IFF_PROMISC, when
6740          * IFF_ALLMULTI is requested not asking us and not reporting.
6741          */
6742         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6743                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6744
6745                 dev->gflags ^= IFF_ALLMULTI;
6746                 __dev_set_allmulti(dev, inc, false);
6747         }
6748
6749         return ret;
6750 }
6751
6752 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6753                         unsigned int gchanges)
6754 {
6755         unsigned int changes = dev->flags ^ old_flags;
6756
6757         if (gchanges)
6758                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6759
6760         if (changes & IFF_UP) {
6761                 if (dev->flags & IFF_UP)
6762                         call_netdevice_notifiers(NETDEV_UP, dev);
6763                 else
6764                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6765         }
6766
6767         if (dev->flags & IFF_UP &&
6768             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6769                 struct netdev_notifier_change_info change_info;
6770
6771                 change_info.flags_changed = changes;
6772                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6773                                               &change_info.info);
6774         }
6775 }
6776
6777 /**
6778  *      dev_change_flags - change device settings
6779  *      @dev: device
6780  *      @flags: device state flags
6781  *
6782  *      Change settings on device based state flags. The flags are
6783  *      in the userspace exported format.
6784  */
6785 int dev_change_flags(struct net_device *dev, unsigned int flags)
6786 {
6787         int ret;
6788         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6789
6790         ret = __dev_change_flags(dev, flags);
6791         if (ret < 0)
6792                 return ret;
6793
6794         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6795         __dev_notify_flags(dev, old_flags, changes);
6796         return ret;
6797 }
6798 EXPORT_SYMBOL(dev_change_flags);
6799
6800 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6801 {
6802         const struct net_device_ops *ops = dev->netdev_ops;
6803
6804         if (ops->ndo_change_mtu)
6805                 return ops->ndo_change_mtu(dev, new_mtu);
6806
6807         dev->mtu = new_mtu;
6808         return 0;
6809 }
6810 EXPORT_SYMBOL(__dev_set_mtu);
6811
6812 /**
6813  *      dev_set_mtu - Change maximum transfer unit
6814  *      @dev: device
6815  *      @new_mtu: new transfer unit
6816  *
6817  *      Change the maximum transfer size of the network device.
6818  */
6819 int dev_set_mtu(struct net_device *dev, int new_mtu)
6820 {
6821         int err, orig_mtu;
6822
6823         if (new_mtu == dev->mtu)
6824                 return 0;
6825
6826         /* MTU must be positive, and in range */
6827         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6828                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6829                                     dev->name, new_mtu, dev->min_mtu);
6830                 return -EINVAL;
6831         }
6832
6833         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6834                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6835                                     dev->name, new_mtu, dev->max_mtu);
6836                 return -EINVAL;
6837         }
6838
6839         if (!netif_device_present(dev))
6840                 return -ENODEV;
6841
6842         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6843         err = notifier_to_errno(err);
6844         if (err)
6845                 return err;
6846
6847         orig_mtu = dev->mtu;
6848         err = __dev_set_mtu(dev, new_mtu);
6849
6850         if (!err) {
6851                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6852                 err = notifier_to_errno(err);
6853                 if (err) {
6854                         /* setting mtu back and notifying everyone again,
6855                          * so that they have a chance to revert changes.
6856                          */
6857                         __dev_set_mtu(dev, orig_mtu);
6858                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6859                 }
6860         }
6861         return err;
6862 }
6863 EXPORT_SYMBOL(dev_set_mtu);
6864
6865 /**
6866  *      dev_set_group - Change group this device belongs to
6867  *      @dev: device
6868  *      @new_group: group this device should belong to
6869  */
6870 void dev_set_group(struct net_device *dev, int new_group)
6871 {
6872         dev->group = new_group;
6873 }
6874 EXPORT_SYMBOL(dev_set_group);
6875
6876 /**
6877  *      dev_set_mac_address - Change Media Access Control Address
6878  *      @dev: device
6879  *      @sa: new address
6880  *
6881  *      Change the hardware (MAC) address of the device
6882  */
6883 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6884 {
6885         const struct net_device_ops *ops = dev->netdev_ops;
6886         int err;
6887
6888         if (!ops->ndo_set_mac_address)
6889                 return -EOPNOTSUPP;
6890         if (sa->sa_family != dev->type)
6891                 return -EINVAL;
6892         if (!netif_device_present(dev))
6893                 return -ENODEV;
6894         err = ops->ndo_set_mac_address(dev, sa);
6895         if (err)
6896                 return err;
6897         dev->addr_assign_type = NET_ADDR_SET;
6898         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6899         add_device_randomness(dev->dev_addr, dev->addr_len);
6900         return 0;
6901 }
6902 EXPORT_SYMBOL(dev_set_mac_address);
6903
6904 /**
6905  *      dev_change_carrier - Change device carrier
6906  *      @dev: device
6907  *      @new_carrier: new value
6908  *
6909  *      Change device carrier
6910  */
6911 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6912 {
6913         const struct net_device_ops *ops = dev->netdev_ops;
6914
6915         if (!ops->ndo_change_carrier)
6916                 return -EOPNOTSUPP;
6917         if (!netif_device_present(dev))
6918                 return -ENODEV;
6919         return ops->ndo_change_carrier(dev, new_carrier);
6920 }
6921 EXPORT_SYMBOL(dev_change_carrier);
6922
6923 /**
6924  *      dev_get_phys_port_id - Get device physical port ID
6925  *      @dev: device
6926  *      @ppid: port ID
6927  *
6928  *      Get device physical port ID
6929  */
6930 int dev_get_phys_port_id(struct net_device *dev,
6931                          struct netdev_phys_item_id *ppid)
6932 {
6933         const struct net_device_ops *ops = dev->netdev_ops;
6934
6935         if (!ops->ndo_get_phys_port_id)
6936                 return -EOPNOTSUPP;
6937         return ops->ndo_get_phys_port_id(dev, ppid);
6938 }
6939 EXPORT_SYMBOL(dev_get_phys_port_id);
6940
6941 /**
6942  *      dev_get_phys_port_name - Get device physical port name
6943  *      @dev: device
6944  *      @name: port name
6945  *      @len: limit of bytes to copy to name
6946  *
6947  *      Get device physical port name
6948  */
6949 int dev_get_phys_port_name(struct net_device *dev,
6950                            char *name, size_t len)
6951 {
6952         const struct net_device_ops *ops = dev->netdev_ops;
6953
6954         if (!ops->ndo_get_phys_port_name)
6955                 return -EOPNOTSUPP;
6956         return ops->ndo_get_phys_port_name(dev, name, len);
6957 }
6958 EXPORT_SYMBOL(dev_get_phys_port_name);
6959
6960 /**
6961  *      dev_change_proto_down - update protocol port state information
6962  *      @dev: device
6963  *      @proto_down: new value
6964  *
6965  *      This info can be used by switch drivers to set the phys state of the
6966  *      port.
6967  */
6968 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6969 {
6970         const struct net_device_ops *ops = dev->netdev_ops;
6971
6972         if (!ops->ndo_change_proto_down)
6973                 return -EOPNOTSUPP;
6974         if (!netif_device_present(dev))
6975                 return -ENODEV;
6976         return ops->ndo_change_proto_down(dev, proto_down);
6977 }
6978 EXPORT_SYMBOL(dev_change_proto_down);
6979
6980 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
6981 {
6982         struct netdev_xdp xdp;
6983
6984         memset(&xdp, 0, sizeof(xdp));
6985         xdp.command = XDP_QUERY_PROG;
6986
6987         /* Query must always succeed. */
6988         WARN_ON(xdp_op(dev, &xdp) < 0);
6989         if (prog_id)
6990                 *prog_id = xdp.prog_id;
6991
6992         return xdp.prog_attached;
6993 }
6994
6995 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6996                            struct netlink_ext_ack *extack, u32 flags,
6997                            struct bpf_prog *prog)
6998 {
6999         struct netdev_xdp xdp;
7000
7001         memset(&xdp, 0, sizeof(xdp));
7002         if (flags & XDP_FLAGS_HW_MODE)
7003                 xdp.command = XDP_SETUP_PROG_HW;
7004         else
7005                 xdp.command = XDP_SETUP_PROG;
7006         xdp.extack = extack;
7007         xdp.flags = flags;
7008         xdp.prog = prog;
7009
7010         return xdp_op(dev, &xdp);
7011 }
7012
7013 /**
7014  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7015  *      @dev: device
7016  *      @extack: netlink extended ack
7017  *      @fd: new program fd or negative value to clear
7018  *      @flags: xdp-related flags
7019  *
7020  *      Set or clear a bpf program for a device
7021  */
7022 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7023                       int fd, u32 flags)
7024 {
7025         const struct net_device_ops *ops = dev->netdev_ops;
7026         struct bpf_prog *prog = NULL;
7027         xdp_op_t xdp_op, xdp_chk;
7028         int err;
7029
7030         ASSERT_RTNL();
7031
7032         xdp_op = xdp_chk = ops->ndo_xdp;
7033         if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7034                 return -EOPNOTSUPP;
7035         if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7036                 xdp_op = generic_xdp_install;
7037         if (xdp_op == xdp_chk)
7038                 xdp_chk = generic_xdp_install;
7039
7040         if (fd >= 0) {
7041                 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7042                         return -EEXIST;
7043                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7044                     __dev_xdp_attached(dev, xdp_op, NULL))
7045                         return -EBUSY;
7046
7047                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7048                 if (IS_ERR(prog))
7049                         return PTR_ERR(prog);
7050         }
7051
7052         err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7053         if (err < 0 && prog)
7054                 bpf_prog_put(prog);
7055
7056         return err;
7057 }
7058
7059 /**
7060  *      dev_new_index   -       allocate an ifindex
7061  *      @net: the applicable net namespace
7062  *
7063  *      Returns a suitable unique value for a new device interface
7064  *      number.  The caller must hold the rtnl semaphore or the
7065  *      dev_base_lock to be sure it remains unique.
7066  */
7067 static int dev_new_index(struct net *net)
7068 {
7069         int ifindex = net->ifindex;
7070
7071         for (;;) {
7072                 if (++ifindex <= 0)
7073                         ifindex = 1;
7074                 if (!__dev_get_by_index(net, ifindex))
7075                         return net->ifindex = ifindex;
7076         }
7077 }
7078
7079 /* Delayed registration/unregisteration */
7080 static LIST_HEAD(net_todo_list);
7081 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7082
7083 static void net_set_todo(struct net_device *dev)
7084 {
7085         list_add_tail(&dev->todo_list, &net_todo_list);
7086         dev_net(dev)->dev_unreg_count++;
7087 }
7088
7089 static void rollback_registered_many(struct list_head *head)
7090 {
7091         struct net_device *dev, *tmp;
7092         LIST_HEAD(close_head);
7093
7094         BUG_ON(dev_boot_phase);
7095         ASSERT_RTNL();
7096
7097         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7098                 /* Some devices call without registering
7099                  * for initialization unwind. Remove those
7100                  * devices and proceed with the remaining.
7101                  */
7102                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7103                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7104                                  dev->name, dev);
7105
7106                         WARN_ON(1);
7107                         list_del(&dev->unreg_list);
7108                         continue;
7109                 }
7110                 dev->dismantle = true;
7111                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7112         }
7113
7114         /* If device is running, close it first. */
7115         list_for_each_entry(dev, head, unreg_list)
7116                 list_add_tail(&dev->close_list, &close_head);
7117         dev_close_many(&close_head, true);
7118
7119         list_for_each_entry(dev, head, unreg_list) {
7120                 /* And unlink it from device chain. */
7121                 unlist_netdevice(dev);
7122
7123                 dev->reg_state = NETREG_UNREGISTERING;
7124         }
7125         flush_all_backlogs();
7126
7127         synchronize_net();
7128
7129         list_for_each_entry(dev, head, unreg_list) {
7130                 struct sk_buff *skb = NULL;
7131
7132                 /* Shutdown queueing discipline. */
7133                 dev_shutdown(dev);
7134
7135
7136                 /* Notify protocols, that we are about to destroy
7137                  * this device. They should clean all the things.
7138                  */
7139                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7140
7141                 if (!dev->rtnl_link_ops ||
7142                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7143                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7144                                                      GFP_KERNEL);
7145
7146                 /*
7147                  *      Flush the unicast and multicast chains
7148                  */
7149                 dev_uc_flush(dev);
7150                 dev_mc_flush(dev);
7151
7152                 if (dev->netdev_ops->ndo_uninit)
7153                         dev->netdev_ops->ndo_uninit(dev);
7154
7155                 if (skb)
7156                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7157
7158                 /* Notifier chain MUST detach us all upper devices. */
7159                 WARN_ON(netdev_has_any_upper_dev(dev));
7160                 WARN_ON(netdev_has_any_lower_dev(dev));
7161
7162                 /* Remove entries from kobject tree */
7163                 netdev_unregister_kobject(dev);
7164 #ifdef CONFIG_XPS
7165                 /* Remove XPS queueing entries */
7166                 netif_reset_xps_queues_gt(dev, 0);
7167 #endif
7168         }
7169
7170         synchronize_net();
7171
7172         list_for_each_entry(dev, head, unreg_list)
7173                 dev_put(dev);
7174 }
7175
7176 static void rollback_registered(struct net_device *dev)
7177 {
7178         LIST_HEAD(single);
7179
7180         list_add(&dev->unreg_list, &single);
7181         rollback_registered_many(&single);
7182         list_del(&single);
7183 }
7184
7185 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7186         struct net_device *upper, netdev_features_t features)
7187 {
7188         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7189         netdev_features_t feature;
7190         int feature_bit;
7191
7192         for_each_netdev_feature(&upper_disables, feature_bit) {
7193                 feature = __NETIF_F_BIT(feature_bit);
7194                 if (!(upper->wanted_features & feature)
7195                     && (features & feature)) {
7196                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7197                                    &feature, upper->name);
7198                         features &= ~feature;
7199                 }
7200         }
7201
7202         return features;
7203 }
7204
7205 static void netdev_sync_lower_features(struct net_device *upper,
7206         struct net_device *lower, netdev_features_t features)
7207 {
7208         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7209         netdev_features_t feature;
7210         int feature_bit;
7211
7212         for_each_netdev_feature(&upper_disables, feature_bit) {
7213                 feature = __NETIF_F_BIT(feature_bit);
7214                 if (!(features & feature) && (lower->features & feature)) {
7215                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7216                                    &feature, lower->name);
7217                         lower->wanted_features &= ~feature;
7218                         netdev_update_features(lower);
7219
7220                         if (unlikely(lower->features & feature))
7221                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7222                                             &feature, lower->name);
7223                 }
7224         }
7225 }
7226
7227 static netdev_features_t netdev_fix_features(struct net_device *dev,
7228         netdev_features_t features)
7229 {
7230         /* Fix illegal checksum combinations */
7231         if ((features & NETIF_F_HW_CSUM) &&
7232             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7233                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7234                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7235         }
7236
7237         /* TSO requires that SG is present as well. */
7238         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7239                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7240                 features &= ~NETIF_F_ALL_TSO;
7241         }
7242
7243         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7244                                         !(features & NETIF_F_IP_CSUM)) {
7245                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7246                 features &= ~NETIF_F_TSO;
7247                 features &= ~NETIF_F_TSO_ECN;
7248         }
7249
7250         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7251                                          !(features & NETIF_F_IPV6_CSUM)) {
7252                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7253                 features &= ~NETIF_F_TSO6;
7254         }
7255
7256         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7257         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7258                 features &= ~NETIF_F_TSO_MANGLEID;
7259
7260         /* TSO ECN requires that TSO is present as well. */
7261         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7262                 features &= ~NETIF_F_TSO_ECN;
7263
7264         /* Software GSO depends on SG. */
7265         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7266                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7267                 features &= ~NETIF_F_GSO;
7268         }
7269
7270         /* GSO partial features require GSO partial be set */
7271         if ((features & dev->gso_partial_features) &&
7272             !(features & NETIF_F_GSO_PARTIAL)) {
7273                 netdev_dbg(dev,
7274                            "Dropping partially supported GSO features since no GSO partial.\n");
7275                 features &= ~dev->gso_partial_features;
7276         }
7277
7278         return features;
7279 }
7280
7281 int __netdev_update_features(struct net_device *dev)
7282 {
7283         struct net_device *upper, *lower;
7284         netdev_features_t features;
7285         struct list_head *iter;
7286         int err = -1;
7287
7288         ASSERT_RTNL();
7289
7290         features = netdev_get_wanted_features(dev);
7291
7292         if (dev->netdev_ops->ndo_fix_features)
7293                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7294
7295         /* driver might be less strict about feature dependencies */
7296         features = netdev_fix_features(dev, features);
7297
7298         /* some features can't be enabled if they're off an an upper device */
7299         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7300                 features = netdev_sync_upper_features(dev, upper, features);
7301
7302         if (dev->features == features)
7303                 goto sync_lower;
7304
7305         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7306                 &dev->features, &features);
7307
7308         if (dev->netdev_ops->ndo_set_features)
7309                 err = dev->netdev_ops->ndo_set_features(dev, features);
7310         else
7311                 err = 0;
7312
7313         if (unlikely(err < 0)) {
7314                 netdev_err(dev,
7315                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7316                         err, &features, &dev->features);
7317                 /* return non-0 since some features might have changed and
7318                  * it's better to fire a spurious notification than miss it
7319                  */
7320                 return -1;
7321         }
7322
7323 sync_lower:
7324         /* some features must be disabled on lower devices when disabled
7325          * on an upper device (think: bonding master or bridge)
7326          */
7327         netdev_for_each_lower_dev(dev, lower, iter)
7328                 netdev_sync_lower_features(dev, lower, features);
7329
7330         if (!err)
7331                 dev->features = features;
7332
7333         return err < 0 ? 0 : 1;
7334 }
7335
7336 /**
7337  *      netdev_update_features - recalculate device features
7338  *      @dev: the device to check
7339  *
7340  *      Recalculate dev->features set and send notifications if it
7341  *      has changed. Should be called after driver or hardware dependent
7342  *      conditions might have changed that influence the features.
7343  */
7344 void netdev_update_features(struct net_device *dev)
7345 {
7346         if (__netdev_update_features(dev))
7347                 netdev_features_change(dev);
7348 }
7349 EXPORT_SYMBOL(netdev_update_features);
7350
7351 /**
7352  *      netdev_change_features - recalculate device features
7353  *      @dev: the device to check
7354  *
7355  *      Recalculate dev->features set and send notifications even
7356  *      if they have not changed. Should be called instead of
7357  *      netdev_update_features() if also dev->vlan_features might
7358  *      have changed to allow the changes to be propagated to stacked
7359  *      VLAN devices.
7360  */
7361 void netdev_change_features(struct net_device *dev)
7362 {
7363         __netdev_update_features(dev);
7364         netdev_features_change(dev);
7365 }
7366 EXPORT_SYMBOL(netdev_change_features);
7367
7368 /**
7369  *      netif_stacked_transfer_operstate -      transfer operstate
7370  *      @rootdev: the root or lower level device to transfer state from
7371  *      @dev: the device to transfer operstate to
7372  *
7373  *      Transfer operational state from root to device. This is normally
7374  *      called when a stacking relationship exists between the root
7375  *      device and the device(a leaf device).
7376  */
7377 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7378                                         struct net_device *dev)
7379 {
7380         if (rootdev->operstate == IF_OPER_DORMANT)
7381                 netif_dormant_on(dev);
7382         else
7383                 netif_dormant_off(dev);
7384
7385         if (netif_carrier_ok(rootdev))
7386                 netif_carrier_on(dev);
7387         else
7388                 netif_carrier_off(dev);
7389 }
7390 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7391
7392 #ifdef CONFIG_SYSFS
7393 static int netif_alloc_rx_queues(struct net_device *dev)
7394 {
7395         unsigned int i, count = dev->num_rx_queues;
7396         struct netdev_rx_queue *rx;
7397         size_t sz = count * sizeof(*rx);
7398
7399         BUG_ON(count < 1);
7400
7401         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7402         if (!rx)
7403                 return -ENOMEM;
7404
7405         dev->_rx = rx;
7406
7407         for (i = 0; i < count; i++)
7408                 rx[i].dev = dev;
7409         return 0;
7410 }
7411 #endif
7412
7413 static void netdev_init_one_queue(struct net_device *dev,
7414                                   struct netdev_queue *queue, void *_unused)
7415 {
7416         /* Initialize queue lock */
7417         spin_lock_init(&queue->_xmit_lock);
7418         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7419         queue->xmit_lock_owner = -1;
7420         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7421         queue->dev = dev;
7422 #ifdef CONFIG_BQL
7423         dql_init(&queue->dql, HZ);
7424 #endif
7425 }
7426
7427 static void netif_free_tx_queues(struct net_device *dev)
7428 {
7429         kvfree(dev->_tx);
7430 }
7431
7432 static int netif_alloc_netdev_queues(struct net_device *dev)
7433 {
7434         unsigned int count = dev->num_tx_queues;
7435         struct netdev_queue *tx;
7436         size_t sz = count * sizeof(*tx);
7437
7438         if (count < 1 || count > 0xffff)
7439                 return -EINVAL;
7440
7441         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7442         if (!tx)
7443                 return -ENOMEM;
7444
7445         dev->_tx = tx;
7446
7447         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7448         spin_lock_init(&dev->tx_global_lock);
7449
7450         return 0;
7451 }
7452
7453 void netif_tx_stop_all_queues(struct net_device *dev)
7454 {
7455         unsigned int i;
7456
7457         for (i = 0; i < dev->num_tx_queues; i++) {
7458                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7459
7460                 netif_tx_stop_queue(txq);
7461         }
7462 }
7463 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7464
7465 /**
7466  *      register_netdevice      - register a network device
7467  *      @dev: device to register
7468  *
7469  *      Take a completed network device structure and add it to the kernel
7470  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7471  *      chain. 0 is returned on success. A negative errno code is returned
7472  *      on a failure to set up the device, or if the name is a duplicate.
7473  *
7474  *      Callers must hold the rtnl semaphore. You may want
7475  *      register_netdev() instead of this.
7476  *
7477  *      BUGS:
7478  *      The locking appears insufficient to guarantee two parallel registers
7479  *      will not get the same name.
7480  */
7481
7482 int register_netdevice(struct net_device *dev)
7483 {
7484         int ret;
7485         struct net *net = dev_net(dev);
7486
7487         BUG_ON(dev_boot_phase);
7488         ASSERT_RTNL();
7489
7490         might_sleep();
7491
7492         /* When net_device's are persistent, this will be fatal. */
7493         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7494         BUG_ON(!net);
7495
7496         spin_lock_init(&dev->addr_list_lock);
7497         netdev_set_addr_lockdep_class(dev);
7498
7499         ret = dev_get_valid_name(net, dev, dev->name);
7500         if (ret < 0)
7501                 goto out;
7502
7503         /* Init, if this function is available */
7504         if (dev->netdev_ops->ndo_init) {
7505                 ret = dev->netdev_ops->ndo_init(dev);
7506                 if (ret) {
7507                         if (ret > 0)
7508                                 ret = -EIO;
7509                         goto out;
7510                 }
7511         }
7512
7513         if (((dev->hw_features | dev->features) &
7514              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7515             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7516              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7517                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7518                 ret = -EINVAL;
7519                 goto err_uninit;
7520         }
7521
7522         ret = -EBUSY;
7523         if (!dev->ifindex)
7524                 dev->ifindex = dev_new_index(net);
7525         else if (__dev_get_by_index(net, dev->ifindex))
7526                 goto err_uninit;
7527
7528         /* Transfer changeable features to wanted_features and enable
7529          * software offloads (GSO and GRO).
7530          */
7531         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7532         dev->features |= NETIF_F_SOFT_FEATURES;
7533         dev->wanted_features = dev->features & dev->hw_features;
7534
7535         if (!(dev->flags & IFF_LOOPBACK))
7536                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7537
7538         /* If IPv4 TCP segmentation offload is supported we should also
7539          * allow the device to enable segmenting the frame with the option
7540          * of ignoring a static IP ID value.  This doesn't enable the
7541          * feature itself but allows the user to enable it later.
7542          */
7543         if (dev->hw_features & NETIF_F_TSO)
7544                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7545         if (dev->vlan_features & NETIF_F_TSO)
7546                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7547         if (dev->mpls_features & NETIF_F_TSO)
7548                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7549         if (dev->hw_enc_features & NETIF_F_TSO)
7550                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7551
7552         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7553          */
7554         dev->vlan_features |= NETIF_F_HIGHDMA;
7555
7556         /* Make NETIF_F_SG inheritable to tunnel devices.
7557          */
7558         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7559
7560         /* Make NETIF_F_SG inheritable to MPLS.
7561          */
7562         dev->mpls_features |= NETIF_F_SG;
7563
7564         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7565         ret = notifier_to_errno(ret);
7566         if (ret)
7567                 goto err_uninit;
7568
7569         ret = netdev_register_kobject(dev);
7570         if (ret)
7571                 goto err_uninit;
7572         dev->reg_state = NETREG_REGISTERED;
7573
7574         __netdev_update_features(dev);
7575
7576         /*
7577          *      Default initial state at registry is that the
7578          *      device is present.
7579          */
7580
7581         set_bit(__LINK_STATE_PRESENT, &dev->state);
7582
7583         linkwatch_init_dev(dev);
7584
7585         dev_init_scheduler(dev);
7586         dev_hold(dev);
7587         list_netdevice(dev);
7588         add_device_randomness(dev->dev_addr, dev->addr_len);
7589
7590         /* If the device has permanent device address, driver should
7591          * set dev_addr and also addr_assign_type should be set to
7592          * NET_ADDR_PERM (default value).
7593          */
7594         if (dev->addr_assign_type == NET_ADDR_PERM)
7595                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7596
7597         /* Notify protocols, that a new device appeared. */
7598         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7599         ret = notifier_to_errno(ret);
7600         if (ret) {
7601                 rollback_registered(dev);
7602                 dev->reg_state = NETREG_UNREGISTERED;
7603         }
7604         /*
7605          *      Prevent userspace races by waiting until the network
7606          *      device is fully setup before sending notifications.
7607          */
7608         if (!dev->rtnl_link_ops ||
7609             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7610                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7611
7612 out:
7613         return ret;
7614
7615 err_uninit:
7616         if (dev->netdev_ops->ndo_uninit)
7617                 dev->netdev_ops->ndo_uninit(dev);
7618         if (dev->priv_destructor)
7619                 dev->priv_destructor(dev);
7620         goto out;
7621 }
7622 EXPORT_SYMBOL(register_netdevice);
7623
7624 /**
7625  *      init_dummy_netdev       - init a dummy network device for NAPI
7626  *      @dev: device to init
7627  *
7628  *      This takes a network device structure and initialize the minimum
7629  *      amount of fields so it can be used to schedule NAPI polls without
7630  *      registering a full blown interface. This is to be used by drivers
7631  *      that need to tie several hardware interfaces to a single NAPI
7632  *      poll scheduler due to HW limitations.
7633  */
7634 int init_dummy_netdev(struct net_device *dev)
7635 {
7636         /* Clear everything. Note we don't initialize spinlocks
7637          * are they aren't supposed to be taken by any of the
7638          * NAPI code and this dummy netdev is supposed to be
7639          * only ever used for NAPI polls
7640          */
7641         memset(dev, 0, sizeof(struct net_device));
7642
7643         /* make sure we BUG if trying to hit standard
7644          * register/unregister code path
7645          */
7646         dev->reg_state = NETREG_DUMMY;
7647
7648         /* NAPI wants this */
7649         INIT_LIST_HEAD(&dev->napi_list);
7650
7651         /* a dummy interface is started by default */
7652         set_bit(__LINK_STATE_PRESENT, &dev->state);
7653         set_bit(__LINK_STATE_START, &dev->state);
7654
7655         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7656          * because users of this 'device' dont need to change
7657          * its refcount.
7658          */
7659
7660         return 0;
7661 }
7662 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7663
7664
7665 /**
7666  *      register_netdev - register a network device
7667  *      @dev: device to register
7668  *
7669  *      Take a completed network device structure and add it to the kernel
7670  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7671  *      chain. 0 is returned on success. A negative errno code is returned
7672  *      on a failure to set up the device, or if the name is a duplicate.
7673  *
7674  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7675  *      and expands the device name if you passed a format string to
7676  *      alloc_netdev.
7677  */
7678 int register_netdev(struct net_device *dev)
7679 {
7680         int err;
7681
7682         rtnl_lock();
7683         err = register_netdevice(dev);
7684         rtnl_unlock();
7685         return err;
7686 }
7687 EXPORT_SYMBOL(register_netdev);
7688
7689 int netdev_refcnt_read(const struct net_device *dev)
7690 {
7691         int i, refcnt = 0;
7692
7693         for_each_possible_cpu(i)
7694                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7695         return refcnt;
7696 }
7697 EXPORT_SYMBOL(netdev_refcnt_read);
7698
7699 /**
7700  * netdev_wait_allrefs - wait until all references are gone.
7701  * @dev: target net_device
7702  *
7703  * This is called when unregistering network devices.
7704  *
7705  * Any protocol or device that holds a reference should register
7706  * for netdevice notification, and cleanup and put back the
7707  * reference if they receive an UNREGISTER event.
7708  * We can get stuck here if buggy protocols don't correctly
7709  * call dev_put.
7710  */
7711 static void netdev_wait_allrefs(struct net_device *dev)
7712 {
7713         unsigned long rebroadcast_time, warning_time;
7714         int refcnt;
7715
7716         linkwatch_forget_dev(dev);
7717
7718         rebroadcast_time = warning_time = jiffies;
7719         refcnt = netdev_refcnt_read(dev);
7720
7721         while (refcnt != 0) {
7722                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7723                         rtnl_lock();
7724
7725                         /* Rebroadcast unregister notification */
7726                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7727
7728                         __rtnl_unlock();
7729                         rcu_barrier();
7730                         rtnl_lock();
7731
7732                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7733                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7734                                      &dev->state)) {
7735                                 /* We must not have linkwatch events
7736                                  * pending on unregister. If this
7737                                  * happens, we simply run the queue
7738                                  * unscheduled, resulting in a noop
7739                                  * for this device.
7740                                  */
7741                                 linkwatch_run_queue();
7742                         }
7743
7744                         __rtnl_unlock();
7745
7746                         rebroadcast_time = jiffies;
7747                 }
7748
7749                 msleep(250);
7750
7751                 refcnt = netdev_refcnt_read(dev);
7752
7753                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7754                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7755                                  dev->name, refcnt);
7756                         warning_time = jiffies;
7757                 }
7758         }
7759 }
7760
7761 /* The sequence is:
7762  *
7763  *      rtnl_lock();
7764  *      ...
7765  *      register_netdevice(x1);
7766  *      register_netdevice(x2);
7767  *      ...
7768  *      unregister_netdevice(y1);
7769  *      unregister_netdevice(y2);
7770  *      ...
7771  *      rtnl_unlock();
7772  *      free_netdev(y1);
7773  *      free_netdev(y2);
7774  *
7775  * We are invoked by rtnl_unlock().
7776  * This allows us to deal with problems:
7777  * 1) We can delete sysfs objects which invoke hotplug
7778  *    without deadlocking with linkwatch via keventd.
7779  * 2) Since we run with the RTNL semaphore not held, we can sleep
7780  *    safely in order to wait for the netdev refcnt to drop to zero.
7781  *
7782  * We must not return until all unregister events added during
7783  * the interval the lock was held have been completed.
7784  */
7785 void netdev_run_todo(void)
7786 {
7787         struct list_head list;
7788
7789         /* Snapshot list, allow later requests */
7790         list_replace_init(&net_todo_list, &list);
7791
7792         __rtnl_unlock();
7793
7794
7795         /* Wait for rcu callbacks to finish before next phase */
7796         if (!list_empty(&list))
7797                 rcu_barrier();
7798
7799         while (!list_empty(&list)) {
7800                 struct net_device *dev
7801                         = list_first_entry(&list, struct net_device, todo_list);
7802                 list_del(&dev->todo_list);
7803
7804                 rtnl_lock();
7805                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7806                 __rtnl_unlock();
7807
7808                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7809                         pr_err("network todo '%s' but state %d\n",
7810                                dev->name, dev->reg_state);
7811                         dump_stack();
7812                         continue;
7813                 }
7814
7815                 dev->reg_state = NETREG_UNREGISTERED;
7816
7817                 netdev_wait_allrefs(dev);
7818
7819                 /* paranoia */
7820                 BUG_ON(netdev_refcnt_read(dev));
7821                 BUG_ON(!list_empty(&dev->ptype_all));
7822                 BUG_ON(!list_empty(&dev->ptype_specific));
7823                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7824                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7825                 WARN_ON(dev->dn_ptr);
7826
7827                 if (dev->priv_destructor)
7828                         dev->priv_destructor(dev);
7829                 if (dev->needs_free_netdev)
7830                         free_netdev(dev);
7831
7832                 /* Report a network device has been unregistered */
7833                 rtnl_lock();
7834                 dev_net(dev)->dev_unreg_count--;
7835                 __rtnl_unlock();
7836                 wake_up(&netdev_unregistering_wq);
7837
7838                 /* Free network device */
7839                 kobject_put(&dev->dev.kobj);
7840         }
7841 }
7842
7843 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7844  * all the same fields in the same order as net_device_stats, with only
7845  * the type differing, but rtnl_link_stats64 may have additional fields
7846  * at the end for newer counters.
7847  */
7848 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7849                              const struct net_device_stats *netdev_stats)
7850 {
7851 #if BITS_PER_LONG == 64
7852         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7853         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7854         /* zero out counters that only exist in rtnl_link_stats64 */
7855         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7856                sizeof(*stats64) - sizeof(*netdev_stats));
7857 #else
7858         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7859         const unsigned long *src = (const unsigned long *)netdev_stats;
7860         u64 *dst = (u64 *)stats64;
7861
7862         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7863         for (i = 0; i < n; i++)
7864                 dst[i] = src[i];
7865         /* zero out counters that only exist in rtnl_link_stats64 */
7866         memset((char *)stats64 + n * sizeof(u64), 0,
7867                sizeof(*stats64) - n * sizeof(u64));
7868 #endif
7869 }
7870 EXPORT_SYMBOL(netdev_stats_to_stats64);
7871
7872 /**
7873  *      dev_get_stats   - get network device statistics
7874  *      @dev: device to get statistics from
7875  *      @storage: place to store stats
7876  *
7877  *      Get network statistics from device. Return @storage.
7878  *      The device driver may provide its own method by setting
7879  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7880  *      otherwise the internal statistics structure is used.
7881  */
7882 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7883                                         struct rtnl_link_stats64 *storage)
7884 {
7885         const struct net_device_ops *ops = dev->netdev_ops;
7886
7887         if (ops->ndo_get_stats64) {
7888                 memset(storage, 0, sizeof(*storage));
7889                 ops->ndo_get_stats64(dev, storage);
7890         } else if (ops->ndo_get_stats) {
7891                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7892         } else {
7893                 netdev_stats_to_stats64(storage, &dev->stats);
7894         }
7895         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7896         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7897         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
7898         return storage;
7899 }
7900 EXPORT_SYMBOL(dev_get_stats);
7901
7902 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7903 {
7904         struct netdev_queue *queue = dev_ingress_queue(dev);
7905
7906 #ifdef CONFIG_NET_CLS_ACT
7907         if (queue)
7908                 return queue;
7909         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7910         if (!queue)
7911                 return NULL;
7912         netdev_init_one_queue(dev, queue, NULL);
7913         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7914         queue->qdisc_sleeping = &noop_qdisc;
7915         rcu_assign_pointer(dev->ingress_queue, queue);
7916 #endif
7917         return queue;
7918 }
7919
7920 static const struct ethtool_ops default_ethtool_ops;
7921
7922 void netdev_set_default_ethtool_ops(struct net_device *dev,
7923                                     const struct ethtool_ops *ops)
7924 {
7925         if (dev->ethtool_ops == &default_ethtool_ops)
7926                 dev->ethtool_ops = ops;
7927 }
7928 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7929
7930 void netdev_freemem(struct net_device *dev)
7931 {
7932         char *addr = (char *)dev - dev->padded;
7933
7934         kvfree(addr);
7935 }
7936
7937 /**
7938  * alloc_netdev_mqs - allocate network device
7939  * @sizeof_priv: size of private data to allocate space for
7940  * @name: device name format string
7941  * @name_assign_type: origin of device name
7942  * @setup: callback to initialize device
7943  * @txqs: the number of TX subqueues to allocate
7944  * @rxqs: the number of RX subqueues to allocate
7945  *
7946  * Allocates a struct net_device with private data area for driver use
7947  * and performs basic initialization.  Also allocates subqueue structs
7948  * for each queue on the device.
7949  */
7950 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7951                 unsigned char name_assign_type,
7952                 void (*setup)(struct net_device *),
7953                 unsigned int txqs, unsigned int rxqs)
7954 {
7955         struct net_device *dev;
7956         size_t alloc_size;
7957         struct net_device *p;
7958
7959         BUG_ON(strlen(name) >= sizeof(dev->name));
7960
7961         if (txqs < 1) {
7962                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7963                 return NULL;
7964         }
7965
7966 #ifdef CONFIG_SYSFS
7967         if (rxqs < 1) {
7968                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7969                 return NULL;
7970         }
7971 #endif
7972
7973         alloc_size = sizeof(struct net_device);
7974         if (sizeof_priv) {
7975                 /* ensure 32-byte alignment of private area */
7976                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7977                 alloc_size += sizeof_priv;
7978         }
7979         /* ensure 32-byte alignment of whole construct */
7980         alloc_size += NETDEV_ALIGN - 1;
7981
7982         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7983         if (!p)
7984                 return NULL;
7985
7986         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7987         dev->padded = (char *)dev - (char *)p;
7988
7989         dev->pcpu_refcnt = alloc_percpu(int);
7990         if (!dev->pcpu_refcnt)
7991                 goto free_dev;
7992
7993         if (dev_addr_init(dev))
7994                 goto free_pcpu;
7995
7996         dev_mc_init(dev);
7997         dev_uc_init(dev);
7998
7999         dev_net_set(dev, &init_net);
8000
8001         dev->gso_max_size = GSO_MAX_SIZE;
8002         dev->gso_max_segs = GSO_MAX_SEGS;
8003
8004         INIT_LIST_HEAD(&dev->napi_list);
8005         INIT_LIST_HEAD(&dev->unreg_list);
8006         INIT_LIST_HEAD(&dev->close_list);
8007         INIT_LIST_HEAD(&dev->link_watch_list);
8008         INIT_LIST_HEAD(&dev->adj_list.upper);
8009         INIT_LIST_HEAD(&dev->adj_list.lower);
8010         INIT_LIST_HEAD(&dev->ptype_all);
8011         INIT_LIST_HEAD(&dev->ptype_specific);
8012 #ifdef CONFIG_NET_SCHED
8013         hash_init(dev->qdisc_hash);
8014 #endif
8015         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8016         setup(dev);
8017
8018         if (!dev->tx_queue_len) {
8019                 dev->priv_flags |= IFF_NO_QUEUE;
8020                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8021         }
8022
8023         dev->num_tx_queues = txqs;
8024         dev->real_num_tx_queues = txqs;
8025         if (netif_alloc_netdev_queues(dev))
8026                 goto free_all;
8027
8028 #ifdef CONFIG_SYSFS
8029         dev->num_rx_queues = rxqs;
8030         dev->real_num_rx_queues = rxqs;
8031         if (netif_alloc_rx_queues(dev))
8032                 goto free_all;
8033 #endif
8034
8035         strcpy(dev->name, name);
8036         dev->name_assign_type = name_assign_type;
8037         dev->group = INIT_NETDEV_GROUP;
8038         if (!dev->ethtool_ops)
8039                 dev->ethtool_ops = &default_ethtool_ops;
8040
8041         nf_hook_ingress_init(dev);
8042
8043         return dev;
8044
8045 free_all:
8046         free_netdev(dev);
8047         return NULL;
8048
8049 free_pcpu:
8050         free_percpu(dev->pcpu_refcnt);
8051 free_dev:
8052         netdev_freemem(dev);
8053         return NULL;
8054 }
8055 EXPORT_SYMBOL(alloc_netdev_mqs);
8056
8057 /**
8058  * free_netdev - free network device
8059  * @dev: device
8060  *
8061  * This function does the last stage of destroying an allocated device
8062  * interface. The reference to the device object is released. If this
8063  * is the last reference then it will be freed.Must be called in process
8064  * context.
8065  */
8066 void free_netdev(struct net_device *dev)
8067 {
8068         struct napi_struct *p, *n;
8069         struct bpf_prog *prog;
8070
8071         might_sleep();
8072         netif_free_tx_queues(dev);
8073 #ifdef CONFIG_SYSFS
8074         kvfree(dev->_rx);
8075 #endif
8076
8077         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8078
8079         /* Flush device addresses */
8080         dev_addr_flush(dev);
8081
8082         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8083                 netif_napi_del(p);
8084
8085         free_percpu(dev->pcpu_refcnt);
8086         dev->pcpu_refcnt = NULL;
8087
8088         prog = rcu_dereference_protected(dev->xdp_prog, 1);
8089         if (prog) {
8090                 bpf_prog_put(prog);
8091                 static_key_slow_dec(&generic_xdp_needed);
8092         }
8093
8094         /*  Compatibility with error handling in drivers */
8095         if (dev->reg_state == NETREG_UNINITIALIZED) {
8096                 netdev_freemem(dev);
8097                 return;
8098         }
8099
8100         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8101         dev->reg_state = NETREG_RELEASED;
8102
8103         /* will free via device release */
8104         put_device(&dev->dev);
8105 }
8106 EXPORT_SYMBOL(free_netdev);
8107
8108 /**
8109  *      synchronize_net -  Synchronize with packet receive processing
8110  *
8111  *      Wait for packets currently being received to be done.
8112  *      Does not block later packets from starting.
8113  */
8114 void synchronize_net(void)
8115 {
8116         might_sleep();
8117         if (rtnl_is_locked())
8118                 synchronize_rcu_expedited();
8119         else
8120                 synchronize_rcu();
8121 }
8122 EXPORT_SYMBOL(synchronize_net);
8123
8124 /**
8125  *      unregister_netdevice_queue - remove device from the kernel
8126  *      @dev: device
8127  *      @head: list
8128  *
8129  *      This function shuts down a device interface and removes it
8130  *      from the kernel tables.
8131  *      If head not NULL, device is queued to be unregistered later.
8132  *
8133  *      Callers must hold the rtnl semaphore.  You may want
8134  *      unregister_netdev() instead of this.
8135  */
8136
8137 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8138 {
8139         ASSERT_RTNL();
8140
8141         if (head) {
8142                 list_move_tail(&dev->unreg_list, head);
8143         } else {
8144                 rollback_registered(dev);
8145                 /* Finish processing unregister after unlock */
8146                 net_set_todo(dev);
8147         }
8148 }
8149 EXPORT_SYMBOL(unregister_netdevice_queue);
8150
8151 /**
8152  *      unregister_netdevice_many - unregister many devices
8153  *      @head: list of devices
8154  *
8155  *  Note: As most callers use a stack allocated list_head,
8156  *  we force a list_del() to make sure stack wont be corrupted later.
8157  */
8158 void unregister_netdevice_many(struct list_head *head)
8159 {
8160         struct net_device *dev;
8161
8162         if (!list_empty(head)) {
8163                 rollback_registered_many(head);
8164                 list_for_each_entry(dev, head, unreg_list)
8165                         net_set_todo(dev);
8166                 list_del(head);
8167         }
8168 }
8169 EXPORT_SYMBOL(unregister_netdevice_many);
8170
8171 /**
8172  *      unregister_netdev - remove device from the kernel
8173  *      @dev: device
8174  *
8175  *      This function shuts down a device interface and removes it
8176  *      from the kernel tables.
8177  *
8178  *      This is just a wrapper for unregister_netdevice that takes
8179  *      the rtnl semaphore.  In general you want to use this and not
8180  *      unregister_netdevice.
8181  */
8182 void unregister_netdev(struct net_device *dev)
8183 {
8184         rtnl_lock();
8185         unregister_netdevice(dev);
8186         rtnl_unlock();
8187 }
8188 EXPORT_SYMBOL(unregister_netdev);
8189
8190 /**
8191  *      dev_change_net_namespace - move device to different nethost namespace
8192  *      @dev: device
8193  *      @net: network namespace
8194  *      @pat: If not NULL name pattern to try if the current device name
8195  *            is already taken in the destination network namespace.
8196  *
8197  *      This function shuts down a device interface and moves it
8198  *      to a new network namespace. On success 0 is returned, on
8199  *      a failure a netagive errno code is returned.
8200  *
8201  *      Callers must hold the rtnl semaphore.
8202  */
8203
8204 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8205 {
8206         int err;
8207
8208         ASSERT_RTNL();
8209
8210         /* Don't allow namespace local devices to be moved. */
8211         err = -EINVAL;
8212         if (dev->features & NETIF_F_NETNS_LOCAL)
8213                 goto out;
8214
8215         /* Ensure the device has been registrered */
8216         if (dev->reg_state != NETREG_REGISTERED)
8217                 goto out;
8218
8219         /* Get out if there is nothing todo */
8220         err = 0;
8221         if (net_eq(dev_net(dev), net))
8222                 goto out;
8223
8224         /* Pick the destination device name, and ensure
8225          * we can use it in the destination network namespace.
8226          */
8227         err = -EEXIST;
8228         if (__dev_get_by_name(net, dev->name)) {
8229                 /* We get here if we can't use the current device name */
8230                 if (!pat)
8231                         goto out;
8232                 if (dev_get_valid_name(net, dev, pat) < 0)
8233                         goto out;
8234         }
8235
8236         /*
8237          * And now a mini version of register_netdevice unregister_netdevice.
8238          */
8239
8240         /* If device is running close it first. */
8241         dev_close(dev);
8242
8243         /* And unlink it from device chain */
8244         err = -ENODEV;
8245         unlist_netdevice(dev);
8246
8247         synchronize_net();
8248
8249         /* Shutdown queueing discipline. */
8250         dev_shutdown(dev);
8251
8252         /* Notify protocols, that we are about to destroy
8253          * this device. They should clean all the things.
8254          *
8255          * Note that dev->reg_state stays at NETREG_REGISTERED.
8256          * This is wanted because this way 8021q and macvlan know
8257          * the device is just moving and can keep their slaves up.
8258          */
8259         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8260         rcu_barrier();
8261         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8262         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8263
8264         /*
8265          *      Flush the unicast and multicast chains
8266          */
8267         dev_uc_flush(dev);
8268         dev_mc_flush(dev);
8269
8270         /* Send a netdev-removed uevent to the old namespace */
8271         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8272         netdev_adjacent_del_links(dev);
8273
8274         /* Actually switch the network namespace */
8275         dev_net_set(dev, net);
8276
8277         /* If there is an ifindex conflict assign a new one */
8278         if (__dev_get_by_index(net, dev->ifindex))
8279                 dev->ifindex = dev_new_index(net);
8280
8281         /* Send a netdev-add uevent to the new namespace */
8282         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8283         netdev_adjacent_add_links(dev);
8284
8285         /* Fixup kobjects */
8286         err = device_rename(&dev->dev, dev->name);
8287         WARN_ON(err);
8288
8289         /* Add the device back in the hashes */
8290         list_netdevice(dev);
8291
8292         /* Notify protocols, that a new device appeared. */
8293         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8294
8295         /*
8296          *      Prevent userspace races by waiting until the network
8297          *      device is fully setup before sending notifications.
8298          */
8299         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8300
8301         synchronize_net();
8302         err = 0;
8303 out:
8304         return err;
8305 }
8306 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8307
8308 static int dev_cpu_dead(unsigned int oldcpu)
8309 {
8310         struct sk_buff **list_skb;
8311         struct sk_buff *skb;
8312         unsigned int cpu;
8313         struct softnet_data *sd, *oldsd, *remsd = NULL;
8314
8315         local_irq_disable();
8316         cpu = smp_processor_id();
8317         sd = &per_cpu(softnet_data, cpu);
8318         oldsd = &per_cpu(softnet_data, oldcpu);
8319
8320         /* Find end of our completion_queue. */
8321         list_skb = &sd->completion_queue;
8322         while (*list_skb)
8323                 list_skb = &(*list_skb)->next;
8324         /* Append completion queue from offline CPU. */
8325         *list_skb = oldsd->completion_queue;
8326         oldsd->completion_queue = NULL;
8327
8328         /* Append output queue from offline CPU. */
8329         if (oldsd->output_queue) {
8330                 *sd->output_queue_tailp = oldsd->output_queue;
8331                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8332                 oldsd->output_queue = NULL;
8333                 oldsd->output_queue_tailp = &oldsd->output_queue;
8334         }
8335         /* Append NAPI poll list from offline CPU, with one exception :
8336          * process_backlog() must be called by cpu owning percpu backlog.
8337          * We properly handle process_queue & input_pkt_queue later.
8338          */
8339         while (!list_empty(&oldsd->poll_list)) {
8340                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8341                                                             struct napi_struct,
8342                                                             poll_list);
8343
8344                 list_del_init(&napi->poll_list);
8345                 if (napi->poll == process_backlog)
8346                         napi->state = 0;
8347                 else
8348                         ____napi_schedule(sd, napi);
8349         }
8350
8351         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8352         local_irq_enable();
8353
8354 #ifdef CONFIG_RPS
8355         remsd = oldsd->rps_ipi_list;
8356         oldsd->rps_ipi_list = NULL;
8357 #endif
8358         /* send out pending IPI's on offline CPU */
8359         net_rps_send_ipi(remsd);
8360
8361         /* Process offline CPU's input_pkt_queue */
8362         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8363                 netif_rx_ni(skb);
8364                 input_queue_head_incr(oldsd);
8365         }
8366         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8367                 netif_rx_ni(skb);
8368                 input_queue_head_incr(oldsd);
8369         }
8370
8371         return 0;
8372 }
8373
8374 /**
8375  *      netdev_increment_features - increment feature set by one
8376  *      @all: current feature set
8377  *      @one: new feature set
8378  *      @mask: mask feature set
8379  *
8380  *      Computes a new feature set after adding a device with feature set
8381  *      @one to the master device with current feature set @all.  Will not
8382  *      enable anything that is off in @mask. Returns the new feature set.
8383  */
8384 netdev_features_t netdev_increment_features(netdev_features_t all,
8385         netdev_features_t one, netdev_features_t mask)
8386 {
8387         if (mask & NETIF_F_HW_CSUM)
8388                 mask |= NETIF_F_CSUM_MASK;
8389         mask |= NETIF_F_VLAN_CHALLENGED;
8390
8391         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8392         all &= one | ~NETIF_F_ALL_FOR_ALL;
8393
8394         /* If one device supports hw checksumming, set for all. */
8395         if (all & NETIF_F_HW_CSUM)
8396                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8397
8398         return all;
8399 }
8400 EXPORT_SYMBOL(netdev_increment_features);
8401
8402 static struct hlist_head * __net_init netdev_create_hash(void)
8403 {
8404         int i;
8405         struct hlist_head *hash;
8406
8407         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8408         if (hash != NULL)
8409                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8410                         INIT_HLIST_HEAD(&hash[i]);
8411
8412         return hash;
8413 }
8414
8415 /* Initialize per network namespace state */
8416 static int __net_init netdev_init(struct net *net)
8417 {
8418         if (net != &init_net)
8419                 INIT_LIST_HEAD(&net->dev_base_head);
8420
8421         net->dev_name_head = netdev_create_hash();
8422         if (net->dev_name_head == NULL)
8423                 goto err_name;
8424
8425         net->dev_index_head = netdev_create_hash();
8426         if (net->dev_index_head == NULL)
8427                 goto err_idx;
8428
8429         return 0;
8430
8431 err_idx:
8432         kfree(net->dev_name_head);
8433 err_name:
8434         return -ENOMEM;
8435 }
8436
8437 /**
8438  *      netdev_drivername - network driver for the device
8439  *      @dev: network device
8440  *
8441  *      Determine network driver for device.
8442  */
8443 const char *netdev_drivername(const struct net_device *dev)
8444 {
8445         const struct device_driver *driver;
8446         const struct device *parent;
8447         const char *empty = "";
8448
8449         parent = dev->dev.parent;
8450         if (!parent)
8451                 return empty;
8452
8453         driver = parent->driver;
8454         if (driver && driver->name)
8455                 return driver->name;
8456         return empty;
8457 }
8458
8459 static void __netdev_printk(const char *level, const struct net_device *dev,
8460                             struct va_format *vaf)
8461 {
8462         if (dev && dev->dev.parent) {
8463                 dev_printk_emit(level[1] - '0',
8464                                 dev->dev.parent,
8465                                 "%s %s %s%s: %pV",
8466                                 dev_driver_string(dev->dev.parent),
8467                                 dev_name(dev->dev.parent),
8468                                 netdev_name(dev), netdev_reg_state(dev),
8469                                 vaf);
8470         } else if (dev) {
8471                 printk("%s%s%s: %pV",
8472                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8473         } else {
8474                 printk("%s(NULL net_device): %pV", level, vaf);
8475         }
8476 }
8477
8478 void netdev_printk(const char *level, const struct net_device *dev,
8479                    const char *format, ...)
8480 {
8481         struct va_format vaf;
8482         va_list args;
8483
8484         va_start(args, format);
8485
8486         vaf.fmt = format;
8487         vaf.va = &args;
8488
8489         __netdev_printk(level, dev, &vaf);
8490
8491         va_end(args);
8492 }
8493 EXPORT_SYMBOL(netdev_printk);
8494
8495 #define define_netdev_printk_level(func, level)                 \
8496 void func(const struct net_device *dev, const char *fmt, ...)   \
8497 {                                                               \
8498         struct va_format vaf;                                   \
8499         va_list args;                                           \
8500                                                                 \
8501         va_start(args, fmt);                                    \
8502                                                                 \
8503         vaf.fmt = fmt;                                          \
8504         vaf.va = &args;                                         \
8505                                                                 \
8506         __netdev_printk(level, dev, &vaf);                      \
8507                                                                 \
8508         va_end(args);                                           \
8509 }                                                               \
8510 EXPORT_SYMBOL(func);
8511
8512 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8513 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8514 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8515 define_netdev_printk_level(netdev_err, KERN_ERR);
8516 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8517 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8518 define_netdev_printk_level(netdev_info, KERN_INFO);
8519
8520 static void __net_exit netdev_exit(struct net *net)
8521 {
8522         kfree(net->dev_name_head);
8523         kfree(net->dev_index_head);
8524 }
8525
8526 static struct pernet_operations __net_initdata netdev_net_ops = {
8527         .init = netdev_init,
8528         .exit = netdev_exit,
8529 };
8530
8531 static void __net_exit default_device_exit(struct net *net)
8532 {
8533         struct net_device *dev, *aux;
8534         /*
8535          * Push all migratable network devices back to the
8536          * initial network namespace
8537          */
8538         rtnl_lock();
8539         for_each_netdev_safe(net, dev, aux) {
8540                 int err;
8541                 char fb_name[IFNAMSIZ];
8542
8543                 /* Ignore unmoveable devices (i.e. loopback) */
8544                 if (dev->features & NETIF_F_NETNS_LOCAL)
8545                         continue;
8546
8547                 /* Leave virtual devices for the generic cleanup */
8548                 if (dev->rtnl_link_ops)
8549                         continue;
8550
8551                 /* Push remaining network devices to init_net */
8552                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8553                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8554                 if (err) {
8555                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8556                                  __func__, dev->name, err);
8557                         BUG();
8558                 }
8559         }
8560         rtnl_unlock();
8561 }
8562
8563 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8564 {
8565         /* Return with the rtnl_lock held when there are no network
8566          * devices unregistering in any network namespace in net_list.
8567          */
8568         struct net *net;
8569         bool unregistering;
8570         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8571
8572         add_wait_queue(&netdev_unregistering_wq, &wait);
8573         for (;;) {
8574                 unregistering = false;
8575                 rtnl_lock();
8576                 list_for_each_entry(net, net_list, exit_list) {
8577                         if (net->dev_unreg_count > 0) {
8578                                 unregistering = true;
8579                                 break;
8580                         }
8581                 }
8582                 if (!unregistering)
8583                         break;
8584                 __rtnl_unlock();
8585
8586                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8587         }
8588         remove_wait_queue(&netdev_unregistering_wq, &wait);
8589 }
8590
8591 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8592 {
8593         /* At exit all network devices most be removed from a network
8594          * namespace.  Do this in the reverse order of registration.
8595          * Do this across as many network namespaces as possible to
8596          * improve batching efficiency.
8597          */
8598         struct net_device *dev;
8599         struct net *net;
8600         LIST_HEAD(dev_kill_list);
8601
8602         /* To prevent network device cleanup code from dereferencing
8603          * loopback devices or network devices that have been freed
8604          * wait here for all pending unregistrations to complete,
8605          * before unregistring the loopback device and allowing the
8606          * network namespace be freed.
8607          *
8608          * The netdev todo list containing all network devices
8609          * unregistrations that happen in default_device_exit_batch
8610          * will run in the rtnl_unlock() at the end of
8611          * default_device_exit_batch.
8612          */
8613         rtnl_lock_unregistering(net_list);
8614         list_for_each_entry(net, net_list, exit_list) {
8615                 for_each_netdev_reverse(net, dev) {
8616                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8617                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8618                         else
8619                                 unregister_netdevice_queue(dev, &dev_kill_list);
8620                 }
8621         }
8622         unregister_netdevice_many(&dev_kill_list);
8623         rtnl_unlock();
8624 }
8625
8626 static struct pernet_operations __net_initdata default_device_ops = {
8627         .exit = default_device_exit,
8628         .exit_batch = default_device_exit_batch,
8629 };
8630
8631 /*
8632  *      Initialize the DEV module. At boot time this walks the device list and
8633  *      unhooks any devices that fail to initialise (normally hardware not
8634  *      present) and leaves us with a valid list of present and active devices.
8635  *
8636  */
8637
8638 /*
8639  *       This is called single threaded during boot, so no need
8640  *       to take the rtnl semaphore.
8641  */
8642 static int __init net_dev_init(void)
8643 {
8644         int i, rc = -ENOMEM;
8645
8646         BUG_ON(!dev_boot_phase);
8647
8648         if (dev_proc_init())
8649                 goto out;
8650
8651         if (netdev_kobject_init())
8652                 goto out;
8653
8654         INIT_LIST_HEAD(&ptype_all);
8655         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8656                 INIT_LIST_HEAD(&ptype_base[i]);
8657
8658         INIT_LIST_HEAD(&offload_base);
8659
8660         if (register_pernet_subsys(&netdev_net_ops))
8661                 goto out;
8662
8663         /*
8664          *      Initialise the packet receive queues.
8665          */
8666
8667         for_each_possible_cpu(i) {
8668                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8669                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8670
8671                 INIT_WORK(flush, flush_backlog);
8672
8673                 skb_queue_head_init(&sd->input_pkt_queue);
8674                 skb_queue_head_init(&sd->process_queue);
8675                 INIT_LIST_HEAD(&sd->poll_list);
8676                 sd->output_queue_tailp = &sd->output_queue;
8677 #ifdef CONFIG_RPS
8678                 sd->csd.func = rps_trigger_softirq;
8679                 sd->csd.info = sd;
8680                 sd->cpu = i;
8681 #endif
8682
8683                 sd->backlog.poll = process_backlog;
8684                 sd->backlog.weight = weight_p;
8685         }
8686
8687         dev_boot_phase = 0;
8688
8689         /* The loopback device is special if any other network devices
8690          * is present in a network namespace the loopback device must
8691          * be present. Since we now dynamically allocate and free the
8692          * loopback device ensure this invariant is maintained by
8693          * keeping the loopback device as the first device on the
8694          * list of network devices.  Ensuring the loopback devices
8695          * is the first device that appears and the last network device
8696          * that disappears.
8697          */
8698         if (register_pernet_device(&loopback_net_ops))
8699                 goto out;
8700
8701         if (register_pernet_device(&default_device_ops))
8702                 goto out;
8703
8704         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8705         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8706
8707         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8708                                        NULL, dev_cpu_dead);
8709         WARN_ON(rc < 0);
8710         rc = 0;
8711 out:
8712         return rc;
8713 }
8714
8715 subsys_initcall(net_dev_init);