Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[platform/kernel/linux-rpi.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148
149 #include "net-sysfs.h"
150
151 /* Instead of increasing this, you should create a hash table. */
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165                                          struct net_device *dev,
166                                          struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234         struct net *net = dev_net(dev);
235
236         ASSERT_RTNL();
237
238         write_lock_bh(&dev_base_lock);
239         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241         hlist_add_head_rcu(&dev->index_hlist,
242                            dev_index_hash(net, dev->ifindex));
243         write_unlock_bh(&dev_base_lock);
244
245         dev_base_seq_inc(net);
246 }
247
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253         ASSERT_RTNL();
254
255         /* Unlink dev from the device chain */
256         write_lock_bh(&dev_base_lock);
257         list_del_rcu(&dev->dev_list);
258         hlist_del_rcu(&dev->name_hlist);
259         hlist_del_rcu(&dev->index_hlist);
260         write_unlock_bh(&dev_base_lock);
261
262         dev_base_seq_inc(dev_net(dev));
263 }
264
265 /*
266  *      Our notifier list
267  */
268
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270
271 /*
272  *      Device drivers call our routines to queue packets here. We empty the
273  *      queue in the local softnet handler.
274  */
275
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301 static const char *const netdev_lock_name[] = {
302         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323         int i;
324
325         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326                 if (netdev_lock_type[i] == dev_type)
327                         return i;
328         /* the last key is used by default */
329         return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333                                                  unsigned short dev_type)
334 {
335         int i;
336
337         i = netdev_lock_pos(dev_type);
338         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344         int i;
345
346         i = netdev_lock_pos(dev->type);
347         lockdep_set_class_and_name(&dev->addr_list_lock,
348                                    &netdev_addr_lock_key[i],
349                                    netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353                                                  unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360
361 /*******************************************************************************
362  *
363  *              Protocol management and registration routines
364  *
365  *******************************************************************************/
366
367
368 /*
369  *      Add a protocol ID to the list. Now that the input handler is
370  *      smarter we can dispense with all the messy stuff that used to be
371  *      here.
372  *
373  *      BEWARE!!! Protocol handlers, mangling input packets,
374  *      MUST BE last in hash buckets and checking protocol handlers
375  *      MUST start from promiscuous ptype_all chain in net_bh.
376  *      It is true now, do not change it.
377  *      Explanation follows: if protocol handler, mangling packet, will
378  *      be the first on list, it is not able to sense, that packet
379  *      is cloned and should be copied-on-write, so that it will
380  *      change it and subsequent readers will get broken packet.
381  *                                                      --ANK (980803)
382  */
383
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386         if (pt->type == htons(ETH_P_ALL))
387                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388         else
389                 return pt->dev ? &pt->dev->ptype_specific :
390                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392
393 /**
394  *      dev_add_pack - add packet handler
395  *      @pt: packet type declaration
396  *
397  *      Add a protocol handler to the networking stack. The passed &packet_type
398  *      is linked into kernel lists and may not be freed until it has been
399  *      removed from the kernel lists.
400  *
401  *      This call does not sleep therefore it can not
402  *      guarantee all CPU's that are in middle of receiving packets
403  *      will see the new packet type (until the next received packet).
404  */
405
406 void dev_add_pack(struct packet_type *pt)
407 {
408         struct list_head *head = ptype_head(pt);
409
410         spin_lock(&ptype_lock);
411         list_add_rcu(&pt->list, head);
412         spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415
416 /**
417  *      __dev_remove_pack        - remove packet handler
418  *      @pt: packet type declaration
419  *
420  *      Remove a protocol handler that was previously added to the kernel
421  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *      from the kernel lists and can be freed or reused once this function
423  *      returns.
424  *
425  *      The packet type might still be in use by receivers
426  *      and must not be freed until after all the CPU's have gone
427  *      through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431         struct list_head *head = ptype_head(pt);
432         struct packet_type *pt1;
433
434         spin_lock(&ptype_lock);
435
436         list_for_each_entry(pt1, head, list) {
437                 if (pt == pt1) {
438                         list_del_rcu(&pt->list);
439                         goto out;
440                 }
441         }
442
443         pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445         spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448
449 /**
450  *      dev_remove_pack  - remove packet handler
451  *      @pt: packet type declaration
452  *
453  *      Remove a protocol handler that was previously added to the kernel
454  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *      from the kernel lists and can be freed or reused once this function
456  *      returns.
457  *
458  *      This call sleeps to guarantee that no CPU is looking at the packet
459  *      type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463         __dev_remove_pack(pt);
464
465         synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468
469
470 /**
471  *      dev_add_offload - register offload handlers
472  *      @po: protocol offload declaration
473  *
474  *      Add protocol offload handlers to the networking stack. The passed
475  *      &proto_offload is linked into kernel lists and may not be freed until
476  *      it has been removed from the kernel lists.
477  *
478  *      This call does not sleep therefore it can not
479  *      guarantee all CPU's that are in middle of receiving packets
480  *      will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484         struct packet_offload *elem;
485
486         spin_lock(&offload_lock);
487         list_for_each_entry(elem, &offload_base, list) {
488                 if (po->priority < elem->priority)
489                         break;
490         }
491         list_add_rcu(&po->list, elem->list.prev);
492         spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495
496 /**
497  *      __dev_remove_offload     - remove offload handler
498  *      @po: packet offload declaration
499  *
500  *      Remove a protocol offload handler that was previously added to the
501  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *      is removed from the kernel lists and can be freed or reused once this
503  *      function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *      and must not be freed until after all the CPU's have gone
507  *      through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511         struct list_head *head = &offload_base;
512         struct packet_offload *po1;
513
514         spin_lock(&offload_lock);
515
516         list_for_each_entry(po1, head, list) {
517                 if (po == po1) {
518                         list_del_rcu(&po->list);
519                         goto out;
520                 }
521         }
522
523         pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525         spin_unlock(&offload_lock);
526 }
527
528 /**
529  *      dev_remove_offload       - remove packet offload handler
530  *      @po: packet offload declaration
531  *
532  *      Remove a packet offload handler that was previously added to the kernel
533  *      offload handlers by dev_add_offload(). The passed &offload_type is
534  *      removed from the kernel lists and can be freed or reused once this
535  *      function returns.
536  *
537  *      This call sleeps to guarantee that no CPU is looking at the packet
538  *      type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542         __dev_remove_offload(po);
543
544         synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547
548 /******************************************************************************
549  *
550  *                    Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557 /**
558  *      netdev_boot_setup_add   - add new setup entry
559  *      @name: name of the device
560  *      @map: configured settings for the device
561  *
562  *      Adds new setup entry to the dev_boot_setup list.  The function
563  *      returns 0 on error and 1 on success.  This is a generic routine to
564  *      all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568         struct netdev_boot_setup *s;
569         int i;
570
571         s = dev_boot_setup;
572         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574                         memset(s[i].name, 0, sizeof(s[i].name));
575                         strlcpy(s[i].name, name, IFNAMSIZ);
576                         memcpy(&s[i].map, map, sizeof(s[i].map));
577                         break;
578                 }
579         }
580
581         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583
584 /**
585  * netdev_boot_setup_check      - check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595         struct netdev_boot_setup *s = dev_boot_setup;
596         int i;
597
598         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600                     !strcmp(dev->name, s[i].name)) {
601                         dev->irq = s[i].map.irq;
602                         dev->base_addr = s[i].map.base_addr;
603                         dev->mem_start = s[i].map.mem_start;
604                         dev->mem_end = s[i].map.mem_end;
605                         return 1;
606                 }
607         }
608         return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613 /**
614  * netdev_boot_base     - get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625         const struct netdev_boot_setup *s = dev_boot_setup;
626         char name[IFNAMSIZ];
627         int i;
628
629         sprintf(name, "%s%d", prefix, unit);
630
631         /*
632          * If device already registered then return base of 1
633          * to indicate not to probe for this interface
634          */
635         if (__dev_get_by_name(&init_net, name))
636                 return 1;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639                 if (!strcmp(name, s[i].name))
640                         return s[i].map.base_addr;
641         return 0;
642 }
643
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649         int ints[5];
650         struct ifmap map;
651
652         str = get_options(str, ARRAY_SIZE(ints), ints);
653         if (!str || !*str)
654                 return 0;
655
656         /* Save settings */
657         memset(&map, 0, sizeof(map));
658         if (ints[0] > 0)
659                 map.irq = ints[1];
660         if (ints[0] > 1)
661                 map.base_addr = ints[2];
662         if (ints[0] > 2)
663                 map.mem_start = ints[3];
664         if (ints[0] > 3)
665                 map.mem_end = ints[4];
666
667         /* Add new entry to the list */
668         return netdev_boot_setup_add(str, &map);
669 }
670
671 __setup("netdev=", netdev_boot_setup);
672
673 /*******************************************************************************
674  *
675  *                          Device Interface Subroutines
676  *
677  *******************************************************************************/
678
679 /**
680  *      dev_get_iflink  - get 'iflink' value of a interface
681  *      @dev: targeted interface
682  *
683  *      Indicates the ifindex the interface is linked to.
684  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686
687 int dev_get_iflink(const struct net_device *dev)
688 {
689         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690                 return dev->netdev_ops->ndo_get_iflink(dev);
691
692         return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *      @dev: targeted interface
699  *      @skb: The packet.
700  *
701  *      For better visibility of tunnel traffic OVS needs to retrieve
702  *      egress tunnel information for a packet. Following API allows
703  *      user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707         struct ip_tunnel_info *info;
708
709         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710                 return -EINVAL;
711
712         info = skb_tunnel_info_unclone(skb);
713         if (!info)
714                 return -ENOMEM;
715         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716                 return -EINVAL;
717
718         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722 /**
723  *      __dev_get_by_name       - find a device by its name
724  *      @net: the applicable net namespace
725  *      @name: name to find
726  *
727  *      Find an interface by name. Must be called under RTNL semaphore
728  *      or @dev_base_lock. If the name is found a pointer to the device
729  *      is returned. If the name is not found then %NULL is returned. The
730  *      reference counters are not incremented so the caller must be
731  *      careful with locks.
732  */
733
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736         struct net_device *dev;
737         struct hlist_head *head = dev_name_hash(net, name);
738
739         hlist_for_each_entry(dev, head, name_hlist)
740                 if (!strncmp(dev->name, name, IFNAMSIZ))
741                         return dev;
742
743         return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746
747 /**
748  * dev_get_by_name_rcu  - find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761         struct net_device *dev;
762         struct hlist_head *head = dev_name_hash(net, name);
763
764         hlist_for_each_entry_rcu(dev, head, name_hlist)
765                 if (!strncmp(dev->name, name, IFNAMSIZ))
766                         return dev;
767
768         return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772 /**
773  *      dev_get_by_name         - find a device by its name
774  *      @net: the applicable net namespace
775  *      @name: name to find
776  *
777  *      Find an interface by name. This can be called from any
778  *      context and does its own locking. The returned handle has
779  *      the usage count incremented and the caller must use dev_put() to
780  *      release it when it is no longer needed. %NULL is returned if no
781  *      matching device is found.
782  */
783
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786         struct net_device *dev;
787
788         rcu_read_lock();
789         dev = dev_get_by_name_rcu(net, name);
790         if (dev)
791                 dev_hold(dev);
792         rcu_read_unlock();
793         return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796
797 /**
798  *      __dev_get_by_index - find a device by its ifindex
799  *      @net: the applicable net namespace
800  *      @ifindex: index of device
801  *
802  *      Search for an interface by index. Returns %NULL if the device
803  *      is not found or a pointer to the device. The device has not
804  *      had its reference counter increased so the caller must be careful
805  *      about locking. The caller must hold either the RTNL semaphore
806  *      or @dev_base_lock.
807  */
808
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811         struct net_device *dev;
812         struct hlist_head *head = dev_index_hash(net, ifindex);
813
814         hlist_for_each_entry(dev, head, index_hlist)
815                 if (dev->ifindex == ifindex)
816                         return dev;
817
818         return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821
822 /**
823  *      dev_get_by_index_rcu - find a device by its ifindex
824  *      @net: the applicable net namespace
825  *      @ifindex: index of device
826  *
827  *      Search for an interface by index. Returns %NULL if the device
828  *      is not found or a pointer to the device. The device has not
829  *      had its reference counter increased so the caller must be careful
830  *      about locking. The caller must hold RCU lock.
831  */
832
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835         struct net_device *dev;
836         struct hlist_head *head = dev_index_hash(net, ifindex);
837
838         hlist_for_each_entry_rcu(dev, head, index_hlist)
839                 if (dev->ifindex == ifindex)
840                         return dev;
841
842         return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847 /**
848  *      dev_get_by_index - find a device by its ifindex
849  *      @net: the applicable net namespace
850  *      @ifindex: index of device
851  *
852  *      Search for an interface by index. Returns NULL if the device
853  *      is not found or a pointer to the device. The device returned has
854  *      had a reference added and the pointer is safe until the user calls
855  *      dev_put to indicate they have finished with it.
856  */
857
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861
862         rcu_read_lock();
863         dev = dev_get_by_index_rcu(net, ifindex);
864         if (dev)
865                 dev_hold(dev);
866         rcu_read_unlock();
867         return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870
871 /**
872  *      dev_get_by_napi_id - find a device by napi_id
873  *      @napi_id: ID of the NAPI struct
874  *
875  *      Search for an interface by NAPI ID. Returns %NULL if the device
876  *      is not found or a pointer to the device. The device has not had
877  *      its reference counter increased so the caller must be careful
878  *      about locking. The caller must hold RCU lock.
879  */
880
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883         struct napi_struct *napi;
884
885         WARN_ON_ONCE(!rcu_read_lock_held());
886
887         if (napi_id < MIN_NAPI_ID)
888                 return NULL;
889
890         napi = napi_by_id(napi_id);
891
892         return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895
896 /**
897  *      netdev_get_name - get a netdevice name, knowing its ifindex.
898  *      @net: network namespace
899  *      @name: a pointer to the buffer where the name will be stored.
900  *      @ifindex: the ifindex of the interface to get the name from.
901  *
902  *      The use of raw_seqcount_begin() and cond_resched() before
903  *      retrying is required as we want to give the writers a chance
904  *      to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908         struct net_device *dev;
909         unsigned int seq;
910
911 retry:
912         seq = raw_seqcount_begin(&devnet_rename_seq);
913         rcu_read_lock();
914         dev = dev_get_by_index_rcu(net, ifindex);
915         if (!dev) {
916                 rcu_read_unlock();
917                 return -ENODEV;
918         }
919
920         strcpy(name, dev->name);
921         rcu_read_unlock();
922         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923                 cond_resched();
924                 goto retry;
925         }
926
927         return 0;
928 }
929
930 /**
931  *      dev_getbyhwaddr_rcu - find a device by its hardware address
932  *      @net: the applicable net namespace
933  *      @type: media type of device
934  *      @ha: hardware address
935  *
936  *      Search for an interface by MAC address. Returns NULL if the device
937  *      is not found or a pointer to the device.
938  *      The caller must hold RCU or RTNL.
939  *      The returned device has not had its ref count increased
940  *      and the caller must therefore be careful about locking
941  *
942  */
943
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945                                        const char *ha)
946 {
947         struct net_device *dev;
948
949         for_each_netdev_rcu(net, dev)
950                 if (dev->type == type &&
951                     !memcmp(dev->dev_addr, ha, dev->addr_len))
952                         return dev;
953
954         return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960         struct net_device *dev;
961
962         ASSERT_RTNL();
963         for_each_netdev(net, dev)
964                 if (dev->type == type)
965                         return dev;
966
967         return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973         struct net_device *dev, *ret = NULL;
974
975         rcu_read_lock();
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type) {
978                         dev_hold(dev);
979                         ret = dev;
980                         break;
981                 }
982         rcu_read_unlock();
983         return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987 /**
988  *      __dev_get_by_flags - find any device with given flags
989  *      @net: the applicable net namespace
990  *      @if_flags: IFF_* values
991  *      @mask: bitmask of bits in if_flags to check
992  *
993  *      Search for any interface with the given flags. Returns NULL if a device
994  *      is not found or a pointer to the device. Must be called inside
995  *      rtnl_lock(), and result refcount is unchanged.
996  */
997
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999                                       unsigned short mask)
1000 {
1001         struct net_device *dev, *ret;
1002
1003         ASSERT_RTNL();
1004
1005         ret = NULL;
1006         for_each_netdev(net, dev) {
1007                 if (((dev->flags ^ if_flags) & mask) == 0) {
1008                         ret = dev;
1009                         break;
1010                 }
1011         }
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016 /**
1017  *      dev_valid_name - check if name is okay for network device
1018  *      @name: name string
1019  *
1020  *      Network device names need to be valid file names to
1021  *      to allow sysfs to work.  We also disallow any kind of
1022  *      whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026         if (*name == '\0')
1027                 return false;
1028         if (strlen(name) >= IFNAMSIZ)
1029                 return false;
1030         if (!strcmp(name, ".") || !strcmp(name, ".."))
1031                 return false;
1032
1033         while (*name) {
1034                 if (*name == '/' || *name == ':' || isspace(*name))
1035                         return false;
1036                 name++;
1037         }
1038         return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041
1042 /**
1043  *      __dev_alloc_name - allocate a name for a device
1044  *      @net: network namespace to allocate the device name in
1045  *      @name: name format string
1046  *      @buf:  scratch buffer and result name string
1047  *
1048  *      Passed a format string - eg "lt%d" it will try and find a suitable
1049  *      id. It scans list of devices to build up a free map, then chooses
1050  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *      while allocating the name and adding the device in order to avoid
1052  *      duplicates.
1053  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *      Returns the number of the unit assigned or a negative errno code.
1055  */
1056
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059         int i = 0;
1060         const char *p;
1061         const int max_netdevices = 8*PAGE_SIZE;
1062         unsigned long *inuse;
1063         struct net_device *d;
1064
1065         p = strnchr(name, IFNAMSIZ-1, '%');
1066         if (p) {
1067                 /*
1068                  * Verify the string as this thing may have come from
1069                  * the user.  There must be either one "%d" and no other "%"
1070                  * characters.
1071                  */
1072                 if (p[1] != 'd' || strchr(p + 2, '%'))
1073                         return -EINVAL;
1074
1075                 /* Use one page as a bit array of possible slots */
1076                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1077                 if (!inuse)
1078                         return -ENOMEM;
1079
1080                 for_each_netdev(net, d) {
1081                         if (!sscanf(d->name, name, &i))
1082                                 continue;
1083                         if (i < 0 || i >= max_netdevices)
1084                                 continue;
1085
1086                         /*  avoid cases where sscanf is not exact inverse of printf */
1087                         snprintf(buf, IFNAMSIZ, name, i);
1088                         if (!strncmp(buf, d->name, IFNAMSIZ))
1089                                 set_bit(i, inuse);
1090                 }
1091
1092                 i = find_first_zero_bit(inuse, max_netdevices);
1093                 free_page((unsigned long) inuse);
1094         }
1095
1096         if (buf != name)
1097                 snprintf(buf, IFNAMSIZ, name, i);
1098         if (!__dev_get_by_name(net, buf))
1099                 return i;
1100
1101         /* It is possible to run out of possible slots
1102          * when the name is long and there isn't enough space left
1103          * for the digits, or if all bits are used.
1104          */
1105         return -ENFILE;
1106 }
1107
1108 /**
1109  *      dev_alloc_name - allocate a name for a device
1110  *      @dev: device
1111  *      @name: name format string
1112  *
1113  *      Passed a format string - eg "lt%d" it will try and find a suitable
1114  *      id. It scans list of devices to build up a free map, then chooses
1115  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1116  *      while allocating the name and adding the device in order to avoid
1117  *      duplicates.
1118  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1119  *      Returns the number of the unit assigned or a negative errno code.
1120  */
1121
1122 int dev_alloc_name(struct net_device *dev, const char *name)
1123 {
1124         char buf[IFNAMSIZ];
1125         struct net *net;
1126         int ret;
1127
1128         BUG_ON(!dev_net(dev));
1129         net = dev_net(dev);
1130         ret = __dev_alloc_name(net, name, buf);
1131         if (ret >= 0)
1132                 strlcpy(dev->name, buf, IFNAMSIZ);
1133         return ret;
1134 }
1135 EXPORT_SYMBOL(dev_alloc_name);
1136
1137 static int dev_alloc_name_ns(struct net *net,
1138                              struct net_device *dev,
1139                              const char *name)
1140 {
1141         char buf[IFNAMSIZ];
1142         int ret;
1143
1144         ret = __dev_alloc_name(net, name, buf);
1145         if (ret >= 0)
1146                 strlcpy(dev->name, buf, IFNAMSIZ);
1147         return ret;
1148 }
1149
1150 static int dev_get_valid_name(struct net *net,
1151                               struct net_device *dev,
1152                               const char *name)
1153 {
1154         BUG_ON(!net);
1155
1156         if (!dev_valid_name(name))
1157                 return -EINVAL;
1158
1159         if (strchr(name, '%'))
1160                 return dev_alloc_name_ns(net, dev, name);
1161         else if (__dev_get_by_name(net, name))
1162                 return -EEXIST;
1163         else if (dev->name != name)
1164                 strlcpy(dev->name, name, IFNAMSIZ);
1165
1166         return 0;
1167 }
1168
1169 /**
1170  *      dev_change_name - change name of a device
1171  *      @dev: device
1172  *      @newname: name (or format string) must be at least IFNAMSIZ
1173  *
1174  *      Change name of a device, can pass format strings "eth%d".
1175  *      for wildcarding.
1176  */
1177 int dev_change_name(struct net_device *dev, const char *newname)
1178 {
1179         unsigned char old_assign_type;
1180         char oldname[IFNAMSIZ];
1181         int err = 0;
1182         int ret;
1183         struct net *net;
1184
1185         ASSERT_RTNL();
1186         BUG_ON(!dev_net(dev));
1187
1188         net = dev_net(dev);
1189         if (dev->flags & IFF_UP)
1190                 return -EBUSY;
1191
1192         write_seqcount_begin(&devnet_rename_seq);
1193
1194         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1195                 write_seqcount_end(&devnet_rename_seq);
1196                 return 0;
1197         }
1198
1199         memcpy(oldname, dev->name, IFNAMSIZ);
1200
1201         err = dev_get_valid_name(net, dev, newname);
1202         if (err < 0) {
1203                 write_seqcount_end(&devnet_rename_seq);
1204                 return err;
1205         }
1206
1207         if (oldname[0] && !strchr(oldname, '%'))
1208                 netdev_info(dev, "renamed from %s\n", oldname);
1209
1210         old_assign_type = dev->name_assign_type;
1211         dev->name_assign_type = NET_NAME_RENAMED;
1212
1213 rollback:
1214         ret = device_rename(&dev->dev, dev->name);
1215         if (ret) {
1216                 memcpy(dev->name, oldname, IFNAMSIZ);
1217                 dev->name_assign_type = old_assign_type;
1218                 write_seqcount_end(&devnet_rename_seq);
1219                 return ret;
1220         }
1221
1222         write_seqcount_end(&devnet_rename_seq);
1223
1224         netdev_adjacent_rename_links(dev, oldname);
1225
1226         write_lock_bh(&dev_base_lock);
1227         hlist_del_rcu(&dev->name_hlist);
1228         write_unlock_bh(&dev_base_lock);
1229
1230         synchronize_rcu();
1231
1232         write_lock_bh(&dev_base_lock);
1233         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1234         write_unlock_bh(&dev_base_lock);
1235
1236         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1237         ret = notifier_to_errno(ret);
1238
1239         if (ret) {
1240                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1241                 if (err >= 0) {
1242                         err = ret;
1243                         write_seqcount_begin(&devnet_rename_seq);
1244                         memcpy(dev->name, oldname, IFNAMSIZ);
1245                         memcpy(oldname, newname, IFNAMSIZ);
1246                         dev->name_assign_type = old_assign_type;
1247                         old_assign_type = NET_NAME_RENAMED;
1248                         goto rollback;
1249                 } else {
1250                         pr_err("%s: name change rollback failed: %d\n",
1251                                dev->name, ret);
1252                 }
1253         }
1254
1255         return err;
1256 }
1257
1258 /**
1259  *      dev_set_alias - change ifalias of a device
1260  *      @dev: device
1261  *      @alias: name up to IFALIASZ
1262  *      @len: limit of bytes to copy from info
1263  *
1264  *      Set ifalias for a device,
1265  */
1266 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1267 {
1268         char *new_ifalias;
1269
1270         ASSERT_RTNL();
1271
1272         if (len >= IFALIASZ)
1273                 return -EINVAL;
1274
1275         if (!len) {
1276                 kfree(dev->ifalias);
1277                 dev->ifalias = NULL;
1278                 return 0;
1279         }
1280
1281         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1282         if (!new_ifalias)
1283                 return -ENOMEM;
1284         dev->ifalias = new_ifalias;
1285         memcpy(dev->ifalias, alias, len);
1286         dev->ifalias[len] = 0;
1287
1288         return len;
1289 }
1290
1291
1292 /**
1293  *      netdev_features_change - device changes features
1294  *      @dev: device to cause notification
1295  *
1296  *      Called to indicate a device has changed features.
1297  */
1298 void netdev_features_change(struct net_device *dev)
1299 {
1300         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301 }
1302 EXPORT_SYMBOL(netdev_features_change);
1303
1304 /**
1305  *      netdev_state_change - device changes state
1306  *      @dev: device to cause notification
1307  *
1308  *      Called to indicate a device has changed state. This function calls
1309  *      the notifier chains for netdev_chain and sends a NEWLINK message
1310  *      to the routing socket.
1311  */
1312 void netdev_state_change(struct net_device *dev)
1313 {
1314         if (dev->flags & IFF_UP) {
1315                 struct netdev_notifier_change_info change_info;
1316
1317                 change_info.flags_changed = 0;
1318                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1319                                               &change_info.info);
1320                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1321         }
1322 }
1323 EXPORT_SYMBOL(netdev_state_change);
1324
1325 /**
1326  * netdev_notify_peers - notify network peers about existence of @dev
1327  * @dev: network device
1328  *
1329  * Generate traffic such that interested network peers are aware of
1330  * @dev, such as by generating a gratuitous ARP. This may be used when
1331  * a device wants to inform the rest of the network about some sort of
1332  * reconfiguration such as a failover event or virtual machine
1333  * migration.
1334  */
1335 void netdev_notify_peers(struct net_device *dev)
1336 {
1337         rtnl_lock();
1338         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1339         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1340         rtnl_unlock();
1341 }
1342 EXPORT_SYMBOL(netdev_notify_peers);
1343
1344 static int __dev_open(struct net_device *dev)
1345 {
1346         const struct net_device_ops *ops = dev->netdev_ops;
1347         int ret;
1348
1349         ASSERT_RTNL();
1350
1351         if (!netif_device_present(dev))
1352                 return -ENODEV;
1353
1354         /* Block netpoll from trying to do any rx path servicing.
1355          * If we don't do this there is a chance ndo_poll_controller
1356          * or ndo_poll may be running while we open the device
1357          */
1358         netpoll_poll_disable(dev);
1359
1360         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1361         ret = notifier_to_errno(ret);
1362         if (ret)
1363                 return ret;
1364
1365         set_bit(__LINK_STATE_START, &dev->state);
1366
1367         if (ops->ndo_validate_addr)
1368                 ret = ops->ndo_validate_addr(dev);
1369
1370         if (!ret && ops->ndo_open)
1371                 ret = ops->ndo_open(dev);
1372
1373         netpoll_poll_enable(dev);
1374
1375         if (ret)
1376                 clear_bit(__LINK_STATE_START, &dev->state);
1377         else {
1378                 dev->flags |= IFF_UP;
1379                 dev_set_rx_mode(dev);
1380                 dev_activate(dev);
1381                 add_device_randomness(dev->dev_addr, dev->addr_len);
1382         }
1383
1384         return ret;
1385 }
1386
1387 /**
1388  *      dev_open        - prepare an interface for use.
1389  *      @dev:   device to open
1390  *
1391  *      Takes a device from down to up state. The device's private open
1392  *      function is invoked and then the multicast lists are loaded. Finally
1393  *      the device is moved into the up state and a %NETDEV_UP message is
1394  *      sent to the netdev notifier chain.
1395  *
1396  *      Calling this function on an active interface is a nop. On a failure
1397  *      a negative errno code is returned.
1398  */
1399 int dev_open(struct net_device *dev)
1400 {
1401         int ret;
1402
1403         if (dev->flags & IFF_UP)
1404                 return 0;
1405
1406         ret = __dev_open(dev);
1407         if (ret < 0)
1408                 return ret;
1409
1410         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1411         call_netdevice_notifiers(NETDEV_UP, dev);
1412
1413         return ret;
1414 }
1415 EXPORT_SYMBOL(dev_open);
1416
1417 static void __dev_close_many(struct list_head *head)
1418 {
1419         struct net_device *dev;
1420
1421         ASSERT_RTNL();
1422         might_sleep();
1423
1424         list_for_each_entry(dev, head, close_list) {
1425                 /* Temporarily disable netpoll until the interface is down */
1426                 netpoll_poll_disable(dev);
1427
1428                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1429
1430                 clear_bit(__LINK_STATE_START, &dev->state);
1431
1432                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1433                  * can be even on different cpu. So just clear netif_running().
1434                  *
1435                  * dev->stop() will invoke napi_disable() on all of it's
1436                  * napi_struct instances on this device.
1437                  */
1438                 smp_mb__after_atomic(); /* Commit netif_running(). */
1439         }
1440
1441         dev_deactivate_many(head);
1442
1443         list_for_each_entry(dev, head, close_list) {
1444                 const struct net_device_ops *ops = dev->netdev_ops;
1445
1446                 /*
1447                  *      Call the device specific close. This cannot fail.
1448                  *      Only if device is UP
1449                  *
1450                  *      We allow it to be called even after a DETACH hot-plug
1451                  *      event.
1452                  */
1453                 if (ops->ndo_stop)
1454                         ops->ndo_stop(dev);
1455
1456                 dev->flags &= ~IFF_UP;
1457                 netpoll_poll_enable(dev);
1458         }
1459 }
1460
1461 static void __dev_close(struct net_device *dev)
1462 {
1463         LIST_HEAD(single);
1464
1465         list_add(&dev->close_list, &single);
1466         __dev_close_many(&single);
1467         list_del(&single);
1468 }
1469
1470 void dev_close_many(struct list_head *head, bool unlink)
1471 {
1472         struct net_device *dev, *tmp;
1473
1474         /* Remove the devices that don't need to be closed */
1475         list_for_each_entry_safe(dev, tmp, head, close_list)
1476                 if (!(dev->flags & IFF_UP))
1477                         list_del_init(&dev->close_list);
1478
1479         __dev_close_many(head);
1480
1481         list_for_each_entry_safe(dev, tmp, head, close_list) {
1482                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1483                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1484                 if (unlink)
1485                         list_del_init(&dev->close_list);
1486         }
1487 }
1488 EXPORT_SYMBOL(dev_close_many);
1489
1490 /**
1491  *      dev_close - shutdown an interface.
1492  *      @dev: device to shutdown
1493  *
1494  *      This function moves an active device into down state. A
1495  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1496  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1497  *      chain.
1498  */
1499 void dev_close(struct net_device *dev)
1500 {
1501         if (dev->flags & IFF_UP) {
1502                 LIST_HEAD(single);
1503
1504                 list_add(&dev->close_list, &single);
1505                 dev_close_many(&single, true);
1506                 list_del(&single);
1507         }
1508 }
1509 EXPORT_SYMBOL(dev_close);
1510
1511
1512 /**
1513  *      dev_disable_lro - disable Large Receive Offload on a device
1514  *      @dev: device
1515  *
1516  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1517  *      called under RTNL.  This is needed if received packets may be
1518  *      forwarded to another interface.
1519  */
1520 void dev_disable_lro(struct net_device *dev)
1521 {
1522         struct net_device *lower_dev;
1523         struct list_head *iter;
1524
1525         dev->wanted_features &= ~NETIF_F_LRO;
1526         netdev_update_features(dev);
1527
1528         if (unlikely(dev->features & NETIF_F_LRO))
1529                 netdev_WARN(dev, "failed to disable LRO!\n");
1530
1531         netdev_for_each_lower_dev(dev, lower_dev, iter)
1532                 dev_disable_lro(lower_dev);
1533 }
1534 EXPORT_SYMBOL(dev_disable_lro);
1535
1536 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1537                                    struct net_device *dev)
1538 {
1539         struct netdev_notifier_info info;
1540
1541         netdev_notifier_info_init(&info, dev);
1542         return nb->notifier_call(nb, val, &info);
1543 }
1544
1545 static int dev_boot_phase = 1;
1546
1547 /**
1548  * register_netdevice_notifier - register a network notifier block
1549  * @nb: notifier
1550  *
1551  * Register a notifier to be called when network device events occur.
1552  * The notifier passed is linked into the kernel structures and must
1553  * not be reused until it has been unregistered. A negative errno code
1554  * is returned on a failure.
1555  *
1556  * When registered all registration and up events are replayed
1557  * to the new notifier to allow device to have a race free
1558  * view of the network device list.
1559  */
1560
1561 int register_netdevice_notifier(struct notifier_block *nb)
1562 {
1563         struct net_device *dev;
1564         struct net_device *last;
1565         struct net *net;
1566         int err;
1567
1568         rtnl_lock();
1569         err = raw_notifier_chain_register(&netdev_chain, nb);
1570         if (err)
1571                 goto unlock;
1572         if (dev_boot_phase)
1573                 goto unlock;
1574         for_each_net(net) {
1575                 for_each_netdev(net, dev) {
1576                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1577                         err = notifier_to_errno(err);
1578                         if (err)
1579                                 goto rollback;
1580
1581                         if (!(dev->flags & IFF_UP))
1582                                 continue;
1583
1584                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1585                 }
1586         }
1587
1588 unlock:
1589         rtnl_unlock();
1590         return err;
1591
1592 rollback:
1593         last = dev;
1594         for_each_net(net) {
1595                 for_each_netdev(net, dev) {
1596                         if (dev == last)
1597                                 goto outroll;
1598
1599                         if (dev->flags & IFF_UP) {
1600                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1601                                                         dev);
1602                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1603                         }
1604                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1605                 }
1606         }
1607
1608 outroll:
1609         raw_notifier_chain_unregister(&netdev_chain, nb);
1610         goto unlock;
1611 }
1612 EXPORT_SYMBOL(register_netdevice_notifier);
1613
1614 /**
1615  * unregister_netdevice_notifier - unregister a network notifier block
1616  * @nb: notifier
1617  *
1618  * Unregister a notifier previously registered by
1619  * register_netdevice_notifier(). The notifier is unlinked into the
1620  * kernel structures and may then be reused. A negative errno code
1621  * is returned on a failure.
1622  *
1623  * After unregistering unregister and down device events are synthesized
1624  * for all devices on the device list to the removed notifier to remove
1625  * the need for special case cleanup code.
1626  */
1627
1628 int unregister_netdevice_notifier(struct notifier_block *nb)
1629 {
1630         struct net_device *dev;
1631         struct net *net;
1632         int err;
1633
1634         rtnl_lock();
1635         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1636         if (err)
1637                 goto unlock;
1638
1639         for_each_net(net) {
1640                 for_each_netdev(net, dev) {
1641                         if (dev->flags & IFF_UP) {
1642                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1643                                                         dev);
1644                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1645                         }
1646                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1647                 }
1648         }
1649 unlock:
1650         rtnl_unlock();
1651         return err;
1652 }
1653 EXPORT_SYMBOL(unregister_netdevice_notifier);
1654
1655 /**
1656  *      call_netdevice_notifiers_info - call all network notifier blocks
1657  *      @val: value passed unmodified to notifier function
1658  *      @dev: net_device pointer passed unmodified to notifier function
1659  *      @info: notifier information data
1660  *
1661  *      Call all network notifier blocks.  Parameters and return value
1662  *      are as for raw_notifier_call_chain().
1663  */
1664
1665 static int call_netdevice_notifiers_info(unsigned long val,
1666                                          struct net_device *dev,
1667                                          struct netdev_notifier_info *info)
1668 {
1669         ASSERT_RTNL();
1670         netdev_notifier_info_init(info, dev);
1671         return raw_notifier_call_chain(&netdev_chain, val, info);
1672 }
1673
1674 /**
1675  *      call_netdevice_notifiers - call all network notifier blocks
1676  *      @val: value passed unmodified to notifier function
1677  *      @dev: net_device pointer passed unmodified to notifier function
1678  *
1679  *      Call all network notifier blocks.  Parameters and return value
1680  *      are as for raw_notifier_call_chain().
1681  */
1682
1683 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1684 {
1685         struct netdev_notifier_info info;
1686
1687         return call_netdevice_notifiers_info(val, dev, &info);
1688 }
1689 EXPORT_SYMBOL(call_netdevice_notifiers);
1690
1691 #ifdef CONFIG_NET_INGRESS
1692 static struct static_key ingress_needed __read_mostly;
1693
1694 void net_inc_ingress_queue(void)
1695 {
1696         static_key_slow_inc(&ingress_needed);
1697 }
1698 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1699
1700 void net_dec_ingress_queue(void)
1701 {
1702         static_key_slow_dec(&ingress_needed);
1703 }
1704 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1705 #endif
1706
1707 #ifdef CONFIG_NET_EGRESS
1708 static struct static_key egress_needed __read_mostly;
1709
1710 void net_inc_egress_queue(void)
1711 {
1712         static_key_slow_inc(&egress_needed);
1713 }
1714 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1715
1716 void net_dec_egress_queue(void)
1717 {
1718         static_key_slow_dec(&egress_needed);
1719 }
1720 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1721 #endif
1722
1723 static struct static_key netstamp_needed __read_mostly;
1724 #ifdef HAVE_JUMP_LABEL
1725 static atomic_t netstamp_needed_deferred;
1726 static atomic_t netstamp_wanted;
1727 static void netstamp_clear(struct work_struct *work)
1728 {
1729         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1730         int wanted;
1731
1732         wanted = atomic_add_return(deferred, &netstamp_wanted);
1733         if (wanted > 0)
1734                 static_key_enable(&netstamp_needed);
1735         else
1736                 static_key_disable(&netstamp_needed);
1737 }
1738 static DECLARE_WORK(netstamp_work, netstamp_clear);
1739 #endif
1740
1741 void net_enable_timestamp(void)
1742 {
1743 #ifdef HAVE_JUMP_LABEL
1744         int wanted;
1745
1746         while (1) {
1747                 wanted = atomic_read(&netstamp_wanted);
1748                 if (wanted <= 0)
1749                         break;
1750                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1751                         return;
1752         }
1753         atomic_inc(&netstamp_needed_deferred);
1754         schedule_work(&netstamp_work);
1755 #else
1756         static_key_slow_inc(&netstamp_needed);
1757 #endif
1758 }
1759 EXPORT_SYMBOL(net_enable_timestamp);
1760
1761 void net_disable_timestamp(void)
1762 {
1763 #ifdef HAVE_JUMP_LABEL
1764         int wanted;
1765
1766         while (1) {
1767                 wanted = atomic_read(&netstamp_wanted);
1768                 if (wanted <= 1)
1769                         break;
1770                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1771                         return;
1772         }
1773         atomic_dec(&netstamp_needed_deferred);
1774         schedule_work(&netstamp_work);
1775 #else
1776         static_key_slow_dec(&netstamp_needed);
1777 #endif
1778 }
1779 EXPORT_SYMBOL(net_disable_timestamp);
1780
1781 static inline void net_timestamp_set(struct sk_buff *skb)
1782 {
1783         skb->tstamp = 0;
1784         if (static_key_false(&netstamp_needed))
1785                 __net_timestamp(skb);
1786 }
1787
1788 #define net_timestamp_check(COND, SKB)                  \
1789         if (static_key_false(&netstamp_needed)) {               \
1790                 if ((COND) && !(SKB)->tstamp)   \
1791                         __net_timestamp(SKB);           \
1792         }                                               \
1793
1794 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1795 {
1796         unsigned int len;
1797
1798         if (!(dev->flags & IFF_UP))
1799                 return false;
1800
1801         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1802         if (skb->len <= len)
1803                 return true;
1804
1805         /* if TSO is enabled, we don't care about the length as the packet
1806          * could be forwarded without being segmented before
1807          */
1808         if (skb_is_gso(skb))
1809                 return true;
1810
1811         return false;
1812 }
1813 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1814
1815 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1816 {
1817         int ret = ____dev_forward_skb(dev, skb);
1818
1819         if (likely(!ret)) {
1820                 skb->protocol = eth_type_trans(skb, dev);
1821                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1822         }
1823
1824         return ret;
1825 }
1826 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1827
1828 /**
1829  * dev_forward_skb - loopback an skb to another netif
1830  *
1831  * @dev: destination network device
1832  * @skb: buffer to forward
1833  *
1834  * return values:
1835  *      NET_RX_SUCCESS  (no congestion)
1836  *      NET_RX_DROP     (packet was dropped, but freed)
1837  *
1838  * dev_forward_skb can be used for injecting an skb from the
1839  * start_xmit function of one device into the receive queue
1840  * of another device.
1841  *
1842  * The receiving device may be in another namespace, so
1843  * we have to clear all information in the skb that could
1844  * impact namespace isolation.
1845  */
1846 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1847 {
1848         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1849 }
1850 EXPORT_SYMBOL_GPL(dev_forward_skb);
1851
1852 static inline int deliver_skb(struct sk_buff *skb,
1853                               struct packet_type *pt_prev,
1854                               struct net_device *orig_dev)
1855 {
1856         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1857                 return -ENOMEM;
1858         refcount_inc(&skb->users);
1859         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1860 }
1861
1862 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1863                                           struct packet_type **pt,
1864                                           struct net_device *orig_dev,
1865                                           __be16 type,
1866                                           struct list_head *ptype_list)
1867 {
1868         struct packet_type *ptype, *pt_prev = *pt;
1869
1870         list_for_each_entry_rcu(ptype, ptype_list, list) {
1871                 if (ptype->type != type)
1872                         continue;
1873                 if (pt_prev)
1874                         deliver_skb(skb, pt_prev, orig_dev);
1875                 pt_prev = ptype;
1876         }
1877         *pt = pt_prev;
1878 }
1879
1880 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1881 {
1882         if (!ptype->af_packet_priv || !skb->sk)
1883                 return false;
1884
1885         if (ptype->id_match)
1886                 return ptype->id_match(ptype, skb->sk);
1887         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1888                 return true;
1889
1890         return false;
1891 }
1892
1893 /*
1894  *      Support routine. Sends outgoing frames to any network
1895  *      taps currently in use.
1896  */
1897
1898 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1899 {
1900         struct packet_type *ptype;
1901         struct sk_buff *skb2 = NULL;
1902         struct packet_type *pt_prev = NULL;
1903         struct list_head *ptype_list = &ptype_all;
1904
1905         rcu_read_lock();
1906 again:
1907         list_for_each_entry_rcu(ptype, ptype_list, list) {
1908                 /* Never send packets back to the socket
1909                  * they originated from - MvS (miquels@drinkel.ow.org)
1910                  */
1911                 if (skb_loop_sk(ptype, skb))
1912                         continue;
1913
1914                 if (pt_prev) {
1915                         deliver_skb(skb2, pt_prev, skb->dev);
1916                         pt_prev = ptype;
1917                         continue;
1918                 }
1919
1920                 /* need to clone skb, done only once */
1921                 skb2 = skb_clone(skb, GFP_ATOMIC);
1922                 if (!skb2)
1923                         goto out_unlock;
1924
1925                 net_timestamp_set(skb2);
1926
1927                 /* skb->nh should be correctly
1928                  * set by sender, so that the second statement is
1929                  * just protection against buggy protocols.
1930                  */
1931                 skb_reset_mac_header(skb2);
1932
1933                 if (skb_network_header(skb2) < skb2->data ||
1934                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1935                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1936                                              ntohs(skb2->protocol),
1937                                              dev->name);
1938                         skb_reset_network_header(skb2);
1939                 }
1940
1941                 skb2->transport_header = skb2->network_header;
1942                 skb2->pkt_type = PACKET_OUTGOING;
1943                 pt_prev = ptype;
1944         }
1945
1946         if (ptype_list == &ptype_all) {
1947                 ptype_list = &dev->ptype_all;
1948                 goto again;
1949         }
1950 out_unlock:
1951         if (pt_prev)
1952                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1953         rcu_read_unlock();
1954 }
1955 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1956
1957 /**
1958  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1959  * @dev: Network device
1960  * @txq: number of queues available
1961  *
1962  * If real_num_tx_queues is changed the tc mappings may no longer be
1963  * valid. To resolve this verify the tc mapping remains valid and if
1964  * not NULL the mapping. With no priorities mapping to this
1965  * offset/count pair it will no longer be used. In the worst case TC0
1966  * is invalid nothing can be done so disable priority mappings. If is
1967  * expected that drivers will fix this mapping if they can before
1968  * calling netif_set_real_num_tx_queues.
1969  */
1970 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1971 {
1972         int i;
1973         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1974
1975         /* If TC0 is invalidated disable TC mapping */
1976         if (tc->offset + tc->count > txq) {
1977                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1978                 dev->num_tc = 0;
1979                 return;
1980         }
1981
1982         /* Invalidated prio to tc mappings set to TC0 */
1983         for (i = 1; i < TC_BITMASK + 1; i++) {
1984                 int q = netdev_get_prio_tc_map(dev, i);
1985
1986                 tc = &dev->tc_to_txq[q];
1987                 if (tc->offset + tc->count > txq) {
1988                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1989                                 i, q);
1990                         netdev_set_prio_tc_map(dev, i, 0);
1991                 }
1992         }
1993 }
1994
1995 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1996 {
1997         if (dev->num_tc) {
1998                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1999                 int i;
2000
2001                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2002                         if ((txq - tc->offset) < tc->count)
2003                                 return i;
2004                 }
2005
2006                 return -1;
2007         }
2008
2009         return 0;
2010 }
2011
2012 #ifdef CONFIG_XPS
2013 static DEFINE_MUTEX(xps_map_mutex);
2014 #define xmap_dereference(P)             \
2015         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2016
2017 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2018                              int tci, u16 index)
2019 {
2020         struct xps_map *map = NULL;
2021         int pos;
2022
2023         if (dev_maps)
2024                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2025         if (!map)
2026                 return false;
2027
2028         for (pos = map->len; pos--;) {
2029                 if (map->queues[pos] != index)
2030                         continue;
2031
2032                 if (map->len > 1) {
2033                         map->queues[pos] = map->queues[--map->len];
2034                         break;
2035                 }
2036
2037                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2038                 kfree_rcu(map, rcu);
2039                 return false;
2040         }
2041
2042         return true;
2043 }
2044
2045 static bool remove_xps_queue_cpu(struct net_device *dev,
2046                                  struct xps_dev_maps *dev_maps,
2047                                  int cpu, u16 offset, u16 count)
2048 {
2049         int num_tc = dev->num_tc ? : 1;
2050         bool active = false;
2051         int tci;
2052
2053         for (tci = cpu * num_tc; num_tc--; tci++) {
2054                 int i, j;
2055
2056                 for (i = count, j = offset; i--; j++) {
2057                         if (!remove_xps_queue(dev_maps, cpu, j))
2058                                 break;
2059                 }
2060
2061                 active |= i < 0;
2062         }
2063
2064         return active;
2065 }
2066
2067 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2068                                    u16 count)
2069 {
2070         struct xps_dev_maps *dev_maps;
2071         int cpu, i;
2072         bool active = false;
2073
2074         mutex_lock(&xps_map_mutex);
2075         dev_maps = xmap_dereference(dev->xps_maps);
2076
2077         if (!dev_maps)
2078                 goto out_no_maps;
2079
2080         for_each_possible_cpu(cpu)
2081                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2082                                                offset, count);
2083
2084         if (!active) {
2085                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2086                 kfree_rcu(dev_maps, rcu);
2087         }
2088
2089         for (i = offset + (count - 1); count--; i--)
2090                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2091                                              NUMA_NO_NODE);
2092
2093 out_no_maps:
2094         mutex_unlock(&xps_map_mutex);
2095 }
2096
2097 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2098 {
2099         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2100 }
2101
2102 static struct xps_map *expand_xps_map(struct xps_map *map,
2103                                       int cpu, u16 index)
2104 {
2105         struct xps_map *new_map;
2106         int alloc_len = XPS_MIN_MAP_ALLOC;
2107         int i, pos;
2108
2109         for (pos = 0; map && pos < map->len; pos++) {
2110                 if (map->queues[pos] != index)
2111                         continue;
2112                 return map;
2113         }
2114
2115         /* Need to add queue to this CPU's existing map */
2116         if (map) {
2117                 if (pos < map->alloc_len)
2118                         return map;
2119
2120                 alloc_len = map->alloc_len * 2;
2121         }
2122
2123         /* Need to allocate new map to store queue on this CPU's map */
2124         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2125                                cpu_to_node(cpu));
2126         if (!new_map)
2127                 return NULL;
2128
2129         for (i = 0; i < pos; i++)
2130                 new_map->queues[i] = map->queues[i];
2131         new_map->alloc_len = alloc_len;
2132         new_map->len = pos;
2133
2134         return new_map;
2135 }
2136
2137 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2138                         u16 index)
2139 {
2140         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2141         int i, cpu, tci, numa_node_id = -2;
2142         int maps_sz, num_tc = 1, tc = 0;
2143         struct xps_map *map, *new_map;
2144         bool active = false;
2145
2146         if (dev->num_tc) {
2147                 num_tc = dev->num_tc;
2148                 tc = netdev_txq_to_tc(dev, index);
2149                 if (tc < 0)
2150                         return -EINVAL;
2151         }
2152
2153         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2154         if (maps_sz < L1_CACHE_BYTES)
2155                 maps_sz = L1_CACHE_BYTES;
2156
2157         mutex_lock(&xps_map_mutex);
2158
2159         dev_maps = xmap_dereference(dev->xps_maps);
2160
2161         /* allocate memory for queue storage */
2162         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2163                 if (!new_dev_maps)
2164                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2165                 if (!new_dev_maps) {
2166                         mutex_unlock(&xps_map_mutex);
2167                         return -ENOMEM;
2168                 }
2169
2170                 tci = cpu * num_tc + tc;
2171                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2172                                  NULL;
2173
2174                 map = expand_xps_map(map, cpu, index);
2175                 if (!map)
2176                         goto error;
2177
2178                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2179         }
2180
2181         if (!new_dev_maps)
2182                 goto out_no_new_maps;
2183
2184         for_each_possible_cpu(cpu) {
2185                 /* copy maps belonging to foreign traffic classes */
2186                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2187                         /* fill in the new device map from the old device map */
2188                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2189                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2190                 }
2191
2192                 /* We need to explicitly update tci as prevous loop
2193                  * could break out early if dev_maps is NULL.
2194                  */
2195                 tci = cpu * num_tc + tc;
2196
2197                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2198                         /* add queue to CPU maps */
2199                         int pos = 0;
2200
2201                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2202                         while ((pos < map->len) && (map->queues[pos] != index))
2203                                 pos++;
2204
2205                         if (pos == map->len)
2206                                 map->queues[map->len++] = index;
2207 #ifdef CONFIG_NUMA
2208                         if (numa_node_id == -2)
2209                                 numa_node_id = cpu_to_node(cpu);
2210                         else if (numa_node_id != cpu_to_node(cpu))
2211                                 numa_node_id = -1;
2212 #endif
2213                 } else if (dev_maps) {
2214                         /* fill in the new device map from the old device map */
2215                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2216                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2217                 }
2218
2219                 /* copy maps belonging to foreign traffic classes */
2220                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2221                         /* fill in the new device map from the old device map */
2222                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2223                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2224                 }
2225         }
2226
2227         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2228
2229         /* Cleanup old maps */
2230         if (!dev_maps)
2231                 goto out_no_old_maps;
2232
2233         for_each_possible_cpu(cpu) {
2234                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2235                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2236                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2237                         if (map && map != new_map)
2238                                 kfree_rcu(map, rcu);
2239                 }
2240         }
2241
2242         kfree_rcu(dev_maps, rcu);
2243
2244 out_no_old_maps:
2245         dev_maps = new_dev_maps;
2246         active = true;
2247
2248 out_no_new_maps:
2249         /* update Tx queue numa node */
2250         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2251                                      (numa_node_id >= 0) ? numa_node_id :
2252                                      NUMA_NO_NODE);
2253
2254         if (!dev_maps)
2255                 goto out_no_maps;
2256
2257         /* removes queue from unused CPUs */
2258         for_each_possible_cpu(cpu) {
2259                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2260                         active |= remove_xps_queue(dev_maps, tci, index);
2261                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2262                         active |= remove_xps_queue(dev_maps, tci, index);
2263                 for (i = num_tc - tc, tci++; --i; tci++)
2264                         active |= remove_xps_queue(dev_maps, tci, index);
2265         }
2266
2267         /* free map if not active */
2268         if (!active) {
2269                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2270                 kfree_rcu(dev_maps, rcu);
2271         }
2272
2273 out_no_maps:
2274         mutex_unlock(&xps_map_mutex);
2275
2276         return 0;
2277 error:
2278         /* remove any maps that we added */
2279         for_each_possible_cpu(cpu) {
2280                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2281                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2282                         map = dev_maps ?
2283                               xmap_dereference(dev_maps->cpu_map[tci]) :
2284                               NULL;
2285                         if (new_map && new_map != map)
2286                                 kfree(new_map);
2287                 }
2288         }
2289
2290         mutex_unlock(&xps_map_mutex);
2291
2292         kfree(new_dev_maps);
2293         return -ENOMEM;
2294 }
2295 EXPORT_SYMBOL(netif_set_xps_queue);
2296
2297 #endif
2298 void netdev_reset_tc(struct net_device *dev)
2299 {
2300 #ifdef CONFIG_XPS
2301         netif_reset_xps_queues_gt(dev, 0);
2302 #endif
2303         dev->num_tc = 0;
2304         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2305         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2306 }
2307 EXPORT_SYMBOL(netdev_reset_tc);
2308
2309 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2310 {
2311         if (tc >= dev->num_tc)
2312                 return -EINVAL;
2313
2314 #ifdef CONFIG_XPS
2315         netif_reset_xps_queues(dev, offset, count);
2316 #endif
2317         dev->tc_to_txq[tc].count = count;
2318         dev->tc_to_txq[tc].offset = offset;
2319         return 0;
2320 }
2321 EXPORT_SYMBOL(netdev_set_tc_queue);
2322
2323 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2324 {
2325         if (num_tc > TC_MAX_QUEUE)
2326                 return -EINVAL;
2327
2328 #ifdef CONFIG_XPS
2329         netif_reset_xps_queues_gt(dev, 0);
2330 #endif
2331         dev->num_tc = num_tc;
2332         return 0;
2333 }
2334 EXPORT_SYMBOL(netdev_set_num_tc);
2335
2336 /*
2337  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2338  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2339  */
2340 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2341 {
2342         int rc;
2343
2344         if (txq < 1 || txq > dev->num_tx_queues)
2345                 return -EINVAL;
2346
2347         if (dev->reg_state == NETREG_REGISTERED ||
2348             dev->reg_state == NETREG_UNREGISTERING) {
2349                 ASSERT_RTNL();
2350
2351                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2352                                                   txq);
2353                 if (rc)
2354                         return rc;
2355
2356                 if (dev->num_tc)
2357                         netif_setup_tc(dev, txq);
2358
2359                 if (txq < dev->real_num_tx_queues) {
2360                         qdisc_reset_all_tx_gt(dev, txq);
2361 #ifdef CONFIG_XPS
2362                         netif_reset_xps_queues_gt(dev, txq);
2363 #endif
2364                 }
2365         }
2366
2367         dev->real_num_tx_queues = txq;
2368         return 0;
2369 }
2370 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2371
2372 #ifdef CONFIG_SYSFS
2373 /**
2374  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2375  *      @dev: Network device
2376  *      @rxq: Actual number of RX queues
2377  *
2378  *      This must be called either with the rtnl_lock held or before
2379  *      registration of the net device.  Returns 0 on success, or a
2380  *      negative error code.  If called before registration, it always
2381  *      succeeds.
2382  */
2383 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2384 {
2385         int rc;
2386
2387         if (rxq < 1 || rxq > dev->num_rx_queues)
2388                 return -EINVAL;
2389
2390         if (dev->reg_state == NETREG_REGISTERED) {
2391                 ASSERT_RTNL();
2392
2393                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2394                                                   rxq);
2395                 if (rc)
2396                         return rc;
2397         }
2398
2399         dev->real_num_rx_queues = rxq;
2400         return 0;
2401 }
2402 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2403 #endif
2404
2405 /**
2406  * netif_get_num_default_rss_queues - default number of RSS queues
2407  *
2408  * This routine should set an upper limit on the number of RSS queues
2409  * used by default by multiqueue devices.
2410  */
2411 int netif_get_num_default_rss_queues(void)
2412 {
2413         return is_kdump_kernel() ?
2414                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2415 }
2416 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2417
2418 static void __netif_reschedule(struct Qdisc *q)
2419 {
2420         struct softnet_data *sd;
2421         unsigned long flags;
2422
2423         local_irq_save(flags);
2424         sd = this_cpu_ptr(&softnet_data);
2425         q->next_sched = NULL;
2426         *sd->output_queue_tailp = q;
2427         sd->output_queue_tailp = &q->next_sched;
2428         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2429         local_irq_restore(flags);
2430 }
2431
2432 void __netif_schedule(struct Qdisc *q)
2433 {
2434         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2435                 __netif_reschedule(q);
2436 }
2437 EXPORT_SYMBOL(__netif_schedule);
2438
2439 struct dev_kfree_skb_cb {
2440         enum skb_free_reason reason;
2441 };
2442
2443 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2444 {
2445         return (struct dev_kfree_skb_cb *)skb->cb;
2446 }
2447
2448 void netif_schedule_queue(struct netdev_queue *txq)
2449 {
2450         rcu_read_lock();
2451         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2452                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2453
2454                 __netif_schedule(q);
2455         }
2456         rcu_read_unlock();
2457 }
2458 EXPORT_SYMBOL(netif_schedule_queue);
2459
2460 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2461 {
2462         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2463                 struct Qdisc *q;
2464
2465                 rcu_read_lock();
2466                 q = rcu_dereference(dev_queue->qdisc);
2467                 __netif_schedule(q);
2468                 rcu_read_unlock();
2469         }
2470 }
2471 EXPORT_SYMBOL(netif_tx_wake_queue);
2472
2473 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2474 {
2475         unsigned long flags;
2476
2477         if (unlikely(!skb))
2478                 return;
2479
2480         if (likely(refcount_read(&skb->users) == 1)) {
2481                 smp_rmb();
2482                 refcount_set(&skb->users, 0);
2483         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2484                 return;
2485         }
2486         get_kfree_skb_cb(skb)->reason = reason;
2487         local_irq_save(flags);
2488         skb->next = __this_cpu_read(softnet_data.completion_queue);
2489         __this_cpu_write(softnet_data.completion_queue, skb);
2490         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2491         local_irq_restore(flags);
2492 }
2493 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2494
2495 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2496 {
2497         if (in_irq() || irqs_disabled())
2498                 __dev_kfree_skb_irq(skb, reason);
2499         else
2500                 dev_kfree_skb(skb);
2501 }
2502 EXPORT_SYMBOL(__dev_kfree_skb_any);
2503
2504
2505 /**
2506  * netif_device_detach - mark device as removed
2507  * @dev: network device
2508  *
2509  * Mark device as removed from system and therefore no longer available.
2510  */
2511 void netif_device_detach(struct net_device *dev)
2512 {
2513         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2514             netif_running(dev)) {
2515                 netif_tx_stop_all_queues(dev);
2516         }
2517 }
2518 EXPORT_SYMBOL(netif_device_detach);
2519
2520 /**
2521  * netif_device_attach - mark device as attached
2522  * @dev: network device
2523  *
2524  * Mark device as attached from system and restart if needed.
2525  */
2526 void netif_device_attach(struct net_device *dev)
2527 {
2528         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2529             netif_running(dev)) {
2530                 netif_tx_wake_all_queues(dev);
2531                 __netdev_watchdog_up(dev);
2532         }
2533 }
2534 EXPORT_SYMBOL(netif_device_attach);
2535
2536 /*
2537  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2538  * to be used as a distribution range.
2539  */
2540 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2541                   unsigned int num_tx_queues)
2542 {
2543         u32 hash;
2544         u16 qoffset = 0;
2545         u16 qcount = num_tx_queues;
2546
2547         if (skb_rx_queue_recorded(skb)) {
2548                 hash = skb_get_rx_queue(skb);
2549                 while (unlikely(hash >= num_tx_queues))
2550                         hash -= num_tx_queues;
2551                 return hash;
2552         }
2553
2554         if (dev->num_tc) {
2555                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2556
2557                 qoffset = dev->tc_to_txq[tc].offset;
2558                 qcount = dev->tc_to_txq[tc].count;
2559         }
2560
2561         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2562 }
2563 EXPORT_SYMBOL(__skb_tx_hash);
2564
2565 static void skb_warn_bad_offload(const struct sk_buff *skb)
2566 {
2567         static const netdev_features_t null_features;
2568         struct net_device *dev = skb->dev;
2569         const char *name = "";
2570
2571         if (!net_ratelimit())
2572                 return;
2573
2574         if (dev) {
2575                 if (dev->dev.parent)
2576                         name = dev_driver_string(dev->dev.parent);
2577                 else
2578                         name = netdev_name(dev);
2579         }
2580         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2581              "gso_type=%d ip_summed=%d\n",
2582              name, dev ? &dev->features : &null_features,
2583              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2584              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2585              skb_shinfo(skb)->gso_type, skb->ip_summed);
2586 }
2587
2588 /*
2589  * Invalidate hardware checksum when packet is to be mangled, and
2590  * complete checksum manually on outgoing path.
2591  */
2592 int skb_checksum_help(struct sk_buff *skb)
2593 {
2594         __wsum csum;
2595         int ret = 0, offset;
2596
2597         if (skb->ip_summed == CHECKSUM_COMPLETE)
2598                 goto out_set_summed;
2599
2600         if (unlikely(skb_shinfo(skb)->gso_size)) {
2601                 skb_warn_bad_offload(skb);
2602                 return -EINVAL;
2603         }
2604
2605         /* Before computing a checksum, we should make sure no frag could
2606          * be modified by an external entity : checksum could be wrong.
2607          */
2608         if (skb_has_shared_frag(skb)) {
2609                 ret = __skb_linearize(skb);
2610                 if (ret)
2611                         goto out;
2612         }
2613
2614         offset = skb_checksum_start_offset(skb);
2615         BUG_ON(offset >= skb_headlen(skb));
2616         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2617
2618         offset += skb->csum_offset;
2619         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2620
2621         if (skb_cloned(skb) &&
2622             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2623                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2624                 if (ret)
2625                         goto out;
2626         }
2627
2628         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2629 out_set_summed:
2630         skb->ip_summed = CHECKSUM_NONE;
2631 out:
2632         return ret;
2633 }
2634 EXPORT_SYMBOL(skb_checksum_help);
2635
2636 int skb_crc32c_csum_help(struct sk_buff *skb)
2637 {
2638         __le32 crc32c_csum;
2639         int ret = 0, offset, start;
2640
2641         if (skb->ip_summed != CHECKSUM_PARTIAL)
2642                 goto out;
2643
2644         if (unlikely(skb_is_gso(skb)))
2645                 goto out;
2646
2647         /* Before computing a checksum, we should make sure no frag could
2648          * be modified by an external entity : checksum could be wrong.
2649          */
2650         if (unlikely(skb_has_shared_frag(skb))) {
2651                 ret = __skb_linearize(skb);
2652                 if (ret)
2653                         goto out;
2654         }
2655         start = skb_checksum_start_offset(skb);
2656         offset = start + offsetof(struct sctphdr, checksum);
2657         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2658                 ret = -EINVAL;
2659                 goto out;
2660         }
2661         if (skb_cloned(skb) &&
2662             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2663                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2664                 if (ret)
2665                         goto out;
2666         }
2667         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2668                                                   skb->len - start, ~(__u32)0,
2669                                                   crc32c_csum_stub));
2670         *(__le32 *)(skb->data + offset) = crc32c_csum;
2671         skb->ip_summed = CHECKSUM_NONE;
2672         skb->csum_not_inet = 0;
2673 out:
2674         return ret;
2675 }
2676
2677 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2678 {
2679         __be16 type = skb->protocol;
2680
2681         /* Tunnel gso handlers can set protocol to ethernet. */
2682         if (type == htons(ETH_P_TEB)) {
2683                 struct ethhdr *eth;
2684
2685                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2686                         return 0;
2687
2688                 eth = (struct ethhdr *)skb_mac_header(skb);
2689                 type = eth->h_proto;
2690         }
2691
2692         return __vlan_get_protocol(skb, type, depth);
2693 }
2694
2695 /**
2696  *      skb_mac_gso_segment - mac layer segmentation handler.
2697  *      @skb: buffer to segment
2698  *      @features: features for the output path (see dev->features)
2699  */
2700 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2701                                     netdev_features_t features)
2702 {
2703         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2704         struct packet_offload *ptype;
2705         int vlan_depth = skb->mac_len;
2706         __be16 type = skb_network_protocol(skb, &vlan_depth);
2707
2708         if (unlikely(!type))
2709                 return ERR_PTR(-EINVAL);
2710
2711         __skb_pull(skb, vlan_depth);
2712
2713         rcu_read_lock();
2714         list_for_each_entry_rcu(ptype, &offload_base, list) {
2715                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2716                         segs = ptype->callbacks.gso_segment(skb, features);
2717                         break;
2718                 }
2719         }
2720         rcu_read_unlock();
2721
2722         __skb_push(skb, skb->data - skb_mac_header(skb));
2723
2724         return segs;
2725 }
2726 EXPORT_SYMBOL(skb_mac_gso_segment);
2727
2728
2729 /* openvswitch calls this on rx path, so we need a different check.
2730  */
2731 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2732 {
2733         if (tx_path)
2734                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2735                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2736
2737         return skb->ip_summed == CHECKSUM_NONE;
2738 }
2739
2740 /**
2741  *      __skb_gso_segment - Perform segmentation on skb.
2742  *      @skb: buffer to segment
2743  *      @features: features for the output path (see dev->features)
2744  *      @tx_path: whether it is called in TX path
2745  *
2746  *      This function segments the given skb and returns a list of segments.
2747  *
2748  *      It may return NULL if the skb requires no segmentation.  This is
2749  *      only possible when GSO is used for verifying header integrity.
2750  *
2751  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2752  */
2753 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2754                                   netdev_features_t features, bool tx_path)
2755 {
2756         struct sk_buff *segs;
2757
2758         if (unlikely(skb_needs_check(skb, tx_path))) {
2759                 int err;
2760
2761                 /* We're going to init ->check field in TCP or UDP header */
2762                 err = skb_cow_head(skb, 0);
2763                 if (err < 0)
2764                         return ERR_PTR(err);
2765         }
2766
2767         /* Only report GSO partial support if it will enable us to
2768          * support segmentation on this frame without needing additional
2769          * work.
2770          */
2771         if (features & NETIF_F_GSO_PARTIAL) {
2772                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2773                 struct net_device *dev = skb->dev;
2774
2775                 partial_features |= dev->features & dev->gso_partial_features;
2776                 if (!skb_gso_ok(skb, features | partial_features))
2777                         features &= ~NETIF_F_GSO_PARTIAL;
2778         }
2779
2780         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2781                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2782
2783         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2784         SKB_GSO_CB(skb)->encap_level = 0;
2785
2786         skb_reset_mac_header(skb);
2787         skb_reset_mac_len(skb);
2788
2789         segs = skb_mac_gso_segment(skb, features);
2790
2791         if (unlikely(skb_needs_check(skb, tx_path)))
2792                 skb_warn_bad_offload(skb);
2793
2794         return segs;
2795 }
2796 EXPORT_SYMBOL(__skb_gso_segment);
2797
2798 /* Take action when hardware reception checksum errors are detected. */
2799 #ifdef CONFIG_BUG
2800 void netdev_rx_csum_fault(struct net_device *dev)
2801 {
2802         if (net_ratelimit()) {
2803                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2804                 dump_stack();
2805         }
2806 }
2807 EXPORT_SYMBOL(netdev_rx_csum_fault);
2808 #endif
2809
2810 /* Actually, we should eliminate this check as soon as we know, that:
2811  * 1. IOMMU is present and allows to map all the memory.
2812  * 2. No high memory really exists on this machine.
2813  */
2814
2815 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2816 {
2817 #ifdef CONFIG_HIGHMEM
2818         int i;
2819
2820         if (!(dev->features & NETIF_F_HIGHDMA)) {
2821                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2822                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2823
2824                         if (PageHighMem(skb_frag_page(frag)))
2825                                 return 1;
2826                 }
2827         }
2828
2829         if (PCI_DMA_BUS_IS_PHYS) {
2830                 struct device *pdev = dev->dev.parent;
2831
2832                 if (!pdev)
2833                         return 0;
2834                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2835                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2836                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2837
2838                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2839                                 return 1;
2840                 }
2841         }
2842 #endif
2843         return 0;
2844 }
2845
2846 /* If MPLS offload request, verify we are testing hardware MPLS features
2847  * instead of standard features for the netdev.
2848  */
2849 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2850 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2851                                            netdev_features_t features,
2852                                            __be16 type)
2853 {
2854         if (eth_p_mpls(type))
2855                 features &= skb->dev->mpls_features;
2856
2857         return features;
2858 }
2859 #else
2860 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2861                                            netdev_features_t features,
2862                                            __be16 type)
2863 {
2864         return features;
2865 }
2866 #endif
2867
2868 static netdev_features_t harmonize_features(struct sk_buff *skb,
2869         netdev_features_t features)
2870 {
2871         int tmp;
2872         __be16 type;
2873
2874         type = skb_network_protocol(skb, &tmp);
2875         features = net_mpls_features(skb, features, type);
2876
2877         if (skb->ip_summed != CHECKSUM_NONE &&
2878             !can_checksum_protocol(features, type)) {
2879                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2880         }
2881         if (illegal_highdma(skb->dev, skb))
2882                 features &= ~NETIF_F_SG;
2883
2884         return features;
2885 }
2886
2887 netdev_features_t passthru_features_check(struct sk_buff *skb,
2888                                           struct net_device *dev,
2889                                           netdev_features_t features)
2890 {
2891         return features;
2892 }
2893 EXPORT_SYMBOL(passthru_features_check);
2894
2895 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2896                                              struct net_device *dev,
2897                                              netdev_features_t features)
2898 {
2899         return vlan_features_check(skb, features);
2900 }
2901
2902 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2903                                             struct net_device *dev,
2904                                             netdev_features_t features)
2905 {
2906         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2907
2908         if (gso_segs > dev->gso_max_segs)
2909                 return features & ~NETIF_F_GSO_MASK;
2910
2911         /* Support for GSO partial features requires software
2912          * intervention before we can actually process the packets
2913          * so we need to strip support for any partial features now
2914          * and we can pull them back in after we have partially
2915          * segmented the frame.
2916          */
2917         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2918                 features &= ~dev->gso_partial_features;
2919
2920         /* Make sure to clear the IPv4 ID mangling feature if the
2921          * IPv4 header has the potential to be fragmented.
2922          */
2923         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2924                 struct iphdr *iph = skb->encapsulation ?
2925                                     inner_ip_hdr(skb) : ip_hdr(skb);
2926
2927                 if (!(iph->frag_off & htons(IP_DF)))
2928                         features &= ~NETIF_F_TSO_MANGLEID;
2929         }
2930
2931         return features;
2932 }
2933
2934 netdev_features_t netif_skb_features(struct sk_buff *skb)
2935 {
2936         struct net_device *dev = skb->dev;
2937         netdev_features_t features = dev->features;
2938
2939         if (skb_is_gso(skb))
2940                 features = gso_features_check(skb, dev, features);
2941
2942         /* If encapsulation offload request, verify we are testing
2943          * hardware encapsulation features instead of standard
2944          * features for the netdev
2945          */
2946         if (skb->encapsulation)
2947                 features &= dev->hw_enc_features;
2948
2949         if (skb_vlan_tagged(skb))
2950                 features = netdev_intersect_features(features,
2951                                                      dev->vlan_features |
2952                                                      NETIF_F_HW_VLAN_CTAG_TX |
2953                                                      NETIF_F_HW_VLAN_STAG_TX);
2954
2955         if (dev->netdev_ops->ndo_features_check)
2956                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2957                                                                 features);
2958         else
2959                 features &= dflt_features_check(skb, dev, features);
2960
2961         return harmonize_features(skb, features);
2962 }
2963 EXPORT_SYMBOL(netif_skb_features);
2964
2965 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2966                     struct netdev_queue *txq, bool more)
2967 {
2968         unsigned int len;
2969         int rc;
2970
2971         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2972                 dev_queue_xmit_nit(skb, dev);
2973
2974         len = skb->len;
2975         trace_net_dev_start_xmit(skb, dev);
2976         rc = netdev_start_xmit(skb, dev, txq, more);
2977         trace_net_dev_xmit(skb, rc, dev, len);
2978
2979         return rc;
2980 }
2981
2982 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2983                                     struct netdev_queue *txq, int *ret)
2984 {
2985         struct sk_buff *skb = first;
2986         int rc = NETDEV_TX_OK;
2987
2988         while (skb) {
2989                 struct sk_buff *next = skb->next;
2990
2991                 skb->next = NULL;
2992                 rc = xmit_one(skb, dev, txq, next != NULL);
2993                 if (unlikely(!dev_xmit_complete(rc))) {
2994                         skb->next = next;
2995                         goto out;
2996                 }
2997
2998                 skb = next;
2999                 if (netif_xmit_stopped(txq) && skb) {
3000                         rc = NETDEV_TX_BUSY;
3001                         break;
3002                 }
3003         }
3004
3005 out:
3006         *ret = rc;
3007         return skb;
3008 }
3009
3010 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3011                                           netdev_features_t features)
3012 {
3013         if (skb_vlan_tag_present(skb) &&
3014             !vlan_hw_offload_capable(features, skb->vlan_proto))
3015                 skb = __vlan_hwaccel_push_inside(skb);
3016         return skb;
3017 }
3018
3019 int skb_csum_hwoffload_help(struct sk_buff *skb,
3020                             const netdev_features_t features)
3021 {
3022         if (unlikely(skb->csum_not_inet))
3023                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3024                         skb_crc32c_csum_help(skb);
3025
3026         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3027 }
3028 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3029
3030 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3031 {
3032         netdev_features_t features;
3033
3034         features = netif_skb_features(skb);
3035         skb = validate_xmit_vlan(skb, features);
3036         if (unlikely(!skb))
3037                 goto out_null;
3038
3039         if (netif_needs_gso(skb, features)) {
3040                 struct sk_buff *segs;
3041
3042                 segs = skb_gso_segment(skb, features);
3043                 if (IS_ERR(segs)) {
3044                         goto out_kfree_skb;
3045                 } else if (segs) {
3046                         consume_skb(skb);
3047                         skb = segs;
3048                 }
3049         } else {
3050                 if (skb_needs_linearize(skb, features) &&
3051                     __skb_linearize(skb))
3052                         goto out_kfree_skb;
3053
3054                 if (validate_xmit_xfrm(skb, features))
3055                         goto out_kfree_skb;
3056
3057                 /* If packet is not checksummed and device does not
3058                  * support checksumming for this protocol, complete
3059                  * checksumming here.
3060                  */
3061                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3062                         if (skb->encapsulation)
3063                                 skb_set_inner_transport_header(skb,
3064                                                                skb_checksum_start_offset(skb));
3065                         else
3066                                 skb_set_transport_header(skb,
3067                                                          skb_checksum_start_offset(skb));
3068                         if (skb_csum_hwoffload_help(skb, features))
3069                                 goto out_kfree_skb;
3070                 }
3071         }
3072
3073         return skb;
3074
3075 out_kfree_skb:
3076         kfree_skb(skb);
3077 out_null:
3078         atomic_long_inc(&dev->tx_dropped);
3079         return NULL;
3080 }
3081
3082 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3083 {
3084         struct sk_buff *next, *head = NULL, *tail;
3085
3086         for (; skb != NULL; skb = next) {
3087                 next = skb->next;
3088                 skb->next = NULL;
3089
3090                 /* in case skb wont be segmented, point to itself */
3091                 skb->prev = skb;
3092
3093                 skb = validate_xmit_skb(skb, dev);
3094                 if (!skb)
3095                         continue;
3096
3097                 if (!head)
3098                         head = skb;
3099                 else
3100                         tail->next = skb;
3101                 /* If skb was segmented, skb->prev points to
3102                  * the last segment. If not, it still contains skb.
3103                  */
3104                 tail = skb->prev;
3105         }
3106         return head;
3107 }
3108 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3109
3110 static void qdisc_pkt_len_init(struct sk_buff *skb)
3111 {
3112         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3113
3114         qdisc_skb_cb(skb)->pkt_len = skb->len;
3115
3116         /* To get more precise estimation of bytes sent on wire,
3117          * we add to pkt_len the headers size of all segments
3118          */
3119         if (shinfo->gso_size)  {
3120                 unsigned int hdr_len;
3121                 u16 gso_segs = shinfo->gso_segs;
3122
3123                 /* mac layer + network layer */
3124                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3125
3126                 /* + transport layer */
3127                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3128                         hdr_len += tcp_hdrlen(skb);
3129                 else
3130                         hdr_len += sizeof(struct udphdr);
3131
3132                 if (shinfo->gso_type & SKB_GSO_DODGY)
3133                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3134                                                 shinfo->gso_size);
3135
3136                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3137         }
3138 }
3139
3140 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3141                                  struct net_device *dev,
3142                                  struct netdev_queue *txq)
3143 {
3144         spinlock_t *root_lock = qdisc_lock(q);
3145         struct sk_buff *to_free = NULL;
3146         bool contended;
3147         int rc;
3148
3149         qdisc_calculate_pkt_len(skb, q);
3150         /*
3151          * Heuristic to force contended enqueues to serialize on a
3152          * separate lock before trying to get qdisc main lock.
3153          * This permits qdisc->running owner to get the lock more
3154          * often and dequeue packets faster.
3155          */
3156         contended = qdisc_is_running(q);
3157         if (unlikely(contended))
3158                 spin_lock(&q->busylock);
3159
3160         spin_lock(root_lock);
3161         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3162                 __qdisc_drop(skb, &to_free);
3163                 rc = NET_XMIT_DROP;
3164         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3165                    qdisc_run_begin(q)) {
3166                 /*
3167                  * This is a work-conserving queue; there are no old skbs
3168                  * waiting to be sent out; and the qdisc is not running -
3169                  * xmit the skb directly.
3170                  */
3171
3172                 qdisc_bstats_update(q, skb);
3173
3174                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3175                         if (unlikely(contended)) {
3176                                 spin_unlock(&q->busylock);
3177                                 contended = false;
3178                         }
3179                         __qdisc_run(q);
3180                 } else
3181                         qdisc_run_end(q);
3182
3183                 rc = NET_XMIT_SUCCESS;
3184         } else {
3185                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3186                 if (qdisc_run_begin(q)) {
3187                         if (unlikely(contended)) {
3188                                 spin_unlock(&q->busylock);
3189                                 contended = false;
3190                         }
3191                         __qdisc_run(q);
3192                 }
3193         }
3194         spin_unlock(root_lock);
3195         if (unlikely(to_free))
3196                 kfree_skb_list(to_free);
3197         if (unlikely(contended))
3198                 spin_unlock(&q->busylock);
3199         return rc;
3200 }
3201
3202 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3203 static void skb_update_prio(struct sk_buff *skb)
3204 {
3205         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3206
3207         if (!skb->priority && skb->sk && map) {
3208                 unsigned int prioidx =
3209                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3210
3211                 if (prioidx < map->priomap_len)
3212                         skb->priority = map->priomap[prioidx];
3213         }
3214 }
3215 #else
3216 #define skb_update_prio(skb)
3217 #endif
3218
3219 DEFINE_PER_CPU(int, xmit_recursion);
3220 EXPORT_SYMBOL(xmit_recursion);
3221
3222 /**
3223  *      dev_loopback_xmit - loop back @skb
3224  *      @net: network namespace this loopback is happening in
3225  *      @sk:  sk needed to be a netfilter okfn
3226  *      @skb: buffer to transmit
3227  */
3228 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3229 {
3230         skb_reset_mac_header(skb);
3231         __skb_pull(skb, skb_network_offset(skb));
3232         skb->pkt_type = PACKET_LOOPBACK;
3233         skb->ip_summed = CHECKSUM_UNNECESSARY;
3234         WARN_ON(!skb_dst(skb));
3235         skb_dst_force(skb);
3236         netif_rx_ni(skb);
3237         return 0;
3238 }
3239 EXPORT_SYMBOL(dev_loopback_xmit);
3240
3241 #ifdef CONFIG_NET_EGRESS
3242 static struct sk_buff *
3243 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3244 {
3245         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3246         struct tcf_result cl_res;
3247
3248         if (!cl)
3249                 return skb;
3250
3251         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3252         qdisc_bstats_cpu_update(cl->q, skb);
3253
3254         switch (tcf_classify(skb, cl, &cl_res, false)) {
3255         case TC_ACT_OK:
3256         case TC_ACT_RECLASSIFY:
3257                 skb->tc_index = TC_H_MIN(cl_res.classid);
3258                 break;
3259         case TC_ACT_SHOT:
3260                 qdisc_qstats_cpu_drop(cl->q);
3261                 *ret = NET_XMIT_DROP;
3262                 kfree_skb(skb);
3263                 return NULL;
3264         case TC_ACT_STOLEN:
3265         case TC_ACT_QUEUED:
3266         case TC_ACT_TRAP:
3267                 *ret = NET_XMIT_SUCCESS;
3268                 consume_skb(skb);
3269                 return NULL;
3270         case TC_ACT_REDIRECT:
3271                 /* No need to push/pop skb's mac_header here on egress! */
3272                 skb_do_redirect(skb);
3273                 *ret = NET_XMIT_SUCCESS;
3274                 return NULL;
3275         default:
3276                 break;
3277         }
3278
3279         return skb;
3280 }
3281 #endif /* CONFIG_NET_EGRESS */
3282
3283 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3284 {
3285 #ifdef CONFIG_XPS
3286         struct xps_dev_maps *dev_maps;
3287         struct xps_map *map;
3288         int queue_index = -1;
3289
3290         rcu_read_lock();
3291         dev_maps = rcu_dereference(dev->xps_maps);
3292         if (dev_maps) {
3293                 unsigned int tci = skb->sender_cpu - 1;
3294
3295                 if (dev->num_tc) {
3296                         tci *= dev->num_tc;
3297                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3298                 }
3299
3300                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3301                 if (map) {
3302                         if (map->len == 1)
3303                                 queue_index = map->queues[0];
3304                         else
3305                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3306                                                                            map->len)];
3307                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3308                                 queue_index = -1;
3309                 }
3310         }
3311         rcu_read_unlock();
3312
3313         return queue_index;
3314 #else
3315         return -1;
3316 #endif
3317 }
3318
3319 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3320 {
3321         struct sock *sk = skb->sk;
3322         int queue_index = sk_tx_queue_get(sk);
3323
3324         if (queue_index < 0 || skb->ooo_okay ||
3325             queue_index >= dev->real_num_tx_queues) {
3326                 int new_index = get_xps_queue(dev, skb);
3327
3328                 if (new_index < 0)
3329                         new_index = skb_tx_hash(dev, skb);
3330
3331                 if (queue_index != new_index && sk &&
3332                     sk_fullsock(sk) &&
3333                     rcu_access_pointer(sk->sk_dst_cache))
3334                         sk_tx_queue_set(sk, new_index);
3335
3336                 queue_index = new_index;
3337         }
3338
3339         return queue_index;
3340 }
3341
3342 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3343                                     struct sk_buff *skb,
3344                                     void *accel_priv)
3345 {
3346         int queue_index = 0;
3347
3348 #ifdef CONFIG_XPS
3349         u32 sender_cpu = skb->sender_cpu - 1;
3350
3351         if (sender_cpu >= (u32)NR_CPUS)
3352                 skb->sender_cpu = raw_smp_processor_id() + 1;
3353 #endif
3354
3355         if (dev->real_num_tx_queues != 1) {
3356                 const struct net_device_ops *ops = dev->netdev_ops;
3357
3358                 if (ops->ndo_select_queue)
3359                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3360                                                             __netdev_pick_tx);
3361                 else
3362                         queue_index = __netdev_pick_tx(dev, skb);
3363
3364                 if (!accel_priv)
3365                         queue_index = netdev_cap_txqueue(dev, queue_index);
3366         }
3367
3368         skb_set_queue_mapping(skb, queue_index);
3369         return netdev_get_tx_queue(dev, queue_index);
3370 }
3371
3372 /**
3373  *      __dev_queue_xmit - transmit a buffer
3374  *      @skb: buffer to transmit
3375  *      @accel_priv: private data used for L2 forwarding offload
3376  *
3377  *      Queue a buffer for transmission to a network device. The caller must
3378  *      have set the device and priority and built the buffer before calling
3379  *      this function. The function can be called from an interrupt.
3380  *
3381  *      A negative errno code is returned on a failure. A success does not
3382  *      guarantee the frame will be transmitted as it may be dropped due
3383  *      to congestion or traffic shaping.
3384  *
3385  * -----------------------------------------------------------------------------------
3386  *      I notice this method can also return errors from the queue disciplines,
3387  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3388  *      be positive.
3389  *
3390  *      Regardless of the return value, the skb is consumed, so it is currently
3391  *      difficult to retry a send to this method.  (You can bump the ref count
3392  *      before sending to hold a reference for retry if you are careful.)
3393  *
3394  *      When calling this method, interrupts MUST be enabled.  This is because
3395  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3396  *          --BLG
3397  */
3398 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3399 {
3400         struct net_device *dev = skb->dev;
3401         struct netdev_queue *txq;
3402         struct Qdisc *q;
3403         int rc = -ENOMEM;
3404
3405         skb_reset_mac_header(skb);
3406
3407         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3408                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3409
3410         /* Disable soft irqs for various locks below. Also
3411          * stops preemption for RCU.
3412          */
3413         rcu_read_lock_bh();
3414
3415         skb_update_prio(skb);
3416
3417         qdisc_pkt_len_init(skb);
3418 #ifdef CONFIG_NET_CLS_ACT
3419         skb->tc_at_ingress = 0;
3420 # ifdef CONFIG_NET_EGRESS
3421         if (static_key_false(&egress_needed)) {
3422                 skb = sch_handle_egress(skb, &rc, dev);
3423                 if (!skb)
3424                         goto out;
3425         }
3426 # endif
3427 #endif
3428         /* If device/qdisc don't need skb->dst, release it right now while
3429          * its hot in this cpu cache.
3430          */
3431         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3432                 skb_dst_drop(skb);
3433         else
3434                 skb_dst_force(skb);
3435
3436         txq = netdev_pick_tx(dev, skb, accel_priv);
3437         q = rcu_dereference_bh(txq->qdisc);
3438
3439         trace_net_dev_queue(skb);
3440         if (q->enqueue) {
3441                 rc = __dev_xmit_skb(skb, q, dev, txq);
3442                 goto out;
3443         }
3444
3445         /* The device has no queue. Common case for software devices:
3446          * loopback, all the sorts of tunnels...
3447
3448          * Really, it is unlikely that netif_tx_lock protection is necessary
3449          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3450          * counters.)
3451          * However, it is possible, that they rely on protection
3452          * made by us here.
3453
3454          * Check this and shot the lock. It is not prone from deadlocks.
3455          *Either shot noqueue qdisc, it is even simpler 8)
3456          */
3457         if (dev->flags & IFF_UP) {
3458                 int cpu = smp_processor_id(); /* ok because BHs are off */
3459
3460                 if (txq->xmit_lock_owner != cpu) {
3461                         if (unlikely(__this_cpu_read(xmit_recursion) >
3462                                      XMIT_RECURSION_LIMIT))
3463                                 goto recursion_alert;
3464
3465                         skb = validate_xmit_skb(skb, dev);
3466                         if (!skb)
3467                                 goto out;
3468
3469                         HARD_TX_LOCK(dev, txq, cpu);
3470
3471                         if (!netif_xmit_stopped(txq)) {
3472                                 __this_cpu_inc(xmit_recursion);
3473                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3474                                 __this_cpu_dec(xmit_recursion);
3475                                 if (dev_xmit_complete(rc)) {
3476                                         HARD_TX_UNLOCK(dev, txq);
3477                                         goto out;
3478                                 }
3479                         }
3480                         HARD_TX_UNLOCK(dev, txq);
3481                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3482                                              dev->name);
3483                 } else {
3484                         /* Recursion is detected! It is possible,
3485                          * unfortunately
3486                          */
3487 recursion_alert:
3488                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3489                                              dev->name);
3490                 }
3491         }
3492
3493         rc = -ENETDOWN;
3494         rcu_read_unlock_bh();
3495
3496         atomic_long_inc(&dev->tx_dropped);
3497         kfree_skb_list(skb);
3498         return rc;
3499 out:
3500         rcu_read_unlock_bh();
3501         return rc;
3502 }
3503
3504 int dev_queue_xmit(struct sk_buff *skb)
3505 {
3506         return __dev_queue_xmit(skb, NULL);
3507 }
3508 EXPORT_SYMBOL(dev_queue_xmit);
3509
3510 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3511 {
3512         return __dev_queue_xmit(skb, accel_priv);
3513 }
3514 EXPORT_SYMBOL(dev_queue_xmit_accel);
3515
3516
3517 /*************************************************************************
3518  *                      Receiver routines
3519  *************************************************************************/
3520
3521 int netdev_max_backlog __read_mostly = 1000;
3522 EXPORT_SYMBOL(netdev_max_backlog);
3523
3524 int netdev_tstamp_prequeue __read_mostly = 1;
3525 int netdev_budget __read_mostly = 300;
3526 unsigned int __read_mostly netdev_budget_usecs = 2000;
3527 int weight_p __read_mostly = 64;           /* old backlog weight */
3528 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3529 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3530 int dev_rx_weight __read_mostly = 64;
3531 int dev_tx_weight __read_mostly = 64;
3532
3533 /* Called with irq disabled */
3534 static inline void ____napi_schedule(struct softnet_data *sd,
3535                                      struct napi_struct *napi)
3536 {
3537         list_add_tail(&napi->poll_list, &sd->poll_list);
3538         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3539 }
3540
3541 #ifdef CONFIG_RPS
3542
3543 /* One global table that all flow-based protocols share. */
3544 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3545 EXPORT_SYMBOL(rps_sock_flow_table);
3546 u32 rps_cpu_mask __read_mostly;
3547 EXPORT_SYMBOL(rps_cpu_mask);
3548
3549 struct static_key rps_needed __read_mostly;
3550 EXPORT_SYMBOL(rps_needed);
3551 struct static_key rfs_needed __read_mostly;
3552 EXPORT_SYMBOL(rfs_needed);
3553
3554 static struct rps_dev_flow *
3555 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3556             struct rps_dev_flow *rflow, u16 next_cpu)
3557 {
3558         if (next_cpu < nr_cpu_ids) {
3559 #ifdef CONFIG_RFS_ACCEL
3560                 struct netdev_rx_queue *rxqueue;
3561                 struct rps_dev_flow_table *flow_table;
3562                 struct rps_dev_flow *old_rflow;
3563                 u32 flow_id;
3564                 u16 rxq_index;
3565                 int rc;
3566
3567                 /* Should we steer this flow to a different hardware queue? */
3568                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3569                     !(dev->features & NETIF_F_NTUPLE))
3570                         goto out;
3571                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3572                 if (rxq_index == skb_get_rx_queue(skb))
3573                         goto out;
3574
3575                 rxqueue = dev->_rx + rxq_index;
3576                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3577                 if (!flow_table)
3578                         goto out;
3579                 flow_id = skb_get_hash(skb) & flow_table->mask;
3580                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3581                                                         rxq_index, flow_id);
3582                 if (rc < 0)
3583                         goto out;
3584                 old_rflow = rflow;
3585                 rflow = &flow_table->flows[flow_id];
3586                 rflow->filter = rc;
3587                 if (old_rflow->filter == rflow->filter)
3588                         old_rflow->filter = RPS_NO_FILTER;
3589         out:
3590 #endif
3591                 rflow->last_qtail =
3592                         per_cpu(softnet_data, next_cpu).input_queue_head;
3593         }
3594
3595         rflow->cpu = next_cpu;
3596         return rflow;
3597 }
3598
3599 /*
3600  * get_rps_cpu is called from netif_receive_skb and returns the target
3601  * CPU from the RPS map of the receiving queue for a given skb.
3602  * rcu_read_lock must be held on entry.
3603  */
3604 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3605                        struct rps_dev_flow **rflowp)
3606 {
3607         const struct rps_sock_flow_table *sock_flow_table;
3608         struct netdev_rx_queue *rxqueue = dev->_rx;
3609         struct rps_dev_flow_table *flow_table;
3610         struct rps_map *map;
3611         int cpu = -1;
3612         u32 tcpu;
3613         u32 hash;
3614
3615         if (skb_rx_queue_recorded(skb)) {
3616                 u16 index = skb_get_rx_queue(skb);
3617
3618                 if (unlikely(index >= dev->real_num_rx_queues)) {
3619                         WARN_ONCE(dev->real_num_rx_queues > 1,
3620                                   "%s received packet on queue %u, but number "
3621                                   "of RX queues is %u\n",
3622                                   dev->name, index, dev->real_num_rx_queues);
3623                         goto done;
3624                 }
3625                 rxqueue += index;
3626         }
3627
3628         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3629
3630         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3631         map = rcu_dereference(rxqueue->rps_map);
3632         if (!flow_table && !map)
3633                 goto done;
3634
3635         skb_reset_network_header(skb);
3636         hash = skb_get_hash(skb);
3637         if (!hash)
3638                 goto done;
3639
3640         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3641         if (flow_table && sock_flow_table) {
3642                 struct rps_dev_flow *rflow;
3643                 u32 next_cpu;
3644                 u32 ident;
3645
3646                 /* First check into global flow table if there is a match */
3647                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3648                 if ((ident ^ hash) & ~rps_cpu_mask)
3649                         goto try_rps;
3650
3651                 next_cpu = ident & rps_cpu_mask;
3652
3653                 /* OK, now we know there is a match,
3654                  * we can look at the local (per receive queue) flow table
3655                  */
3656                 rflow = &flow_table->flows[hash & flow_table->mask];
3657                 tcpu = rflow->cpu;
3658
3659                 /*
3660                  * If the desired CPU (where last recvmsg was done) is
3661                  * different from current CPU (one in the rx-queue flow
3662                  * table entry), switch if one of the following holds:
3663                  *   - Current CPU is unset (>= nr_cpu_ids).
3664                  *   - Current CPU is offline.
3665                  *   - The current CPU's queue tail has advanced beyond the
3666                  *     last packet that was enqueued using this table entry.
3667                  *     This guarantees that all previous packets for the flow
3668                  *     have been dequeued, thus preserving in order delivery.
3669                  */
3670                 if (unlikely(tcpu != next_cpu) &&
3671                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3672                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3673                       rflow->last_qtail)) >= 0)) {
3674                         tcpu = next_cpu;
3675                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3676                 }
3677
3678                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3679                         *rflowp = rflow;
3680                         cpu = tcpu;
3681                         goto done;
3682                 }
3683         }
3684
3685 try_rps:
3686
3687         if (map) {
3688                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3689                 if (cpu_online(tcpu)) {
3690                         cpu = tcpu;
3691                         goto done;
3692                 }
3693         }
3694
3695 done:
3696         return cpu;
3697 }
3698
3699 #ifdef CONFIG_RFS_ACCEL
3700
3701 /**
3702  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3703  * @dev: Device on which the filter was set
3704  * @rxq_index: RX queue index
3705  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3706  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3707  *
3708  * Drivers that implement ndo_rx_flow_steer() should periodically call
3709  * this function for each installed filter and remove the filters for
3710  * which it returns %true.
3711  */
3712 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3713                          u32 flow_id, u16 filter_id)
3714 {
3715         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3716         struct rps_dev_flow_table *flow_table;
3717         struct rps_dev_flow *rflow;
3718         bool expire = true;
3719         unsigned int cpu;
3720
3721         rcu_read_lock();
3722         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3723         if (flow_table && flow_id <= flow_table->mask) {
3724                 rflow = &flow_table->flows[flow_id];
3725                 cpu = ACCESS_ONCE(rflow->cpu);
3726                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3727                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3728                            rflow->last_qtail) <
3729                      (int)(10 * flow_table->mask)))
3730                         expire = false;
3731         }
3732         rcu_read_unlock();
3733         return expire;
3734 }
3735 EXPORT_SYMBOL(rps_may_expire_flow);
3736
3737 #endif /* CONFIG_RFS_ACCEL */
3738
3739 /* Called from hardirq (IPI) context */
3740 static void rps_trigger_softirq(void *data)
3741 {
3742         struct softnet_data *sd = data;
3743
3744         ____napi_schedule(sd, &sd->backlog);
3745         sd->received_rps++;
3746 }
3747
3748 #endif /* CONFIG_RPS */
3749
3750 /*
3751  * Check if this softnet_data structure is another cpu one
3752  * If yes, queue it to our IPI list and return 1
3753  * If no, return 0
3754  */
3755 static int rps_ipi_queued(struct softnet_data *sd)
3756 {
3757 #ifdef CONFIG_RPS
3758         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3759
3760         if (sd != mysd) {
3761                 sd->rps_ipi_next = mysd->rps_ipi_list;
3762                 mysd->rps_ipi_list = sd;
3763
3764                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3765                 return 1;
3766         }
3767 #endif /* CONFIG_RPS */
3768         return 0;
3769 }
3770
3771 #ifdef CONFIG_NET_FLOW_LIMIT
3772 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3773 #endif
3774
3775 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3776 {
3777 #ifdef CONFIG_NET_FLOW_LIMIT
3778         struct sd_flow_limit *fl;
3779         struct softnet_data *sd;
3780         unsigned int old_flow, new_flow;
3781
3782         if (qlen < (netdev_max_backlog >> 1))
3783                 return false;
3784
3785         sd = this_cpu_ptr(&softnet_data);
3786
3787         rcu_read_lock();
3788         fl = rcu_dereference(sd->flow_limit);
3789         if (fl) {
3790                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3791                 old_flow = fl->history[fl->history_head];
3792                 fl->history[fl->history_head] = new_flow;
3793
3794                 fl->history_head++;
3795                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3796
3797                 if (likely(fl->buckets[old_flow]))
3798                         fl->buckets[old_flow]--;
3799
3800                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3801                         fl->count++;
3802                         rcu_read_unlock();
3803                         return true;
3804                 }
3805         }
3806         rcu_read_unlock();
3807 #endif
3808         return false;
3809 }
3810
3811 /*
3812  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3813  * queue (may be a remote CPU queue).
3814  */
3815 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3816                               unsigned int *qtail)
3817 {
3818         struct softnet_data *sd;
3819         unsigned long flags;
3820         unsigned int qlen;
3821
3822         sd = &per_cpu(softnet_data, cpu);
3823
3824         local_irq_save(flags);
3825
3826         rps_lock(sd);
3827         if (!netif_running(skb->dev))
3828                 goto drop;
3829         qlen = skb_queue_len(&sd->input_pkt_queue);
3830         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3831                 if (qlen) {
3832 enqueue:
3833                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3834                         input_queue_tail_incr_save(sd, qtail);
3835                         rps_unlock(sd);
3836                         local_irq_restore(flags);
3837                         return NET_RX_SUCCESS;
3838                 }
3839
3840                 /* Schedule NAPI for backlog device
3841                  * We can use non atomic operation since we own the queue lock
3842                  */
3843                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3844                         if (!rps_ipi_queued(sd))
3845                                 ____napi_schedule(sd, &sd->backlog);
3846                 }
3847                 goto enqueue;
3848         }
3849
3850 drop:
3851         sd->dropped++;
3852         rps_unlock(sd);
3853
3854         local_irq_restore(flags);
3855
3856         atomic_long_inc(&skb->dev->rx_dropped);
3857         kfree_skb(skb);
3858         return NET_RX_DROP;
3859 }
3860
3861 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3862                                      struct bpf_prog *xdp_prog)
3863 {
3864         struct xdp_buff xdp;
3865         u32 act = XDP_DROP;
3866         void *orig_data;
3867         int hlen, off;
3868         u32 mac_len;
3869
3870         /* Reinjected packets coming from act_mirred or similar should
3871          * not get XDP generic processing.
3872          */
3873         if (skb_cloned(skb))
3874                 return XDP_PASS;
3875
3876         if (skb_linearize(skb))
3877                 goto do_drop;
3878
3879         /* The XDP program wants to see the packet starting at the MAC
3880          * header.
3881          */
3882         mac_len = skb->data - skb_mac_header(skb);
3883         hlen = skb_headlen(skb) + mac_len;
3884         xdp.data = skb->data - mac_len;
3885         xdp.data_end = xdp.data + hlen;
3886         xdp.data_hard_start = skb->data - skb_headroom(skb);
3887         orig_data = xdp.data;
3888
3889         act = bpf_prog_run_xdp(xdp_prog, &xdp);
3890
3891         off = xdp.data - orig_data;
3892         if (off > 0)
3893                 __skb_pull(skb, off);
3894         else if (off < 0)
3895                 __skb_push(skb, -off);
3896
3897         switch (act) {
3898         case XDP_REDIRECT:
3899         case XDP_TX:
3900                 __skb_push(skb, mac_len);
3901                 /* fall through */
3902         case XDP_PASS:
3903                 break;
3904
3905         default:
3906                 bpf_warn_invalid_xdp_action(act);
3907                 /* fall through */
3908         case XDP_ABORTED:
3909                 trace_xdp_exception(skb->dev, xdp_prog, act);
3910                 /* fall through */
3911         case XDP_DROP:
3912         do_drop:
3913                 kfree_skb(skb);
3914                 break;
3915         }
3916
3917         return act;
3918 }
3919
3920 /* When doing generic XDP we have to bypass the qdisc layer and the
3921  * network taps in order to match in-driver-XDP behavior.
3922  */
3923 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3924 {
3925         struct net_device *dev = skb->dev;
3926         struct netdev_queue *txq;
3927         bool free_skb = true;
3928         int cpu, rc;
3929
3930         txq = netdev_pick_tx(dev, skb, NULL);
3931         cpu = smp_processor_id();
3932         HARD_TX_LOCK(dev, txq, cpu);
3933         if (!netif_xmit_stopped(txq)) {
3934                 rc = netdev_start_xmit(skb, dev, txq, 0);
3935                 if (dev_xmit_complete(rc))
3936                         free_skb = false;
3937         }
3938         HARD_TX_UNLOCK(dev, txq);
3939         if (free_skb) {
3940                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3941                 kfree_skb(skb);
3942         }
3943 }
3944
3945 static struct static_key generic_xdp_needed __read_mostly;
3946
3947 static int do_xdp_generic(struct sk_buff *skb)
3948 {
3949         struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
3950
3951         if (xdp_prog) {
3952                 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
3953                 int err;
3954
3955                 if (act != XDP_PASS) {
3956                         switch (act) {
3957                         case XDP_REDIRECT:
3958                                 err = xdp_do_generic_redirect(skb->dev, skb);
3959                                 if (err)
3960                                         goto out_redir;
3961                         /* fallthru to submit skb */
3962                         case XDP_TX:
3963                                 generic_xdp_tx(skb, xdp_prog);
3964                                 break;
3965                         }
3966                         return XDP_DROP;
3967                 }
3968         }
3969         return XDP_PASS;
3970 out_redir:
3971         trace_xdp_exception(skb->dev, xdp_prog, XDP_REDIRECT);
3972         kfree_skb(skb);
3973         return XDP_DROP;
3974 }
3975
3976 static int netif_rx_internal(struct sk_buff *skb)
3977 {
3978         int ret;
3979
3980         net_timestamp_check(netdev_tstamp_prequeue, skb);
3981
3982         trace_netif_rx(skb);
3983
3984         if (static_key_false(&generic_xdp_needed)) {
3985                 int ret = do_xdp_generic(skb);
3986
3987                 /* Consider XDP consuming the packet a success from
3988                  * the netdev point of view we do not want to count
3989                  * this as an error.
3990                  */
3991                 if (ret != XDP_PASS)
3992                         return NET_RX_SUCCESS;
3993         }
3994
3995 #ifdef CONFIG_RPS
3996         if (static_key_false(&rps_needed)) {
3997                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3998                 int cpu;
3999
4000                 preempt_disable();
4001                 rcu_read_lock();
4002
4003                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4004                 if (cpu < 0)
4005                         cpu = smp_processor_id();
4006
4007                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4008
4009                 rcu_read_unlock();
4010                 preempt_enable();
4011         } else
4012 #endif
4013         {
4014                 unsigned int qtail;
4015
4016                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4017                 put_cpu();
4018         }
4019         return ret;
4020 }
4021
4022 /**
4023  *      netif_rx        -       post buffer to the network code
4024  *      @skb: buffer to post
4025  *
4026  *      This function receives a packet from a device driver and queues it for
4027  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4028  *      may be dropped during processing for congestion control or by the
4029  *      protocol layers.
4030  *
4031  *      return values:
4032  *      NET_RX_SUCCESS  (no congestion)
4033  *      NET_RX_DROP     (packet was dropped)
4034  *
4035  */
4036
4037 int netif_rx(struct sk_buff *skb)
4038 {
4039         trace_netif_rx_entry(skb);
4040
4041         return netif_rx_internal(skb);
4042 }
4043 EXPORT_SYMBOL(netif_rx);
4044
4045 int netif_rx_ni(struct sk_buff *skb)
4046 {
4047         int err;
4048
4049         trace_netif_rx_ni_entry(skb);
4050
4051         preempt_disable();
4052         err = netif_rx_internal(skb);
4053         if (local_softirq_pending())
4054                 do_softirq();
4055         preempt_enable();
4056
4057         return err;
4058 }
4059 EXPORT_SYMBOL(netif_rx_ni);
4060
4061 static __latent_entropy void net_tx_action(struct softirq_action *h)
4062 {
4063         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4064
4065         if (sd->completion_queue) {
4066                 struct sk_buff *clist;
4067
4068                 local_irq_disable();
4069                 clist = sd->completion_queue;
4070                 sd->completion_queue = NULL;
4071                 local_irq_enable();
4072
4073                 while (clist) {
4074                         struct sk_buff *skb = clist;
4075
4076                         clist = clist->next;
4077
4078                         WARN_ON(refcount_read(&skb->users));
4079                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4080                                 trace_consume_skb(skb);
4081                         else
4082                                 trace_kfree_skb(skb, net_tx_action);
4083
4084                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4085                                 __kfree_skb(skb);
4086                         else
4087                                 __kfree_skb_defer(skb);
4088                 }
4089
4090                 __kfree_skb_flush();
4091         }
4092
4093         if (sd->output_queue) {
4094                 struct Qdisc *head;
4095
4096                 local_irq_disable();
4097                 head = sd->output_queue;
4098                 sd->output_queue = NULL;
4099                 sd->output_queue_tailp = &sd->output_queue;
4100                 local_irq_enable();
4101
4102                 while (head) {
4103                         struct Qdisc *q = head;
4104                         spinlock_t *root_lock;
4105
4106                         head = head->next_sched;
4107
4108                         root_lock = qdisc_lock(q);
4109                         spin_lock(root_lock);
4110                         /* We need to make sure head->next_sched is read
4111                          * before clearing __QDISC_STATE_SCHED
4112                          */
4113                         smp_mb__before_atomic();
4114                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4115                         qdisc_run(q);
4116                         spin_unlock(root_lock);
4117                 }
4118         }
4119 }
4120
4121 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4122 /* This hook is defined here for ATM LANE */
4123 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4124                              unsigned char *addr) __read_mostly;
4125 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4126 #endif
4127
4128 static inline struct sk_buff *
4129 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4130                    struct net_device *orig_dev)
4131 {
4132 #ifdef CONFIG_NET_CLS_ACT
4133         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4134         struct tcf_result cl_res;
4135
4136         /* If there's at least one ingress present somewhere (so
4137          * we get here via enabled static key), remaining devices
4138          * that are not configured with an ingress qdisc will bail
4139          * out here.
4140          */
4141         if (!cl)
4142                 return skb;
4143         if (*pt_prev) {
4144                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4145                 *pt_prev = NULL;
4146         }
4147
4148         qdisc_skb_cb(skb)->pkt_len = skb->len;
4149         skb->tc_at_ingress = 1;
4150         qdisc_bstats_cpu_update(cl->q, skb);
4151
4152         switch (tcf_classify(skb, cl, &cl_res, false)) {
4153         case TC_ACT_OK:
4154         case TC_ACT_RECLASSIFY:
4155                 skb->tc_index = TC_H_MIN(cl_res.classid);
4156                 break;
4157         case TC_ACT_SHOT:
4158                 qdisc_qstats_cpu_drop(cl->q);
4159                 kfree_skb(skb);
4160                 return NULL;
4161         case TC_ACT_STOLEN:
4162         case TC_ACT_QUEUED:
4163         case TC_ACT_TRAP:
4164                 consume_skb(skb);
4165                 return NULL;
4166         case TC_ACT_REDIRECT:
4167                 /* skb_mac_header check was done by cls/act_bpf, so
4168                  * we can safely push the L2 header back before
4169                  * redirecting to another netdev
4170                  */
4171                 __skb_push(skb, skb->mac_len);
4172                 skb_do_redirect(skb);
4173                 return NULL;
4174         default:
4175                 break;
4176         }
4177 #endif /* CONFIG_NET_CLS_ACT */
4178         return skb;
4179 }
4180
4181 /**
4182  *      netdev_is_rx_handler_busy - check if receive handler is registered
4183  *      @dev: device to check
4184  *
4185  *      Check if a receive handler is already registered for a given device.
4186  *      Return true if there one.
4187  *
4188  *      The caller must hold the rtnl_mutex.
4189  */
4190 bool netdev_is_rx_handler_busy(struct net_device *dev)
4191 {
4192         ASSERT_RTNL();
4193         return dev && rtnl_dereference(dev->rx_handler);
4194 }
4195 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4196
4197 /**
4198  *      netdev_rx_handler_register - register receive handler
4199  *      @dev: device to register a handler for
4200  *      @rx_handler: receive handler to register
4201  *      @rx_handler_data: data pointer that is used by rx handler
4202  *
4203  *      Register a receive handler for a device. This handler will then be
4204  *      called from __netif_receive_skb. A negative errno code is returned
4205  *      on a failure.
4206  *
4207  *      The caller must hold the rtnl_mutex.
4208  *
4209  *      For a general description of rx_handler, see enum rx_handler_result.
4210  */
4211 int netdev_rx_handler_register(struct net_device *dev,
4212                                rx_handler_func_t *rx_handler,
4213                                void *rx_handler_data)
4214 {
4215         if (netdev_is_rx_handler_busy(dev))
4216                 return -EBUSY;
4217
4218         /* Note: rx_handler_data must be set before rx_handler */
4219         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4220         rcu_assign_pointer(dev->rx_handler, rx_handler);
4221
4222         return 0;
4223 }
4224 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4225
4226 /**
4227  *      netdev_rx_handler_unregister - unregister receive handler
4228  *      @dev: device to unregister a handler from
4229  *
4230  *      Unregister a receive handler from a device.
4231  *
4232  *      The caller must hold the rtnl_mutex.
4233  */
4234 void netdev_rx_handler_unregister(struct net_device *dev)
4235 {
4236
4237         ASSERT_RTNL();
4238         RCU_INIT_POINTER(dev->rx_handler, NULL);
4239         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4240          * section has a guarantee to see a non NULL rx_handler_data
4241          * as well.
4242          */
4243         synchronize_net();
4244         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4245 }
4246 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4247
4248 /*
4249  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4250  * the special handling of PFMEMALLOC skbs.
4251  */
4252 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4253 {
4254         switch (skb->protocol) {
4255         case htons(ETH_P_ARP):
4256         case htons(ETH_P_IP):
4257         case htons(ETH_P_IPV6):
4258         case htons(ETH_P_8021Q):
4259         case htons(ETH_P_8021AD):
4260                 return true;
4261         default:
4262                 return false;
4263         }
4264 }
4265
4266 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4267                              int *ret, struct net_device *orig_dev)
4268 {
4269 #ifdef CONFIG_NETFILTER_INGRESS
4270         if (nf_hook_ingress_active(skb)) {
4271                 int ingress_retval;
4272
4273                 if (*pt_prev) {
4274                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4275                         *pt_prev = NULL;
4276                 }
4277
4278                 rcu_read_lock();
4279                 ingress_retval = nf_hook_ingress(skb);
4280                 rcu_read_unlock();
4281                 return ingress_retval;
4282         }
4283 #endif /* CONFIG_NETFILTER_INGRESS */
4284         return 0;
4285 }
4286
4287 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4288 {
4289         struct packet_type *ptype, *pt_prev;
4290         rx_handler_func_t *rx_handler;
4291         struct net_device *orig_dev;
4292         bool deliver_exact = false;
4293         int ret = NET_RX_DROP;
4294         __be16 type;
4295
4296         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4297
4298         trace_netif_receive_skb(skb);
4299
4300         orig_dev = skb->dev;
4301
4302         skb_reset_network_header(skb);
4303         if (!skb_transport_header_was_set(skb))
4304                 skb_reset_transport_header(skb);
4305         skb_reset_mac_len(skb);
4306
4307         pt_prev = NULL;
4308
4309 another_round:
4310         skb->skb_iif = skb->dev->ifindex;
4311
4312         __this_cpu_inc(softnet_data.processed);
4313
4314         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4315             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4316                 skb = skb_vlan_untag(skb);
4317                 if (unlikely(!skb))
4318                         goto out;
4319         }
4320
4321         if (skb_skip_tc_classify(skb))
4322                 goto skip_classify;
4323
4324         if (pfmemalloc)
4325                 goto skip_taps;
4326
4327         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4328                 if (pt_prev)
4329                         ret = deliver_skb(skb, pt_prev, orig_dev);
4330                 pt_prev = ptype;
4331         }
4332
4333         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4334                 if (pt_prev)
4335                         ret = deliver_skb(skb, pt_prev, orig_dev);
4336                 pt_prev = ptype;
4337         }
4338
4339 skip_taps:
4340 #ifdef CONFIG_NET_INGRESS
4341         if (static_key_false(&ingress_needed)) {
4342                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4343                 if (!skb)
4344                         goto out;
4345
4346                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4347                         goto out;
4348         }
4349 #endif
4350         skb_reset_tc(skb);
4351 skip_classify:
4352         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4353                 goto drop;
4354
4355         if (skb_vlan_tag_present(skb)) {
4356                 if (pt_prev) {
4357                         ret = deliver_skb(skb, pt_prev, orig_dev);
4358                         pt_prev = NULL;
4359                 }
4360                 if (vlan_do_receive(&skb))
4361                         goto another_round;
4362                 else if (unlikely(!skb))
4363                         goto out;
4364         }
4365
4366         rx_handler = rcu_dereference(skb->dev->rx_handler);
4367         if (rx_handler) {
4368                 if (pt_prev) {
4369                         ret = deliver_skb(skb, pt_prev, orig_dev);
4370                         pt_prev = NULL;
4371                 }
4372                 switch (rx_handler(&skb)) {
4373                 case RX_HANDLER_CONSUMED:
4374                         ret = NET_RX_SUCCESS;
4375                         goto out;
4376                 case RX_HANDLER_ANOTHER:
4377                         goto another_round;
4378                 case RX_HANDLER_EXACT:
4379                         deliver_exact = true;
4380                 case RX_HANDLER_PASS:
4381                         break;
4382                 default:
4383                         BUG();
4384                 }
4385         }
4386
4387         if (unlikely(skb_vlan_tag_present(skb))) {
4388                 if (skb_vlan_tag_get_id(skb))
4389                         skb->pkt_type = PACKET_OTHERHOST;
4390                 /* Note: we might in the future use prio bits
4391                  * and set skb->priority like in vlan_do_receive()
4392                  * For the time being, just ignore Priority Code Point
4393                  */
4394                 skb->vlan_tci = 0;
4395         }
4396
4397         type = skb->protocol;
4398
4399         /* deliver only exact match when indicated */
4400         if (likely(!deliver_exact)) {
4401                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4402                                        &ptype_base[ntohs(type) &
4403                                                    PTYPE_HASH_MASK]);
4404         }
4405
4406         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4407                                &orig_dev->ptype_specific);
4408
4409         if (unlikely(skb->dev != orig_dev)) {
4410                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4411                                        &skb->dev->ptype_specific);
4412         }
4413
4414         if (pt_prev) {
4415                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4416                         goto drop;
4417                 else
4418                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4419         } else {
4420 drop:
4421                 if (!deliver_exact)
4422                         atomic_long_inc(&skb->dev->rx_dropped);
4423                 else
4424                         atomic_long_inc(&skb->dev->rx_nohandler);
4425                 kfree_skb(skb);
4426                 /* Jamal, now you will not able to escape explaining
4427                  * me how you were going to use this. :-)
4428                  */
4429                 ret = NET_RX_DROP;
4430         }
4431
4432 out:
4433         return ret;
4434 }
4435
4436 static int __netif_receive_skb(struct sk_buff *skb)
4437 {
4438         int ret;
4439
4440         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4441                 unsigned int noreclaim_flag;
4442
4443                 /*
4444                  * PFMEMALLOC skbs are special, they should
4445                  * - be delivered to SOCK_MEMALLOC sockets only
4446                  * - stay away from userspace
4447                  * - have bounded memory usage
4448                  *
4449                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4450                  * context down to all allocation sites.
4451                  */
4452                 noreclaim_flag = memalloc_noreclaim_save();
4453                 ret = __netif_receive_skb_core(skb, true);
4454                 memalloc_noreclaim_restore(noreclaim_flag);
4455         } else
4456                 ret = __netif_receive_skb_core(skb, false);
4457
4458         return ret;
4459 }
4460
4461 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4462 {
4463         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4464         struct bpf_prog *new = xdp->prog;
4465         int ret = 0;
4466
4467         switch (xdp->command) {
4468         case XDP_SETUP_PROG:
4469                 rcu_assign_pointer(dev->xdp_prog, new);
4470                 if (old)
4471                         bpf_prog_put(old);
4472
4473                 if (old && !new) {
4474                         static_key_slow_dec(&generic_xdp_needed);
4475                 } else if (new && !old) {
4476                         static_key_slow_inc(&generic_xdp_needed);
4477                         dev_disable_lro(dev);
4478                 }
4479                 break;
4480
4481         case XDP_QUERY_PROG:
4482                 xdp->prog_attached = !!old;
4483                 xdp->prog_id = old ? old->aux->id : 0;
4484                 break;
4485
4486         default:
4487                 ret = -EINVAL;
4488                 break;
4489         }
4490
4491         return ret;
4492 }
4493
4494 static int netif_receive_skb_internal(struct sk_buff *skb)
4495 {
4496         int ret;
4497
4498         net_timestamp_check(netdev_tstamp_prequeue, skb);
4499
4500         if (skb_defer_rx_timestamp(skb))
4501                 return NET_RX_SUCCESS;
4502
4503         rcu_read_lock();
4504
4505         if (static_key_false(&generic_xdp_needed)) {
4506                 int ret = do_xdp_generic(skb);
4507
4508                 if (ret != XDP_PASS) {
4509                         rcu_read_unlock();
4510                         return NET_RX_DROP;
4511                 }
4512         }
4513
4514 #ifdef CONFIG_RPS
4515         if (static_key_false(&rps_needed)) {
4516                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4517                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4518
4519                 if (cpu >= 0) {
4520                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4521                         rcu_read_unlock();
4522                         return ret;
4523                 }
4524         }
4525 #endif
4526         ret = __netif_receive_skb(skb);
4527         rcu_read_unlock();
4528         return ret;
4529 }
4530
4531 /**
4532  *      netif_receive_skb - process receive buffer from network
4533  *      @skb: buffer to process
4534  *
4535  *      netif_receive_skb() is the main receive data processing function.
4536  *      It always succeeds. The buffer may be dropped during processing
4537  *      for congestion control or by the protocol layers.
4538  *
4539  *      This function may only be called from softirq context and interrupts
4540  *      should be enabled.
4541  *
4542  *      Return values (usually ignored):
4543  *      NET_RX_SUCCESS: no congestion
4544  *      NET_RX_DROP: packet was dropped
4545  */
4546 int netif_receive_skb(struct sk_buff *skb)
4547 {
4548         trace_netif_receive_skb_entry(skb);
4549
4550         return netif_receive_skb_internal(skb);
4551 }
4552 EXPORT_SYMBOL(netif_receive_skb);
4553
4554 DEFINE_PER_CPU(struct work_struct, flush_works);
4555
4556 /* Network device is going away, flush any packets still pending */
4557 static void flush_backlog(struct work_struct *work)
4558 {
4559         struct sk_buff *skb, *tmp;
4560         struct softnet_data *sd;
4561
4562         local_bh_disable();
4563         sd = this_cpu_ptr(&softnet_data);
4564
4565         local_irq_disable();
4566         rps_lock(sd);
4567         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4568                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4569                         __skb_unlink(skb, &sd->input_pkt_queue);
4570                         kfree_skb(skb);
4571                         input_queue_head_incr(sd);
4572                 }
4573         }
4574         rps_unlock(sd);
4575         local_irq_enable();
4576
4577         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4578                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4579                         __skb_unlink(skb, &sd->process_queue);
4580                         kfree_skb(skb);
4581                         input_queue_head_incr(sd);
4582                 }
4583         }
4584         local_bh_enable();
4585 }
4586
4587 static void flush_all_backlogs(void)
4588 {
4589         unsigned int cpu;
4590
4591         get_online_cpus();
4592
4593         for_each_online_cpu(cpu)
4594                 queue_work_on(cpu, system_highpri_wq,
4595                               per_cpu_ptr(&flush_works, cpu));
4596
4597         for_each_online_cpu(cpu)
4598                 flush_work(per_cpu_ptr(&flush_works, cpu));
4599
4600         put_online_cpus();
4601 }
4602
4603 static int napi_gro_complete(struct sk_buff *skb)
4604 {
4605         struct packet_offload *ptype;
4606         __be16 type = skb->protocol;
4607         struct list_head *head = &offload_base;
4608         int err = -ENOENT;
4609
4610         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4611
4612         if (NAPI_GRO_CB(skb)->count == 1) {
4613                 skb_shinfo(skb)->gso_size = 0;
4614                 goto out;
4615         }
4616
4617         rcu_read_lock();
4618         list_for_each_entry_rcu(ptype, head, list) {
4619                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4620                         continue;
4621
4622                 err = ptype->callbacks.gro_complete(skb, 0);
4623                 break;
4624         }
4625         rcu_read_unlock();
4626
4627         if (err) {
4628                 WARN_ON(&ptype->list == head);
4629                 kfree_skb(skb);
4630                 return NET_RX_SUCCESS;
4631         }
4632
4633 out:
4634         return netif_receive_skb_internal(skb);
4635 }
4636
4637 /* napi->gro_list contains packets ordered by age.
4638  * youngest packets at the head of it.
4639  * Complete skbs in reverse order to reduce latencies.
4640  */
4641 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4642 {
4643         struct sk_buff *skb, *prev = NULL;
4644
4645         /* scan list and build reverse chain */
4646         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4647                 skb->prev = prev;
4648                 prev = skb;
4649         }
4650
4651         for (skb = prev; skb; skb = prev) {
4652                 skb->next = NULL;
4653
4654                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4655                         return;
4656
4657                 prev = skb->prev;
4658                 napi_gro_complete(skb);
4659                 napi->gro_count--;
4660         }
4661
4662         napi->gro_list = NULL;
4663 }
4664 EXPORT_SYMBOL(napi_gro_flush);
4665
4666 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4667 {
4668         struct sk_buff *p;
4669         unsigned int maclen = skb->dev->hard_header_len;
4670         u32 hash = skb_get_hash_raw(skb);
4671
4672         for (p = napi->gro_list; p; p = p->next) {
4673                 unsigned long diffs;
4674
4675                 NAPI_GRO_CB(p)->flush = 0;
4676
4677                 if (hash != skb_get_hash_raw(p)) {
4678                         NAPI_GRO_CB(p)->same_flow = 0;
4679                         continue;
4680                 }
4681
4682                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4683                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4684                 diffs |= skb_metadata_dst_cmp(p, skb);
4685                 if (maclen == ETH_HLEN)
4686                         diffs |= compare_ether_header(skb_mac_header(p),
4687                                                       skb_mac_header(skb));
4688                 else if (!diffs)
4689                         diffs = memcmp(skb_mac_header(p),
4690                                        skb_mac_header(skb),
4691                                        maclen);
4692                 NAPI_GRO_CB(p)->same_flow = !diffs;
4693         }
4694 }
4695
4696 static void skb_gro_reset_offset(struct sk_buff *skb)
4697 {
4698         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4699         const skb_frag_t *frag0 = &pinfo->frags[0];
4700
4701         NAPI_GRO_CB(skb)->data_offset = 0;
4702         NAPI_GRO_CB(skb)->frag0 = NULL;
4703         NAPI_GRO_CB(skb)->frag0_len = 0;
4704
4705         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4706             pinfo->nr_frags &&
4707             !PageHighMem(skb_frag_page(frag0))) {
4708                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4709                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4710                                                     skb_frag_size(frag0),
4711                                                     skb->end - skb->tail);
4712         }
4713 }
4714
4715 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4716 {
4717         struct skb_shared_info *pinfo = skb_shinfo(skb);
4718
4719         BUG_ON(skb->end - skb->tail < grow);
4720
4721         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4722
4723         skb->data_len -= grow;
4724         skb->tail += grow;
4725
4726         pinfo->frags[0].page_offset += grow;
4727         skb_frag_size_sub(&pinfo->frags[0], grow);
4728
4729         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4730                 skb_frag_unref(skb, 0);
4731                 memmove(pinfo->frags, pinfo->frags + 1,
4732                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4733         }
4734 }
4735
4736 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4737 {
4738         struct sk_buff **pp = NULL;
4739         struct packet_offload *ptype;
4740         __be16 type = skb->protocol;
4741         struct list_head *head = &offload_base;
4742         int same_flow;
4743         enum gro_result ret;
4744         int grow;
4745
4746         if (netif_elide_gro(skb->dev))
4747                 goto normal;
4748
4749         gro_list_prepare(napi, skb);
4750
4751         rcu_read_lock();
4752         list_for_each_entry_rcu(ptype, head, list) {
4753                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4754                         continue;
4755
4756                 skb_set_network_header(skb, skb_gro_offset(skb));
4757                 skb_reset_mac_len(skb);
4758                 NAPI_GRO_CB(skb)->same_flow = 0;
4759                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4760                 NAPI_GRO_CB(skb)->free = 0;
4761                 NAPI_GRO_CB(skb)->encap_mark = 0;
4762                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4763                 NAPI_GRO_CB(skb)->is_fou = 0;
4764                 NAPI_GRO_CB(skb)->is_atomic = 1;
4765                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4766
4767                 /* Setup for GRO checksum validation */
4768                 switch (skb->ip_summed) {
4769                 case CHECKSUM_COMPLETE:
4770                         NAPI_GRO_CB(skb)->csum = skb->csum;
4771                         NAPI_GRO_CB(skb)->csum_valid = 1;
4772                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4773                         break;
4774                 case CHECKSUM_UNNECESSARY:
4775                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4776                         NAPI_GRO_CB(skb)->csum_valid = 0;
4777                         break;
4778                 default:
4779                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4780                         NAPI_GRO_CB(skb)->csum_valid = 0;
4781                 }
4782
4783                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4784                 break;
4785         }
4786         rcu_read_unlock();
4787
4788         if (&ptype->list == head)
4789                 goto normal;
4790
4791         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4792                 ret = GRO_CONSUMED;
4793                 goto ok;
4794         }
4795
4796         same_flow = NAPI_GRO_CB(skb)->same_flow;
4797         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4798
4799         if (pp) {
4800                 struct sk_buff *nskb = *pp;
4801
4802                 *pp = nskb->next;
4803                 nskb->next = NULL;
4804                 napi_gro_complete(nskb);
4805                 napi->gro_count--;
4806         }
4807
4808         if (same_flow)
4809                 goto ok;
4810
4811         if (NAPI_GRO_CB(skb)->flush)
4812                 goto normal;
4813
4814         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4815                 struct sk_buff *nskb = napi->gro_list;
4816
4817                 /* locate the end of the list to select the 'oldest' flow */
4818                 while (nskb->next) {
4819                         pp = &nskb->next;
4820                         nskb = *pp;
4821                 }
4822                 *pp = NULL;
4823                 nskb->next = NULL;
4824                 napi_gro_complete(nskb);
4825         } else {
4826                 napi->gro_count++;
4827         }
4828         NAPI_GRO_CB(skb)->count = 1;
4829         NAPI_GRO_CB(skb)->age = jiffies;
4830         NAPI_GRO_CB(skb)->last = skb;
4831         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4832         skb->next = napi->gro_list;
4833         napi->gro_list = skb;
4834         ret = GRO_HELD;
4835
4836 pull:
4837         grow = skb_gro_offset(skb) - skb_headlen(skb);
4838         if (grow > 0)
4839                 gro_pull_from_frag0(skb, grow);
4840 ok:
4841         return ret;
4842
4843 normal:
4844         ret = GRO_NORMAL;
4845         goto pull;
4846 }
4847
4848 struct packet_offload *gro_find_receive_by_type(__be16 type)
4849 {
4850         struct list_head *offload_head = &offload_base;
4851         struct packet_offload *ptype;
4852
4853         list_for_each_entry_rcu(ptype, offload_head, list) {
4854                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4855                         continue;
4856                 return ptype;
4857         }
4858         return NULL;
4859 }
4860 EXPORT_SYMBOL(gro_find_receive_by_type);
4861
4862 struct packet_offload *gro_find_complete_by_type(__be16 type)
4863 {
4864         struct list_head *offload_head = &offload_base;
4865         struct packet_offload *ptype;
4866
4867         list_for_each_entry_rcu(ptype, offload_head, list) {
4868                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4869                         continue;
4870                 return ptype;
4871         }
4872         return NULL;
4873 }
4874 EXPORT_SYMBOL(gro_find_complete_by_type);
4875
4876 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4877 {
4878         skb_dst_drop(skb);
4879         secpath_reset(skb);
4880         kmem_cache_free(skbuff_head_cache, skb);
4881 }
4882
4883 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4884 {
4885         switch (ret) {
4886         case GRO_NORMAL:
4887                 if (netif_receive_skb_internal(skb))
4888                         ret = GRO_DROP;
4889                 break;
4890
4891         case GRO_DROP:
4892                 kfree_skb(skb);
4893                 break;
4894
4895         case GRO_MERGED_FREE:
4896                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4897                         napi_skb_free_stolen_head(skb);
4898                 else
4899                         __kfree_skb(skb);
4900                 break;
4901
4902         case GRO_HELD:
4903         case GRO_MERGED:
4904         case GRO_CONSUMED:
4905                 break;
4906         }
4907
4908         return ret;
4909 }
4910
4911 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4912 {
4913         skb_mark_napi_id(skb, napi);
4914         trace_napi_gro_receive_entry(skb);
4915
4916         skb_gro_reset_offset(skb);
4917
4918         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4919 }
4920 EXPORT_SYMBOL(napi_gro_receive);
4921
4922 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4923 {
4924         if (unlikely(skb->pfmemalloc)) {
4925                 consume_skb(skb);
4926                 return;
4927         }
4928         __skb_pull(skb, skb_headlen(skb));
4929         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4930         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4931         skb->vlan_tci = 0;
4932         skb->dev = napi->dev;
4933         skb->skb_iif = 0;
4934         skb->encapsulation = 0;
4935         skb_shinfo(skb)->gso_type = 0;
4936         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4937         secpath_reset(skb);
4938
4939         napi->skb = skb;
4940 }
4941
4942 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4943 {
4944         struct sk_buff *skb = napi->skb;
4945
4946         if (!skb) {
4947                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4948                 if (skb) {
4949                         napi->skb = skb;
4950                         skb_mark_napi_id(skb, napi);
4951                 }
4952         }
4953         return skb;
4954 }
4955 EXPORT_SYMBOL(napi_get_frags);
4956
4957 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4958                                       struct sk_buff *skb,
4959                                       gro_result_t ret)
4960 {
4961         switch (ret) {
4962         case GRO_NORMAL:
4963         case GRO_HELD:
4964                 __skb_push(skb, ETH_HLEN);
4965                 skb->protocol = eth_type_trans(skb, skb->dev);
4966                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4967                         ret = GRO_DROP;
4968                 break;
4969
4970         case GRO_DROP:
4971                 napi_reuse_skb(napi, skb);
4972                 break;
4973
4974         case GRO_MERGED_FREE:
4975                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4976                         napi_skb_free_stolen_head(skb);
4977                 else
4978                         napi_reuse_skb(napi, skb);
4979                 break;
4980
4981         case GRO_MERGED:
4982         case GRO_CONSUMED:
4983                 break;
4984         }
4985
4986         return ret;
4987 }
4988
4989 /* Upper GRO stack assumes network header starts at gro_offset=0
4990  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4991  * We copy ethernet header into skb->data to have a common layout.
4992  */
4993 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4994 {
4995         struct sk_buff *skb = napi->skb;
4996         const struct ethhdr *eth;
4997         unsigned int hlen = sizeof(*eth);
4998
4999         napi->skb = NULL;
5000
5001         skb_reset_mac_header(skb);
5002         skb_gro_reset_offset(skb);
5003
5004         eth = skb_gro_header_fast(skb, 0);
5005         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5006                 eth = skb_gro_header_slow(skb, hlen, 0);
5007                 if (unlikely(!eth)) {
5008                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5009                                              __func__, napi->dev->name);
5010                         napi_reuse_skb(napi, skb);
5011                         return NULL;
5012                 }
5013         } else {
5014                 gro_pull_from_frag0(skb, hlen);
5015                 NAPI_GRO_CB(skb)->frag0 += hlen;
5016                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5017         }
5018         __skb_pull(skb, hlen);
5019
5020         /*
5021          * This works because the only protocols we care about don't require
5022          * special handling.
5023          * We'll fix it up properly in napi_frags_finish()
5024          */
5025         skb->protocol = eth->h_proto;
5026
5027         return skb;
5028 }
5029
5030 gro_result_t napi_gro_frags(struct napi_struct *napi)
5031 {
5032         struct sk_buff *skb = napi_frags_skb(napi);
5033
5034         if (!skb)
5035                 return GRO_DROP;
5036
5037         trace_napi_gro_frags_entry(skb);
5038
5039         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5040 }
5041 EXPORT_SYMBOL(napi_gro_frags);
5042
5043 /* Compute the checksum from gro_offset and return the folded value
5044  * after adding in any pseudo checksum.
5045  */
5046 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5047 {
5048         __wsum wsum;
5049         __sum16 sum;
5050
5051         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5052
5053         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5054         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5055         if (likely(!sum)) {
5056                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5057                     !skb->csum_complete_sw)
5058                         netdev_rx_csum_fault(skb->dev);
5059         }
5060
5061         NAPI_GRO_CB(skb)->csum = wsum;
5062         NAPI_GRO_CB(skb)->csum_valid = 1;
5063
5064         return sum;
5065 }
5066 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5067
5068 static void net_rps_send_ipi(struct softnet_data *remsd)
5069 {
5070 #ifdef CONFIG_RPS
5071         while (remsd) {
5072                 struct softnet_data *next = remsd->rps_ipi_next;
5073
5074                 if (cpu_online(remsd->cpu))
5075                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5076                 remsd = next;
5077         }
5078 #endif
5079 }
5080
5081 /*
5082  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5083  * Note: called with local irq disabled, but exits with local irq enabled.
5084  */
5085 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5086 {
5087 #ifdef CONFIG_RPS
5088         struct softnet_data *remsd = sd->rps_ipi_list;
5089
5090         if (remsd) {
5091                 sd->rps_ipi_list = NULL;
5092
5093                 local_irq_enable();
5094
5095                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5096                 net_rps_send_ipi(remsd);
5097         } else
5098 #endif
5099                 local_irq_enable();
5100 }
5101
5102 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5103 {
5104 #ifdef CONFIG_RPS
5105         return sd->rps_ipi_list != NULL;
5106 #else
5107         return false;
5108 #endif
5109 }
5110
5111 static int process_backlog(struct napi_struct *napi, int quota)
5112 {
5113         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5114         bool again = true;
5115         int work = 0;
5116
5117         /* Check if we have pending ipi, its better to send them now,
5118          * not waiting net_rx_action() end.
5119          */
5120         if (sd_has_rps_ipi_waiting(sd)) {
5121                 local_irq_disable();
5122                 net_rps_action_and_irq_enable(sd);
5123         }
5124
5125         napi->weight = dev_rx_weight;
5126         while (again) {
5127                 struct sk_buff *skb;
5128
5129                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5130                         rcu_read_lock();
5131                         __netif_receive_skb(skb);
5132                         rcu_read_unlock();
5133                         input_queue_head_incr(sd);
5134                         if (++work >= quota)
5135                                 return work;
5136
5137                 }
5138
5139                 local_irq_disable();
5140                 rps_lock(sd);
5141                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5142                         /*
5143                          * Inline a custom version of __napi_complete().
5144                          * only current cpu owns and manipulates this napi,
5145                          * and NAPI_STATE_SCHED is the only possible flag set
5146                          * on backlog.
5147                          * We can use a plain write instead of clear_bit(),
5148                          * and we dont need an smp_mb() memory barrier.
5149                          */
5150                         napi->state = 0;
5151                         again = false;
5152                 } else {
5153                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5154                                                    &sd->process_queue);
5155                 }
5156                 rps_unlock(sd);
5157                 local_irq_enable();
5158         }
5159
5160         return work;
5161 }
5162
5163 /**
5164  * __napi_schedule - schedule for receive
5165  * @n: entry to schedule
5166  *
5167  * The entry's receive function will be scheduled to run.
5168  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5169  */
5170 void __napi_schedule(struct napi_struct *n)
5171 {
5172         unsigned long flags;
5173
5174         local_irq_save(flags);
5175         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5176         local_irq_restore(flags);
5177 }
5178 EXPORT_SYMBOL(__napi_schedule);
5179
5180 /**
5181  *      napi_schedule_prep - check if napi can be scheduled
5182  *      @n: napi context
5183  *
5184  * Test if NAPI routine is already running, and if not mark
5185  * it as running.  This is used as a condition variable
5186  * insure only one NAPI poll instance runs.  We also make
5187  * sure there is no pending NAPI disable.
5188  */
5189 bool napi_schedule_prep(struct napi_struct *n)
5190 {
5191         unsigned long val, new;
5192
5193         do {
5194                 val = READ_ONCE(n->state);
5195                 if (unlikely(val & NAPIF_STATE_DISABLE))
5196                         return false;
5197                 new = val | NAPIF_STATE_SCHED;
5198
5199                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5200                  * This was suggested by Alexander Duyck, as compiler
5201                  * emits better code than :
5202                  * if (val & NAPIF_STATE_SCHED)
5203                  *     new |= NAPIF_STATE_MISSED;
5204                  */
5205                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5206                                                    NAPIF_STATE_MISSED;
5207         } while (cmpxchg(&n->state, val, new) != val);
5208
5209         return !(val & NAPIF_STATE_SCHED);
5210 }
5211 EXPORT_SYMBOL(napi_schedule_prep);
5212
5213 /**
5214  * __napi_schedule_irqoff - schedule for receive
5215  * @n: entry to schedule
5216  *
5217  * Variant of __napi_schedule() assuming hard irqs are masked
5218  */
5219 void __napi_schedule_irqoff(struct napi_struct *n)
5220 {
5221         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5222 }
5223 EXPORT_SYMBOL(__napi_schedule_irqoff);
5224
5225 bool napi_complete_done(struct napi_struct *n, int work_done)
5226 {
5227         unsigned long flags, val, new;
5228
5229         /*
5230          * 1) Don't let napi dequeue from the cpu poll list
5231          *    just in case its running on a different cpu.
5232          * 2) If we are busy polling, do nothing here, we have
5233          *    the guarantee we will be called later.
5234          */
5235         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5236                                  NAPIF_STATE_IN_BUSY_POLL)))
5237                 return false;
5238
5239         if (n->gro_list) {
5240                 unsigned long timeout = 0;
5241
5242                 if (work_done)
5243                         timeout = n->dev->gro_flush_timeout;
5244
5245                 if (timeout)
5246                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5247                                       HRTIMER_MODE_REL_PINNED);
5248                 else
5249                         napi_gro_flush(n, false);
5250         }
5251         if (unlikely(!list_empty(&n->poll_list))) {
5252                 /* If n->poll_list is not empty, we need to mask irqs */
5253                 local_irq_save(flags);
5254                 list_del_init(&n->poll_list);
5255                 local_irq_restore(flags);
5256         }
5257
5258         do {
5259                 val = READ_ONCE(n->state);
5260
5261                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5262
5263                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5264
5265                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5266                  * because we will call napi->poll() one more time.
5267                  * This C code was suggested by Alexander Duyck to help gcc.
5268                  */
5269                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5270                                                     NAPIF_STATE_SCHED;
5271         } while (cmpxchg(&n->state, val, new) != val);
5272
5273         if (unlikely(val & NAPIF_STATE_MISSED)) {
5274                 __napi_schedule(n);
5275                 return false;
5276         }
5277
5278         return true;
5279 }
5280 EXPORT_SYMBOL(napi_complete_done);
5281
5282 /* must be called under rcu_read_lock(), as we dont take a reference */
5283 static struct napi_struct *napi_by_id(unsigned int napi_id)
5284 {
5285         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5286         struct napi_struct *napi;
5287
5288         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5289                 if (napi->napi_id == napi_id)
5290                         return napi;
5291
5292         return NULL;
5293 }
5294
5295 #if defined(CONFIG_NET_RX_BUSY_POLL)
5296
5297 #define BUSY_POLL_BUDGET 8
5298
5299 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5300 {
5301         int rc;
5302
5303         /* Busy polling means there is a high chance device driver hard irq
5304          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5305          * set in napi_schedule_prep().
5306          * Since we are about to call napi->poll() once more, we can safely
5307          * clear NAPI_STATE_MISSED.
5308          *
5309          * Note: x86 could use a single "lock and ..." instruction
5310          * to perform these two clear_bit()
5311          */
5312         clear_bit(NAPI_STATE_MISSED, &napi->state);
5313         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5314
5315         local_bh_disable();
5316
5317         /* All we really want here is to re-enable device interrupts.
5318          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5319          */
5320         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5321         netpoll_poll_unlock(have_poll_lock);
5322         if (rc == BUSY_POLL_BUDGET)
5323                 __napi_schedule(napi);
5324         local_bh_enable();
5325 }
5326
5327 void napi_busy_loop(unsigned int napi_id,
5328                     bool (*loop_end)(void *, unsigned long),
5329                     void *loop_end_arg)
5330 {
5331         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5332         int (*napi_poll)(struct napi_struct *napi, int budget);
5333         void *have_poll_lock = NULL;
5334         struct napi_struct *napi;
5335
5336 restart:
5337         napi_poll = NULL;
5338
5339         rcu_read_lock();
5340
5341         napi = napi_by_id(napi_id);
5342         if (!napi)
5343                 goto out;
5344
5345         preempt_disable();
5346         for (;;) {
5347                 int work = 0;
5348
5349                 local_bh_disable();
5350                 if (!napi_poll) {
5351                         unsigned long val = READ_ONCE(napi->state);
5352
5353                         /* If multiple threads are competing for this napi,
5354                          * we avoid dirtying napi->state as much as we can.
5355                          */
5356                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5357                                    NAPIF_STATE_IN_BUSY_POLL))
5358                                 goto count;
5359                         if (cmpxchg(&napi->state, val,
5360                                     val | NAPIF_STATE_IN_BUSY_POLL |
5361                                           NAPIF_STATE_SCHED) != val)
5362                                 goto count;
5363                         have_poll_lock = netpoll_poll_lock(napi);
5364                         napi_poll = napi->poll;
5365                 }
5366                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5367                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5368 count:
5369                 if (work > 0)
5370                         __NET_ADD_STATS(dev_net(napi->dev),
5371                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5372                 local_bh_enable();
5373
5374                 if (!loop_end || loop_end(loop_end_arg, start_time))
5375                         break;
5376
5377                 if (unlikely(need_resched())) {
5378                         if (napi_poll)
5379                                 busy_poll_stop(napi, have_poll_lock);
5380                         preempt_enable();
5381                         rcu_read_unlock();
5382                         cond_resched();
5383                         if (loop_end(loop_end_arg, start_time))
5384                                 return;
5385                         goto restart;
5386                 }
5387                 cpu_relax();
5388         }
5389         if (napi_poll)
5390                 busy_poll_stop(napi, have_poll_lock);
5391         preempt_enable();
5392 out:
5393         rcu_read_unlock();
5394 }
5395 EXPORT_SYMBOL(napi_busy_loop);
5396
5397 #endif /* CONFIG_NET_RX_BUSY_POLL */
5398
5399 static void napi_hash_add(struct napi_struct *napi)
5400 {
5401         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5402             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5403                 return;
5404
5405         spin_lock(&napi_hash_lock);
5406
5407         /* 0..NR_CPUS range is reserved for sender_cpu use */
5408         do {
5409                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5410                         napi_gen_id = MIN_NAPI_ID;
5411         } while (napi_by_id(napi_gen_id));
5412         napi->napi_id = napi_gen_id;
5413
5414         hlist_add_head_rcu(&napi->napi_hash_node,
5415                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5416
5417         spin_unlock(&napi_hash_lock);
5418 }
5419
5420 /* Warning : caller is responsible to make sure rcu grace period
5421  * is respected before freeing memory containing @napi
5422  */
5423 bool napi_hash_del(struct napi_struct *napi)
5424 {
5425         bool rcu_sync_needed = false;
5426
5427         spin_lock(&napi_hash_lock);
5428
5429         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5430                 rcu_sync_needed = true;
5431                 hlist_del_rcu(&napi->napi_hash_node);
5432         }
5433         spin_unlock(&napi_hash_lock);
5434         return rcu_sync_needed;
5435 }
5436 EXPORT_SYMBOL_GPL(napi_hash_del);
5437
5438 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5439 {
5440         struct napi_struct *napi;
5441
5442         napi = container_of(timer, struct napi_struct, timer);
5443
5444         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5445          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5446          */
5447         if (napi->gro_list && !napi_disable_pending(napi) &&
5448             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5449                 __napi_schedule_irqoff(napi);
5450
5451         return HRTIMER_NORESTART;
5452 }
5453
5454 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5455                     int (*poll)(struct napi_struct *, int), int weight)
5456 {
5457         INIT_LIST_HEAD(&napi->poll_list);
5458         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5459         napi->timer.function = napi_watchdog;
5460         napi->gro_count = 0;
5461         napi->gro_list = NULL;
5462         napi->skb = NULL;
5463         napi->poll = poll;
5464         if (weight > NAPI_POLL_WEIGHT)
5465                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5466                             weight, dev->name);
5467         napi->weight = weight;
5468         list_add(&napi->dev_list, &dev->napi_list);
5469         napi->dev = dev;
5470 #ifdef CONFIG_NETPOLL
5471         napi->poll_owner = -1;
5472 #endif
5473         set_bit(NAPI_STATE_SCHED, &napi->state);
5474         napi_hash_add(napi);
5475 }
5476 EXPORT_SYMBOL(netif_napi_add);
5477
5478 void napi_disable(struct napi_struct *n)
5479 {
5480         might_sleep();
5481         set_bit(NAPI_STATE_DISABLE, &n->state);
5482
5483         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5484                 msleep(1);
5485         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5486                 msleep(1);
5487
5488         hrtimer_cancel(&n->timer);
5489
5490         clear_bit(NAPI_STATE_DISABLE, &n->state);
5491 }
5492 EXPORT_SYMBOL(napi_disable);
5493
5494 /* Must be called in process context */
5495 void netif_napi_del(struct napi_struct *napi)
5496 {
5497         might_sleep();
5498         if (napi_hash_del(napi))
5499                 synchronize_net();
5500         list_del_init(&napi->dev_list);
5501         napi_free_frags(napi);
5502
5503         kfree_skb_list(napi->gro_list);
5504         napi->gro_list = NULL;
5505         napi->gro_count = 0;
5506 }
5507 EXPORT_SYMBOL(netif_napi_del);
5508
5509 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5510 {
5511         void *have;
5512         int work, weight;
5513
5514         list_del_init(&n->poll_list);
5515
5516         have = netpoll_poll_lock(n);
5517
5518         weight = n->weight;
5519
5520         /* This NAPI_STATE_SCHED test is for avoiding a race
5521          * with netpoll's poll_napi().  Only the entity which
5522          * obtains the lock and sees NAPI_STATE_SCHED set will
5523          * actually make the ->poll() call.  Therefore we avoid
5524          * accidentally calling ->poll() when NAPI is not scheduled.
5525          */
5526         work = 0;
5527         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5528                 work = n->poll(n, weight);
5529                 trace_napi_poll(n, work, weight);
5530         }
5531
5532         WARN_ON_ONCE(work > weight);
5533
5534         if (likely(work < weight))
5535                 goto out_unlock;
5536
5537         /* Drivers must not modify the NAPI state if they
5538          * consume the entire weight.  In such cases this code
5539          * still "owns" the NAPI instance and therefore can
5540          * move the instance around on the list at-will.
5541          */
5542         if (unlikely(napi_disable_pending(n))) {
5543                 napi_complete(n);
5544                 goto out_unlock;
5545         }
5546
5547         if (n->gro_list) {
5548                 /* flush too old packets
5549                  * If HZ < 1000, flush all packets.
5550                  */
5551                 napi_gro_flush(n, HZ >= 1000);
5552         }
5553
5554         /* Some drivers may have called napi_schedule
5555          * prior to exhausting their budget.
5556          */
5557         if (unlikely(!list_empty(&n->poll_list))) {
5558                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5559                              n->dev ? n->dev->name : "backlog");
5560                 goto out_unlock;
5561         }
5562
5563         list_add_tail(&n->poll_list, repoll);
5564
5565 out_unlock:
5566         netpoll_poll_unlock(have);
5567
5568         return work;
5569 }
5570
5571 static __latent_entropy void net_rx_action(struct softirq_action *h)
5572 {
5573         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5574         unsigned long time_limit = jiffies +
5575                 usecs_to_jiffies(netdev_budget_usecs);
5576         int budget = netdev_budget;
5577         LIST_HEAD(list);
5578         LIST_HEAD(repoll);
5579
5580         local_irq_disable();
5581         list_splice_init(&sd->poll_list, &list);
5582         local_irq_enable();
5583
5584         for (;;) {
5585                 struct napi_struct *n;
5586
5587                 if (list_empty(&list)) {
5588                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5589                                 goto out;
5590                         break;
5591                 }
5592
5593                 n = list_first_entry(&list, struct napi_struct, poll_list);
5594                 budget -= napi_poll(n, &repoll);
5595
5596                 /* If softirq window is exhausted then punt.
5597                  * Allow this to run for 2 jiffies since which will allow
5598                  * an average latency of 1.5/HZ.
5599                  */
5600                 if (unlikely(budget <= 0 ||
5601                              time_after_eq(jiffies, time_limit))) {
5602                         sd->time_squeeze++;
5603                         break;
5604                 }
5605         }
5606
5607         local_irq_disable();
5608
5609         list_splice_tail_init(&sd->poll_list, &list);
5610         list_splice_tail(&repoll, &list);
5611         list_splice(&list, &sd->poll_list);
5612         if (!list_empty(&sd->poll_list))
5613                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5614
5615         net_rps_action_and_irq_enable(sd);
5616 out:
5617         __kfree_skb_flush();
5618 }
5619
5620 struct netdev_adjacent {
5621         struct net_device *dev;
5622
5623         /* upper master flag, there can only be one master device per list */
5624         bool master;
5625
5626         /* counter for the number of times this device was added to us */
5627         u16 ref_nr;
5628
5629         /* private field for the users */
5630         void *private;
5631
5632         struct list_head list;
5633         struct rcu_head rcu;
5634 };
5635
5636 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5637                                                  struct list_head *adj_list)
5638 {
5639         struct netdev_adjacent *adj;
5640
5641         list_for_each_entry(adj, adj_list, list) {
5642                 if (adj->dev == adj_dev)
5643                         return adj;
5644         }
5645         return NULL;
5646 }
5647
5648 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5649 {
5650         struct net_device *dev = data;
5651
5652         return upper_dev == dev;
5653 }
5654
5655 /**
5656  * netdev_has_upper_dev - Check if device is linked to an upper device
5657  * @dev: device
5658  * @upper_dev: upper device to check
5659  *
5660  * Find out if a device is linked to specified upper device and return true
5661  * in case it is. Note that this checks only immediate upper device,
5662  * not through a complete stack of devices. The caller must hold the RTNL lock.
5663  */
5664 bool netdev_has_upper_dev(struct net_device *dev,
5665                           struct net_device *upper_dev)
5666 {
5667         ASSERT_RTNL();
5668
5669         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5670                                              upper_dev);
5671 }
5672 EXPORT_SYMBOL(netdev_has_upper_dev);
5673
5674 /**
5675  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5676  * @dev: device
5677  * @upper_dev: upper device to check
5678  *
5679  * Find out if a device is linked to specified upper device and return true
5680  * in case it is. Note that this checks the entire upper device chain.
5681  * The caller must hold rcu lock.
5682  */
5683
5684 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5685                                   struct net_device *upper_dev)
5686 {
5687         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5688                                                upper_dev);
5689 }
5690 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5691
5692 /**
5693  * netdev_has_any_upper_dev - Check if device is linked to some device
5694  * @dev: device
5695  *
5696  * Find out if a device is linked to an upper device and return true in case
5697  * it is. The caller must hold the RTNL lock.
5698  */
5699 static bool netdev_has_any_upper_dev(struct net_device *dev)
5700 {
5701         ASSERT_RTNL();
5702
5703         return !list_empty(&dev->adj_list.upper);
5704 }
5705
5706 /**
5707  * netdev_master_upper_dev_get - Get master upper device
5708  * @dev: device
5709  *
5710  * Find a master upper device and return pointer to it or NULL in case
5711  * it's not there. The caller must hold the RTNL lock.
5712  */
5713 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5714 {
5715         struct netdev_adjacent *upper;
5716
5717         ASSERT_RTNL();
5718
5719         if (list_empty(&dev->adj_list.upper))
5720                 return NULL;
5721
5722         upper = list_first_entry(&dev->adj_list.upper,
5723                                  struct netdev_adjacent, list);
5724         if (likely(upper->master))
5725                 return upper->dev;
5726         return NULL;
5727 }
5728 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5729
5730 /**
5731  * netdev_has_any_lower_dev - Check if device is linked to some device
5732  * @dev: device
5733  *
5734  * Find out if a device is linked to a lower device and return true in case
5735  * it is. The caller must hold the RTNL lock.
5736  */
5737 static bool netdev_has_any_lower_dev(struct net_device *dev)
5738 {
5739         ASSERT_RTNL();
5740
5741         return !list_empty(&dev->adj_list.lower);
5742 }
5743
5744 void *netdev_adjacent_get_private(struct list_head *adj_list)
5745 {
5746         struct netdev_adjacent *adj;
5747
5748         adj = list_entry(adj_list, struct netdev_adjacent, list);
5749
5750         return adj->private;
5751 }
5752 EXPORT_SYMBOL(netdev_adjacent_get_private);
5753
5754 /**
5755  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5756  * @dev: device
5757  * @iter: list_head ** of the current position
5758  *
5759  * Gets the next device from the dev's upper list, starting from iter
5760  * position. The caller must hold RCU read lock.
5761  */
5762 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5763                                                  struct list_head **iter)
5764 {
5765         struct netdev_adjacent *upper;
5766
5767         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5768
5769         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5770
5771         if (&upper->list == &dev->adj_list.upper)
5772                 return NULL;
5773
5774         *iter = &upper->list;
5775
5776         return upper->dev;
5777 }
5778 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5779
5780 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5781                                                     struct list_head **iter)
5782 {
5783         struct netdev_adjacent *upper;
5784
5785         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5786
5787         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5788
5789         if (&upper->list == &dev->adj_list.upper)
5790                 return NULL;
5791
5792         *iter = &upper->list;
5793
5794         return upper->dev;
5795 }
5796
5797 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5798                                   int (*fn)(struct net_device *dev,
5799                                             void *data),
5800                                   void *data)
5801 {
5802         struct net_device *udev;
5803         struct list_head *iter;
5804         int ret;
5805
5806         for (iter = &dev->adj_list.upper,
5807              udev = netdev_next_upper_dev_rcu(dev, &iter);
5808              udev;
5809              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5810                 /* first is the upper device itself */
5811                 ret = fn(udev, data);
5812                 if (ret)
5813                         return ret;
5814
5815                 /* then look at all of its upper devices */
5816                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5817                 if (ret)
5818                         return ret;
5819         }
5820
5821         return 0;
5822 }
5823 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5824
5825 /**
5826  * netdev_lower_get_next_private - Get the next ->private from the
5827  *                                 lower neighbour list
5828  * @dev: device
5829  * @iter: list_head ** of the current position
5830  *
5831  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5832  * list, starting from iter position. The caller must hold either hold the
5833  * RTNL lock or its own locking that guarantees that the neighbour lower
5834  * list will remain unchanged.
5835  */
5836 void *netdev_lower_get_next_private(struct net_device *dev,
5837                                     struct list_head **iter)
5838 {
5839         struct netdev_adjacent *lower;
5840
5841         lower = list_entry(*iter, struct netdev_adjacent, list);
5842
5843         if (&lower->list == &dev->adj_list.lower)
5844                 return NULL;
5845
5846         *iter = lower->list.next;
5847
5848         return lower->private;
5849 }
5850 EXPORT_SYMBOL(netdev_lower_get_next_private);
5851
5852 /**
5853  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5854  *                                     lower neighbour list, RCU
5855  *                                     variant
5856  * @dev: device
5857  * @iter: list_head ** of the current position
5858  *
5859  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5860  * list, starting from iter position. The caller must hold RCU read lock.
5861  */
5862 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5863                                         struct list_head **iter)
5864 {
5865         struct netdev_adjacent *lower;
5866
5867         WARN_ON_ONCE(!rcu_read_lock_held());
5868
5869         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5870
5871         if (&lower->list == &dev->adj_list.lower)
5872                 return NULL;
5873
5874         *iter = &lower->list;
5875
5876         return lower->private;
5877 }
5878 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5879
5880 /**
5881  * netdev_lower_get_next - Get the next device from the lower neighbour
5882  *                         list
5883  * @dev: device
5884  * @iter: list_head ** of the current position
5885  *
5886  * Gets the next netdev_adjacent from the dev's lower neighbour
5887  * list, starting from iter position. The caller must hold RTNL lock or
5888  * its own locking that guarantees that the neighbour lower
5889  * list will remain unchanged.
5890  */
5891 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5892 {
5893         struct netdev_adjacent *lower;
5894
5895         lower = list_entry(*iter, struct netdev_adjacent, list);
5896
5897         if (&lower->list == &dev->adj_list.lower)
5898                 return NULL;
5899
5900         *iter = lower->list.next;
5901
5902         return lower->dev;
5903 }
5904 EXPORT_SYMBOL(netdev_lower_get_next);
5905
5906 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5907                                                 struct list_head **iter)
5908 {
5909         struct netdev_adjacent *lower;
5910
5911         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5912
5913         if (&lower->list == &dev->adj_list.lower)
5914                 return NULL;
5915
5916         *iter = &lower->list;
5917
5918         return lower->dev;
5919 }
5920
5921 int netdev_walk_all_lower_dev(struct net_device *dev,
5922                               int (*fn)(struct net_device *dev,
5923                                         void *data),
5924                               void *data)
5925 {
5926         struct net_device *ldev;
5927         struct list_head *iter;
5928         int ret;
5929
5930         for (iter = &dev->adj_list.lower,
5931              ldev = netdev_next_lower_dev(dev, &iter);
5932              ldev;
5933              ldev = netdev_next_lower_dev(dev, &iter)) {
5934                 /* first is the lower device itself */
5935                 ret = fn(ldev, data);
5936                 if (ret)
5937                         return ret;
5938
5939                 /* then look at all of its lower devices */
5940                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5941                 if (ret)
5942                         return ret;
5943         }
5944
5945         return 0;
5946 }
5947 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5948
5949 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5950                                                     struct list_head **iter)
5951 {
5952         struct netdev_adjacent *lower;
5953
5954         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5955         if (&lower->list == &dev->adj_list.lower)
5956                 return NULL;
5957
5958         *iter = &lower->list;
5959
5960         return lower->dev;
5961 }
5962
5963 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5964                                   int (*fn)(struct net_device *dev,
5965                                             void *data),
5966                                   void *data)
5967 {
5968         struct net_device *ldev;
5969         struct list_head *iter;
5970         int ret;
5971
5972         for (iter = &dev->adj_list.lower,
5973              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5974              ldev;
5975              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5976                 /* first is the lower device itself */
5977                 ret = fn(ldev, data);
5978                 if (ret)
5979                         return ret;
5980
5981                 /* then look at all of its lower devices */
5982                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5983                 if (ret)
5984                         return ret;
5985         }
5986
5987         return 0;
5988 }
5989 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5990
5991 /**
5992  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5993  *                                     lower neighbour list, RCU
5994  *                                     variant
5995  * @dev: device
5996  *
5997  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5998  * list. The caller must hold RCU read lock.
5999  */
6000 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6001 {
6002         struct netdev_adjacent *lower;
6003
6004         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6005                         struct netdev_adjacent, list);
6006         if (lower)
6007                 return lower->private;
6008         return NULL;
6009 }
6010 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6011
6012 /**
6013  * netdev_master_upper_dev_get_rcu - Get master upper device
6014  * @dev: device
6015  *
6016  * Find a master upper device and return pointer to it or NULL in case
6017  * it's not there. The caller must hold the RCU read lock.
6018  */
6019 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6020 {
6021         struct netdev_adjacent *upper;
6022
6023         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6024                                        struct netdev_adjacent, list);
6025         if (upper && likely(upper->master))
6026                 return upper->dev;
6027         return NULL;
6028 }
6029 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6030
6031 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6032                               struct net_device *adj_dev,
6033                               struct list_head *dev_list)
6034 {
6035         char linkname[IFNAMSIZ+7];
6036
6037         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6038                 "upper_%s" : "lower_%s", adj_dev->name);
6039         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6040                                  linkname);
6041 }
6042 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6043                                char *name,
6044                                struct list_head *dev_list)
6045 {
6046         char linkname[IFNAMSIZ+7];
6047
6048         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6049                 "upper_%s" : "lower_%s", name);
6050         sysfs_remove_link(&(dev->dev.kobj), linkname);
6051 }
6052
6053 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6054                                                  struct net_device *adj_dev,
6055                                                  struct list_head *dev_list)
6056 {
6057         return (dev_list == &dev->adj_list.upper ||
6058                 dev_list == &dev->adj_list.lower) &&
6059                 net_eq(dev_net(dev), dev_net(adj_dev));
6060 }
6061
6062 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6063                                         struct net_device *adj_dev,
6064                                         struct list_head *dev_list,
6065                                         void *private, bool master)
6066 {
6067         struct netdev_adjacent *adj;
6068         int ret;
6069
6070         adj = __netdev_find_adj(adj_dev, dev_list);
6071
6072         if (adj) {
6073                 adj->ref_nr += 1;
6074                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6075                          dev->name, adj_dev->name, adj->ref_nr);
6076
6077                 return 0;
6078         }
6079
6080         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6081         if (!adj)
6082                 return -ENOMEM;
6083
6084         adj->dev = adj_dev;
6085         adj->master = master;
6086         adj->ref_nr = 1;
6087         adj->private = private;
6088         dev_hold(adj_dev);
6089
6090         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6091                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6092
6093         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6094                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6095                 if (ret)
6096                         goto free_adj;
6097         }
6098
6099         /* Ensure that master link is always the first item in list. */
6100         if (master) {
6101                 ret = sysfs_create_link(&(dev->dev.kobj),
6102                                         &(adj_dev->dev.kobj), "master");
6103                 if (ret)
6104                         goto remove_symlinks;
6105
6106                 list_add_rcu(&adj->list, dev_list);
6107         } else {
6108                 list_add_tail_rcu(&adj->list, dev_list);
6109         }
6110
6111         return 0;
6112
6113 remove_symlinks:
6114         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6115                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6116 free_adj:
6117         kfree(adj);
6118         dev_put(adj_dev);
6119
6120         return ret;
6121 }
6122
6123 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6124                                          struct net_device *adj_dev,
6125                                          u16 ref_nr,
6126                                          struct list_head *dev_list)
6127 {
6128         struct netdev_adjacent *adj;
6129
6130         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6131                  dev->name, adj_dev->name, ref_nr);
6132
6133         adj = __netdev_find_adj(adj_dev, dev_list);
6134
6135         if (!adj) {
6136                 pr_err("Adjacency does not exist for device %s from %s\n",
6137                        dev->name, adj_dev->name);
6138                 WARN_ON(1);
6139                 return;
6140         }
6141
6142         if (adj->ref_nr > ref_nr) {
6143                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6144                          dev->name, adj_dev->name, ref_nr,
6145                          adj->ref_nr - ref_nr);
6146                 adj->ref_nr -= ref_nr;
6147                 return;
6148         }
6149
6150         if (adj->master)
6151                 sysfs_remove_link(&(dev->dev.kobj), "master");
6152
6153         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6154                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6155
6156         list_del_rcu(&adj->list);
6157         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6158                  adj_dev->name, dev->name, adj_dev->name);
6159         dev_put(adj_dev);
6160         kfree_rcu(adj, rcu);
6161 }
6162
6163 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6164                                             struct net_device *upper_dev,
6165                                             struct list_head *up_list,
6166                                             struct list_head *down_list,
6167                                             void *private, bool master)
6168 {
6169         int ret;
6170
6171         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6172                                            private, master);
6173         if (ret)
6174                 return ret;
6175
6176         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6177                                            private, false);
6178         if (ret) {
6179                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6180                 return ret;
6181         }
6182
6183         return 0;
6184 }
6185
6186 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6187                                                struct net_device *upper_dev,
6188                                                u16 ref_nr,
6189                                                struct list_head *up_list,
6190                                                struct list_head *down_list)
6191 {
6192         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6193         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6194 }
6195
6196 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6197                                                 struct net_device *upper_dev,
6198                                                 void *private, bool master)
6199 {
6200         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6201                                                 &dev->adj_list.upper,
6202                                                 &upper_dev->adj_list.lower,
6203                                                 private, master);
6204 }
6205
6206 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6207                                                    struct net_device *upper_dev)
6208 {
6209         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6210                                            &dev->adj_list.upper,
6211                                            &upper_dev->adj_list.lower);
6212 }
6213
6214 static int __netdev_upper_dev_link(struct net_device *dev,
6215                                    struct net_device *upper_dev, bool master,
6216                                    void *upper_priv, void *upper_info)
6217 {
6218         struct netdev_notifier_changeupper_info changeupper_info;
6219         int ret = 0;
6220
6221         ASSERT_RTNL();
6222
6223         if (dev == upper_dev)
6224                 return -EBUSY;
6225
6226         /* To prevent loops, check if dev is not upper device to upper_dev. */
6227         if (netdev_has_upper_dev(upper_dev, dev))
6228                 return -EBUSY;
6229
6230         if (netdev_has_upper_dev(dev, upper_dev))
6231                 return -EEXIST;
6232
6233         if (master && netdev_master_upper_dev_get(dev))
6234                 return -EBUSY;
6235
6236         changeupper_info.upper_dev = upper_dev;
6237         changeupper_info.master = master;
6238         changeupper_info.linking = true;
6239         changeupper_info.upper_info = upper_info;
6240
6241         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6242                                             &changeupper_info.info);
6243         ret = notifier_to_errno(ret);
6244         if (ret)
6245                 return ret;
6246
6247         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6248                                                    master);
6249         if (ret)
6250                 return ret;
6251
6252         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6253                                             &changeupper_info.info);
6254         ret = notifier_to_errno(ret);
6255         if (ret)
6256                 goto rollback;
6257
6258         return 0;
6259
6260 rollback:
6261         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6262
6263         return ret;
6264 }
6265
6266 /**
6267  * netdev_upper_dev_link - Add a link to the upper device
6268  * @dev: device
6269  * @upper_dev: new upper device
6270  *
6271  * Adds a link to device which is upper to this one. The caller must hold
6272  * the RTNL lock. On a failure a negative errno code is returned.
6273  * On success the reference counts are adjusted and the function
6274  * returns zero.
6275  */
6276 int netdev_upper_dev_link(struct net_device *dev,
6277                           struct net_device *upper_dev)
6278 {
6279         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6280 }
6281 EXPORT_SYMBOL(netdev_upper_dev_link);
6282
6283 /**
6284  * netdev_master_upper_dev_link - Add a master link to the upper device
6285  * @dev: device
6286  * @upper_dev: new upper device
6287  * @upper_priv: upper device private
6288  * @upper_info: upper info to be passed down via notifier
6289  *
6290  * Adds a link to device which is upper to this one. In this case, only
6291  * one master upper device can be linked, although other non-master devices
6292  * might be linked as well. The caller must hold the RTNL lock.
6293  * On a failure a negative errno code is returned. On success the reference
6294  * counts are adjusted and the function returns zero.
6295  */
6296 int netdev_master_upper_dev_link(struct net_device *dev,
6297                                  struct net_device *upper_dev,
6298                                  void *upper_priv, void *upper_info)
6299 {
6300         return __netdev_upper_dev_link(dev, upper_dev, true,
6301                                        upper_priv, upper_info);
6302 }
6303 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6304
6305 /**
6306  * netdev_upper_dev_unlink - Removes a link to upper device
6307  * @dev: device
6308  * @upper_dev: new upper device
6309  *
6310  * Removes a link to device which is upper to this one. The caller must hold
6311  * the RTNL lock.
6312  */
6313 void netdev_upper_dev_unlink(struct net_device *dev,
6314                              struct net_device *upper_dev)
6315 {
6316         struct netdev_notifier_changeupper_info changeupper_info;
6317
6318         ASSERT_RTNL();
6319
6320         changeupper_info.upper_dev = upper_dev;
6321         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6322         changeupper_info.linking = false;
6323
6324         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6325                                       &changeupper_info.info);
6326
6327         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6328
6329         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6330                                       &changeupper_info.info);
6331 }
6332 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6333
6334 /**
6335  * netdev_bonding_info_change - Dispatch event about slave change
6336  * @dev: device
6337  * @bonding_info: info to dispatch
6338  *
6339  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6340  * The caller must hold the RTNL lock.
6341  */
6342 void netdev_bonding_info_change(struct net_device *dev,
6343                                 struct netdev_bonding_info *bonding_info)
6344 {
6345         struct netdev_notifier_bonding_info     info;
6346
6347         memcpy(&info.bonding_info, bonding_info,
6348                sizeof(struct netdev_bonding_info));
6349         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6350                                       &info.info);
6351 }
6352 EXPORT_SYMBOL(netdev_bonding_info_change);
6353
6354 static void netdev_adjacent_add_links(struct net_device *dev)
6355 {
6356         struct netdev_adjacent *iter;
6357
6358         struct net *net = dev_net(dev);
6359
6360         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6361                 if (!net_eq(net, dev_net(iter->dev)))
6362                         continue;
6363                 netdev_adjacent_sysfs_add(iter->dev, dev,
6364                                           &iter->dev->adj_list.lower);
6365                 netdev_adjacent_sysfs_add(dev, iter->dev,
6366                                           &dev->adj_list.upper);
6367         }
6368
6369         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6370                 if (!net_eq(net, dev_net(iter->dev)))
6371                         continue;
6372                 netdev_adjacent_sysfs_add(iter->dev, dev,
6373                                           &iter->dev->adj_list.upper);
6374                 netdev_adjacent_sysfs_add(dev, iter->dev,
6375                                           &dev->adj_list.lower);
6376         }
6377 }
6378
6379 static void netdev_adjacent_del_links(struct net_device *dev)
6380 {
6381         struct netdev_adjacent *iter;
6382
6383         struct net *net = dev_net(dev);
6384
6385         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6386                 if (!net_eq(net, dev_net(iter->dev)))
6387                         continue;
6388                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6389                                           &iter->dev->adj_list.lower);
6390                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6391                                           &dev->adj_list.upper);
6392         }
6393
6394         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6395                 if (!net_eq(net, dev_net(iter->dev)))
6396                         continue;
6397                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6398                                           &iter->dev->adj_list.upper);
6399                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6400                                           &dev->adj_list.lower);
6401         }
6402 }
6403
6404 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6405 {
6406         struct netdev_adjacent *iter;
6407
6408         struct net *net = dev_net(dev);
6409
6410         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6411                 if (!net_eq(net, dev_net(iter->dev)))
6412                         continue;
6413                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6414                                           &iter->dev->adj_list.lower);
6415                 netdev_adjacent_sysfs_add(iter->dev, dev,
6416                                           &iter->dev->adj_list.lower);
6417         }
6418
6419         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6420                 if (!net_eq(net, dev_net(iter->dev)))
6421                         continue;
6422                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6423                                           &iter->dev->adj_list.upper);
6424                 netdev_adjacent_sysfs_add(iter->dev, dev,
6425                                           &iter->dev->adj_list.upper);
6426         }
6427 }
6428
6429 void *netdev_lower_dev_get_private(struct net_device *dev,
6430                                    struct net_device *lower_dev)
6431 {
6432         struct netdev_adjacent *lower;
6433
6434         if (!lower_dev)
6435                 return NULL;
6436         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6437         if (!lower)
6438                 return NULL;
6439
6440         return lower->private;
6441 }
6442 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6443
6444
6445 int dev_get_nest_level(struct net_device *dev)
6446 {
6447         struct net_device *lower = NULL;
6448         struct list_head *iter;
6449         int max_nest = -1;
6450         int nest;
6451
6452         ASSERT_RTNL();
6453
6454         netdev_for_each_lower_dev(dev, lower, iter) {
6455                 nest = dev_get_nest_level(lower);
6456                 if (max_nest < nest)
6457                         max_nest = nest;
6458         }
6459
6460         return max_nest + 1;
6461 }
6462 EXPORT_SYMBOL(dev_get_nest_level);
6463
6464 /**
6465  * netdev_lower_change - Dispatch event about lower device state change
6466  * @lower_dev: device
6467  * @lower_state_info: state to dispatch
6468  *
6469  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6470  * The caller must hold the RTNL lock.
6471  */
6472 void netdev_lower_state_changed(struct net_device *lower_dev,
6473                                 void *lower_state_info)
6474 {
6475         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6476
6477         ASSERT_RTNL();
6478         changelowerstate_info.lower_state_info = lower_state_info;
6479         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6480                                       &changelowerstate_info.info);
6481 }
6482 EXPORT_SYMBOL(netdev_lower_state_changed);
6483
6484 static void dev_change_rx_flags(struct net_device *dev, int flags)
6485 {
6486         const struct net_device_ops *ops = dev->netdev_ops;
6487
6488         if (ops->ndo_change_rx_flags)
6489                 ops->ndo_change_rx_flags(dev, flags);
6490 }
6491
6492 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6493 {
6494         unsigned int old_flags = dev->flags;
6495         kuid_t uid;
6496         kgid_t gid;
6497
6498         ASSERT_RTNL();
6499
6500         dev->flags |= IFF_PROMISC;
6501         dev->promiscuity += inc;
6502         if (dev->promiscuity == 0) {
6503                 /*
6504                  * Avoid overflow.
6505                  * If inc causes overflow, untouch promisc and return error.
6506                  */
6507                 if (inc < 0)
6508                         dev->flags &= ~IFF_PROMISC;
6509                 else {
6510                         dev->promiscuity -= inc;
6511                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6512                                 dev->name);
6513                         return -EOVERFLOW;
6514                 }
6515         }
6516         if (dev->flags != old_flags) {
6517                 pr_info("device %s %s promiscuous mode\n",
6518                         dev->name,
6519                         dev->flags & IFF_PROMISC ? "entered" : "left");
6520                 if (audit_enabled) {
6521                         current_uid_gid(&uid, &gid);
6522                         audit_log(current->audit_context, GFP_ATOMIC,
6523                                 AUDIT_ANOM_PROMISCUOUS,
6524                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6525                                 dev->name, (dev->flags & IFF_PROMISC),
6526                                 (old_flags & IFF_PROMISC),
6527                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6528                                 from_kuid(&init_user_ns, uid),
6529                                 from_kgid(&init_user_ns, gid),
6530                                 audit_get_sessionid(current));
6531                 }
6532
6533                 dev_change_rx_flags(dev, IFF_PROMISC);
6534         }
6535         if (notify)
6536                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6537         return 0;
6538 }
6539
6540 /**
6541  *      dev_set_promiscuity     - update promiscuity count on a device
6542  *      @dev: device
6543  *      @inc: modifier
6544  *
6545  *      Add or remove promiscuity from a device. While the count in the device
6546  *      remains above zero the interface remains promiscuous. Once it hits zero
6547  *      the device reverts back to normal filtering operation. A negative inc
6548  *      value is used to drop promiscuity on the device.
6549  *      Return 0 if successful or a negative errno code on error.
6550  */
6551 int dev_set_promiscuity(struct net_device *dev, int inc)
6552 {
6553         unsigned int old_flags = dev->flags;
6554         int err;
6555
6556         err = __dev_set_promiscuity(dev, inc, true);
6557         if (err < 0)
6558                 return err;
6559         if (dev->flags != old_flags)
6560                 dev_set_rx_mode(dev);
6561         return err;
6562 }
6563 EXPORT_SYMBOL(dev_set_promiscuity);
6564
6565 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6566 {
6567         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6568
6569         ASSERT_RTNL();
6570
6571         dev->flags |= IFF_ALLMULTI;
6572         dev->allmulti += inc;
6573         if (dev->allmulti == 0) {
6574                 /*
6575                  * Avoid overflow.
6576                  * If inc causes overflow, untouch allmulti and return error.
6577                  */
6578                 if (inc < 0)
6579                         dev->flags &= ~IFF_ALLMULTI;
6580                 else {
6581                         dev->allmulti -= inc;
6582                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6583                                 dev->name);
6584                         return -EOVERFLOW;
6585                 }
6586         }
6587         if (dev->flags ^ old_flags) {
6588                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6589                 dev_set_rx_mode(dev);
6590                 if (notify)
6591                         __dev_notify_flags(dev, old_flags,
6592                                            dev->gflags ^ old_gflags);
6593         }
6594         return 0;
6595 }
6596
6597 /**
6598  *      dev_set_allmulti        - update allmulti count on a device
6599  *      @dev: device
6600  *      @inc: modifier
6601  *
6602  *      Add or remove reception of all multicast frames to a device. While the
6603  *      count in the device remains above zero the interface remains listening
6604  *      to all interfaces. Once it hits zero the device reverts back to normal
6605  *      filtering operation. A negative @inc value is used to drop the counter
6606  *      when releasing a resource needing all multicasts.
6607  *      Return 0 if successful or a negative errno code on error.
6608  */
6609
6610 int dev_set_allmulti(struct net_device *dev, int inc)
6611 {
6612         return __dev_set_allmulti(dev, inc, true);
6613 }
6614 EXPORT_SYMBOL(dev_set_allmulti);
6615
6616 /*
6617  *      Upload unicast and multicast address lists to device and
6618  *      configure RX filtering. When the device doesn't support unicast
6619  *      filtering it is put in promiscuous mode while unicast addresses
6620  *      are present.
6621  */
6622 void __dev_set_rx_mode(struct net_device *dev)
6623 {
6624         const struct net_device_ops *ops = dev->netdev_ops;
6625
6626         /* dev_open will call this function so the list will stay sane. */
6627         if (!(dev->flags&IFF_UP))
6628                 return;
6629
6630         if (!netif_device_present(dev))
6631                 return;
6632
6633         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6634                 /* Unicast addresses changes may only happen under the rtnl,
6635                  * therefore calling __dev_set_promiscuity here is safe.
6636                  */
6637                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6638                         __dev_set_promiscuity(dev, 1, false);
6639                         dev->uc_promisc = true;
6640                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6641                         __dev_set_promiscuity(dev, -1, false);
6642                         dev->uc_promisc = false;
6643                 }
6644         }
6645
6646         if (ops->ndo_set_rx_mode)
6647                 ops->ndo_set_rx_mode(dev);
6648 }
6649
6650 void dev_set_rx_mode(struct net_device *dev)
6651 {
6652         netif_addr_lock_bh(dev);
6653         __dev_set_rx_mode(dev);
6654         netif_addr_unlock_bh(dev);
6655 }
6656
6657 /**
6658  *      dev_get_flags - get flags reported to userspace
6659  *      @dev: device
6660  *
6661  *      Get the combination of flag bits exported through APIs to userspace.
6662  */
6663 unsigned int dev_get_flags(const struct net_device *dev)
6664 {
6665         unsigned int flags;
6666
6667         flags = (dev->flags & ~(IFF_PROMISC |
6668                                 IFF_ALLMULTI |
6669                                 IFF_RUNNING |
6670                                 IFF_LOWER_UP |
6671                                 IFF_DORMANT)) |
6672                 (dev->gflags & (IFF_PROMISC |
6673                                 IFF_ALLMULTI));
6674
6675         if (netif_running(dev)) {
6676                 if (netif_oper_up(dev))
6677                         flags |= IFF_RUNNING;
6678                 if (netif_carrier_ok(dev))
6679                         flags |= IFF_LOWER_UP;
6680                 if (netif_dormant(dev))
6681                         flags |= IFF_DORMANT;
6682         }
6683
6684         return flags;
6685 }
6686 EXPORT_SYMBOL(dev_get_flags);
6687
6688 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6689 {
6690         unsigned int old_flags = dev->flags;
6691         int ret;
6692
6693         ASSERT_RTNL();
6694
6695         /*
6696          *      Set the flags on our device.
6697          */
6698
6699         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6700                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6701                                IFF_AUTOMEDIA)) |
6702                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6703                                     IFF_ALLMULTI));
6704
6705         /*
6706          *      Load in the correct multicast list now the flags have changed.
6707          */
6708
6709         if ((old_flags ^ flags) & IFF_MULTICAST)
6710                 dev_change_rx_flags(dev, IFF_MULTICAST);
6711
6712         dev_set_rx_mode(dev);
6713
6714         /*
6715          *      Have we downed the interface. We handle IFF_UP ourselves
6716          *      according to user attempts to set it, rather than blindly
6717          *      setting it.
6718          */
6719
6720         ret = 0;
6721         if ((old_flags ^ flags) & IFF_UP) {
6722                 if (old_flags & IFF_UP)
6723                         __dev_close(dev);
6724                 else
6725                         ret = __dev_open(dev);
6726         }
6727
6728         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6729                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6730                 unsigned int old_flags = dev->flags;
6731
6732                 dev->gflags ^= IFF_PROMISC;
6733
6734                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6735                         if (dev->flags != old_flags)
6736                                 dev_set_rx_mode(dev);
6737         }
6738
6739         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6740          * is important. Some (broken) drivers set IFF_PROMISC, when
6741          * IFF_ALLMULTI is requested not asking us and not reporting.
6742          */
6743         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6744                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6745
6746                 dev->gflags ^= IFF_ALLMULTI;
6747                 __dev_set_allmulti(dev, inc, false);
6748         }
6749
6750         return ret;
6751 }
6752
6753 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6754                         unsigned int gchanges)
6755 {
6756         unsigned int changes = dev->flags ^ old_flags;
6757
6758         if (gchanges)
6759                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6760
6761         if (changes & IFF_UP) {
6762                 if (dev->flags & IFF_UP)
6763                         call_netdevice_notifiers(NETDEV_UP, dev);
6764                 else
6765                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6766         }
6767
6768         if (dev->flags & IFF_UP &&
6769             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6770                 struct netdev_notifier_change_info change_info;
6771
6772                 change_info.flags_changed = changes;
6773                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6774                                               &change_info.info);
6775         }
6776 }
6777
6778 /**
6779  *      dev_change_flags - change device settings
6780  *      @dev: device
6781  *      @flags: device state flags
6782  *
6783  *      Change settings on device based state flags. The flags are
6784  *      in the userspace exported format.
6785  */
6786 int dev_change_flags(struct net_device *dev, unsigned int flags)
6787 {
6788         int ret;
6789         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6790
6791         ret = __dev_change_flags(dev, flags);
6792         if (ret < 0)
6793                 return ret;
6794
6795         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6796         __dev_notify_flags(dev, old_flags, changes);
6797         return ret;
6798 }
6799 EXPORT_SYMBOL(dev_change_flags);
6800
6801 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6802 {
6803         const struct net_device_ops *ops = dev->netdev_ops;
6804
6805         if (ops->ndo_change_mtu)
6806                 return ops->ndo_change_mtu(dev, new_mtu);
6807
6808         dev->mtu = new_mtu;
6809         return 0;
6810 }
6811 EXPORT_SYMBOL(__dev_set_mtu);
6812
6813 /**
6814  *      dev_set_mtu - Change maximum transfer unit
6815  *      @dev: device
6816  *      @new_mtu: new transfer unit
6817  *
6818  *      Change the maximum transfer size of the network device.
6819  */
6820 int dev_set_mtu(struct net_device *dev, int new_mtu)
6821 {
6822         int err, orig_mtu;
6823
6824         if (new_mtu == dev->mtu)
6825                 return 0;
6826
6827         /* MTU must be positive, and in range */
6828         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6829                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6830                                     dev->name, new_mtu, dev->min_mtu);
6831                 return -EINVAL;
6832         }
6833
6834         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6835                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6836                                     dev->name, new_mtu, dev->max_mtu);
6837                 return -EINVAL;
6838         }
6839
6840         if (!netif_device_present(dev))
6841                 return -ENODEV;
6842
6843         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6844         err = notifier_to_errno(err);
6845         if (err)
6846                 return err;
6847
6848         orig_mtu = dev->mtu;
6849         err = __dev_set_mtu(dev, new_mtu);
6850
6851         if (!err) {
6852                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6853                 err = notifier_to_errno(err);
6854                 if (err) {
6855                         /* setting mtu back and notifying everyone again,
6856                          * so that they have a chance to revert changes.
6857                          */
6858                         __dev_set_mtu(dev, orig_mtu);
6859                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6860                 }
6861         }
6862         return err;
6863 }
6864 EXPORT_SYMBOL(dev_set_mtu);
6865
6866 /**
6867  *      dev_set_group - Change group this device belongs to
6868  *      @dev: device
6869  *      @new_group: group this device should belong to
6870  */
6871 void dev_set_group(struct net_device *dev, int new_group)
6872 {
6873         dev->group = new_group;
6874 }
6875 EXPORT_SYMBOL(dev_set_group);
6876
6877 /**
6878  *      dev_set_mac_address - Change Media Access Control Address
6879  *      @dev: device
6880  *      @sa: new address
6881  *
6882  *      Change the hardware (MAC) address of the device
6883  */
6884 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6885 {
6886         const struct net_device_ops *ops = dev->netdev_ops;
6887         int err;
6888
6889         if (!ops->ndo_set_mac_address)
6890                 return -EOPNOTSUPP;
6891         if (sa->sa_family != dev->type)
6892                 return -EINVAL;
6893         if (!netif_device_present(dev))
6894                 return -ENODEV;
6895         err = ops->ndo_set_mac_address(dev, sa);
6896         if (err)
6897                 return err;
6898         dev->addr_assign_type = NET_ADDR_SET;
6899         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6900         add_device_randomness(dev->dev_addr, dev->addr_len);
6901         return 0;
6902 }
6903 EXPORT_SYMBOL(dev_set_mac_address);
6904
6905 /**
6906  *      dev_change_carrier - Change device carrier
6907  *      @dev: device
6908  *      @new_carrier: new value
6909  *
6910  *      Change device carrier
6911  */
6912 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6913 {
6914         const struct net_device_ops *ops = dev->netdev_ops;
6915
6916         if (!ops->ndo_change_carrier)
6917                 return -EOPNOTSUPP;
6918         if (!netif_device_present(dev))
6919                 return -ENODEV;
6920         return ops->ndo_change_carrier(dev, new_carrier);
6921 }
6922 EXPORT_SYMBOL(dev_change_carrier);
6923
6924 /**
6925  *      dev_get_phys_port_id - Get device physical port ID
6926  *      @dev: device
6927  *      @ppid: port ID
6928  *
6929  *      Get device physical port ID
6930  */
6931 int dev_get_phys_port_id(struct net_device *dev,
6932                          struct netdev_phys_item_id *ppid)
6933 {
6934         const struct net_device_ops *ops = dev->netdev_ops;
6935
6936         if (!ops->ndo_get_phys_port_id)
6937                 return -EOPNOTSUPP;
6938         return ops->ndo_get_phys_port_id(dev, ppid);
6939 }
6940 EXPORT_SYMBOL(dev_get_phys_port_id);
6941
6942 /**
6943  *      dev_get_phys_port_name - Get device physical port name
6944  *      @dev: device
6945  *      @name: port name
6946  *      @len: limit of bytes to copy to name
6947  *
6948  *      Get device physical port name
6949  */
6950 int dev_get_phys_port_name(struct net_device *dev,
6951                            char *name, size_t len)
6952 {
6953         const struct net_device_ops *ops = dev->netdev_ops;
6954
6955         if (!ops->ndo_get_phys_port_name)
6956                 return -EOPNOTSUPP;
6957         return ops->ndo_get_phys_port_name(dev, name, len);
6958 }
6959 EXPORT_SYMBOL(dev_get_phys_port_name);
6960
6961 /**
6962  *      dev_change_proto_down - update protocol port state information
6963  *      @dev: device
6964  *      @proto_down: new value
6965  *
6966  *      This info can be used by switch drivers to set the phys state of the
6967  *      port.
6968  */
6969 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6970 {
6971         const struct net_device_ops *ops = dev->netdev_ops;
6972
6973         if (!ops->ndo_change_proto_down)
6974                 return -EOPNOTSUPP;
6975         if (!netif_device_present(dev))
6976                 return -ENODEV;
6977         return ops->ndo_change_proto_down(dev, proto_down);
6978 }
6979 EXPORT_SYMBOL(dev_change_proto_down);
6980
6981 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
6982 {
6983         struct netdev_xdp xdp;
6984
6985         memset(&xdp, 0, sizeof(xdp));
6986         xdp.command = XDP_QUERY_PROG;
6987
6988         /* Query must always succeed. */
6989         WARN_ON(xdp_op(dev, &xdp) < 0);
6990         if (prog_id)
6991                 *prog_id = xdp.prog_id;
6992
6993         return xdp.prog_attached;
6994 }
6995
6996 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6997                            struct netlink_ext_ack *extack, u32 flags,
6998                            struct bpf_prog *prog)
6999 {
7000         struct netdev_xdp xdp;
7001
7002         memset(&xdp, 0, sizeof(xdp));
7003         if (flags & XDP_FLAGS_HW_MODE)
7004                 xdp.command = XDP_SETUP_PROG_HW;
7005         else
7006                 xdp.command = XDP_SETUP_PROG;
7007         xdp.extack = extack;
7008         xdp.flags = flags;
7009         xdp.prog = prog;
7010
7011         return xdp_op(dev, &xdp);
7012 }
7013
7014 /**
7015  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7016  *      @dev: device
7017  *      @extack: netlink extended ack
7018  *      @fd: new program fd or negative value to clear
7019  *      @flags: xdp-related flags
7020  *
7021  *      Set or clear a bpf program for a device
7022  */
7023 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7024                       int fd, u32 flags)
7025 {
7026         const struct net_device_ops *ops = dev->netdev_ops;
7027         struct bpf_prog *prog = NULL;
7028         xdp_op_t xdp_op, xdp_chk;
7029         int err;
7030
7031         ASSERT_RTNL();
7032
7033         xdp_op = xdp_chk = ops->ndo_xdp;
7034         if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7035                 return -EOPNOTSUPP;
7036         if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7037                 xdp_op = generic_xdp_install;
7038         if (xdp_op == xdp_chk)
7039                 xdp_chk = generic_xdp_install;
7040
7041         if (fd >= 0) {
7042                 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7043                         return -EEXIST;
7044                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7045                     __dev_xdp_attached(dev, xdp_op, NULL))
7046                         return -EBUSY;
7047
7048                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7049                 if (IS_ERR(prog))
7050                         return PTR_ERR(prog);
7051         }
7052
7053         err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7054         if (err < 0 && prog)
7055                 bpf_prog_put(prog);
7056
7057         return err;
7058 }
7059
7060 /**
7061  *      dev_new_index   -       allocate an ifindex
7062  *      @net: the applicable net namespace
7063  *
7064  *      Returns a suitable unique value for a new device interface
7065  *      number.  The caller must hold the rtnl semaphore or the
7066  *      dev_base_lock to be sure it remains unique.
7067  */
7068 static int dev_new_index(struct net *net)
7069 {
7070         int ifindex = net->ifindex;
7071
7072         for (;;) {
7073                 if (++ifindex <= 0)
7074                         ifindex = 1;
7075                 if (!__dev_get_by_index(net, ifindex))
7076                         return net->ifindex = ifindex;
7077         }
7078 }
7079
7080 /* Delayed registration/unregisteration */
7081 static LIST_HEAD(net_todo_list);
7082 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7083
7084 static void net_set_todo(struct net_device *dev)
7085 {
7086         list_add_tail(&dev->todo_list, &net_todo_list);
7087         dev_net(dev)->dev_unreg_count++;
7088 }
7089
7090 static void rollback_registered_many(struct list_head *head)
7091 {
7092         struct net_device *dev, *tmp;
7093         LIST_HEAD(close_head);
7094
7095         BUG_ON(dev_boot_phase);
7096         ASSERT_RTNL();
7097
7098         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7099                 /* Some devices call without registering
7100                  * for initialization unwind. Remove those
7101                  * devices and proceed with the remaining.
7102                  */
7103                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7104                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7105                                  dev->name, dev);
7106
7107                         WARN_ON(1);
7108                         list_del(&dev->unreg_list);
7109                         continue;
7110                 }
7111                 dev->dismantle = true;
7112                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7113         }
7114
7115         /* If device is running, close it first. */
7116         list_for_each_entry(dev, head, unreg_list)
7117                 list_add_tail(&dev->close_list, &close_head);
7118         dev_close_many(&close_head, true);
7119
7120         list_for_each_entry(dev, head, unreg_list) {
7121                 /* And unlink it from device chain. */
7122                 unlist_netdevice(dev);
7123
7124                 dev->reg_state = NETREG_UNREGISTERING;
7125         }
7126         flush_all_backlogs();
7127
7128         synchronize_net();
7129
7130         list_for_each_entry(dev, head, unreg_list) {
7131                 struct sk_buff *skb = NULL;
7132
7133                 /* Shutdown queueing discipline. */
7134                 dev_shutdown(dev);
7135
7136
7137                 /* Notify protocols, that we are about to destroy
7138                  * this device. They should clean all the things.
7139                  */
7140                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7141
7142                 if (!dev->rtnl_link_ops ||
7143                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7144                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7145                                                      GFP_KERNEL);
7146
7147                 /*
7148                  *      Flush the unicast and multicast chains
7149                  */
7150                 dev_uc_flush(dev);
7151                 dev_mc_flush(dev);
7152
7153                 if (dev->netdev_ops->ndo_uninit)
7154                         dev->netdev_ops->ndo_uninit(dev);
7155
7156                 if (skb)
7157                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7158
7159                 /* Notifier chain MUST detach us all upper devices. */
7160                 WARN_ON(netdev_has_any_upper_dev(dev));
7161                 WARN_ON(netdev_has_any_lower_dev(dev));
7162
7163                 /* Remove entries from kobject tree */
7164                 netdev_unregister_kobject(dev);
7165 #ifdef CONFIG_XPS
7166                 /* Remove XPS queueing entries */
7167                 netif_reset_xps_queues_gt(dev, 0);
7168 #endif
7169         }
7170
7171         synchronize_net();
7172
7173         list_for_each_entry(dev, head, unreg_list)
7174                 dev_put(dev);
7175 }
7176
7177 static void rollback_registered(struct net_device *dev)
7178 {
7179         LIST_HEAD(single);
7180
7181         list_add(&dev->unreg_list, &single);
7182         rollback_registered_many(&single);
7183         list_del(&single);
7184 }
7185
7186 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7187         struct net_device *upper, netdev_features_t features)
7188 {
7189         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7190         netdev_features_t feature;
7191         int feature_bit;
7192
7193         for_each_netdev_feature(&upper_disables, feature_bit) {
7194                 feature = __NETIF_F_BIT(feature_bit);
7195                 if (!(upper->wanted_features & feature)
7196                     && (features & feature)) {
7197                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7198                                    &feature, upper->name);
7199                         features &= ~feature;
7200                 }
7201         }
7202
7203         return features;
7204 }
7205
7206 static void netdev_sync_lower_features(struct net_device *upper,
7207         struct net_device *lower, netdev_features_t features)
7208 {
7209         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7210         netdev_features_t feature;
7211         int feature_bit;
7212
7213         for_each_netdev_feature(&upper_disables, feature_bit) {
7214                 feature = __NETIF_F_BIT(feature_bit);
7215                 if (!(features & feature) && (lower->features & feature)) {
7216                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7217                                    &feature, lower->name);
7218                         lower->wanted_features &= ~feature;
7219                         netdev_update_features(lower);
7220
7221                         if (unlikely(lower->features & feature))
7222                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7223                                             &feature, lower->name);
7224                 }
7225         }
7226 }
7227
7228 static netdev_features_t netdev_fix_features(struct net_device *dev,
7229         netdev_features_t features)
7230 {
7231         /* Fix illegal checksum combinations */
7232         if ((features & NETIF_F_HW_CSUM) &&
7233             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7234                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7235                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7236         }
7237
7238         /* TSO requires that SG is present as well. */
7239         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7240                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7241                 features &= ~NETIF_F_ALL_TSO;
7242         }
7243
7244         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7245                                         !(features & NETIF_F_IP_CSUM)) {
7246                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7247                 features &= ~NETIF_F_TSO;
7248                 features &= ~NETIF_F_TSO_ECN;
7249         }
7250
7251         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7252                                          !(features & NETIF_F_IPV6_CSUM)) {
7253                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7254                 features &= ~NETIF_F_TSO6;
7255         }
7256
7257         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7258         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7259                 features &= ~NETIF_F_TSO_MANGLEID;
7260
7261         /* TSO ECN requires that TSO is present as well. */
7262         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7263                 features &= ~NETIF_F_TSO_ECN;
7264
7265         /* Software GSO depends on SG. */
7266         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7267                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7268                 features &= ~NETIF_F_GSO;
7269         }
7270
7271         /* GSO partial features require GSO partial be set */
7272         if ((features & dev->gso_partial_features) &&
7273             !(features & NETIF_F_GSO_PARTIAL)) {
7274                 netdev_dbg(dev,
7275                            "Dropping partially supported GSO features since no GSO partial.\n");
7276                 features &= ~dev->gso_partial_features;
7277         }
7278
7279         return features;
7280 }
7281
7282 int __netdev_update_features(struct net_device *dev)
7283 {
7284         struct net_device *upper, *lower;
7285         netdev_features_t features;
7286         struct list_head *iter;
7287         int err = -1;
7288
7289         ASSERT_RTNL();
7290
7291         features = netdev_get_wanted_features(dev);
7292
7293         if (dev->netdev_ops->ndo_fix_features)
7294                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7295
7296         /* driver might be less strict about feature dependencies */
7297         features = netdev_fix_features(dev, features);
7298
7299         /* some features can't be enabled if they're off an an upper device */
7300         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7301                 features = netdev_sync_upper_features(dev, upper, features);
7302
7303         if (dev->features == features)
7304                 goto sync_lower;
7305
7306         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7307                 &dev->features, &features);
7308
7309         if (dev->netdev_ops->ndo_set_features)
7310                 err = dev->netdev_ops->ndo_set_features(dev, features);
7311         else
7312                 err = 0;
7313
7314         if (unlikely(err < 0)) {
7315                 netdev_err(dev,
7316                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7317                         err, &features, &dev->features);
7318                 /* return non-0 since some features might have changed and
7319                  * it's better to fire a spurious notification than miss it
7320                  */
7321                 return -1;
7322         }
7323
7324 sync_lower:
7325         /* some features must be disabled on lower devices when disabled
7326          * on an upper device (think: bonding master or bridge)
7327          */
7328         netdev_for_each_lower_dev(dev, lower, iter)
7329                 netdev_sync_lower_features(dev, lower, features);
7330
7331         if (!err) {
7332                 netdev_features_t diff = features ^ dev->features;
7333
7334                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7335                         /* udp_tunnel_{get,drop}_rx_info both need
7336                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7337                          * device, or they won't do anything.
7338                          * Thus we need to update dev->features
7339                          * *before* calling udp_tunnel_get_rx_info,
7340                          * but *after* calling udp_tunnel_drop_rx_info.
7341                          */
7342                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7343                                 dev->features = features;
7344                                 udp_tunnel_get_rx_info(dev);
7345                         } else {
7346                                 udp_tunnel_drop_rx_info(dev);
7347                         }
7348                 }
7349
7350                 dev->features = features;
7351         }
7352
7353         return err < 0 ? 0 : 1;
7354 }
7355
7356 /**
7357  *      netdev_update_features - recalculate device features
7358  *      @dev: the device to check
7359  *
7360  *      Recalculate dev->features set and send notifications if it
7361  *      has changed. Should be called after driver or hardware dependent
7362  *      conditions might have changed that influence the features.
7363  */
7364 void netdev_update_features(struct net_device *dev)
7365 {
7366         if (__netdev_update_features(dev))
7367                 netdev_features_change(dev);
7368 }
7369 EXPORT_SYMBOL(netdev_update_features);
7370
7371 /**
7372  *      netdev_change_features - recalculate device features
7373  *      @dev: the device to check
7374  *
7375  *      Recalculate dev->features set and send notifications even
7376  *      if they have not changed. Should be called instead of
7377  *      netdev_update_features() if also dev->vlan_features might
7378  *      have changed to allow the changes to be propagated to stacked
7379  *      VLAN devices.
7380  */
7381 void netdev_change_features(struct net_device *dev)
7382 {
7383         __netdev_update_features(dev);
7384         netdev_features_change(dev);
7385 }
7386 EXPORT_SYMBOL(netdev_change_features);
7387
7388 /**
7389  *      netif_stacked_transfer_operstate -      transfer operstate
7390  *      @rootdev: the root or lower level device to transfer state from
7391  *      @dev: the device to transfer operstate to
7392  *
7393  *      Transfer operational state from root to device. This is normally
7394  *      called when a stacking relationship exists between the root
7395  *      device and the device(a leaf device).
7396  */
7397 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7398                                         struct net_device *dev)
7399 {
7400         if (rootdev->operstate == IF_OPER_DORMANT)
7401                 netif_dormant_on(dev);
7402         else
7403                 netif_dormant_off(dev);
7404
7405         if (netif_carrier_ok(rootdev))
7406                 netif_carrier_on(dev);
7407         else
7408                 netif_carrier_off(dev);
7409 }
7410 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7411
7412 #ifdef CONFIG_SYSFS
7413 static int netif_alloc_rx_queues(struct net_device *dev)
7414 {
7415         unsigned int i, count = dev->num_rx_queues;
7416         struct netdev_rx_queue *rx;
7417         size_t sz = count * sizeof(*rx);
7418
7419         BUG_ON(count < 1);
7420
7421         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7422         if (!rx)
7423                 return -ENOMEM;
7424
7425         dev->_rx = rx;
7426
7427         for (i = 0; i < count; i++)
7428                 rx[i].dev = dev;
7429         return 0;
7430 }
7431 #endif
7432
7433 static void netdev_init_one_queue(struct net_device *dev,
7434                                   struct netdev_queue *queue, void *_unused)
7435 {
7436         /* Initialize queue lock */
7437         spin_lock_init(&queue->_xmit_lock);
7438         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7439         queue->xmit_lock_owner = -1;
7440         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7441         queue->dev = dev;
7442 #ifdef CONFIG_BQL
7443         dql_init(&queue->dql, HZ);
7444 #endif
7445 }
7446
7447 static void netif_free_tx_queues(struct net_device *dev)
7448 {
7449         kvfree(dev->_tx);
7450 }
7451
7452 static int netif_alloc_netdev_queues(struct net_device *dev)
7453 {
7454         unsigned int count = dev->num_tx_queues;
7455         struct netdev_queue *tx;
7456         size_t sz = count * sizeof(*tx);
7457
7458         if (count < 1 || count > 0xffff)
7459                 return -EINVAL;
7460
7461         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7462         if (!tx)
7463                 return -ENOMEM;
7464
7465         dev->_tx = tx;
7466
7467         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7468         spin_lock_init(&dev->tx_global_lock);
7469
7470         return 0;
7471 }
7472
7473 void netif_tx_stop_all_queues(struct net_device *dev)
7474 {
7475         unsigned int i;
7476
7477         for (i = 0; i < dev->num_tx_queues; i++) {
7478                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7479
7480                 netif_tx_stop_queue(txq);
7481         }
7482 }
7483 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7484
7485 /**
7486  *      register_netdevice      - register a network device
7487  *      @dev: device to register
7488  *
7489  *      Take a completed network device structure and add it to the kernel
7490  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7491  *      chain. 0 is returned on success. A negative errno code is returned
7492  *      on a failure to set up the device, or if the name is a duplicate.
7493  *
7494  *      Callers must hold the rtnl semaphore. You may want
7495  *      register_netdev() instead of this.
7496  *
7497  *      BUGS:
7498  *      The locking appears insufficient to guarantee two parallel registers
7499  *      will not get the same name.
7500  */
7501
7502 int register_netdevice(struct net_device *dev)
7503 {
7504         int ret;
7505         struct net *net = dev_net(dev);
7506
7507         BUG_ON(dev_boot_phase);
7508         ASSERT_RTNL();
7509
7510         might_sleep();
7511
7512         /* When net_device's are persistent, this will be fatal. */
7513         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7514         BUG_ON(!net);
7515
7516         spin_lock_init(&dev->addr_list_lock);
7517         netdev_set_addr_lockdep_class(dev);
7518
7519         ret = dev_get_valid_name(net, dev, dev->name);
7520         if (ret < 0)
7521                 goto out;
7522
7523         /* Init, if this function is available */
7524         if (dev->netdev_ops->ndo_init) {
7525                 ret = dev->netdev_ops->ndo_init(dev);
7526                 if (ret) {
7527                         if (ret > 0)
7528                                 ret = -EIO;
7529                         goto out;
7530                 }
7531         }
7532
7533         if (((dev->hw_features | dev->features) &
7534              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7535             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7536              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7537                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7538                 ret = -EINVAL;
7539                 goto err_uninit;
7540         }
7541
7542         ret = -EBUSY;
7543         if (!dev->ifindex)
7544                 dev->ifindex = dev_new_index(net);
7545         else if (__dev_get_by_index(net, dev->ifindex))
7546                 goto err_uninit;
7547
7548         /* Transfer changeable features to wanted_features and enable
7549          * software offloads (GSO and GRO).
7550          */
7551         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7552         dev->features |= NETIF_F_SOFT_FEATURES;
7553
7554         if (dev->netdev_ops->ndo_udp_tunnel_add) {
7555                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7556                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7557         }
7558
7559         dev->wanted_features = dev->features & dev->hw_features;
7560
7561         if (!(dev->flags & IFF_LOOPBACK))
7562                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7563
7564         /* If IPv4 TCP segmentation offload is supported we should also
7565          * allow the device to enable segmenting the frame with the option
7566          * of ignoring a static IP ID value.  This doesn't enable the
7567          * feature itself but allows the user to enable it later.
7568          */
7569         if (dev->hw_features & NETIF_F_TSO)
7570                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7571         if (dev->vlan_features & NETIF_F_TSO)
7572                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7573         if (dev->mpls_features & NETIF_F_TSO)
7574                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7575         if (dev->hw_enc_features & NETIF_F_TSO)
7576                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7577
7578         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7579          */
7580         dev->vlan_features |= NETIF_F_HIGHDMA;
7581
7582         /* Make NETIF_F_SG inheritable to tunnel devices.
7583          */
7584         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7585
7586         /* Make NETIF_F_SG inheritable to MPLS.
7587          */
7588         dev->mpls_features |= NETIF_F_SG;
7589
7590         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7591         ret = notifier_to_errno(ret);
7592         if (ret)
7593                 goto err_uninit;
7594
7595         ret = netdev_register_kobject(dev);
7596         if (ret)
7597                 goto err_uninit;
7598         dev->reg_state = NETREG_REGISTERED;
7599
7600         __netdev_update_features(dev);
7601
7602         /*
7603          *      Default initial state at registry is that the
7604          *      device is present.
7605          */
7606
7607         set_bit(__LINK_STATE_PRESENT, &dev->state);
7608
7609         linkwatch_init_dev(dev);
7610
7611         dev_init_scheduler(dev);
7612         dev_hold(dev);
7613         list_netdevice(dev);
7614         add_device_randomness(dev->dev_addr, dev->addr_len);
7615
7616         /* If the device has permanent device address, driver should
7617          * set dev_addr and also addr_assign_type should be set to
7618          * NET_ADDR_PERM (default value).
7619          */
7620         if (dev->addr_assign_type == NET_ADDR_PERM)
7621                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7622
7623         /* Notify protocols, that a new device appeared. */
7624         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7625         ret = notifier_to_errno(ret);
7626         if (ret) {
7627                 rollback_registered(dev);
7628                 dev->reg_state = NETREG_UNREGISTERED;
7629         }
7630         /*
7631          *      Prevent userspace races by waiting until the network
7632          *      device is fully setup before sending notifications.
7633          */
7634         if (!dev->rtnl_link_ops ||
7635             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7636                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7637
7638 out:
7639         return ret;
7640
7641 err_uninit:
7642         if (dev->netdev_ops->ndo_uninit)
7643                 dev->netdev_ops->ndo_uninit(dev);
7644         if (dev->priv_destructor)
7645                 dev->priv_destructor(dev);
7646         goto out;
7647 }
7648 EXPORT_SYMBOL(register_netdevice);
7649
7650 /**
7651  *      init_dummy_netdev       - init a dummy network device for NAPI
7652  *      @dev: device to init
7653  *
7654  *      This takes a network device structure and initialize the minimum
7655  *      amount of fields so it can be used to schedule NAPI polls without
7656  *      registering a full blown interface. This is to be used by drivers
7657  *      that need to tie several hardware interfaces to a single NAPI
7658  *      poll scheduler due to HW limitations.
7659  */
7660 int init_dummy_netdev(struct net_device *dev)
7661 {
7662         /* Clear everything. Note we don't initialize spinlocks
7663          * are they aren't supposed to be taken by any of the
7664          * NAPI code and this dummy netdev is supposed to be
7665          * only ever used for NAPI polls
7666          */
7667         memset(dev, 0, sizeof(struct net_device));
7668
7669         /* make sure we BUG if trying to hit standard
7670          * register/unregister code path
7671          */
7672         dev->reg_state = NETREG_DUMMY;
7673
7674         /* NAPI wants this */
7675         INIT_LIST_HEAD(&dev->napi_list);
7676
7677         /* a dummy interface is started by default */
7678         set_bit(__LINK_STATE_PRESENT, &dev->state);
7679         set_bit(__LINK_STATE_START, &dev->state);
7680
7681         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7682          * because users of this 'device' dont need to change
7683          * its refcount.
7684          */
7685
7686         return 0;
7687 }
7688 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7689
7690
7691 /**
7692  *      register_netdev - register a network device
7693  *      @dev: device to register
7694  *
7695  *      Take a completed network device structure and add it to the kernel
7696  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7697  *      chain. 0 is returned on success. A negative errno code is returned
7698  *      on a failure to set up the device, or if the name is a duplicate.
7699  *
7700  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7701  *      and expands the device name if you passed a format string to
7702  *      alloc_netdev.
7703  */
7704 int register_netdev(struct net_device *dev)
7705 {
7706         int err;
7707
7708         rtnl_lock();
7709         err = register_netdevice(dev);
7710         rtnl_unlock();
7711         return err;
7712 }
7713 EXPORT_SYMBOL(register_netdev);
7714
7715 int netdev_refcnt_read(const struct net_device *dev)
7716 {
7717         int i, refcnt = 0;
7718
7719         for_each_possible_cpu(i)
7720                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7721         return refcnt;
7722 }
7723 EXPORT_SYMBOL(netdev_refcnt_read);
7724
7725 /**
7726  * netdev_wait_allrefs - wait until all references are gone.
7727  * @dev: target net_device
7728  *
7729  * This is called when unregistering network devices.
7730  *
7731  * Any protocol or device that holds a reference should register
7732  * for netdevice notification, and cleanup and put back the
7733  * reference if they receive an UNREGISTER event.
7734  * We can get stuck here if buggy protocols don't correctly
7735  * call dev_put.
7736  */
7737 static void netdev_wait_allrefs(struct net_device *dev)
7738 {
7739         unsigned long rebroadcast_time, warning_time;
7740         int refcnt;
7741
7742         linkwatch_forget_dev(dev);
7743
7744         rebroadcast_time = warning_time = jiffies;
7745         refcnt = netdev_refcnt_read(dev);
7746
7747         while (refcnt != 0) {
7748                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7749                         rtnl_lock();
7750
7751                         /* Rebroadcast unregister notification */
7752                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7753
7754                         __rtnl_unlock();
7755                         rcu_barrier();
7756                         rtnl_lock();
7757
7758                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7759                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7760                                      &dev->state)) {
7761                                 /* We must not have linkwatch events
7762                                  * pending on unregister. If this
7763                                  * happens, we simply run the queue
7764                                  * unscheduled, resulting in a noop
7765                                  * for this device.
7766                                  */
7767                                 linkwatch_run_queue();
7768                         }
7769
7770                         __rtnl_unlock();
7771
7772                         rebroadcast_time = jiffies;
7773                 }
7774
7775                 msleep(250);
7776
7777                 refcnt = netdev_refcnt_read(dev);
7778
7779                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7780                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7781                                  dev->name, refcnt);
7782                         warning_time = jiffies;
7783                 }
7784         }
7785 }
7786
7787 /* The sequence is:
7788  *
7789  *      rtnl_lock();
7790  *      ...
7791  *      register_netdevice(x1);
7792  *      register_netdevice(x2);
7793  *      ...
7794  *      unregister_netdevice(y1);
7795  *      unregister_netdevice(y2);
7796  *      ...
7797  *      rtnl_unlock();
7798  *      free_netdev(y1);
7799  *      free_netdev(y2);
7800  *
7801  * We are invoked by rtnl_unlock().
7802  * This allows us to deal with problems:
7803  * 1) We can delete sysfs objects which invoke hotplug
7804  *    without deadlocking with linkwatch via keventd.
7805  * 2) Since we run with the RTNL semaphore not held, we can sleep
7806  *    safely in order to wait for the netdev refcnt to drop to zero.
7807  *
7808  * We must not return until all unregister events added during
7809  * the interval the lock was held have been completed.
7810  */
7811 void netdev_run_todo(void)
7812 {
7813         struct list_head list;
7814
7815         /* Snapshot list, allow later requests */
7816         list_replace_init(&net_todo_list, &list);
7817
7818         __rtnl_unlock();
7819
7820
7821         /* Wait for rcu callbacks to finish before next phase */
7822         if (!list_empty(&list))
7823                 rcu_barrier();
7824
7825         while (!list_empty(&list)) {
7826                 struct net_device *dev
7827                         = list_first_entry(&list, struct net_device, todo_list);
7828                 list_del(&dev->todo_list);
7829
7830                 rtnl_lock();
7831                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7832                 __rtnl_unlock();
7833
7834                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7835                         pr_err("network todo '%s' but state %d\n",
7836                                dev->name, dev->reg_state);
7837                         dump_stack();
7838                         continue;
7839                 }
7840
7841                 dev->reg_state = NETREG_UNREGISTERED;
7842
7843                 netdev_wait_allrefs(dev);
7844
7845                 /* paranoia */
7846                 BUG_ON(netdev_refcnt_read(dev));
7847                 BUG_ON(!list_empty(&dev->ptype_all));
7848                 BUG_ON(!list_empty(&dev->ptype_specific));
7849                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7850                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7851                 WARN_ON(dev->dn_ptr);
7852
7853                 if (dev->priv_destructor)
7854                         dev->priv_destructor(dev);
7855                 if (dev->needs_free_netdev)
7856                         free_netdev(dev);
7857
7858                 /* Report a network device has been unregistered */
7859                 rtnl_lock();
7860                 dev_net(dev)->dev_unreg_count--;
7861                 __rtnl_unlock();
7862                 wake_up(&netdev_unregistering_wq);
7863
7864                 /* Free network device */
7865                 kobject_put(&dev->dev.kobj);
7866         }
7867 }
7868
7869 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7870  * all the same fields in the same order as net_device_stats, with only
7871  * the type differing, but rtnl_link_stats64 may have additional fields
7872  * at the end for newer counters.
7873  */
7874 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7875                              const struct net_device_stats *netdev_stats)
7876 {
7877 #if BITS_PER_LONG == 64
7878         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7879         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7880         /* zero out counters that only exist in rtnl_link_stats64 */
7881         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7882                sizeof(*stats64) - sizeof(*netdev_stats));
7883 #else
7884         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7885         const unsigned long *src = (const unsigned long *)netdev_stats;
7886         u64 *dst = (u64 *)stats64;
7887
7888         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7889         for (i = 0; i < n; i++)
7890                 dst[i] = src[i];
7891         /* zero out counters that only exist in rtnl_link_stats64 */
7892         memset((char *)stats64 + n * sizeof(u64), 0,
7893                sizeof(*stats64) - n * sizeof(u64));
7894 #endif
7895 }
7896 EXPORT_SYMBOL(netdev_stats_to_stats64);
7897
7898 /**
7899  *      dev_get_stats   - get network device statistics
7900  *      @dev: device to get statistics from
7901  *      @storage: place to store stats
7902  *
7903  *      Get network statistics from device. Return @storage.
7904  *      The device driver may provide its own method by setting
7905  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7906  *      otherwise the internal statistics structure is used.
7907  */
7908 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7909                                         struct rtnl_link_stats64 *storage)
7910 {
7911         const struct net_device_ops *ops = dev->netdev_ops;
7912
7913         if (ops->ndo_get_stats64) {
7914                 memset(storage, 0, sizeof(*storage));
7915                 ops->ndo_get_stats64(dev, storage);
7916         } else if (ops->ndo_get_stats) {
7917                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7918         } else {
7919                 netdev_stats_to_stats64(storage, &dev->stats);
7920         }
7921         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7922         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7923         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
7924         return storage;
7925 }
7926 EXPORT_SYMBOL(dev_get_stats);
7927
7928 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7929 {
7930         struct netdev_queue *queue = dev_ingress_queue(dev);
7931
7932 #ifdef CONFIG_NET_CLS_ACT
7933         if (queue)
7934                 return queue;
7935         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7936         if (!queue)
7937                 return NULL;
7938         netdev_init_one_queue(dev, queue, NULL);
7939         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7940         queue->qdisc_sleeping = &noop_qdisc;
7941         rcu_assign_pointer(dev->ingress_queue, queue);
7942 #endif
7943         return queue;
7944 }
7945
7946 static const struct ethtool_ops default_ethtool_ops;
7947
7948 void netdev_set_default_ethtool_ops(struct net_device *dev,
7949                                     const struct ethtool_ops *ops)
7950 {
7951         if (dev->ethtool_ops == &default_ethtool_ops)
7952                 dev->ethtool_ops = ops;
7953 }
7954 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7955
7956 void netdev_freemem(struct net_device *dev)
7957 {
7958         char *addr = (char *)dev - dev->padded;
7959
7960         kvfree(addr);
7961 }
7962
7963 /**
7964  * alloc_netdev_mqs - allocate network device
7965  * @sizeof_priv: size of private data to allocate space for
7966  * @name: device name format string
7967  * @name_assign_type: origin of device name
7968  * @setup: callback to initialize device
7969  * @txqs: the number of TX subqueues to allocate
7970  * @rxqs: the number of RX subqueues to allocate
7971  *
7972  * Allocates a struct net_device with private data area for driver use
7973  * and performs basic initialization.  Also allocates subqueue structs
7974  * for each queue on the device.
7975  */
7976 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7977                 unsigned char name_assign_type,
7978                 void (*setup)(struct net_device *),
7979                 unsigned int txqs, unsigned int rxqs)
7980 {
7981         struct net_device *dev;
7982         size_t alloc_size;
7983         struct net_device *p;
7984
7985         BUG_ON(strlen(name) >= sizeof(dev->name));
7986
7987         if (txqs < 1) {
7988                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7989                 return NULL;
7990         }
7991
7992 #ifdef CONFIG_SYSFS
7993         if (rxqs < 1) {
7994                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7995                 return NULL;
7996         }
7997 #endif
7998
7999         alloc_size = sizeof(struct net_device);
8000         if (sizeof_priv) {
8001                 /* ensure 32-byte alignment of private area */
8002                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8003                 alloc_size += sizeof_priv;
8004         }
8005         /* ensure 32-byte alignment of whole construct */
8006         alloc_size += NETDEV_ALIGN - 1;
8007
8008         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8009         if (!p)
8010                 return NULL;
8011
8012         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8013         dev->padded = (char *)dev - (char *)p;
8014
8015         dev->pcpu_refcnt = alloc_percpu(int);
8016         if (!dev->pcpu_refcnt)
8017                 goto free_dev;
8018
8019         if (dev_addr_init(dev))
8020                 goto free_pcpu;
8021
8022         dev_mc_init(dev);
8023         dev_uc_init(dev);
8024
8025         dev_net_set(dev, &init_net);
8026
8027         dev->gso_max_size = GSO_MAX_SIZE;
8028         dev->gso_max_segs = GSO_MAX_SEGS;
8029
8030         INIT_LIST_HEAD(&dev->napi_list);
8031         INIT_LIST_HEAD(&dev->unreg_list);
8032         INIT_LIST_HEAD(&dev->close_list);
8033         INIT_LIST_HEAD(&dev->link_watch_list);
8034         INIT_LIST_HEAD(&dev->adj_list.upper);
8035         INIT_LIST_HEAD(&dev->adj_list.lower);
8036         INIT_LIST_HEAD(&dev->ptype_all);
8037         INIT_LIST_HEAD(&dev->ptype_specific);
8038 #ifdef CONFIG_NET_SCHED
8039         hash_init(dev->qdisc_hash);
8040 #endif
8041         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8042         setup(dev);
8043
8044         if (!dev->tx_queue_len) {
8045                 dev->priv_flags |= IFF_NO_QUEUE;
8046                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8047         }
8048
8049         dev->num_tx_queues = txqs;
8050         dev->real_num_tx_queues = txqs;
8051         if (netif_alloc_netdev_queues(dev))
8052                 goto free_all;
8053
8054 #ifdef CONFIG_SYSFS
8055         dev->num_rx_queues = rxqs;
8056         dev->real_num_rx_queues = rxqs;
8057         if (netif_alloc_rx_queues(dev))
8058                 goto free_all;
8059 #endif
8060
8061         strcpy(dev->name, name);
8062         dev->name_assign_type = name_assign_type;
8063         dev->group = INIT_NETDEV_GROUP;
8064         if (!dev->ethtool_ops)
8065                 dev->ethtool_ops = &default_ethtool_ops;
8066
8067         nf_hook_ingress_init(dev);
8068
8069         return dev;
8070
8071 free_all:
8072         free_netdev(dev);
8073         return NULL;
8074
8075 free_pcpu:
8076         free_percpu(dev->pcpu_refcnt);
8077 free_dev:
8078         netdev_freemem(dev);
8079         return NULL;
8080 }
8081 EXPORT_SYMBOL(alloc_netdev_mqs);
8082
8083 /**
8084  * free_netdev - free network device
8085  * @dev: device
8086  *
8087  * This function does the last stage of destroying an allocated device
8088  * interface. The reference to the device object is released. If this
8089  * is the last reference then it will be freed.Must be called in process
8090  * context.
8091  */
8092 void free_netdev(struct net_device *dev)
8093 {
8094         struct napi_struct *p, *n;
8095         struct bpf_prog *prog;
8096
8097         might_sleep();
8098         netif_free_tx_queues(dev);
8099 #ifdef CONFIG_SYSFS
8100         kvfree(dev->_rx);
8101 #endif
8102
8103         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8104
8105         /* Flush device addresses */
8106         dev_addr_flush(dev);
8107
8108         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8109                 netif_napi_del(p);
8110
8111         free_percpu(dev->pcpu_refcnt);
8112         dev->pcpu_refcnt = NULL;
8113
8114         prog = rcu_dereference_protected(dev->xdp_prog, 1);
8115         if (prog) {
8116                 bpf_prog_put(prog);
8117                 static_key_slow_dec(&generic_xdp_needed);
8118         }
8119
8120         /*  Compatibility with error handling in drivers */
8121         if (dev->reg_state == NETREG_UNINITIALIZED) {
8122                 netdev_freemem(dev);
8123                 return;
8124         }
8125
8126         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8127         dev->reg_state = NETREG_RELEASED;
8128
8129         /* will free via device release */
8130         put_device(&dev->dev);
8131 }
8132 EXPORT_SYMBOL(free_netdev);
8133
8134 /**
8135  *      synchronize_net -  Synchronize with packet receive processing
8136  *
8137  *      Wait for packets currently being received to be done.
8138  *      Does not block later packets from starting.
8139  */
8140 void synchronize_net(void)
8141 {
8142         might_sleep();
8143         if (rtnl_is_locked())
8144                 synchronize_rcu_expedited();
8145         else
8146                 synchronize_rcu();
8147 }
8148 EXPORT_SYMBOL(synchronize_net);
8149
8150 /**
8151  *      unregister_netdevice_queue - remove device from the kernel
8152  *      @dev: device
8153  *      @head: list
8154  *
8155  *      This function shuts down a device interface and removes it
8156  *      from the kernel tables.
8157  *      If head not NULL, device is queued to be unregistered later.
8158  *
8159  *      Callers must hold the rtnl semaphore.  You may want
8160  *      unregister_netdev() instead of this.
8161  */
8162
8163 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8164 {
8165         ASSERT_RTNL();
8166
8167         if (head) {
8168                 list_move_tail(&dev->unreg_list, head);
8169         } else {
8170                 rollback_registered(dev);
8171                 /* Finish processing unregister after unlock */
8172                 net_set_todo(dev);
8173         }
8174 }
8175 EXPORT_SYMBOL(unregister_netdevice_queue);
8176
8177 /**
8178  *      unregister_netdevice_many - unregister many devices
8179  *      @head: list of devices
8180  *
8181  *  Note: As most callers use a stack allocated list_head,
8182  *  we force a list_del() to make sure stack wont be corrupted later.
8183  */
8184 void unregister_netdevice_many(struct list_head *head)
8185 {
8186         struct net_device *dev;
8187
8188         if (!list_empty(head)) {
8189                 rollback_registered_many(head);
8190                 list_for_each_entry(dev, head, unreg_list)
8191                         net_set_todo(dev);
8192                 list_del(head);
8193         }
8194 }
8195 EXPORT_SYMBOL(unregister_netdevice_many);
8196
8197 /**
8198  *      unregister_netdev - remove device from the kernel
8199  *      @dev: device
8200  *
8201  *      This function shuts down a device interface and removes it
8202  *      from the kernel tables.
8203  *
8204  *      This is just a wrapper for unregister_netdevice that takes
8205  *      the rtnl semaphore.  In general you want to use this and not
8206  *      unregister_netdevice.
8207  */
8208 void unregister_netdev(struct net_device *dev)
8209 {
8210         rtnl_lock();
8211         unregister_netdevice(dev);
8212         rtnl_unlock();
8213 }
8214 EXPORT_SYMBOL(unregister_netdev);
8215
8216 /**
8217  *      dev_change_net_namespace - move device to different nethost namespace
8218  *      @dev: device
8219  *      @net: network namespace
8220  *      @pat: If not NULL name pattern to try if the current device name
8221  *            is already taken in the destination network namespace.
8222  *
8223  *      This function shuts down a device interface and moves it
8224  *      to a new network namespace. On success 0 is returned, on
8225  *      a failure a netagive errno code is returned.
8226  *
8227  *      Callers must hold the rtnl semaphore.
8228  */
8229
8230 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8231 {
8232         int err;
8233
8234         ASSERT_RTNL();
8235
8236         /* Don't allow namespace local devices to be moved. */
8237         err = -EINVAL;
8238         if (dev->features & NETIF_F_NETNS_LOCAL)
8239                 goto out;
8240
8241         /* Ensure the device has been registrered */
8242         if (dev->reg_state != NETREG_REGISTERED)
8243                 goto out;
8244
8245         /* Get out if there is nothing todo */
8246         err = 0;
8247         if (net_eq(dev_net(dev), net))
8248                 goto out;
8249
8250         /* Pick the destination device name, and ensure
8251          * we can use it in the destination network namespace.
8252          */
8253         err = -EEXIST;
8254         if (__dev_get_by_name(net, dev->name)) {
8255                 /* We get here if we can't use the current device name */
8256                 if (!pat)
8257                         goto out;
8258                 if (dev_get_valid_name(net, dev, pat) < 0)
8259                         goto out;
8260         }
8261
8262         /*
8263          * And now a mini version of register_netdevice unregister_netdevice.
8264          */
8265
8266         /* If device is running close it first. */
8267         dev_close(dev);
8268
8269         /* And unlink it from device chain */
8270         err = -ENODEV;
8271         unlist_netdevice(dev);
8272
8273         synchronize_net();
8274
8275         /* Shutdown queueing discipline. */
8276         dev_shutdown(dev);
8277
8278         /* Notify protocols, that we are about to destroy
8279          * this device. They should clean all the things.
8280          *
8281          * Note that dev->reg_state stays at NETREG_REGISTERED.
8282          * This is wanted because this way 8021q and macvlan know
8283          * the device is just moving and can keep their slaves up.
8284          */
8285         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8286         rcu_barrier();
8287         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8288         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8289
8290         /*
8291          *      Flush the unicast and multicast chains
8292          */
8293         dev_uc_flush(dev);
8294         dev_mc_flush(dev);
8295
8296         /* Send a netdev-removed uevent to the old namespace */
8297         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8298         netdev_adjacent_del_links(dev);
8299
8300         /* Actually switch the network namespace */
8301         dev_net_set(dev, net);
8302
8303         /* If there is an ifindex conflict assign a new one */
8304         if (__dev_get_by_index(net, dev->ifindex))
8305                 dev->ifindex = dev_new_index(net);
8306
8307         /* Send a netdev-add uevent to the new namespace */
8308         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8309         netdev_adjacent_add_links(dev);
8310
8311         /* Fixup kobjects */
8312         err = device_rename(&dev->dev, dev->name);
8313         WARN_ON(err);
8314
8315         /* Add the device back in the hashes */
8316         list_netdevice(dev);
8317
8318         /* Notify protocols, that a new device appeared. */
8319         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8320
8321         /*
8322          *      Prevent userspace races by waiting until the network
8323          *      device is fully setup before sending notifications.
8324          */
8325         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8326
8327         synchronize_net();
8328         err = 0;
8329 out:
8330         return err;
8331 }
8332 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8333
8334 static int dev_cpu_dead(unsigned int oldcpu)
8335 {
8336         struct sk_buff **list_skb;
8337         struct sk_buff *skb;
8338         unsigned int cpu;
8339         struct softnet_data *sd, *oldsd, *remsd = NULL;
8340
8341         local_irq_disable();
8342         cpu = smp_processor_id();
8343         sd = &per_cpu(softnet_data, cpu);
8344         oldsd = &per_cpu(softnet_data, oldcpu);
8345
8346         /* Find end of our completion_queue. */
8347         list_skb = &sd->completion_queue;
8348         while (*list_skb)
8349                 list_skb = &(*list_skb)->next;
8350         /* Append completion queue from offline CPU. */
8351         *list_skb = oldsd->completion_queue;
8352         oldsd->completion_queue = NULL;
8353
8354         /* Append output queue from offline CPU. */
8355         if (oldsd->output_queue) {
8356                 *sd->output_queue_tailp = oldsd->output_queue;
8357                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8358                 oldsd->output_queue = NULL;
8359                 oldsd->output_queue_tailp = &oldsd->output_queue;
8360         }
8361         /* Append NAPI poll list from offline CPU, with one exception :
8362          * process_backlog() must be called by cpu owning percpu backlog.
8363          * We properly handle process_queue & input_pkt_queue later.
8364          */
8365         while (!list_empty(&oldsd->poll_list)) {
8366                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8367                                                             struct napi_struct,
8368                                                             poll_list);
8369
8370                 list_del_init(&napi->poll_list);
8371                 if (napi->poll == process_backlog)
8372                         napi->state = 0;
8373                 else
8374                         ____napi_schedule(sd, napi);
8375         }
8376
8377         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8378         local_irq_enable();
8379
8380 #ifdef CONFIG_RPS
8381         remsd = oldsd->rps_ipi_list;
8382         oldsd->rps_ipi_list = NULL;
8383 #endif
8384         /* send out pending IPI's on offline CPU */
8385         net_rps_send_ipi(remsd);
8386
8387         /* Process offline CPU's input_pkt_queue */
8388         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8389                 netif_rx_ni(skb);
8390                 input_queue_head_incr(oldsd);
8391         }
8392         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8393                 netif_rx_ni(skb);
8394                 input_queue_head_incr(oldsd);
8395         }
8396
8397         return 0;
8398 }
8399
8400 /**
8401  *      netdev_increment_features - increment feature set by one
8402  *      @all: current feature set
8403  *      @one: new feature set
8404  *      @mask: mask feature set
8405  *
8406  *      Computes a new feature set after adding a device with feature set
8407  *      @one to the master device with current feature set @all.  Will not
8408  *      enable anything that is off in @mask. Returns the new feature set.
8409  */
8410 netdev_features_t netdev_increment_features(netdev_features_t all,
8411         netdev_features_t one, netdev_features_t mask)
8412 {
8413         if (mask & NETIF_F_HW_CSUM)
8414                 mask |= NETIF_F_CSUM_MASK;
8415         mask |= NETIF_F_VLAN_CHALLENGED;
8416
8417         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8418         all &= one | ~NETIF_F_ALL_FOR_ALL;
8419
8420         /* If one device supports hw checksumming, set for all. */
8421         if (all & NETIF_F_HW_CSUM)
8422                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8423
8424         return all;
8425 }
8426 EXPORT_SYMBOL(netdev_increment_features);
8427
8428 static struct hlist_head * __net_init netdev_create_hash(void)
8429 {
8430         int i;
8431         struct hlist_head *hash;
8432
8433         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8434         if (hash != NULL)
8435                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8436                         INIT_HLIST_HEAD(&hash[i]);
8437
8438         return hash;
8439 }
8440
8441 /* Initialize per network namespace state */
8442 static int __net_init netdev_init(struct net *net)
8443 {
8444         if (net != &init_net)
8445                 INIT_LIST_HEAD(&net->dev_base_head);
8446
8447         net->dev_name_head = netdev_create_hash();
8448         if (net->dev_name_head == NULL)
8449                 goto err_name;
8450
8451         net->dev_index_head = netdev_create_hash();
8452         if (net->dev_index_head == NULL)
8453                 goto err_idx;
8454
8455         return 0;
8456
8457 err_idx:
8458         kfree(net->dev_name_head);
8459 err_name:
8460         return -ENOMEM;
8461 }
8462
8463 /**
8464  *      netdev_drivername - network driver for the device
8465  *      @dev: network device
8466  *
8467  *      Determine network driver for device.
8468  */
8469 const char *netdev_drivername(const struct net_device *dev)
8470 {
8471         const struct device_driver *driver;
8472         const struct device *parent;
8473         const char *empty = "";
8474
8475         parent = dev->dev.parent;
8476         if (!parent)
8477                 return empty;
8478
8479         driver = parent->driver;
8480         if (driver && driver->name)
8481                 return driver->name;
8482         return empty;
8483 }
8484
8485 static void __netdev_printk(const char *level, const struct net_device *dev,
8486                             struct va_format *vaf)
8487 {
8488         if (dev && dev->dev.parent) {
8489                 dev_printk_emit(level[1] - '0',
8490                                 dev->dev.parent,
8491                                 "%s %s %s%s: %pV",
8492                                 dev_driver_string(dev->dev.parent),
8493                                 dev_name(dev->dev.parent),
8494                                 netdev_name(dev), netdev_reg_state(dev),
8495                                 vaf);
8496         } else if (dev) {
8497                 printk("%s%s%s: %pV",
8498                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8499         } else {
8500                 printk("%s(NULL net_device): %pV", level, vaf);
8501         }
8502 }
8503
8504 void netdev_printk(const char *level, const struct net_device *dev,
8505                    const char *format, ...)
8506 {
8507         struct va_format vaf;
8508         va_list args;
8509
8510         va_start(args, format);
8511
8512         vaf.fmt = format;
8513         vaf.va = &args;
8514
8515         __netdev_printk(level, dev, &vaf);
8516
8517         va_end(args);
8518 }
8519 EXPORT_SYMBOL(netdev_printk);
8520
8521 #define define_netdev_printk_level(func, level)                 \
8522 void func(const struct net_device *dev, const char *fmt, ...)   \
8523 {                                                               \
8524         struct va_format vaf;                                   \
8525         va_list args;                                           \
8526                                                                 \
8527         va_start(args, fmt);                                    \
8528                                                                 \
8529         vaf.fmt = fmt;                                          \
8530         vaf.va = &args;                                         \
8531                                                                 \
8532         __netdev_printk(level, dev, &vaf);                      \
8533                                                                 \
8534         va_end(args);                                           \
8535 }                                                               \
8536 EXPORT_SYMBOL(func);
8537
8538 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8539 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8540 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8541 define_netdev_printk_level(netdev_err, KERN_ERR);
8542 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8543 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8544 define_netdev_printk_level(netdev_info, KERN_INFO);
8545
8546 static void __net_exit netdev_exit(struct net *net)
8547 {
8548         kfree(net->dev_name_head);
8549         kfree(net->dev_index_head);
8550 }
8551
8552 static struct pernet_operations __net_initdata netdev_net_ops = {
8553         .init = netdev_init,
8554         .exit = netdev_exit,
8555 };
8556
8557 static void __net_exit default_device_exit(struct net *net)
8558 {
8559         struct net_device *dev, *aux;
8560         /*
8561          * Push all migratable network devices back to the
8562          * initial network namespace
8563          */
8564         rtnl_lock();
8565         for_each_netdev_safe(net, dev, aux) {
8566                 int err;
8567                 char fb_name[IFNAMSIZ];
8568
8569                 /* Ignore unmoveable devices (i.e. loopback) */
8570                 if (dev->features & NETIF_F_NETNS_LOCAL)
8571                         continue;
8572
8573                 /* Leave virtual devices for the generic cleanup */
8574                 if (dev->rtnl_link_ops)
8575                         continue;
8576
8577                 /* Push remaining network devices to init_net */
8578                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8579                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8580                 if (err) {
8581                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8582                                  __func__, dev->name, err);
8583                         BUG();
8584                 }
8585         }
8586         rtnl_unlock();
8587 }
8588
8589 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8590 {
8591         /* Return with the rtnl_lock held when there are no network
8592          * devices unregistering in any network namespace in net_list.
8593          */
8594         struct net *net;
8595         bool unregistering;
8596         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8597
8598         add_wait_queue(&netdev_unregistering_wq, &wait);
8599         for (;;) {
8600                 unregistering = false;
8601                 rtnl_lock();
8602                 list_for_each_entry(net, net_list, exit_list) {
8603                         if (net->dev_unreg_count > 0) {
8604                                 unregistering = true;
8605                                 break;
8606                         }
8607                 }
8608                 if (!unregistering)
8609                         break;
8610                 __rtnl_unlock();
8611
8612                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8613         }
8614         remove_wait_queue(&netdev_unregistering_wq, &wait);
8615 }
8616
8617 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8618 {
8619         /* At exit all network devices most be removed from a network
8620          * namespace.  Do this in the reverse order of registration.
8621          * Do this across as many network namespaces as possible to
8622          * improve batching efficiency.
8623          */
8624         struct net_device *dev;
8625         struct net *net;
8626         LIST_HEAD(dev_kill_list);
8627
8628         /* To prevent network device cleanup code from dereferencing
8629          * loopback devices or network devices that have been freed
8630          * wait here for all pending unregistrations to complete,
8631          * before unregistring the loopback device and allowing the
8632          * network namespace be freed.
8633          *
8634          * The netdev todo list containing all network devices
8635          * unregistrations that happen in default_device_exit_batch
8636          * will run in the rtnl_unlock() at the end of
8637          * default_device_exit_batch.
8638          */
8639         rtnl_lock_unregistering(net_list);
8640         list_for_each_entry(net, net_list, exit_list) {
8641                 for_each_netdev_reverse(net, dev) {
8642                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8643                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8644                         else
8645                                 unregister_netdevice_queue(dev, &dev_kill_list);
8646                 }
8647         }
8648         unregister_netdevice_many(&dev_kill_list);
8649         rtnl_unlock();
8650 }
8651
8652 static struct pernet_operations __net_initdata default_device_ops = {
8653         .exit = default_device_exit,
8654         .exit_batch = default_device_exit_batch,
8655 };
8656
8657 /*
8658  *      Initialize the DEV module. At boot time this walks the device list and
8659  *      unhooks any devices that fail to initialise (normally hardware not
8660  *      present) and leaves us with a valid list of present and active devices.
8661  *
8662  */
8663
8664 /*
8665  *       This is called single threaded during boot, so no need
8666  *       to take the rtnl semaphore.
8667  */
8668 static int __init net_dev_init(void)
8669 {
8670         int i, rc = -ENOMEM;
8671
8672         BUG_ON(!dev_boot_phase);
8673
8674         if (dev_proc_init())
8675                 goto out;
8676
8677         if (netdev_kobject_init())
8678                 goto out;
8679
8680         INIT_LIST_HEAD(&ptype_all);
8681         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8682                 INIT_LIST_HEAD(&ptype_base[i]);
8683
8684         INIT_LIST_HEAD(&offload_base);
8685
8686         if (register_pernet_subsys(&netdev_net_ops))
8687                 goto out;
8688
8689         /*
8690          *      Initialise the packet receive queues.
8691          */
8692
8693         for_each_possible_cpu(i) {
8694                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8695                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8696
8697                 INIT_WORK(flush, flush_backlog);
8698
8699                 skb_queue_head_init(&sd->input_pkt_queue);
8700                 skb_queue_head_init(&sd->process_queue);
8701                 INIT_LIST_HEAD(&sd->poll_list);
8702                 sd->output_queue_tailp = &sd->output_queue;
8703 #ifdef CONFIG_RPS
8704                 sd->csd.func = rps_trigger_softirq;
8705                 sd->csd.info = sd;
8706                 sd->cpu = i;
8707 #endif
8708
8709                 sd->backlog.poll = process_backlog;
8710                 sd->backlog.weight = weight_p;
8711         }
8712
8713         dev_boot_phase = 0;
8714
8715         /* The loopback device is special if any other network devices
8716          * is present in a network namespace the loopback device must
8717          * be present. Since we now dynamically allocate and free the
8718          * loopback device ensure this invariant is maintained by
8719          * keeping the loopback device as the first device on the
8720          * list of network devices.  Ensuring the loopback devices
8721          * is the first device that appears and the last network device
8722          * that disappears.
8723          */
8724         if (register_pernet_device(&loopback_net_ops))
8725                 goto out;
8726
8727         if (register_pernet_device(&default_device_ops))
8728                 goto out;
8729
8730         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8731         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8732
8733         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8734                                        NULL, dev_cpu_dead);
8735         WARN_ON(rc < 0);
8736         rc = 0;
8737 out:
8738         return rc;
8739 }
8740
8741 subsys_initcall(net_dev_init);