Bluetooth: Add LE vendor specific event handler
[platform/kernel/linux-rpi.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         kfree(name_node->name);
349         netdev_name_node_free(name_node);
350 }
351
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354         struct netdev_name_node *name_node;
355         struct net *net = dev_net(dev);
356
357         name_node = netdev_name_node_lookup(net, name);
358         if (!name_node)
359                 return -ENOENT;
360         /* lookup might have found our primary name or a name belonging
361          * to another device.
362          */
363         if (name_node == dev->name_node || name_node->dev != dev)
364                 return -EINVAL;
365
366         netdev_name_node_del(name_node);
367         synchronize_rcu();
368         __netdev_name_node_alt_destroy(name_node);
369
370         return 0;
371 }
372
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375         struct netdev_name_node *name_node, *tmp;
376
377         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378                 __netdev_name_node_alt_destroy(name_node);
379 }
380
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384         struct netdev_name_node *name_node;
385         struct net *net = dev_net(dev);
386
387         ASSERT_RTNL();
388
389         write_lock(&dev_base_lock);
390         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391         netdev_name_node_add(net, dev->name_node);
392         hlist_add_head_rcu(&dev->index_hlist,
393                            dev_index_hash(net, dev->ifindex));
394         write_unlock(&dev_base_lock);
395
396         netdev_for_each_altname(dev, name_node)
397                 netdev_name_node_add(net, name_node);
398
399         /* We reserved the ifindex, this can't fail */
400         WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401
402         dev_base_seq_inc(net);
403 }
404
405 /* Device list removal
406  * caller must respect a RCU grace period before freeing/reusing dev
407  */
408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410         struct netdev_name_node *name_node;
411         struct net *net = dev_net(dev);
412
413         ASSERT_RTNL();
414
415         xa_erase(&net->dev_by_index, dev->ifindex);
416
417         netdev_for_each_altname(dev, name_node)
418                 netdev_name_node_del(name_node);
419
420         /* Unlink dev from the device chain */
421         if (lock)
422                 write_lock(&dev_base_lock);
423         list_del_rcu(&dev->dev_list);
424         netdev_name_node_del(dev->name_node);
425         hlist_del_rcu(&dev->index_hlist);
426         if (lock)
427                 write_unlock(&dev_base_lock);
428
429         dev_base_seq_inc(dev_net(dev));
430 }
431
432 /*
433  *      Our notifier list
434  */
435
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437
438 /*
439  *      Device drivers call our routines to queue packets here. We empty the
440  *      queue in the local softnet handler.
441  */
442
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445
446 #ifdef CONFIG_LOCKDEP
447 /*
448  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449  * according to dev->type
450  */
451 static const unsigned short netdev_lock_type[] = {
452          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467
468 static const char *const netdev_lock_name[] = {
469         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487
488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490         int i;
491
492         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493                 if (netdev_lock_type[i] == dev_type)
494                         return i;
495         /* the last key is used by default */
496         return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498
499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500                                                  unsigned short dev_type)
501 {
502         int i;
503
504         i = netdev_lock_pos(dev_type);
505         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506                                    netdev_lock_name[i]);
507 }
508
509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511         int i;
512
513         i = netdev_lock_pos(dev->type);
514         lockdep_set_class_and_name(&dev->addr_list_lock,
515                                    &netdev_addr_lock_key[i],
516                                    netdev_lock_name[i]);
517 }
518 #else
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520                                                  unsigned short dev_type)
521 {
522 }
523
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528
529 /*******************************************************************************
530  *
531  *              Protocol management and registration routines
532  *
533  *******************************************************************************/
534
535
536 /*
537  *      Add a protocol ID to the list. Now that the input handler is
538  *      smarter we can dispense with all the messy stuff that used to be
539  *      here.
540  *
541  *      BEWARE!!! Protocol handlers, mangling input packets,
542  *      MUST BE last in hash buckets and checking protocol handlers
543  *      MUST start from promiscuous ptype_all chain in net_bh.
544  *      It is true now, do not change it.
545  *      Explanation follows: if protocol handler, mangling packet, will
546  *      be the first on list, it is not able to sense, that packet
547  *      is cloned and should be copied-on-write, so that it will
548  *      change it and subsequent readers will get broken packet.
549  *                                                      --ANK (980803)
550  */
551
552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554         if (pt->type == htons(ETH_P_ALL))
555                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556         else
557                 return pt->dev ? &pt->dev->ptype_specific :
558                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560
561 /**
562  *      dev_add_pack - add packet handler
563  *      @pt: packet type declaration
564  *
565  *      Add a protocol handler to the networking stack. The passed &packet_type
566  *      is linked into kernel lists and may not be freed until it has been
567  *      removed from the kernel lists.
568  *
569  *      This call does not sleep therefore it can not
570  *      guarantee all CPU's that are in middle of receiving packets
571  *      will see the new packet type (until the next received packet).
572  */
573
574 void dev_add_pack(struct packet_type *pt)
575 {
576         struct list_head *head = ptype_head(pt);
577
578         spin_lock(&ptype_lock);
579         list_add_rcu(&pt->list, head);
580         spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583
584 /**
585  *      __dev_remove_pack        - remove packet handler
586  *      @pt: packet type declaration
587  *
588  *      Remove a protocol handler that was previously added to the kernel
589  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
590  *      from the kernel lists and can be freed or reused once this function
591  *      returns.
592  *
593  *      The packet type might still be in use by receivers
594  *      and must not be freed until after all the CPU's have gone
595  *      through a quiescent state.
596  */
597 void __dev_remove_pack(struct packet_type *pt)
598 {
599         struct list_head *head = ptype_head(pt);
600         struct packet_type *pt1;
601
602         spin_lock(&ptype_lock);
603
604         list_for_each_entry(pt1, head, list) {
605                 if (pt == pt1) {
606                         list_del_rcu(&pt->list);
607                         goto out;
608                 }
609         }
610
611         pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613         spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616
617 /**
618  *      dev_remove_pack  - remove packet handler
619  *      @pt: packet type declaration
620  *
621  *      Remove a protocol handler that was previously added to the kernel
622  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
623  *      from the kernel lists and can be freed or reused once this function
624  *      returns.
625  *
626  *      This call sleeps to guarantee that no CPU is looking at the packet
627  *      type after return.
628  */
629 void dev_remove_pack(struct packet_type *pt)
630 {
631         __dev_remove_pack(pt);
632
633         synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636
637
638 /*******************************************************************************
639  *
640  *                          Device Interface Subroutines
641  *
642  *******************************************************************************/
643
644 /**
645  *      dev_get_iflink  - get 'iflink' value of a interface
646  *      @dev: targeted interface
647  *
648  *      Indicates the ifindex the interface is linked to.
649  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
650  */
651
652 int dev_get_iflink(const struct net_device *dev)
653 {
654         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655                 return dev->netdev_ops->ndo_get_iflink(dev);
656
657         return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660
661 /**
662  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
663  *      @dev: targeted interface
664  *      @skb: The packet.
665  *
666  *      For better visibility of tunnel traffic OVS needs to retrieve
667  *      egress tunnel information for a packet. Following API allows
668  *      user to get this info.
669  */
670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672         struct ip_tunnel_info *info;
673
674         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
675                 return -EINVAL;
676
677         info = skb_tunnel_info_unclone(skb);
678         if (!info)
679                 return -ENOMEM;
680         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681                 return -EINVAL;
682
683         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686
687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689         int k = stack->num_paths++;
690
691         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692                 return NULL;
693
694         return &stack->path[k];
695 }
696
697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698                           struct net_device_path_stack *stack)
699 {
700         const struct net_device *last_dev;
701         struct net_device_path_ctx ctx = {
702                 .dev    = dev,
703         };
704         struct net_device_path *path;
705         int ret = 0;
706
707         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708         stack->num_paths = 0;
709         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710                 last_dev = ctx.dev;
711                 path = dev_fwd_path(stack);
712                 if (!path)
713                         return -1;
714
715                 memset(path, 0, sizeof(struct net_device_path));
716                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717                 if (ret < 0)
718                         return -1;
719
720                 if (WARN_ON_ONCE(last_dev == ctx.dev))
721                         return -1;
722         }
723
724         if (!ctx.dev)
725                 return ret;
726
727         path = dev_fwd_path(stack);
728         if (!path)
729                 return -1;
730         path->type = DEV_PATH_ETHERNET;
731         path->dev = ctx.dev;
732
733         return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736
737 /**
738  *      __dev_get_by_name       - find a device by its name
739  *      @net: the applicable net namespace
740  *      @name: name to find
741  *
742  *      Find an interface by name. Must be called under RTNL semaphore
743  *      or @dev_base_lock. If the name is found a pointer to the device
744  *      is returned. If the name is not found then %NULL is returned. The
745  *      reference counters are not incremented so the caller must be
746  *      careful with locks.
747  */
748
749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751         struct netdev_name_node *node_name;
752
753         node_name = netdev_name_node_lookup(net, name);
754         return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757
758 /**
759  * dev_get_by_name_rcu  - find a device by its name
760  * @net: the applicable net namespace
761  * @name: name to find
762  *
763  * Find an interface by name.
764  * If the name is found a pointer to the device is returned.
765  * If the name is not found then %NULL is returned.
766  * The reference counters are not incremented so the caller must be
767  * careful with locks. The caller must hold RCU lock.
768  */
769
770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772         struct netdev_name_node *node_name;
773
774         node_name = netdev_name_node_lookup_rcu(net, name);
775         return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778
779 /* Deprecated for new users, call netdev_get_by_name() instead */
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782         struct net_device *dev;
783
784         rcu_read_lock();
785         dev = dev_get_by_name_rcu(net, name);
786         dev_hold(dev);
787         rcu_read_unlock();
788         return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791
792 /**
793  *      netdev_get_by_name() - find a device by its name
794  *      @net: the applicable net namespace
795  *      @name: name to find
796  *      @tracker: tracking object for the acquired reference
797  *      @gfp: allocation flags for the tracker
798  *
799  *      Find an interface by name. This can be called from any
800  *      context and does its own locking. The returned handle has
801  *      the usage count incremented and the caller must use netdev_put() to
802  *      release it when it is no longer needed. %NULL is returned if no
803  *      matching device is found.
804  */
805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806                                       netdevice_tracker *tracker, gfp_t gfp)
807 {
808         struct net_device *dev;
809
810         dev = dev_get_by_name(net, name);
811         if (dev)
812                 netdev_tracker_alloc(dev, tracker, gfp);
813         return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816
817 /**
818  *      __dev_get_by_index - find a device by its ifindex
819  *      @net: the applicable net namespace
820  *      @ifindex: index of device
821  *
822  *      Search for an interface by index. Returns %NULL if the device
823  *      is not found or a pointer to the device. The device has not
824  *      had its reference counter increased so the caller must be careful
825  *      about locking. The caller must hold either the RTNL semaphore
826  *      or @dev_base_lock.
827  */
828
829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831         struct net_device *dev;
832         struct hlist_head *head = dev_index_hash(net, ifindex);
833
834         hlist_for_each_entry(dev, head, index_hlist)
835                 if (dev->ifindex == ifindex)
836                         return dev;
837
838         return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841
842 /**
843  *      dev_get_by_index_rcu - find a device by its ifindex
844  *      @net: the applicable net namespace
845  *      @ifindex: index of device
846  *
847  *      Search for an interface by index. Returns %NULL if the device
848  *      is not found or a pointer to the device. The device has not
849  *      had its reference counter increased so the caller must be careful
850  *      about locking. The caller must hold RCU lock.
851  */
852
853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855         struct net_device *dev;
856         struct hlist_head *head = dev_index_hash(net, ifindex);
857
858         hlist_for_each_entry_rcu(dev, head, index_hlist)
859                 if (dev->ifindex == ifindex)
860                         return dev;
861
862         return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865
866 /* Deprecated for new users, call netdev_get_by_index() instead */
867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869         struct net_device *dev;
870
871         rcu_read_lock();
872         dev = dev_get_by_index_rcu(net, ifindex);
873         dev_hold(dev);
874         rcu_read_unlock();
875         return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878
879 /**
880  *      netdev_get_by_index() - find a device by its ifindex
881  *      @net: the applicable net namespace
882  *      @ifindex: index of device
883  *      @tracker: tracking object for the acquired reference
884  *      @gfp: allocation flags for the tracker
885  *
886  *      Search for an interface by index. Returns NULL if the device
887  *      is not found or a pointer to the device. The device returned has
888  *      had a reference added and the pointer is safe until the user calls
889  *      netdev_put() to indicate they have finished with it.
890  */
891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892                                        netdevice_tracker *tracker, gfp_t gfp)
893 {
894         struct net_device *dev;
895
896         dev = dev_get_by_index(net, ifindex);
897         if (dev)
898                 netdev_tracker_alloc(dev, tracker, gfp);
899         return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902
903 /**
904  *      dev_get_by_napi_id - find a device by napi_id
905  *      @napi_id: ID of the NAPI struct
906  *
907  *      Search for an interface by NAPI ID. Returns %NULL if the device
908  *      is not found or a pointer to the device. The device has not had
909  *      its reference counter increased so the caller must be careful
910  *      about locking. The caller must hold RCU lock.
911  */
912
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915         struct napi_struct *napi;
916
917         WARN_ON_ONCE(!rcu_read_lock_held());
918
919         if (napi_id < MIN_NAPI_ID)
920                 return NULL;
921
922         napi = napi_by_id(napi_id);
923
924         return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927
928 /**
929  *      netdev_get_name - get a netdevice name, knowing its ifindex.
930  *      @net: network namespace
931  *      @name: a pointer to the buffer where the name will be stored.
932  *      @ifindex: the ifindex of the interface to get the name from.
933  */
934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936         struct net_device *dev;
937         int ret;
938
939         down_read(&devnet_rename_sem);
940         rcu_read_lock();
941
942         dev = dev_get_by_index_rcu(net, ifindex);
943         if (!dev) {
944                 ret = -ENODEV;
945                 goto out;
946         }
947
948         strcpy(name, dev->name);
949
950         ret = 0;
951 out:
952         rcu_read_unlock();
953         up_read(&devnet_rename_sem);
954         return ret;
955 }
956
957 /**
958  *      dev_getbyhwaddr_rcu - find a device by its hardware address
959  *      @net: the applicable net namespace
960  *      @type: media type of device
961  *      @ha: hardware address
962  *
963  *      Search for an interface by MAC address. Returns NULL if the device
964  *      is not found or a pointer to the device.
965  *      The caller must hold RCU or RTNL.
966  *      The returned device has not had its ref count increased
967  *      and the caller must therefore be careful about locking
968  *
969  */
970
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972                                        const char *ha)
973 {
974         struct net_device *dev;
975
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type &&
978                     !memcmp(dev->dev_addr, ha, dev->addr_len))
979                         return dev;
980
981         return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987         struct net_device *dev, *ret = NULL;
988
989         rcu_read_lock();
990         for_each_netdev_rcu(net, dev)
991                 if (dev->type == type) {
992                         dev_hold(dev);
993                         ret = dev;
994                         break;
995                 }
996         rcu_read_unlock();
997         return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000
1001 /**
1002  *      __dev_get_by_flags - find any device with given flags
1003  *      @net: the applicable net namespace
1004  *      @if_flags: IFF_* values
1005  *      @mask: bitmask of bits in if_flags to check
1006  *
1007  *      Search for any interface with the given flags. Returns NULL if a device
1008  *      is not found or a pointer to the device. Must be called inside
1009  *      rtnl_lock(), and result refcount is unchanged.
1010  */
1011
1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013                                       unsigned short mask)
1014 {
1015         struct net_device *dev, *ret;
1016
1017         ASSERT_RTNL();
1018
1019         ret = NULL;
1020         for_each_netdev(net, dev) {
1021                 if (((dev->flags ^ if_flags) & mask) == 0) {
1022                         ret = dev;
1023                         break;
1024                 }
1025         }
1026         return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029
1030 /**
1031  *      dev_valid_name - check if name is okay for network device
1032  *      @name: name string
1033  *
1034  *      Network device names need to be valid file names to
1035  *      allow sysfs to work.  We also disallow any kind of
1036  *      whitespace.
1037  */
1038 bool dev_valid_name(const char *name)
1039 {
1040         if (*name == '\0')
1041                 return false;
1042         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043                 return false;
1044         if (!strcmp(name, ".") || !strcmp(name, ".."))
1045                 return false;
1046
1047         while (*name) {
1048                 if (*name == '/' || *name == ':' || isspace(*name))
1049                         return false;
1050                 name++;
1051         }
1052         return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055
1056 /**
1057  *      __dev_alloc_name - allocate a name for a device
1058  *      @net: network namespace to allocate the device name in
1059  *      @name: name format string
1060  *      @buf:  scratch buffer and result name string
1061  *
1062  *      Passed a format string - eg "lt%d" it will try and find a suitable
1063  *      id. It scans list of devices to build up a free map, then chooses
1064  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1065  *      while allocating the name and adding the device in order to avoid
1066  *      duplicates.
1067  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068  *      Returns the number of the unit assigned or a negative errno code.
1069  */
1070
1071 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1072 {
1073         int i = 0;
1074         const char *p;
1075         const int max_netdevices = 8*PAGE_SIZE;
1076         unsigned long *inuse;
1077         struct net_device *d;
1078
1079         if (!dev_valid_name(name))
1080                 return -EINVAL;
1081
1082         p = strchr(name, '%');
1083         if (p) {
1084                 /*
1085                  * Verify the string as this thing may have come from
1086                  * the user.  There must be either one "%d" and no other "%"
1087                  * characters.
1088                  */
1089                 if (p[1] != 'd' || strchr(p + 2, '%'))
1090                         return -EINVAL;
1091
1092                 /* Use one page as a bit array of possible slots */
1093                 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1094                 if (!inuse)
1095                         return -ENOMEM;
1096
1097                 for_each_netdev(net, d) {
1098                         struct netdev_name_node *name_node;
1099
1100                         netdev_for_each_altname(d, name_node) {
1101                                 if (!sscanf(name_node->name, name, &i))
1102                                         continue;
1103                                 if (i < 0 || i >= max_netdevices)
1104                                         continue;
1105
1106                                 /*  avoid cases where sscanf is not exact inverse of printf */
1107                                 snprintf(buf, IFNAMSIZ, name, i);
1108                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1109                                         __set_bit(i, inuse);
1110                         }
1111                         if (!sscanf(d->name, name, &i))
1112                                 continue;
1113                         if (i < 0 || i >= max_netdevices)
1114                                 continue;
1115
1116                         /*  avoid cases where sscanf is not exact inverse of printf */
1117                         snprintf(buf, IFNAMSIZ, name, i);
1118                         if (!strncmp(buf, d->name, IFNAMSIZ))
1119                                 __set_bit(i, inuse);
1120                 }
1121
1122                 i = find_first_zero_bit(inuse, max_netdevices);
1123                 bitmap_free(inuse);
1124         }
1125
1126         snprintf(buf, IFNAMSIZ, name, i);
1127         if (!netdev_name_in_use(net, buf))
1128                 return i;
1129
1130         /* It is possible to run out of possible slots
1131          * when the name is long and there isn't enough space left
1132          * for the digits, or if all bits are used.
1133          */
1134         return -ENFILE;
1135 }
1136
1137 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1138                                const char *want_name, char *out_name)
1139 {
1140         int ret;
1141
1142         if (!dev_valid_name(want_name))
1143                 return -EINVAL;
1144
1145         if (strchr(want_name, '%')) {
1146                 ret = __dev_alloc_name(net, want_name, out_name);
1147                 return ret < 0 ? ret : 0;
1148         } else if (netdev_name_in_use(net, want_name)) {
1149                 return -EEXIST;
1150         } else if (out_name != want_name) {
1151                 strscpy(out_name, want_name, IFNAMSIZ);
1152         }
1153
1154         return 0;
1155 }
1156
1157 static int dev_alloc_name_ns(struct net *net,
1158                              struct net_device *dev,
1159                              const char *name)
1160 {
1161         char buf[IFNAMSIZ];
1162         int ret;
1163
1164         BUG_ON(!net);
1165         ret = __dev_alloc_name(net, name, buf);
1166         if (ret >= 0)
1167                 strscpy(dev->name, buf, IFNAMSIZ);
1168         return ret;
1169 }
1170
1171 /**
1172  *      dev_alloc_name - allocate a name for a device
1173  *      @dev: device
1174  *      @name: name format string
1175  *
1176  *      Passed a format string - eg "lt%d" it will try and find a suitable
1177  *      id. It scans list of devices to build up a free map, then chooses
1178  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1179  *      while allocating the name and adding the device in order to avoid
1180  *      duplicates.
1181  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1182  *      Returns the number of the unit assigned or a negative errno code.
1183  */
1184
1185 int dev_alloc_name(struct net_device *dev, const char *name)
1186 {
1187         return dev_alloc_name_ns(dev_net(dev), dev, name);
1188 }
1189 EXPORT_SYMBOL(dev_alloc_name);
1190
1191 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1192                               const char *name)
1193 {
1194         char buf[IFNAMSIZ];
1195         int ret;
1196
1197         ret = dev_prep_valid_name(net, dev, name, buf);
1198         if (ret >= 0)
1199                 strscpy(dev->name, buf, IFNAMSIZ);
1200         return ret;
1201 }
1202
1203 /**
1204  *      dev_change_name - change name of a device
1205  *      @dev: device
1206  *      @newname: name (or format string) must be at least IFNAMSIZ
1207  *
1208  *      Change name of a device, can pass format strings "eth%d".
1209  *      for wildcarding.
1210  */
1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213         unsigned char old_assign_type;
1214         char oldname[IFNAMSIZ];
1215         int err = 0;
1216         int ret;
1217         struct net *net;
1218
1219         ASSERT_RTNL();
1220         BUG_ON(!dev_net(dev));
1221
1222         net = dev_net(dev);
1223
1224         down_write(&devnet_rename_sem);
1225
1226         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227                 up_write(&devnet_rename_sem);
1228                 return 0;
1229         }
1230
1231         memcpy(oldname, dev->name, IFNAMSIZ);
1232
1233         err = dev_get_valid_name(net, dev, newname);
1234         if (err < 0) {
1235                 up_write(&devnet_rename_sem);
1236                 return err;
1237         }
1238
1239         if (oldname[0] && !strchr(oldname, '%'))
1240                 netdev_info(dev, "renamed from %s%s\n", oldname,
1241                             dev->flags & IFF_UP ? " (while UP)" : "");
1242
1243         old_assign_type = dev->name_assign_type;
1244         dev->name_assign_type = NET_NAME_RENAMED;
1245
1246 rollback:
1247         ret = device_rename(&dev->dev, dev->name);
1248         if (ret) {
1249                 memcpy(dev->name, oldname, IFNAMSIZ);
1250                 dev->name_assign_type = old_assign_type;
1251                 up_write(&devnet_rename_sem);
1252                 return ret;
1253         }
1254
1255         up_write(&devnet_rename_sem);
1256
1257         netdev_adjacent_rename_links(dev, oldname);
1258
1259         write_lock(&dev_base_lock);
1260         netdev_name_node_del(dev->name_node);
1261         write_unlock(&dev_base_lock);
1262
1263         synchronize_rcu();
1264
1265         write_lock(&dev_base_lock);
1266         netdev_name_node_add(net, dev->name_node);
1267         write_unlock(&dev_base_lock);
1268
1269         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1270         ret = notifier_to_errno(ret);
1271
1272         if (ret) {
1273                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1274                 if (err >= 0) {
1275                         err = ret;
1276                         down_write(&devnet_rename_sem);
1277                         memcpy(dev->name, oldname, IFNAMSIZ);
1278                         memcpy(oldname, newname, IFNAMSIZ);
1279                         dev->name_assign_type = old_assign_type;
1280                         old_assign_type = NET_NAME_RENAMED;
1281                         goto rollback;
1282                 } else {
1283                         netdev_err(dev, "name change rollback failed: %d\n",
1284                                    ret);
1285                 }
1286         }
1287
1288         return err;
1289 }
1290
1291 /**
1292  *      dev_set_alias - change ifalias of a device
1293  *      @dev: device
1294  *      @alias: name up to IFALIASZ
1295  *      @len: limit of bytes to copy from info
1296  *
1297  *      Set ifalias for a device,
1298  */
1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1300 {
1301         struct dev_ifalias *new_alias = NULL;
1302
1303         if (len >= IFALIASZ)
1304                 return -EINVAL;
1305
1306         if (len) {
1307                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1308                 if (!new_alias)
1309                         return -ENOMEM;
1310
1311                 memcpy(new_alias->ifalias, alias, len);
1312                 new_alias->ifalias[len] = 0;
1313         }
1314
1315         mutex_lock(&ifalias_mutex);
1316         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1317                                         mutex_is_locked(&ifalias_mutex));
1318         mutex_unlock(&ifalias_mutex);
1319
1320         if (new_alias)
1321                 kfree_rcu(new_alias, rcuhead);
1322
1323         return len;
1324 }
1325 EXPORT_SYMBOL(dev_set_alias);
1326
1327 /**
1328  *      dev_get_alias - get ifalias of a device
1329  *      @dev: device
1330  *      @name: buffer to store name of ifalias
1331  *      @len: size of buffer
1332  *
1333  *      get ifalias for a device.  Caller must make sure dev cannot go
1334  *      away,  e.g. rcu read lock or own a reference count to device.
1335  */
1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1337 {
1338         const struct dev_ifalias *alias;
1339         int ret = 0;
1340
1341         rcu_read_lock();
1342         alias = rcu_dereference(dev->ifalias);
1343         if (alias)
1344                 ret = snprintf(name, len, "%s", alias->ifalias);
1345         rcu_read_unlock();
1346
1347         return ret;
1348 }
1349
1350 /**
1351  *      netdev_features_change - device changes features
1352  *      @dev: device to cause notification
1353  *
1354  *      Called to indicate a device has changed features.
1355  */
1356 void netdev_features_change(struct net_device *dev)
1357 {
1358         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1359 }
1360 EXPORT_SYMBOL(netdev_features_change);
1361
1362 /**
1363  *      netdev_state_change - device changes state
1364  *      @dev: device to cause notification
1365  *
1366  *      Called to indicate a device has changed state. This function calls
1367  *      the notifier chains for netdev_chain and sends a NEWLINK message
1368  *      to the routing socket.
1369  */
1370 void netdev_state_change(struct net_device *dev)
1371 {
1372         if (dev->flags & IFF_UP) {
1373                 struct netdev_notifier_change_info change_info = {
1374                         .info.dev = dev,
1375                 };
1376
1377                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1378                                               &change_info.info);
1379                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1380         }
1381 }
1382 EXPORT_SYMBOL(netdev_state_change);
1383
1384 /**
1385  * __netdev_notify_peers - notify network peers about existence of @dev,
1386  * to be called when rtnl lock is already held.
1387  * @dev: network device
1388  *
1389  * Generate traffic such that interested network peers are aware of
1390  * @dev, such as by generating a gratuitous ARP. This may be used when
1391  * a device wants to inform the rest of the network about some sort of
1392  * reconfiguration such as a failover event or virtual machine
1393  * migration.
1394  */
1395 void __netdev_notify_peers(struct net_device *dev)
1396 {
1397         ASSERT_RTNL();
1398         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 }
1401 EXPORT_SYMBOL(__netdev_notify_peers);
1402
1403 /**
1404  * netdev_notify_peers - notify network peers about existence of @dev
1405  * @dev: network device
1406  *
1407  * Generate traffic such that interested network peers are aware of
1408  * @dev, such as by generating a gratuitous ARP. This may be used when
1409  * a device wants to inform the rest of the network about some sort of
1410  * reconfiguration such as a failover event or virtual machine
1411  * migration.
1412  */
1413 void netdev_notify_peers(struct net_device *dev)
1414 {
1415         rtnl_lock();
1416         __netdev_notify_peers(dev);
1417         rtnl_unlock();
1418 }
1419 EXPORT_SYMBOL(netdev_notify_peers);
1420
1421 static int napi_threaded_poll(void *data);
1422
1423 static int napi_kthread_create(struct napi_struct *n)
1424 {
1425         int err = 0;
1426
1427         /* Create and wake up the kthread once to put it in
1428          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1429          * warning and work with loadavg.
1430          */
1431         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1432                                 n->dev->name, n->napi_id);
1433         if (IS_ERR(n->thread)) {
1434                 err = PTR_ERR(n->thread);
1435                 pr_err("kthread_run failed with err %d\n", err);
1436                 n->thread = NULL;
1437         }
1438
1439         return err;
1440 }
1441
1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1443 {
1444         const struct net_device_ops *ops = dev->netdev_ops;
1445         int ret;
1446
1447         ASSERT_RTNL();
1448         dev_addr_check(dev);
1449
1450         if (!netif_device_present(dev)) {
1451                 /* may be detached because parent is runtime-suspended */
1452                 if (dev->dev.parent)
1453                         pm_runtime_resume(dev->dev.parent);
1454                 if (!netif_device_present(dev))
1455                         return -ENODEV;
1456         }
1457
1458         /* Block netpoll from trying to do any rx path servicing.
1459          * If we don't do this there is a chance ndo_poll_controller
1460          * or ndo_poll may be running while we open the device
1461          */
1462         netpoll_poll_disable(dev);
1463
1464         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1465         ret = notifier_to_errno(ret);
1466         if (ret)
1467                 return ret;
1468
1469         set_bit(__LINK_STATE_START, &dev->state);
1470
1471         if (ops->ndo_validate_addr)
1472                 ret = ops->ndo_validate_addr(dev);
1473
1474         if (!ret && ops->ndo_open)
1475                 ret = ops->ndo_open(dev);
1476
1477         netpoll_poll_enable(dev);
1478
1479         if (ret)
1480                 clear_bit(__LINK_STATE_START, &dev->state);
1481         else {
1482                 dev->flags |= IFF_UP;
1483                 dev_set_rx_mode(dev);
1484                 dev_activate(dev);
1485                 add_device_randomness(dev->dev_addr, dev->addr_len);
1486         }
1487
1488         return ret;
1489 }
1490
1491 /**
1492  *      dev_open        - prepare an interface for use.
1493  *      @dev: device to open
1494  *      @extack: netlink extended ack
1495  *
1496  *      Takes a device from down to up state. The device's private open
1497  *      function is invoked and then the multicast lists are loaded. Finally
1498  *      the device is moved into the up state and a %NETDEV_UP message is
1499  *      sent to the netdev notifier chain.
1500  *
1501  *      Calling this function on an active interface is a nop. On a failure
1502  *      a negative errno code is returned.
1503  */
1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1505 {
1506         int ret;
1507
1508         if (dev->flags & IFF_UP)
1509                 return 0;
1510
1511         ret = __dev_open(dev, extack);
1512         if (ret < 0)
1513                 return ret;
1514
1515         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1516         call_netdevice_notifiers(NETDEV_UP, dev);
1517
1518         return ret;
1519 }
1520 EXPORT_SYMBOL(dev_open);
1521
1522 static void __dev_close_many(struct list_head *head)
1523 {
1524         struct net_device *dev;
1525
1526         ASSERT_RTNL();
1527         might_sleep();
1528
1529         list_for_each_entry(dev, head, close_list) {
1530                 /* Temporarily disable netpoll until the interface is down */
1531                 netpoll_poll_disable(dev);
1532
1533                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1534
1535                 clear_bit(__LINK_STATE_START, &dev->state);
1536
1537                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1538                  * can be even on different cpu. So just clear netif_running().
1539                  *
1540                  * dev->stop() will invoke napi_disable() on all of it's
1541                  * napi_struct instances on this device.
1542                  */
1543                 smp_mb__after_atomic(); /* Commit netif_running(). */
1544         }
1545
1546         dev_deactivate_many(head);
1547
1548         list_for_each_entry(dev, head, close_list) {
1549                 const struct net_device_ops *ops = dev->netdev_ops;
1550
1551                 /*
1552                  *      Call the device specific close. This cannot fail.
1553                  *      Only if device is UP
1554                  *
1555                  *      We allow it to be called even after a DETACH hot-plug
1556                  *      event.
1557                  */
1558                 if (ops->ndo_stop)
1559                         ops->ndo_stop(dev);
1560
1561                 dev->flags &= ~IFF_UP;
1562                 netpoll_poll_enable(dev);
1563         }
1564 }
1565
1566 static void __dev_close(struct net_device *dev)
1567 {
1568         LIST_HEAD(single);
1569
1570         list_add(&dev->close_list, &single);
1571         __dev_close_many(&single);
1572         list_del(&single);
1573 }
1574
1575 void dev_close_many(struct list_head *head, bool unlink)
1576 {
1577         struct net_device *dev, *tmp;
1578
1579         /* Remove the devices that don't need to be closed */
1580         list_for_each_entry_safe(dev, tmp, head, close_list)
1581                 if (!(dev->flags & IFF_UP))
1582                         list_del_init(&dev->close_list);
1583
1584         __dev_close_many(head);
1585
1586         list_for_each_entry_safe(dev, tmp, head, close_list) {
1587                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1588                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1589                 if (unlink)
1590                         list_del_init(&dev->close_list);
1591         }
1592 }
1593 EXPORT_SYMBOL(dev_close_many);
1594
1595 /**
1596  *      dev_close - shutdown an interface.
1597  *      @dev: device to shutdown
1598  *
1599  *      This function moves an active device into down state. A
1600  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1601  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1602  *      chain.
1603  */
1604 void dev_close(struct net_device *dev)
1605 {
1606         if (dev->flags & IFF_UP) {
1607                 LIST_HEAD(single);
1608
1609                 list_add(&dev->close_list, &single);
1610                 dev_close_many(&single, true);
1611                 list_del(&single);
1612         }
1613 }
1614 EXPORT_SYMBOL(dev_close);
1615
1616
1617 /**
1618  *      dev_disable_lro - disable Large Receive Offload on a device
1619  *      @dev: device
1620  *
1621  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1622  *      called under RTNL.  This is needed if received packets may be
1623  *      forwarded to another interface.
1624  */
1625 void dev_disable_lro(struct net_device *dev)
1626 {
1627         struct net_device *lower_dev;
1628         struct list_head *iter;
1629
1630         dev->wanted_features &= ~NETIF_F_LRO;
1631         netdev_update_features(dev);
1632
1633         if (unlikely(dev->features & NETIF_F_LRO))
1634                 netdev_WARN(dev, "failed to disable LRO!\n");
1635
1636         netdev_for_each_lower_dev(dev, lower_dev, iter)
1637                 dev_disable_lro(lower_dev);
1638 }
1639 EXPORT_SYMBOL(dev_disable_lro);
1640
1641 /**
1642  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1643  *      @dev: device
1644  *
1645  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1646  *      called under RTNL.  This is needed if Generic XDP is installed on
1647  *      the device.
1648  */
1649 static void dev_disable_gro_hw(struct net_device *dev)
1650 {
1651         dev->wanted_features &= ~NETIF_F_GRO_HW;
1652         netdev_update_features(dev);
1653
1654         if (unlikely(dev->features & NETIF_F_GRO_HW))
1655                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1656 }
1657
1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1659 {
1660 #define N(val)                                          \
1661         case NETDEV_##val:                              \
1662                 return "NETDEV_" __stringify(val);
1663         switch (cmd) {
1664         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1665         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1666         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1667         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1668         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1669         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1670         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1671         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1672         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1673         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1674         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1675         N(XDP_FEAT_CHANGE)
1676         }
1677 #undef N
1678         return "UNKNOWN_NETDEV_EVENT";
1679 }
1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1681
1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1683                                    struct net_device *dev)
1684 {
1685         struct netdev_notifier_info info = {
1686                 .dev = dev,
1687         };
1688
1689         return nb->notifier_call(nb, val, &info);
1690 }
1691
1692 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1693                                              struct net_device *dev)
1694 {
1695         int err;
1696
1697         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1698         err = notifier_to_errno(err);
1699         if (err)
1700                 return err;
1701
1702         if (!(dev->flags & IFF_UP))
1703                 return 0;
1704
1705         call_netdevice_notifier(nb, NETDEV_UP, dev);
1706         return 0;
1707 }
1708
1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1710                                                 struct net_device *dev)
1711 {
1712         if (dev->flags & IFF_UP) {
1713                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714                                         dev);
1715                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1716         }
1717         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1718 }
1719
1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1721                                                  struct net *net)
1722 {
1723         struct net_device *dev;
1724         int err;
1725
1726         for_each_netdev(net, dev) {
1727                 err = call_netdevice_register_notifiers(nb, dev);
1728                 if (err)
1729                         goto rollback;
1730         }
1731         return 0;
1732
1733 rollback:
1734         for_each_netdev_continue_reverse(net, dev)
1735                 call_netdevice_unregister_notifiers(nb, dev);
1736         return err;
1737 }
1738
1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1740                                                     struct net *net)
1741 {
1742         struct net_device *dev;
1743
1744         for_each_netdev(net, dev)
1745                 call_netdevice_unregister_notifiers(nb, dev);
1746 }
1747
1748 static int dev_boot_phase = 1;
1749
1750 /**
1751  * register_netdevice_notifier - register a network notifier block
1752  * @nb: notifier
1753  *
1754  * Register a notifier to be called when network device events occur.
1755  * The notifier passed is linked into the kernel structures and must
1756  * not be reused until it has been unregistered. A negative errno code
1757  * is returned on a failure.
1758  *
1759  * When registered all registration and up events are replayed
1760  * to the new notifier to allow device to have a race free
1761  * view of the network device list.
1762  */
1763
1764 int register_netdevice_notifier(struct notifier_block *nb)
1765 {
1766         struct net *net;
1767         int err;
1768
1769         /* Close race with setup_net() and cleanup_net() */
1770         down_write(&pernet_ops_rwsem);
1771         rtnl_lock();
1772         err = raw_notifier_chain_register(&netdev_chain, nb);
1773         if (err)
1774                 goto unlock;
1775         if (dev_boot_phase)
1776                 goto unlock;
1777         for_each_net(net) {
1778                 err = call_netdevice_register_net_notifiers(nb, net);
1779                 if (err)
1780                         goto rollback;
1781         }
1782
1783 unlock:
1784         rtnl_unlock();
1785         up_write(&pernet_ops_rwsem);
1786         return err;
1787
1788 rollback:
1789         for_each_net_continue_reverse(net)
1790                 call_netdevice_unregister_net_notifiers(nb, net);
1791
1792         raw_notifier_chain_unregister(&netdev_chain, nb);
1793         goto unlock;
1794 }
1795 EXPORT_SYMBOL(register_netdevice_notifier);
1796
1797 /**
1798  * unregister_netdevice_notifier - unregister a network notifier block
1799  * @nb: notifier
1800  *
1801  * Unregister a notifier previously registered by
1802  * register_netdevice_notifier(). The notifier is unlinked into the
1803  * kernel structures and may then be reused. A negative errno code
1804  * is returned on a failure.
1805  *
1806  * After unregistering unregister and down device events are synthesized
1807  * for all devices on the device list to the removed notifier to remove
1808  * the need for special case cleanup code.
1809  */
1810
1811 int unregister_netdevice_notifier(struct notifier_block *nb)
1812 {
1813         struct net *net;
1814         int err;
1815
1816         /* Close race with setup_net() and cleanup_net() */
1817         down_write(&pernet_ops_rwsem);
1818         rtnl_lock();
1819         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1820         if (err)
1821                 goto unlock;
1822
1823         for_each_net(net)
1824                 call_netdevice_unregister_net_notifiers(nb, net);
1825
1826 unlock:
1827         rtnl_unlock();
1828         up_write(&pernet_ops_rwsem);
1829         return err;
1830 }
1831 EXPORT_SYMBOL(unregister_netdevice_notifier);
1832
1833 static int __register_netdevice_notifier_net(struct net *net,
1834                                              struct notifier_block *nb,
1835                                              bool ignore_call_fail)
1836 {
1837         int err;
1838
1839         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1840         if (err)
1841                 return err;
1842         if (dev_boot_phase)
1843                 return 0;
1844
1845         err = call_netdevice_register_net_notifiers(nb, net);
1846         if (err && !ignore_call_fail)
1847                 goto chain_unregister;
1848
1849         return 0;
1850
1851 chain_unregister:
1852         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1853         return err;
1854 }
1855
1856 static int __unregister_netdevice_notifier_net(struct net *net,
1857                                                struct notifier_block *nb)
1858 {
1859         int err;
1860
1861         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862         if (err)
1863                 return err;
1864
1865         call_netdevice_unregister_net_notifiers(nb, net);
1866         return 0;
1867 }
1868
1869 /**
1870  * register_netdevice_notifier_net - register a per-netns network notifier block
1871  * @net: network namespace
1872  * @nb: notifier
1873  *
1874  * Register a notifier to be called when network device events occur.
1875  * The notifier passed is linked into the kernel structures and must
1876  * not be reused until it has been unregistered. A negative errno code
1877  * is returned on a failure.
1878  *
1879  * When registered all registration and up events are replayed
1880  * to the new notifier to allow device to have a race free
1881  * view of the network device list.
1882  */
1883
1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1885 {
1886         int err;
1887
1888         rtnl_lock();
1889         err = __register_netdevice_notifier_net(net, nb, false);
1890         rtnl_unlock();
1891         return err;
1892 }
1893 EXPORT_SYMBOL(register_netdevice_notifier_net);
1894
1895 /**
1896  * unregister_netdevice_notifier_net - unregister a per-netns
1897  *                                     network notifier block
1898  * @net: network namespace
1899  * @nb: notifier
1900  *
1901  * Unregister a notifier previously registered by
1902  * register_netdevice_notifier_net(). The notifier is unlinked from the
1903  * kernel structures and may then be reused. A negative errno code
1904  * is returned on a failure.
1905  *
1906  * After unregistering unregister and down device events are synthesized
1907  * for all devices on the device list to the removed notifier to remove
1908  * the need for special case cleanup code.
1909  */
1910
1911 int unregister_netdevice_notifier_net(struct net *net,
1912                                       struct notifier_block *nb)
1913 {
1914         int err;
1915
1916         rtnl_lock();
1917         err = __unregister_netdevice_notifier_net(net, nb);
1918         rtnl_unlock();
1919         return err;
1920 }
1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1922
1923 static void __move_netdevice_notifier_net(struct net *src_net,
1924                                           struct net *dst_net,
1925                                           struct notifier_block *nb)
1926 {
1927         __unregister_netdevice_notifier_net(src_net, nb);
1928         __register_netdevice_notifier_net(dst_net, nb, true);
1929 }
1930
1931 int register_netdevice_notifier_dev_net(struct net_device *dev,
1932                                         struct notifier_block *nb,
1933                                         struct netdev_net_notifier *nn)
1934 {
1935         int err;
1936
1937         rtnl_lock();
1938         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1939         if (!err) {
1940                 nn->nb = nb;
1941                 list_add(&nn->list, &dev->net_notifier_list);
1942         }
1943         rtnl_unlock();
1944         return err;
1945 }
1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1947
1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1949                                           struct notifier_block *nb,
1950                                           struct netdev_net_notifier *nn)
1951 {
1952         int err;
1953
1954         rtnl_lock();
1955         list_del(&nn->list);
1956         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1957         rtnl_unlock();
1958         return err;
1959 }
1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1961
1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1963                                              struct net *net)
1964 {
1965         struct netdev_net_notifier *nn;
1966
1967         list_for_each_entry(nn, &dev->net_notifier_list, list)
1968                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1969 }
1970
1971 /**
1972  *      call_netdevice_notifiers_info - call all network notifier blocks
1973  *      @val: value passed unmodified to notifier function
1974  *      @info: notifier information data
1975  *
1976  *      Call all network notifier blocks.  Parameters and return value
1977  *      are as for raw_notifier_call_chain().
1978  */
1979
1980 int call_netdevice_notifiers_info(unsigned long val,
1981                                   struct netdev_notifier_info *info)
1982 {
1983         struct net *net = dev_net(info->dev);
1984         int ret;
1985
1986         ASSERT_RTNL();
1987
1988         /* Run per-netns notifier block chain first, then run the global one.
1989          * Hopefully, one day, the global one is going to be removed after
1990          * all notifier block registrators get converted to be per-netns.
1991          */
1992         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1993         if (ret & NOTIFY_STOP_MASK)
1994                 return ret;
1995         return raw_notifier_call_chain(&netdev_chain, val, info);
1996 }
1997
1998 /**
1999  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2000  *                                             for and rollback on error
2001  *      @val_up: value passed unmodified to notifier function
2002  *      @val_down: value passed unmodified to the notifier function when
2003  *                 recovering from an error on @val_up
2004  *      @info: notifier information data
2005  *
2006  *      Call all per-netns network notifier blocks, but not notifier blocks on
2007  *      the global notifier chain. Parameters and return value are as for
2008  *      raw_notifier_call_chain_robust().
2009  */
2010
2011 static int
2012 call_netdevice_notifiers_info_robust(unsigned long val_up,
2013                                      unsigned long val_down,
2014                                      struct netdev_notifier_info *info)
2015 {
2016         struct net *net = dev_net(info->dev);
2017
2018         ASSERT_RTNL();
2019
2020         return raw_notifier_call_chain_robust(&net->netdev_chain,
2021                                               val_up, val_down, info);
2022 }
2023
2024 static int call_netdevice_notifiers_extack(unsigned long val,
2025                                            struct net_device *dev,
2026                                            struct netlink_ext_ack *extack)
2027 {
2028         struct netdev_notifier_info info = {
2029                 .dev = dev,
2030                 .extack = extack,
2031         };
2032
2033         return call_netdevice_notifiers_info(val, &info);
2034 }
2035
2036 /**
2037  *      call_netdevice_notifiers - call all network notifier blocks
2038  *      @val: value passed unmodified to notifier function
2039  *      @dev: net_device pointer passed unmodified to notifier function
2040  *
2041  *      Call all network notifier blocks.  Parameters and return value
2042  *      are as for raw_notifier_call_chain().
2043  */
2044
2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2046 {
2047         return call_netdevice_notifiers_extack(val, dev, NULL);
2048 }
2049 EXPORT_SYMBOL(call_netdevice_notifiers);
2050
2051 /**
2052  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2053  *      @val: value passed unmodified to notifier function
2054  *      @dev: net_device pointer passed unmodified to notifier function
2055  *      @arg: additional u32 argument passed to the notifier function
2056  *
2057  *      Call all network notifier blocks.  Parameters and return value
2058  *      are as for raw_notifier_call_chain().
2059  */
2060 static int call_netdevice_notifiers_mtu(unsigned long val,
2061                                         struct net_device *dev, u32 arg)
2062 {
2063         struct netdev_notifier_info_ext info = {
2064                 .info.dev = dev,
2065                 .ext.mtu = arg,
2066         };
2067
2068         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2069
2070         return call_netdevice_notifiers_info(val, &info.info);
2071 }
2072
2073 #ifdef CONFIG_NET_INGRESS
2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2075
2076 void net_inc_ingress_queue(void)
2077 {
2078         static_branch_inc(&ingress_needed_key);
2079 }
2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2081
2082 void net_dec_ingress_queue(void)
2083 {
2084         static_branch_dec(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2087 #endif
2088
2089 #ifdef CONFIG_NET_EGRESS
2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2091
2092 void net_inc_egress_queue(void)
2093 {
2094         static_branch_inc(&egress_needed_key);
2095 }
2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2097
2098 void net_dec_egress_queue(void)
2099 {
2100         static_branch_dec(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2103 #endif
2104
2105 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2106 EXPORT_SYMBOL(netstamp_needed_key);
2107 #ifdef CONFIG_JUMP_LABEL
2108 static atomic_t netstamp_needed_deferred;
2109 static atomic_t netstamp_wanted;
2110 static void netstamp_clear(struct work_struct *work)
2111 {
2112         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2113         int wanted;
2114
2115         wanted = atomic_add_return(deferred, &netstamp_wanted);
2116         if (wanted > 0)
2117                 static_branch_enable(&netstamp_needed_key);
2118         else
2119                 static_branch_disable(&netstamp_needed_key);
2120 }
2121 static DECLARE_WORK(netstamp_work, netstamp_clear);
2122 #endif
2123
2124 void net_enable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127         int wanted = atomic_read(&netstamp_wanted);
2128
2129         while (wanted > 0) {
2130                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2131                         return;
2132         }
2133         atomic_inc(&netstamp_needed_deferred);
2134         schedule_work(&netstamp_work);
2135 #else
2136         static_branch_inc(&netstamp_needed_key);
2137 #endif
2138 }
2139 EXPORT_SYMBOL(net_enable_timestamp);
2140
2141 void net_disable_timestamp(void)
2142 {
2143 #ifdef CONFIG_JUMP_LABEL
2144         int wanted = atomic_read(&netstamp_wanted);
2145
2146         while (wanted > 1) {
2147                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2148                         return;
2149         }
2150         atomic_dec(&netstamp_needed_deferred);
2151         schedule_work(&netstamp_work);
2152 #else
2153         static_branch_dec(&netstamp_needed_key);
2154 #endif
2155 }
2156 EXPORT_SYMBOL(net_disable_timestamp);
2157
2158 static inline void net_timestamp_set(struct sk_buff *skb)
2159 {
2160         skb->tstamp = 0;
2161         skb->mono_delivery_time = 0;
2162         if (static_branch_unlikely(&netstamp_needed_key))
2163                 skb->tstamp = ktime_get_real();
2164 }
2165
2166 #define net_timestamp_check(COND, SKB)                          \
2167         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2168                 if ((COND) && !(SKB)->tstamp)                   \
2169                         (SKB)->tstamp = ktime_get_real();       \
2170         }                                                       \
2171
2172 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2173 {
2174         return __is_skb_forwardable(dev, skb, true);
2175 }
2176 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2177
2178 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2179                               bool check_mtu)
2180 {
2181         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2182
2183         if (likely(!ret)) {
2184                 skb->protocol = eth_type_trans(skb, dev);
2185                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2186         }
2187
2188         return ret;
2189 }
2190
2191 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2192 {
2193         return __dev_forward_skb2(dev, skb, true);
2194 }
2195 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2196
2197 /**
2198  * dev_forward_skb - loopback an skb to another netif
2199  *
2200  * @dev: destination network device
2201  * @skb: buffer to forward
2202  *
2203  * return values:
2204  *      NET_RX_SUCCESS  (no congestion)
2205  *      NET_RX_DROP     (packet was dropped, but freed)
2206  *
2207  * dev_forward_skb can be used for injecting an skb from the
2208  * start_xmit function of one device into the receive queue
2209  * of another device.
2210  *
2211  * The receiving device may be in another namespace, so
2212  * we have to clear all information in the skb that could
2213  * impact namespace isolation.
2214  */
2215 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2216 {
2217         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2218 }
2219 EXPORT_SYMBOL_GPL(dev_forward_skb);
2220
2221 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2222 {
2223         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2224 }
2225
2226 static inline int deliver_skb(struct sk_buff *skb,
2227                               struct packet_type *pt_prev,
2228                               struct net_device *orig_dev)
2229 {
2230         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2231                 return -ENOMEM;
2232         refcount_inc(&skb->users);
2233         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2234 }
2235
2236 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2237                                           struct packet_type **pt,
2238                                           struct net_device *orig_dev,
2239                                           __be16 type,
2240                                           struct list_head *ptype_list)
2241 {
2242         struct packet_type *ptype, *pt_prev = *pt;
2243
2244         list_for_each_entry_rcu(ptype, ptype_list, list) {
2245                 if (ptype->type != type)
2246                         continue;
2247                 if (pt_prev)
2248                         deliver_skb(skb, pt_prev, orig_dev);
2249                 pt_prev = ptype;
2250         }
2251         *pt = pt_prev;
2252 }
2253
2254 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2255 {
2256         if (!ptype->af_packet_priv || !skb->sk)
2257                 return false;
2258
2259         if (ptype->id_match)
2260                 return ptype->id_match(ptype, skb->sk);
2261         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2262                 return true;
2263
2264         return false;
2265 }
2266
2267 /**
2268  * dev_nit_active - return true if any network interface taps are in use
2269  *
2270  * @dev: network device to check for the presence of taps
2271  */
2272 bool dev_nit_active(struct net_device *dev)
2273 {
2274         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2275 }
2276 EXPORT_SYMBOL_GPL(dev_nit_active);
2277
2278 /*
2279  *      Support routine. Sends outgoing frames to any network
2280  *      taps currently in use.
2281  */
2282
2283 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2284 {
2285         struct packet_type *ptype;
2286         struct sk_buff *skb2 = NULL;
2287         struct packet_type *pt_prev = NULL;
2288         struct list_head *ptype_list = &ptype_all;
2289
2290         rcu_read_lock();
2291 again:
2292         list_for_each_entry_rcu(ptype, ptype_list, list) {
2293                 if (ptype->ignore_outgoing)
2294                         continue;
2295
2296                 /* Never send packets back to the socket
2297                  * they originated from - MvS (miquels@drinkel.ow.org)
2298                  */
2299                 if (skb_loop_sk(ptype, skb))
2300                         continue;
2301
2302                 if (pt_prev) {
2303                         deliver_skb(skb2, pt_prev, skb->dev);
2304                         pt_prev = ptype;
2305                         continue;
2306                 }
2307
2308                 /* need to clone skb, done only once */
2309                 skb2 = skb_clone(skb, GFP_ATOMIC);
2310                 if (!skb2)
2311                         goto out_unlock;
2312
2313                 net_timestamp_set(skb2);
2314
2315                 /* skb->nh should be correctly
2316                  * set by sender, so that the second statement is
2317                  * just protection against buggy protocols.
2318                  */
2319                 skb_reset_mac_header(skb2);
2320
2321                 if (skb_network_header(skb2) < skb2->data ||
2322                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2323                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2324                                              ntohs(skb2->protocol),
2325                                              dev->name);
2326                         skb_reset_network_header(skb2);
2327                 }
2328
2329                 skb2->transport_header = skb2->network_header;
2330                 skb2->pkt_type = PACKET_OUTGOING;
2331                 pt_prev = ptype;
2332         }
2333
2334         if (ptype_list == &ptype_all) {
2335                 ptype_list = &dev->ptype_all;
2336                 goto again;
2337         }
2338 out_unlock:
2339         if (pt_prev) {
2340                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2341                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2342                 else
2343                         kfree_skb(skb2);
2344         }
2345         rcu_read_unlock();
2346 }
2347 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2348
2349 /**
2350  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2351  * @dev: Network device
2352  * @txq: number of queues available
2353  *
2354  * If real_num_tx_queues is changed the tc mappings may no longer be
2355  * valid. To resolve this verify the tc mapping remains valid and if
2356  * not NULL the mapping. With no priorities mapping to this
2357  * offset/count pair it will no longer be used. In the worst case TC0
2358  * is invalid nothing can be done so disable priority mappings. If is
2359  * expected that drivers will fix this mapping if they can before
2360  * calling netif_set_real_num_tx_queues.
2361  */
2362 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2363 {
2364         int i;
2365         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366
2367         /* If TC0 is invalidated disable TC mapping */
2368         if (tc->offset + tc->count > txq) {
2369                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2370                 dev->num_tc = 0;
2371                 return;
2372         }
2373
2374         /* Invalidated prio to tc mappings set to TC0 */
2375         for (i = 1; i < TC_BITMASK + 1; i++) {
2376                 int q = netdev_get_prio_tc_map(dev, i);
2377
2378                 tc = &dev->tc_to_txq[q];
2379                 if (tc->offset + tc->count > txq) {
2380                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2381                                     i, q);
2382                         netdev_set_prio_tc_map(dev, i, 0);
2383                 }
2384         }
2385 }
2386
2387 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2388 {
2389         if (dev->num_tc) {
2390                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2391                 int i;
2392
2393                 /* walk through the TCs and see if it falls into any of them */
2394                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2395                         if ((txq - tc->offset) < tc->count)
2396                                 return i;
2397                 }
2398
2399                 /* didn't find it, just return -1 to indicate no match */
2400                 return -1;
2401         }
2402
2403         return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_txq_to_tc);
2406
2407 #ifdef CONFIG_XPS
2408 static struct static_key xps_needed __read_mostly;
2409 static struct static_key xps_rxqs_needed __read_mostly;
2410 static DEFINE_MUTEX(xps_map_mutex);
2411 #define xmap_dereference(P)             \
2412         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2413
2414 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2415                              struct xps_dev_maps *old_maps, int tci, u16 index)
2416 {
2417         struct xps_map *map = NULL;
2418         int pos;
2419
2420         map = xmap_dereference(dev_maps->attr_map[tci]);
2421         if (!map)
2422                 return false;
2423
2424         for (pos = map->len; pos--;) {
2425                 if (map->queues[pos] != index)
2426                         continue;
2427
2428                 if (map->len > 1) {
2429                         map->queues[pos] = map->queues[--map->len];
2430                         break;
2431                 }
2432
2433                 if (old_maps)
2434                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2435                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2436                 kfree_rcu(map, rcu);
2437                 return false;
2438         }
2439
2440         return true;
2441 }
2442
2443 static bool remove_xps_queue_cpu(struct net_device *dev,
2444                                  struct xps_dev_maps *dev_maps,
2445                                  int cpu, u16 offset, u16 count)
2446 {
2447         int num_tc = dev_maps->num_tc;
2448         bool active = false;
2449         int tci;
2450
2451         for (tci = cpu * num_tc; num_tc--; tci++) {
2452                 int i, j;
2453
2454                 for (i = count, j = offset; i--; j++) {
2455                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2456                                 break;
2457                 }
2458
2459                 active |= i < 0;
2460         }
2461
2462         return active;
2463 }
2464
2465 static void reset_xps_maps(struct net_device *dev,
2466                            struct xps_dev_maps *dev_maps,
2467                            enum xps_map_type type)
2468 {
2469         static_key_slow_dec_cpuslocked(&xps_needed);
2470         if (type == XPS_RXQS)
2471                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2472
2473         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2474
2475         kfree_rcu(dev_maps, rcu);
2476 }
2477
2478 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2479                            u16 offset, u16 count)
2480 {
2481         struct xps_dev_maps *dev_maps;
2482         bool active = false;
2483         int i, j;
2484
2485         dev_maps = xmap_dereference(dev->xps_maps[type]);
2486         if (!dev_maps)
2487                 return;
2488
2489         for (j = 0; j < dev_maps->nr_ids; j++)
2490                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2491         if (!active)
2492                 reset_xps_maps(dev, dev_maps, type);
2493
2494         if (type == XPS_CPUS) {
2495                 for (i = offset + (count - 1); count--; i--)
2496                         netdev_queue_numa_node_write(
2497                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2498         }
2499 }
2500
2501 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2502                                    u16 count)
2503 {
2504         if (!static_key_false(&xps_needed))
2505                 return;
2506
2507         cpus_read_lock();
2508         mutex_lock(&xps_map_mutex);
2509
2510         if (static_key_false(&xps_rxqs_needed))
2511                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2512
2513         clean_xps_maps(dev, XPS_CPUS, offset, count);
2514
2515         mutex_unlock(&xps_map_mutex);
2516         cpus_read_unlock();
2517 }
2518
2519 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2520 {
2521         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2522 }
2523
2524 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2525                                       u16 index, bool is_rxqs_map)
2526 {
2527         struct xps_map *new_map;
2528         int alloc_len = XPS_MIN_MAP_ALLOC;
2529         int i, pos;
2530
2531         for (pos = 0; map && pos < map->len; pos++) {
2532                 if (map->queues[pos] != index)
2533                         continue;
2534                 return map;
2535         }
2536
2537         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2538         if (map) {
2539                 if (pos < map->alloc_len)
2540                         return map;
2541
2542                 alloc_len = map->alloc_len * 2;
2543         }
2544
2545         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2546          *  map
2547          */
2548         if (is_rxqs_map)
2549                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2550         else
2551                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2552                                        cpu_to_node(attr_index));
2553         if (!new_map)
2554                 return NULL;
2555
2556         for (i = 0; i < pos; i++)
2557                 new_map->queues[i] = map->queues[i];
2558         new_map->alloc_len = alloc_len;
2559         new_map->len = pos;
2560
2561         return new_map;
2562 }
2563
2564 /* Copy xps maps at a given index */
2565 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2566                               struct xps_dev_maps *new_dev_maps, int index,
2567                               int tc, bool skip_tc)
2568 {
2569         int i, tci = index * dev_maps->num_tc;
2570         struct xps_map *map;
2571
2572         /* copy maps belonging to foreign traffic classes */
2573         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2574                 if (i == tc && skip_tc)
2575                         continue;
2576
2577                 /* fill in the new device map from the old device map */
2578                 map = xmap_dereference(dev_maps->attr_map[tci]);
2579                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2580         }
2581 }
2582
2583 /* Must be called under cpus_read_lock */
2584 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2585                           u16 index, enum xps_map_type type)
2586 {
2587         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2588         const unsigned long *online_mask = NULL;
2589         bool active = false, copy = false;
2590         int i, j, tci, numa_node_id = -2;
2591         int maps_sz, num_tc = 1, tc = 0;
2592         struct xps_map *map, *new_map;
2593         unsigned int nr_ids;
2594
2595         WARN_ON_ONCE(index >= dev->num_tx_queues);
2596
2597         if (dev->num_tc) {
2598                 /* Do not allow XPS on subordinate device directly */
2599                 num_tc = dev->num_tc;
2600                 if (num_tc < 0)
2601                         return -EINVAL;
2602
2603                 /* If queue belongs to subordinate dev use its map */
2604                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2605
2606                 tc = netdev_txq_to_tc(dev, index);
2607                 if (tc < 0)
2608                         return -EINVAL;
2609         }
2610
2611         mutex_lock(&xps_map_mutex);
2612
2613         dev_maps = xmap_dereference(dev->xps_maps[type]);
2614         if (type == XPS_RXQS) {
2615                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2616                 nr_ids = dev->num_rx_queues;
2617         } else {
2618                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2619                 if (num_possible_cpus() > 1)
2620                         online_mask = cpumask_bits(cpu_online_mask);
2621                 nr_ids = nr_cpu_ids;
2622         }
2623
2624         if (maps_sz < L1_CACHE_BYTES)
2625                 maps_sz = L1_CACHE_BYTES;
2626
2627         /* The old dev_maps could be larger or smaller than the one we're
2628          * setting up now, as dev->num_tc or nr_ids could have been updated in
2629          * between. We could try to be smart, but let's be safe instead and only
2630          * copy foreign traffic classes if the two map sizes match.
2631          */
2632         if (dev_maps &&
2633             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2634                 copy = true;
2635
2636         /* allocate memory for queue storage */
2637         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2638              j < nr_ids;) {
2639                 if (!new_dev_maps) {
2640                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2641                         if (!new_dev_maps) {
2642                                 mutex_unlock(&xps_map_mutex);
2643                                 return -ENOMEM;
2644                         }
2645
2646                         new_dev_maps->nr_ids = nr_ids;
2647                         new_dev_maps->num_tc = num_tc;
2648                 }
2649
2650                 tci = j * num_tc + tc;
2651                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2652
2653                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2654                 if (!map)
2655                         goto error;
2656
2657                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2658         }
2659
2660         if (!new_dev_maps)
2661                 goto out_no_new_maps;
2662
2663         if (!dev_maps) {
2664                 /* Increment static keys at most once per type */
2665                 static_key_slow_inc_cpuslocked(&xps_needed);
2666                 if (type == XPS_RXQS)
2667                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2668         }
2669
2670         for (j = 0; j < nr_ids; j++) {
2671                 bool skip_tc = false;
2672
2673                 tci = j * num_tc + tc;
2674                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2675                     netif_attr_test_online(j, online_mask, nr_ids)) {
2676                         /* add tx-queue to CPU/rx-queue maps */
2677                         int pos = 0;
2678
2679                         skip_tc = true;
2680
2681                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2682                         while ((pos < map->len) && (map->queues[pos] != index))
2683                                 pos++;
2684
2685                         if (pos == map->len)
2686                                 map->queues[map->len++] = index;
2687 #ifdef CONFIG_NUMA
2688                         if (type == XPS_CPUS) {
2689                                 if (numa_node_id == -2)
2690                                         numa_node_id = cpu_to_node(j);
2691                                 else if (numa_node_id != cpu_to_node(j))
2692                                         numa_node_id = -1;
2693                         }
2694 #endif
2695                 }
2696
2697                 if (copy)
2698                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2699                                           skip_tc);
2700         }
2701
2702         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2703
2704         /* Cleanup old maps */
2705         if (!dev_maps)
2706                 goto out_no_old_maps;
2707
2708         for (j = 0; j < dev_maps->nr_ids; j++) {
2709                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2710                         map = xmap_dereference(dev_maps->attr_map[tci]);
2711                         if (!map)
2712                                 continue;
2713
2714                         if (copy) {
2715                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2716                                 if (map == new_map)
2717                                         continue;
2718                         }
2719
2720                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2721                         kfree_rcu(map, rcu);
2722                 }
2723         }
2724
2725         old_dev_maps = dev_maps;
2726
2727 out_no_old_maps:
2728         dev_maps = new_dev_maps;
2729         active = true;
2730
2731 out_no_new_maps:
2732         if (type == XPS_CPUS)
2733                 /* update Tx queue numa node */
2734                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2735                                              (numa_node_id >= 0) ?
2736                                              numa_node_id : NUMA_NO_NODE);
2737
2738         if (!dev_maps)
2739                 goto out_no_maps;
2740
2741         /* removes tx-queue from unused CPUs/rx-queues */
2742         for (j = 0; j < dev_maps->nr_ids; j++) {
2743                 tci = j * dev_maps->num_tc;
2744
2745                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2746                         if (i == tc &&
2747                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2748                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2749                                 continue;
2750
2751                         active |= remove_xps_queue(dev_maps,
2752                                                    copy ? old_dev_maps : NULL,
2753                                                    tci, index);
2754                 }
2755         }
2756
2757         if (old_dev_maps)
2758                 kfree_rcu(old_dev_maps, rcu);
2759
2760         /* free map if not active */
2761         if (!active)
2762                 reset_xps_maps(dev, dev_maps, type);
2763
2764 out_no_maps:
2765         mutex_unlock(&xps_map_mutex);
2766
2767         return 0;
2768 error:
2769         /* remove any maps that we added */
2770         for (j = 0; j < nr_ids; j++) {
2771                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2772                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2773                         map = copy ?
2774                               xmap_dereference(dev_maps->attr_map[tci]) :
2775                               NULL;
2776                         if (new_map && new_map != map)
2777                                 kfree(new_map);
2778                 }
2779         }
2780
2781         mutex_unlock(&xps_map_mutex);
2782
2783         kfree(new_dev_maps);
2784         return -ENOMEM;
2785 }
2786 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2787
2788 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2789                         u16 index)
2790 {
2791         int ret;
2792
2793         cpus_read_lock();
2794         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2795         cpus_read_unlock();
2796
2797         return ret;
2798 }
2799 EXPORT_SYMBOL(netif_set_xps_queue);
2800
2801 #endif
2802 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2803 {
2804         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2805
2806         /* Unbind any subordinate channels */
2807         while (txq-- != &dev->_tx[0]) {
2808                 if (txq->sb_dev)
2809                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2810         }
2811 }
2812
2813 void netdev_reset_tc(struct net_device *dev)
2814 {
2815 #ifdef CONFIG_XPS
2816         netif_reset_xps_queues_gt(dev, 0);
2817 #endif
2818         netdev_unbind_all_sb_channels(dev);
2819
2820         /* Reset TC configuration of device */
2821         dev->num_tc = 0;
2822         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2823         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2824 }
2825 EXPORT_SYMBOL(netdev_reset_tc);
2826
2827 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2828 {
2829         if (tc >= dev->num_tc)
2830                 return -EINVAL;
2831
2832 #ifdef CONFIG_XPS
2833         netif_reset_xps_queues(dev, offset, count);
2834 #endif
2835         dev->tc_to_txq[tc].count = count;
2836         dev->tc_to_txq[tc].offset = offset;
2837         return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_set_tc_queue);
2840
2841 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2842 {
2843         if (num_tc > TC_MAX_QUEUE)
2844                 return -EINVAL;
2845
2846 #ifdef CONFIG_XPS
2847         netif_reset_xps_queues_gt(dev, 0);
2848 #endif
2849         netdev_unbind_all_sb_channels(dev);
2850
2851         dev->num_tc = num_tc;
2852         return 0;
2853 }
2854 EXPORT_SYMBOL(netdev_set_num_tc);
2855
2856 void netdev_unbind_sb_channel(struct net_device *dev,
2857                               struct net_device *sb_dev)
2858 {
2859         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2860
2861 #ifdef CONFIG_XPS
2862         netif_reset_xps_queues_gt(sb_dev, 0);
2863 #endif
2864         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2865         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2866
2867         while (txq-- != &dev->_tx[0]) {
2868                 if (txq->sb_dev == sb_dev)
2869                         txq->sb_dev = NULL;
2870         }
2871 }
2872 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2873
2874 int netdev_bind_sb_channel_queue(struct net_device *dev,
2875                                  struct net_device *sb_dev,
2876                                  u8 tc, u16 count, u16 offset)
2877 {
2878         /* Make certain the sb_dev and dev are already configured */
2879         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2880                 return -EINVAL;
2881
2882         /* We cannot hand out queues we don't have */
2883         if ((offset + count) > dev->real_num_tx_queues)
2884                 return -EINVAL;
2885
2886         /* Record the mapping */
2887         sb_dev->tc_to_txq[tc].count = count;
2888         sb_dev->tc_to_txq[tc].offset = offset;
2889
2890         /* Provide a way for Tx queue to find the tc_to_txq map or
2891          * XPS map for itself.
2892          */
2893         while (count--)
2894                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2895
2896         return 0;
2897 }
2898 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2899
2900 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2901 {
2902         /* Do not use a multiqueue device to represent a subordinate channel */
2903         if (netif_is_multiqueue(dev))
2904                 return -ENODEV;
2905
2906         /* We allow channels 1 - 32767 to be used for subordinate channels.
2907          * Channel 0 is meant to be "native" mode and used only to represent
2908          * the main root device. We allow writing 0 to reset the device back
2909          * to normal mode after being used as a subordinate channel.
2910          */
2911         if (channel > S16_MAX)
2912                 return -EINVAL;
2913
2914         dev->num_tc = -channel;
2915
2916         return 0;
2917 }
2918 EXPORT_SYMBOL(netdev_set_sb_channel);
2919
2920 /*
2921  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2922  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2923  */
2924 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2925 {
2926         bool disabling;
2927         int rc;
2928
2929         disabling = txq < dev->real_num_tx_queues;
2930
2931         if (txq < 1 || txq > dev->num_tx_queues)
2932                 return -EINVAL;
2933
2934         if (dev->reg_state == NETREG_REGISTERED ||
2935             dev->reg_state == NETREG_UNREGISTERING) {
2936                 ASSERT_RTNL();
2937
2938                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2939                                                   txq);
2940                 if (rc)
2941                         return rc;
2942
2943                 if (dev->num_tc)
2944                         netif_setup_tc(dev, txq);
2945
2946                 dev_qdisc_change_real_num_tx(dev, txq);
2947
2948                 dev->real_num_tx_queues = txq;
2949
2950                 if (disabling) {
2951                         synchronize_net();
2952                         qdisc_reset_all_tx_gt(dev, txq);
2953 #ifdef CONFIG_XPS
2954                         netif_reset_xps_queues_gt(dev, txq);
2955 #endif
2956                 }
2957         } else {
2958                 dev->real_num_tx_queues = txq;
2959         }
2960
2961         return 0;
2962 }
2963 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2964
2965 #ifdef CONFIG_SYSFS
2966 /**
2967  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2968  *      @dev: Network device
2969  *      @rxq: Actual number of RX queues
2970  *
2971  *      This must be called either with the rtnl_lock held or before
2972  *      registration of the net device.  Returns 0 on success, or a
2973  *      negative error code.  If called before registration, it always
2974  *      succeeds.
2975  */
2976 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2977 {
2978         int rc;
2979
2980         if (rxq < 1 || rxq > dev->num_rx_queues)
2981                 return -EINVAL;
2982
2983         if (dev->reg_state == NETREG_REGISTERED) {
2984                 ASSERT_RTNL();
2985
2986                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2987                                                   rxq);
2988                 if (rc)
2989                         return rc;
2990         }
2991
2992         dev->real_num_rx_queues = rxq;
2993         return 0;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2996 #endif
2997
2998 /**
2999  *      netif_set_real_num_queues - set actual number of RX and TX queues used
3000  *      @dev: Network device
3001  *      @txq: Actual number of TX queues
3002  *      @rxq: Actual number of RX queues
3003  *
3004  *      Set the real number of both TX and RX queues.
3005  *      Does nothing if the number of queues is already correct.
3006  */
3007 int netif_set_real_num_queues(struct net_device *dev,
3008                               unsigned int txq, unsigned int rxq)
3009 {
3010         unsigned int old_rxq = dev->real_num_rx_queues;
3011         int err;
3012
3013         if (txq < 1 || txq > dev->num_tx_queues ||
3014             rxq < 1 || rxq > dev->num_rx_queues)
3015                 return -EINVAL;
3016
3017         /* Start from increases, so the error path only does decreases -
3018          * decreases can't fail.
3019          */
3020         if (rxq > dev->real_num_rx_queues) {
3021                 err = netif_set_real_num_rx_queues(dev, rxq);
3022                 if (err)
3023                         return err;
3024         }
3025         if (txq > dev->real_num_tx_queues) {
3026                 err = netif_set_real_num_tx_queues(dev, txq);
3027                 if (err)
3028                         goto undo_rx;
3029         }
3030         if (rxq < dev->real_num_rx_queues)
3031                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3032         if (txq < dev->real_num_tx_queues)
3033                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3034
3035         return 0;
3036 undo_rx:
3037         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3038         return err;
3039 }
3040 EXPORT_SYMBOL(netif_set_real_num_queues);
3041
3042 /**
3043  * netif_set_tso_max_size() - set the max size of TSO frames supported
3044  * @dev:        netdev to update
3045  * @size:       max skb->len of a TSO frame
3046  *
3047  * Set the limit on the size of TSO super-frames the device can handle.
3048  * Unless explicitly set the stack will assume the value of
3049  * %GSO_LEGACY_MAX_SIZE.
3050  */
3051 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3052 {
3053         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3054         if (size < READ_ONCE(dev->gso_max_size))
3055                 netif_set_gso_max_size(dev, size);
3056         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3057                 netif_set_gso_ipv4_max_size(dev, size);
3058 }
3059 EXPORT_SYMBOL(netif_set_tso_max_size);
3060
3061 /**
3062  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3063  * @dev:        netdev to update
3064  * @segs:       max number of TCP segments
3065  *
3066  * Set the limit on the number of TCP segments the device can generate from
3067  * a single TSO super-frame.
3068  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3069  */
3070 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3071 {
3072         dev->tso_max_segs = segs;
3073         if (segs < READ_ONCE(dev->gso_max_segs))
3074                 netif_set_gso_max_segs(dev, segs);
3075 }
3076 EXPORT_SYMBOL(netif_set_tso_max_segs);
3077
3078 /**
3079  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3080  * @to:         netdev to update
3081  * @from:       netdev from which to copy the limits
3082  */
3083 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3084 {
3085         netif_set_tso_max_size(to, from->tso_max_size);
3086         netif_set_tso_max_segs(to, from->tso_max_segs);
3087 }
3088 EXPORT_SYMBOL(netif_inherit_tso_max);
3089
3090 /**
3091  * netif_get_num_default_rss_queues - default number of RSS queues
3092  *
3093  * Default value is the number of physical cores if there are only 1 or 2, or
3094  * divided by 2 if there are more.
3095  */
3096 int netif_get_num_default_rss_queues(void)
3097 {
3098         cpumask_var_t cpus;
3099         int cpu, count = 0;
3100
3101         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3102                 return 1;
3103
3104         cpumask_copy(cpus, cpu_online_mask);
3105         for_each_cpu(cpu, cpus) {
3106                 ++count;
3107                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3108         }
3109         free_cpumask_var(cpus);
3110
3111         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3112 }
3113 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3114
3115 static void __netif_reschedule(struct Qdisc *q)
3116 {
3117         struct softnet_data *sd;
3118         unsigned long flags;
3119
3120         local_irq_save(flags);
3121         sd = this_cpu_ptr(&softnet_data);
3122         q->next_sched = NULL;
3123         *sd->output_queue_tailp = q;
3124         sd->output_queue_tailp = &q->next_sched;
3125         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3126         local_irq_restore(flags);
3127 }
3128
3129 void __netif_schedule(struct Qdisc *q)
3130 {
3131         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3132                 __netif_reschedule(q);
3133 }
3134 EXPORT_SYMBOL(__netif_schedule);
3135
3136 struct dev_kfree_skb_cb {
3137         enum skb_drop_reason reason;
3138 };
3139
3140 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3141 {
3142         return (struct dev_kfree_skb_cb *)skb->cb;
3143 }
3144
3145 void netif_schedule_queue(struct netdev_queue *txq)
3146 {
3147         rcu_read_lock();
3148         if (!netif_xmit_stopped(txq)) {
3149                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3150
3151                 __netif_schedule(q);
3152         }
3153         rcu_read_unlock();
3154 }
3155 EXPORT_SYMBOL(netif_schedule_queue);
3156
3157 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3158 {
3159         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3160                 struct Qdisc *q;
3161
3162                 rcu_read_lock();
3163                 q = rcu_dereference(dev_queue->qdisc);
3164                 __netif_schedule(q);
3165                 rcu_read_unlock();
3166         }
3167 }
3168 EXPORT_SYMBOL(netif_tx_wake_queue);
3169
3170 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3171 {
3172         unsigned long flags;
3173
3174         if (unlikely(!skb))
3175                 return;
3176
3177         if (likely(refcount_read(&skb->users) == 1)) {
3178                 smp_rmb();
3179                 refcount_set(&skb->users, 0);
3180         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3181                 return;
3182         }
3183         get_kfree_skb_cb(skb)->reason = reason;
3184         local_irq_save(flags);
3185         skb->next = __this_cpu_read(softnet_data.completion_queue);
3186         __this_cpu_write(softnet_data.completion_queue, skb);
3187         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3188         local_irq_restore(flags);
3189 }
3190 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3191
3192 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3193 {
3194         if (in_hardirq() || irqs_disabled())
3195                 dev_kfree_skb_irq_reason(skb, reason);
3196         else
3197                 kfree_skb_reason(skb, reason);
3198 }
3199 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3200
3201
3202 /**
3203  * netif_device_detach - mark device as removed
3204  * @dev: network device
3205  *
3206  * Mark device as removed from system and therefore no longer available.
3207  */
3208 void netif_device_detach(struct net_device *dev)
3209 {
3210         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3211             netif_running(dev)) {
3212                 netif_tx_stop_all_queues(dev);
3213         }
3214 }
3215 EXPORT_SYMBOL(netif_device_detach);
3216
3217 /**
3218  * netif_device_attach - mark device as attached
3219  * @dev: network device
3220  *
3221  * Mark device as attached from system and restart if needed.
3222  */
3223 void netif_device_attach(struct net_device *dev)
3224 {
3225         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3226             netif_running(dev)) {
3227                 netif_tx_wake_all_queues(dev);
3228                 __netdev_watchdog_up(dev);
3229         }
3230 }
3231 EXPORT_SYMBOL(netif_device_attach);
3232
3233 /*
3234  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3235  * to be used as a distribution range.
3236  */
3237 static u16 skb_tx_hash(const struct net_device *dev,
3238                        const struct net_device *sb_dev,
3239                        struct sk_buff *skb)
3240 {
3241         u32 hash;
3242         u16 qoffset = 0;
3243         u16 qcount = dev->real_num_tx_queues;
3244
3245         if (dev->num_tc) {
3246                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3247
3248                 qoffset = sb_dev->tc_to_txq[tc].offset;
3249                 qcount = sb_dev->tc_to_txq[tc].count;
3250                 if (unlikely(!qcount)) {
3251                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3252                                              sb_dev->name, qoffset, tc);
3253                         qoffset = 0;
3254                         qcount = dev->real_num_tx_queues;
3255                 }
3256         }
3257
3258         if (skb_rx_queue_recorded(skb)) {
3259                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3260                 hash = skb_get_rx_queue(skb);
3261                 if (hash >= qoffset)
3262                         hash -= qoffset;
3263                 while (unlikely(hash >= qcount))
3264                         hash -= qcount;
3265                 return hash + qoffset;
3266         }
3267
3268         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3269 }
3270
3271 void skb_warn_bad_offload(const struct sk_buff *skb)
3272 {
3273         static const netdev_features_t null_features;
3274         struct net_device *dev = skb->dev;
3275         const char *name = "";
3276
3277         if (!net_ratelimit())
3278                 return;
3279
3280         if (dev) {
3281                 if (dev->dev.parent)
3282                         name = dev_driver_string(dev->dev.parent);
3283                 else
3284                         name = netdev_name(dev);
3285         }
3286         skb_dump(KERN_WARNING, skb, false);
3287         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3288              name, dev ? &dev->features : &null_features,
3289              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3290 }
3291
3292 /*
3293  * Invalidate hardware checksum when packet is to be mangled, and
3294  * complete checksum manually on outgoing path.
3295  */
3296 int skb_checksum_help(struct sk_buff *skb)
3297 {
3298         __wsum csum;
3299         int ret = 0, offset;
3300
3301         if (skb->ip_summed == CHECKSUM_COMPLETE)
3302                 goto out_set_summed;
3303
3304         if (unlikely(skb_is_gso(skb))) {
3305                 skb_warn_bad_offload(skb);
3306                 return -EINVAL;
3307         }
3308
3309         /* Before computing a checksum, we should make sure no frag could
3310          * be modified by an external entity : checksum could be wrong.
3311          */
3312         if (skb_has_shared_frag(skb)) {
3313                 ret = __skb_linearize(skb);
3314                 if (ret)
3315                         goto out;
3316         }
3317
3318         offset = skb_checksum_start_offset(skb);
3319         ret = -EINVAL;
3320         if (unlikely(offset >= skb_headlen(skb))) {
3321                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3322                 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3323                           offset, skb_headlen(skb));
3324                 goto out;
3325         }
3326         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3327
3328         offset += skb->csum_offset;
3329         if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3330                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3331                 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3332                           offset + sizeof(__sum16), skb_headlen(skb));
3333                 goto out;
3334         }
3335         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3336         if (ret)
3337                 goto out;
3338
3339         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3340 out_set_summed:
3341         skb->ip_summed = CHECKSUM_NONE;
3342 out:
3343         return ret;
3344 }
3345 EXPORT_SYMBOL(skb_checksum_help);
3346
3347 int skb_crc32c_csum_help(struct sk_buff *skb)
3348 {
3349         __le32 crc32c_csum;
3350         int ret = 0, offset, start;
3351
3352         if (skb->ip_summed != CHECKSUM_PARTIAL)
3353                 goto out;
3354
3355         if (unlikely(skb_is_gso(skb)))
3356                 goto out;
3357
3358         /* Before computing a checksum, we should make sure no frag could
3359          * be modified by an external entity : checksum could be wrong.
3360          */
3361         if (unlikely(skb_has_shared_frag(skb))) {
3362                 ret = __skb_linearize(skb);
3363                 if (ret)
3364                         goto out;
3365         }
3366         start = skb_checksum_start_offset(skb);
3367         offset = start + offsetof(struct sctphdr, checksum);
3368         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3369                 ret = -EINVAL;
3370                 goto out;
3371         }
3372
3373         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3374         if (ret)
3375                 goto out;
3376
3377         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3378                                                   skb->len - start, ~(__u32)0,
3379                                                   crc32c_csum_stub));
3380         *(__le32 *)(skb->data + offset) = crc32c_csum;
3381         skb_reset_csum_not_inet(skb);
3382 out:
3383         return ret;
3384 }
3385
3386 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3387 {
3388         __be16 type = skb->protocol;
3389
3390         /* Tunnel gso handlers can set protocol to ethernet. */
3391         if (type == htons(ETH_P_TEB)) {
3392                 struct ethhdr *eth;
3393
3394                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3395                         return 0;
3396
3397                 eth = (struct ethhdr *)skb->data;
3398                 type = eth->h_proto;
3399         }
3400
3401         return vlan_get_protocol_and_depth(skb, type, depth);
3402 }
3403
3404
3405 /* Take action when hardware reception checksum errors are detected. */
3406 #ifdef CONFIG_BUG
3407 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3408 {
3409         netdev_err(dev, "hw csum failure\n");
3410         skb_dump(KERN_ERR, skb, true);
3411         dump_stack();
3412 }
3413
3414 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3415 {
3416         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3417 }
3418 EXPORT_SYMBOL(netdev_rx_csum_fault);
3419 #endif
3420
3421 /* XXX: check that highmem exists at all on the given machine. */
3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 #ifdef CONFIG_HIGHMEM
3425         int i;
3426
3427         if (!(dev->features & NETIF_F_HIGHDMA)) {
3428                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3430
3431                         if (PageHighMem(skb_frag_page(frag)))
3432                                 return 1;
3433                 }
3434         }
3435 #endif
3436         return 0;
3437 }
3438
3439 /* If MPLS offload request, verify we are testing hardware MPLS features
3440  * instead of standard features for the netdev.
3441  */
3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444                                            netdev_features_t features,
3445                                            __be16 type)
3446 {
3447         if (eth_p_mpls(type))
3448                 features &= skb->dev->mpls_features;
3449
3450         return features;
3451 }
3452 #else
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454                                            netdev_features_t features,
3455                                            __be16 type)
3456 {
3457         return features;
3458 }
3459 #endif
3460
3461 static netdev_features_t harmonize_features(struct sk_buff *skb,
3462         netdev_features_t features)
3463 {
3464         __be16 type;
3465
3466         type = skb_network_protocol(skb, NULL);
3467         features = net_mpls_features(skb, features, type);
3468
3469         if (skb->ip_summed != CHECKSUM_NONE &&
3470             !can_checksum_protocol(features, type)) {
3471                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3472         }
3473         if (illegal_highdma(skb->dev, skb))
3474                 features &= ~NETIF_F_SG;
3475
3476         return features;
3477 }
3478
3479 netdev_features_t passthru_features_check(struct sk_buff *skb,
3480                                           struct net_device *dev,
3481                                           netdev_features_t features)
3482 {
3483         return features;
3484 }
3485 EXPORT_SYMBOL(passthru_features_check);
3486
3487 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488                                              struct net_device *dev,
3489                                              netdev_features_t features)
3490 {
3491         return vlan_features_check(skb, features);
3492 }
3493
3494 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495                                             struct net_device *dev,
3496                                             netdev_features_t features)
3497 {
3498         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499
3500         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3501                 return features & ~NETIF_F_GSO_MASK;
3502
3503         if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3504                 return features & ~NETIF_F_GSO_MASK;
3505
3506         if (!skb_shinfo(skb)->gso_type) {
3507                 skb_warn_bad_offload(skb);
3508                 return features & ~NETIF_F_GSO_MASK;
3509         }
3510
3511         /* Support for GSO partial features requires software
3512          * intervention before we can actually process the packets
3513          * so we need to strip support for any partial features now
3514          * and we can pull them back in after we have partially
3515          * segmented the frame.
3516          */
3517         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3518                 features &= ~dev->gso_partial_features;
3519
3520         /* Make sure to clear the IPv4 ID mangling feature if the
3521          * IPv4 header has the potential to be fragmented.
3522          */
3523         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3524                 struct iphdr *iph = skb->encapsulation ?
3525                                     inner_ip_hdr(skb) : ip_hdr(skb);
3526
3527                 if (!(iph->frag_off & htons(IP_DF)))
3528                         features &= ~NETIF_F_TSO_MANGLEID;
3529         }
3530
3531         return features;
3532 }
3533
3534 netdev_features_t netif_skb_features(struct sk_buff *skb)
3535 {
3536         struct net_device *dev = skb->dev;
3537         netdev_features_t features = dev->features;
3538
3539         if (skb_is_gso(skb))
3540                 features = gso_features_check(skb, dev, features);
3541
3542         /* If encapsulation offload request, verify we are testing
3543          * hardware encapsulation features instead of standard
3544          * features for the netdev
3545          */
3546         if (skb->encapsulation)
3547                 features &= dev->hw_enc_features;
3548
3549         if (skb_vlan_tagged(skb))
3550                 features = netdev_intersect_features(features,
3551                                                      dev->vlan_features |
3552                                                      NETIF_F_HW_VLAN_CTAG_TX |
3553                                                      NETIF_F_HW_VLAN_STAG_TX);
3554
3555         if (dev->netdev_ops->ndo_features_check)
3556                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3557                                                                 features);
3558         else
3559                 features &= dflt_features_check(skb, dev, features);
3560
3561         return harmonize_features(skb, features);
3562 }
3563 EXPORT_SYMBOL(netif_skb_features);
3564
3565 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3566                     struct netdev_queue *txq, bool more)
3567 {
3568         unsigned int len;
3569         int rc;
3570
3571         if (dev_nit_active(dev))
3572                 dev_queue_xmit_nit(skb, dev);
3573
3574         len = skb->len;
3575         trace_net_dev_start_xmit(skb, dev);
3576         rc = netdev_start_xmit(skb, dev, txq, more);
3577         trace_net_dev_xmit(skb, rc, dev, len);
3578
3579         return rc;
3580 }
3581
3582 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3583                                     struct netdev_queue *txq, int *ret)
3584 {
3585         struct sk_buff *skb = first;
3586         int rc = NETDEV_TX_OK;
3587
3588         while (skb) {
3589                 struct sk_buff *next = skb->next;
3590
3591                 skb_mark_not_on_list(skb);
3592                 rc = xmit_one(skb, dev, txq, next != NULL);
3593                 if (unlikely(!dev_xmit_complete(rc))) {
3594                         skb->next = next;
3595                         goto out;
3596                 }
3597
3598                 skb = next;
3599                 if (netif_tx_queue_stopped(txq) && skb) {
3600                         rc = NETDEV_TX_BUSY;
3601                         break;
3602                 }
3603         }
3604
3605 out:
3606         *ret = rc;
3607         return skb;
3608 }
3609
3610 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3611                                           netdev_features_t features)
3612 {
3613         if (skb_vlan_tag_present(skb) &&
3614             !vlan_hw_offload_capable(features, skb->vlan_proto))
3615                 skb = __vlan_hwaccel_push_inside(skb);
3616         return skb;
3617 }
3618
3619 int skb_csum_hwoffload_help(struct sk_buff *skb,
3620                             const netdev_features_t features)
3621 {
3622         if (unlikely(skb_csum_is_sctp(skb)))
3623                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3624                         skb_crc32c_csum_help(skb);
3625
3626         if (features & NETIF_F_HW_CSUM)
3627                 return 0;
3628
3629         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3630                 switch (skb->csum_offset) {
3631                 case offsetof(struct tcphdr, check):
3632                 case offsetof(struct udphdr, check):
3633                         return 0;
3634                 }
3635         }
3636
3637         return skb_checksum_help(skb);
3638 }
3639 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3640
3641 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3642 {
3643         netdev_features_t features;
3644
3645         features = netif_skb_features(skb);
3646         skb = validate_xmit_vlan(skb, features);
3647         if (unlikely(!skb))
3648                 goto out_null;
3649
3650         skb = sk_validate_xmit_skb(skb, dev);
3651         if (unlikely(!skb))
3652                 goto out_null;
3653
3654         if (netif_needs_gso(skb, features)) {
3655                 struct sk_buff *segs;
3656
3657                 segs = skb_gso_segment(skb, features);
3658                 if (IS_ERR(segs)) {
3659                         goto out_kfree_skb;
3660                 } else if (segs) {
3661                         consume_skb(skb);
3662                         skb = segs;
3663                 }
3664         } else {
3665                 if (skb_needs_linearize(skb, features) &&
3666                     __skb_linearize(skb))
3667                         goto out_kfree_skb;
3668
3669                 /* If packet is not checksummed and device does not
3670                  * support checksumming for this protocol, complete
3671                  * checksumming here.
3672                  */
3673                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3674                         if (skb->encapsulation)
3675                                 skb_set_inner_transport_header(skb,
3676                                                                skb_checksum_start_offset(skb));
3677                         else
3678                                 skb_set_transport_header(skb,
3679                                                          skb_checksum_start_offset(skb));
3680                         if (skb_csum_hwoffload_help(skb, features))
3681                                 goto out_kfree_skb;
3682                 }
3683         }
3684
3685         skb = validate_xmit_xfrm(skb, features, again);
3686
3687         return skb;
3688
3689 out_kfree_skb:
3690         kfree_skb(skb);
3691 out_null:
3692         dev_core_stats_tx_dropped_inc(dev);
3693         return NULL;
3694 }
3695
3696 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3697 {
3698         struct sk_buff *next, *head = NULL, *tail;
3699
3700         for (; skb != NULL; skb = next) {
3701                 next = skb->next;
3702                 skb_mark_not_on_list(skb);
3703
3704                 /* in case skb wont be segmented, point to itself */
3705                 skb->prev = skb;
3706
3707                 skb = validate_xmit_skb(skb, dev, again);
3708                 if (!skb)
3709                         continue;
3710
3711                 if (!head)
3712                         head = skb;
3713                 else
3714                         tail->next = skb;
3715                 /* If skb was segmented, skb->prev points to
3716                  * the last segment. If not, it still contains skb.
3717                  */
3718                 tail = skb->prev;
3719         }
3720         return head;
3721 }
3722 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3723
3724 static void qdisc_pkt_len_init(struct sk_buff *skb)
3725 {
3726         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3727
3728         qdisc_skb_cb(skb)->pkt_len = skb->len;
3729
3730         /* To get more precise estimation of bytes sent on wire,
3731          * we add to pkt_len the headers size of all segments
3732          */
3733         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3734                 u16 gso_segs = shinfo->gso_segs;
3735                 unsigned int hdr_len;
3736
3737                 /* mac layer + network layer */
3738                 hdr_len = skb_transport_offset(skb);
3739
3740                 /* + transport layer */
3741                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3742                         const struct tcphdr *th;
3743                         struct tcphdr _tcphdr;
3744
3745                         th = skb_header_pointer(skb, hdr_len,
3746                                                 sizeof(_tcphdr), &_tcphdr);
3747                         if (likely(th))
3748                                 hdr_len += __tcp_hdrlen(th);
3749                 } else {
3750                         struct udphdr _udphdr;
3751
3752                         if (skb_header_pointer(skb, hdr_len,
3753                                                sizeof(_udphdr), &_udphdr))
3754                                 hdr_len += sizeof(struct udphdr);
3755                 }
3756
3757                 if (shinfo->gso_type & SKB_GSO_DODGY)
3758                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3759                                                 shinfo->gso_size);
3760
3761                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3762         }
3763 }
3764
3765 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3766                              struct sk_buff **to_free,
3767                              struct netdev_queue *txq)
3768 {
3769         int rc;
3770
3771         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3772         if (rc == NET_XMIT_SUCCESS)
3773                 trace_qdisc_enqueue(q, txq, skb);
3774         return rc;
3775 }
3776
3777 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3778                                  struct net_device *dev,
3779                                  struct netdev_queue *txq)
3780 {
3781         spinlock_t *root_lock = qdisc_lock(q);
3782         struct sk_buff *to_free = NULL;
3783         bool contended;
3784         int rc;
3785
3786         qdisc_calculate_pkt_len(skb, q);
3787
3788         if (q->flags & TCQ_F_NOLOCK) {
3789                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3790                     qdisc_run_begin(q)) {
3791                         /* Retest nolock_qdisc_is_empty() within the protection
3792                          * of q->seqlock to protect from racing with requeuing.
3793                          */
3794                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3795                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3796                                 __qdisc_run(q);
3797                                 qdisc_run_end(q);
3798
3799                                 goto no_lock_out;
3800                         }
3801
3802                         qdisc_bstats_cpu_update(q, skb);
3803                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3804                             !nolock_qdisc_is_empty(q))
3805                                 __qdisc_run(q);
3806
3807                         qdisc_run_end(q);
3808                         return NET_XMIT_SUCCESS;
3809                 }
3810
3811                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3812                 qdisc_run(q);
3813
3814 no_lock_out:
3815                 if (unlikely(to_free))
3816                         kfree_skb_list_reason(to_free,
3817                                               SKB_DROP_REASON_QDISC_DROP);
3818                 return rc;
3819         }
3820
3821         /*
3822          * Heuristic to force contended enqueues to serialize on a
3823          * separate lock before trying to get qdisc main lock.
3824          * This permits qdisc->running owner to get the lock more
3825          * often and dequeue packets faster.
3826          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3827          * and then other tasks will only enqueue packets. The packets will be
3828          * sent after the qdisc owner is scheduled again. To prevent this
3829          * scenario the task always serialize on the lock.
3830          */
3831         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3832         if (unlikely(contended))
3833                 spin_lock(&q->busylock);
3834
3835         spin_lock(root_lock);
3836         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3837                 __qdisc_drop(skb, &to_free);
3838                 rc = NET_XMIT_DROP;
3839         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3840                    qdisc_run_begin(q)) {
3841                 /*
3842                  * This is a work-conserving queue; there are no old skbs
3843                  * waiting to be sent out; and the qdisc is not running -
3844                  * xmit the skb directly.
3845                  */
3846
3847                 qdisc_bstats_update(q, skb);
3848
3849                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3850                         if (unlikely(contended)) {
3851                                 spin_unlock(&q->busylock);
3852                                 contended = false;
3853                         }
3854                         __qdisc_run(q);
3855                 }
3856
3857                 qdisc_run_end(q);
3858                 rc = NET_XMIT_SUCCESS;
3859         } else {
3860                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3861                 if (qdisc_run_begin(q)) {
3862                         if (unlikely(contended)) {
3863                                 spin_unlock(&q->busylock);
3864                                 contended = false;
3865                         }
3866                         __qdisc_run(q);
3867                         qdisc_run_end(q);
3868                 }
3869         }
3870         spin_unlock(root_lock);
3871         if (unlikely(to_free))
3872                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3873         if (unlikely(contended))
3874                 spin_unlock(&q->busylock);
3875         return rc;
3876 }
3877
3878 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3879 static void skb_update_prio(struct sk_buff *skb)
3880 {
3881         const struct netprio_map *map;
3882         const struct sock *sk;
3883         unsigned int prioidx;
3884
3885         if (skb->priority)
3886                 return;
3887         map = rcu_dereference_bh(skb->dev->priomap);
3888         if (!map)
3889                 return;
3890         sk = skb_to_full_sk(skb);
3891         if (!sk)
3892                 return;
3893
3894         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3895
3896         if (prioidx < map->priomap_len)
3897                 skb->priority = map->priomap[prioidx];
3898 }
3899 #else
3900 #define skb_update_prio(skb)
3901 #endif
3902
3903 /**
3904  *      dev_loopback_xmit - loop back @skb
3905  *      @net: network namespace this loopback is happening in
3906  *      @sk:  sk needed to be a netfilter okfn
3907  *      @skb: buffer to transmit
3908  */
3909 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3910 {
3911         skb_reset_mac_header(skb);
3912         __skb_pull(skb, skb_network_offset(skb));
3913         skb->pkt_type = PACKET_LOOPBACK;
3914         if (skb->ip_summed == CHECKSUM_NONE)
3915                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3916         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3917         skb_dst_force(skb);
3918         netif_rx(skb);
3919         return 0;
3920 }
3921 EXPORT_SYMBOL(dev_loopback_xmit);
3922
3923 #ifdef CONFIG_NET_EGRESS
3924 static struct netdev_queue *
3925 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3926 {
3927         int qm = skb_get_queue_mapping(skb);
3928
3929         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3930 }
3931
3932 static bool netdev_xmit_txqueue_skipped(void)
3933 {
3934         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3935 }
3936
3937 void netdev_xmit_skip_txqueue(bool skip)
3938 {
3939         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3940 }
3941 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3942 #endif /* CONFIG_NET_EGRESS */
3943
3944 #ifdef CONFIG_NET_XGRESS
3945 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3946 {
3947         int ret = TC_ACT_UNSPEC;
3948 #ifdef CONFIG_NET_CLS_ACT
3949         struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3950         struct tcf_result res;
3951
3952         if (!miniq)
3953                 return ret;
3954
3955         tc_skb_cb(skb)->mru = 0;
3956         tc_skb_cb(skb)->post_ct = false;
3957
3958         mini_qdisc_bstats_cpu_update(miniq, skb);
3959         ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3960         /* Only tcf related quirks below. */
3961         switch (ret) {
3962         case TC_ACT_SHOT:
3963                 mini_qdisc_qstats_cpu_drop(miniq);
3964                 break;
3965         case TC_ACT_OK:
3966         case TC_ACT_RECLASSIFY:
3967                 skb->tc_index = TC_H_MIN(res.classid);
3968                 break;
3969         }
3970 #endif /* CONFIG_NET_CLS_ACT */
3971         return ret;
3972 }
3973
3974 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3975
3976 void tcx_inc(void)
3977 {
3978         static_branch_inc(&tcx_needed_key);
3979 }
3980
3981 void tcx_dec(void)
3982 {
3983         static_branch_dec(&tcx_needed_key);
3984 }
3985
3986 static __always_inline enum tcx_action_base
3987 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3988         const bool needs_mac)
3989 {
3990         const struct bpf_mprog_fp *fp;
3991         const struct bpf_prog *prog;
3992         int ret = TCX_NEXT;
3993
3994         if (needs_mac)
3995                 __skb_push(skb, skb->mac_len);
3996         bpf_mprog_foreach_prog(entry, fp, prog) {
3997                 bpf_compute_data_pointers(skb);
3998                 ret = bpf_prog_run(prog, skb);
3999                 if (ret != TCX_NEXT)
4000                         break;
4001         }
4002         if (needs_mac)
4003                 __skb_pull(skb, skb->mac_len);
4004         return tcx_action_code(skb, ret);
4005 }
4006
4007 static __always_inline struct sk_buff *
4008 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4009                    struct net_device *orig_dev, bool *another)
4010 {
4011         struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4012         int sch_ret;
4013
4014         if (!entry)
4015                 return skb;
4016         if (*pt_prev) {
4017                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4018                 *pt_prev = NULL;
4019         }
4020
4021         qdisc_skb_cb(skb)->pkt_len = skb->len;
4022         tcx_set_ingress(skb, true);
4023
4024         if (static_branch_unlikely(&tcx_needed_key)) {
4025                 sch_ret = tcx_run(entry, skb, true);
4026                 if (sch_ret != TC_ACT_UNSPEC)
4027                         goto ingress_verdict;
4028         }
4029         sch_ret = tc_run(tcx_entry(entry), skb);
4030 ingress_verdict:
4031         switch (sch_ret) {
4032         case TC_ACT_REDIRECT:
4033                 /* skb_mac_header check was done by BPF, so we can safely
4034                  * push the L2 header back before redirecting to another
4035                  * netdev.
4036                  */
4037                 __skb_push(skb, skb->mac_len);
4038                 if (skb_do_redirect(skb) == -EAGAIN) {
4039                         __skb_pull(skb, skb->mac_len);
4040                         *another = true;
4041                         break;
4042                 }
4043                 *ret = NET_RX_SUCCESS;
4044                 return NULL;
4045         case TC_ACT_SHOT:
4046                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4047                 *ret = NET_RX_DROP;
4048                 return NULL;
4049         /* used by tc_run */
4050         case TC_ACT_STOLEN:
4051         case TC_ACT_QUEUED:
4052         case TC_ACT_TRAP:
4053                 consume_skb(skb);
4054                 fallthrough;
4055         case TC_ACT_CONSUMED:
4056                 *ret = NET_RX_SUCCESS;
4057                 return NULL;
4058         }
4059
4060         return skb;
4061 }
4062
4063 static __always_inline struct sk_buff *
4064 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4065 {
4066         struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4067         int sch_ret;
4068
4069         if (!entry)
4070                 return skb;
4071
4072         /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4073          * already set by the caller.
4074          */
4075         if (static_branch_unlikely(&tcx_needed_key)) {
4076                 sch_ret = tcx_run(entry, skb, false);
4077                 if (sch_ret != TC_ACT_UNSPEC)
4078                         goto egress_verdict;
4079         }
4080         sch_ret = tc_run(tcx_entry(entry), skb);
4081 egress_verdict:
4082         switch (sch_ret) {
4083         case TC_ACT_REDIRECT:
4084                 /* No need to push/pop skb's mac_header here on egress! */
4085                 skb_do_redirect(skb);
4086                 *ret = NET_XMIT_SUCCESS;
4087                 return NULL;
4088         case TC_ACT_SHOT:
4089                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4090                 *ret = NET_XMIT_DROP;
4091                 return NULL;
4092         /* used by tc_run */
4093         case TC_ACT_STOLEN:
4094         case TC_ACT_QUEUED:
4095         case TC_ACT_TRAP:
4096                 consume_skb(skb);
4097                 fallthrough;
4098         case TC_ACT_CONSUMED:
4099                 *ret = NET_XMIT_SUCCESS;
4100                 return NULL;
4101         }
4102
4103         return skb;
4104 }
4105 #else
4106 static __always_inline struct sk_buff *
4107 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4108                    struct net_device *orig_dev, bool *another)
4109 {
4110         return skb;
4111 }
4112
4113 static __always_inline struct sk_buff *
4114 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4115 {
4116         return skb;
4117 }
4118 #endif /* CONFIG_NET_XGRESS */
4119
4120 #ifdef CONFIG_XPS
4121 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4122                                struct xps_dev_maps *dev_maps, unsigned int tci)
4123 {
4124         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4125         struct xps_map *map;
4126         int queue_index = -1;
4127
4128         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4129                 return queue_index;
4130
4131         tci *= dev_maps->num_tc;
4132         tci += tc;
4133
4134         map = rcu_dereference(dev_maps->attr_map[tci]);
4135         if (map) {
4136                 if (map->len == 1)
4137                         queue_index = map->queues[0];
4138                 else
4139                         queue_index = map->queues[reciprocal_scale(
4140                                                 skb_get_hash(skb), map->len)];
4141                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4142                         queue_index = -1;
4143         }
4144         return queue_index;
4145 }
4146 #endif
4147
4148 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4149                          struct sk_buff *skb)
4150 {
4151 #ifdef CONFIG_XPS
4152         struct xps_dev_maps *dev_maps;
4153         struct sock *sk = skb->sk;
4154         int queue_index = -1;
4155
4156         if (!static_key_false(&xps_needed))
4157                 return -1;
4158
4159         rcu_read_lock();
4160         if (!static_key_false(&xps_rxqs_needed))
4161                 goto get_cpus_map;
4162
4163         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4164         if (dev_maps) {
4165                 int tci = sk_rx_queue_get(sk);
4166
4167                 if (tci >= 0)
4168                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4169                                                           tci);
4170         }
4171
4172 get_cpus_map:
4173         if (queue_index < 0) {
4174                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4175                 if (dev_maps) {
4176                         unsigned int tci = skb->sender_cpu - 1;
4177
4178                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4179                                                           tci);
4180                 }
4181         }
4182         rcu_read_unlock();
4183
4184         return queue_index;
4185 #else
4186         return -1;
4187 #endif
4188 }
4189
4190 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4191                      struct net_device *sb_dev)
4192 {
4193         return 0;
4194 }
4195 EXPORT_SYMBOL(dev_pick_tx_zero);
4196
4197 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4198                        struct net_device *sb_dev)
4199 {
4200         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4201 }
4202 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4203
4204 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4205                      struct net_device *sb_dev)
4206 {
4207         struct sock *sk = skb->sk;
4208         int queue_index = sk_tx_queue_get(sk);
4209
4210         sb_dev = sb_dev ? : dev;
4211
4212         if (queue_index < 0 || skb->ooo_okay ||
4213             queue_index >= dev->real_num_tx_queues) {
4214                 int new_index = get_xps_queue(dev, sb_dev, skb);
4215
4216                 if (new_index < 0)
4217                         new_index = skb_tx_hash(dev, sb_dev, skb);
4218
4219                 if (queue_index != new_index && sk &&
4220                     sk_fullsock(sk) &&
4221                     rcu_access_pointer(sk->sk_dst_cache))
4222                         sk_tx_queue_set(sk, new_index);
4223
4224                 queue_index = new_index;
4225         }
4226
4227         return queue_index;
4228 }
4229 EXPORT_SYMBOL(netdev_pick_tx);
4230
4231 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4232                                          struct sk_buff *skb,
4233                                          struct net_device *sb_dev)
4234 {
4235         int queue_index = 0;
4236
4237 #ifdef CONFIG_XPS
4238         u32 sender_cpu = skb->sender_cpu - 1;
4239
4240         if (sender_cpu >= (u32)NR_CPUS)
4241                 skb->sender_cpu = raw_smp_processor_id() + 1;
4242 #endif
4243
4244         if (dev->real_num_tx_queues != 1) {
4245                 const struct net_device_ops *ops = dev->netdev_ops;
4246
4247                 if (ops->ndo_select_queue)
4248                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4249                 else
4250                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4251
4252                 queue_index = netdev_cap_txqueue(dev, queue_index);
4253         }
4254
4255         skb_set_queue_mapping(skb, queue_index);
4256         return netdev_get_tx_queue(dev, queue_index);
4257 }
4258
4259 /**
4260  * __dev_queue_xmit() - transmit a buffer
4261  * @skb:        buffer to transmit
4262  * @sb_dev:     suboordinate device used for L2 forwarding offload
4263  *
4264  * Queue a buffer for transmission to a network device. The caller must
4265  * have set the device and priority and built the buffer before calling
4266  * this function. The function can be called from an interrupt.
4267  *
4268  * When calling this method, interrupts MUST be enabled. This is because
4269  * the BH enable code must have IRQs enabled so that it will not deadlock.
4270  *
4271  * Regardless of the return value, the skb is consumed, so it is currently
4272  * difficult to retry a send to this method. (You can bump the ref count
4273  * before sending to hold a reference for retry if you are careful.)
4274  *
4275  * Return:
4276  * * 0                          - buffer successfully transmitted
4277  * * positive qdisc return code - NET_XMIT_DROP etc.
4278  * * negative errno             - other errors
4279  */
4280 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4281 {
4282         struct net_device *dev = skb->dev;
4283         struct netdev_queue *txq = NULL;
4284         struct Qdisc *q;
4285         int rc = -ENOMEM;
4286         bool again = false;
4287
4288         skb_reset_mac_header(skb);
4289         skb_assert_len(skb);
4290
4291         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4292                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4293
4294         /* Disable soft irqs for various locks below. Also
4295          * stops preemption for RCU.
4296          */
4297         rcu_read_lock_bh();
4298
4299         skb_update_prio(skb);
4300
4301         qdisc_pkt_len_init(skb);
4302         tcx_set_ingress(skb, false);
4303 #ifdef CONFIG_NET_EGRESS
4304         if (static_branch_unlikely(&egress_needed_key)) {
4305                 if (nf_hook_egress_active()) {
4306                         skb = nf_hook_egress(skb, &rc, dev);
4307                         if (!skb)
4308                                 goto out;
4309                 }
4310
4311                 netdev_xmit_skip_txqueue(false);
4312
4313                 nf_skip_egress(skb, true);
4314                 skb = sch_handle_egress(skb, &rc, dev);
4315                 if (!skb)
4316                         goto out;
4317                 nf_skip_egress(skb, false);
4318
4319                 if (netdev_xmit_txqueue_skipped())
4320                         txq = netdev_tx_queue_mapping(dev, skb);
4321         }
4322 #endif
4323         /* If device/qdisc don't need skb->dst, release it right now while
4324          * its hot in this cpu cache.
4325          */
4326         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4327                 skb_dst_drop(skb);
4328         else
4329                 skb_dst_force(skb);
4330
4331         if (!txq)
4332                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4333
4334         q = rcu_dereference_bh(txq->qdisc);
4335
4336         trace_net_dev_queue(skb);
4337         if (q->enqueue) {
4338                 rc = __dev_xmit_skb(skb, q, dev, txq);
4339                 goto out;
4340         }
4341
4342         /* The device has no queue. Common case for software devices:
4343          * loopback, all the sorts of tunnels...
4344
4345          * Really, it is unlikely that netif_tx_lock protection is necessary
4346          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4347          * counters.)
4348          * However, it is possible, that they rely on protection
4349          * made by us here.
4350
4351          * Check this and shot the lock. It is not prone from deadlocks.
4352          *Either shot noqueue qdisc, it is even simpler 8)
4353          */
4354         if (dev->flags & IFF_UP) {
4355                 int cpu = smp_processor_id(); /* ok because BHs are off */
4356
4357                 /* Other cpus might concurrently change txq->xmit_lock_owner
4358                  * to -1 or to their cpu id, but not to our id.
4359                  */
4360                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4361                         if (dev_xmit_recursion())
4362                                 goto recursion_alert;
4363
4364                         skb = validate_xmit_skb(skb, dev, &again);
4365                         if (!skb)
4366                                 goto out;
4367
4368                         HARD_TX_LOCK(dev, txq, cpu);
4369
4370                         if (!netif_xmit_stopped(txq)) {
4371                                 dev_xmit_recursion_inc();
4372                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4373                                 dev_xmit_recursion_dec();
4374                                 if (dev_xmit_complete(rc)) {
4375                                         HARD_TX_UNLOCK(dev, txq);
4376                                         goto out;
4377                                 }
4378                         }
4379                         HARD_TX_UNLOCK(dev, txq);
4380                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4381                                              dev->name);
4382                 } else {
4383                         /* Recursion is detected! It is possible,
4384                          * unfortunately
4385                          */
4386 recursion_alert:
4387                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4388                                              dev->name);
4389                 }
4390         }
4391
4392         rc = -ENETDOWN;
4393         rcu_read_unlock_bh();
4394
4395         dev_core_stats_tx_dropped_inc(dev);
4396         kfree_skb_list(skb);
4397         return rc;
4398 out:
4399         rcu_read_unlock_bh();
4400         return rc;
4401 }
4402 EXPORT_SYMBOL(__dev_queue_xmit);
4403
4404 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4405 {
4406         struct net_device *dev = skb->dev;
4407         struct sk_buff *orig_skb = skb;
4408         struct netdev_queue *txq;
4409         int ret = NETDEV_TX_BUSY;
4410         bool again = false;
4411
4412         if (unlikely(!netif_running(dev) ||
4413                      !netif_carrier_ok(dev)))
4414                 goto drop;
4415
4416         skb = validate_xmit_skb_list(skb, dev, &again);
4417         if (skb != orig_skb)
4418                 goto drop;
4419
4420         skb_set_queue_mapping(skb, queue_id);
4421         txq = skb_get_tx_queue(dev, skb);
4422
4423         local_bh_disable();
4424
4425         dev_xmit_recursion_inc();
4426         HARD_TX_LOCK(dev, txq, smp_processor_id());
4427         if (!netif_xmit_frozen_or_drv_stopped(txq))
4428                 ret = netdev_start_xmit(skb, dev, txq, false);
4429         HARD_TX_UNLOCK(dev, txq);
4430         dev_xmit_recursion_dec();
4431
4432         local_bh_enable();
4433         return ret;
4434 drop:
4435         dev_core_stats_tx_dropped_inc(dev);
4436         kfree_skb_list(skb);
4437         return NET_XMIT_DROP;
4438 }
4439 EXPORT_SYMBOL(__dev_direct_xmit);
4440
4441 /*************************************************************************
4442  *                      Receiver routines
4443  *************************************************************************/
4444
4445 int netdev_max_backlog __read_mostly = 1000;
4446 EXPORT_SYMBOL(netdev_max_backlog);
4447
4448 int netdev_tstamp_prequeue __read_mostly = 1;
4449 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4450 int netdev_budget __read_mostly = 300;
4451 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4452 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4453 int weight_p __read_mostly = 64;           /* old backlog weight */
4454 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4455 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4456 int dev_rx_weight __read_mostly = 64;
4457 int dev_tx_weight __read_mostly = 64;
4458
4459 /* Called with irq disabled */
4460 static inline void ____napi_schedule(struct softnet_data *sd,
4461                                      struct napi_struct *napi)
4462 {
4463         struct task_struct *thread;
4464
4465         lockdep_assert_irqs_disabled();
4466
4467         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4468                 /* Paired with smp_mb__before_atomic() in
4469                  * napi_enable()/dev_set_threaded().
4470                  * Use READ_ONCE() to guarantee a complete
4471                  * read on napi->thread. Only call
4472                  * wake_up_process() when it's not NULL.
4473                  */
4474                 thread = READ_ONCE(napi->thread);
4475                 if (thread) {
4476                         /* Avoid doing set_bit() if the thread is in
4477                          * INTERRUPTIBLE state, cause napi_thread_wait()
4478                          * makes sure to proceed with napi polling
4479                          * if the thread is explicitly woken from here.
4480                          */
4481                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4482                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4483                         wake_up_process(thread);
4484                         return;
4485                 }
4486         }
4487
4488         list_add_tail(&napi->poll_list, &sd->poll_list);
4489         WRITE_ONCE(napi->list_owner, smp_processor_id());
4490         /* If not called from net_rx_action()
4491          * we have to raise NET_RX_SOFTIRQ.
4492          */
4493         if (!sd->in_net_rx_action)
4494                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4495 }
4496
4497 #ifdef CONFIG_RPS
4498
4499 /* One global table that all flow-based protocols share. */
4500 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4501 EXPORT_SYMBOL(rps_sock_flow_table);
4502 u32 rps_cpu_mask __read_mostly;
4503 EXPORT_SYMBOL(rps_cpu_mask);
4504
4505 struct static_key_false rps_needed __read_mostly;
4506 EXPORT_SYMBOL(rps_needed);
4507 struct static_key_false rfs_needed __read_mostly;
4508 EXPORT_SYMBOL(rfs_needed);
4509
4510 static struct rps_dev_flow *
4511 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4512             struct rps_dev_flow *rflow, u16 next_cpu)
4513 {
4514         if (next_cpu < nr_cpu_ids) {
4515 #ifdef CONFIG_RFS_ACCEL
4516                 struct netdev_rx_queue *rxqueue;
4517                 struct rps_dev_flow_table *flow_table;
4518                 struct rps_dev_flow *old_rflow;
4519                 u32 flow_id;
4520                 u16 rxq_index;
4521                 int rc;
4522
4523                 /* Should we steer this flow to a different hardware queue? */
4524                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4525                     !(dev->features & NETIF_F_NTUPLE))
4526                         goto out;
4527                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4528                 if (rxq_index == skb_get_rx_queue(skb))
4529                         goto out;
4530
4531                 rxqueue = dev->_rx + rxq_index;
4532                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4533                 if (!flow_table)
4534                         goto out;
4535                 flow_id = skb_get_hash(skb) & flow_table->mask;
4536                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4537                                                         rxq_index, flow_id);
4538                 if (rc < 0)
4539                         goto out;
4540                 old_rflow = rflow;
4541                 rflow = &flow_table->flows[flow_id];
4542                 rflow->filter = rc;
4543                 if (old_rflow->filter == rflow->filter)
4544                         old_rflow->filter = RPS_NO_FILTER;
4545         out:
4546 #endif
4547                 rflow->last_qtail =
4548                         per_cpu(softnet_data, next_cpu).input_queue_head;
4549         }
4550
4551         rflow->cpu = next_cpu;
4552         return rflow;
4553 }
4554
4555 /*
4556  * get_rps_cpu is called from netif_receive_skb and returns the target
4557  * CPU from the RPS map of the receiving queue for a given skb.
4558  * rcu_read_lock must be held on entry.
4559  */
4560 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4561                        struct rps_dev_flow **rflowp)
4562 {
4563         const struct rps_sock_flow_table *sock_flow_table;
4564         struct netdev_rx_queue *rxqueue = dev->_rx;
4565         struct rps_dev_flow_table *flow_table;
4566         struct rps_map *map;
4567         int cpu = -1;
4568         u32 tcpu;
4569         u32 hash;
4570
4571         if (skb_rx_queue_recorded(skb)) {
4572                 u16 index = skb_get_rx_queue(skb);
4573
4574                 if (unlikely(index >= dev->real_num_rx_queues)) {
4575                         WARN_ONCE(dev->real_num_rx_queues > 1,
4576                                   "%s received packet on queue %u, but number "
4577                                   "of RX queues is %u\n",
4578                                   dev->name, index, dev->real_num_rx_queues);
4579                         goto done;
4580                 }
4581                 rxqueue += index;
4582         }
4583
4584         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4585
4586         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4587         map = rcu_dereference(rxqueue->rps_map);
4588         if (!flow_table && !map)
4589                 goto done;
4590
4591         skb_reset_network_header(skb);
4592         hash = skb_get_hash(skb);
4593         if (!hash)
4594                 goto done;
4595
4596         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4597         if (flow_table && sock_flow_table) {
4598                 struct rps_dev_flow *rflow;
4599                 u32 next_cpu;
4600                 u32 ident;
4601
4602                 /* First check into global flow table if there is a match.
4603                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4604                  */
4605                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4606                 if ((ident ^ hash) & ~rps_cpu_mask)
4607                         goto try_rps;
4608
4609                 next_cpu = ident & rps_cpu_mask;
4610
4611                 /* OK, now we know there is a match,
4612                  * we can look at the local (per receive queue) flow table
4613                  */
4614                 rflow = &flow_table->flows[hash & flow_table->mask];
4615                 tcpu = rflow->cpu;
4616
4617                 /*
4618                  * If the desired CPU (where last recvmsg was done) is
4619                  * different from current CPU (one in the rx-queue flow
4620                  * table entry), switch if one of the following holds:
4621                  *   - Current CPU is unset (>= nr_cpu_ids).
4622                  *   - Current CPU is offline.
4623                  *   - The current CPU's queue tail has advanced beyond the
4624                  *     last packet that was enqueued using this table entry.
4625                  *     This guarantees that all previous packets for the flow
4626                  *     have been dequeued, thus preserving in order delivery.
4627                  */
4628                 if (unlikely(tcpu != next_cpu) &&
4629                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4630                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4631                       rflow->last_qtail)) >= 0)) {
4632                         tcpu = next_cpu;
4633                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4634                 }
4635
4636                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4637                         *rflowp = rflow;
4638                         cpu = tcpu;
4639                         goto done;
4640                 }
4641         }
4642
4643 try_rps:
4644
4645         if (map) {
4646                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4647                 if (cpu_online(tcpu)) {
4648                         cpu = tcpu;
4649                         goto done;
4650                 }
4651         }
4652
4653 done:
4654         return cpu;
4655 }
4656
4657 #ifdef CONFIG_RFS_ACCEL
4658
4659 /**
4660  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4661  * @dev: Device on which the filter was set
4662  * @rxq_index: RX queue index
4663  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4664  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4665  *
4666  * Drivers that implement ndo_rx_flow_steer() should periodically call
4667  * this function for each installed filter and remove the filters for
4668  * which it returns %true.
4669  */
4670 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4671                          u32 flow_id, u16 filter_id)
4672 {
4673         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4674         struct rps_dev_flow_table *flow_table;
4675         struct rps_dev_flow *rflow;
4676         bool expire = true;
4677         unsigned int cpu;
4678
4679         rcu_read_lock();
4680         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4681         if (flow_table && flow_id <= flow_table->mask) {
4682                 rflow = &flow_table->flows[flow_id];
4683                 cpu = READ_ONCE(rflow->cpu);
4684                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4685                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4686                            rflow->last_qtail) <
4687                      (int)(10 * flow_table->mask)))
4688                         expire = false;
4689         }
4690         rcu_read_unlock();
4691         return expire;
4692 }
4693 EXPORT_SYMBOL(rps_may_expire_flow);
4694
4695 #endif /* CONFIG_RFS_ACCEL */
4696
4697 /* Called from hardirq (IPI) context */
4698 static void rps_trigger_softirq(void *data)
4699 {
4700         struct softnet_data *sd = data;
4701
4702         ____napi_schedule(sd, &sd->backlog);
4703         sd->received_rps++;
4704 }
4705
4706 #endif /* CONFIG_RPS */
4707
4708 /*
4709  * After we queued a packet into sd->input_pkt_queue,
4710  * we need to make sure this queue is serviced soon.
4711  *
4712  * - If this is another cpu queue, link it to our rps_ipi_list,
4713  *   and make sure we will process rps_ipi_list from net_rx_action().
4714  *
4715  * - If this is our own queue, NAPI schedule our backlog.
4716  *   Note that this also raises NET_RX_SOFTIRQ.
4717  */
4718 static void napi_schedule_rps(struct softnet_data *sd)
4719 {
4720         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4721
4722 #ifdef CONFIG_RPS
4723         if (sd != mysd) {
4724                 sd->rps_ipi_next = mysd->rps_ipi_list;
4725                 mysd->rps_ipi_list = sd;
4726
4727                 /* If not called from net_rx_action() or napi_threaded_poll()
4728                  * we have to raise NET_RX_SOFTIRQ.
4729                  */
4730                 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4731                         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4732                 return;
4733         }
4734 #endif /* CONFIG_RPS */
4735         __napi_schedule_irqoff(&mysd->backlog);
4736 }
4737
4738 #ifdef CONFIG_NET_FLOW_LIMIT
4739 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4740 #endif
4741
4742 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4743 {
4744 #ifdef CONFIG_NET_FLOW_LIMIT
4745         struct sd_flow_limit *fl;
4746         struct softnet_data *sd;
4747         unsigned int old_flow, new_flow;
4748
4749         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4750                 return false;
4751
4752         sd = this_cpu_ptr(&softnet_data);
4753
4754         rcu_read_lock();
4755         fl = rcu_dereference(sd->flow_limit);
4756         if (fl) {
4757                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4758                 old_flow = fl->history[fl->history_head];
4759                 fl->history[fl->history_head] = new_flow;
4760
4761                 fl->history_head++;
4762                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4763
4764                 if (likely(fl->buckets[old_flow]))
4765                         fl->buckets[old_flow]--;
4766
4767                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4768                         fl->count++;
4769                         rcu_read_unlock();
4770                         return true;
4771                 }
4772         }
4773         rcu_read_unlock();
4774 #endif
4775         return false;
4776 }
4777
4778 /*
4779  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4780  * queue (may be a remote CPU queue).
4781  */
4782 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4783                               unsigned int *qtail)
4784 {
4785         enum skb_drop_reason reason;
4786         struct softnet_data *sd;
4787         unsigned long flags;
4788         unsigned int qlen;
4789
4790         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4791         sd = &per_cpu(softnet_data, cpu);
4792
4793         rps_lock_irqsave(sd, &flags);
4794         if (!netif_running(skb->dev))
4795                 goto drop;
4796         qlen = skb_queue_len(&sd->input_pkt_queue);
4797         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4798                 if (qlen) {
4799 enqueue:
4800                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4801                         input_queue_tail_incr_save(sd, qtail);
4802                         rps_unlock_irq_restore(sd, &flags);
4803                         return NET_RX_SUCCESS;
4804                 }
4805
4806                 /* Schedule NAPI for backlog device
4807                  * We can use non atomic operation since we own the queue lock
4808                  */
4809                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4810                         napi_schedule_rps(sd);
4811                 goto enqueue;
4812         }
4813         reason = SKB_DROP_REASON_CPU_BACKLOG;
4814
4815 drop:
4816         sd->dropped++;
4817         rps_unlock_irq_restore(sd, &flags);
4818
4819         dev_core_stats_rx_dropped_inc(skb->dev);
4820         kfree_skb_reason(skb, reason);
4821         return NET_RX_DROP;
4822 }
4823
4824 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4825 {
4826         struct net_device *dev = skb->dev;
4827         struct netdev_rx_queue *rxqueue;
4828
4829         rxqueue = dev->_rx;
4830
4831         if (skb_rx_queue_recorded(skb)) {
4832                 u16 index = skb_get_rx_queue(skb);
4833
4834                 if (unlikely(index >= dev->real_num_rx_queues)) {
4835                         WARN_ONCE(dev->real_num_rx_queues > 1,
4836                                   "%s received packet on queue %u, but number "
4837                                   "of RX queues is %u\n",
4838                                   dev->name, index, dev->real_num_rx_queues);
4839
4840                         return rxqueue; /* Return first rxqueue */
4841                 }
4842                 rxqueue += index;
4843         }
4844         return rxqueue;
4845 }
4846
4847 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4848                              struct bpf_prog *xdp_prog)
4849 {
4850         void *orig_data, *orig_data_end, *hard_start;
4851         struct netdev_rx_queue *rxqueue;
4852         bool orig_bcast, orig_host;
4853         u32 mac_len, frame_sz;
4854         __be16 orig_eth_type;
4855         struct ethhdr *eth;
4856         u32 metalen, act;
4857         int off;
4858
4859         /* The XDP program wants to see the packet starting at the MAC
4860          * header.
4861          */
4862         mac_len = skb->data - skb_mac_header(skb);
4863         hard_start = skb->data - skb_headroom(skb);
4864
4865         /* SKB "head" area always have tailroom for skb_shared_info */
4866         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4867         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4868
4869         rxqueue = netif_get_rxqueue(skb);
4870         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4871         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4872                          skb_headlen(skb) + mac_len, true);
4873
4874         orig_data_end = xdp->data_end;
4875         orig_data = xdp->data;
4876         eth = (struct ethhdr *)xdp->data;
4877         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4878         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4879         orig_eth_type = eth->h_proto;
4880
4881         act = bpf_prog_run_xdp(xdp_prog, xdp);
4882
4883         /* check if bpf_xdp_adjust_head was used */
4884         off = xdp->data - orig_data;
4885         if (off) {
4886                 if (off > 0)
4887                         __skb_pull(skb, off);
4888                 else if (off < 0)
4889                         __skb_push(skb, -off);
4890
4891                 skb->mac_header += off;
4892                 skb_reset_network_header(skb);
4893         }
4894
4895         /* check if bpf_xdp_adjust_tail was used */
4896         off = xdp->data_end - orig_data_end;
4897         if (off != 0) {
4898                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4899                 skb->len += off; /* positive on grow, negative on shrink */
4900         }
4901
4902         /* check if XDP changed eth hdr such SKB needs update */
4903         eth = (struct ethhdr *)xdp->data;
4904         if ((orig_eth_type != eth->h_proto) ||
4905             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4906                                                   skb->dev->dev_addr)) ||
4907             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4908                 __skb_push(skb, ETH_HLEN);
4909                 skb->pkt_type = PACKET_HOST;
4910                 skb->protocol = eth_type_trans(skb, skb->dev);
4911         }
4912
4913         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4914          * before calling us again on redirect path. We do not call do_redirect
4915          * as we leave that up to the caller.
4916          *
4917          * Caller is responsible for managing lifetime of skb (i.e. calling
4918          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4919          */
4920         switch (act) {
4921         case XDP_REDIRECT:
4922         case XDP_TX:
4923                 __skb_push(skb, mac_len);
4924                 break;
4925         case XDP_PASS:
4926                 metalen = xdp->data - xdp->data_meta;
4927                 if (metalen)
4928                         skb_metadata_set(skb, metalen);
4929                 break;
4930         }
4931
4932         return act;
4933 }
4934
4935 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4936                                      struct xdp_buff *xdp,
4937                                      struct bpf_prog *xdp_prog)
4938 {
4939         u32 act = XDP_DROP;
4940
4941         /* Reinjected packets coming from act_mirred or similar should
4942          * not get XDP generic processing.
4943          */
4944         if (skb_is_redirected(skb))
4945                 return XDP_PASS;
4946
4947         /* XDP packets must be linear and must have sufficient headroom
4948          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4949          * native XDP provides, thus we need to do it here as well.
4950          */
4951         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4952             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4953                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4954                 int troom = skb->tail + skb->data_len - skb->end;
4955
4956                 /* In case we have to go down the path and also linearize,
4957                  * then lets do the pskb_expand_head() work just once here.
4958                  */
4959                 if (pskb_expand_head(skb,
4960                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4961                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4962                         goto do_drop;
4963                 if (skb_linearize(skb))
4964                         goto do_drop;
4965         }
4966
4967         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4968         switch (act) {
4969         case XDP_REDIRECT:
4970         case XDP_TX:
4971         case XDP_PASS:
4972                 break;
4973         default:
4974                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4975                 fallthrough;
4976         case XDP_ABORTED:
4977                 trace_xdp_exception(skb->dev, xdp_prog, act);
4978                 fallthrough;
4979         case XDP_DROP:
4980         do_drop:
4981                 kfree_skb(skb);
4982                 break;
4983         }
4984
4985         return act;
4986 }
4987
4988 /* When doing generic XDP we have to bypass the qdisc layer and the
4989  * network taps in order to match in-driver-XDP behavior. This also means
4990  * that XDP packets are able to starve other packets going through a qdisc,
4991  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4992  * queues, so they do not have this starvation issue.
4993  */
4994 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4995 {
4996         struct net_device *dev = skb->dev;
4997         struct netdev_queue *txq;
4998         bool free_skb = true;
4999         int cpu, rc;
5000
5001         txq = netdev_core_pick_tx(dev, skb, NULL);
5002         cpu = smp_processor_id();
5003         HARD_TX_LOCK(dev, txq, cpu);
5004         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5005                 rc = netdev_start_xmit(skb, dev, txq, 0);
5006                 if (dev_xmit_complete(rc))
5007                         free_skb = false;
5008         }
5009         HARD_TX_UNLOCK(dev, txq);
5010         if (free_skb) {
5011                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5012                 dev_core_stats_tx_dropped_inc(dev);
5013                 kfree_skb(skb);
5014         }
5015 }
5016
5017 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5018
5019 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5020 {
5021         if (xdp_prog) {
5022                 struct xdp_buff xdp;
5023                 u32 act;
5024                 int err;
5025
5026                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5027                 if (act != XDP_PASS) {
5028                         switch (act) {
5029                         case XDP_REDIRECT:
5030                                 err = xdp_do_generic_redirect(skb->dev, skb,
5031                                                               &xdp, xdp_prog);
5032                                 if (err)
5033                                         goto out_redir;
5034                                 break;
5035                         case XDP_TX:
5036                                 generic_xdp_tx(skb, xdp_prog);
5037                                 break;
5038                         }
5039                         return XDP_DROP;
5040                 }
5041         }
5042         return XDP_PASS;
5043 out_redir:
5044         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5045         return XDP_DROP;
5046 }
5047 EXPORT_SYMBOL_GPL(do_xdp_generic);
5048
5049 static int netif_rx_internal(struct sk_buff *skb)
5050 {
5051         int ret;
5052
5053         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5054
5055         trace_netif_rx(skb);
5056
5057 #ifdef CONFIG_RPS
5058         if (static_branch_unlikely(&rps_needed)) {
5059                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5060                 int cpu;
5061
5062                 rcu_read_lock();
5063
5064                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5065                 if (cpu < 0)
5066                         cpu = smp_processor_id();
5067
5068                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5069
5070                 rcu_read_unlock();
5071         } else
5072 #endif
5073         {
5074                 unsigned int qtail;
5075
5076                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5077         }
5078         return ret;
5079 }
5080
5081 /**
5082  *      __netif_rx      -       Slightly optimized version of netif_rx
5083  *      @skb: buffer to post
5084  *
5085  *      This behaves as netif_rx except that it does not disable bottom halves.
5086  *      As a result this function may only be invoked from the interrupt context
5087  *      (either hard or soft interrupt).
5088  */
5089 int __netif_rx(struct sk_buff *skb)
5090 {
5091         int ret;
5092
5093         lockdep_assert_once(hardirq_count() | softirq_count());
5094
5095         trace_netif_rx_entry(skb);
5096         ret = netif_rx_internal(skb);
5097         trace_netif_rx_exit(ret);
5098         return ret;
5099 }
5100 EXPORT_SYMBOL(__netif_rx);
5101
5102 /**
5103  *      netif_rx        -       post buffer to the network code
5104  *      @skb: buffer to post
5105  *
5106  *      This function receives a packet from a device driver and queues it for
5107  *      the upper (protocol) levels to process via the backlog NAPI device. It
5108  *      always succeeds. The buffer may be dropped during processing for
5109  *      congestion control or by the protocol layers.
5110  *      The network buffer is passed via the backlog NAPI device. Modern NIC
5111  *      driver should use NAPI and GRO.
5112  *      This function can used from interrupt and from process context. The
5113  *      caller from process context must not disable interrupts before invoking
5114  *      this function.
5115  *
5116  *      return values:
5117  *      NET_RX_SUCCESS  (no congestion)
5118  *      NET_RX_DROP     (packet was dropped)
5119  *
5120  */
5121 int netif_rx(struct sk_buff *skb)
5122 {
5123         bool need_bh_off = !(hardirq_count() | softirq_count());
5124         int ret;
5125
5126         if (need_bh_off)
5127                 local_bh_disable();
5128         trace_netif_rx_entry(skb);
5129         ret = netif_rx_internal(skb);
5130         trace_netif_rx_exit(ret);
5131         if (need_bh_off)
5132                 local_bh_enable();
5133         return ret;
5134 }
5135 EXPORT_SYMBOL(netif_rx);
5136
5137 static __latent_entropy void net_tx_action(struct softirq_action *h)
5138 {
5139         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5140
5141         if (sd->completion_queue) {
5142                 struct sk_buff *clist;
5143
5144                 local_irq_disable();
5145                 clist = sd->completion_queue;
5146                 sd->completion_queue = NULL;
5147                 local_irq_enable();
5148
5149                 while (clist) {
5150                         struct sk_buff *skb = clist;
5151
5152                         clist = clist->next;
5153
5154                         WARN_ON(refcount_read(&skb->users));
5155                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5156                                 trace_consume_skb(skb, net_tx_action);
5157                         else
5158                                 trace_kfree_skb(skb, net_tx_action,
5159                                                 get_kfree_skb_cb(skb)->reason);
5160
5161                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5162                                 __kfree_skb(skb);
5163                         else
5164                                 __napi_kfree_skb(skb,
5165                                                  get_kfree_skb_cb(skb)->reason);
5166                 }
5167         }
5168
5169         if (sd->output_queue) {
5170                 struct Qdisc *head;
5171
5172                 local_irq_disable();
5173                 head = sd->output_queue;
5174                 sd->output_queue = NULL;
5175                 sd->output_queue_tailp = &sd->output_queue;
5176                 local_irq_enable();
5177
5178                 rcu_read_lock();
5179
5180                 while (head) {
5181                         struct Qdisc *q = head;
5182                         spinlock_t *root_lock = NULL;
5183
5184                         head = head->next_sched;
5185
5186                         /* We need to make sure head->next_sched is read
5187                          * before clearing __QDISC_STATE_SCHED
5188                          */
5189                         smp_mb__before_atomic();
5190
5191                         if (!(q->flags & TCQ_F_NOLOCK)) {
5192                                 root_lock = qdisc_lock(q);
5193                                 spin_lock(root_lock);
5194                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5195                                                      &q->state))) {
5196                                 /* There is a synchronize_net() between
5197                                  * STATE_DEACTIVATED flag being set and
5198                                  * qdisc_reset()/some_qdisc_is_busy() in
5199                                  * dev_deactivate(), so we can safely bail out
5200                                  * early here to avoid data race between
5201                                  * qdisc_deactivate() and some_qdisc_is_busy()
5202                                  * for lockless qdisc.
5203                                  */
5204                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5205                                 continue;
5206                         }
5207
5208                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5209                         qdisc_run(q);
5210                         if (root_lock)
5211                                 spin_unlock(root_lock);
5212                 }
5213
5214                 rcu_read_unlock();
5215         }
5216
5217         xfrm_dev_backlog(sd);
5218 }
5219
5220 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5221 /* This hook is defined here for ATM LANE */
5222 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5223                              unsigned char *addr) __read_mostly;
5224 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5225 #endif
5226
5227 /**
5228  *      netdev_is_rx_handler_busy - check if receive handler is registered
5229  *      @dev: device to check
5230  *
5231  *      Check if a receive handler is already registered for a given device.
5232  *      Return true if there one.
5233  *
5234  *      The caller must hold the rtnl_mutex.
5235  */
5236 bool netdev_is_rx_handler_busy(struct net_device *dev)
5237 {
5238         ASSERT_RTNL();
5239         return dev && rtnl_dereference(dev->rx_handler);
5240 }
5241 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5242
5243 /**
5244  *      netdev_rx_handler_register - register receive handler
5245  *      @dev: device to register a handler for
5246  *      @rx_handler: receive handler to register
5247  *      @rx_handler_data: data pointer that is used by rx handler
5248  *
5249  *      Register a receive handler for a device. This handler will then be
5250  *      called from __netif_receive_skb. A negative errno code is returned
5251  *      on a failure.
5252  *
5253  *      The caller must hold the rtnl_mutex.
5254  *
5255  *      For a general description of rx_handler, see enum rx_handler_result.
5256  */
5257 int netdev_rx_handler_register(struct net_device *dev,
5258                                rx_handler_func_t *rx_handler,
5259                                void *rx_handler_data)
5260 {
5261         if (netdev_is_rx_handler_busy(dev))
5262                 return -EBUSY;
5263
5264         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5265                 return -EINVAL;
5266
5267         /* Note: rx_handler_data must be set before rx_handler */
5268         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5269         rcu_assign_pointer(dev->rx_handler, rx_handler);
5270
5271         return 0;
5272 }
5273 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5274
5275 /**
5276  *      netdev_rx_handler_unregister - unregister receive handler
5277  *      @dev: device to unregister a handler from
5278  *
5279  *      Unregister a receive handler from a device.
5280  *
5281  *      The caller must hold the rtnl_mutex.
5282  */
5283 void netdev_rx_handler_unregister(struct net_device *dev)
5284 {
5285
5286         ASSERT_RTNL();
5287         RCU_INIT_POINTER(dev->rx_handler, NULL);
5288         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5289          * section has a guarantee to see a non NULL rx_handler_data
5290          * as well.
5291          */
5292         synchronize_net();
5293         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5294 }
5295 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5296
5297 /*
5298  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5299  * the special handling of PFMEMALLOC skbs.
5300  */
5301 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5302 {
5303         switch (skb->protocol) {
5304         case htons(ETH_P_ARP):
5305         case htons(ETH_P_IP):
5306         case htons(ETH_P_IPV6):
5307         case htons(ETH_P_8021Q):
5308         case htons(ETH_P_8021AD):
5309                 return true;
5310         default:
5311                 return false;
5312         }
5313 }
5314
5315 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5316                              int *ret, struct net_device *orig_dev)
5317 {
5318         if (nf_hook_ingress_active(skb)) {
5319                 int ingress_retval;
5320
5321                 if (*pt_prev) {
5322                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5323                         *pt_prev = NULL;
5324                 }
5325
5326                 rcu_read_lock();
5327                 ingress_retval = nf_hook_ingress(skb);
5328                 rcu_read_unlock();
5329                 return ingress_retval;
5330         }
5331         return 0;
5332 }
5333
5334 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5335                                     struct packet_type **ppt_prev)
5336 {
5337         struct packet_type *ptype, *pt_prev;
5338         rx_handler_func_t *rx_handler;
5339         struct sk_buff *skb = *pskb;
5340         struct net_device *orig_dev;
5341         bool deliver_exact = false;
5342         int ret = NET_RX_DROP;
5343         __be16 type;
5344
5345         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5346
5347         trace_netif_receive_skb(skb);
5348
5349         orig_dev = skb->dev;
5350
5351         skb_reset_network_header(skb);
5352         if (!skb_transport_header_was_set(skb))
5353                 skb_reset_transport_header(skb);
5354         skb_reset_mac_len(skb);
5355
5356         pt_prev = NULL;
5357
5358 another_round:
5359         skb->skb_iif = skb->dev->ifindex;
5360
5361         __this_cpu_inc(softnet_data.processed);
5362
5363         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5364                 int ret2;
5365
5366                 migrate_disable();
5367                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5368                 migrate_enable();
5369
5370                 if (ret2 != XDP_PASS) {
5371                         ret = NET_RX_DROP;
5372                         goto out;
5373                 }
5374         }
5375
5376         if (eth_type_vlan(skb->protocol)) {
5377                 skb = skb_vlan_untag(skb);
5378                 if (unlikely(!skb))
5379                         goto out;
5380         }
5381
5382         if (skb_skip_tc_classify(skb))
5383                 goto skip_classify;
5384
5385         if (pfmemalloc)
5386                 goto skip_taps;
5387
5388         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5389                 if (pt_prev)
5390                         ret = deliver_skb(skb, pt_prev, orig_dev);
5391                 pt_prev = ptype;
5392         }
5393
5394         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5395                 if (pt_prev)
5396                         ret = deliver_skb(skb, pt_prev, orig_dev);
5397                 pt_prev = ptype;
5398         }
5399
5400 skip_taps:
5401 #ifdef CONFIG_NET_INGRESS
5402         if (static_branch_unlikely(&ingress_needed_key)) {
5403                 bool another = false;
5404
5405                 nf_skip_egress(skb, true);
5406                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5407                                          &another);
5408                 if (another)
5409                         goto another_round;
5410                 if (!skb)
5411                         goto out;
5412
5413                 nf_skip_egress(skb, false);
5414                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5415                         goto out;
5416         }
5417 #endif
5418         skb_reset_redirect(skb);
5419 skip_classify:
5420         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5421                 goto drop;
5422
5423         if (skb_vlan_tag_present(skb)) {
5424                 if (pt_prev) {
5425                         ret = deliver_skb(skb, pt_prev, orig_dev);
5426                         pt_prev = NULL;
5427                 }
5428                 if (vlan_do_receive(&skb))
5429                         goto another_round;
5430                 else if (unlikely(!skb))
5431                         goto out;
5432         }
5433
5434         rx_handler = rcu_dereference(skb->dev->rx_handler);
5435         if (rx_handler) {
5436                 if (pt_prev) {
5437                         ret = deliver_skb(skb, pt_prev, orig_dev);
5438                         pt_prev = NULL;
5439                 }
5440                 switch (rx_handler(&skb)) {
5441                 case RX_HANDLER_CONSUMED:
5442                         ret = NET_RX_SUCCESS;
5443                         goto out;
5444                 case RX_HANDLER_ANOTHER:
5445                         goto another_round;
5446                 case RX_HANDLER_EXACT:
5447                         deliver_exact = true;
5448                         break;
5449                 case RX_HANDLER_PASS:
5450                         break;
5451                 default:
5452                         BUG();
5453                 }
5454         }
5455
5456         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5457 check_vlan_id:
5458                 if (skb_vlan_tag_get_id(skb)) {
5459                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5460                          * find vlan device.
5461                          */
5462                         skb->pkt_type = PACKET_OTHERHOST;
5463                 } else if (eth_type_vlan(skb->protocol)) {
5464                         /* Outer header is 802.1P with vlan 0, inner header is
5465                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5466                          * not find vlan dev for vlan id 0.
5467                          */
5468                         __vlan_hwaccel_clear_tag(skb);
5469                         skb = skb_vlan_untag(skb);
5470                         if (unlikely(!skb))
5471                                 goto out;
5472                         if (vlan_do_receive(&skb))
5473                                 /* After stripping off 802.1P header with vlan 0
5474                                  * vlan dev is found for inner header.
5475                                  */
5476                                 goto another_round;
5477                         else if (unlikely(!skb))
5478                                 goto out;
5479                         else
5480                                 /* We have stripped outer 802.1P vlan 0 header.
5481                                  * But could not find vlan dev.
5482                                  * check again for vlan id to set OTHERHOST.
5483                                  */
5484                                 goto check_vlan_id;
5485                 }
5486                 /* Note: we might in the future use prio bits
5487                  * and set skb->priority like in vlan_do_receive()
5488                  * For the time being, just ignore Priority Code Point
5489                  */
5490                 __vlan_hwaccel_clear_tag(skb);
5491         }
5492
5493         type = skb->protocol;
5494
5495         /* deliver only exact match when indicated */
5496         if (likely(!deliver_exact)) {
5497                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5498                                        &ptype_base[ntohs(type) &
5499                                                    PTYPE_HASH_MASK]);
5500         }
5501
5502         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5503                                &orig_dev->ptype_specific);
5504
5505         if (unlikely(skb->dev != orig_dev)) {
5506                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5507                                        &skb->dev->ptype_specific);
5508         }
5509
5510         if (pt_prev) {
5511                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5512                         goto drop;
5513                 *ppt_prev = pt_prev;
5514         } else {
5515 drop:
5516                 if (!deliver_exact)
5517                         dev_core_stats_rx_dropped_inc(skb->dev);
5518                 else
5519                         dev_core_stats_rx_nohandler_inc(skb->dev);
5520                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5521                 /* Jamal, now you will not able to escape explaining
5522                  * me how you were going to use this. :-)
5523                  */
5524                 ret = NET_RX_DROP;
5525         }
5526
5527 out:
5528         /* The invariant here is that if *ppt_prev is not NULL
5529          * then skb should also be non-NULL.
5530          *
5531          * Apparently *ppt_prev assignment above holds this invariant due to
5532          * skb dereferencing near it.
5533          */
5534         *pskb = skb;
5535         return ret;
5536 }
5537
5538 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5539 {
5540         struct net_device *orig_dev = skb->dev;
5541         struct packet_type *pt_prev = NULL;
5542         int ret;
5543
5544         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5545         if (pt_prev)
5546                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5547                                          skb->dev, pt_prev, orig_dev);
5548         return ret;
5549 }
5550
5551 /**
5552  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5553  *      @skb: buffer to process
5554  *
5555  *      More direct receive version of netif_receive_skb().  It should
5556  *      only be used by callers that have a need to skip RPS and Generic XDP.
5557  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5558  *
5559  *      This function may only be called from softirq context and interrupts
5560  *      should be enabled.
5561  *
5562  *      Return values (usually ignored):
5563  *      NET_RX_SUCCESS: no congestion
5564  *      NET_RX_DROP: packet was dropped
5565  */
5566 int netif_receive_skb_core(struct sk_buff *skb)
5567 {
5568         int ret;
5569
5570         rcu_read_lock();
5571         ret = __netif_receive_skb_one_core(skb, false);
5572         rcu_read_unlock();
5573
5574         return ret;
5575 }
5576 EXPORT_SYMBOL(netif_receive_skb_core);
5577
5578 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5579                                                   struct packet_type *pt_prev,
5580                                                   struct net_device *orig_dev)
5581 {
5582         struct sk_buff *skb, *next;
5583
5584         if (!pt_prev)
5585                 return;
5586         if (list_empty(head))
5587                 return;
5588         if (pt_prev->list_func != NULL)
5589                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5590                                    ip_list_rcv, head, pt_prev, orig_dev);
5591         else
5592                 list_for_each_entry_safe(skb, next, head, list) {
5593                         skb_list_del_init(skb);
5594                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5595                 }
5596 }
5597
5598 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5599 {
5600         /* Fast-path assumptions:
5601          * - There is no RX handler.
5602          * - Only one packet_type matches.
5603          * If either of these fails, we will end up doing some per-packet
5604          * processing in-line, then handling the 'last ptype' for the whole
5605          * sublist.  This can't cause out-of-order delivery to any single ptype,
5606          * because the 'last ptype' must be constant across the sublist, and all
5607          * other ptypes are handled per-packet.
5608          */
5609         /* Current (common) ptype of sublist */
5610         struct packet_type *pt_curr = NULL;
5611         /* Current (common) orig_dev of sublist */
5612         struct net_device *od_curr = NULL;
5613         struct list_head sublist;
5614         struct sk_buff *skb, *next;
5615
5616         INIT_LIST_HEAD(&sublist);
5617         list_for_each_entry_safe(skb, next, head, list) {
5618                 struct net_device *orig_dev = skb->dev;
5619                 struct packet_type *pt_prev = NULL;
5620
5621                 skb_list_del_init(skb);
5622                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5623                 if (!pt_prev)
5624                         continue;
5625                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5626                         /* dispatch old sublist */
5627                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5628                         /* start new sublist */
5629                         INIT_LIST_HEAD(&sublist);
5630                         pt_curr = pt_prev;
5631                         od_curr = orig_dev;
5632                 }
5633                 list_add_tail(&skb->list, &sublist);
5634         }
5635
5636         /* dispatch final sublist */
5637         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5638 }
5639
5640 static int __netif_receive_skb(struct sk_buff *skb)
5641 {
5642         int ret;
5643
5644         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5645                 unsigned int noreclaim_flag;
5646
5647                 /*
5648                  * PFMEMALLOC skbs are special, they should
5649                  * - be delivered to SOCK_MEMALLOC sockets only
5650                  * - stay away from userspace
5651                  * - have bounded memory usage
5652                  *
5653                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5654                  * context down to all allocation sites.
5655                  */
5656                 noreclaim_flag = memalloc_noreclaim_save();
5657                 ret = __netif_receive_skb_one_core(skb, true);
5658                 memalloc_noreclaim_restore(noreclaim_flag);
5659         } else
5660                 ret = __netif_receive_skb_one_core(skb, false);
5661
5662         return ret;
5663 }
5664
5665 static void __netif_receive_skb_list(struct list_head *head)
5666 {
5667         unsigned long noreclaim_flag = 0;
5668         struct sk_buff *skb, *next;
5669         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5670
5671         list_for_each_entry_safe(skb, next, head, list) {
5672                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5673                         struct list_head sublist;
5674
5675                         /* Handle the previous sublist */
5676                         list_cut_before(&sublist, head, &skb->list);
5677                         if (!list_empty(&sublist))
5678                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5679                         pfmemalloc = !pfmemalloc;
5680                         /* See comments in __netif_receive_skb */
5681                         if (pfmemalloc)
5682                                 noreclaim_flag = memalloc_noreclaim_save();
5683                         else
5684                                 memalloc_noreclaim_restore(noreclaim_flag);
5685                 }
5686         }
5687         /* Handle the remaining sublist */
5688         if (!list_empty(head))
5689                 __netif_receive_skb_list_core(head, pfmemalloc);
5690         /* Restore pflags */
5691         if (pfmemalloc)
5692                 memalloc_noreclaim_restore(noreclaim_flag);
5693 }
5694
5695 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5696 {
5697         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5698         struct bpf_prog *new = xdp->prog;
5699         int ret = 0;
5700
5701         switch (xdp->command) {
5702         case XDP_SETUP_PROG:
5703                 rcu_assign_pointer(dev->xdp_prog, new);
5704                 if (old)
5705                         bpf_prog_put(old);
5706
5707                 if (old && !new) {
5708                         static_branch_dec(&generic_xdp_needed_key);
5709                 } else if (new && !old) {
5710                         static_branch_inc(&generic_xdp_needed_key);
5711                         dev_disable_lro(dev);
5712                         dev_disable_gro_hw(dev);
5713                 }
5714                 break;
5715
5716         default:
5717                 ret = -EINVAL;
5718                 break;
5719         }
5720
5721         return ret;
5722 }
5723
5724 static int netif_receive_skb_internal(struct sk_buff *skb)
5725 {
5726         int ret;
5727
5728         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5729
5730         if (skb_defer_rx_timestamp(skb))
5731                 return NET_RX_SUCCESS;
5732
5733         rcu_read_lock();
5734 #ifdef CONFIG_RPS
5735         if (static_branch_unlikely(&rps_needed)) {
5736                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5737                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5738
5739                 if (cpu >= 0) {
5740                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5741                         rcu_read_unlock();
5742                         return ret;
5743                 }
5744         }
5745 #endif
5746         ret = __netif_receive_skb(skb);
5747         rcu_read_unlock();
5748         return ret;
5749 }
5750
5751 void netif_receive_skb_list_internal(struct list_head *head)
5752 {
5753         struct sk_buff *skb, *next;
5754         struct list_head sublist;
5755
5756         INIT_LIST_HEAD(&sublist);
5757         list_for_each_entry_safe(skb, next, head, list) {
5758                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5759                 skb_list_del_init(skb);
5760                 if (!skb_defer_rx_timestamp(skb))
5761                         list_add_tail(&skb->list, &sublist);
5762         }
5763         list_splice_init(&sublist, head);
5764
5765         rcu_read_lock();
5766 #ifdef CONFIG_RPS
5767         if (static_branch_unlikely(&rps_needed)) {
5768                 list_for_each_entry_safe(skb, next, head, list) {
5769                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5770                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5771
5772                         if (cpu >= 0) {
5773                                 /* Will be handled, remove from list */
5774                                 skb_list_del_init(skb);
5775                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5776                         }
5777                 }
5778         }
5779 #endif
5780         __netif_receive_skb_list(head);
5781         rcu_read_unlock();
5782 }
5783
5784 /**
5785  *      netif_receive_skb - process receive buffer from network
5786  *      @skb: buffer to process
5787  *
5788  *      netif_receive_skb() is the main receive data processing function.
5789  *      It always succeeds. The buffer may be dropped during processing
5790  *      for congestion control or by the protocol layers.
5791  *
5792  *      This function may only be called from softirq context and interrupts
5793  *      should be enabled.
5794  *
5795  *      Return values (usually ignored):
5796  *      NET_RX_SUCCESS: no congestion
5797  *      NET_RX_DROP: packet was dropped
5798  */
5799 int netif_receive_skb(struct sk_buff *skb)
5800 {
5801         int ret;
5802
5803         trace_netif_receive_skb_entry(skb);
5804
5805         ret = netif_receive_skb_internal(skb);
5806         trace_netif_receive_skb_exit(ret);
5807
5808         return ret;
5809 }
5810 EXPORT_SYMBOL(netif_receive_skb);
5811
5812 /**
5813  *      netif_receive_skb_list - process many receive buffers from network
5814  *      @head: list of skbs to process.
5815  *
5816  *      Since return value of netif_receive_skb() is normally ignored, and
5817  *      wouldn't be meaningful for a list, this function returns void.
5818  *
5819  *      This function may only be called from softirq context and interrupts
5820  *      should be enabled.
5821  */
5822 void netif_receive_skb_list(struct list_head *head)
5823 {
5824         struct sk_buff *skb;
5825
5826         if (list_empty(head))
5827                 return;
5828         if (trace_netif_receive_skb_list_entry_enabled()) {
5829                 list_for_each_entry(skb, head, list)
5830                         trace_netif_receive_skb_list_entry(skb);
5831         }
5832         netif_receive_skb_list_internal(head);
5833         trace_netif_receive_skb_list_exit(0);
5834 }
5835 EXPORT_SYMBOL(netif_receive_skb_list);
5836
5837 static DEFINE_PER_CPU(struct work_struct, flush_works);
5838
5839 /* Network device is going away, flush any packets still pending */
5840 static void flush_backlog(struct work_struct *work)
5841 {
5842         struct sk_buff *skb, *tmp;
5843         struct softnet_data *sd;
5844
5845         local_bh_disable();
5846         sd = this_cpu_ptr(&softnet_data);
5847
5848         rps_lock_irq_disable(sd);
5849         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5850                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5851                         __skb_unlink(skb, &sd->input_pkt_queue);
5852                         dev_kfree_skb_irq(skb);
5853                         input_queue_head_incr(sd);
5854                 }
5855         }
5856         rps_unlock_irq_enable(sd);
5857
5858         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5859                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5860                         __skb_unlink(skb, &sd->process_queue);
5861                         kfree_skb(skb);
5862                         input_queue_head_incr(sd);
5863                 }
5864         }
5865         local_bh_enable();
5866 }
5867
5868 static bool flush_required(int cpu)
5869 {
5870 #if IS_ENABLED(CONFIG_RPS)
5871         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5872         bool do_flush;
5873
5874         rps_lock_irq_disable(sd);
5875
5876         /* as insertion into process_queue happens with the rps lock held,
5877          * process_queue access may race only with dequeue
5878          */
5879         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5880                    !skb_queue_empty_lockless(&sd->process_queue);
5881         rps_unlock_irq_enable(sd);
5882
5883         return do_flush;
5884 #endif
5885         /* without RPS we can't safely check input_pkt_queue: during a
5886          * concurrent remote skb_queue_splice() we can detect as empty both
5887          * input_pkt_queue and process_queue even if the latter could end-up
5888          * containing a lot of packets.
5889          */
5890         return true;
5891 }
5892
5893 static void flush_all_backlogs(void)
5894 {
5895         static cpumask_t flush_cpus;
5896         unsigned int cpu;
5897
5898         /* since we are under rtnl lock protection we can use static data
5899          * for the cpumask and avoid allocating on stack the possibly
5900          * large mask
5901          */
5902         ASSERT_RTNL();
5903
5904         cpus_read_lock();
5905
5906         cpumask_clear(&flush_cpus);
5907         for_each_online_cpu(cpu) {
5908                 if (flush_required(cpu)) {
5909                         queue_work_on(cpu, system_highpri_wq,
5910                                       per_cpu_ptr(&flush_works, cpu));
5911                         cpumask_set_cpu(cpu, &flush_cpus);
5912                 }
5913         }
5914
5915         /* we can have in flight packet[s] on the cpus we are not flushing,
5916          * synchronize_net() in unregister_netdevice_many() will take care of
5917          * them
5918          */
5919         for_each_cpu(cpu, &flush_cpus)
5920                 flush_work(per_cpu_ptr(&flush_works, cpu));
5921
5922         cpus_read_unlock();
5923 }
5924
5925 static void net_rps_send_ipi(struct softnet_data *remsd)
5926 {
5927 #ifdef CONFIG_RPS
5928         while (remsd) {
5929                 struct softnet_data *next = remsd->rps_ipi_next;
5930
5931                 if (cpu_online(remsd->cpu))
5932                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5933                 remsd = next;
5934         }
5935 #endif
5936 }
5937
5938 /*
5939  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5940  * Note: called with local irq disabled, but exits with local irq enabled.
5941  */
5942 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5943 {
5944 #ifdef CONFIG_RPS
5945         struct softnet_data *remsd = sd->rps_ipi_list;
5946
5947         if (remsd) {
5948                 sd->rps_ipi_list = NULL;
5949
5950                 local_irq_enable();
5951
5952                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5953                 net_rps_send_ipi(remsd);
5954         } else
5955 #endif
5956                 local_irq_enable();
5957 }
5958
5959 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5960 {
5961 #ifdef CONFIG_RPS
5962         return sd->rps_ipi_list != NULL;
5963 #else
5964         return false;
5965 #endif
5966 }
5967
5968 static int process_backlog(struct napi_struct *napi, int quota)
5969 {
5970         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5971         bool again = true;
5972         int work = 0;
5973
5974         /* Check if we have pending ipi, its better to send them now,
5975          * not waiting net_rx_action() end.
5976          */
5977         if (sd_has_rps_ipi_waiting(sd)) {
5978                 local_irq_disable();
5979                 net_rps_action_and_irq_enable(sd);
5980         }
5981
5982         napi->weight = READ_ONCE(dev_rx_weight);
5983         while (again) {
5984                 struct sk_buff *skb;
5985
5986                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5987                         rcu_read_lock();
5988                         __netif_receive_skb(skb);
5989                         rcu_read_unlock();
5990                         input_queue_head_incr(sd);
5991                         if (++work >= quota)
5992                                 return work;
5993
5994                 }
5995
5996                 rps_lock_irq_disable(sd);
5997                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5998                         /*
5999                          * Inline a custom version of __napi_complete().
6000                          * only current cpu owns and manipulates this napi,
6001                          * and NAPI_STATE_SCHED is the only possible flag set
6002                          * on backlog.
6003                          * We can use a plain write instead of clear_bit(),
6004                          * and we dont need an smp_mb() memory barrier.
6005                          */
6006                         napi->state = 0;
6007                         again = false;
6008                 } else {
6009                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6010                                                    &sd->process_queue);
6011                 }
6012                 rps_unlock_irq_enable(sd);
6013         }
6014
6015         return work;
6016 }
6017
6018 /**
6019  * __napi_schedule - schedule for receive
6020  * @n: entry to schedule
6021  *
6022  * The entry's receive function will be scheduled to run.
6023  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6024  */
6025 void __napi_schedule(struct napi_struct *n)
6026 {
6027         unsigned long flags;
6028
6029         local_irq_save(flags);
6030         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6031         local_irq_restore(flags);
6032 }
6033 EXPORT_SYMBOL(__napi_schedule);
6034
6035 /**
6036  *      napi_schedule_prep - check if napi can be scheduled
6037  *      @n: napi context
6038  *
6039  * Test if NAPI routine is already running, and if not mark
6040  * it as running.  This is used as a condition variable to
6041  * insure only one NAPI poll instance runs.  We also make
6042  * sure there is no pending NAPI disable.
6043  */
6044 bool napi_schedule_prep(struct napi_struct *n)
6045 {
6046         unsigned long new, val = READ_ONCE(n->state);
6047
6048         do {
6049                 if (unlikely(val & NAPIF_STATE_DISABLE))
6050                         return false;
6051                 new = val | NAPIF_STATE_SCHED;
6052
6053                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6054                  * This was suggested by Alexander Duyck, as compiler
6055                  * emits better code than :
6056                  * if (val & NAPIF_STATE_SCHED)
6057                  *     new |= NAPIF_STATE_MISSED;
6058                  */
6059                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6060                                                    NAPIF_STATE_MISSED;
6061         } while (!try_cmpxchg(&n->state, &val, new));
6062
6063         return !(val & NAPIF_STATE_SCHED);
6064 }
6065 EXPORT_SYMBOL(napi_schedule_prep);
6066
6067 /**
6068  * __napi_schedule_irqoff - schedule for receive
6069  * @n: entry to schedule
6070  *
6071  * Variant of __napi_schedule() assuming hard irqs are masked.
6072  *
6073  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6074  * because the interrupt disabled assumption might not be true
6075  * due to force-threaded interrupts and spinlock substitution.
6076  */
6077 void __napi_schedule_irqoff(struct napi_struct *n)
6078 {
6079         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6080                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6081         else
6082                 __napi_schedule(n);
6083 }
6084 EXPORT_SYMBOL(__napi_schedule_irqoff);
6085
6086 bool napi_complete_done(struct napi_struct *n, int work_done)
6087 {
6088         unsigned long flags, val, new, timeout = 0;
6089         bool ret = true;
6090
6091         /*
6092          * 1) Don't let napi dequeue from the cpu poll list
6093          *    just in case its running on a different cpu.
6094          * 2) If we are busy polling, do nothing here, we have
6095          *    the guarantee we will be called later.
6096          */
6097         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6098                                  NAPIF_STATE_IN_BUSY_POLL)))
6099                 return false;
6100
6101         if (work_done) {
6102                 if (n->gro_bitmask)
6103                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6104                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6105         }
6106         if (n->defer_hard_irqs_count > 0) {
6107                 n->defer_hard_irqs_count--;
6108                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6109                 if (timeout)
6110                         ret = false;
6111         }
6112         if (n->gro_bitmask) {
6113                 /* When the NAPI instance uses a timeout and keeps postponing
6114                  * it, we need to bound somehow the time packets are kept in
6115                  * the GRO layer
6116                  */
6117                 napi_gro_flush(n, !!timeout);
6118         }
6119
6120         gro_normal_list(n);
6121
6122         if (unlikely(!list_empty(&n->poll_list))) {
6123                 /* If n->poll_list is not empty, we need to mask irqs */
6124                 local_irq_save(flags);
6125                 list_del_init(&n->poll_list);
6126                 local_irq_restore(flags);
6127         }
6128         WRITE_ONCE(n->list_owner, -1);
6129
6130         val = READ_ONCE(n->state);
6131         do {
6132                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6133
6134                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6135                               NAPIF_STATE_SCHED_THREADED |
6136                               NAPIF_STATE_PREFER_BUSY_POLL);
6137
6138                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6139                  * because we will call napi->poll() one more time.
6140                  * This C code was suggested by Alexander Duyck to help gcc.
6141                  */
6142                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6143                                                     NAPIF_STATE_SCHED;
6144         } while (!try_cmpxchg(&n->state, &val, new));
6145
6146         if (unlikely(val & NAPIF_STATE_MISSED)) {
6147                 __napi_schedule(n);
6148                 return false;
6149         }
6150
6151         if (timeout)
6152                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6153                               HRTIMER_MODE_REL_PINNED);
6154         return ret;
6155 }
6156 EXPORT_SYMBOL(napi_complete_done);
6157
6158 /* must be called under rcu_read_lock(), as we dont take a reference */
6159 static struct napi_struct *napi_by_id(unsigned int napi_id)
6160 {
6161         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6162         struct napi_struct *napi;
6163
6164         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6165                 if (napi->napi_id == napi_id)
6166                         return napi;
6167
6168         return NULL;
6169 }
6170
6171 #if defined(CONFIG_NET_RX_BUSY_POLL)
6172
6173 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6174 {
6175         if (!skip_schedule) {
6176                 gro_normal_list(napi);
6177                 __napi_schedule(napi);
6178                 return;
6179         }
6180
6181         if (napi->gro_bitmask) {
6182                 /* flush too old packets
6183                  * If HZ < 1000, flush all packets.
6184                  */
6185                 napi_gro_flush(napi, HZ >= 1000);
6186         }
6187
6188         gro_normal_list(napi);
6189         clear_bit(NAPI_STATE_SCHED, &napi->state);
6190 }
6191
6192 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6193                            u16 budget)
6194 {
6195         bool skip_schedule = false;
6196         unsigned long timeout;
6197         int rc;
6198
6199         /* Busy polling means there is a high chance device driver hard irq
6200          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6201          * set in napi_schedule_prep().
6202          * Since we are about to call napi->poll() once more, we can safely
6203          * clear NAPI_STATE_MISSED.
6204          *
6205          * Note: x86 could use a single "lock and ..." instruction
6206          * to perform these two clear_bit()
6207          */
6208         clear_bit(NAPI_STATE_MISSED, &napi->state);
6209         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6210
6211         local_bh_disable();
6212
6213         if (prefer_busy_poll) {
6214                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6215                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6216                 if (napi->defer_hard_irqs_count && timeout) {
6217                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6218                         skip_schedule = true;
6219                 }
6220         }
6221
6222         /* All we really want here is to re-enable device interrupts.
6223          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6224          */
6225         rc = napi->poll(napi, budget);
6226         /* We can't gro_normal_list() here, because napi->poll() might have
6227          * rearmed the napi (napi_complete_done()) in which case it could
6228          * already be running on another CPU.
6229          */
6230         trace_napi_poll(napi, rc, budget);
6231         netpoll_poll_unlock(have_poll_lock);
6232         if (rc == budget)
6233                 __busy_poll_stop(napi, skip_schedule);
6234         local_bh_enable();
6235 }
6236
6237 void napi_busy_loop(unsigned int napi_id,
6238                     bool (*loop_end)(void *, unsigned long),
6239                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6240 {
6241         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6242         int (*napi_poll)(struct napi_struct *napi, int budget);
6243         void *have_poll_lock = NULL;
6244         struct napi_struct *napi;
6245
6246 restart:
6247         napi_poll = NULL;
6248
6249         rcu_read_lock();
6250
6251         napi = napi_by_id(napi_id);
6252         if (!napi)
6253                 goto out;
6254
6255         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6256                 preempt_disable();
6257         for (;;) {
6258                 int work = 0;
6259
6260                 local_bh_disable();
6261                 if (!napi_poll) {
6262                         unsigned long val = READ_ONCE(napi->state);
6263
6264                         /* If multiple threads are competing for this napi,
6265                          * we avoid dirtying napi->state as much as we can.
6266                          */
6267                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6268                                    NAPIF_STATE_IN_BUSY_POLL)) {
6269                                 if (prefer_busy_poll)
6270                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6271                                 goto count;
6272                         }
6273                         if (cmpxchg(&napi->state, val,
6274                                     val | NAPIF_STATE_IN_BUSY_POLL |
6275                                           NAPIF_STATE_SCHED) != val) {
6276                                 if (prefer_busy_poll)
6277                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6278                                 goto count;
6279                         }
6280                         have_poll_lock = netpoll_poll_lock(napi);
6281                         napi_poll = napi->poll;
6282                 }
6283                 work = napi_poll(napi, budget);
6284                 trace_napi_poll(napi, work, budget);
6285                 gro_normal_list(napi);
6286 count:
6287                 if (work > 0)
6288                         __NET_ADD_STATS(dev_net(napi->dev),
6289                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6290                 local_bh_enable();
6291
6292                 if (!loop_end || loop_end(loop_end_arg, start_time))
6293                         break;
6294
6295                 if (unlikely(need_resched())) {
6296                         if (napi_poll)
6297                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6298                         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6299                                 preempt_enable();
6300                         rcu_read_unlock();
6301                         cond_resched();
6302                         if (loop_end(loop_end_arg, start_time))
6303                                 return;
6304                         goto restart;
6305                 }
6306                 cpu_relax();
6307         }
6308         if (napi_poll)
6309                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6310         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6311                 preempt_enable();
6312 out:
6313         rcu_read_unlock();
6314 }
6315 EXPORT_SYMBOL(napi_busy_loop);
6316
6317 #endif /* CONFIG_NET_RX_BUSY_POLL */
6318
6319 static void napi_hash_add(struct napi_struct *napi)
6320 {
6321         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6322                 return;
6323
6324         spin_lock(&napi_hash_lock);
6325
6326         /* 0..NR_CPUS range is reserved for sender_cpu use */
6327         do {
6328                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6329                         napi_gen_id = MIN_NAPI_ID;
6330         } while (napi_by_id(napi_gen_id));
6331         napi->napi_id = napi_gen_id;
6332
6333         hlist_add_head_rcu(&napi->napi_hash_node,
6334                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6335
6336         spin_unlock(&napi_hash_lock);
6337 }
6338
6339 /* Warning : caller is responsible to make sure rcu grace period
6340  * is respected before freeing memory containing @napi
6341  */
6342 static void napi_hash_del(struct napi_struct *napi)
6343 {
6344         spin_lock(&napi_hash_lock);
6345
6346         hlist_del_init_rcu(&napi->napi_hash_node);
6347
6348         spin_unlock(&napi_hash_lock);
6349 }
6350
6351 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6352 {
6353         struct napi_struct *napi;
6354
6355         napi = container_of(timer, struct napi_struct, timer);
6356
6357         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6358          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6359          */
6360         if (!napi_disable_pending(napi) &&
6361             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6362                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6363                 __napi_schedule_irqoff(napi);
6364         }
6365
6366         return HRTIMER_NORESTART;
6367 }
6368
6369 static void init_gro_hash(struct napi_struct *napi)
6370 {
6371         int i;
6372
6373         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6374                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6375                 napi->gro_hash[i].count = 0;
6376         }
6377         napi->gro_bitmask = 0;
6378 }
6379
6380 int dev_set_threaded(struct net_device *dev, bool threaded)
6381 {
6382         struct napi_struct *napi;
6383         int err = 0;
6384
6385         if (dev->threaded == threaded)
6386                 return 0;
6387
6388         if (threaded) {
6389                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6390                         if (!napi->thread) {
6391                                 err = napi_kthread_create(napi);
6392                                 if (err) {
6393                                         threaded = false;
6394                                         break;
6395                                 }
6396                         }
6397                 }
6398         }
6399
6400         dev->threaded = threaded;
6401
6402         /* Make sure kthread is created before THREADED bit
6403          * is set.
6404          */
6405         smp_mb__before_atomic();
6406
6407         /* Setting/unsetting threaded mode on a napi might not immediately
6408          * take effect, if the current napi instance is actively being
6409          * polled. In this case, the switch between threaded mode and
6410          * softirq mode will happen in the next round of napi_schedule().
6411          * This should not cause hiccups/stalls to the live traffic.
6412          */
6413         list_for_each_entry(napi, &dev->napi_list, dev_list)
6414                 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6415
6416         return err;
6417 }
6418 EXPORT_SYMBOL(dev_set_threaded);
6419
6420 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6421                            int (*poll)(struct napi_struct *, int), int weight)
6422 {
6423         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6424                 return;
6425
6426         INIT_LIST_HEAD(&napi->poll_list);
6427         INIT_HLIST_NODE(&napi->napi_hash_node);
6428         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6429         napi->timer.function = napi_watchdog;
6430         init_gro_hash(napi);
6431         napi->skb = NULL;
6432         INIT_LIST_HEAD(&napi->rx_list);
6433         napi->rx_count = 0;
6434         napi->poll = poll;
6435         if (weight > NAPI_POLL_WEIGHT)
6436                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6437                                 weight);
6438         napi->weight = weight;
6439         napi->dev = dev;
6440 #ifdef CONFIG_NETPOLL
6441         napi->poll_owner = -1;
6442 #endif
6443         napi->list_owner = -1;
6444         set_bit(NAPI_STATE_SCHED, &napi->state);
6445         set_bit(NAPI_STATE_NPSVC, &napi->state);
6446         list_add_rcu(&napi->dev_list, &dev->napi_list);
6447         napi_hash_add(napi);
6448         napi_get_frags_check(napi);
6449         /* Create kthread for this napi if dev->threaded is set.
6450          * Clear dev->threaded if kthread creation failed so that
6451          * threaded mode will not be enabled in napi_enable().
6452          */
6453         if (dev->threaded && napi_kthread_create(napi))
6454                 dev->threaded = 0;
6455 }
6456 EXPORT_SYMBOL(netif_napi_add_weight);
6457
6458 void napi_disable(struct napi_struct *n)
6459 {
6460         unsigned long val, new;
6461
6462         might_sleep();
6463         set_bit(NAPI_STATE_DISABLE, &n->state);
6464
6465         val = READ_ONCE(n->state);
6466         do {
6467                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6468                         usleep_range(20, 200);
6469                         val = READ_ONCE(n->state);
6470                 }
6471
6472                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6473                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6474         } while (!try_cmpxchg(&n->state, &val, new));
6475
6476         hrtimer_cancel(&n->timer);
6477
6478         clear_bit(NAPI_STATE_DISABLE, &n->state);
6479 }
6480 EXPORT_SYMBOL(napi_disable);
6481
6482 /**
6483  *      napi_enable - enable NAPI scheduling
6484  *      @n: NAPI context
6485  *
6486  * Resume NAPI from being scheduled on this context.
6487  * Must be paired with napi_disable.
6488  */
6489 void napi_enable(struct napi_struct *n)
6490 {
6491         unsigned long new, val = READ_ONCE(n->state);
6492
6493         do {
6494                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6495
6496                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6497                 if (n->dev->threaded && n->thread)
6498                         new |= NAPIF_STATE_THREADED;
6499         } while (!try_cmpxchg(&n->state, &val, new));
6500 }
6501 EXPORT_SYMBOL(napi_enable);
6502
6503 static void flush_gro_hash(struct napi_struct *napi)
6504 {
6505         int i;
6506
6507         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6508                 struct sk_buff *skb, *n;
6509
6510                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6511                         kfree_skb(skb);
6512                 napi->gro_hash[i].count = 0;
6513         }
6514 }
6515
6516 /* Must be called in process context */
6517 void __netif_napi_del(struct napi_struct *napi)
6518 {
6519         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6520                 return;
6521
6522         napi_hash_del(napi);
6523         list_del_rcu(&napi->dev_list);
6524         napi_free_frags(napi);
6525
6526         flush_gro_hash(napi);
6527         napi->gro_bitmask = 0;
6528
6529         if (napi->thread) {
6530                 kthread_stop(napi->thread);
6531                 napi->thread = NULL;
6532         }
6533 }
6534 EXPORT_SYMBOL(__netif_napi_del);
6535
6536 static int __napi_poll(struct napi_struct *n, bool *repoll)
6537 {
6538         int work, weight;
6539
6540         weight = n->weight;
6541
6542         /* This NAPI_STATE_SCHED test is for avoiding a race
6543          * with netpoll's poll_napi().  Only the entity which
6544          * obtains the lock and sees NAPI_STATE_SCHED set will
6545          * actually make the ->poll() call.  Therefore we avoid
6546          * accidentally calling ->poll() when NAPI is not scheduled.
6547          */
6548         work = 0;
6549         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6550                 work = n->poll(n, weight);
6551                 trace_napi_poll(n, work, weight);
6552         }
6553
6554         if (unlikely(work > weight))
6555                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6556                                 n->poll, work, weight);
6557
6558         if (likely(work < weight))
6559                 return work;
6560
6561         /* Drivers must not modify the NAPI state if they
6562          * consume the entire weight.  In such cases this code
6563          * still "owns" the NAPI instance and therefore can
6564          * move the instance around on the list at-will.
6565          */
6566         if (unlikely(napi_disable_pending(n))) {
6567                 napi_complete(n);
6568                 return work;
6569         }
6570
6571         /* The NAPI context has more processing work, but busy-polling
6572          * is preferred. Exit early.
6573          */
6574         if (napi_prefer_busy_poll(n)) {
6575                 if (napi_complete_done(n, work)) {
6576                         /* If timeout is not set, we need to make sure
6577                          * that the NAPI is re-scheduled.
6578                          */
6579                         napi_schedule(n);
6580                 }
6581                 return work;
6582         }
6583
6584         if (n->gro_bitmask) {
6585                 /* flush too old packets
6586                  * If HZ < 1000, flush all packets.
6587                  */
6588                 napi_gro_flush(n, HZ >= 1000);
6589         }
6590
6591         gro_normal_list(n);
6592
6593         /* Some drivers may have called napi_schedule
6594          * prior to exhausting their budget.
6595          */
6596         if (unlikely(!list_empty(&n->poll_list))) {
6597                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6598                              n->dev ? n->dev->name : "backlog");
6599                 return work;
6600         }
6601
6602         *repoll = true;
6603
6604         return work;
6605 }
6606
6607 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6608 {
6609         bool do_repoll = false;
6610         void *have;
6611         int work;
6612
6613         list_del_init(&n->poll_list);
6614
6615         have = netpoll_poll_lock(n);
6616
6617         work = __napi_poll(n, &do_repoll);
6618
6619         if (do_repoll)
6620                 list_add_tail(&n->poll_list, repoll);
6621
6622         netpoll_poll_unlock(have);
6623
6624         return work;
6625 }
6626
6627 static int napi_thread_wait(struct napi_struct *napi)
6628 {
6629         bool woken = false;
6630
6631         set_current_state(TASK_INTERRUPTIBLE);
6632
6633         while (!kthread_should_stop()) {
6634                 /* Testing SCHED_THREADED bit here to make sure the current
6635                  * kthread owns this napi and could poll on this napi.
6636                  * Testing SCHED bit is not enough because SCHED bit might be
6637                  * set by some other busy poll thread or by napi_disable().
6638                  */
6639                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6640                         WARN_ON(!list_empty(&napi->poll_list));
6641                         __set_current_state(TASK_RUNNING);
6642                         return 0;
6643                 }
6644
6645                 schedule();
6646                 /* woken being true indicates this thread owns this napi. */
6647                 woken = true;
6648                 set_current_state(TASK_INTERRUPTIBLE);
6649         }
6650         __set_current_state(TASK_RUNNING);
6651
6652         return -1;
6653 }
6654
6655 static void skb_defer_free_flush(struct softnet_data *sd)
6656 {
6657         struct sk_buff *skb, *next;
6658
6659         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6660         if (!READ_ONCE(sd->defer_list))
6661                 return;
6662
6663         spin_lock(&sd->defer_lock);
6664         skb = sd->defer_list;
6665         sd->defer_list = NULL;
6666         sd->defer_count = 0;
6667         spin_unlock(&sd->defer_lock);
6668
6669         while (skb != NULL) {
6670                 next = skb->next;
6671                 napi_consume_skb(skb, 1);
6672                 skb = next;
6673         }
6674 }
6675
6676 #ifndef CONFIG_PREEMPT_RT
6677
6678 /* Called from hardirq (IPI) context */
6679 static void trigger_rx_softirq(void *data)
6680 {
6681         struct softnet_data *sd = data;
6682
6683         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6684         smp_store_release(&sd->defer_ipi_scheduled, 0);
6685 }
6686
6687 #else
6688
6689 static void trigger_rx_softirq(struct work_struct *defer_work)
6690 {
6691         struct softnet_data *sd;
6692
6693         sd = container_of(defer_work, struct softnet_data, defer_work);
6694         smp_store_release(&sd->defer_ipi_scheduled, 0);
6695         local_bh_disable();
6696         skb_defer_free_flush(sd);
6697         local_bh_enable();
6698 }
6699
6700 #endif
6701
6702 static int napi_threaded_poll(void *data)
6703 {
6704         struct napi_struct *napi = data;
6705         struct softnet_data *sd;
6706         void *have;
6707
6708         while (!napi_thread_wait(napi)) {
6709                 for (;;) {
6710                         bool repoll = false;
6711
6712                         local_bh_disable();
6713                         sd = this_cpu_ptr(&softnet_data);
6714                         sd->in_napi_threaded_poll = true;
6715
6716                         have = netpoll_poll_lock(napi);
6717                         __napi_poll(napi, &repoll);
6718                         netpoll_poll_unlock(have);
6719
6720                         sd->in_napi_threaded_poll = false;
6721                         barrier();
6722
6723                         if (sd_has_rps_ipi_waiting(sd)) {
6724                                 local_irq_disable();
6725                                 net_rps_action_and_irq_enable(sd);
6726                         }
6727                         skb_defer_free_flush(sd);
6728                         local_bh_enable();
6729
6730                         if (!repoll)
6731                                 break;
6732
6733                         cond_resched();
6734                 }
6735         }
6736         return 0;
6737 }
6738
6739 static __latent_entropy void net_rx_action(struct softirq_action *h)
6740 {
6741         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6742         unsigned long time_limit = jiffies +
6743                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6744         int budget = READ_ONCE(netdev_budget);
6745         LIST_HEAD(list);
6746         LIST_HEAD(repoll);
6747
6748 start:
6749         sd->in_net_rx_action = true;
6750         local_irq_disable();
6751         list_splice_init(&sd->poll_list, &list);
6752         local_irq_enable();
6753
6754         for (;;) {
6755                 struct napi_struct *n;
6756
6757                 skb_defer_free_flush(sd);
6758
6759                 if (list_empty(&list)) {
6760                         if (list_empty(&repoll)) {
6761                                 sd->in_net_rx_action = false;
6762                                 barrier();
6763                                 /* We need to check if ____napi_schedule()
6764                                  * had refilled poll_list while
6765                                  * sd->in_net_rx_action was true.
6766                                  */
6767                                 if (!list_empty(&sd->poll_list))
6768                                         goto start;
6769                                 if (!sd_has_rps_ipi_waiting(sd))
6770                                         goto end;
6771                         }
6772                         break;
6773                 }
6774
6775                 n = list_first_entry(&list, struct napi_struct, poll_list);
6776                 budget -= napi_poll(n, &repoll);
6777
6778                 /* If softirq window is exhausted then punt.
6779                  * Allow this to run for 2 jiffies since which will allow
6780                  * an average latency of 1.5/HZ.
6781                  */
6782                 if (unlikely(budget <= 0 ||
6783                              time_after_eq(jiffies, time_limit))) {
6784                         sd->time_squeeze++;
6785                         break;
6786                 }
6787         }
6788
6789         local_irq_disable();
6790
6791         list_splice_tail_init(&sd->poll_list, &list);
6792         list_splice_tail(&repoll, &list);
6793         list_splice(&list, &sd->poll_list);
6794         if (!list_empty(&sd->poll_list))
6795                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6796         else
6797                 sd->in_net_rx_action = false;
6798
6799         net_rps_action_and_irq_enable(sd);
6800 end:;
6801 }
6802
6803 struct netdev_adjacent {
6804         struct net_device *dev;
6805         netdevice_tracker dev_tracker;
6806
6807         /* upper master flag, there can only be one master device per list */
6808         bool master;
6809
6810         /* lookup ignore flag */
6811         bool ignore;
6812
6813         /* counter for the number of times this device was added to us */
6814         u16 ref_nr;
6815
6816         /* private field for the users */
6817         void *private;
6818
6819         struct list_head list;
6820         struct rcu_head rcu;
6821 };
6822
6823 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6824                                                  struct list_head *adj_list)
6825 {
6826         struct netdev_adjacent *adj;
6827
6828         list_for_each_entry(adj, adj_list, list) {
6829                 if (adj->dev == adj_dev)
6830                         return adj;
6831         }
6832         return NULL;
6833 }
6834
6835 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6836                                     struct netdev_nested_priv *priv)
6837 {
6838         struct net_device *dev = (struct net_device *)priv->data;
6839
6840         return upper_dev == dev;
6841 }
6842
6843 /**
6844  * netdev_has_upper_dev - Check if device is linked to an upper device
6845  * @dev: device
6846  * @upper_dev: upper device to check
6847  *
6848  * Find out if a device is linked to specified upper device and return true
6849  * in case it is. Note that this checks only immediate upper device,
6850  * not through a complete stack of devices. The caller must hold the RTNL lock.
6851  */
6852 bool netdev_has_upper_dev(struct net_device *dev,
6853                           struct net_device *upper_dev)
6854 {
6855         struct netdev_nested_priv priv = {
6856                 .data = (void *)upper_dev,
6857         };
6858
6859         ASSERT_RTNL();
6860
6861         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6862                                              &priv);
6863 }
6864 EXPORT_SYMBOL(netdev_has_upper_dev);
6865
6866 /**
6867  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6868  * @dev: device
6869  * @upper_dev: upper device to check
6870  *
6871  * Find out if a device is linked to specified upper device and return true
6872  * in case it is. Note that this checks the entire upper device chain.
6873  * The caller must hold rcu lock.
6874  */
6875
6876 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6877                                   struct net_device *upper_dev)
6878 {
6879         struct netdev_nested_priv priv = {
6880                 .data = (void *)upper_dev,
6881         };
6882
6883         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6884                                                &priv);
6885 }
6886 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6887
6888 /**
6889  * netdev_has_any_upper_dev - Check if device is linked to some device
6890  * @dev: device
6891  *
6892  * Find out if a device is linked to an upper device and return true in case
6893  * it is. The caller must hold the RTNL lock.
6894  */
6895 bool netdev_has_any_upper_dev(struct net_device *dev)
6896 {
6897         ASSERT_RTNL();
6898
6899         return !list_empty(&dev->adj_list.upper);
6900 }
6901 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6902
6903 /**
6904  * netdev_master_upper_dev_get - Get master upper device
6905  * @dev: device
6906  *
6907  * Find a master upper device and return pointer to it or NULL in case
6908  * it's not there. The caller must hold the RTNL lock.
6909  */
6910 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6911 {
6912         struct netdev_adjacent *upper;
6913
6914         ASSERT_RTNL();
6915
6916         if (list_empty(&dev->adj_list.upper))
6917                 return NULL;
6918
6919         upper = list_first_entry(&dev->adj_list.upper,
6920                                  struct netdev_adjacent, list);
6921         if (likely(upper->master))
6922                 return upper->dev;
6923         return NULL;
6924 }
6925 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6926
6927 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6928 {
6929         struct netdev_adjacent *upper;
6930
6931         ASSERT_RTNL();
6932
6933         if (list_empty(&dev->adj_list.upper))
6934                 return NULL;
6935
6936         upper = list_first_entry(&dev->adj_list.upper,
6937                                  struct netdev_adjacent, list);
6938         if (likely(upper->master) && !upper->ignore)
6939                 return upper->dev;
6940         return NULL;
6941 }
6942
6943 /**
6944  * netdev_has_any_lower_dev - Check if device is linked to some device
6945  * @dev: device
6946  *
6947  * Find out if a device is linked to a lower device and return true in case
6948  * it is. The caller must hold the RTNL lock.
6949  */
6950 static bool netdev_has_any_lower_dev(struct net_device *dev)
6951 {
6952         ASSERT_RTNL();
6953
6954         return !list_empty(&dev->adj_list.lower);
6955 }
6956
6957 void *netdev_adjacent_get_private(struct list_head *adj_list)
6958 {
6959         struct netdev_adjacent *adj;
6960
6961         adj = list_entry(adj_list, struct netdev_adjacent, list);
6962
6963         return adj->private;
6964 }
6965 EXPORT_SYMBOL(netdev_adjacent_get_private);
6966
6967 /**
6968  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6969  * @dev: device
6970  * @iter: list_head ** of the current position
6971  *
6972  * Gets the next device from the dev's upper list, starting from iter
6973  * position. The caller must hold RCU read lock.
6974  */
6975 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6976                                                  struct list_head **iter)
6977 {
6978         struct netdev_adjacent *upper;
6979
6980         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6981
6982         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6983
6984         if (&upper->list == &dev->adj_list.upper)
6985                 return NULL;
6986
6987         *iter = &upper->list;
6988
6989         return upper->dev;
6990 }
6991 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6992
6993 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6994                                                   struct list_head **iter,
6995                                                   bool *ignore)
6996 {
6997         struct netdev_adjacent *upper;
6998
6999         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7000
7001         if (&upper->list == &dev->adj_list.upper)
7002                 return NULL;
7003
7004         *iter = &upper->list;
7005         *ignore = upper->ignore;
7006
7007         return upper->dev;
7008 }
7009
7010 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7011                                                     struct list_head **iter)
7012 {
7013         struct netdev_adjacent *upper;
7014
7015         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7016
7017         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7018
7019         if (&upper->list == &dev->adj_list.upper)
7020                 return NULL;
7021
7022         *iter = &upper->list;
7023
7024         return upper->dev;
7025 }
7026
7027 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7028                                        int (*fn)(struct net_device *dev,
7029                                          struct netdev_nested_priv *priv),
7030                                        struct netdev_nested_priv *priv)
7031 {
7032         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7033         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7034         int ret, cur = 0;
7035         bool ignore;
7036
7037         now = dev;
7038         iter = &dev->adj_list.upper;
7039
7040         while (1) {
7041                 if (now != dev) {
7042                         ret = fn(now, priv);
7043                         if (ret)
7044                                 return ret;
7045                 }
7046
7047                 next = NULL;
7048                 while (1) {
7049                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7050                         if (!udev)
7051                                 break;
7052                         if (ignore)
7053                                 continue;
7054
7055                         next = udev;
7056                         niter = &udev->adj_list.upper;
7057                         dev_stack[cur] = now;
7058                         iter_stack[cur++] = iter;
7059                         break;
7060                 }
7061
7062                 if (!next) {
7063                         if (!cur)
7064                                 return 0;
7065                         next = dev_stack[--cur];
7066                         niter = iter_stack[cur];
7067                 }
7068
7069                 now = next;
7070                 iter = niter;
7071         }
7072
7073         return 0;
7074 }
7075
7076 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7077                                   int (*fn)(struct net_device *dev,
7078                                             struct netdev_nested_priv *priv),
7079                                   struct netdev_nested_priv *priv)
7080 {
7081         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7082         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7083         int ret, cur = 0;
7084
7085         now = dev;
7086         iter = &dev->adj_list.upper;
7087
7088         while (1) {
7089                 if (now != dev) {
7090                         ret = fn(now, priv);
7091                         if (ret)
7092                                 return ret;
7093                 }
7094
7095                 next = NULL;
7096                 while (1) {
7097                         udev = netdev_next_upper_dev_rcu(now, &iter);
7098                         if (!udev)
7099                                 break;
7100
7101                         next = udev;
7102                         niter = &udev->adj_list.upper;
7103                         dev_stack[cur] = now;
7104                         iter_stack[cur++] = iter;
7105                         break;
7106                 }
7107
7108                 if (!next) {
7109                         if (!cur)
7110                                 return 0;
7111                         next = dev_stack[--cur];
7112                         niter = iter_stack[cur];
7113                 }
7114
7115                 now = next;
7116                 iter = niter;
7117         }
7118
7119         return 0;
7120 }
7121 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7122
7123 static bool __netdev_has_upper_dev(struct net_device *dev,
7124                                    struct net_device *upper_dev)
7125 {
7126         struct netdev_nested_priv priv = {
7127                 .flags = 0,
7128                 .data = (void *)upper_dev,
7129         };
7130
7131         ASSERT_RTNL();
7132
7133         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7134                                            &priv);
7135 }
7136
7137 /**
7138  * netdev_lower_get_next_private - Get the next ->private from the
7139  *                                 lower neighbour list
7140  * @dev: device
7141  * @iter: list_head ** of the current position
7142  *
7143  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7144  * list, starting from iter position. The caller must hold either hold the
7145  * RTNL lock or its own locking that guarantees that the neighbour lower
7146  * list will remain unchanged.
7147  */
7148 void *netdev_lower_get_next_private(struct net_device *dev,
7149                                     struct list_head **iter)
7150 {
7151         struct netdev_adjacent *lower;
7152
7153         lower = list_entry(*iter, struct netdev_adjacent, list);
7154
7155         if (&lower->list == &dev->adj_list.lower)
7156                 return NULL;
7157
7158         *iter = lower->list.next;
7159
7160         return lower->private;
7161 }
7162 EXPORT_SYMBOL(netdev_lower_get_next_private);
7163
7164 /**
7165  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7166  *                                     lower neighbour list, RCU
7167  *                                     variant
7168  * @dev: device
7169  * @iter: list_head ** of the current position
7170  *
7171  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7172  * list, starting from iter position. The caller must hold RCU read lock.
7173  */
7174 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7175                                         struct list_head **iter)
7176 {
7177         struct netdev_adjacent *lower;
7178
7179         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7180
7181         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7182
7183         if (&lower->list == &dev->adj_list.lower)
7184                 return NULL;
7185
7186         *iter = &lower->list;
7187
7188         return lower->private;
7189 }
7190 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7191
7192 /**
7193  * netdev_lower_get_next - Get the next device from the lower neighbour
7194  *                         list
7195  * @dev: device
7196  * @iter: list_head ** of the current position
7197  *
7198  * Gets the next netdev_adjacent from the dev's lower neighbour
7199  * list, starting from iter position. The caller must hold RTNL lock or
7200  * its own locking that guarantees that the neighbour lower
7201  * list will remain unchanged.
7202  */
7203 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7204 {
7205         struct netdev_adjacent *lower;
7206
7207         lower = list_entry(*iter, struct netdev_adjacent, list);
7208
7209         if (&lower->list == &dev->adj_list.lower)
7210                 return NULL;
7211
7212         *iter = lower->list.next;
7213
7214         return lower->dev;
7215 }
7216 EXPORT_SYMBOL(netdev_lower_get_next);
7217
7218 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7219                                                 struct list_head **iter)
7220 {
7221         struct netdev_adjacent *lower;
7222
7223         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7224
7225         if (&lower->list == &dev->adj_list.lower)
7226                 return NULL;
7227
7228         *iter = &lower->list;
7229
7230         return lower->dev;
7231 }
7232
7233 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7234                                                   struct list_head **iter,
7235                                                   bool *ignore)
7236 {
7237         struct netdev_adjacent *lower;
7238
7239         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7240
7241         if (&lower->list == &dev->adj_list.lower)
7242                 return NULL;
7243
7244         *iter = &lower->list;
7245         *ignore = lower->ignore;
7246
7247         return lower->dev;
7248 }
7249
7250 int netdev_walk_all_lower_dev(struct net_device *dev,
7251                               int (*fn)(struct net_device *dev,
7252                                         struct netdev_nested_priv *priv),
7253                               struct netdev_nested_priv *priv)
7254 {
7255         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7256         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7257         int ret, cur = 0;
7258
7259         now = dev;
7260         iter = &dev->adj_list.lower;
7261
7262         while (1) {
7263                 if (now != dev) {
7264                         ret = fn(now, priv);
7265                         if (ret)
7266                                 return ret;
7267                 }
7268
7269                 next = NULL;
7270                 while (1) {
7271                         ldev = netdev_next_lower_dev(now, &iter);
7272                         if (!ldev)
7273                                 break;
7274
7275                         next = ldev;
7276                         niter = &ldev->adj_list.lower;
7277                         dev_stack[cur] = now;
7278                         iter_stack[cur++] = iter;
7279                         break;
7280                 }
7281
7282                 if (!next) {
7283                         if (!cur)
7284                                 return 0;
7285                         next = dev_stack[--cur];
7286                         niter = iter_stack[cur];
7287                 }
7288
7289                 now = next;
7290                 iter = niter;
7291         }
7292
7293         return 0;
7294 }
7295 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7296
7297 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7298                                        int (*fn)(struct net_device *dev,
7299                                          struct netdev_nested_priv *priv),
7300                                        struct netdev_nested_priv *priv)
7301 {
7302         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7303         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7304         int ret, cur = 0;
7305         bool ignore;
7306
7307         now = dev;
7308         iter = &dev->adj_list.lower;
7309
7310         while (1) {
7311                 if (now != dev) {
7312                         ret = fn(now, priv);
7313                         if (ret)
7314                                 return ret;
7315                 }
7316
7317                 next = NULL;
7318                 while (1) {
7319                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7320                         if (!ldev)
7321                                 break;
7322                         if (ignore)
7323                                 continue;
7324
7325                         next = ldev;
7326                         niter = &ldev->adj_list.lower;
7327                         dev_stack[cur] = now;
7328                         iter_stack[cur++] = iter;
7329                         break;
7330                 }
7331
7332                 if (!next) {
7333                         if (!cur)
7334                                 return 0;
7335                         next = dev_stack[--cur];
7336                         niter = iter_stack[cur];
7337                 }
7338
7339                 now = next;
7340                 iter = niter;
7341         }
7342
7343         return 0;
7344 }
7345
7346 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7347                                              struct list_head **iter)
7348 {
7349         struct netdev_adjacent *lower;
7350
7351         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7352         if (&lower->list == &dev->adj_list.lower)
7353                 return NULL;
7354
7355         *iter = &lower->list;
7356
7357         return lower->dev;
7358 }
7359 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7360
7361 static u8 __netdev_upper_depth(struct net_device *dev)
7362 {
7363         struct net_device *udev;
7364         struct list_head *iter;
7365         u8 max_depth = 0;
7366         bool ignore;
7367
7368         for (iter = &dev->adj_list.upper,
7369              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7370              udev;
7371              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7372                 if (ignore)
7373                         continue;
7374                 if (max_depth < udev->upper_level)
7375                         max_depth = udev->upper_level;
7376         }
7377
7378         return max_depth;
7379 }
7380
7381 static u8 __netdev_lower_depth(struct net_device *dev)
7382 {
7383         struct net_device *ldev;
7384         struct list_head *iter;
7385         u8 max_depth = 0;
7386         bool ignore;
7387
7388         for (iter = &dev->adj_list.lower,
7389              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7390              ldev;
7391              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7392                 if (ignore)
7393                         continue;
7394                 if (max_depth < ldev->lower_level)
7395                         max_depth = ldev->lower_level;
7396         }
7397
7398         return max_depth;
7399 }
7400
7401 static int __netdev_update_upper_level(struct net_device *dev,
7402                                        struct netdev_nested_priv *__unused)
7403 {
7404         dev->upper_level = __netdev_upper_depth(dev) + 1;
7405         return 0;
7406 }
7407
7408 #ifdef CONFIG_LOCKDEP
7409 static LIST_HEAD(net_unlink_list);
7410
7411 static void net_unlink_todo(struct net_device *dev)
7412 {
7413         if (list_empty(&dev->unlink_list))
7414                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7415 }
7416 #endif
7417
7418 static int __netdev_update_lower_level(struct net_device *dev,
7419                                        struct netdev_nested_priv *priv)
7420 {
7421         dev->lower_level = __netdev_lower_depth(dev) + 1;
7422
7423 #ifdef CONFIG_LOCKDEP
7424         if (!priv)
7425                 return 0;
7426
7427         if (priv->flags & NESTED_SYNC_IMM)
7428                 dev->nested_level = dev->lower_level - 1;
7429         if (priv->flags & NESTED_SYNC_TODO)
7430                 net_unlink_todo(dev);
7431 #endif
7432         return 0;
7433 }
7434
7435 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7436                                   int (*fn)(struct net_device *dev,
7437                                             struct netdev_nested_priv *priv),
7438                                   struct netdev_nested_priv *priv)
7439 {
7440         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7441         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7442         int ret, cur = 0;
7443
7444         now = dev;
7445         iter = &dev->adj_list.lower;
7446
7447         while (1) {
7448                 if (now != dev) {
7449                         ret = fn(now, priv);
7450                         if (ret)
7451                                 return ret;
7452                 }
7453
7454                 next = NULL;
7455                 while (1) {
7456                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7457                         if (!ldev)
7458                                 break;
7459
7460                         next = ldev;
7461                         niter = &ldev->adj_list.lower;
7462                         dev_stack[cur] = now;
7463                         iter_stack[cur++] = iter;
7464                         break;
7465                 }
7466
7467                 if (!next) {
7468                         if (!cur)
7469                                 return 0;
7470                         next = dev_stack[--cur];
7471                         niter = iter_stack[cur];
7472                 }
7473
7474                 now = next;
7475                 iter = niter;
7476         }
7477
7478         return 0;
7479 }
7480 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7481
7482 /**
7483  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7484  *                                     lower neighbour list, RCU
7485  *                                     variant
7486  * @dev: device
7487  *
7488  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7489  * list. The caller must hold RCU read lock.
7490  */
7491 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7492 {
7493         struct netdev_adjacent *lower;
7494
7495         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7496                         struct netdev_adjacent, list);
7497         if (lower)
7498                 return lower->private;
7499         return NULL;
7500 }
7501 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7502
7503 /**
7504  * netdev_master_upper_dev_get_rcu - Get master upper device
7505  * @dev: device
7506  *
7507  * Find a master upper device and return pointer to it or NULL in case
7508  * it's not there. The caller must hold the RCU read lock.
7509  */
7510 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7511 {
7512         struct netdev_adjacent *upper;
7513
7514         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7515                                        struct netdev_adjacent, list);
7516         if (upper && likely(upper->master))
7517                 return upper->dev;
7518         return NULL;
7519 }
7520 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7521
7522 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7523                               struct net_device *adj_dev,
7524                               struct list_head *dev_list)
7525 {
7526         char linkname[IFNAMSIZ+7];
7527
7528         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7529                 "upper_%s" : "lower_%s", adj_dev->name);
7530         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7531                                  linkname);
7532 }
7533 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7534                                char *name,
7535                                struct list_head *dev_list)
7536 {
7537         char linkname[IFNAMSIZ+7];
7538
7539         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7540                 "upper_%s" : "lower_%s", name);
7541         sysfs_remove_link(&(dev->dev.kobj), linkname);
7542 }
7543
7544 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7545                                                  struct net_device *adj_dev,
7546                                                  struct list_head *dev_list)
7547 {
7548         return (dev_list == &dev->adj_list.upper ||
7549                 dev_list == &dev->adj_list.lower) &&
7550                 net_eq(dev_net(dev), dev_net(adj_dev));
7551 }
7552
7553 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7554                                         struct net_device *adj_dev,
7555                                         struct list_head *dev_list,
7556                                         void *private, bool master)
7557 {
7558         struct netdev_adjacent *adj;
7559         int ret;
7560
7561         adj = __netdev_find_adj(adj_dev, dev_list);
7562
7563         if (adj) {
7564                 adj->ref_nr += 1;
7565                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7566                          dev->name, adj_dev->name, adj->ref_nr);
7567
7568                 return 0;
7569         }
7570
7571         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7572         if (!adj)
7573                 return -ENOMEM;
7574
7575         adj->dev = adj_dev;
7576         adj->master = master;
7577         adj->ref_nr = 1;
7578         adj->private = private;
7579         adj->ignore = false;
7580         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7581
7582         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7583                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7584
7585         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7586                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7587                 if (ret)
7588                         goto free_adj;
7589         }
7590
7591         /* Ensure that master link is always the first item in list. */
7592         if (master) {
7593                 ret = sysfs_create_link(&(dev->dev.kobj),
7594                                         &(adj_dev->dev.kobj), "master");
7595                 if (ret)
7596                         goto remove_symlinks;
7597
7598                 list_add_rcu(&adj->list, dev_list);
7599         } else {
7600                 list_add_tail_rcu(&adj->list, dev_list);
7601         }
7602
7603         return 0;
7604
7605 remove_symlinks:
7606         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7607                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7608 free_adj:
7609         netdev_put(adj_dev, &adj->dev_tracker);
7610         kfree(adj);
7611
7612         return ret;
7613 }
7614
7615 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7616                                          struct net_device *adj_dev,
7617                                          u16 ref_nr,
7618                                          struct list_head *dev_list)
7619 {
7620         struct netdev_adjacent *adj;
7621
7622         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7623                  dev->name, adj_dev->name, ref_nr);
7624
7625         adj = __netdev_find_adj(adj_dev, dev_list);
7626
7627         if (!adj) {
7628                 pr_err("Adjacency does not exist for device %s from %s\n",
7629                        dev->name, adj_dev->name);
7630                 WARN_ON(1);
7631                 return;
7632         }
7633
7634         if (adj->ref_nr > ref_nr) {
7635                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7636                          dev->name, adj_dev->name, ref_nr,
7637                          adj->ref_nr - ref_nr);
7638                 adj->ref_nr -= ref_nr;
7639                 return;
7640         }
7641
7642         if (adj->master)
7643                 sysfs_remove_link(&(dev->dev.kobj), "master");
7644
7645         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7646                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7647
7648         list_del_rcu(&adj->list);
7649         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7650                  adj_dev->name, dev->name, adj_dev->name);
7651         netdev_put(adj_dev, &adj->dev_tracker);
7652         kfree_rcu(adj, rcu);
7653 }
7654
7655 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7656                                             struct net_device *upper_dev,
7657                                             struct list_head *up_list,
7658                                             struct list_head *down_list,
7659                                             void *private, bool master)
7660 {
7661         int ret;
7662
7663         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7664                                            private, master);
7665         if (ret)
7666                 return ret;
7667
7668         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7669                                            private, false);
7670         if (ret) {
7671                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7672                 return ret;
7673         }
7674
7675         return 0;
7676 }
7677
7678 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7679                                                struct net_device *upper_dev,
7680                                                u16 ref_nr,
7681                                                struct list_head *up_list,
7682                                                struct list_head *down_list)
7683 {
7684         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7685         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7686 }
7687
7688 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7689                                                 struct net_device *upper_dev,
7690                                                 void *private, bool master)
7691 {
7692         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7693                                                 &dev->adj_list.upper,
7694                                                 &upper_dev->adj_list.lower,
7695                                                 private, master);
7696 }
7697
7698 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7699                                                    struct net_device *upper_dev)
7700 {
7701         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7702                                            &dev->adj_list.upper,
7703                                            &upper_dev->adj_list.lower);
7704 }
7705
7706 static int __netdev_upper_dev_link(struct net_device *dev,
7707                                    struct net_device *upper_dev, bool master,
7708                                    void *upper_priv, void *upper_info,
7709                                    struct netdev_nested_priv *priv,
7710                                    struct netlink_ext_ack *extack)
7711 {
7712         struct netdev_notifier_changeupper_info changeupper_info = {
7713                 .info = {
7714                         .dev = dev,
7715                         .extack = extack,
7716                 },
7717                 .upper_dev = upper_dev,
7718                 .master = master,
7719                 .linking = true,
7720                 .upper_info = upper_info,
7721         };
7722         struct net_device *master_dev;
7723         int ret = 0;
7724
7725         ASSERT_RTNL();
7726
7727         if (dev == upper_dev)
7728                 return -EBUSY;
7729
7730         /* To prevent loops, check if dev is not upper device to upper_dev. */
7731         if (__netdev_has_upper_dev(upper_dev, dev))
7732                 return -EBUSY;
7733
7734         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7735                 return -EMLINK;
7736
7737         if (!master) {
7738                 if (__netdev_has_upper_dev(dev, upper_dev))
7739                         return -EEXIST;
7740         } else {
7741                 master_dev = __netdev_master_upper_dev_get(dev);
7742                 if (master_dev)
7743                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7744         }
7745
7746         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7747                                             &changeupper_info.info);
7748         ret = notifier_to_errno(ret);
7749         if (ret)
7750                 return ret;
7751
7752         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7753                                                    master);
7754         if (ret)
7755                 return ret;
7756
7757         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7758                                             &changeupper_info.info);
7759         ret = notifier_to_errno(ret);
7760         if (ret)
7761                 goto rollback;
7762
7763         __netdev_update_upper_level(dev, NULL);
7764         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7765
7766         __netdev_update_lower_level(upper_dev, priv);
7767         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7768                                     priv);
7769
7770         return 0;
7771
7772 rollback:
7773         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7774
7775         return ret;
7776 }
7777
7778 /**
7779  * netdev_upper_dev_link - Add a link to the upper device
7780  * @dev: device
7781  * @upper_dev: new upper device
7782  * @extack: netlink extended ack
7783  *
7784  * Adds a link to device which is upper to this one. The caller must hold
7785  * the RTNL lock. On a failure a negative errno code is returned.
7786  * On success the reference counts are adjusted and the function
7787  * returns zero.
7788  */
7789 int netdev_upper_dev_link(struct net_device *dev,
7790                           struct net_device *upper_dev,
7791                           struct netlink_ext_ack *extack)
7792 {
7793         struct netdev_nested_priv priv = {
7794                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7795                 .data = NULL,
7796         };
7797
7798         return __netdev_upper_dev_link(dev, upper_dev, false,
7799                                        NULL, NULL, &priv, extack);
7800 }
7801 EXPORT_SYMBOL(netdev_upper_dev_link);
7802
7803 /**
7804  * netdev_master_upper_dev_link - Add a master link to the upper device
7805  * @dev: device
7806  * @upper_dev: new upper device
7807  * @upper_priv: upper device private
7808  * @upper_info: upper info to be passed down via notifier
7809  * @extack: netlink extended ack
7810  *
7811  * Adds a link to device which is upper to this one. In this case, only
7812  * one master upper device can be linked, although other non-master devices
7813  * might be linked as well. The caller must hold the RTNL lock.
7814  * On a failure a negative errno code is returned. On success the reference
7815  * counts are adjusted and the function returns zero.
7816  */
7817 int netdev_master_upper_dev_link(struct net_device *dev,
7818                                  struct net_device *upper_dev,
7819                                  void *upper_priv, void *upper_info,
7820                                  struct netlink_ext_ack *extack)
7821 {
7822         struct netdev_nested_priv priv = {
7823                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7824                 .data = NULL,
7825         };
7826
7827         return __netdev_upper_dev_link(dev, upper_dev, true,
7828                                        upper_priv, upper_info, &priv, extack);
7829 }
7830 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7831
7832 static void __netdev_upper_dev_unlink(struct net_device *dev,
7833                                       struct net_device *upper_dev,
7834                                       struct netdev_nested_priv *priv)
7835 {
7836         struct netdev_notifier_changeupper_info changeupper_info = {
7837                 .info = {
7838                         .dev = dev,
7839                 },
7840                 .upper_dev = upper_dev,
7841                 .linking = false,
7842         };
7843
7844         ASSERT_RTNL();
7845
7846         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7847
7848         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7849                                       &changeupper_info.info);
7850
7851         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7852
7853         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7854                                       &changeupper_info.info);
7855
7856         __netdev_update_upper_level(dev, NULL);
7857         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7858
7859         __netdev_update_lower_level(upper_dev, priv);
7860         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7861                                     priv);
7862 }
7863
7864 /**
7865  * netdev_upper_dev_unlink - Removes a link to upper device
7866  * @dev: device
7867  * @upper_dev: new upper device
7868  *
7869  * Removes a link to device which is upper to this one. The caller must hold
7870  * the RTNL lock.
7871  */
7872 void netdev_upper_dev_unlink(struct net_device *dev,
7873                              struct net_device *upper_dev)
7874 {
7875         struct netdev_nested_priv priv = {
7876                 .flags = NESTED_SYNC_TODO,
7877                 .data = NULL,
7878         };
7879
7880         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7881 }
7882 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7883
7884 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7885                                       struct net_device *lower_dev,
7886                                       bool val)
7887 {
7888         struct netdev_adjacent *adj;
7889
7890         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7891         if (adj)
7892                 adj->ignore = val;
7893
7894         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7895         if (adj)
7896                 adj->ignore = val;
7897 }
7898
7899 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7900                                         struct net_device *lower_dev)
7901 {
7902         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7903 }
7904
7905 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7906                                        struct net_device *lower_dev)
7907 {
7908         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7909 }
7910
7911 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7912                                    struct net_device *new_dev,
7913                                    struct net_device *dev,
7914                                    struct netlink_ext_ack *extack)
7915 {
7916         struct netdev_nested_priv priv = {
7917                 .flags = 0,
7918                 .data = NULL,
7919         };
7920         int err;
7921
7922         if (!new_dev)
7923                 return 0;
7924
7925         if (old_dev && new_dev != old_dev)
7926                 netdev_adjacent_dev_disable(dev, old_dev);
7927         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7928                                       extack);
7929         if (err) {
7930                 if (old_dev && new_dev != old_dev)
7931                         netdev_adjacent_dev_enable(dev, old_dev);
7932                 return err;
7933         }
7934
7935         return 0;
7936 }
7937 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7938
7939 void netdev_adjacent_change_commit(struct net_device *old_dev,
7940                                    struct net_device *new_dev,
7941                                    struct net_device *dev)
7942 {
7943         struct netdev_nested_priv priv = {
7944                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7945                 .data = NULL,
7946         };
7947
7948         if (!new_dev || !old_dev)
7949                 return;
7950
7951         if (new_dev == old_dev)
7952                 return;
7953
7954         netdev_adjacent_dev_enable(dev, old_dev);
7955         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7956 }
7957 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7958
7959 void netdev_adjacent_change_abort(struct net_device *old_dev,
7960                                   struct net_device *new_dev,
7961                                   struct net_device *dev)
7962 {
7963         struct netdev_nested_priv priv = {
7964                 .flags = 0,
7965                 .data = NULL,
7966         };
7967
7968         if (!new_dev)
7969                 return;
7970
7971         if (old_dev && new_dev != old_dev)
7972                 netdev_adjacent_dev_enable(dev, old_dev);
7973
7974         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7975 }
7976 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7977
7978 /**
7979  * netdev_bonding_info_change - Dispatch event about slave change
7980  * @dev: device
7981  * @bonding_info: info to dispatch
7982  *
7983  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7984  * The caller must hold the RTNL lock.
7985  */
7986 void netdev_bonding_info_change(struct net_device *dev,
7987                                 struct netdev_bonding_info *bonding_info)
7988 {
7989         struct netdev_notifier_bonding_info info = {
7990                 .info.dev = dev,
7991         };
7992
7993         memcpy(&info.bonding_info, bonding_info,
7994                sizeof(struct netdev_bonding_info));
7995         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7996                                       &info.info);
7997 }
7998 EXPORT_SYMBOL(netdev_bonding_info_change);
7999
8000 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8001                                            struct netlink_ext_ack *extack)
8002 {
8003         struct netdev_notifier_offload_xstats_info info = {
8004                 .info.dev = dev,
8005                 .info.extack = extack,
8006                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8007         };
8008         int err;
8009         int rc;
8010
8011         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8012                                          GFP_KERNEL);
8013         if (!dev->offload_xstats_l3)
8014                 return -ENOMEM;
8015
8016         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8017                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
8018                                                   &info.info);
8019         err = notifier_to_errno(rc);
8020         if (err)
8021                 goto free_stats;
8022
8023         return 0;
8024
8025 free_stats:
8026         kfree(dev->offload_xstats_l3);
8027         dev->offload_xstats_l3 = NULL;
8028         return err;
8029 }
8030
8031 int netdev_offload_xstats_enable(struct net_device *dev,
8032                                  enum netdev_offload_xstats_type type,
8033                                  struct netlink_ext_ack *extack)
8034 {
8035         ASSERT_RTNL();
8036
8037         if (netdev_offload_xstats_enabled(dev, type))
8038                 return -EALREADY;
8039
8040         switch (type) {
8041         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8042                 return netdev_offload_xstats_enable_l3(dev, extack);
8043         }
8044
8045         WARN_ON(1);
8046         return -EINVAL;
8047 }
8048 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8049
8050 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8051 {
8052         struct netdev_notifier_offload_xstats_info info = {
8053                 .info.dev = dev,
8054                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8055         };
8056
8057         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8058                                       &info.info);
8059         kfree(dev->offload_xstats_l3);
8060         dev->offload_xstats_l3 = NULL;
8061 }
8062
8063 int netdev_offload_xstats_disable(struct net_device *dev,
8064                                   enum netdev_offload_xstats_type type)
8065 {
8066         ASSERT_RTNL();
8067
8068         if (!netdev_offload_xstats_enabled(dev, type))
8069                 return -EALREADY;
8070
8071         switch (type) {
8072         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8073                 netdev_offload_xstats_disable_l3(dev);
8074                 return 0;
8075         }
8076
8077         WARN_ON(1);
8078         return -EINVAL;
8079 }
8080 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8081
8082 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8083 {
8084         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8085 }
8086
8087 static struct rtnl_hw_stats64 *
8088 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8089                               enum netdev_offload_xstats_type type)
8090 {
8091         switch (type) {
8092         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8093                 return dev->offload_xstats_l3;
8094         }
8095
8096         WARN_ON(1);
8097         return NULL;
8098 }
8099
8100 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8101                                    enum netdev_offload_xstats_type type)
8102 {
8103         ASSERT_RTNL();
8104
8105         return netdev_offload_xstats_get_ptr(dev, type);
8106 }
8107 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8108
8109 struct netdev_notifier_offload_xstats_ru {
8110         bool used;
8111 };
8112
8113 struct netdev_notifier_offload_xstats_rd {
8114         struct rtnl_hw_stats64 stats;
8115         bool used;
8116 };
8117
8118 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8119                                   const struct rtnl_hw_stats64 *src)
8120 {
8121         dest->rx_packets          += src->rx_packets;
8122         dest->tx_packets          += src->tx_packets;
8123         dest->rx_bytes            += src->rx_bytes;
8124         dest->tx_bytes            += src->tx_bytes;
8125         dest->rx_errors           += src->rx_errors;
8126         dest->tx_errors           += src->tx_errors;
8127         dest->rx_dropped          += src->rx_dropped;
8128         dest->tx_dropped          += src->tx_dropped;
8129         dest->multicast           += src->multicast;
8130 }
8131
8132 static int netdev_offload_xstats_get_used(struct net_device *dev,
8133                                           enum netdev_offload_xstats_type type,
8134                                           bool *p_used,
8135                                           struct netlink_ext_ack *extack)
8136 {
8137         struct netdev_notifier_offload_xstats_ru report_used = {};
8138         struct netdev_notifier_offload_xstats_info info = {
8139                 .info.dev = dev,
8140                 .info.extack = extack,
8141                 .type = type,
8142                 .report_used = &report_used,
8143         };
8144         int rc;
8145
8146         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8147         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8148                                            &info.info);
8149         *p_used = report_used.used;
8150         return notifier_to_errno(rc);
8151 }
8152
8153 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8154                                            enum netdev_offload_xstats_type type,
8155                                            struct rtnl_hw_stats64 *p_stats,
8156                                            bool *p_used,
8157                                            struct netlink_ext_ack *extack)
8158 {
8159         struct netdev_notifier_offload_xstats_rd report_delta = {};
8160         struct netdev_notifier_offload_xstats_info info = {
8161                 .info.dev = dev,
8162                 .info.extack = extack,
8163                 .type = type,
8164                 .report_delta = &report_delta,
8165         };
8166         struct rtnl_hw_stats64 *stats;
8167         int rc;
8168
8169         stats = netdev_offload_xstats_get_ptr(dev, type);
8170         if (WARN_ON(!stats))
8171                 return -EINVAL;
8172
8173         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8174                                            &info.info);
8175
8176         /* Cache whatever we got, even if there was an error, otherwise the
8177          * successful stats retrievals would get lost.
8178          */
8179         netdev_hw_stats64_add(stats, &report_delta.stats);
8180
8181         if (p_stats)
8182                 *p_stats = *stats;
8183         *p_used = report_delta.used;
8184
8185         return notifier_to_errno(rc);
8186 }
8187
8188 int netdev_offload_xstats_get(struct net_device *dev,
8189                               enum netdev_offload_xstats_type type,
8190                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8191                               struct netlink_ext_ack *extack)
8192 {
8193         ASSERT_RTNL();
8194
8195         if (p_stats)
8196                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8197                                                        p_used, extack);
8198         else
8199                 return netdev_offload_xstats_get_used(dev, type, p_used,
8200                                                       extack);
8201 }
8202 EXPORT_SYMBOL(netdev_offload_xstats_get);
8203
8204 void
8205 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8206                                    const struct rtnl_hw_stats64 *stats)
8207 {
8208         report_delta->used = true;
8209         netdev_hw_stats64_add(&report_delta->stats, stats);
8210 }
8211 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8212
8213 void
8214 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8215 {
8216         report_used->used = true;
8217 }
8218 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8219
8220 void netdev_offload_xstats_push_delta(struct net_device *dev,
8221                                       enum netdev_offload_xstats_type type,
8222                                       const struct rtnl_hw_stats64 *p_stats)
8223 {
8224         struct rtnl_hw_stats64 *stats;
8225
8226         ASSERT_RTNL();
8227
8228         stats = netdev_offload_xstats_get_ptr(dev, type);
8229         if (WARN_ON(!stats))
8230                 return;
8231
8232         netdev_hw_stats64_add(stats, p_stats);
8233 }
8234 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8235
8236 /**
8237  * netdev_get_xmit_slave - Get the xmit slave of master device
8238  * @dev: device
8239  * @skb: The packet
8240  * @all_slaves: assume all the slaves are active
8241  *
8242  * The reference counters are not incremented so the caller must be
8243  * careful with locks. The caller must hold RCU lock.
8244  * %NULL is returned if no slave is found.
8245  */
8246
8247 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8248                                          struct sk_buff *skb,
8249                                          bool all_slaves)
8250 {
8251         const struct net_device_ops *ops = dev->netdev_ops;
8252
8253         if (!ops->ndo_get_xmit_slave)
8254                 return NULL;
8255         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8256 }
8257 EXPORT_SYMBOL(netdev_get_xmit_slave);
8258
8259 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8260                                                   struct sock *sk)
8261 {
8262         const struct net_device_ops *ops = dev->netdev_ops;
8263
8264         if (!ops->ndo_sk_get_lower_dev)
8265                 return NULL;
8266         return ops->ndo_sk_get_lower_dev(dev, sk);
8267 }
8268
8269 /**
8270  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8271  * @dev: device
8272  * @sk: the socket
8273  *
8274  * %NULL is returned if no lower device is found.
8275  */
8276
8277 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8278                                             struct sock *sk)
8279 {
8280         struct net_device *lower;
8281
8282         lower = netdev_sk_get_lower_dev(dev, sk);
8283         while (lower) {
8284                 dev = lower;
8285                 lower = netdev_sk_get_lower_dev(dev, sk);
8286         }
8287
8288         return dev;
8289 }
8290 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8291
8292 static void netdev_adjacent_add_links(struct net_device *dev)
8293 {
8294         struct netdev_adjacent *iter;
8295
8296         struct net *net = dev_net(dev);
8297
8298         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8299                 if (!net_eq(net, dev_net(iter->dev)))
8300                         continue;
8301                 netdev_adjacent_sysfs_add(iter->dev, dev,
8302                                           &iter->dev->adj_list.lower);
8303                 netdev_adjacent_sysfs_add(dev, iter->dev,
8304                                           &dev->adj_list.upper);
8305         }
8306
8307         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8308                 if (!net_eq(net, dev_net(iter->dev)))
8309                         continue;
8310                 netdev_adjacent_sysfs_add(iter->dev, dev,
8311                                           &iter->dev->adj_list.upper);
8312                 netdev_adjacent_sysfs_add(dev, iter->dev,
8313                                           &dev->adj_list.lower);
8314         }
8315 }
8316
8317 static void netdev_adjacent_del_links(struct net_device *dev)
8318 {
8319         struct netdev_adjacent *iter;
8320
8321         struct net *net = dev_net(dev);
8322
8323         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8324                 if (!net_eq(net, dev_net(iter->dev)))
8325                         continue;
8326                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8327                                           &iter->dev->adj_list.lower);
8328                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8329                                           &dev->adj_list.upper);
8330         }
8331
8332         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8333                 if (!net_eq(net, dev_net(iter->dev)))
8334                         continue;
8335                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8336                                           &iter->dev->adj_list.upper);
8337                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8338                                           &dev->adj_list.lower);
8339         }
8340 }
8341
8342 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8343 {
8344         struct netdev_adjacent *iter;
8345
8346         struct net *net = dev_net(dev);
8347
8348         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8349                 if (!net_eq(net, dev_net(iter->dev)))
8350                         continue;
8351                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8352                                           &iter->dev->adj_list.lower);
8353                 netdev_adjacent_sysfs_add(iter->dev, dev,
8354                                           &iter->dev->adj_list.lower);
8355         }
8356
8357         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8358                 if (!net_eq(net, dev_net(iter->dev)))
8359                         continue;
8360                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8361                                           &iter->dev->adj_list.upper);
8362                 netdev_adjacent_sysfs_add(iter->dev, dev,
8363                                           &iter->dev->adj_list.upper);
8364         }
8365 }
8366
8367 void *netdev_lower_dev_get_private(struct net_device *dev,
8368                                    struct net_device *lower_dev)
8369 {
8370         struct netdev_adjacent *lower;
8371
8372         if (!lower_dev)
8373                 return NULL;
8374         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8375         if (!lower)
8376                 return NULL;
8377
8378         return lower->private;
8379 }
8380 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8381
8382
8383 /**
8384  * netdev_lower_state_changed - Dispatch event about lower device state change
8385  * @lower_dev: device
8386  * @lower_state_info: state to dispatch
8387  *
8388  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8389  * The caller must hold the RTNL lock.
8390  */
8391 void netdev_lower_state_changed(struct net_device *lower_dev,
8392                                 void *lower_state_info)
8393 {
8394         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8395                 .info.dev = lower_dev,
8396         };
8397
8398         ASSERT_RTNL();
8399         changelowerstate_info.lower_state_info = lower_state_info;
8400         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8401                                       &changelowerstate_info.info);
8402 }
8403 EXPORT_SYMBOL(netdev_lower_state_changed);
8404
8405 static void dev_change_rx_flags(struct net_device *dev, int flags)
8406 {
8407         const struct net_device_ops *ops = dev->netdev_ops;
8408
8409         if (ops->ndo_change_rx_flags)
8410                 ops->ndo_change_rx_flags(dev, flags);
8411 }
8412
8413 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8414 {
8415         unsigned int old_flags = dev->flags;
8416         kuid_t uid;
8417         kgid_t gid;
8418
8419         ASSERT_RTNL();
8420
8421         dev->flags |= IFF_PROMISC;
8422         dev->promiscuity += inc;
8423         if (dev->promiscuity == 0) {
8424                 /*
8425                  * Avoid overflow.
8426                  * If inc causes overflow, untouch promisc and return error.
8427                  */
8428                 if (inc < 0)
8429                         dev->flags &= ~IFF_PROMISC;
8430                 else {
8431                         dev->promiscuity -= inc;
8432                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8433                         return -EOVERFLOW;
8434                 }
8435         }
8436         if (dev->flags != old_flags) {
8437                 netdev_info(dev, "%s promiscuous mode\n",
8438                             dev->flags & IFF_PROMISC ? "entered" : "left");
8439                 if (audit_enabled) {
8440                         current_uid_gid(&uid, &gid);
8441                         audit_log(audit_context(), GFP_ATOMIC,
8442                                   AUDIT_ANOM_PROMISCUOUS,
8443                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8444                                   dev->name, (dev->flags & IFF_PROMISC),
8445                                   (old_flags & IFF_PROMISC),
8446                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8447                                   from_kuid(&init_user_ns, uid),
8448                                   from_kgid(&init_user_ns, gid),
8449                                   audit_get_sessionid(current));
8450                 }
8451
8452                 dev_change_rx_flags(dev, IFF_PROMISC);
8453         }
8454         if (notify)
8455                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8456         return 0;
8457 }
8458
8459 /**
8460  *      dev_set_promiscuity     - update promiscuity count on a device
8461  *      @dev: device
8462  *      @inc: modifier
8463  *
8464  *      Add or remove promiscuity from a device. While the count in the device
8465  *      remains above zero the interface remains promiscuous. Once it hits zero
8466  *      the device reverts back to normal filtering operation. A negative inc
8467  *      value is used to drop promiscuity on the device.
8468  *      Return 0 if successful or a negative errno code on error.
8469  */
8470 int dev_set_promiscuity(struct net_device *dev, int inc)
8471 {
8472         unsigned int old_flags = dev->flags;
8473         int err;
8474
8475         err = __dev_set_promiscuity(dev, inc, true);
8476         if (err < 0)
8477                 return err;
8478         if (dev->flags != old_flags)
8479                 dev_set_rx_mode(dev);
8480         return err;
8481 }
8482 EXPORT_SYMBOL(dev_set_promiscuity);
8483
8484 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8485 {
8486         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8487
8488         ASSERT_RTNL();
8489
8490         dev->flags |= IFF_ALLMULTI;
8491         dev->allmulti += inc;
8492         if (dev->allmulti == 0) {
8493                 /*
8494                  * Avoid overflow.
8495                  * If inc causes overflow, untouch allmulti and return error.
8496                  */
8497                 if (inc < 0)
8498                         dev->flags &= ~IFF_ALLMULTI;
8499                 else {
8500                         dev->allmulti -= inc;
8501                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8502                         return -EOVERFLOW;
8503                 }
8504         }
8505         if (dev->flags ^ old_flags) {
8506                 netdev_info(dev, "%s allmulticast mode\n",
8507                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8508                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8509                 dev_set_rx_mode(dev);
8510                 if (notify)
8511                         __dev_notify_flags(dev, old_flags,
8512                                            dev->gflags ^ old_gflags, 0, NULL);
8513         }
8514         return 0;
8515 }
8516
8517 /**
8518  *      dev_set_allmulti        - update allmulti count on a device
8519  *      @dev: device
8520  *      @inc: modifier
8521  *
8522  *      Add or remove reception of all multicast frames to a device. While the
8523  *      count in the device remains above zero the interface remains listening
8524  *      to all interfaces. Once it hits zero the device reverts back to normal
8525  *      filtering operation. A negative @inc value is used to drop the counter
8526  *      when releasing a resource needing all multicasts.
8527  *      Return 0 if successful or a negative errno code on error.
8528  */
8529
8530 int dev_set_allmulti(struct net_device *dev, int inc)
8531 {
8532         return __dev_set_allmulti(dev, inc, true);
8533 }
8534 EXPORT_SYMBOL(dev_set_allmulti);
8535
8536 /*
8537  *      Upload unicast and multicast address lists to device and
8538  *      configure RX filtering. When the device doesn't support unicast
8539  *      filtering it is put in promiscuous mode while unicast addresses
8540  *      are present.
8541  */
8542 void __dev_set_rx_mode(struct net_device *dev)
8543 {
8544         const struct net_device_ops *ops = dev->netdev_ops;
8545
8546         /* dev_open will call this function so the list will stay sane. */
8547         if (!(dev->flags&IFF_UP))
8548                 return;
8549
8550         if (!netif_device_present(dev))
8551                 return;
8552
8553         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8554                 /* Unicast addresses changes may only happen under the rtnl,
8555                  * therefore calling __dev_set_promiscuity here is safe.
8556                  */
8557                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8558                         __dev_set_promiscuity(dev, 1, false);
8559                         dev->uc_promisc = true;
8560                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8561                         __dev_set_promiscuity(dev, -1, false);
8562                         dev->uc_promisc = false;
8563                 }
8564         }
8565
8566         if (ops->ndo_set_rx_mode)
8567                 ops->ndo_set_rx_mode(dev);
8568 }
8569
8570 void dev_set_rx_mode(struct net_device *dev)
8571 {
8572         netif_addr_lock_bh(dev);
8573         __dev_set_rx_mode(dev);
8574         netif_addr_unlock_bh(dev);
8575 }
8576
8577 /**
8578  *      dev_get_flags - get flags reported to userspace
8579  *      @dev: device
8580  *
8581  *      Get the combination of flag bits exported through APIs to userspace.
8582  */
8583 unsigned int dev_get_flags(const struct net_device *dev)
8584 {
8585         unsigned int flags;
8586
8587         flags = (dev->flags & ~(IFF_PROMISC |
8588                                 IFF_ALLMULTI |
8589                                 IFF_RUNNING |
8590                                 IFF_LOWER_UP |
8591                                 IFF_DORMANT)) |
8592                 (dev->gflags & (IFF_PROMISC |
8593                                 IFF_ALLMULTI));
8594
8595         if (netif_running(dev)) {
8596                 if (netif_oper_up(dev))
8597                         flags |= IFF_RUNNING;
8598                 if (netif_carrier_ok(dev))
8599                         flags |= IFF_LOWER_UP;
8600                 if (netif_dormant(dev))
8601                         flags |= IFF_DORMANT;
8602         }
8603
8604         return flags;
8605 }
8606 EXPORT_SYMBOL(dev_get_flags);
8607
8608 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8609                        struct netlink_ext_ack *extack)
8610 {
8611         unsigned int old_flags = dev->flags;
8612         int ret;
8613
8614         ASSERT_RTNL();
8615
8616         /*
8617          *      Set the flags on our device.
8618          */
8619
8620         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8621                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8622                                IFF_AUTOMEDIA)) |
8623                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8624                                     IFF_ALLMULTI));
8625
8626         /*
8627          *      Load in the correct multicast list now the flags have changed.
8628          */
8629
8630         if ((old_flags ^ flags) & IFF_MULTICAST)
8631                 dev_change_rx_flags(dev, IFF_MULTICAST);
8632
8633         dev_set_rx_mode(dev);
8634
8635         /*
8636          *      Have we downed the interface. We handle IFF_UP ourselves
8637          *      according to user attempts to set it, rather than blindly
8638          *      setting it.
8639          */
8640
8641         ret = 0;
8642         if ((old_flags ^ flags) & IFF_UP) {
8643                 if (old_flags & IFF_UP)
8644                         __dev_close(dev);
8645                 else
8646                         ret = __dev_open(dev, extack);
8647         }
8648
8649         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8650                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8651                 unsigned int old_flags = dev->flags;
8652
8653                 dev->gflags ^= IFF_PROMISC;
8654
8655                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8656                         if (dev->flags != old_flags)
8657                                 dev_set_rx_mode(dev);
8658         }
8659
8660         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8661          * is important. Some (broken) drivers set IFF_PROMISC, when
8662          * IFF_ALLMULTI is requested not asking us and not reporting.
8663          */
8664         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8665                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8666
8667                 dev->gflags ^= IFF_ALLMULTI;
8668                 __dev_set_allmulti(dev, inc, false);
8669         }
8670
8671         return ret;
8672 }
8673
8674 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8675                         unsigned int gchanges, u32 portid,
8676                         const struct nlmsghdr *nlh)
8677 {
8678         unsigned int changes = dev->flags ^ old_flags;
8679
8680         if (gchanges)
8681                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8682
8683         if (changes & IFF_UP) {
8684                 if (dev->flags & IFF_UP)
8685                         call_netdevice_notifiers(NETDEV_UP, dev);
8686                 else
8687                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8688         }
8689
8690         if (dev->flags & IFF_UP &&
8691             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8692                 struct netdev_notifier_change_info change_info = {
8693                         .info = {
8694                                 .dev = dev,
8695                         },
8696                         .flags_changed = changes,
8697                 };
8698
8699                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8700         }
8701 }
8702
8703 /**
8704  *      dev_change_flags - change device settings
8705  *      @dev: device
8706  *      @flags: device state flags
8707  *      @extack: netlink extended ack
8708  *
8709  *      Change settings on device based state flags. The flags are
8710  *      in the userspace exported format.
8711  */
8712 int dev_change_flags(struct net_device *dev, unsigned int flags,
8713                      struct netlink_ext_ack *extack)
8714 {
8715         int ret;
8716         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8717
8718         ret = __dev_change_flags(dev, flags, extack);
8719         if (ret < 0)
8720                 return ret;
8721
8722         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8723         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8724         return ret;
8725 }
8726 EXPORT_SYMBOL(dev_change_flags);
8727
8728 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8729 {
8730         const struct net_device_ops *ops = dev->netdev_ops;
8731
8732         if (ops->ndo_change_mtu)
8733                 return ops->ndo_change_mtu(dev, new_mtu);
8734
8735         /* Pairs with all the lockless reads of dev->mtu in the stack */
8736         WRITE_ONCE(dev->mtu, new_mtu);
8737         return 0;
8738 }
8739 EXPORT_SYMBOL(__dev_set_mtu);
8740
8741 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8742                      struct netlink_ext_ack *extack)
8743 {
8744         /* MTU must be positive, and in range */
8745         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8746                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8747                 return -EINVAL;
8748         }
8749
8750         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8751                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8752                 return -EINVAL;
8753         }
8754         return 0;
8755 }
8756
8757 /**
8758  *      dev_set_mtu_ext - Change maximum transfer unit
8759  *      @dev: device
8760  *      @new_mtu: new transfer unit
8761  *      @extack: netlink extended ack
8762  *
8763  *      Change the maximum transfer size of the network device.
8764  */
8765 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8766                     struct netlink_ext_ack *extack)
8767 {
8768         int err, orig_mtu;
8769
8770         if (new_mtu == dev->mtu)
8771                 return 0;
8772
8773         err = dev_validate_mtu(dev, new_mtu, extack);
8774         if (err)
8775                 return err;
8776
8777         if (!netif_device_present(dev))
8778                 return -ENODEV;
8779
8780         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8781         err = notifier_to_errno(err);
8782         if (err)
8783                 return err;
8784
8785         orig_mtu = dev->mtu;
8786         err = __dev_set_mtu(dev, new_mtu);
8787
8788         if (!err) {
8789                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8790                                                    orig_mtu);
8791                 err = notifier_to_errno(err);
8792                 if (err) {
8793                         /* setting mtu back and notifying everyone again,
8794                          * so that they have a chance to revert changes.
8795                          */
8796                         __dev_set_mtu(dev, orig_mtu);
8797                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8798                                                      new_mtu);
8799                 }
8800         }
8801         return err;
8802 }
8803
8804 int dev_set_mtu(struct net_device *dev, int new_mtu)
8805 {
8806         struct netlink_ext_ack extack;
8807         int err;
8808
8809         memset(&extack, 0, sizeof(extack));
8810         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8811         if (err && extack._msg)
8812                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8813         return err;
8814 }
8815 EXPORT_SYMBOL(dev_set_mtu);
8816
8817 /**
8818  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8819  *      @dev: device
8820  *      @new_len: new tx queue length
8821  */
8822 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8823 {
8824         unsigned int orig_len = dev->tx_queue_len;
8825         int res;
8826
8827         if (new_len != (unsigned int)new_len)
8828                 return -ERANGE;
8829
8830         if (new_len != orig_len) {
8831                 dev->tx_queue_len = new_len;
8832                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8833                 res = notifier_to_errno(res);
8834                 if (res)
8835                         goto err_rollback;
8836                 res = dev_qdisc_change_tx_queue_len(dev);
8837                 if (res)
8838                         goto err_rollback;
8839         }
8840
8841         return 0;
8842
8843 err_rollback:
8844         netdev_err(dev, "refused to change device tx_queue_len\n");
8845         dev->tx_queue_len = orig_len;
8846         return res;
8847 }
8848
8849 /**
8850  *      dev_set_group - Change group this device belongs to
8851  *      @dev: device
8852  *      @new_group: group this device should belong to
8853  */
8854 void dev_set_group(struct net_device *dev, int new_group)
8855 {
8856         dev->group = new_group;
8857 }
8858
8859 /**
8860  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8861  *      @dev: device
8862  *      @addr: new address
8863  *      @extack: netlink extended ack
8864  */
8865 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8866                               struct netlink_ext_ack *extack)
8867 {
8868         struct netdev_notifier_pre_changeaddr_info info = {
8869                 .info.dev = dev,
8870                 .info.extack = extack,
8871                 .dev_addr = addr,
8872         };
8873         int rc;
8874
8875         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8876         return notifier_to_errno(rc);
8877 }
8878 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8879
8880 /**
8881  *      dev_set_mac_address - Change Media Access Control Address
8882  *      @dev: device
8883  *      @sa: new address
8884  *      @extack: netlink extended ack
8885  *
8886  *      Change the hardware (MAC) address of the device
8887  */
8888 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8889                         struct netlink_ext_ack *extack)
8890 {
8891         const struct net_device_ops *ops = dev->netdev_ops;
8892         int err;
8893
8894         if (!ops->ndo_set_mac_address)
8895                 return -EOPNOTSUPP;
8896         if (sa->sa_family != dev->type)
8897                 return -EINVAL;
8898         if (!netif_device_present(dev))
8899                 return -ENODEV;
8900         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8901         if (err)
8902                 return err;
8903         if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8904                 err = ops->ndo_set_mac_address(dev, sa);
8905                 if (err)
8906                         return err;
8907         }
8908         dev->addr_assign_type = NET_ADDR_SET;
8909         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8910         add_device_randomness(dev->dev_addr, dev->addr_len);
8911         return 0;
8912 }
8913 EXPORT_SYMBOL(dev_set_mac_address);
8914
8915 static DECLARE_RWSEM(dev_addr_sem);
8916
8917 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8918                              struct netlink_ext_ack *extack)
8919 {
8920         int ret;
8921
8922         down_write(&dev_addr_sem);
8923         ret = dev_set_mac_address(dev, sa, extack);
8924         up_write(&dev_addr_sem);
8925         return ret;
8926 }
8927 EXPORT_SYMBOL(dev_set_mac_address_user);
8928
8929 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8930 {
8931         size_t size = sizeof(sa->sa_data_min);
8932         struct net_device *dev;
8933         int ret = 0;
8934
8935         down_read(&dev_addr_sem);
8936         rcu_read_lock();
8937
8938         dev = dev_get_by_name_rcu(net, dev_name);
8939         if (!dev) {
8940                 ret = -ENODEV;
8941                 goto unlock;
8942         }
8943         if (!dev->addr_len)
8944                 memset(sa->sa_data, 0, size);
8945         else
8946                 memcpy(sa->sa_data, dev->dev_addr,
8947                        min_t(size_t, size, dev->addr_len));
8948         sa->sa_family = dev->type;
8949
8950 unlock:
8951         rcu_read_unlock();
8952         up_read(&dev_addr_sem);
8953         return ret;
8954 }
8955 EXPORT_SYMBOL(dev_get_mac_address);
8956
8957 /**
8958  *      dev_change_carrier - Change device carrier
8959  *      @dev: device
8960  *      @new_carrier: new value
8961  *
8962  *      Change device carrier
8963  */
8964 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8965 {
8966         const struct net_device_ops *ops = dev->netdev_ops;
8967
8968         if (!ops->ndo_change_carrier)
8969                 return -EOPNOTSUPP;
8970         if (!netif_device_present(dev))
8971                 return -ENODEV;
8972         return ops->ndo_change_carrier(dev, new_carrier);
8973 }
8974
8975 /**
8976  *      dev_get_phys_port_id - Get device physical port ID
8977  *      @dev: device
8978  *      @ppid: port ID
8979  *
8980  *      Get device physical port ID
8981  */
8982 int dev_get_phys_port_id(struct net_device *dev,
8983                          struct netdev_phys_item_id *ppid)
8984 {
8985         const struct net_device_ops *ops = dev->netdev_ops;
8986
8987         if (!ops->ndo_get_phys_port_id)
8988                 return -EOPNOTSUPP;
8989         return ops->ndo_get_phys_port_id(dev, ppid);
8990 }
8991
8992 /**
8993  *      dev_get_phys_port_name - Get device physical port name
8994  *      @dev: device
8995  *      @name: port name
8996  *      @len: limit of bytes to copy to name
8997  *
8998  *      Get device physical port name
8999  */
9000 int dev_get_phys_port_name(struct net_device *dev,
9001                            char *name, size_t len)
9002 {
9003         const struct net_device_ops *ops = dev->netdev_ops;
9004         int err;
9005
9006         if (ops->ndo_get_phys_port_name) {
9007                 err = ops->ndo_get_phys_port_name(dev, name, len);
9008                 if (err != -EOPNOTSUPP)
9009                         return err;
9010         }
9011         return devlink_compat_phys_port_name_get(dev, name, len);
9012 }
9013
9014 /**
9015  *      dev_get_port_parent_id - Get the device's port parent identifier
9016  *      @dev: network device
9017  *      @ppid: pointer to a storage for the port's parent identifier
9018  *      @recurse: allow/disallow recursion to lower devices
9019  *
9020  *      Get the devices's port parent identifier
9021  */
9022 int dev_get_port_parent_id(struct net_device *dev,
9023                            struct netdev_phys_item_id *ppid,
9024                            bool recurse)
9025 {
9026         const struct net_device_ops *ops = dev->netdev_ops;
9027         struct netdev_phys_item_id first = { };
9028         struct net_device *lower_dev;
9029         struct list_head *iter;
9030         int err;
9031
9032         if (ops->ndo_get_port_parent_id) {
9033                 err = ops->ndo_get_port_parent_id(dev, ppid);
9034                 if (err != -EOPNOTSUPP)
9035                         return err;
9036         }
9037
9038         err = devlink_compat_switch_id_get(dev, ppid);
9039         if (!recurse || err != -EOPNOTSUPP)
9040                 return err;
9041
9042         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9043                 err = dev_get_port_parent_id(lower_dev, ppid, true);
9044                 if (err)
9045                         break;
9046                 if (!first.id_len)
9047                         first = *ppid;
9048                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9049                         return -EOPNOTSUPP;
9050         }
9051
9052         return err;
9053 }
9054 EXPORT_SYMBOL(dev_get_port_parent_id);
9055
9056 /**
9057  *      netdev_port_same_parent_id - Indicate if two network devices have
9058  *      the same port parent identifier
9059  *      @a: first network device
9060  *      @b: second network device
9061  */
9062 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9063 {
9064         struct netdev_phys_item_id a_id = { };
9065         struct netdev_phys_item_id b_id = { };
9066
9067         if (dev_get_port_parent_id(a, &a_id, true) ||
9068             dev_get_port_parent_id(b, &b_id, true))
9069                 return false;
9070
9071         return netdev_phys_item_id_same(&a_id, &b_id);
9072 }
9073 EXPORT_SYMBOL(netdev_port_same_parent_id);
9074
9075 /**
9076  *      dev_change_proto_down - set carrier according to proto_down.
9077  *
9078  *      @dev: device
9079  *      @proto_down: new value
9080  */
9081 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9082 {
9083         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9084                 return -EOPNOTSUPP;
9085         if (!netif_device_present(dev))
9086                 return -ENODEV;
9087         if (proto_down)
9088                 netif_carrier_off(dev);
9089         else
9090                 netif_carrier_on(dev);
9091         dev->proto_down = proto_down;
9092         return 0;
9093 }
9094
9095 /**
9096  *      dev_change_proto_down_reason - proto down reason
9097  *
9098  *      @dev: device
9099  *      @mask: proto down mask
9100  *      @value: proto down value
9101  */
9102 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9103                                   u32 value)
9104 {
9105         int b;
9106
9107         if (!mask) {
9108                 dev->proto_down_reason = value;
9109         } else {
9110                 for_each_set_bit(b, &mask, 32) {
9111                         if (value & (1 << b))
9112                                 dev->proto_down_reason |= BIT(b);
9113                         else
9114                                 dev->proto_down_reason &= ~BIT(b);
9115                 }
9116         }
9117 }
9118
9119 struct bpf_xdp_link {
9120         struct bpf_link link;
9121         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9122         int flags;
9123 };
9124
9125 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9126 {
9127         if (flags & XDP_FLAGS_HW_MODE)
9128                 return XDP_MODE_HW;
9129         if (flags & XDP_FLAGS_DRV_MODE)
9130                 return XDP_MODE_DRV;
9131         if (flags & XDP_FLAGS_SKB_MODE)
9132                 return XDP_MODE_SKB;
9133         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9134 }
9135
9136 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9137 {
9138         switch (mode) {
9139         case XDP_MODE_SKB:
9140                 return generic_xdp_install;
9141         case XDP_MODE_DRV:
9142         case XDP_MODE_HW:
9143                 return dev->netdev_ops->ndo_bpf;
9144         default:
9145                 return NULL;
9146         }
9147 }
9148
9149 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9150                                          enum bpf_xdp_mode mode)
9151 {
9152         return dev->xdp_state[mode].link;
9153 }
9154
9155 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9156                                      enum bpf_xdp_mode mode)
9157 {
9158         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9159
9160         if (link)
9161                 return link->link.prog;
9162         return dev->xdp_state[mode].prog;
9163 }
9164
9165 u8 dev_xdp_prog_count(struct net_device *dev)
9166 {
9167         u8 count = 0;
9168         int i;
9169
9170         for (i = 0; i < __MAX_XDP_MODE; i++)
9171                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9172                         count++;
9173         return count;
9174 }
9175 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9176
9177 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9178 {
9179         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9180
9181         return prog ? prog->aux->id : 0;
9182 }
9183
9184 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9185                              struct bpf_xdp_link *link)
9186 {
9187         dev->xdp_state[mode].link = link;
9188         dev->xdp_state[mode].prog = NULL;
9189 }
9190
9191 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9192                              struct bpf_prog *prog)
9193 {
9194         dev->xdp_state[mode].link = NULL;
9195         dev->xdp_state[mode].prog = prog;
9196 }
9197
9198 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9199                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9200                            u32 flags, struct bpf_prog *prog)
9201 {
9202         struct netdev_bpf xdp;
9203         int err;
9204
9205         memset(&xdp, 0, sizeof(xdp));
9206         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9207         xdp.extack = extack;
9208         xdp.flags = flags;
9209         xdp.prog = prog;
9210
9211         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9212          * "moved" into driver), so they don't increment it on their own, but
9213          * they do decrement refcnt when program is detached or replaced.
9214          * Given net_device also owns link/prog, we need to bump refcnt here
9215          * to prevent drivers from underflowing it.
9216          */
9217         if (prog)
9218                 bpf_prog_inc(prog);
9219         err = bpf_op(dev, &xdp);
9220         if (err) {
9221                 if (prog)
9222                         bpf_prog_put(prog);
9223                 return err;
9224         }
9225
9226         if (mode != XDP_MODE_HW)
9227                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9228
9229         return 0;
9230 }
9231
9232 static void dev_xdp_uninstall(struct net_device *dev)
9233 {
9234         struct bpf_xdp_link *link;
9235         struct bpf_prog *prog;
9236         enum bpf_xdp_mode mode;
9237         bpf_op_t bpf_op;
9238
9239         ASSERT_RTNL();
9240
9241         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9242                 prog = dev_xdp_prog(dev, mode);
9243                 if (!prog)
9244                         continue;
9245
9246                 bpf_op = dev_xdp_bpf_op(dev, mode);
9247                 if (!bpf_op)
9248                         continue;
9249
9250                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9251
9252                 /* auto-detach link from net device */
9253                 link = dev_xdp_link(dev, mode);
9254                 if (link)
9255                         link->dev = NULL;
9256                 else
9257                         bpf_prog_put(prog);
9258
9259                 dev_xdp_set_link(dev, mode, NULL);
9260         }
9261 }
9262
9263 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9264                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9265                           struct bpf_prog *old_prog, u32 flags)
9266 {
9267         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9268         struct bpf_prog *cur_prog;
9269         struct net_device *upper;
9270         struct list_head *iter;
9271         enum bpf_xdp_mode mode;
9272         bpf_op_t bpf_op;
9273         int err;
9274
9275         ASSERT_RTNL();
9276
9277         /* either link or prog attachment, never both */
9278         if (link && (new_prog || old_prog))
9279                 return -EINVAL;
9280         /* link supports only XDP mode flags */
9281         if (link && (flags & ~XDP_FLAGS_MODES)) {
9282                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9283                 return -EINVAL;
9284         }
9285         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9286         if (num_modes > 1) {
9287                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9288                 return -EINVAL;
9289         }
9290         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9291         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9292                 NL_SET_ERR_MSG(extack,
9293                                "More than one program loaded, unset mode is ambiguous");
9294                 return -EINVAL;
9295         }
9296         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9297         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9298                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9299                 return -EINVAL;
9300         }
9301
9302         mode = dev_xdp_mode(dev, flags);
9303         /* can't replace attached link */
9304         if (dev_xdp_link(dev, mode)) {
9305                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9306                 return -EBUSY;
9307         }
9308
9309         /* don't allow if an upper device already has a program */
9310         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9311                 if (dev_xdp_prog_count(upper) > 0) {
9312                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9313                         return -EEXIST;
9314                 }
9315         }
9316
9317         cur_prog = dev_xdp_prog(dev, mode);
9318         /* can't replace attached prog with link */
9319         if (link && cur_prog) {
9320                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9321                 return -EBUSY;
9322         }
9323         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9324                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9325                 return -EEXIST;
9326         }
9327
9328         /* put effective new program into new_prog */
9329         if (link)
9330                 new_prog = link->link.prog;
9331
9332         if (new_prog) {
9333                 bool offload = mode == XDP_MODE_HW;
9334                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9335                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9336
9337                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9338                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9339                         return -EBUSY;
9340                 }
9341                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9342                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9343                         return -EEXIST;
9344                 }
9345                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9346                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9347                         return -EINVAL;
9348                 }
9349                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9350                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9351                         return -EINVAL;
9352                 }
9353                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9354                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9355                         return -EINVAL;
9356                 }
9357                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9358                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9359                         return -EINVAL;
9360                 }
9361         }
9362
9363         /* don't call drivers if the effective program didn't change */
9364         if (new_prog != cur_prog) {
9365                 bpf_op = dev_xdp_bpf_op(dev, mode);
9366                 if (!bpf_op) {
9367                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9368                         return -EOPNOTSUPP;
9369                 }
9370
9371                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9372                 if (err)
9373                         return err;
9374         }
9375
9376         if (link)
9377                 dev_xdp_set_link(dev, mode, link);
9378         else
9379                 dev_xdp_set_prog(dev, mode, new_prog);
9380         if (cur_prog)
9381                 bpf_prog_put(cur_prog);
9382
9383         return 0;
9384 }
9385
9386 static int dev_xdp_attach_link(struct net_device *dev,
9387                                struct netlink_ext_ack *extack,
9388                                struct bpf_xdp_link *link)
9389 {
9390         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9391 }
9392
9393 static int dev_xdp_detach_link(struct net_device *dev,
9394                                struct netlink_ext_ack *extack,
9395                                struct bpf_xdp_link *link)
9396 {
9397         enum bpf_xdp_mode mode;
9398         bpf_op_t bpf_op;
9399
9400         ASSERT_RTNL();
9401
9402         mode = dev_xdp_mode(dev, link->flags);
9403         if (dev_xdp_link(dev, mode) != link)
9404                 return -EINVAL;
9405
9406         bpf_op = dev_xdp_bpf_op(dev, mode);
9407         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9408         dev_xdp_set_link(dev, mode, NULL);
9409         return 0;
9410 }
9411
9412 static void bpf_xdp_link_release(struct bpf_link *link)
9413 {
9414         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9415
9416         rtnl_lock();
9417
9418         /* if racing with net_device's tear down, xdp_link->dev might be
9419          * already NULL, in which case link was already auto-detached
9420          */
9421         if (xdp_link->dev) {
9422                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9423                 xdp_link->dev = NULL;
9424         }
9425
9426         rtnl_unlock();
9427 }
9428
9429 static int bpf_xdp_link_detach(struct bpf_link *link)
9430 {
9431         bpf_xdp_link_release(link);
9432         return 0;
9433 }
9434
9435 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9436 {
9437         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9438
9439         kfree(xdp_link);
9440 }
9441
9442 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9443                                      struct seq_file *seq)
9444 {
9445         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9446         u32 ifindex = 0;
9447
9448         rtnl_lock();
9449         if (xdp_link->dev)
9450                 ifindex = xdp_link->dev->ifindex;
9451         rtnl_unlock();
9452
9453         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9454 }
9455
9456 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9457                                        struct bpf_link_info *info)
9458 {
9459         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9460         u32 ifindex = 0;
9461
9462         rtnl_lock();
9463         if (xdp_link->dev)
9464                 ifindex = xdp_link->dev->ifindex;
9465         rtnl_unlock();
9466
9467         info->xdp.ifindex = ifindex;
9468         return 0;
9469 }
9470
9471 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9472                                struct bpf_prog *old_prog)
9473 {
9474         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9475         enum bpf_xdp_mode mode;
9476         bpf_op_t bpf_op;
9477         int err = 0;
9478
9479         rtnl_lock();
9480
9481         /* link might have been auto-released already, so fail */
9482         if (!xdp_link->dev) {
9483                 err = -ENOLINK;
9484                 goto out_unlock;
9485         }
9486
9487         if (old_prog && link->prog != old_prog) {
9488                 err = -EPERM;
9489                 goto out_unlock;
9490         }
9491         old_prog = link->prog;
9492         if (old_prog->type != new_prog->type ||
9493             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9494                 err = -EINVAL;
9495                 goto out_unlock;
9496         }
9497
9498         if (old_prog == new_prog) {
9499                 /* no-op, don't disturb drivers */
9500                 bpf_prog_put(new_prog);
9501                 goto out_unlock;
9502         }
9503
9504         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9505         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9506         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9507                               xdp_link->flags, new_prog);
9508         if (err)
9509                 goto out_unlock;
9510
9511         old_prog = xchg(&link->prog, new_prog);
9512         bpf_prog_put(old_prog);
9513
9514 out_unlock:
9515         rtnl_unlock();
9516         return err;
9517 }
9518
9519 static const struct bpf_link_ops bpf_xdp_link_lops = {
9520         .release = bpf_xdp_link_release,
9521         .dealloc = bpf_xdp_link_dealloc,
9522         .detach = bpf_xdp_link_detach,
9523         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9524         .fill_link_info = bpf_xdp_link_fill_link_info,
9525         .update_prog = bpf_xdp_link_update,
9526 };
9527
9528 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9529 {
9530         struct net *net = current->nsproxy->net_ns;
9531         struct bpf_link_primer link_primer;
9532         struct netlink_ext_ack extack = {};
9533         struct bpf_xdp_link *link;
9534         struct net_device *dev;
9535         int err, fd;
9536
9537         rtnl_lock();
9538         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9539         if (!dev) {
9540                 rtnl_unlock();
9541                 return -EINVAL;
9542         }
9543
9544         link = kzalloc(sizeof(*link), GFP_USER);
9545         if (!link) {
9546                 err = -ENOMEM;
9547                 goto unlock;
9548         }
9549
9550         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9551         link->dev = dev;
9552         link->flags = attr->link_create.flags;
9553
9554         err = bpf_link_prime(&link->link, &link_primer);
9555         if (err) {
9556                 kfree(link);
9557                 goto unlock;
9558         }
9559
9560         err = dev_xdp_attach_link(dev, &extack, link);
9561         rtnl_unlock();
9562
9563         if (err) {
9564                 link->dev = NULL;
9565                 bpf_link_cleanup(&link_primer);
9566                 trace_bpf_xdp_link_attach_failed(extack._msg);
9567                 goto out_put_dev;
9568         }
9569
9570         fd = bpf_link_settle(&link_primer);
9571         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9572         dev_put(dev);
9573         return fd;
9574
9575 unlock:
9576         rtnl_unlock();
9577
9578 out_put_dev:
9579         dev_put(dev);
9580         return err;
9581 }
9582
9583 /**
9584  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9585  *      @dev: device
9586  *      @extack: netlink extended ack
9587  *      @fd: new program fd or negative value to clear
9588  *      @expected_fd: old program fd that userspace expects to replace or clear
9589  *      @flags: xdp-related flags
9590  *
9591  *      Set or clear a bpf program for a device
9592  */
9593 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9594                       int fd, int expected_fd, u32 flags)
9595 {
9596         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9597         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9598         int err;
9599
9600         ASSERT_RTNL();
9601
9602         if (fd >= 0) {
9603                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9604                                                  mode != XDP_MODE_SKB);
9605                 if (IS_ERR(new_prog))
9606                         return PTR_ERR(new_prog);
9607         }
9608
9609         if (expected_fd >= 0) {
9610                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9611                                                  mode != XDP_MODE_SKB);
9612                 if (IS_ERR(old_prog)) {
9613                         err = PTR_ERR(old_prog);
9614                         old_prog = NULL;
9615                         goto err_out;
9616                 }
9617         }
9618
9619         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9620
9621 err_out:
9622         if (err && new_prog)
9623                 bpf_prog_put(new_prog);
9624         if (old_prog)
9625                 bpf_prog_put(old_prog);
9626         return err;
9627 }
9628
9629 /**
9630  * dev_index_reserve() - allocate an ifindex in a namespace
9631  * @net: the applicable net namespace
9632  * @ifindex: requested ifindex, pass %0 to get one allocated
9633  *
9634  * Allocate a ifindex for a new device. Caller must either use the ifindex
9635  * to store the device (via list_netdevice()) or call dev_index_release()
9636  * to give the index up.
9637  *
9638  * Return: a suitable unique value for a new device interface number or -errno.
9639  */
9640 static int dev_index_reserve(struct net *net, u32 ifindex)
9641 {
9642         int err;
9643
9644         if (ifindex > INT_MAX) {
9645                 DEBUG_NET_WARN_ON_ONCE(1);
9646                 return -EINVAL;
9647         }
9648
9649         if (!ifindex)
9650                 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9651                                       xa_limit_31b, &net->ifindex, GFP_KERNEL);
9652         else
9653                 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9654         if (err < 0)
9655                 return err;
9656
9657         return ifindex;
9658 }
9659
9660 static void dev_index_release(struct net *net, int ifindex)
9661 {
9662         /* Expect only unused indexes, unlist_netdevice() removes the used */
9663         WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9664 }
9665
9666 /* Delayed registration/unregisteration */
9667 LIST_HEAD(net_todo_list);
9668 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9669
9670 static void net_set_todo(struct net_device *dev)
9671 {
9672         list_add_tail(&dev->todo_list, &net_todo_list);
9673         atomic_inc(&dev_net(dev)->dev_unreg_count);
9674 }
9675
9676 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9677         struct net_device *upper, netdev_features_t features)
9678 {
9679         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9680         netdev_features_t feature;
9681         int feature_bit;
9682
9683         for_each_netdev_feature(upper_disables, feature_bit) {
9684                 feature = __NETIF_F_BIT(feature_bit);
9685                 if (!(upper->wanted_features & feature)
9686                     && (features & feature)) {
9687                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9688                                    &feature, upper->name);
9689                         features &= ~feature;
9690                 }
9691         }
9692
9693         return features;
9694 }
9695
9696 static void netdev_sync_lower_features(struct net_device *upper,
9697         struct net_device *lower, netdev_features_t features)
9698 {
9699         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9700         netdev_features_t feature;
9701         int feature_bit;
9702
9703         for_each_netdev_feature(upper_disables, feature_bit) {
9704                 feature = __NETIF_F_BIT(feature_bit);
9705                 if (!(features & feature) && (lower->features & feature)) {
9706                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9707                                    &feature, lower->name);
9708                         lower->wanted_features &= ~feature;
9709                         __netdev_update_features(lower);
9710
9711                         if (unlikely(lower->features & feature))
9712                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9713                                             &feature, lower->name);
9714                         else
9715                                 netdev_features_change(lower);
9716                 }
9717         }
9718 }
9719
9720 static netdev_features_t netdev_fix_features(struct net_device *dev,
9721         netdev_features_t features)
9722 {
9723         /* Fix illegal checksum combinations */
9724         if ((features & NETIF_F_HW_CSUM) &&
9725             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9726                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9727                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9728         }
9729
9730         /* TSO requires that SG is present as well. */
9731         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9732                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9733                 features &= ~NETIF_F_ALL_TSO;
9734         }
9735
9736         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9737                                         !(features & NETIF_F_IP_CSUM)) {
9738                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9739                 features &= ~NETIF_F_TSO;
9740                 features &= ~NETIF_F_TSO_ECN;
9741         }
9742
9743         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9744                                          !(features & NETIF_F_IPV6_CSUM)) {
9745                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9746                 features &= ~NETIF_F_TSO6;
9747         }
9748
9749         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9750         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9751                 features &= ~NETIF_F_TSO_MANGLEID;
9752
9753         /* TSO ECN requires that TSO is present as well. */
9754         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9755                 features &= ~NETIF_F_TSO_ECN;
9756
9757         /* Software GSO depends on SG. */
9758         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9759                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9760                 features &= ~NETIF_F_GSO;
9761         }
9762
9763         /* GSO partial features require GSO partial be set */
9764         if ((features & dev->gso_partial_features) &&
9765             !(features & NETIF_F_GSO_PARTIAL)) {
9766                 netdev_dbg(dev,
9767                            "Dropping partially supported GSO features since no GSO partial.\n");
9768                 features &= ~dev->gso_partial_features;
9769         }
9770
9771         if (!(features & NETIF_F_RXCSUM)) {
9772                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9773                  * successfully merged by hardware must also have the
9774                  * checksum verified by hardware.  If the user does not
9775                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9776                  */
9777                 if (features & NETIF_F_GRO_HW) {
9778                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9779                         features &= ~NETIF_F_GRO_HW;
9780                 }
9781         }
9782
9783         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9784         if (features & NETIF_F_RXFCS) {
9785                 if (features & NETIF_F_LRO) {
9786                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9787                         features &= ~NETIF_F_LRO;
9788                 }
9789
9790                 if (features & NETIF_F_GRO_HW) {
9791                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9792                         features &= ~NETIF_F_GRO_HW;
9793                 }
9794         }
9795
9796         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9797                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9798                 features &= ~NETIF_F_LRO;
9799         }
9800
9801         if (features & NETIF_F_HW_TLS_TX) {
9802                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9803                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9804                 bool hw_csum = features & NETIF_F_HW_CSUM;
9805
9806                 if (!ip_csum && !hw_csum) {
9807                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9808                         features &= ~NETIF_F_HW_TLS_TX;
9809                 }
9810         }
9811
9812         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9813                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9814                 features &= ~NETIF_F_HW_TLS_RX;
9815         }
9816
9817         return features;
9818 }
9819
9820 int __netdev_update_features(struct net_device *dev)
9821 {
9822         struct net_device *upper, *lower;
9823         netdev_features_t features;
9824         struct list_head *iter;
9825         int err = -1;
9826
9827         ASSERT_RTNL();
9828
9829         features = netdev_get_wanted_features(dev);
9830
9831         if (dev->netdev_ops->ndo_fix_features)
9832                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9833
9834         /* driver might be less strict about feature dependencies */
9835         features = netdev_fix_features(dev, features);
9836
9837         /* some features can't be enabled if they're off on an upper device */
9838         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9839                 features = netdev_sync_upper_features(dev, upper, features);
9840
9841         if (dev->features == features)
9842                 goto sync_lower;
9843
9844         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9845                 &dev->features, &features);
9846
9847         if (dev->netdev_ops->ndo_set_features)
9848                 err = dev->netdev_ops->ndo_set_features(dev, features);
9849         else
9850                 err = 0;
9851
9852         if (unlikely(err < 0)) {
9853                 netdev_err(dev,
9854                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9855                         err, &features, &dev->features);
9856                 /* return non-0 since some features might have changed and
9857                  * it's better to fire a spurious notification than miss it
9858                  */
9859                 return -1;
9860         }
9861
9862 sync_lower:
9863         /* some features must be disabled on lower devices when disabled
9864          * on an upper device (think: bonding master or bridge)
9865          */
9866         netdev_for_each_lower_dev(dev, lower, iter)
9867                 netdev_sync_lower_features(dev, lower, features);
9868
9869         if (!err) {
9870                 netdev_features_t diff = features ^ dev->features;
9871
9872                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9873                         /* udp_tunnel_{get,drop}_rx_info both need
9874                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9875                          * device, or they won't do anything.
9876                          * Thus we need to update dev->features
9877                          * *before* calling udp_tunnel_get_rx_info,
9878                          * but *after* calling udp_tunnel_drop_rx_info.
9879                          */
9880                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9881                                 dev->features = features;
9882                                 udp_tunnel_get_rx_info(dev);
9883                         } else {
9884                                 udp_tunnel_drop_rx_info(dev);
9885                         }
9886                 }
9887
9888                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9889                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9890                                 dev->features = features;
9891                                 err |= vlan_get_rx_ctag_filter_info(dev);
9892                         } else {
9893                                 vlan_drop_rx_ctag_filter_info(dev);
9894                         }
9895                 }
9896
9897                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9898                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9899                                 dev->features = features;
9900                                 err |= vlan_get_rx_stag_filter_info(dev);
9901                         } else {
9902                                 vlan_drop_rx_stag_filter_info(dev);
9903                         }
9904                 }
9905
9906                 dev->features = features;
9907         }
9908
9909         return err < 0 ? 0 : 1;
9910 }
9911
9912 /**
9913  *      netdev_update_features - recalculate device features
9914  *      @dev: the device to check
9915  *
9916  *      Recalculate dev->features set and send notifications if it
9917  *      has changed. Should be called after driver or hardware dependent
9918  *      conditions might have changed that influence the features.
9919  */
9920 void netdev_update_features(struct net_device *dev)
9921 {
9922         if (__netdev_update_features(dev))
9923                 netdev_features_change(dev);
9924 }
9925 EXPORT_SYMBOL(netdev_update_features);
9926
9927 /**
9928  *      netdev_change_features - recalculate device features
9929  *      @dev: the device to check
9930  *
9931  *      Recalculate dev->features set and send notifications even
9932  *      if they have not changed. Should be called instead of
9933  *      netdev_update_features() if also dev->vlan_features might
9934  *      have changed to allow the changes to be propagated to stacked
9935  *      VLAN devices.
9936  */
9937 void netdev_change_features(struct net_device *dev)
9938 {
9939         __netdev_update_features(dev);
9940         netdev_features_change(dev);
9941 }
9942 EXPORT_SYMBOL(netdev_change_features);
9943
9944 /**
9945  *      netif_stacked_transfer_operstate -      transfer operstate
9946  *      @rootdev: the root or lower level device to transfer state from
9947  *      @dev: the device to transfer operstate to
9948  *
9949  *      Transfer operational state from root to device. This is normally
9950  *      called when a stacking relationship exists between the root
9951  *      device and the device(a leaf device).
9952  */
9953 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9954                                         struct net_device *dev)
9955 {
9956         if (rootdev->operstate == IF_OPER_DORMANT)
9957                 netif_dormant_on(dev);
9958         else
9959                 netif_dormant_off(dev);
9960
9961         if (rootdev->operstate == IF_OPER_TESTING)
9962                 netif_testing_on(dev);
9963         else
9964                 netif_testing_off(dev);
9965
9966         if (netif_carrier_ok(rootdev))
9967                 netif_carrier_on(dev);
9968         else
9969                 netif_carrier_off(dev);
9970 }
9971 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9972
9973 static int netif_alloc_rx_queues(struct net_device *dev)
9974 {
9975         unsigned int i, count = dev->num_rx_queues;
9976         struct netdev_rx_queue *rx;
9977         size_t sz = count * sizeof(*rx);
9978         int err = 0;
9979
9980         BUG_ON(count < 1);
9981
9982         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9983         if (!rx)
9984                 return -ENOMEM;
9985
9986         dev->_rx = rx;
9987
9988         for (i = 0; i < count; i++) {
9989                 rx[i].dev = dev;
9990
9991                 /* XDP RX-queue setup */
9992                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9993                 if (err < 0)
9994                         goto err_rxq_info;
9995         }
9996         return 0;
9997
9998 err_rxq_info:
9999         /* Rollback successful reg's and free other resources */
10000         while (i--)
10001                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10002         kvfree(dev->_rx);
10003         dev->_rx = NULL;
10004         return err;
10005 }
10006
10007 static void netif_free_rx_queues(struct net_device *dev)
10008 {
10009         unsigned int i, count = dev->num_rx_queues;
10010
10011         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10012         if (!dev->_rx)
10013                 return;
10014
10015         for (i = 0; i < count; i++)
10016                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10017
10018         kvfree(dev->_rx);
10019 }
10020
10021 static void netdev_init_one_queue(struct net_device *dev,
10022                                   struct netdev_queue *queue, void *_unused)
10023 {
10024         /* Initialize queue lock */
10025         spin_lock_init(&queue->_xmit_lock);
10026         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10027         queue->xmit_lock_owner = -1;
10028         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10029         queue->dev = dev;
10030 #ifdef CONFIG_BQL
10031         dql_init(&queue->dql, HZ);
10032 #endif
10033 }
10034
10035 static void netif_free_tx_queues(struct net_device *dev)
10036 {
10037         kvfree(dev->_tx);
10038 }
10039
10040 static int netif_alloc_netdev_queues(struct net_device *dev)
10041 {
10042         unsigned int count = dev->num_tx_queues;
10043         struct netdev_queue *tx;
10044         size_t sz = count * sizeof(*tx);
10045
10046         if (count < 1 || count > 0xffff)
10047                 return -EINVAL;
10048
10049         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10050         if (!tx)
10051                 return -ENOMEM;
10052
10053         dev->_tx = tx;
10054
10055         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10056         spin_lock_init(&dev->tx_global_lock);
10057
10058         return 0;
10059 }
10060
10061 void netif_tx_stop_all_queues(struct net_device *dev)
10062 {
10063         unsigned int i;
10064
10065         for (i = 0; i < dev->num_tx_queues; i++) {
10066                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10067
10068                 netif_tx_stop_queue(txq);
10069         }
10070 }
10071 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10072
10073 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10074 {
10075         void __percpu *v;
10076
10077         /* Drivers implementing ndo_get_peer_dev must support tstat
10078          * accounting, so that skb_do_redirect() can bump the dev's
10079          * RX stats upon network namespace switch.
10080          */
10081         if (dev->netdev_ops->ndo_get_peer_dev &&
10082             dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10083                 return -EOPNOTSUPP;
10084
10085         switch (dev->pcpu_stat_type) {
10086         case NETDEV_PCPU_STAT_NONE:
10087                 return 0;
10088         case NETDEV_PCPU_STAT_LSTATS:
10089                 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10090                 break;
10091         case NETDEV_PCPU_STAT_TSTATS:
10092                 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10093                 break;
10094         case NETDEV_PCPU_STAT_DSTATS:
10095                 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10096                 break;
10097         default:
10098                 return -EINVAL;
10099         }
10100
10101         return v ? 0 : -ENOMEM;
10102 }
10103
10104 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10105 {
10106         switch (dev->pcpu_stat_type) {
10107         case NETDEV_PCPU_STAT_NONE:
10108                 return;
10109         case NETDEV_PCPU_STAT_LSTATS:
10110                 free_percpu(dev->lstats);
10111                 break;
10112         case NETDEV_PCPU_STAT_TSTATS:
10113                 free_percpu(dev->tstats);
10114                 break;
10115         case NETDEV_PCPU_STAT_DSTATS:
10116                 free_percpu(dev->dstats);
10117                 break;
10118         }
10119 }
10120
10121 /**
10122  * register_netdevice() - register a network device
10123  * @dev: device to register
10124  *
10125  * Take a prepared network device structure and make it externally accessible.
10126  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10127  * Callers must hold the rtnl lock - you may want register_netdev()
10128  * instead of this.
10129  */
10130 int register_netdevice(struct net_device *dev)
10131 {
10132         int ret;
10133         struct net *net = dev_net(dev);
10134
10135         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10136                      NETDEV_FEATURE_COUNT);
10137         BUG_ON(dev_boot_phase);
10138         ASSERT_RTNL();
10139
10140         might_sleep();
10141
10142         /* When net_device's are persistent, this will be fatal. */
10143         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10144         BUG_ON(!net);
10145
10146         ret = ethtool_check_ops(dev->ethtool_ops);
10147         if (ret)
10148                 return ret;
10149
10150         spin_lock_init(&dev->addr_list_lock);
10151         netdev_set_addr_lockdep_class(dev);
10152
10153         ret = dev_get_valid_name(net, dev, dev->name);
10154         if (ret < 0)
10155                 goto out;
10156
10157         ret = -ENOMEM;
10158         dev->name_node = netdev_name_node_head_alloc(dev);
10159         if (!dev->name_node)
10160                 goto out;
10161
10162         /* Init, if this function is available */
10163         if (dev->netdev_ops->ndo_init) {
10164                 ret = dev->netdev_ops->ndo_init(dev);
10165                 if (ret) {
10166                         if (ret > 0)
10167                                 ret = -EIO;
10168                         goto err_free_name;
10169                 }
10170         }
10171
10172         if (((dev->hw_features | dev->features) &
10173              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10174             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10175              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10176                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10177                 ret = -EINVAL;
10178                 goto err_uninit;
10179         }
10180
10181         ret = netdev_do_alloc_pcpu_stats(dev);
10182         if (ret)
10183                 goto err_uninit;
10184
10185         ret = dev_index_reserve(net, dev->ifindex);
10186         if (ret < 0)
10187                 goto err_free_pcpu;
10188         dev->ifindex = ret;
10189
10190         /* Transfer changeable features to wanted_features and enable
10191          * software offloads (GSO and GRO).
10192          */
10193         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10194         dev->features |= NETIF_F_SOFT_FEATURES;
10195
10196         if (dev->udp_tunnel_nic_info) {
10197                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10198                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10199         }
10200
10201         dev->wanted_features = dev->features & dev->hw_features;
10202
10203         if (!(dev->flags & IFF_LOOPBACK))
10204                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10205
10206         /* If IPv4 TCP segmentation offload is supported we should also
10207          * allow the device to enable segmenting the frame with the option
10208          * of ignoring a static IP ID value.  This doesn't enable the
10209          * feature itself but allows the user to enable it later.
10210          */
10211         if (dev->hw_features & NETIF_F_TSO)
10212                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10213         if (dev->vlan_features & NETIF_F_TSO)
10214                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10215         if (dev->mpls_features & NETIF_F_TSO)
10216                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10217         if (dev->hw_enc_features & NETIF_F_TSO)
10218                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10219
10220         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10221          */
10222         dev->vlan_features |= NETIF_F_HIGHDMA;
10223
10224         /* Make NETIF_F_SG inheritable to tunnel devices.
10225          */
10226         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10227
10228         /* Make NETIF_F_SG inheritable to MPLS.
10229          */
10230         dev->mpls_features |= NETIF_F_SG;
10231
10232         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10233         ret = notifier_to_errno(ret);
10234         if (ret)
10235                 goto err_ifindex_release;
10236
10237         ret = netdev_register_kobject(dev);
10238         write_lock(&dev_base_lock);
10239         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10240         write_unlock(&dev_base_lock);
10241         if (ret)
10242                 goto err_uninit_notify;
10243
10244         __netdev_update_features(dev);
10245
10246         /*
10247          *      Default initial state at registry is that the
10248          *      device is present.
10249          */
10250
10251         set_bit(__LINK_STATE_PRESENT, &dev->state);
10252
10253         linkwatch_init_dev(dev);
10254
10255         dev_init_scheduler(dev);
10256
10257         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10258         list_netdevice(dev);
10259
10260         add_device_randomness(dev->dev_addr, dev->addr_len);
10261
10262         /* If the device has permanent device address, driver should
10263          * set dev_addr and also addr_assign_type should be set to
10264          * NET_ADDR_PERM (default value).
10265          */
10266         if (dev->addr_assign_type == NET_ADDR_PERM)
10267                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10268
10269         /* Notify protocols, that a new device appeared. */
10270         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10271         ret = notifier_to_errno(ret);
10272         if (ret) {
10273                 /* Expect explicit free_netdev() on failure */
10274                 dev->needs_free_netdev = false;
10275                 unregister_netdevice_queue(dev, NULL);
10276                 goto out;
10277         }
10278         /*
10279          *      Prevent userspace races by waiting until the network
10280          *      device is fully setup before sending notifications.
10281          */
10282         if (!dev->rtnl_link_ops ||
10283             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10284                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10285
10286 out:
10287         return ret;
10288
10289 err_uninit_notify:
10290         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10291 err_ifindex_release:
10292         dev_index_release(net, dev->ifindex);
10293 err_free_pcpu:
10294         netdev_do_free_pcpu_stats(dev);
10295 err_uninit:
10296         if (dev->netdev_ops->ndo_uninit)
10297                 dev->netdev_ops->ndo_uninit(dev);
10298         if (dev->priv_destructor)
10299                 dev->priv_destructor(dev);
10300 err_free_name:
10301         netdev_name_node_free(dev->name_node);
10302         goto out;
10303 }
10304 EXPORT_SYMBOL(register_netdevice);
10305
10306 /**
10307  *      init_dummy_netdev       - init a dummy network device for NAPI
10308  *      @dev: device to init
10309  *
10310  *      This takes a network device structure and initialize the minimum
10311  *      amount of fields so it can be used to schedule NAPI polls without
10312  *      registering a full blown interface. This is to be used by drivers
10313  *      that need to tie several hardware interfaces to a single NAPI
10314  *      poll scheduler due to HW limitations.
10315  */
10316 int init_dummy_netdev(struct net_device *dev)
10317 {
10318         /* Clear everything. Note we don't initialize spinlocks
10319          * are they aren't supposed to be taken by any of the
10320          * NAPI code and this dummy netdev is supposed to be
10321          * only ever used for NAPI polls
10322          */
10323         memset(dev, 0, sizeof(struct net_device));
10324
10325         /* make sure we BUG if trying to hit standard
10326          * register/unregister code path
10327          */
10328         dev->reg_state = NETREG_DUMMY;
10329
10330         /* NAPI wants this */
10331         INIT_LIST_HEAD(&dev->napi_list);
10332
10333         /* a dummy interface is started by default */
10334         set_bit(__LINK_STATE_PRESENT, &dev->state);
10335         set_bit(__LINK_STATE_START, &dev->state);
10336
10337         /* napi_busy_loop stats accounting wants this */
10338         dev_net_set(dev, &init_net);
10339
10340         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10341          * because users of this 'device' dont need to change
10342          * its refcount.
10343          */
10344
10345         return 0;
10346 }
10347 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10348
10349
10350 /**
10351  *      register_netdev - register a network device
10352  *      @dev: device to register
10353  *
10354  *      Take a completed network device structure and add it to the kernel
10355  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10356  *      chain. 0 is returned on success. A negative errno code is returned
10357  *      on a failure to set up the device, or if the name is a duplicate.
10358  *
10359  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10360  *      and expands the device name if you passed a format string to
10361  *      alloc_netdev.
10362  */
10363 int register_netdev(struct net_device *dev)
10364 {
10365         int err;
10366
10367         if (rtnl_lock_killable())
10368                 return -EINTR;
10369         err = register_netdevice(dev);
10370         rtnl_unlock();
10371         return err;
10372 }
10373 EXPORT_SYMBOL(register_netdev);
10374
10375 int netdev_refcnt_read(const struct net_device *dev)
10376 {
10377 #ifdef CONFIG_PCPU_DEV_REFCNT
10378         int i, refcnt = 0;
10379
10380         for_each_possible_cpu(i)
10381                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10382         return refcnt;
10383 #else
10384         return refcount_read(&dev->dev_refcnt);
10385 #endif
10386 }
10387 EXPORT_SYMBOL(netdev_refcnt_read);
10388
10389 int netdev_unregister_timeout_secs __read_mostly = 10;
10390
10391 #define WAIT_REFS_MIN_MSECS 1
10392 #define WAIT_REFS_MAX_MSECS 250
10393 /**
10394  * netdev_wait_allrefs_any - wait until all references are gone.
10395  * @list: list of net_devices to wait on
10396  *
10397  * This is called when unregistering network devices.
10398  *
10399  * Any protocol or device that holds a reference should register
10400  * for netdevice notification, and cleanup and put back the
10401  * reference if they receive an UNREGISTER event.
10402  * We can get stuck here if buggy protocols don't correctly
10403  * call dev_put.
10404  */
10405 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10406 {
10407         unsigned long rebroadcast_time, warning_time;
10408         struct net_device *dev;
10409         int wait = 0;
10410
10411         rebroadcast_time = warning_time = jiffies;
10412
10413         list_for_each_entry(dev, list, todo_list)
10414                 if (netdev_refcnt_read(dev) == 1)
10415                         return dev;
10416
10417         while (true) {
10418                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10419                         rtnl_lock();
10420
10421                         /* Rebroadcast unregister notification */
10422                         list_for_each_entry(dev, list, todo_list)
10423                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10424
10425                         __rtnl_unlock();
10426                         rcu_barrier();
10427                         rtnl_lock();
10428
10429                         list_for_each_entry(dev, list, todo_list)
10430                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10431                                              &dev->state)) {
10432                                         /* We must not have linkwatch events
10433                                          * pending on unregister. If this
10434                                          * happens, we simply run the queue
10435                                          * unscheduled, resulting in a noop
10436                                          * for this device.
10437                                          */
10438                                         linkwatch_run_queue();
10439                                         break;
10440                                 }
10441
10442                         __rtnl_unlock();
10443
10444                         rebroadcast_time = jiffies;
10445                 }
10446
10447                 if (!wait) {
10448                         rcu_barrier();
10449                         wait = WAIT_REFS_MIN_MSECS;
10450                 } else {
10451                         msleep(wait);
10452                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10453                 }
10454
10455                 list_for_each_entry(dev, list, todo_list)
10456                         if (netdev_refcnt_read(dev) == 1)
10457                                 return dev;
10458
10459                 if (time_after(jiffies, warning_time +
10460                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10461                         list_for_each_entry(dev, list, todo_list) {
10462                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10463                                          dev->name, netdev_refcnt_read(dev));
10464                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10465                         }
10466
10467                         warning_time = jiffies;
10468                 }
10469         }
10470 }
10471
10472 /* The sequence is:
10473  *
10474  *      rtnl_lock();
10475  *      ...
10476  *      register_netdevice(x1);
10477  *      register_netdevice(x2);
10478  *      ...
10479  *      unregister_netdevice(y1);
10480  *      unregister_netdevice(y2);
10481  *      ...
10482  *      rtnl_unlock();
10483  *      free_netdev(y1);
10484  *      free_netdev(y2);
10485  *
10486  * We are invoked by rtnl_unlock().
10487  * This allows us to deal with problems:
10488  * 1) We can delete sysfs objects which invoke hotplug
10489  *    without deadlocking with linkwatch via keventd.
10490  * 2) Since we run with the RTNL semaphore not held, we can sleep
10491  *    safely in order to wait for the netdev refcnt to drop to zero.
10492  *
10493  * We must not return until all unregister events added during
10494  * the interval the lock was held have been completed.
10495  */
10496 void netdev_run_todo(void)
10497 {
10498         struct net_device *dev, *tmp;
10499         struct list_head list;
10500 #ifdef CONFIG_LOCKDEP
10501         struct list_head unlink_list;
10502
10503         list_replace_init(&net_unlink_list, &unlink_list);
10504
10505         while (!list_empty(&unlink_list)) {
10506                 struct net_device *dev = list_first_entry(&unlink_list,
10507                                                           struct net_device,
10508                                                           unlink_list);
10509                 list_del_init(&dev->unlink_list);
10510                 dev->nested_level = dev->lower_level - 1;
10511         }
10512 #endif
10513
10514         /* Snapshot list, allow later requests */
10515         list_replace_init(&net_todo_list, &list);
10516
10517         __rtnl_unlock();
10518
10519         /* Wait for rcu callbacks to finish before next phase */
10520         if (!list_empty(&list))
10521                 rcu_barrier();
10522
10523         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10524                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10525                         netdev_WARN(dev, "run_todo but not unregistering\n");
10526                         list_del(&dev->todo_list);
10527                         continue;
10528                 }
10529
10530                 write_lock(&dev_base_lock);
10531                 dev->reg_state = NETREG_UNREGISTERED;
10532                 write_unlock(&dev_base_lock);
10533                 linkwatch_forget_dev(dev);
10534         }
10535
10536         while (!list_empty(&list)) {
10537                 dev = netdev_wait_allrefs_any(&list);
10538                 list_del(&dev->todo_list);
10539
10540                 /* paranoia */
10541                 BUG_ON(netdev_refcnt_read(dev) != 1);
10542                 BUG_ON(!list_empty(&dev->ptype_all));
10543                 BUG_ON(!list_empty(&dev->ptype_specific));
10544                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10545                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10546
10547                 netdev_do_free_pcpu_stats(dev);
10548                 if (dev->priv_destructor)
10549                         dev->priv_destructor(dev);
10550                 if (dev->needs_free_netdev)
10551                         free_netdev(dev);
10552
10553                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10554                         wake_up(&netdev_unregistering_wq);
10555
10556                 /* Free network device */
10557                 kobject_put(&dev->dev.kobj);
10558         }
10559 }
10560
10561 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10562  * all the same fields in the same order as net_device_stats, with only
10563  * the type differing, but rtnl_link_stats64 may have additional fields
10564  * at the end for newer counters.
10565  */
10566 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10567                              const struct net_device_stats *netdev_stats)
10568 {
10569         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10570         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10571         u64 *dst = (u64 *)stats64;
10572
10573         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10574         for (i = 0; i < n; i++)
10575                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10576         /* zero out counters that only exist in rtnl_link_stats64 */
10577         memset((char *)stats64 + n * sizeof(u64), 0,
10578                sizeof(*stats64) - n * sizeof(u64));
10579 }
10580 EXPORT_SYMBOL(netdev_stats_to_stats64);
10581
10582 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10583 {
10584         struct net_device_core_stats __percpu *p;
10585
10586         p = alloc_percpu_gfp(struct net_device_core_stats,
10587                              GFP_ATOMIC | __GFP_NOWARN);
10588
10589         if (p && cmpxchg(&dev->core_stats, NULL, p))
10590                 free_percpu(p);
10591
10592         /* This READ_ONCE() pairs with the cmpxchg() above */
10593         return READ_ONCE(dev->core_stats);
10594 }
10595 EXPORT_SYMBOL(netdev_core_stats_alloc);
10596
10597 /**
10598  *      dev_get_stats   - get network device statistics
10599  *      @dev: device to get statistics from
10600  *      @storage: place to store stats
10601  *
10602  *      Get network statistics from device. Return @storage.
10603  *      The device driver may provide its own method by setting
10604  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10605  *      otherwise the internal statistics structure is used.
10606  */
10607 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10608                                         struct rtnl_link_stats64 *storage)
10609 {
10610         const struct net_device_ops *ops = dev->netdev_ops;
10611         const struct net_device_core_stats __percpu *p;
10612
10613         if (ops->ndo_get_stats64) {
10614                 memset(storage, 0, sizeof(*storage));
10615                 ops->ndo_get_stats64(dev, storage);
10616         } else if (ops->ndo_get_stats) {
10617                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10618         } else {
10619                 netdev_stats_to_stats64(storage, &dev->stats);
10620         }
10621
10622         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10623         p = READ_ONCE(dev->core_stats);
10624         if (p) {
10625                 const struct net_device_core_stats *core_stats;
10626                 int i;
10627
10628                 for_each_possible_cpu(i) {
10629                         core_stats = per_cpu_ptr(p, i);
10630                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10631                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10632                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10633                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10634                 }
10635         }
10636         return storage;
10637 }
10638 EXPORT_SYMBOL(dev_get_stats);
10639
10640 /**
10641  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10642  *      @s: place to store stats
10643  *      @netstats: per-cpu network stats to read from
10644  *
10645  *      Read per-cpu network statistics and populate the related fields in @s.
10646  */
10647 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10648                            const struct pcpu_sw_netstats __percpu *netstats)
10649 {
10650         int cpu;
10651
10652         for_each_possible_cpu(cpu) {
10653                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10654                 const struct pcpu_sw_netstats *stats;
10655                 unsigned int start;
10656
10657                 stats = per_cpu_ptr(netstats, cpu);
10658                 do {
10659                         start = u64_stats_fetch_begin(&stats->syncp);
10660                         rx_packets = u64_stats_read(&stats->rx_packets);
10661                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10662                         tx_packets = u64_stats_read(&stats->tx_packets);
10663                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10664                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10665
10666                 s->rx_packets += rx_packets;
10667                 s->rx_bytes   += rx_bytes;
10668                 s->tx_packets += tx_packets;
10669                 s->tx_bytes   += tx_bytes;
10670         }
10671 }
10672 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10673
10674 /**
10675  *      dev_get_tstats64 - ndo_get_stats64 implementation
10676  *      @dev: device to get statistics from
10677  *      @s: place to store stats
10678  *
10679  *      Populate @s from dev->stats and dev->tstats. Can be used as
10680  *      ndo_get_stats64() callback.
10681  */
10682 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10683 {
10684         netdev_stats_to_stats64(s, &dev->stats);
10685         dev_fetch_sw_netstats(s, dev->tstats);
10686 }
10687 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10688
10689 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10690 {
10691         struct netdev_queue *queue = dev_ingress_queue(dev);
10692
10693 #ifdef CONFIG_NET_CLS_ACT
10694         if (queue)
10695                 return queue;
10696         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10697         if (!queue)
10698                 return NULL;
10699         netdev_init_one_queue(dev, queue, NULL);
10700         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10701         RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10702         rcu_assign_pointer(dev->ingress_queue, queue);
10703 #endif
10704         return queue;
10705 }
10706
10707 static const struct ethtool_ops default_ethtool_ops;
10708
10709 void netdev_set_default_ethtool_ops(struct net_device *dev,
10710                                     const struct ethtool_ops *ops)
10711 {
10712         if (dev->ethtool_ops == &default_ethtool_ops)
10713                 dev->ethtool_ops = ops;
10714 }
10715 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10716
10717 /**
10718  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10719  * @dev: netdev to enable the IRQ coalescing on
10720  *
10721  * Sets a conservative default for SW IRQ coalescing. Users can use
10722  * sysfs attributes to override the default values.
10723  */
10724 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10725 {
10726         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10727
10728         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10729                 dev->gro_flush_timeout = 20000;
10730                 dev->napi_defer_hard_irqs = 1;
10731         }
10732 }
10733 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10734
10735 void netdev_freemem(struct net_device *dev)
10736 {
10737         char *addr = (char *)dev - dev->padded;
10738
10739         kvfree(addr);
10740 }
10741
10742 /**
10743  * alloc_netdev_mqs - allocate network device
10744  * @sizeof_priv: size of private data to allocate space for
10745  * @name: device name format string
10746  * @name_assign_type: origin of device name
10747  * @setup: callback to initialize device
10748  * @txqs: the number of TX subqueues to allocate
10749  * @rxqs: the number of RX subqueues to allocate
10750  *
10751  * Allocates a struct net_device with private data area for driver use
10752  * and performs basic initialization.  Also allocates subqueue structs
10753  * for each queue on the device.
10754  */
10755 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10756                 unsigned char name_assign_type,
10757                 void (*setup)(struct net_device *),
10758                 unsigned int txqs, unsigned int rxqs)
10759 {
10760         struct net_device *dev;
10761         unsigned int alloc_size;
10762         struct net_device *p;
10763
10764         BUG_ON(strlen(name) >= sizeof(dev->name));
10765
10766         if (txqs < 1) {
10767                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10768                 return NULL;
10769         }
10770
10771         if (rxqs < 1) {
10772                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10773                 return NULL;
10774         }
10775
10776         alloc_size = sizeof(struct net_device);
10777         if (sizeof_priv) {
10778                 /* ensure 32-byte alignment of private area */
10779                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10780                 alloc_size += sizeof_priv;
10781         }
10782         /* ensure 32-byte alignment of whole construct */
10783         alloc_size += NETDEV_ALIGN - 1;
10784
10785         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10786         if (!p)
10787                 return NULL;
10788
10789         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10790         dev->padded = (char *)dev - (char *)p;
10791
10792         ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10793 #ifdef CONFIG_PCPU_DEV_REFCNT
10794         dev->pcpu_refcnt = alloc_percpu(int);
10795         if (!dev->pcpu_refcnt)
10796                 goto free_dev;
10797         __dev_hold(dev);
10798 #else
10799         refcount_set(&dev->dev_refcnt, 1);
10800 #endif
10801
10802         if (dev_addr_init(dev))
10803                 goto free_pcpu;
10804
10805         dev_mc_init(dev);
10806         dev_uc_init(dev);
10807
10808         dev_net_set(dev, &init_net);
10809
10810         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10811         dev->xdp_zc_max_segs = 1;
10812         dev->gso_max_segs = GSO_MAX_SEGS;
10813         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10814         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10815         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10816         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10817         dev->tso_max_segs = TSO_MAX_SEGS;
10818         dev->upper_level = 1;
10819         dev->lower_level = 1;
10820 #ifdef CONFIG_LOCKDEP
10821         dev->nested_level = 0;
10822         INIT_LIST_HEAD(&dev->unlink_list);
10823 #endif
10824
10825         INIT_LIST_HEAD(&dev->napi_list);
10826         INIT_LIST_HEAD(&dev->unreg_list);
10827         INIT_LIST_HEAD(&dev->close_list);
10828         INIT_LIST_HEAD(&dev->link_watch_list);
10829         INIT_LIST_HEAD(&dev->adj_list.upper);
10830         INIT_LIST_HEAD(&dev->adj_list.lower);
10831         INIT_LIST_HEAD(&dev->ptype_all);
10832         INIT_LIST_HEAD(&dev->ptype_specific);
10833         INIT_LIST_HEAD(&dev->net_notifier_list);
10834 #ifdef CONFIG_NET_SCHED
10835         hash_init(dev->qdisc_hash);
10836 #endif
10837         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10838         setup(dev);
10839
10840         if (!dev->tx_queue_len) {
10841                 dev->priv_flags |= IFF_NO_QUEUE;
10842                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10843         }
10844
10845         dev->num_tx_queues = txqs;
10846         dev->real_num_tx_queues = txqs;
10847         if (netif_alloc_netdev_queues(dev))
10848                 goto free_all;
10849
10850         dev->num_rx_queues = rxqs;
10851         dev->real_num_rx_queues = rxqs;
10852         if (netif_alloc_rx_queues(dev))
10853                 goto free_all;
10854
10855         strcpy(dev->name, name);
10856         dev->name_assign_type = name_assign_type;
10857         dev->group = INIT_NETDEV_GROUP;
10858         if (!dev->ethtool_ops)
10859                 dev->ethtool_ops = &default_ethtool_ops;
10860
10861         nf_hook_netdev_init(dev);
10862
10863         return dev;
10864
10865 free_all:
10866         free_netdev(dev);
10867         return NULL;
10868
10869 free_pcpu:
10870 #ifdef CONFIG_PCPU_DEV_REFCNT
10871         free_percpu(dev->pcpu_refcnt);
10872 free_dev:
10873 #endif
10874         netdev_freemem(dev);
10875         return NULL;
10876 }
10877 EXPORT_SYMBOL(alloc_netdev_mqs);
10878
10879 /**
10880  * free_netdev - free network device
10881  * @dev: device
10882  *
10883  * This function does the last stage of destroying an allocated device
10884  * interface. The reference to the device object is released. If this
10885  * is the last reference then it will be freed.Must be called in process
10886  * context.
10887  */
10888 void free_netdev(struct net_device *dev)
10889 {
10890         struct napi_struct *p, *n;
10891
10892         might_sleep();
10893
10894         /* When called immediately after register_netdevice() failed the unwind
10895          * handling may still be dismantling the device. Handle that case by
10896          * deferring the free.
10897          */
10898         if (dev->reg_state == NETREG_UNREGISTERING) {
10899                 ASSERT_RTNL();
10900                 dev->needs_free_netdev = true;
10901                 return;
10902         }
10903
10904         netif_free_tx_queues(dev);
10905         netif_free_rx_queues(dev);
10906
10907         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10908
10909         /* Flush device addresses */
10910         dev_addr_flush(dev);
10911
10912         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10913                 netif_napi_del(p);
10914
10915         ref_tracker_dir_exit(&dev->refcnt_tracker);
10916 #ifdef CONFIG_PCPU_DEV_REFCNT
10917         free_percpu(dev->pcpu_refcnt);
10918         dev->pcpu_refcnt = NULL;
10919 #endif
10920         free_percpu(dev->core_stats);
10921         dev->core_stats = NULL;
10922         free_percpu(dev->xdp_bulkq);
10923         dev->xdp_bulkq = NULL;
10924
10925         /*  Compatibility with error handling in drivers */
10926         if (dev->reg_state == NETREG_UNINITIALIZED) {
10927                 netdev_freemem(dev);
10928                 return;
10929         }
10930
10931         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10932         dev->reg_state = NETREG_RELEASED;
10933
10934         /* will free via device release */
10935         put_device(&dev->dev);
10936 }
10937 EXPORT_SYMBOL(free_netdev);
10938
10939 /**
10940  *      synchronize_net -  Synchronize with packet receive processing
10941  *
10942  *      Wait for packets currently being received to be done.
10943  *      Does not block later packets from starting.
10944  */
10945 void synchronize_net(void)
10946 {
10947         might_sleep();
10948         if (rtnl_is_locked())
10949                 synchronize_rcu_expedited();
10950         else
10951                 synchronize_rcu();
10952 }
10953 EXPORT_SYMBOL(synchronize_net);
10954
10955 /**
10956  *      unregister_netdevice_queue - remove device from the kernel
10957  *      @dev: device
10958  *      @head: list
10959  *
10960  *      This function shuts down a device interface and removes it
10961  *      from the kernel tables.
10962  *      If head not NULL, device is queued to be unregistered later.
10963  *
10964  *      Callers must hold the rtnl semaphore.  You may want
10965  *      unregister_netdev() instead of this.
10966  */
10967
10968 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10969 {
10970         ASSERT_RTNL();
10971
10972         if (head) {
10973                 list_move_tail(&dev->unreg_list, head);
10974         } else {
10975                 LIST_HEAD(single);
10976
10977                 list_add(&dev->unreg_list, &single);
10978                 unregister_netdevice_many(&single);
10979         }
10980 }
10981 EXPORT_SYMBOL(unregister_netdevice_queue);
10982
10983 void unregister_netdevice_many_notify(struct list_head *head,
10984                                       u32 portid, const struct nlmsghdr *nlh)
10985 {
10986         struct net_device *dev, *tmp;
10987         LIST_HEAD(close_head);
10988
10989         BUG_ON(dev_boot_phase);
10990         ASSERT_RTNL();
10991
10992         if (list_empty(head))
10993                 return;
10994
10995         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10996                 /* Some devices call without registering
10997                  * for initialization unwind. Remove those
10998                  * devices and proceed with the remaining.
10999                  */
11000                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11001                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11002                                  dev->name, dev);
11003
11004                         WARN_ON(1);
11005                         list_del(&dev->unreg_list);
11006                         continue;
11007                 }
11008                 dev->dismantle = true;
11009                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11010         }
11011
11012         /* If device is running, close it first. */
11013         list_for_each_entry(dev, head, unreg_list)
11014                 list_add_tail(&dev->close_list, &close_head);
11015         dev_close_many(&close_head, true);
11016
11017         list_for_each_entry(dev, head, unreg_list) {
11018                 /* And unlink it from device chain. */
11019                 write_lock(&dev_base_lock);
11020                 unlist_netdevice(dev, false);
11021                 dev->reg_state = NETREG_UNREGISTERING;
11022                 write_unlock(&dev_base_lock);
11023         }
11024         flush_all_backlogs();
11025
11026         synchronize_net();
11027
11028         list_for_each_entry(dev, head, unreg_list) {
11029                 struct sk_buff *skb = NULL;
11030
11031                 /* Shutdown queueing discipline. */
11032                 dev_shutdown(dev);
11033                 dev_tcx_uninstall(dev);
11034                 dev_xdp_uninstall(dev);
11035                 bpf_dev_bound_netdev_unregister(dev);
11036
11037                 netdev_offload_xstats_disable_all(dev);
11038
11039                 /* Notify protocols, that we are about to destroy
11040                  * this device. They should clean all the things.
11041                  */
11042                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11043
11044                 if (!dev->rtnl_link_ops ||
11045                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11046                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11047                                                      GFP_KERNEL, NULL, 0,
11048                                                      portid, nlh);
11049
11050                 /*
11051                  *      Flush the unicast and multicast chains
11052                  */
11053                 dev_uc_flush(dev);
11054                 dev_mc_flush(dev);
11055
11056                 netdev_name_node_alt_flush(dev);
11057                 netdev_name_node_free(dev->name_node);
11058
11059                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11060
11061                 if (dev->netdev_ops->ndo_uninit)
11062                         dev->netdev_ops->ndo_uninit(dev);
11063
11064                 if (skb)
11065                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11066
11067                 /* Notifier chain MUST detach us all upper devices. */
11068                 WARN_ON(netdev_has_any_upper_dev(dev));
11069                 WARN_ON(netdev_has_any_lower_dev(dev));
11070
11071                 /* Remove entries from kobject tree */
11072                 netdev_unregister_kobject(dev);
11073 #ifdef CONFIG_XPS
11074                 /* Remove XPS queueing entries */
11075                 netif_reset_xps_queues_gt(dev, 0);
11076 #endif
11077         }
11078
11079         synchronize_net();
11080
11081         list_for_each_entry(dev, head, unreg_list) {
11082                 netdev_put(dev, &dev->dev_registered_tracker);
11083                 net_set_todo(dev);
11084         }
11085
11086         list_del(head);
11087 }
11088
11089 /**
11090  *      unregister_netdevice_many - unregister many devices
11091  *      @head: list of devices
11092  *
11093  *  Note: As most callers use a stack allocated list_head,
11094  *  we force a list_del() to make sure stack wont be corrupted later.
11095  */
11096 void unregister_netdevice_many(struct list_head *head)
11097 {
11098         unregister_netdevice_many_notify(head, 0, NULL);
11099 }
11100 EXPORT_SYMBOL(unregister_netdevice_many);
11101
11102 /**
11103  *      unregister_netdev - remove device from the kernel
11104  *      @dev: device
11105  *
11106  *      This function shuts down a device interface and removes it
11107  *      from the kernel tables.
11108  *
11109  *      This is just a wrapper for unregister_netdevice that takes
11110  *      the rtnl semaphore.  In general you want to use this and not
11111  *      unregister_netdevice.
11112  */
11113 void unregister_netdev(struct net_device *dev)
11114 {
11115         rtnl_lock();
11116         unregister_netdevice(dev);
11117         rtnl_unlock();
11118 }
11119 EXPORT_SYMBOL(unregister_netdev);
11120
11121 /**
11122  *      __dev_change_net_namespace - move device to different nethost namespace
11123  *      @dev: device
11124  *      @net: network namespace
11125  *      @pat: If not NULL name pattern to try if the current device name
11126  *            is already taken in the destination network namespace.
11127  *      @new_ifindex: If not zero, specifies device index in the target
11128  *                    namespace.
11129  *
11130  *      This function shuts down a device interface and moves it
11131  *      to a new network namespace. On success 0 is returned, on
11132  *      a failure a netagive errno code is returned.
11133  *
11134  *      Callers must hold the rtnl semaphore.
11135  */
11136
11137 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11138                                const char *pat, int new_ifindex)
11139 {
11140         struct netdev_name_node *name_node;
11141         struct net *net_old = dev_net(dev);
11142         char new_name[IFNAMSIZ] = {};
11143         int err, new_nsid;
11144
11145         ASSERT_RTNL();
11146
11147         /* Don't allow namespace local devices to be moved. */
11148         err = -EINVAL;
11149         if (dev->features & NETIF_F_NETNS_LOCAL)
11150                 goto out;
11151
11152         /* Ensure the device has been registrered */
11153         if (dev->reg_state != NETREG_REGISTERED)
11154                 goto out;
11155
11156         /* Get out if there is nothing todo */
11157         err = 0;
11158         if (net_eq(net_old, net))
11159                 goto out;
11160
11161         /* Pick the destination device name, and ensure
11162          * we can use it in the destination network namespace.
11163          */
11164         err = -EEXIST;
11165         if (netdev_name_in_use(net, dev->name)) {
11166                 /* We get here if we can't use the current device name */
11167                 if (!pat)
11168                         goto out;
11169                 err = dev_prep_valid_name(net, dev, pat, new_name);
11170                 if (err < 0)
11171                         goto out;
11172         }
11173         /* Check that none of the altnames conflicts. */
11174         err = -EEXIST;
11175         netdev_for_each_altname(dev, name_node)
11176                 if (netdev_name_in_use(net, name_node->name))
11177                         goto out;
11178
11179         /* Check that new_ifindex isn't used yet. */
11180         if (new_ifindex) {
11181                 err = dev_index_reserve(net, new_ifindex);
11182                 if (err < 0)
11183                         goto out;
11184         } else {
11185                 /* If there is an ifindex conflict assign a new one */
11186                 err = dev_index_reserve(net, dev->ifindex);
11187                 if (err == -EBUSY)
11188                         err = dev_index_reserve(net, 0);
11189                 if (err < 0)
11190                         goto out;
11191                 new_ifindex = err;
11192         }
11193
11194         /*
11195          * And now a mini version of register_netdevice unregister_netdevice.
11196          */
11197
11198         /* If device is running close it first. */
11199         dev_close(dev);
11200
11201         /* And unlink it from device chain */
11202         unlist_netdevice(dev, true);
11203
11204         synchronize_net();
11205
11206         /* Shutdown queueing discipline. */
11207         dev_shutdown(dev);
11208
11209         /* Notify protocols, that we are about to destroy
11210          * this device. They should clean all the things.
11211          *
11212          * Note that dev->reg_state stays at NETREG_REGISTERED.
11213          * This is wanted because this way 8021q and macvlan know
11214          * the device is just moving and can keep their slaves up.
11215          */
11216         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11217         rcu_barrier();
11218
11219         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11220
11221         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11222                             new_ifindex);
11223
11224         /*
11225          *      Flush the unicast and multicast chains
11226          */
11227         dev_uc_flush(dev);
11228         dev_mc_flush(dev);
11229
11230         /* Send a netdev-removed uevent to the old namespace */
11231         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11232         netdev_adjacent_del_links(dev);
11233
11234         /* Move per-net netdevice notifiers that are following the netdevice */
11235         move_netdevice_notifiers_dev_net(dev, net);
11236
11237         /* Actually switch the network namespace */
11238         dev_net_set(dev, net);
11239         dev->ifindex = new_ifindex;
11240
11241         /* Send a netdev-add uevent to the new namespace */
11242         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11243         netdev_adjacent_add_links(dev);
11244
11245         if (new_name[0]) /* Rename the netdev to prepared name */
11246                 strscpy(dev->name, new_name, IFNAMSIZ);
11247
11248         /* Fixup kobjects */
11249         err = device_rename(&dev->dev, dev->name);
11250         WARN_ON(err);
11251
11252         /* Adapt owner in case owning user namespace of target network
11253          * namespace is different from the original one.
11254          */
11255         err = netdev_change_owner(dev, net_old, net);
11256         WARN_ON(err);
11257
11258         /* Add the device back in the hashes */
11259         list_netdevice(dev);
11260
11261         /* Notify protocols, that a new device appeared. */
11262         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11263
11264         /*
11265          *      Prevent userspace races by waiting until the network
11266          *      device is fully setup before sending notifications.
11267          */
11268         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11269
11270         synchronize_net();
11271         err = 0;
11272 out:
11273         return err;
11274 }
11275 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11276
11277 static int dev_cpu_dead(unsigned int oldcpu)
11278 {
11279         struct sk_buff **list_skb;
11280         struct sk_buff *skb;
11281         unsigned int cpu;
11282         struct softnet_data *sd, *oldsd, *remsd = NULL;
11283
11284         local_irq_disable();
11285         cpu = smp_processor_id();
11286         sd = &per_cpu(softnet_data, cpu);
11287         oldsd = &per_cpu(softnet_data, oldcpu);
11288
11289         /* Find end of our completion_queue. */
11290         list_skb = &sd->completion_queue;
11291         while (*list_skb)
11292                 list_skb = &(*list_skb)->next;
11293         /* Append completion queue from offline CPU. */
11294         *list_skb = oldsd->completion_queue;
11295         oldsd->completion_queue = NULL;
11296
11297         /* Append output queue from offline CPU. */
11298         if (oldsd->output_queue) {
11299                 *sd->output_queue_tailp = oldsd->output_queue;
11300                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11301                 oldsd->output_queue = NULL;
11302                 oldsd->output_queue_tailp = &oldsd->output_queue;
11303         }
11304         /* Append NAPI poll list from offline CPU, with one exception :
11305          * process_backlog() must be called by cpu owning percpu backlog.
11306          * We properly handle process_queue & input_pkt_queue later.
11307          */
11308         while (!list_empty(&oldsd->poll_list)) {
11309                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11310                                                             struct napi_struct,
11311                                                             poll_list);
11312
11313                 list_del_init(&napi->poll_list);
11314                 if (napi->poll == process_backlog)
11315                         napi->state = 0;
11316                 else
11317                         ____napi_schedule(sd, napi);
11318         }
11319
11320         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11321         local_irq_enable();
11322
11323 #ifdef CONFIG_RPS
11324         remsd = oldsd->rps_ipi_list;
11325         oldsd->rps_ipi_list = NULL;
11326 #endif
11327         /* send out pending IPI's on offline CPU */
11328         net_rps_send_ipi(remsd);
11329
11330         /* Process offline CPU's input_pkt_queue */
11331         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11332                 netif_rx(skb);
11333                 input_queue_head_incr(oldsd);
11334         }
11335         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11336                 netif_rx(skb);
11337                 input_queue_head_incr(oldsd);
11338         }
11339
11340         return 0;
11341 }
11342
11343 /**
11344  *      netdev_increment_features - increment feature set by one
11345  *      @all: current feature set
11346  *      @one: new feature set
11347  *      @mask: mask feature set
11348  *
11349  *      Computes a new feature set after adding a device with feature set
11350  *      @one to the master device with current feature set @all.  Will not
11351  *      enable anything that is off in @mask. Returns the new feature set.
11352  */
11353 netdev_features_t netdev_increment_features(netdev_features_t all,
11354         netdev_features_t one, netdev_features_t mask)
11355 {
11356         if (mask & NETIF_F_HW_CSUM)
11357                 mask |= NETIF_F_CSUM_MASK;
11358         mask |= NETIF_F_VLAN_CHALLENGED;
11359
11360         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11361         all &= one | ~NETIF_F_ALL_FOR_ALL;
11362
11363         /* If one device supports hw checksumming, set for all. */
11364         if (all & NETIF_F_HW_CSUM)
11365                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11366
11367         return all;
11368 }
11369 EXPORT_SYMBOL(netdev_increment_features);
11370
11371 static struct hlist_head * __net_init netdev_create_hash(void)
11372 {
11373         int i;
11374         struct hlist_head *hash;
11375
11376         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11377         if (hash != NULL)
11378                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11379                         INIT_HLIST_HEAD(&hash[i]);
11380
11381         return hash;
11382 }
11383
11384 /* Initialize per network namespace state */
11385 static int __net_init netdev_init(struct net *net)
11386 {
11387         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11388                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11389
11390         INIT_LIST_HEAD(&net->dev_base_head);
11391
11392         net->dev_name_head = netdev_create_hash();
11393         if (net->dev_name_head == NULL)
11394                 goto err_name;
11395
11396         net->dev_index_head = netdev_create_hash();
11397         if (net->dev_index_head == NULL)
11398                 goto err_idx;
11399
11400         xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11401
11402         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11403
11404         return 0;
11405
11406 err_idx:
11407         kfree(net->dev_name_head);
11408 err_name:
11409         return -ENOMEM;
11410 }
11411
11412 /**
11413  *      netdev_drivername - network driver for the device
11414  *      @dev: network device
11415  *
11416  *      Determine network driver for device.
11417  */
11418 const char *netdev_drivername(const struct net_device *dev)
11419 {
11420         const struct device_driver *driver;
11421         const struct device *parent;
11422         const char *empty = "";
11423
11424         parent = dev->dev.parent;
11425         if (!parent)
11426                 return empty;
11427
11428         driver = parent->driver;
11429         if (driver && driver->name)
11430                 return driver->name;
11431         return empty;
11432 }
11433
11434 static void __netdev_printk(const char *level, const struct net_device *dev,
11435                             struct va_format *vaf)
11436 {
11437         if (dev && dev->dev.parent) {
11438                 dev_printk_emit(level[1] - '0',
11439                                 dev->dev.parent,
11440                                 "%s %s %s%s: %pV",
11441                                 dev_driver_string(dev->dev.parent),
11442                                 dev_name(dev->dev.parent),
11443                                 netdev_name(dev), netdev_reg_state(dev),
11444                                 vaf);
11445         } else if (dev) {
11446                 printk("%s%s%s: %pV",
11447                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11448         } else {
11449                 printk("%s(NULL net_device): %pV", level, vaf);
11450         }
11451 }
11452
11453 void netdev_printk(const char *level, const struct net_device *dev,
11454                    const char *format, ...)
11455 {
11456         struct va_format vaf;
11457         va_list args;
11458
11459         va_start(args, format);
11460
11461         vaf.fmt = format;
11462         vaf.va = &args;
11463
11464         __netdev_printk(level, dev, &vaf);
11465
11466         va_end(args);
11467 }
11468 EXPORT_SYMBOL(netdev_printk);
11469
11470 #define define_netdev_printk_level(func, level)                 \
11471 void func(const struct net_device *dev, const char *fmt, ...)   \
11472 {                                                               \
11473         struct va_format vaf;                                   \
11474         va_list args;                                           \
11475                                                                 \
11476         va_start(args, fmt);                                    \
11477                                                                 \
11478         vaf.fmt = fmt;                                          \
11479         vaf.va = &args;                                         \
11480                                                                 \
11481         __netdev_printk(level, dev, &vaf);                      \
11482                                                                 \
11483         va_end(args);                                           \
11484 }                                                               \
11485 EXPORT_SYMBOL(func);
11486
11487 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11488 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11489 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11490 define_netdev_printk_level(netdev_err, KERN_ERR);
11491 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11492 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11493 define_netdev_printk_level(netdev_info, KERN_INFO);
11494
11495 static void __net_exit netdev_exit(struct net *net)
11496 {
11497         kfree(net->dev_name_head);
11498         kfree(net->dev_index_head);
11499         xa_destroy(&net->dev_by_index);
11500         if (net != &init_net)
11501                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11502 }
11503
11504 static struct pernet_operations __net_initdata netdev_net_ops = {
11505         .init = netdev_init,
11506         .exit = netdev_exit,
11507 };
11508
11509 static void __net_exit default_device_exit_net(struct net *net)
11510 {
11511         struct netdev_name_node *name_node, *tmp;
11512         struct net_device *dev, *aux;
11513         /*
11514          * Push all migratable network devices back to the
11515          * initial network namespace
11516          */
11517         ASSERT_RTNL();
11518         for_each_netdev_safe(net, dev, aux) {
11519                 int err;
11520                 char fb_name[IFNAMSIZ];
11521
11522                 /* Ignore unmoveable devices (i.e. loopback) */
11523                 if (dev->features & NETIF_F_NETNS_LOCAL)
11524                         continue;
11525
11526                 /* Leave virtual devices for the generic cleanup */
11527                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11528                         continue;
11529
11530                 /* Push remaining network devices to init_net */
11531                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11532                 if (netdev_name_in_use(&init_net, fb_name))
11533                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11534
11535                 netdev_for_each_altname_safe(dev, name_node, tmp)
11536                         if (netdev_name_in_use(&init_net, name_node->name)) {
11537                                 netdev_name_node_del(name_node);
11538                                 synchronize_rcu();
11539                                 __netdev_name_node_alt_destroy(name_node);
11540                         }
11541
11542                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11543                 if (err) {
11544                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11545                                  __func__, dev->name, err);
11546                         BUG();
11547                 }
11548         }
11549 }
11550
11551 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11552 {
11553         /* At exit all network devices most be removed from a network
11554          * namespace.  Do this in the reverse order of registration.
11555          * Do this across as many network namespaces as possible to
11556          * improve batching efficiency.
11557          */
11558         struct net_device *dev;
11559         struct net *net;
11560         LIST_HEAD(dev_kill_list);
11561
11562         rtnl_lock();
11563         list_for_each_entry(net, net_list, exit_list) {
11564                 default_device_exit_net(net);
11565                 cond_resched();
11566         }
11567
11568         list_for_each_entry(net, net_list, exit_list) {
11569                 for_each_netdev_reverse(net, dev) {
11570                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11571                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11572                         else
11573                                 unregister_netdevice_queue(dev, &dev_kill_list);
11574                 }
11575         }
11576         unregister_netdevice_many(&dev_kill_list);
11577         rtnl_unlock();
11578 }
11579
11580 static struct pernet_operations __net_initdata default_device_ops = {
11581         .exit_batch = default_device_exit_batch,
11582 };
11583
11584 /*
11585  *      Initialize the DEV module. At boot time this walks the device list and
11586  *      unhooks any devices that fail to initialise (normally hardware not
11587  *      present) and leaves us with a valid list of present and active devices.
11588  *
11589  */
11590
11591 /*
11592  *       This is called single threaded during boot, so no need
11593  *       to take the rtnl semaphore.
11594  */
11595 static int __init net_dev_init(void)
11596 {
11597         int i, rc = -ENOMEM;
11598
11599         BUG_ON(!dev_boot_phase);
11600
11601         if (dev_proc_init())
11602                 goto out;
11603
11604         if (netdev_kobject_init())
11605                 goto out;
11606
11607         INIT_LIST_HEAD(&ptype_all);
11608         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11609                 INIT_LIST_HEAD(&ptype_base[i]);
11610
11611         if (register_pernet_subsys(&netdev_net_ops))
11612                 goto out;
11613
11614         /*
11615          *      Initialise the packet receive queues.
11616          */
11617
11618         for_each_possible_cpu(i) {
11619                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11620                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11621
11622                 INIT_WORK(flush, flush_backlog);
11623
11624                 skb_queue_head_init(&sd->input_pkt_queue);
11625                 skb_queue_head_init(&sd->process_queue);
11626 #ifdef CONFIG_XFRM_OFFLOAD
11627                 skb_queue_head_init(&sd->xfrm_backlog);
11628 #endif
11629                 INIT_LIST_HEAD(&sd->poll_list);
11630                 sd->output_queue_tailp = &sd->output_queue;
11631 #ifdef CONFIG_RPS
11632                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11633                 sd->cpu = i;
11634 #endif
11635 #ifndef CONFIG_PREEMPT_RT
11636                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11637 #else
11638                 INIT_WORK(&sd->defer_work, trigger_rx_softirq);
11639 #endif
11640                 spin_lock_init(&sd->defer_lock);
11641
11642                 init_gro_hash(&sd->backlog);
11643                 sd->backlog.poll = process_backlog;
11644                 sd->backlog.weight = weight_p;
11645         }
11646
11647         dev_boot_phase = 0;
11648
11649         /* The loopback device is special if any other network devices
11650          * is present in a network namespace the loopback device must
11651          * be present. Since we now dynamically allocate and free the
11652          * loopback device ensure this invariant is maintained by
11653          * keeping the loopback device as the first device on the
11654          * list of network devices.  Ensuring the loopback devices
11655          * is the first device that appears and the last network device
11656          * that disappears.
11657          */
11658         if (register_pernet_device(&loopback_net_ops))
11659                 goto out;
11660
11661         if (register_pernet_device(&default_device_ops))
11662                 goto out;
11663
11664         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11665         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11666
11667         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11668                                        NULL, dev_cpu_dead);
11669         WARN_ON(rc < 0);
11670         rc = 0;
11671 out:
11672         return rc;
11673 }
11674
11675 subsys_initcall(net_dev_init);