Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151 #include <linux/once_lite.h>
152
153 #include "net-sysfs.h"
154
155 #define MAX_GRO_SKBS 8
156
157 /* This should be increased if a protocol with a bigger head is added. */
158 #define GRO_MAX_HEAD (MAX_HEADER + 128)
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 static DEFINE_SPINLOCK(offload_lock);
162 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
163 struct list_head ptype_all __read_mostly;       /* Taps */
164 static struct list_head offload_base __read_mostly;
165
166 static int netif_rx_internal(struct sk_buff *skb);
167 static int call_netdevice_notifiers_info(unsigned long val,
168                                          struct netdev_notifier_info *info);
169 static int call_netdevice_notifiers_extack(unsigned long val,
170                                            struct net_device *dev,
171                                            struct netlink_ext_ack *extack);
172 static struct napi_struct *napi_by_id(unsigned int napi_id);
173
174 /*
175  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176  * semaphore.
177  *
178  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
179  *
180  * Writers must hold the rtnl semaphore while they loop through the
181  * dev_base_head list, and hold dev_base_lock for writing when they do the
182  * actual updates.  This allows pure readers to access the list even
183  * while a writer is preparing to update it.
184  *
185  * To put it another way, dev_base_lock is held for writing only to
186  * protect against pure readers; the rtnl semaphore provides the
187  * protection against other writers.
188  *
189  * See, for example usages, register_netdevice() and
190  * unregister_netdevice(), which must be called with the rtnl
191  * semaphore held.
192  */
193 DEFINE_RWLOCK(dev_base_lock);
194 EXPORT_SYMBOL(dev_base_lock);
195
196 static DEFINE_MUTEX(ifalias_mutex);
197
198 /* protects napi_hash addition/deletion and napi_gen_id */
199 static DEFINE_SPINLOCK(napi_hash_lock);
200
201 static unsigned int napi_gen_id = NR_CPUS;
202 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
203
204 static DECLARE_RWSEM(devnet_rename_sem);
205
206 static inline void dev_base_seq_inc(struct net *net)
207 {
208         while (++net->dev_base_seq == 0)
209                 ;
210 }
211
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 {
214         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
215
216         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
217 }
218
219 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
220 {
221         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
222 }
223
224 static inline void rps_lock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_lock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 static inline void rps_unlock(struct softnet_data *sd)
232 {
233 #ifdef CONFIG_RPS
234         spin_unlock(&sd->input_pkt_queue.lock);
235 #endif
236 }
237
238 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
239                                                        const char *name)
240 {
241         struct netdev_name_node *name_node;
242
243         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
244         if (!name_node)
245                 return NULL;
246         INIT_HLIST_NODE(&name_node->hlist);
247         name_node->dev = dev;
248         name_node->name = name;
249         return name_node;
250 }
251
252 static struct netdev_name_node *
253 netdev_name_node_head_alloc(struct net_device *dev)
254 {
255         struct netdev_name_node *name_node;
256
257         name_node = netdev_name_node_alloc(dev, dev->name);
258         if (!name_node)
259                 return NULL;
260         INIT_LIST_HEAD(&name_node->list);
261         return name_node;
262 }
263
264 static void netdev_name_node_free(struct netdev_name_node *name_node)
265 {
266         kfree(name_node);
267 }
268
269 static void netdev_name_node_add(struct net *net,
270                                  struct netdev_name_node *name_node)
271 {
272         hlist_add_head_rcu(&name_node->hlist,
273                            dev_name_hash(net, name_node->name));
274 }
275
276 static void netdev_name_node_del(struct netdev_name_node *name_node)
277 {
278         hlist_del_rcu(&name_node->hlist);
279 }
280
281 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
282                                                         const char *name)
283 {
284         struct hlist_head *head = dev_name_hash(net, name);
285         struct netdev_name_node *name_node;
286
287         hlist_for_each_entry(name_node, head, hlist)
288                 if (!strcmp(name_node->name, name))
289                         return name_node;
290         return NULL;
291 }
292
293 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
294                                                             const char *name)
295 {
296         struct hlist_head *head = dev_name_hash(net, name);
297         struct netdev_name_node *name_node;
298
299         hlist_for_each_entry_rcu(name_node, head, hlist)
300                 if (!strcmp(name_node->name, name))
301                         return name_node;
302         return NULL;
303 }
304
305 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
306 {
307         struct netdev_name_node *name_node;
308         struct net *net = dev_net(dev);
309
310         name_node = netdev_name_node_lookup(net, name);
311         if (name_node)
312                 return -EEXIST;
313         name_node = netdev_name_node_alloc(dev, name);
314         if (!name_node)
315                 return -ENOMEM;
316         netdev_name_node_add(net, name_node);
317         /* The node that holds dev->name acts as a head of per-device list. */
318         list_add_tail(&name_node->list, &dev->name_node->list);
319
320         return 0;
321 }
322 EXPORT_SYMBOL(netdev_name_node_alt_create);
323
324 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
325 {
326         list_del(&name_node->list);
327         netdev_name_node_del(name_node);
328         kfree(name_node->name);
329         netdev_name_node_free(name_node);
330 }
331
332 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
333 {
334         struct netdev_name_node *name_node;
335         struct net *net = dev_net(dev);
336
337         name_node = netdev_name_node_lookup(net, name);
338         if (!name_node)
339                 return -ENOENT;
340         /* lookup might have found our primary name or a name belonging
341          * to another device.
342          */
343         if (name_node == dev->name_node || name_node->dev != dev)
344                 return -EINVAL;
345
346         __netdev_name_node_alt_destroy(name_node);
347
348         return 0;
349 }
350 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
351
352 static void netdev_name_node_alt_flush(struct net_device *dev)
353 {
354         struct netdev_name_node *name_node, *tmp;
355
356         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
357                 __netdev_name_node_alt_destroy(name_node);
358 }
359
360 /* Device list insertion */
361 static void list_netdevice(struct net_device *dev)
362 {
363         struct net *net = dev_net(dev);
364
365         ASSERT_RTNL();
366
367         write_lock_bh(&dev_base_lock);
368         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
369         netdev_name_node_add(net, dev->name_node);
370         hlist_add_head_rcu(&dev->index_hlist,
371                            dev_index_hash(net, dev->ifindex));
372         write_unlock_bh(&dev_base_lock);
373
374         dev_base_seq_inc(net);
375 }
376
377 /* Device list removal
378  * caller must respect a RCU grace period before freeing/reusing dev
379  */
380 static void unlist_netdevice(struct net_device *dev)
381 {
382         ASSERT_RTNL();
383
384         /* Unlink dev from the device chain */
385         write_lock_bh(&dev_base_lock);
386         list_del_rcu(&dev->dev_list);
387         netdev_name_node_del(dev->name_node);
388         hlist_del_rcu(&dev->index_hlist);
389         write_unlock_bh(&dev_base_lock);
390
391         dev_base_seq_inc(dev_net(dev));
392 }
393
394 /*
395  *      Our notifier list
396  */
397
398 static RAW_NOTIFIER_HEAD(netdev_chain);
399
400 /*
401  *      Device drivers call our routines to queue packets here. We empty the
402  *      queue in the local softnet handler.
403  */
404
405 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
406 EXPORT_PER_CPU_SYMBOL(softnet_data);
407
408 #ifdef CONFIG_LOCKDEP
409 /*
410  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
411  * according to dev->type
412  */
413 static const unsigned short netdev_lock_type[] = {
414          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
415          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
416          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
417          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
418          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
419          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
420          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
421          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
422          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
423          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
424          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
425          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
426          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
427          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
428          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
429
430 static const char *const netdev_lock_name[] = {
431         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
432         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
433         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
434         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
435         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
436         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
437         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
438         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
439         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
440         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
441         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
442         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
443         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
444         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
445         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
446
447 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
448 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
449
450 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
451 {
452         int i;
453
454         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
455                 if (netdev_lock_type[i] == dev_type)
456                         return i;
457         /* the last key is used by default */
458         return ARRAY_SIZE(netdev_lock_type) - 1;
459 }
460
461 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
462                                                  unsigned short dev_type)
463 {
464         int i;
465
466         i = netdev_lock_pos(dev_type);
467         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
468                                    netdev_lock_name[i]);
469 }
470
471 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
472 {
473         int i;
474
475         i = netdev_lock_pos(dev->type);
476         lockdep_set_class_and_name(&dev->addr_list_lock,
477                                    &netdev_addr_lock_key[i],
478                                    netdev_lock_name[i]);
479 }
480 #else
481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482                                                  unsigned short dev_type)
483 {
484 }
485
486 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
487 {
488 }
489 #endif
490
491 /*******************************************************************************
492  *
493  *              Protocol management and registration routines
494  *
495  *******************************************************************************/
496
497
498 /*
499  *      Add a protocol ID to the list. Now that the input handler is
500  *      smarter we can dispense with all the messy stuff that used to be
501  *      here.
502  *
503  *      BEWARE!!! Protocol handlers, mangling input packets,
504  *      MUST BE last in hash buckets and checking protocol handlers
505  *      MUST start from promiscuous ptype_all chain in net_bh.
506  *      It is true now, do not change it.
507  *      Explanation follows: if protocol handler, mangling packet, will
508  *      be the first on list, it is not able to sense, that packet
509  *      is cloned and should be copied-on-write, so that it will
510  *      change it and subsequent readers will get broken packet.
511  *                                                      --ANK (980803)
512  */
513
514 static inline struct list_head *ptype_head(const struct packet_type *pt)
515 {
516         if (pt->type == htons(ETH_P_ALL))
517                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
518         else
519                 return pt->dev ? &pt->dev->ptype_specific :
520                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
521 }
522
523 /**
524  *      dev_add_pack - add packet handler
525  *      @pt: packet type declaration
526  *
527  *      Add a protocol handler to the networking stack. The passed &packet_type
528  *      is linked into kernel lists and may not be freed until it has been
529  *      removed from the kernel lists.
530  *
531  *      This call does not sleep therefore it can not
532  *      guarantee all CPU's that are in middle of receiving packets
533  *      will see the new packet type (until the next received packet).
534  */
535
536 void dev_add_pack(struct packet_type *pt)
537 {
538         struct list_head *head = ptype_head(pt);
539
540         spin_lock(&ptype_lock);
541         list_add_rcu(&pt->list, head);
542         spin_unlock(&ptype_lock);
543 }
544 EXPORT_SYMBOL(dev_add_pack);
545
546 /**
547  *      __dev_remove_pack        - remove packet handler
548  *      @pt: packet type declaration
549  *
550  *      Remove a protocol handler that was previously added to the kernel
551  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
552  *      from the kernel lists and can be freed or reused once this function
553  *      returns.
554  *
555  *      The packet type might still be in use by receivers
556  *      and must not be freed until after all the CPU's have gone
557  *      through a quiescent state.
558  */
559 void __dev_remove_pack(struct packet_type *pt)
560 {
561         struct list_head *head = ptype_head(pt);
562         struct packet_type *pt1;
563
564         spin_lock(&ptype_lock);
565
566         list_for_each_entry(pt1, head, list) {
567                 if (pt == pt1) {
568                         list_del_rcu(&pt->list);
569                         goto out;
570                 }
571         }
572
573         pr_warn("dev_remove_pack: %p not found\n", pt);
574 out:
575         spin_unlock(&ptype_lock);
576 }
577 EXPORT_SYMBOL(__dev_remove_pack);
578
579 /**
580  *      dev_remove_pack  - remove packet handler
581  *      @pt: packet type declaration
582  *
583  *      Remove a protocol handler that was previously added to the kernel
584  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
585  *      from the kernel lists and can be freed or reused once this function
586  *      returns.
587  *
588  *      This call sleeps to guarantee that no CPU is looking at the packet
589  *      type after return.
590  */
591 void dev_remove_pack(struct packet_type *pt)
592 {
593         __dev_remove_pack(pt);
594
595         synchronize_net();
596 }
597 EXPORT_SYMBOL(dev_remove_pack);
598
599
600 /**
601  *      dev_add_offload - register offload handlers
602  *      @po: protocol offload declaration
603  *
604  *      Add protocol offload handlers to the networking stack. The passed
605  *      &proto_offload is linked into kernel lists and may not be freed until
606  *      it has been removed from the kernel lists.
607  *
608  *      This call does not sleep therefore it can not
609  *      guarantee all CPU's that are in middle of receiving packets
610  *      will see the new offload handlers (until the next received packet).
611  */
612 void dev_add_offload(struct packet_offload *po)
613 {
614         struct packet_offload *elem;
615
616         spin_lock(&offload_lock);
617         list_for_each_entry(elem, &offload_base, list) {
618                 if (po->priority < elem->priority)
619                         break;
620         }
621         list_add_rcu(&po->list, elem->list.prev);
622         spin_unlock(&offload_lock);
623 }
624 EXPORT_SYMBOL(dev_add_offload);
625
626 /**
627  *      __dev_remove_offload     - remove offload handler
628  *      @po: packet offload declaration
629  *
630  *      Remove a protocol offload handler that was previously added to the
631  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
632  *      is removed from the kernel lists and can be freed or reused once this
633  *      function returns.
634  *
635  *      The packet type might still be in use by receivers
636  *      and must not be freed until after all the CPU's have gone
637  *      through a quiescent state.
638  */
639 static void __dev_remove_offload(struct packet_offload *po)
640 {
641         struct list_head *head = &offload_base;
642         struct packet_offload *po1;
643
644         spin_lock(&offload_lock);
645
646         list_for_each_entry(po1, head, list) {
647                 if (po == po1) {
648                         list_del_rcu(&po->list);
649                         goto out;
650                 }
651         }
652
653         pr_warn("dev_remove_offload: %p not found\n", po);
654 out:
655         spin_unlock(&offload_lock);
656 }
657
658 /**
659  *      dev_remove_offload       - remove packet offload handler
660  *      @po: packet offload declaration
661  *
662  *      Remove a packet offload handler that was previously added to the kernel
663  *      offload handlers by dev_add_offload(). The passed &offload_type is
664  *      removed from the kernel lists and can be freed or reused once this
665  *      function returns.
666  *
667  *      This call sleeps to guarantee that no CPU is looking at the packet
668  *      type after return.
669  */
670 void dev_remove_offload(struct packet_offload *po)
671 {
672         __dev_remove_offload(po);
673
674         synchronize_net();
675 }
676 EXPORT_SYMBOL(dev_remove_offload);
677
678 /******************************************************************************
679  *
680  *                    Device Boot-time Settings Routines
681  *
682  ******************************************************************************/
683
684 /* Boot time configuration table */
685 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
686
687 /**
688  *      netdev_boot_setup_add   - add new setup entry
689  *      @name: name of the device
690  *      @map: configured settings for the device
691  *
692  *      Adds new setup entry to the dev_boot_setup list.  The function
693  *      returns 0 on error and 1 on success.  This is a generic routine to
694  *      all netdevices.
695  */
696 static int netdev_boot_setup_add(char *name, struct ifmap *map)
697 {
698         struct netdev_boot_setup *s;
699         int i;
700
701         s = dev_boot_setup;
702         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
703                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
704                         memset(s[i].name, 0, sizeof(s[i].name));
705                         strlcpy(s[i].name, name, IFNAMSIZ);
706                         memcpy(&s[i].map, map, sizeof(s[i].map));
707                         break;
708                 }
709         }
710
711         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
712 }
713
714 /**
715  * netdev_boot_setup_check      - check boot time settings
716  * @dev: the netdevice
717  *
718  * Check boot time settings for the device.
719  * The found settings are set for the device to be used
720  * later in the device probing.
721  * Returns 0 if no settings found, 1 if they are.
722  */
723 int netdev_boot_setup_check(struct net_device *dev)
724 {
725         struct netdev_boot_setup *s = dev_boot_setup;
726         int i;
727
728         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
729                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
730                     !strcmp(dev->name, s[i].name)) {
731                         dev->irq = s[i].map.irq;
732                         dev->base_addr = s[i].map.base_addr;
733                         dev->mem_start = s[i].map.mem_start;
734                         dev->mem_end = s[i].map.mem_end;
735                         return 1;
736                 }
737         }
738         return 0;
739 }
740 EXPORT_SYMBOL(netdev_boot_setup_check);
741
742
743 /**
744  * netdev_boot_base     - get address from boot time settings
745  * @prefix: prefix for network device
746  * @unit: id for network device
747  *
748  * Check boot time settings for the base address of device.
749  * The found settings are set for the device to be used
750  * later in the device probing.
751  * Returns 0 if no settings found.
752  */
753 unsigned long netdev_boot_base(const char *prefix, int unit)
754 {
755         const struct netdev_boot_setup *s = dev_boot_setup;
756         char name[IFNAMSIZ];
757         int i;
758
759         sprintf(name, "%s%d", prefix, unit);
760
761         /*
762          * If device already registered then return base of 1
763          * to indicate not to probe for this interface
764          */
765         if (__dev_get_by_name(&init_net, name))
766                 return 1;
767
768         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
769                 if (!strcmp(name, s[i].name))
770                         return s[i].map.base_addr;
771         return 0;
772 }
773
774 /*
775  * Saves at boot time configured settings for any netdevice.
776  */
777 int __init netdev_boot_setup(char *str)
778 {
779         int ints[5];
780         struct ifmap map;
781
782         str = get_options(str, ARRAY_SIZE(ints), ints);
783         if (!str || !*str)
784                 return 0;
785
786         /* Save settings */
787         memset(&map, 0, sizeof(map));
788         if (ints[0] > 0)
789                 map.irq = ints[1];
790         if (ints[0] > 1)
791                 map.base_addr = ints[2];
792         if (ints[0] > 2)
793                 map.mem_start = ints[3];
794         if (ints[0] > 3)
795                 map.mem_end = ints[4];
796
797         /* Add new entry to the list */
798         return netdev_boot_setup_add(str, &map);
799 }
800
801 __setup("netdev=", netdev_boot_setup);
802
803 /*******************************************************************************
804  *
805  *                          Device Interface Subroutines
806  *
807  *******************************************************************************/
808
809 /**
810  *      dev_get_iflink  - get 'iflink' value of a interface
811  *      @dev: targeted interface
812  *
813  *      Indicates the ifindex the interface is linked to.
814  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
815  */
816
817 int dev_get_iflink(const struct net_device *dev)
818 {
819         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
820                 return dev->netdev_ops->ndo_get_iflink(dev);
821
822         return dev->ifindex;
823 }
824 EXPORT_SYMBOL(dev_get_iflink);
825
826 /**
827  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
828  *      @dev: targeted interface
829  *      @skb: The packet.
830  *
831  *      For better visibility of tunnel traffic OVS needs to retrieve
832  *      egress tunnel information for a packet. Following API allows
833  *      user to get this info.
834  */
835 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
836 {
837         struct ip_tunnel_info *info;
838
839         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
840                 return -EINVAL;
841
842         info = skb_tunnel_info_unclone(skb);
843         if (!info)
844                 return -ENOMEM;
845         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
846                 return -EINVAL;
847
848         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
849 }
850 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
851
852 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
853 {
854         int k = stack->num_paths++;
855
856         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
857                 return NULL;
858
859         return &stack->path[k];
860 }
861
862 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
863                           struct net_device_path_stack *stack)
864 {
865         const struct net_device *last_dev;
866         struct net_device_path_ctx ctx = {
867                 .dev    = dev,
868                 .daddr  = daddr,
869         };
870         struct net_device_path *path;
871         int ret = 0;
872
873         stack->num_paths = 0;
874         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
875                 last_dev = ctx.dev;
876                 path = dev_fwd_path(stack);
877                 if (!path)
878                         return -1;
879
880                 memset(path, 0, sizeof(struct net_device_path));
881                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
882                 if (ret < 0)
883                         return -1;
884
885                 if (WARN_ON_ONCE(last_dev == ctx.dev))
886                         return -1;
887         }
888         path = dev_fwd_path(stack);
889         if (!path)
890                 return -1;
891         path->type = DEV_PATH_ETHERNET;
892         path->dev = ctx.dev;
893
894         return ret;
895 }
896 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
897
898 /**
899  *      __dev_get_by_name       - find a device by its name
900  *      @net: the applicable net namespace
901  *      @name: name to find
902  *
903  *      Find an interface by name. Must be called under RTNL semaphore
904  *      or @dev_base_lock. If the name is found a pointer to the device
905  *      is returned. If the name is not found then %NULL is returned. The
906  *      reference counters are not incremented so the caller must be
907  *      careful with locks.
908  */
909
910 struct net_device *__dev_get_by_name(struct net *net, const char *name)
911 {
912         struct netdev_name_node *node_name;
913
914         node_name = netdev_name_node_lookup(net, name);
915         return node_name ? node_name->dev : NULL;
916 }
917 EXPORT_SYMBOL(__dev_get_by_name);
918
919 /**
920  * dev_get_by_name_rcu  - find a device by its name
921  * @net: the applicable net namespace
922  * @name: name to find
923  *
924  * Find an interface by name.
925  * If the name is found a pointer to the device is returned.
926  * If the name is not found then %NULL is returned.
927  * The reference counters are not incremented so the caller must be
928  * careful with locks. The caller must hold RCU lock.
929  */
930
931 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
932 {
933         struct netdev_name_node *node_name;
934
935         node_name = netdev_name_node_lookup_rcu(net, name);
936         return node_name ? node_name->dev : NULL;
937 }
938 EXPORT_SYMBOL(dev_get_by_name_rcu);
939
940 /**
941  *      dev_get_by_name         - find a device by its name
942  *      @net: the applicable net namespace
943  *      @name: name to find
944  *
945  *      Find an interface by name. This can be called from any
946  *      context and does its own locking. The returned handle has
947  *      the usage count incremented and the caller must use dev_put() to
948  *      release it when it is no longer needed. %NULL is returned if no
949  *      matching device is found.
950  */
951
952 struct net_device *dev_get_by_name(struct net *net, const char *name)
953 {
954         struct net_device *dev;
955
956         rcu_read_lock();
957         dev = dev_get_by_name_rcu(net, name);
958         if (dev)
959                 dev_hold(dev);
960         rcu_read_unlock();
961         return dev;
962 }
963 EXPORT_SYMBOL(dev_get_by_name);
964
965 /**
966  *      __dev_get_by_index - find a device by its ifindex
967  *      @net: the applicable net namespace
968  *      @ifindex: index of device
969  *
970  *      Search for an interface by index. Returns %NULL if the device
971  *      is not found or a pointer to the device. The device has not
972  *      had its reference counter increased so the caller must be careful
973  *      about locking. The caller must hold either the RTNL semaphore
974  *      or @dev_base_lock.
975  */
976
977 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
978 {
979         struct net_device *dev;
980         struct hlist_head *head = dev_index_hash(net, ifindex);
981
982         hlist_for_each_entry(dev, head, index_hlist)
983                 if (dev->ifindex == ifindex)
984                         return dev;
985
986         return NULL;
987 }
988 EXPORT_SYMBOL(__dev_get_by_index);
989
990 /**
991  *      dev_get_by_index_rcu - find a device by its ifindex
992  *      @net: the applicable net namespace
993  *      @ifindex: index of device
994  *
995  *      Search for an interface by index. Returns %NULL if the device
996  *      is not found or a pointer to the device. The device has not
997  *      had its reference counter increased so the caller must be careful
998  *      about locking. The caller must hold RCU lock.
999  */
1000
1001 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1002 {
1003         struct net_device *dev;
1004         struct hlist_head *head = dev_index_hash(net, ifindex);
1005
1006         hlist_for_each_entry_rcu(dev, head, index_hlist)
1007                 if (dev->ifindex == ifindex)
1008                         return dev;
1009
1010         return NULL;
1011 }
1012 EXPORT_SYMBOL(dev_get_by_index_rcu);
1013
1014
1015 /**
1016  *      dev_get_by_index - find a device by its ifindex
1017  *      @net: the applicable net namespace
1018  *      @ifindex: index of device
1019  *
1020  *      Search for an interface by index. Returns NULL if the device
1021  *      is not found or a pointer to the device. The device returned has
1022  *      had a reference added and the pointer is safe until the user calls
1023  *      dev_put to indicate they have finished with it.
1024  */
1025
1026 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1027 {
1028         struct net_device *dev;
1029
1030         rcu_read_lock();
1031         dev = dev_get_by_index_rcu(net, ifindex);
1032         if (dev)
1033                 dev_hold(dev);
1034         rcu_read_unlock();
1035         return dev;
1036 }
1037 EXPORT_SYMBOL(dev_get_by_index);
1038
1039 /**
1040  *      dev_get_by_napi_id - find a device by napi_id
1041  *      @napi_id: ID of the NAPI struct
1042  *
1043  *      Search for an interface by NAPI ID. Returns %NULL if the device
1044  *      is not found or a pointer to the device. The device has not had
1045  *      its reference counter increased so the caller must be careful
1046  *      about locking. The caller must hold RCU lock.
1047  */
1048
1049 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1050 {
1051         struct napi_struct *napi;
1052
1053         WARN_ON_ONCE(!rcu_read_lock_held());
1054
1055         if (napi_id < MIN_NAPI_ID)
1056                 return NULL;
1057
1058         napi = napi_by_id(napi_id);
1059
1060         return napi ? napi->dev : NULL;
1061 }
1062 EXPORT_SYMBOL(dev_get_by_napi_id);
1063
1064 /**
1065  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1066  *      @net: network namespace
1067  *      @name: a pointer to the buffer where the name will be stored.
1068  *      @ifindex: the ifindex of the interface to get the name from.
1069  */
1070 int netdev_get_name(struct net *net, char *name, int ifindex)
1071 {
1072         struct net_device *dev;
1073         int ret;
1074
1075         down_read(&devnet_rename_sem);
1076         rcu_read_lock();
1077
1078         dev = dev_get_by_index_rcu(net, ifindex);
1079         if (!dev) {
1080                 ret = -ENODEV;
1081                 goto out;
1082         }
1083
1084         strcpy(name, dev->name);
1085
1086         ret = 0;
1087 out:
1088         rcu_read_unlock();
1089         up_read(&devnet_rename_sem);
1090         return ret;
1091 }
1092
1093 /**
1094  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1095  *      @net: the applicable net namespace
1096  *      @type: media type of device
1097  *      @ha: hardware address
1098  *
1099  *      Search for an interface by MAC address. Returns NULL if the device
1100  *      is not found or a pointer to the device.
1101  *      The caller must hold RCU or RTNL.
1102  *      The returned device has not had its ref count increased
1103  *      and the caller must therefore be careful about locking
1104  *
1105  */
1106
1107 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1108                                        const char *ha)
1109 {
1110         struct net_device *dev;
1111
1112         for_each_netdev_rcu(net, dev)
1113                 if (dev->type == type &&
1114                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1115                         return dev;
1116
1117         return NULL;
1118 }
1119 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1120
1121 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1122 {
1123         struct net_device *dev, *ret = NULL;
1124
1125         rcu_read_lock();
1126         for_each_netdev_rcu(net, dev)
1127                 if (dev->type == type) {
1128                         dev_hold(dev);
1129                         ret = dev;
1130                         break;
1131                 }
1132         rcu_read_unlock();
1133         return ret;
1134 }
1135 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1136
1137 /**
1138  *      __dev_get_by_flags - find any device with given flags
1139  *      @net: the applicable net namespace
1140  *      @if_flags: IFF_* values
1141  *      @mask: bitmask of bits in if_flags to check
1142  *
1143  *      Search for any interface with the given flags. Returns NULL if a device
1144  *      is not found or a pointer to the device. Must be called inside
1145  *      rtnl_lock(), and result refcount is unchanged.
1146  */
1147
1148 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1149                                       unsigned short mask)
1150 {
1151         struct net_device *dev, *ret;
1152
1153         ASSERT_RTNL();
1154
1155         ret = NULL;
1156         for_each_netdev(net, dev) {
1157                 if (((dev->flags ^ if_flags) & mask) == 0) {
1158                         ret = dev;
1159                         break;
1160                 }
1161         }
1162         return ret;
1163 }
1164 EXPORT_SYMBOL(__dev_get_by_flags);
1165
1166 /**
1167  *      dev_valid_name - check if name is okay for network device
1168  *      @name: name string
1169  *
1170  *      Network device names need to be valid file names to
1171  *      allow sysfs to work.  We also disallow any kind of
1172  *      whitespace.
1173  */
1174 bool dev_valid_name(const char *name)
1175 {
1176         if (*name == '\0')
1177                 return false;
1178         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1179                 return false;
1180         if (!strcmp(name, ".") || !strcmp(name, ".."))
1181                 return false;
1182
1183         while (*name) {
1184                 if (*name == '/' || *name == ':' || isspace(*name))
1185                         return false;
1186                 name++;
1187         }
1188         return true;
1189 }
1190 EXPORT_SYMBOL(dev_valid_name);
1191
1192 /**
1193  *      __dev_alloc_name - allocate a name for a device
1194  *      @net: network namespace to allocate the device name in
1195  *      @name: name format string
1196  *      @buf:  scratch buffer and result name string
1197  *
1198  *      Passed a format string - eg "lt%d" it will try and find a suitable
1199  *      id. It scans list of devices to build up a free map, then chooses
1200  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1201  *      while allocating the name and adding the device in order to avoid
1202  *      duplicates.
1203  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1204  *      Returns the number of the unit assigned or a negative errno code.
1205  */
1206
1207 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1208 {
1209         int i = 0;
1210         const char *p;
1211         const int max_netdevices = 8*PAGE_SIZE;
1212         unsigned long *inuse;
1213         struct net_device *d;
1214
1215         if (!dev_valid_name(name))
1216                 return -EINVAL;
1217
1218         p = strchr(name, '%');
1219         if (p) {
1220                 /*
1221                  * Verify the string as this thing may have come from
1222                  * the user.  There must be either one "%d" and no other "%"
1223                  * characters.
1224                  */
1225                 if (p[1] != 'd' || strchr(p + 2, '%'))
1226                         return -EINVAL;
1227
1228                 /* Use one page as a bit array of possible slots */
1229                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1230                 if (!inuse)
1231                         return -ENOMEM;
1232
1233                 for_each_netdev(net, d) {
1234                         struct netdev_name_node *name_node;
1235                         list_for_each_entry(name_node, &d->name_node->list, list) {
1236                                 if (!sscanf(name_node->name, name, &i))
1237                                         continue;
1238                                 if (i < 0 || i >= max_netdevices)
1239                                         continue;
1240
1241                                 /*  avoid cases where sscanf is not exact inverse of printf */
1242                                 snprintf(buf, IFNAMSIZ, name, i);
1243                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1244                                         set_bit(i, inuse);
1245                         }
1246                         if (!sscanf(d->name, name, &i))
1247                                 continue;
1248                         if (i < 0 || i >= max_netdevices)
1249                                 continue;
1250
1251                         /*  avoid cases where sscanf is not exact inverse of printf */
1252                         snprintf(buf, IFNAMSIZ, name, i);
1253                         if (!strncmp(buf, d->name, IFNAMSIZ))
1254                                 set_bit(i, inuse);
1255                 }
1256
1257                 i = find_first_zero_bit(inuse, max_netdevices);
1258                 free_page((unsigned long) inuse);
1259         }
1260
1261         snprintf(buf, IFNAMSIZ, name, i);
1262         if (!__dev_get_by_name(net, buf))
1263                 return i;
1264
1265         /* It is possible to run out of possible slots
1266          * when the name is long and there isn't enough space left
1267          * for the digits, or if all bits are used.
1268          */
1269         return -ENFILE;
1270 }
1271
1272 static int dev_alloc_name_ns(struct net *net,
1273                              struct net_device *dev,
1274                              const char *name)
1275 {
1276         char buf[IFNAMSIZ];
1277         int ret;
1278
1279         BUG_ON(!net);
1280         ret = __dev_alloc_name(net, name, buf);
1281         if (ret >= 0)
1282                 strlcpy(dev->name, buf, IFNAMSIZ);
1283         return ret;
1284 }
1285
1286 /**
1287  *      dev_alloc_name - allocate a name for a device
1288  *      @dev: device
1289  *      @name: name format string
1290  *
1291  *      Passed a format string - eg "lt%d" it will try and find a suitable
1292  *      id. It scans list of devices to build up a free map, then chooses
1293  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1294  *      while allocating the name and adding the device in order to avoid
1295  *      duplicates.
1296  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1297  *      Returns the number of the unit assigned or a negative errno code.
1298  */
1299
1300 int dev_alloc_name(struct net_device *dev, const char *name)
1301 {
1302         return dev_alloc_name_ns(dev_net(dev), dev, name);
1303 }
1304 EXPORT_SYMBOL(dev_alloc_name);
1305
1306 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1307                               const char *name)
1308 {
1309         BUG_ON(!net);
1310
1311         if (!dev_valid_name(name))
1312                 return -EINVAL;
1313
1314         if (strchr(name, '%'))
1315                 return dev_alloc_name_ns(net, dev, name);
1316         else if (__dev_get_by_name(net, name))
1317                 return -EEXIST;
1318         else if (dev->name != name)
1319                 strlcpy(dev->name, name, IFNAMSIZ);
1320
1321         return 0;
1322 }
1323
1324 /**
1325  *      dev_change_name - change name of a device
1326  *      @dev: device
1327  *      @newname: name (or format string) must be at least IFNAMSIZ
1328  *
1329  *      Change name of a device, can pass format strings "eth%d".
1330  *      for wildcarding.
1331  */
1332 int dev_change_name(struct net_device *dev, const char *newname)
1333 {
1334         unsigned char old_assign_type;
1335         char oldname[IFNAMSIZ];
1336         int err = 0;
1337         int ret;
1338         struct net *net;
1339
1340         ASSERT_RTNL();
1341         BUG_ON(!dev_net(dev));
1342
1343         net = dev_net(dev);
1344
1345         /* Some auto-enslaved devices e.g. failover slaves are
1346          * special, as userspace might rename the device after
1347          * the interface had been brought up and running since
1348          * the point kernel initiated auto-enslavement. Allow
1349          * live name change even when these slave devices are
1350          * up and running.
1351          *
1352          * Typically, users of these auto-enslaving devices
1353          * don't actually care about slave name change, as
1354          * they are supposed to operate on master interface
1355          * directly.
1356          */
1357         if (dev->flags & IFF_UP &&
1358             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1359                 return -EBUSY;
1360
1361         down_write(&devnet_rename_sem);
1362
1363         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1364                 up_write(&devnet_rename_sem);
1365                 return 0;
1366         }
1367
1368         memcpy(oldname, dev->name, IFNAMSIZ);
1369
1370         err = dev_get_valid_name(net, dev, newname);
1371         if (err < 0) {
1372                 up_write(&devnet_rename_sem);
1373                 return err;
1374         }
1375
1376         if (oldname[0] && !strchr(oldname, '%'))
1377                 netdev_info(dev, "renamed from %s\n", oldname);
1378
1379         old_assign_type = dev->name_assign_type;
1380         dev->name_assign_type = NET_NAME_RENAMED;
1381
1382 rollback:
1383         ret = device_rename(&dev->dev, dev->name);
1384         if (ret) {
1385                 memcpy(dev->name, oldname, IFNAMSIZ);
1386                 dev->name_assign_type = old_assign_type;
1387                 up_write(&devnet_rename_sem);
1388                 return ret;
1389         }
1390
1391         up_write(&devnet_rename_sem);
1392
1393         netdev_adjacent_rename_links(dev, oldname);
1394
1395         write_lock_bh(&dev_base_lock);
1396         netdev_name_node_del(dev->name_node);
1397         write_unlock_bh(&dev_base_lock);
1398
1399         synchronize_rcu();
1400
1401         write_lock_bh(&dev_base_lock);
1402         netdev_name_node_add(net, dev->name_node);
1403         write_unlock_bh(&dev_base_lock);
1404
1405         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1406         ret = notifier_to_errno(ret);
1407
1408         if (ret) {
1409                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1410                 if (err >= 0) {
1411                         err = ret;
1412                         down_write(&devnet_rename_sem);
1413                         memcpy(dev->name, oldname, IFNAMSIZ);
1414                         memcpy(oldname, newname, IFNAMSIZ);
1415                         dev->name_assign_type = old_assign_type;
1416                         old_assign_type = NET_NAME_RENAMED;
1417                         goto rollback;
1418                 } else {
1419                         pr_err("%s: name change rollback failed: %d\n",
1420                                dev->name, ret);
1421                 }
1422         }
1423
1424         return err;
1425 }
1426
1427 /**
1428  *      dev_set_alias - change ifalias of a device
1429  *      @dev: device
1430  *      @alias: name up to IFALIASZ
1431  *      @len: limit of bytes to copy from info
1432  *
1433  *      Set ifalias for a device,
1434  */
1435 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1436 {
1437         struct dev_ifalias *new_alias = NULL;
1438
1439         if (len >= IFALIASZ)
1440                 return -EINVAL;
1441
1442         if (len) {
1443                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1444                 if (!new_alias)
1445                         return -ENOMEM;
1446
1447                 memcpy(new_alias->ifalias, alias, len);
1448                 new_alias->ifalias[len] = 0;
1449         }
1450
1451         mutex_lock(&ifalias_mutex);
1452         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1453                                         mutex_is_locked(&ifalias_mutex));
1454         mutex_unlock(&ifalias_mutex);
1455
1456         if (new_alias)
1457                 kfree_rcu(new_alias, rcuhead);
1458
1459         return len;
1460 }
1461 EXPORT_SYMBOL(dev_set_alias);
1462
1463 /**
1464  *      dev_get_alias - get ifalias of a device
1465  *      @dev: device
1466  *      @name: buffer to store name of ifalias
1467  *      @len: size of buffer
1468  *
1469  *      get ifalias for a device.  Caller must make sure dev cannot go
1470  *      away,  e.g. rcu read lock or own a reference count to device.
1471  */
1472 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1473 {
1474         const struct dev_ifalias *alias;
1475         int ret = 0;
1476
1477         rcu_read_lock();
1478         alias = rcu_dereference(dev->ifalias);
1479         if (alias)
1480                 ret = snprintf(name, len, "%s", alias->ifalias);
1481         rcu_read_unlock();
1482
1483         return ret;
1484 }
1485
1486 /**
1487  *      netdev_features_change - device changes features
1488  *      @dev: device to cause notification
1489  *
1490  *      Called to indicate a device has changed features.
1491  */
1492 void netdev_features_change(struct net_device *dev)
1493 {
1494         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1495 }
1496 EXPORT_SYMBOL(netdev_features_change);
1497
1498 /**
1499  *      netdev_state_change - device changes state
1500  *      @dev: device to cause notification
1501  *
1502  *      Called to indicate a device has changed state. This function calls
1503  *      the notifier chains for netdev_chain and sends a NEWLINK message
1504  *      to the routing socket.
1505  */
1506 void netdev_state_change(struct net_device *dev)
1507 {
1508         if (dev->flags & IFF_UP) {
1509                 struct netdev_notifier_change_info change_info = {
1510                         .info.dev = dev,
1511                 };
1512
1513                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1514                                               &change_info.info);
1515                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1516         }
1517 }
1518 EXPORT_SYMBOL(netdev_state_change);
1519
1520 /**
1521  * __netdev_notify_peers - notify network peers about existence of @dev,
1522  * to be called when rtnl lock is already held.
1523  * @dev: network device
1524  *
1525  * Generate traffic such that interested network peers are aware of
1526  * @dev, such as by generating a gratuitous ARP. This may be used when
1527  * a device wants to inform the rest of the network about some sort of
1528  * reconfiguration such as a failover event or virtual machine
1529  * migration.
1530  */
1531 void __netdev_notify_peers(struct net_device *dev)
1532 {
1533         ASSERT_RTNL();
1534         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1535         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1536 }
1537 EXPORT_SYMBOL(__netdev_notify_peers);
1538
1539 /**
1540  * netdev_notify_peers - notify network peers about existence of @dev
1541  * @dev: network device
1542  *
1543  * Generate traffic such that interested network peers are aware of
1544  * @dev, such as by generating a gratuitous ARP. This may be used when
1545  * a device wants to inform the rest of the network about some sort of
1546  * reconfiguration such as a failover event or virtual machine
1547  * migration.
1548  */
1549 void netdev_notify_peers(struct net_device *dev)
1550 {
1551         rtnl_lock();
1552         __netdev_notify_peers(dev);
1553         rtnl_unlock();
1554 }
1555 EXPORT_SYMBOL(netdev_notify_peers);
1556
1557 static int napi_threaded_poll(void *data);
1558
1559 static int napi_kthread_create(struct napi_struct *n)
1560 {
1561         int err = 0;
1562
1563         /* Create and wake up the kthread once to put it in
1564          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1565          * warning and work with loadavg.
1566          */
1567         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1568                                 n->dev->name, n->napi_id);
1569         if (IS_ERR(n->thread)) {
1570                 err = PTR_ERR(n->thread);
1571                 pr_err("kthread_run failed with err %d\n", err);
1572                 n->thread = NULL;
1573         }
1574
1575         return err;
1576 }
1577
1578 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1579 {
1580         const struct net_device_ops *ops = dev->netdev_ops;
1581         int ret;
1582
1583         ASSERT_RTNL();
1584
1585         if (!netif_device_present(dev)) {
1586                 /* may be detached because parent is runtime-suspended */
1587                 if (dev->dev.parent)
1588                         pm_runtime_resume(dev->dev.parent);
1589                 if (!netif_device_present(dev))
1590                         return -ENODEV;
1591         }
1592
1593         /* Block netpoll from trying to do any rx path servicing.
1594          * If we don't do this there is a chance ndo_poll_controller
1595          * or ndo_poll may be running while we open the device
1596          */
1597         netpoll_poll_disable(dev);
1598
1599         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1600         ret = notifier_to_errno(ret);
1601         if (ret)
1602                 return ret;
1603
1604         set_bit(__LINK_STATE_START, &dev->state);
1605
1606         if (ops->ndo_validate_addr)
1607                 ret = ops->ndo_validate_addr(dev);
1608
1609         if (!ret && ops->ndo_open)
1610                 ret = ops->ndo_open(dev);
1611
1612         netpoll_poll_enable(dev);
1613
1614         if (ret)
1615                 clear_bit(__LINK_STATE_START, &dev->state);
1616         else {
1617                 dev->flags |= IFF_UP;
1618                 dev_set_rx_mode(dev);
1619                 dev_activate(dev);
1620                 add_device_randomness(dev->dev_addr, dev->addr_len);
1621         }
1622
1623         return ret;
1624 }
1625
1626 /**
1627  *      dev_open        - prepare an interface for use.
1628  *      @dev: device to open
1629  *      @extack: netlink extended ack
1630  *
1631  *      Takes a device from down to up state. The device's private open
1632  *      function is invoked and then the multicast lists are loaded. Finally
1633  *      the device is moved into the up state and a %NETDEV_UP message is
1634  *      sent to the netdev notifier chain.
1635  *
1636  *      Calling this function on an active interface is a nop. On a failure
1637  *      a negative errno code is returned.
1638  */
1639 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1640 {
1641         int ret;
1642
1643         if (dev->flags & IFF_UP)
1644                 return 0;
1645
1646         ret = __dev_open(dev, extack);
1647         if (ret < 0)
1648                 return ret;
1649
1650         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1651         call_netdevice_notifiers(NETDEV_UP, dev);
1652
1653         return ret;
1654 }
1655 EXPORT_SYMBOL(dev_open);
1656
1657 static void __dev_close_many(struct list_head *head)
1658 {
1659         struct net_device *dev;
1660
1661         ASSERT_RTNL();
1662         might_sleep();
1663
1664         list_for_each_entry(dev, head, close_list) {
1665                 /* Temporarily disable netpoll until the interface is down */
1666                 netpoll_poll_disable(dev);
1667
1668                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1669
1670                 clear_bit(__LINK_STATE_START, &dev->state);
1671
1672                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1673                  * can be even on different cpu. So just clear netif_running().
1674                  *
1675                  * dev->stop() will invoke napi_disable() on all of it's
1676                  * napi_struct instances on this device.
1677                  */
1678                 smp_mb__after_atomic(); /* Commit netif_running(). */
1679         }
1680
1681         dev_deactivate_many(head);
1682
1683         list_for_each_entry(dev, head, close_list) {
1684                 const struct net_device_ops *ops = dev->netdev_ops;
1685
1686                 /*
1687                  *      Call the device specific close. This cannot fail.
1688                  *      Only if device is UP
1689                  *
1690                  *      We allow it to be called even after a DETACH hot-plug
1691                  *      event.
1692                  */
1693                 if (ops->ndo_stop)
1694                         ops->ndo_stop(dev);
1695
1696                 dev->flags &= ~IFF_UP;
1697                 netpoll_poll_enable(dev);
1698         }
1699 }
1700
1701 static void __dev_close(struct net_device *dev)
1702 {
1703         LIST_HEAD(single);
1704
1705         list_add(&dev->close_list, &single);
1706         __dev_close_many(&single);
1707         list_del(&single);
1708 }
1709
1710 void dev_close_many(struct list_head *head, bool unlink)
1711 {
1712         struct net_device *dev, *tmp;
1713
1714         /* Remove the devices that don't need to be closed */
1715         list_for_each_entry_safe(dev, tmp, head, close_list)
1716                 if (!(dev->flags & IFF_UP))
1717                         list_del_init(&dev->close_list);
1718
1719         __dev_close_many(head);
1720
1721         list_for_each_entry_safe(dev, tmp, head, close_list) {
1722                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1723                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1724                 if (unlink)
1725                         list_del_init(&dev->close_list);
1726         }
1727 }
1728 EXPORT_SYMBOL(dev_close_many);
1729
1730 /**
1731  *      dev_close - shutdown an interface.
1732  *      @dev: device to shutdown
1733  *
1734  *      This function moves an active device into down state. A
1735  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1736  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1737  *      chain.
1738  */
1739 void dev_close(struct net_device *dev)
1740 {
1741         if (dev->flags & IFF_UP) {
1742                 LIST_HEAD(single);
1743
1744                 list_add(&dev->close_list, &single);
1745                 dev_close_many(&single, true);
1746                 list_del(&single);
1747         }
1748 }
1749 EXPORT_SYMBOL(dev_close);
1750
1751
1752 /**
1753  *      dev_disable_lro - disable Large Receive Offload on a device
1754  *      @dev: device
1755  *
1756  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1757  *      called under RTNL.  This is needed if received packets may be
1758  *      forwarded to another interface.
1759  */
1760 void dev_disable_lro(struct net_device *dev)
1761 {
1762         struct net_device *lower_dev;
1763         struct list_head *iter;
1764
1765         dev->wanted_features &= ~NETIF_F_LRO;
1766         netdev_update_features(dev);
1767
1768         if (unlikely(dev->features & NETIF_F_LRO))
1769                 netdev_WARN(dev, "failed to disable LRO!\n");
1770
1771         netdev_for_each_lower_dev(dev, lower_dev, iter)
1772                 dev_disable_lro(lower_dev);
1773 }
1774 EXPORT_SYMBOL(dev_disable_lro);
1775
1776 /**
1777  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1778  *      @dev: device
1779  *
1780  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1781  *      called under RTNL.  This is needed if Generic XDP is installed on
1782  *      the device.
1783  */
1784 static void dev_disable_gro_hw(struct net_device *dev)
1785 {
1786         dev->wanted_features &= ~NETIF_F_GRO_HW;
1787         netdev_update_features(dev);
1788
1789         if (unlikely(dev->features & NETIF_F_GRO_HW))
1790                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1791 }
1792
1793 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1794 {
1795 #define N(val)                                          \
1796         case NETDEV_##val:                              \
1797                 return "NETDEV_" __stringify(val);
1798         switch (cmd) {
1799         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1800         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1801         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1802         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1803         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1804         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1805         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1806         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1807         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1808         N(PRE_CHANGEADDR)
1809         }
1810 #undef N
1811         return "UNKNOWN_NETDEV_EVENT";
1812 }
1813 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1814
1815 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1816                                    struct net_device *dev)
1817 {
1818         struct netdev_notifier_info info = {
1819                 .dev = dev,
1820         };
1821
1822         return nb->notifier_call(nb, val, &info);
1823 }
1824
1825 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1826                                              struct net_device *dev)
1827 {
1828         int err;
1829
1830         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1831         err = notifier_to_errno(err);
1832         if (err)
1833                 return err;
1834
1835         if (!(dev->flags & IFF_UP))
1836                 return 0;
1837
1838         call_netdevice_notifier(nb, NETDEV_UP, dev);
1839         return 0;
1840 }
1841
1842 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1843                                                 struct net_device *dev)
1844 {
1845         if (dev->flags & IFF_UP) {
1846                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1847                                         dev);
1848                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1849         }
1850         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1851 }
1852
1853 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1854                                                  struct net *net)
1855 {
1856         struct net_device *dev;
1857         int err;
1858
1859         for_each_netdev(net, dev) {
1860                 err = call_netdevice_register_notifiers(nb, dev);
1861                 if (err)
1862                         goto rollback;
1863         }
1864         return 0;
1865
1866 rollback:
1867         for_each_netdev_continue_reverse(net, dev)
1868                 call_netdevice_unregister_notifiers(nb, dev);
1869         return err;
1870 }
1871
1872 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1873                                                     struct net *net)
1874 {
1875         struct net_device *dev;
1876
1877         for_each_netdev(net, dev)
1878                 call_netdevice_unregister_notifiers(nb, dev);
1879 }
1880
1881 static int dev_boot_phase = 1;
1882
1883 /**
1884  * register_netdevice_notifier - register a network notifier block
1885  * @nb: notifier
1886  *
1887  * Register a notifier to be called when network device events occur.
1888  * The notifier passed is linked into the kernel structures and must
1889  * not be reused until it has been unregistered. A negative errno code
1890  * is returned on a failure.
1891  *
1892  * When registered all registration and up events are replayed
1893  * to the new notifier to allow device to have a race free
1894  * view of the network device list.
1895  */
1896
1897 int register_netdevice_notifier(struct notifier_block *nb)
1898 {
1899         struct net *net;
1900         int err;
1901
1902         /* Close race with setup_net() and cleanup_net() */
1903         down_write(&pernet_ops_rwsem);
1904         rtnl_lock();
1905         err = raw_notifier_chain_register(&netdev_chain, nb);
1906         if (err)
1907                 goto unlock;
1908         if (dev_boot_phase)
1909                 goto unlock;
1910         for_each_net(net) {
1911                 err = call_netdevice_register_net_notifiers(nb, net);
1912                 if (err)
1913                         goto rollback;
1914         }
1915
1916 unlock:
1917         rtnl_unlock();
1918         up_write(&pernet_ops_rwsem);
1919         return err;
1920
1921 rollback:
1922         for_each_net_continue_reverse(net)
1923                 call_netdevice_unregister_net_notifiers(nb, net);
1924
1925         raw_notifier_chain_unregister(&netdev_chain, nb);
1926         goto unlock;
1927 }
1928 EXPORT_SYMBOL(register_netdevice_notifier);
1929
1930 /**
1931  * unregister_netdevice_notifier - unregister a network notifier block
1932  * @nb: notifier
1933  *
1934  * Unregister a notifier previously registered by
1935  * register_netdevice_notifier(). The notifier is unlinked into the
1936  * kernel structures and may then be reused. A negative errno code
1937  * is returned on a failure.
1938  *
1939  * After unregistering unregister and down device events are synthesized
1940  * for all devices on the device list to the removed notifier to remove
1941  * the need for special case cleanup code.
1942  */
1943
1944 int unregister_netdevice_notifier(struct notifier_block *nb)
1945 {
1946         struct net *net;
1947         int err;
1948
1949         /* Close race with setup_net() and cleanup_net() */
1950         down_write(&pernet_ops_rwsem);
1951         rtnl_lock();
1952         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1953         if (err)
1954                 goto unlock;
1955
1956         for_each_net(net)
1957                 call_netdevice_unregister_net_notifiers(nb, net);
1958
1959 unlock:
1960         rtnl_unlock();
1961         up_write(&pernet_ops_rwsem);
1962         return err;
1963 }
1964 EXPORT_SYMBOL(unregister_netdevice_notifier);
1965
1966 static int __register_netdevice_notifier_net(struct net *net,
1967                                              struct notifier_block *nb,
1968                                              bool ignore_call_fail)
1969 {
1970         int err;
1971
1972         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1973         if (err)
1974                 return err;
1975         if (dev_boot_phase)
1976                 return 0;
1977
1978         err = call_netdevice_register_net_notifiers(nb, net);
1979         if (err && !ignore_call_fail)
1980                 goto chain_unregister;
1981
1982         return 0;
1983
1984 chain_unregister:
1985         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1986         return err;
1987 }
1988
1989 static int __unregister_netdevice_notifier_net(struct net *net,
1990                                                struct notifier_block *nb)
1991 {
1992         int err;
1993
1994         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1995         if (err)
1996                 return err;
1997
1998         call_netdevice_unregister_net_notifiers(nb, net);
1999         return 0;
2000 }
2001
2002 /**
2003  * register_netdevice_notifier_net - register a per-netns network notifier block
2004  * @net: network namespace
2005  * @nb: notifier
2006  *
2007  * Register a notifier to be called when network device events occur.
2008  * The notifier passed is linked into the kernel structures and must
2009  * not be reused until it has been unregistered. A negative errno code
2010  * is returned on a failure.
2011  *
2012  * When registered all registration and up events are replayed
2013  * to the new notifier to allow device to have a race free
2014  * view of the network device list.
2015  */
2016
2017 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2018 {
2019         int err;
2020
2021         rtnl_lock();
2022         err = __register_netdevice_notifier_net(net, nb, false);
2023         rtnl_unlock();
2024         return err;
2025 }
2026 EXPORT_SYMBOL(register_netdevice_notifier_net);
2027
2028 /**
2029  * unregister_netdevice_notifier_net - unregister a per-netns
2030  *                                     network notifier block
2031  * @net: network namespace
2032  * @nb: notifier
2033  *
2034  * Unregister a notifier previously registered by
2035  * register_netdevice_notifier(). The notifier is unlinked into the
2036  * kernel structures and may then be reused. A negative errno code
2037  * is returned on a failure.
2038  *
2039  * After unregistering unregister and down device events are synthesized
2040  * for all devices on the device list to the removed notifier to remove
2041  * the need for special case cleanup code.
2042  */
2043
2044 int unregister_netdevice_notifier_net(struct net *net,
2045                                       struct notifier_block *nb)
2046 {
2047         int err;
2048
2049         rtnl_lock();
2050         err = __unregister_netdevice_notifier_net(net, nb);
2051         rtnl_unlock();
2052         return err;
2053 }
2054 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2055
2056 int register_netdevice_notifier_dev_net(struct net_device *dev,
2057                                         struct notifier_block *nb,
2058                                         struct netdev_net_notifier *nn)
2059 {
2060         int err;
2061
2062         rtnl_lock();
2063         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2064         if (!err) {
2065                 nn->nb = nb;
2066                 list_add(&nn->list, &dev->net_notifier_list);
2067         }
2068         rtnl_unlock();
2069         return err;
2070 }
2071 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2072
2073 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2074                                           struct notifier_block *nb,
2075                                           struct netdev_net_notifier *nn)
2076 {
2077         int err;
2078
2079         rtnl_lock();
2080         list_del(&nn->list);
2081         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2082         rtnl_unlock();
2083         return err;
2084 }
2085 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2086
2087 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2088                                              struct net *net)
2089 {
2090         struct netdev_net_notifier *nn;
2091
2092         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2093                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2094                 __register_netdevice_notifier_net(net, nn->nb, true);
2095         }
2096 }
2097
2098 /**
2099  *      call_netdevice_notifiers_info - call all network notifier blocks
2100  *      @val: value passed unmodified to notifier function
2101  *      @info: notifier information data
2102  *
2103  *      Call all network notifier blocks.  Parameters and return value
2104  *      are as for raw_notifier_call_chain().
2105  */
2106
2107 static int call_netdevice_notifiers_info(unsigned long val,
2108                                          struct netdev_notifier_info *info)
2109 {
2110         struct net *net = dev_net(info->dev);
2111         int ret;
2112
2113         ASSERT_RTNL();
2114
2115         /* Run per-netns notifier block chain first, then run the global one.
2116          * Hopefully, one day, the global one is going to be removed after
2117          * all notifier block registrators get converted to be per-netns.
2118          */
2119         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2120         if (ret & NOTIFY_STOP_MASK)
2121                 return ret;
2122         return raw_notifier_call_chain(&netdev_chain, val, info);
2123 }
2124
2125 static int call_netdevice_notifiers_extack(unsigned long val,
2126                                            struct net_device *dev,
2127                                            struct netlink_ext_ack *extack)
2128 {
2129         struct netdev_notifier_info info = {
2130                 .dev = dev,
2131                 .extack = extack,
2132         };
2133
2134         return call_netdevice_notifiers_info(val, &info);
2135 }
2136
2137 /**
2138  *      call_netdevice_notifiers - call all network notifier blocks
2139  *      @val: value passed unmodified to notifier function
2140  *      @dev: net_device pointer passed unmodified to notifier function
2141  *
2142  *      Call all network notifier blocks.  Parameters and return value
2143  *      are as for raw_notifier_call_chain().
2144  */
2145
2146 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2147 {
2148         return call_netdevice_notifiers_extack(val, dev, NULL);
2149 }
2150 EXPORT_SYMBOL(call_netdevice_notifiers);
2151
2152 /**
2153  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2154  *      @val: value passed unmodified to notifier function
2155  *      @dev: net_device pointer passed unmodified to notifier function
2156  *      @arg: additional u32 argument passed to the notifier function
2157  *
2158  *      Call all network notifier blocks.  Parameters and return value
2159  *      are as for raw_notifier_call_chain().
2160  */
2161 static int call_netdevice_notifiers_mtu(unsigned long val,
2162                                         struct net_device *dev, u32 arg)
2163 {
2164         struct netdev_notifier_info_ext info = {
2165                 .info.dev = dev,
2166                 .ext.mtu = arg,
2167         };
2168
2169         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2170
2171         return call_netdevice_notifiers_info(val, &info.info);
2172 }
2173
2174 #ifdef CONFIG_NET_INGRESS
2175 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2176
2177 void net_inc_ingress_queue(void)
2178 {
2179         static_branch_inc(&ingress_needed_key);
2180 }
2181 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2182
2183 void net_dec_ingress_queue(void)
2184 {
2185         static_branch_dec(&ingress_needed_key);
2186 }
2187 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2188 #endif
2189
2190 #ifdef CONFIG_NET_EGRESS
2191 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2192
2193 void net_inc_egress_queue(void)
2194 {
2195         static_branch_inc(&egress_needed_key);
2196 }
2197 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2198
2199 void net_dec_egress_queue(void)
2200 {
2201         static_branch_dec(&egress_needed_key);
2202 }
2203 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2204 #endif
2205
2206 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2207 #ifdef CONFIG_JUMP_LABEL
2208 static atomic_t netstamp_needed_deferred;
2209 static atomic_t netstamp_wanted;
2210 static void netstamp_clear(struct work_struct *work)
2211 {
2212         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2213         int wanted;
2214
2215         wanted = atomic_add_return(deferred, &netstamp_wanted);
2216         if (wanted > 0)
2217                 static_branch_enable(&netstamp_needed_key);
2218         else
2219                 static_branch_disable(&netstamp_needed_key);
2220 }
2221 static DECLARE_WORK(netstamp_work, netstamp_clear);
2222 #endif
2223
2224 void net_enable_timestamp(void)
2225 {
2226 #ifdef CONFIG_JUMP_LABEL
2227         int wanted;
2228
2229         while (1) {
2230                 wanted = atomic_read(&netstamp_wanted);
2231                 if (wanted <= 0)
2232                         break;
2233                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2234                         return;
2235         }
2236         atomic_inc(&netstamp_needed_deferred);
2237         schedule_work(&netstamp_work);
2238 #else
2239         static_branch_inc(&netstamp_needed_key);
2240 #endif
2241 }
2242 EXPORT_SYMBOL(net_enable_timestamp);
2243
2244 void net_disable_timestamp(void)
2245 {
2246 #ifdef CONFIG_JUMP_LABEL
2247         int wanted;
2248
2249         while (1) {
2250                 wanted = atomic_read(&netstamp_wanted);
2251                 if (wanted <= 1)
2252                         break;
2253                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2254                         return;
2255         }
2256         atomic_dec(&netstamp_needed_deferred);
2257         schedule_work(&netstamp_work);
2258 #else
2259         static_branch_dec(&netstamp_needed_key);
2260 #endif
2261 }
2262 EXPORT_SYMBOL(net_disable_timestamp);
2263
2264 static inline void net_timestamp_set(struct sk_buff *skb)
2265 {
2266         skb->tstamp = 0;
2267         if (static_branch_unlikely(&netstamp_needed_key))
2268                 __net_timestamp(skb);
2269 }
2270
2271 #define net_timestamp_check(COND, SKB)                          \
2272         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2273                 if ((COND) && !(SKB)->tstamp)                   \
2274                         __net_timestamp(SKB);                   \
2275         }                                                       \
2276
2277 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2278 {
2279         return __is_skb_forwardable(dev, skb, true);
2280 }
2281 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2282
2283 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2284                               bool check_mtu)
2285 {
2286         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2287
2288         if (likely(!ret)) {
2289                 skb->protocol = eth_type_trans(skb, dev);
2290                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2291         }
2292
2293         return ret;
2294 }
2295
2296 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2297 {
2298         return __dev_forward_skb2(dev, skb, true);
2299 }
2300 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2301
2302 /**
2303  * dev_forward_skb - loopback an skb to another netif
2304  *
2305  * @dev: destination network device
2306  * @skb: buffer to forward
2307  *
2308  * return values:
2309  *      NET_RX_SUCCESS  (no congestion)
2310  *      NET_RX_DROP     (packet was dropped, but freed)
2311  *
2312  * dev_forward_skb can be used for injecting an skb from the
2313  * start_xmit function of one device into the receive queue
2314  * of another device.
2315  *
2316  * The receiving device may be in another namespace, so
2317  * we have to clear all information in the skb that could
2318  * impact namespace isolation.
2319  */
2320 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2321 {
2322         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2323 }
2324 EXPORT_SYMBOL_GPL(dev_forward_skb);
2325
2326 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2327 {
2328         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2329 }
2330
2331 static inline int deliver_skb(struct sk_buff *skb,
2332                               struct packet_type *pt_prev,
2333                               struct net_device *orig_dev)
2334 {
2335         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2336                 return -ENOMEM;
2337         refcount_inc(&skb->users);
2338         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2339 }
2340
2341 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2342                                           struct packet_type **pt,
2343                                           struct net_device *orig_dev,
2344                                           __be16 type,
2345                                           struct list_head *ptype_list)
2346 {
2347         struct packet_type *ptype, *pt_prev = *pt;
2348
2349         list_for_each_entry_rcu(ptype, ptype_list, list) {
2350                 if (ptype->type != type)
2351                         continue;
2352                 if (pt_prev)
2353                         deliver_skb(skb, pt_prev, orig_dev);
2354                 pt_prev = ptype;
2355         }
2356         *pt = pt_prev;
2357 }
2358
2359 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2360 {
2361         if (!ptype->af_packet_priv || !skb->sk)
2362                 return false;
2363
2364         if (ptype->id_match)
2365                 return ptype->id_match(ptype, skb->sk);
2366         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2367                 return true;
2368
2369         return false;
2370 }
2371
2372 /**
2373  * dev_nit_active - return true if any network interface taps are in use
2374  *
2375  * @dev: network device to check for the presence of taps
2376  */
2377 bool dev_nit_active(struct net_device *dev)
2378 {
2379         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2380 }
2381 EXPORT_SYMBOL_GPL(dev_nit_active);
2382
2383 /*
2384  *      Support routine. Sends outgoing frames to any network
2385  *      taps currently in use.
2386  */
2387
2388 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2389 {
2390         struct packet_type *ptype;
2391         struct sk_buff *skb2 = NULL;
2392         struct packet_type *pt_prev = NULL;
2393         struct list_head *ptype_list = &ptype_all;
2394
2395         rcu_read_lock();
2396 again:
2397         list_for_each_entry_rcu(ptype, ptype_list, list) {
2398                 if (ptype->ignore_outgoing)
2399                         continue;
2400
2401                 /* Never send packets back to the socket
2402                  * they originated from - MvS (miquels@drinkel.ow.org)
2403                  */
2404                 if (skb_loop_sk(ptype, skb))
2405                         continue;
2406
2407                 if (pt_prev) {
2408                         deliver_skb(skb2, pt_prev, skb->dev);
2409                         pt_prev = ptype;
2410                         continue;
2411                 }
2412
2413                 /* need to clone skb, done only once */
2414                 skb2 = skb_clone(skb, GFP_ATOMIC);
2415                 if (!skb2)
2416                         goto out_unlock;
2417
2418                 net_timestamp_set(skb2);
2419
2420                 /* skb->nh should be correctly
2421                  * set by sender, so that the second statement is
2422                  * just protection against buggy protocols.
2423                  */
2424                 skb_reset_mac_header(skb2);
2425
2426                 if (skb_network_header(skb2) < skb2->data ||
2427                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2428                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2429                                              ntohs(skb2->protocol),
2430                                              dev->name);
2431                         skb_reset_network_header(skb2);
2432                 }
2433
2434                 skb2->transport_header = skb2->network_header;
2435                 skb2->pkt_type = PACKET_OUTGOING;
2436                 pt_prev = ptype;
2437         }
2438
2439         if (ptype_list == &ptype_all) {
2440                 ptype_list = &dev->ptype_all;
2441                 goto again;
2442         }
2443 out_unlock:
2444         if (pt_prev) {
2445                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2446                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2447                 else
2448                         kfree_skb(skb2);
2449         }
2450         rcu_read_unlock();
2451 }
2452 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2453
2454 /**
2455  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2456  * @dev: Network device
2457  * @txq: number of queues available
2458  *
2459  * If real_num_tx_queues is changed the tc mappings may no longer be
2460  * valid. To resolve this verify the tc mapping remains valid and if
2461  * not NULL the mapping. With no priorities mapping to this
2462  * offset/count pair it will no longer be used. In the worst case TC0
2463  * is invalid nothing can be done so disable priority mappings. If is
2464  * expected that drivers will fix this mapping if they can before
2465  * calling netif_set_real_num_tx_queues.
2466  */
2467 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2468 {
2469         int i;
2470         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2471
2472         /* If TC0 is invalidated disable TC mapping */
2473         if (tc->offset + tc->count > txq) {
2474                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2475                 dev->num_tc = 0;
2476                 return;
2477         }
2478
2479         /* Invalidated prio to tc mappings set to TC0 */
2480         for (i = 1; i < TC_BITMASK + 1; i++) {
2481                 int q = netdev_get_prio_tc_map(dev, i);
2482
2483                 tc = &dev->tc_to_txq[q];
2484                 if (tc->offset + tc->count > txq) {
2485                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2486                                 i, q);
2487                         netdev_set_prio_tc_map(dev, i, 0);
2488                 }
2489         }
2490 }
2491
2492 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2493 {
2494         if (dev->num_tc) {
2495                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2496                 int i;
2497
2498                 /* walk through the TCs and see if it falls into any of them */
2499                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2500                         if ((txq - tc->offset) < tc->count)
2501                                 return i;
2502                 }
2503
2504                 /* didn't find it, just return -1 to indicate no match */
2505                 return -1;
2506         }
2507
2508         return 0;
2509 }
2510 EXPORT_SYMBOL(netdev_txq_to_tc);
2511
2512 #ifdef CONFIG_XPS
2513 static struct static_key xps_needed __read_mostly;
2514 static struct static_key xps_rxqs_needed __read_mostly;
2515 static DEFINE_MUTEX(xps_map_mutex);
2516 #define xmap_dereference(P)             \
2517         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2518
2519 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2520                              struct xps_dev_maps *old_maps, int tci, u16 index)
2521 {
2522         struct xps_map *map = NULL;
2523         int pos;
2524
2525         if (dev_maps)
2526                 map = xmap_dereference(dev_maps->attr_map[tci]);
2527         if (!map)
2528                 return false;
2529
2530         for (pos = map->len; pos--;) {
2531                 if (map->queues[pos] != index)
2532                         continue;
2533
2534                 if (map->len > 1) {
2535                         map->queues[pos] = map->queues[--map->len];
2536                         break;
2537                 }
2538
2539                 if (old_maps)
2540                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2541                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2542                 kfree_rcu(map, rcu);
2543                 return false;
2544         }
2545
2546         return true;
2547 }
2548
2549 static bool remove_xps_queue_cpu(struct net_device *dev,
2550                                  struct xps_dev_maps *dev_maps,
2551                                  int cpu, u16 offset, u16 count)
2552 {
2553         int num_tc = dev_maps->num_tc;
2554         bool active = false;
2555         int tci;
2556
2557         for (tci = cpu * num_tc; num_tc--; tci++) {
2558                 int i, j;
2559
2560                 for (i = count, j = offset; i--; j++) {
2561                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2562                                 break;
2563                 }
2564
2565                 active |= i < 0;
2566         }
2567
2568         return active;
2569 }
2570
2571 static void reset_xps_maps(struct net_device *dev,
2572                            struct xps_dev_maps *dev_maps,
2573                            enum xps_map_type type)
2574 {
2575         static_key_slow_dec_cpuslocked(&xps_needed);
2576         if (type == XPS_RXQS)
2577                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2578
2579         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2580
2581         kfree_rcu(dev_maps, rcu);
2582 }
2583
2584 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2585                            u16 offset, u16 count)
2586 {
2587         struct xps_dev_maps *dev_maps;
2588         bool active = false;
2589         int i, j;
2590
2591         dev_maps = xmap_dereference(dev->xps_maps[type]);
2592         if (!dev_maps)
2593                 return;
2594
2595         for (j = 0; j < dev_maps->nr_ids; j++)
2596                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2597         if (!active)
2598                 reset_xps_maps(dev, dev_maps, type);
2599
2600         if (type == XPS_CPUS) {
2601                 for (i = offset + (count - 1); count--; i--)
2602                         netdev_queue_numa_node_write(
2603                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2604         }
2605 }
2606
2607 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2608                                    u16 count)
2609 {
2610         if (!static_key_false(&xps_needed))
2611                 return;
2612
2613         cpus_read_lock();
2614         mutex_lock(&xps_map_mutex);
2615
2616         if (static_key_false(&xps_rxqs_needed))
2617                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2618
2619         clean_xps_maps(dev, XPS_CPUS, offset, count);
2620
2621         mutex_unlock(&xps_map_mutex);
2622         cpus_read_unlock();
2623 }
2624
2625 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2626 {
2627         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2628 }
2629
2630 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2631                                       u16 index, bool is_rxqs_map)
2632 {
2633         struct xps_map *new_map;
2634         int alloc_len = XPS_MIN_MAP_ALLOC;
2635         int i, pos;
2636
2637         for (pos = 0; map && pos < map->len; pos++) {
2638                 if (map->queues[pos] != index)
2639                         continue;
2640                 return map;
2641         }
2642
2643         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2644         if (map) {
2645                 if (pos < map->alloc_len)
2646                         return map;
2647
2648                 alloc_len = map->alloc_len * 2;
2649         }
2650
2651         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2652          *  map
2653          */
2654         if (is_rxqs_map)
2655                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2656         else
2657                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2658                                        cpu_to_node(attr_index));
2659         if (!new_map)
2660                 return NULL;
2661
2662         for (i = 0; i < pos; i++)
2663                 new_map->queues[i] = map->queues[i];
2664         new_map->alloc_len = alloc_len;
2665         new_map->len = pos;
2666
2667         return new_map;
2668 }
2669
2670 /* Copy xps maps at a given index */
2671 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2672                               struct xps_dev_maps *new_dev_maps, int index,
2673                               int tc, bool skip_tc)
2674 {
2675         int i, tci = index * dev_maps->num_tc;
2676         struct xps_map *map;
2677
2678         /* copy maps belonging to foreign traffic classes */
2679         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2680                 if (i == tc && skip_tc)
2681                         continue;
2682
2683                 /* fill in the new device map from the old device map */
2684                 map = xmap_dereference(dev_maps->attr_map[tci]);
2685                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2686         }
2687 }
2688
2689 /* Must be called under cpus_read_lock */
2690 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2691                           u16 index, enum xps_map_type type)
2692 {
2693         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2694         const unsigned long *online_mask = NULL;
2695         bool active = false, copy = false;
2696         int i, j, tci, numa_node_id = -2;
2697         int maps_sz, num_tc = 1, tc = 0;
2698         struct xps_map *map, *new_map;
2699         unsigned int nr_ids;
2700
2701         if (dev->num_tc) {
2702                 /* Do not allow XPS on subordinate device directly */
2703                 num_tc = dev->num_tc;
2704                 if (num_tc < 0)
2705                         return -EINVAL;
2706
2707                 /* If queue belongs to subordinate dev use its map */
2708                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2709
2710                 tc = netdev_txq_to_tc(dev, index);
2711                 if (tc < 0)
2712                         return -EINVAL;
2713         }
2714
2715         mutex_lock(&xps_map_mutex);
2716
2717         dev_maps = xmap_dereference(dev->xps_maps[type]);
2718         if (type == XPS_RXQS) {
2719                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2720                 nr_ids = dev->num_rx_queues;
2721         } else {
2722                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2723                 if (num_possible_cpus() > 1)
2724                         online_mask = cpumask_bits(cpu_online_mask);
2725                 nr_ids = nr_cpu_ids;
2726         }
2727
2728         if (maps_sz < L1_CACHE_BYTES)
2729                 maps_sz = L1_CACHE_BYTES;
2730
2731         /* The old dev_maps could be larger or smaller than the one we're
2732          * setting up now, as dev->num_tc or nr_ids could have been updated in
2733          * between. We could try to be smart, but let's be safe instead and only
2734          * copy foreign traffic classes if the two map sizes match.
2735          */
2736         if (dev_maps &&
2737             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2738                 copy = true;
2739
2740         /* allocate memory for queue storage */
2741         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2742              j < nr_ids;) {
2743                 if (!new_dev_maps) {
2744                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2745                         if (!new_dev_maps) {
2746                                 mutex_unlock(&xps_map_mutex);
2747                                 return -ENOMEM;
2748                         }
2749
2750                         new_dev_maps->nr_ids = nr_ids;
2751                         new_dev_maps->num_tc = num_tc;
2752                 }
2753
2754                 tci = j * num_tc + tc;
2755                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2756
2757                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2758                 if (!map)
2759                         goto error;
2760
2761                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2762         }
2763
2764         if (!new_dev_maps)
2765                 goto out_no_new_maps;
2766
2767         if (!dev_maps) {
2768                 /* Increment static keys at most once per type */
2769                 static_key_slow_inc_cpuslocked(&xps_needed);
2770                 if (type == XPS_RXQS)
2771                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2772         }
2773
2774         for (j = 0; j < nr_ids; j++) {
2775                 bool skip_tc = false;
2776
2777                 tci = j * num_tc + tc;
2778                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2779                     netif_attr_test_online(j, online_mask, nr_ids)) {
2780                         /* add tx-queue to CPU/rx-queue maps */
2781                         int pos = 0;
2782
2783                         skip_tc = true;
2784
2785                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2786                         while ((pos < map->len) && (map->queues[pos] != index))
2787                                 pos++;
2788
2789                         if (pos == map->len)
2790                                 map->queues[map->len++] = index;
2791 #ifdef CONFIG_NUMA
2792                         if (type == XPS_CPUS) {
2793                                 if (numa_node_id == -2)
2794                                         numa_node_id = cpu_to_node(j);
2795                                 else if (numa_node_id != cpu_to_node(j))
2796                                         numa_node_id = -1;
2797                         }
2798 #endif
2799                 }
2800
2801                 if (copy)
2802                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2803                                           skip_tc);
2804         }
2805
2806         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2807
2808         /* Cleanup old maps */
2809         if (!dev_maps)
2810                 goto out_no_old_maps;
2811
2812         for (j = 0; j < dev_maps->nr_ids; j++) {
2813                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2814                         map = xmap_dereference(dev_maps->attr_map[tci]);
2815                         if (!map)
2816                                 continue;
2817
2818                         if (copy) {
2819                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2820                                 if (map == new_map)
2821                                         continue;
2822                         }
2823
2824                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2825                         kfree_rcu(map, rcu);
2826                 }
2827         }
2828
2829         old_dev_maps = dev_maps;
2830
2831 out_no_old_maps:
2832         dev_maps = new_dev_maps;
2833         active = true;
2834
2835 out_no_new_maps:
2836         if (type == XPS_CPUS)
2837                 /* update Tx queue numa node */
2838                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2839                                              (numa_node_id >= 0) ?
2840                                              numa_node_id : NUMA_NO_NODE);
2841
2842         if (!dev_maps)
2843                 goto out_no_maps;
2844
2845         /* removes tx-queue from unused CPUs/rx-queues */
2846         for (j = 0; j < dev_maps->nr_ids; j++) {
2847                 tci = j * dev_maps->num_tc;
2848
2849                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2850                         if (i == tc &&
2851                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2852                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2853                                 continue;
2854
2855                         active |= remove_xps_queue(dev_maps,
2856                                                    copy ? old_dev_maps : NULL,
2857                                                    tci, index);
2858                 }
2859         }
2860
2861         if (old_dev_maps)
2862                 kfree_rcu(old_dev_maps, rcu);
2863
2864         /* free map if not active */
2865         if (!active)
2866                 reset_xps_maps(dev, dev_maps, type);
2867
2868 out_no_maps:
2869         mutex_unlock(&xps_map_mutex);
2870
2871         return 0;
2872 error:
2873         /* remove any maps that we added */
2874         for (j = 0; j < nr_ids; j++) {
2875                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2876                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2877                         map = copy ?
2878                               xmap_dereference(dev_maps->attr_map[tci]) :
2879                               NULL;
2880                         if (new_map && new_map != map)
2881                                 kfree(new_map);
2882                 }
2883         }
2884
2885         mutex_unlock(&xps_map_mutex);
2886
2887         kfree(new_dev_maps);
2888         return -ENOMEM;
2889 }
2890 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2891
2892 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2893                         u16 index)
2894 {
2895         int ret;
2896
2897         cpus_read_lock();
2898         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2899         cpus_read_unlock();
2900
2901         return ret;
2902 }
2903 EXPORT_SYMBOL(netif_set_xps_queue);
2904
2905 #endif
2906 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2907 {
2908         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2909
2910         /* Unbind any subordinate channels */
2911         while (txq-- != &dev->_tx[0]) {
2912                 if (txq->sb_dev)
2913                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2914         }
2915 }
2916
2917 void netdev_reset_tc(struct net_device *dev)
2918 {
2919 #ifdef CONFIG_XPS
2920         netif_reset_xps_queues_gt(dev, 0);
2921 #endif
2922         netdev_unbind_all_sb_channels(dev);
2923
2924         /* Reset TC configuration of device */
2925         dev->num_tc = 0;
2926         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2927         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2928 }
2929 EXPORT_SYMBOL(netdev_reset_tc);
2930
2931 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2932 {
2933         if (tc >= dev->num_tc)
2934                 return -EINVAL;
2935
2936 #ifdef CONFIG_XPS
2937         netif_reset_xps_queues(dev, offset, count);
2938 #endif
2939         dev->tc_to_txq[tc].count = count;
2940         dev->tc_to_txq[tc].offset = offset;
2941         return 0;
2942 }
2943 EXPORT_SYMBOL(netdev_set_tc_queue);
2944
2945 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2946 {
2947         if (num_tc > TC_MAX_QUEUE)
2948                 return -EINVAL;
2949
2950 #ifdef CONFIG_XPS
2951         netif_reset_xps_queues_gt(dev, 0);
2952 #endif
2953         netdev_unbind_all_sb_channels(dev);
2954
2955         dev->num_tc = num_tc;
2956         return 0;
2957 }
2958 EXPORT_SYMBOL(netdev_set_num_tc);
2959
2960 void netdev_unbind_sb_channel(struct net_device *dev,
2961                               struct net_device *sb_dev)
2962 {
2963         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2964
2965 #ifdef CONFIG_XPS
2966         netif_reset_xps_queues_gt(sb_dev, 0);
2967 #endif
2968         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2969         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2970
2971         while (txq-- != &dev->_tx[0]) {
2972                 if (txq->sb_dev == sb_dev)
2973                         txq->sb_dev = NULL;
2974         }
2975 }
2976 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2977
2978 int netdev_bind_sb_channel_queue(struct net_device *dev,
2979                                  struct net_device *sb_dev,
2980                                  u8 tc, u16 count, u16 offset)
2981 {
2982         /* Make certain the sb_dev and dev are already configured */
2983         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2984                 return -EINVAL;
2985
2986         /* We cannot hand out queues we don't have */
2987         if ((offset + count) > dev->real_num_tx_queues)
2988                 return -EINVAL;
2989
2990         /* Record the mapping */
2991         sb_dev->tc_to_txq[tc].count = count;
2992         sb_dev->tc_to_txq[tc].offset = offset;
2993
2994         /* Provide a way for Tx queue to find the tc_to_txq map or
2995          * XPS map for itself.
2996          */
2997         while (count--)
2998                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2999
3000         return 0;
3001 }
3002 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3003
3004 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3005 {
3006         /* Do not use a multiqueue device to represent a subordinate channel */
3007         if (netif_is_multiqueue(dev))
3008                 return -ENODEV;
3009
3010         /* We allow channels 1 - 32767 to be used for subordinate channels.
3011          * Channel 0 is meant to be "native" mode and used only to represent
3012          * the main root device. We allow writing 0 to reset the device back
3013          * to normal mode after being used as a subordinate channel.
3014          */
3015         if (channel > S16_MAX)
3016                 return -EINVAL;
3017
3018         dev->num_tc = -channel;
3019
3020         return 0;
3021 }
3022 EXPORT_SYMBOL(netdev_set_sb_channel);
3023
3024 /*
3025  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3026  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3027  */
3028 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3029 {
3030         bool disabling;
3031         int rc;
3032
3033         disabling = txq < dev->real_num_tx_queues;
3034
3035         if (txq < 1 || txq > dev->num_tx_queues)
3036                 return -EINVAL;
3037
3038         if (dev->reg_state == NETREG_REGISTERED ||
3039             dev->reg_state == NETREG_UNREGISTERING) {
3040                 ASSERT_RTNL();
3041
3042                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3043                                                   txq);
3044                 if (rc)
3045                         return rc;
3046
3047                 if (dev->num_tc)
3048                         netif_setup_tc(dev, txq);
3049
3050                 dev->real_num_tx_queues = txq;
3051
3052                 if (disabling) {
3053                         synchronize_net();
3054                         qdisc_reset_all_tx_gt(dev, txq);
3055 #ifdef CONFIG_XPS
3056                         netif_reset_xps_queues_gt(dev, txq);
3057 #endif
3058                 }
3059         } else {
3060                 dev->real_num_tx_queues = txq;
3061         }
3062
3063         return 0;
3064 }
3065 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3066
3067 #ifdef CONFIG_SYSFS
3068 /**
3069  *      netif_set_real_num_rx_queues - set actual number of RX queues used
3070  *      @dev: Network device
3071  *      @rxq: Actual number of RX queues
3072  *
3073  *      This must be called either with the rtnl_lock held or before
3074  *      registration of the net device.  Returns 0 on success, or a
3075  *      negative error code.  If called before registration, it always
3076  *      succeeds.
3077  */
3078 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3079 {
3080         int rc;
3081
3082         if (rxq < 1 || rxq > dev->num_rx_queues)
3083                 return -EINVAL;
3084
3085         if (dev->reg_state == NETREG_REGISTERED) {
3086                 ASSERT_RTNL();
3087
3088                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3089                                                   rxq);
3090                 if (rc)
3091                         return rc;
3092         }
3093
3094         dev->real_num_rx_queues = rxq;
3095         return 0;
3096 }
3097 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3098 #endif
3099
3100 /**
3101  * netif_get_num_default_rss_queues - default number of RSS queues
3102  *
3103  * This routine should set an upper limit on the number of RSS queues
3104  * used by default by multiqueue devices.
3105  */
3106 int netif_get_num_default_rss_queues(void)
3107 {
3108         return is_kdump_kernel() ?
3109                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3110 }
3111 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3112
3113 static void __netif_reschedule(struct Qdisc *q)
3114 {
3115         struct softnet_data *sd;
3116         unsigned long flags;
3117
3118         local_irq_save(flags);
3119         sd = this_cpu_ptr(&softnet_data);
3120         q->next_sched = NULL;
3121         *sd->output_queue_tailp = q;
3122         sd->output_queue_tailp = &q->next_sched;
3123         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3124         local_irq_restore(flags);
3125 }
3126
3127 void __netif_schedule(struct Qdisc *q)
3128 {
3129         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3130                 __netif_reschedule(q);
3131 }
3132 EXPORT_SYMBOL(__netif_schedule);
3133
3134 struct dev_kfree_skb_cb {
3135         enum skb_free_reason reason;
3136 };
3137
3138 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3139 {
3140         return (struct dev_kfree_skb_cb *)skb->cb;
3141 }
3142
3143 void netif_schedule_queue(struct netdev_queue *txq)
3144 {
3145         rcu_read_lock();
3146         if (!netif_xmit_stopped(txq)) {
3147                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3148
3149                 __netif_schedule(q);
3150         }
3151         rcu_read_unlock();
3152 }
3153 EXPORT_SYMBOL(netif_schedule_queue);
3154
3155 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3156 {
3157         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3158                 struct Qdisc *q;
3159
3160                 rcu_read_lock();
3161                 q = rcu_dereference(dev_queue->qdisc);
3162                 __netif_schedule(q);
3163                 rcu_read_unlock();
3164         }
3165 }
3166 EXPORT_SYMBOL(netif_tx_wake_queue);
3167
3168 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3169 {
3170         unsigned long flags;
3171
3172         if (unlikely(!skb))
3173                 return;
3174
3175         if (likely(refcount_read(&skb->users) == 1)) {
3176                 smp_rmb();
3177                 refcount_set(&skb->users, 0);
3178         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3179                 return;
3180         }
3181         get_kfree_skb_cb(skb)->reason = reason;
3182         local_irq_save(flags);
3183         skb->next = __this_cpu_read(softnet_data.completion_queue);
3184         __this_cpu_write(softnet_data.completion_queue, skb);
3185         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3186         local_irq_restore(flags);
3187 }
3188 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3189
3190 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3191 {
3192         if (in_irq() || irqs_disabled())
3193                 __dev_kfree_skb_irq(skb, reason);
3194         else
3195                 dev_kfree_skb(skb);
3196 }
3197 EXPORT_SYMBOL(__dev_kfree_skb_any);
3198
3199
3200 /**
3201  * netif_device_detach - mark device as removed
3202  * @dev: network device
3203  *
3204  * Mark device as removed from system and therefore no longer available.
3205  */
3206 void netif_device_detach(struct net_device *dev)
3207 {
3208         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3209             netif_running(dev)) {
3210                 netif_tx_stop_all_queues(dev);
3211         }
3212 }
3213 EXPORT_SYMBOL(netif_device_detach);
3214
3215 /**
3216  * netif_device_attach - mark device as attached
3217  * @dev: network device
3218  *
3219  * Mark device as attached from system and restart if needed.
3220  */
3221 void netif_device_attach(struct net_device *dev)
3222 {
3223         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3224             netif_running(dev)) {
3225                 netif_tx_wake_all_queues(dev);
3226                 __netdev_watchdog_up(dev);
3227         }
3228 }
3229 EXPORT_SYMBOL(netif_device_attach);
3230
3231 /*
3232  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3233  * to be used as a distribution range.
3234  */
3235 static u16 skb_tx_hash(const struct net_device *dev,
3236                        const struct net_device *sb_dev,
3237                        struct sk_buff *skb)
3238 {
3239         u32 hash;
3240         u16 qoffset = 0;
3241         u16 qcount = dev->real_num_tx_queues;
3242
3243         if (dev->num_tc) {
3244                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3245
3246                 qoffset = sb_dev->tc_to_txq[tc].offset;
3247                 qcount = sb_dev->tc_to_txq[tc].count;
3248         }
3249
3250         if (skb_rx_queue_recorded(skb)) {
3251                 hash = skb_get_rx_queue(skb);
3252                 if (hash >= qoffset)
3253                         hash -= qoffset;
3254                 while (unlikely(hash >= qcount))
3255                         hash -= qcount;
3256                 return hash + qoffset;
3257         }
3258
3259         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3260 }
3261
3262 static void skb_warn_bad_offload(const struct sk_buff *skb)
3263 {
3264         static const netdev_features_t null_features;
3265         struct net_device *dev = skb->dev;
3266         const char *name = "";
3267
3268         if (!net_ratelimit())
3269                 return;
3270
3271         if (dev) {
3272                 if (dev->dev.parent)
3273                         name = dev_driver_string(dev->dev.parent);
3274                 else
3275                         name = netdev_name(dev);
3276         }
3277         skb_dump(KERN_WARNING, skb, false);
3278         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3279              name, dev ? &dev->features : &null_features,
3280              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3281 }
3282
3283 /*
3284  * Invalidate hardware checksum when packet is to be mangled, and
3285  * complete checksum manually on outgoing path.
3286  */
3287 int skb_checksum_help(struct sk_buff *skb)
3288 {
3289         __wsum csum;
3290         int ret = 0, offset;
3291
3292         if (skb->ip_summed == CHECKSUM_COMPLETE)
3293                 goto out_set_summed;
3294
3295         if (unlikely(skb_is_gso(skb))) {
3296                 skb_warn_bad_offload(skb);
3297                 return -EINVAL;
3298         }
3299
3300         /* Before computing a checksum, we should make sure no frag could
3301          * be modified by an external entity : checksum could be wrong.
3302          */
3303         if (skb_has_shared_frag(skb)) {
3304                 ret = __skb_linearize(skb);
3305                 if (ret)
3306                         goto out;
3307         }
3308
3309         offset = skb_checksum_start_offset(skb);
3310         BUG_ON(offset >= skb_headlen(skb));
3311         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3312
3313         offset += skb->csum_offset;
3314         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3315
3316         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3317         if (ret)
3318                 goto out;
3319
3320         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3321 out_set_summed:
3322         skb->ip_summed = CHECKSUM_NONE;
3323 out:
3324         return ret;
3325 }
3326 EXPORT_SYMBOL(skb_checksum_help);
3327
3328 int skb_crc32c_csum_help(struct sk_buff *skb)
3329 {
3330         __le32 crc32c_csum;
3331         int ret = 0, offset, start;
3332
3333         if (skb->ip_summed != CHECKSUM_PARTIAL)
3334                 goto out;
3335
3336         if (unlikely(skb_is_gso(skb)))
3337                 goto out;
3338
3339         /* Before computing a checksum, we should make sure no frag could
3340          * be modified by an external entity : checksum could be wrong.
3341          */
3342         if (unlikely(skb_has_shared_frag(skb))) {
3343                 ret = __skb_linearize(skb);
3344                 if (ret)
3345                         goto out;
3346         }
3347         start = skb_checksum_start_offset(skb);
3348         offset = start + offsetof(struct sctphdr, checksum);
3349         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3350                 ret = -EINVAL;
3351                 goto out;
3352         }
3353
3354         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3355         if (ret)
3356                 goto out;
3357
3358         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3359                                                   skb->len - start, ~(__u32)0,
3360                                                   crc32c_csum_stub));
3361         *(__le32 *)(skb->data + offset) = crc32c_csum;
3362         skb->ip_summed = CHECKSUM_NONE;
3363         skb->csum_not_inet = 0;
3364 out:
3365         return ret;
3366 }
3367
3368 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3369 {
3370         __be16 type = skb->protocol;
3371
3372         /* Tunnel gso handlers can set protocol to ethernet. */
3373         if (type == htons(ETH_P_TEB)) {
3374                 struct ethhdr *eth;
3375
3376                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3377                         return 0;
3378
3379                 eth = (struct ethhdr *)skb->data;
3380                 type = eth->h_proto;
3381         }
3382
3383         return __vlan_get_protocol(skb, type, depth);
3384 }
3385
3386 /**
3387  *      skb_mac_gso_segment - mac layer segmentation handler.
3388  *      @skb: buffer to segment
3389  *      @features: features for the output path (see dev->features)
3390  */
3391 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3392                                     netdev_features_t features)
3393 {
3394         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3395         struct packet_offload *ptype;
3396         int vlan_depth = skb->mac_len;
3397         __be16 type = skb_network_protocol(skb, &vlan_depth);
3398
3399         if (unlikely(!type))
3400                 return ERR_PTR(-EINVAL);
3401
3402         __skb_pull(skb, vlan_depth);
3403
3404         rcu_read_lock();
3405         list_for_each_entry_rcu(ptype, &offload_base, list) {
3406                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3407                         segs = ptype->callbacks.gso_segment(skb, features);
3408                         break;
3409                 }
3410         }
3411         rcu_read_unlock();
3412
3413         __skb_push(skb, skb->data - skb_mac_header(skb));
3414
3415         return segs;
3416 }
3417 EXPORT_SYMBOL(skb_mac_gso_segment);
3418
3419
3420 /* openvswitch calls this on rx path, so we need a different check.
3421  */
3422 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3423 {
3424         if (tx_path)
3425                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3426                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3427
3428         return skb->ip_summed == CHECKSUM_NONE;
3429 }
3430
3431 /**
3432  *      __skb_gso_segment - Perform segmentation on skb.
3433  *      @skb: buffer to segment
3434  *      @features: features for the output path (see dev->features)
3435  *      @tx_path: whether it is called in TX path
3436  *
3437  *      This function segments the given skb and returns a list of segments.
3438  *
3439  *      It may return NULL if the skb requires no segmentation.  This is
3440  *      only possible when GSO is used for verifying header integrity.
3441  *
3442  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3443  */
3444 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3445                                   netdev_features_t features, bool tx_path)
3446 {
3447         struct sk_buff *segs;
3448
3449         if (unlikely(skb_needs_check(skb, tx_path))) {
3450                 int err;
3451
3452                 /* We're going to init ->check field in TCP or UDP header */
3453                 err = skb_cow_head(skb, 0);
3454                 if (err < 0)
3455                         return ERR_PTR(err);
3456         }
3457
3458         /* Only report GSO partial support if it will enable us to
3459          * support segmentation on this frame without needing additional
3460          * work.
3461          */
3462         if (features & NETIF_F_GSO_PARTIAL) {
3463                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3464                 struct net_device *dev = skb->dev;
3465
3466                 partial_features |= dev->features & dev->gso_partial_features;
3467                 if (!skb_gso_ok(skb, features | partial_features))
3468                         features &= ~NETIF_F_GSO_PARTIAL;
3469         }
3470
3471         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3472                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3473
3474         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3475         SKB_GSO_CB(skb)->encap_level = 0;
3476
3477         skb_reset_mac_header(skb);
3478         skb_reset_mac_len(skb);
3479
3480         segs = skb_mac_gso_segment(skb, features);
3481
3482         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3483                 skb_warn_bad_offload(skb);
3484
3485         return segs;
3486 }
3487 EXPORT_SYMBOL(__skb_gso_segment);
3488
3489 /* Take action when hardware reception checksum errors are detected. */
3490 #ifdef CONFIG_BUG
3491 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3492 {
3493         pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494         skb_dump(KERN_ERR, skb, true);
3495         dump_stack();
3496 }
3497
3498 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3499 {
3500         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3501 }
3502 EXPORT_SYMBOL(netdev_rx_csum_fault);
3503 #endif
3504
3505 /* XXX: check that highmem exists at all on the given machine. */
3506 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3507 {
3508 #ifdef CONFIG_HIGHMEM
3509         int i;
3510
3511         if (!(dev->features & NETIF_F_HIGHDMA)) {
3512                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3513                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3514
3515                         if (PageHighMem(skb_frag_page(frag)))
3516                                 return 1;
3517                 }
3518         }
3519 #endif
3520         return 0;
3521 }
3522
3523 /* If MPLS offload request, verify we are testing hardware MPLS features
3524  * instead of standard features for the netdev.
3525  */
3526 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3527 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3528                                            netdev_features_t features,
3529                                            __be16 type)
3530 {
3531         if (eth_p_mpls(type))
3532                 features &= skb->dev->mpls_features;
3533
3534         return features;
3535 }
3536 #else
3537 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3538                                            netdev_features_t features,
3539                                            __be16 type)
3540 {
3541         return features;
3542 }
3543 #endif
3544
3545 static netdev_features_t harmonize_features(struct sk_buff *skb,
3546         netdev_features_t features)
3547 {
3548         __be16 type;
3549
3550         type = skb_network_protocol(skb, NULL);
3551         features = net_mpls_features(skb, features, type);
3552
3553         if (skb->ip_summed != CHECKSUM_NONE &&
3554             !can_checksum_protocol(features, type)) {
3555                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3556         }
3557         if (illegal_highdma(skb->dev, skb))
3558                 features &= ~NETIF_F_SG;
3559
3560         return features;
3561 }
3562
3563 netdev_features_t passthru_features_check(struct sk_buff *skb,
3564                                           struct net_device *dev,
3565                                           netdev_features_t features)
3566 {
3567         return features;
3568 }
3569 EXPORT_SYMBOL(passthru_features_check);
3570
3571 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3572                                              struct net_device *dev,
3573                                              netdev_features_t features)
3574 {
3575         return vlan_features_check(skb, features);
3576 }
3577
3578 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3579                                             struct net_device *dev,
3580                                             netdev_features_t features)
3581 {
3582         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3583
3584         if (gso_segs > dev->gso_max_segs)
3585                 return features & ~NETIF_F_GSO_MASK;
3586
3587         if (!skb_shinfo(skb)->gso_type) {
3588                 skb_warn_bad_offload(skb);
3589                 return features & ~NETIF_F_GSO_MASK;
3590         }
3591
3592         /* Support for GSO partial features requires software
3593          * intervention before we can actually process the packets
3594          * so we need to strip support for any partial features now
3595          * and we can pull them back in after we have partially
3596          * segmented the frame.
3597          */
3598         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3599                 features &= ~dev->gso_partial_features;
3600
3601         /* Make sure to clear the IPv4 ID mangling feature if the
3602          * IPv4 header has the potential to be fragmented.
3603          */
3604         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3605                 struct iphdr *iph = skb->encapsulation ?
3606                                     inner_ip_hdr(skb) : ip_hdr(skb);
3607
3608                 if (!(iph->frag_off & htons(IP_DF)))
3609                         features &= ~NETIF_F_TSO_MANGLEID;
3610         }
3611
3612         return features;
3613 }
3614
3615 netdev_features_t netif_skb_features(struct sk_buff *skb)
3616 {
3617         struct net_device *dev = skb->dev;
3618         netdev_features_t features = dev->features;
3619
3620         if (skb_is_gso(skb))
3621                 features = gso_features_check(skb, dev, features);
3622
3623         /* If encapsulation offload request, verify we are testing
3624          * hardware encapsulation features instead of standard
3625          * features for the netdev
3626          */
3627         if (skb->encapsulation)
3628                 features &= dev->hw_enc_features;
3629
3630         if (skb_vlan_tagged(skb))
3631                 features = netdev_intersect_features(features,
3632                                                      dev->vlan_features |
3633                                                      NETIF_F_HW_VLAN_CTAG_TX |
3634                                                      NETIF_F_HW_VLAN_STAG_TX);
3635
3636         if (dev->netdev_ops->ndo_features_check)
3637                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3638                                                                 features);
3639         else
3640                 features &= dflt_features_check(skb, dev, features);
3641
3642         return harmonize_features(skb, features);
3643 }
3644 EXPORT_SYMBOL(netif_skb_features);
3645
3646 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3647                     struct netdev_queue *txq, bool more)
3648 {
3649         unsigned int len;
3650         int rc;
3651
3652         if (dev_nit_active(dev))
3653                 dev_queue_xmit_nit(skb, dev);
3654
3655         len = skb->len;
3656         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3657         trace_net_dev_start_xmit(skb, dev);
3658         rc = netdev_start_xmit(skb, dev, txq, more);
3659         trace_net_dev_xmit(skb, rc, dev, len);
3660
3661         return rc;
3662 }
3663
3664 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3665                                     struct netdev_queue *txq, int *ret)
3666 {
3667         struct sk_buff *skb = first;
3668         int rc = NETDEV_TX_OK;
3669
3670         while (skb) {
3671                 struct sk_buff *next = skb->next;
3672
3673                 skb_mark_not_on_list(skb);
3674                 rc = xmit_one(skb, dev, txq, next != NULL);
3675                 if (unlikely(!dev_xmit_complete(rc))) {
3676                         skb->next = next;
3677                         goto out;
3678                 }
3679
3680                 skb = next;
3681                 if (netif_tx_queue_stopped(txq) && skb) {
3682                         rc = NETDEV_TX_BUSY;
3683                         break;
3684                 }
3685         }
3686
3687 out:
3688         *ret = rc;
3689         return skb;
3690 }
3691
3692 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3693                                           netdev_features_t features)
3694 {
3695         if (skb_vlan_tag_present(skb) &&
3696             !vlan_hw_offload_capable(features, skb->vlan_proto))
3697                 skb = __vlan_hwaccel_push_inside(skb);
3698         return skb;
3699 }
3700
3701 int skb_csum_hwoffload_help(struct sk_buff *skb,
3702                             const netdev_features_t features)
3703 {
3704         if (unlikely(skb_csum_is_sctp(skb)))
3705                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3706                         skb_crc32c_csum_help(skb);
3707
3708         if (features & NETIF_F_HW_CSUM)
3709                 return 0;
3710
3711         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3712                 switch (skb->csum_offset) {
3713                 case offsetof(struct tcphdr, check):
3714                 case offsetof(struct udphdr, check):
3715                         return 0;
3716                 }
3717         }
3718
3719         return skb_checksum_help(skb);
3720 }
3721 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3722
3723 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3724 {
3725         netdev_features_t features;
3726
3727         features = netif_skb_features(skb);
3728         skb = validate_xmit_vlan(skb, features);
3729         if (unlikely(!skb))
3730                 goto out_null;
3731
3732         skb = sk_validate_xmit_skb(skb, dev);
3733         if (unlikely(!skb))
3734                 goto out_null;
3735
3736         if (netif_needs_gso(skb, features)) {
3737                 struct sk_buff *segs;
3738
3739                 segs = skb_gso_segment(skb, features);
3740                 if (IS_ERR(segs)) {
3741                         goto out_kfree_skb;
3742                 } else if (segs) {
3743                         consume_skb(skb);
3744                         skb = segs;
3745                 }
3746         } else {
3747                 if (skb_needs_linearize(skb, features) &&
3748                     __skb_linearize(skb))
3749                         goto out_kfree_skb;
3750
3751                 /* If packet is not checksummed and device does not
3752                  * support checksumming for this protocol, complete
3753                  * checksumming here.
3754                  */
3755                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3756                         if (skb->encapsulation)
3757                                 skb_set_inner_transport_header(skb,
3758                                                                skb_checksum_start_offset(skb));
3759                         else
3760                                 skb_set_transport_header(skb,
3761                                                          skb_checksum_start_offset(skb));
3762                         if (skb_csum_hwoffload_help(skb, features))
3763                                 goto out_kfree_skb;
3764                 }
3765         }
3766
3767         skb = validate_xmit_xfrm(skb, features, again);
3768
3769         return skb;
3770
3771 out_kfree_skb:
3772         kfree_skb(skb);
3773 out_null:
3774         atomic_long_inc(&dev->tx_dropped);
3775         return NULL;
3776 }
3777
3778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3779 {
3780         struct sk_buff *next, *head = NULL, *tail;
3781
3782         for (; skb != NULL; skb = next) {
3783                 next = skb->next;
3784                 skb_mark_not_on_list(skb);
3785
3786                 /* in case skb wont be segmented, point to itself */
3787                 skb->prev = skb;
3788
3789                 skb = validate_xmit_skb(skb, dev, again);
3790                 if (!skb)
3791                         continue;
3792
3793                 if (!head)
3794                         head = skb;
3795                 else
3796                         tail->next = skb;
3797                 /* If skb was segmented, skb->prev points to
3798                  * the last segment. If not, it still contains skb.
3799                  */
3800                 tail = skb->prev;
3801         }
3802         return head;
3803 }
3804 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3805
3806 static void qdisc_pkt_len_init(struct sk_buff *skb)
3807 {
3808         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3809
3810         qdisc_skb_cb(skb)->pkt_len = skb->len;
3811
3812         /* To get more precise estimation of bytes sent on wire,
3813          * we add to pkt_len the headers size of all segments
3814          */
3815         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3816                 unsigned int hdr_len;
3817                 u16 gso_segs = shinfo->gso_segs;
3818
3819                 /* mac layer + network layer */
3820                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3821
3822                 /* + transport layer */
3823                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3824                         const struct tcphdr *th;
3825                         struct tcphdr _tcphdr;
3826
3827                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3828                                                 sizeof(_tcphdr), &_tcphdr);
3829                         if (likely(th))
3830                                 hdr_len += __tcp_hdrlen(th);
3831                 } else {
3832                         struct udphdr _udphdr;
3833
3834                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3835                                                sizeof(_udphdr), &_udphdr))
3836                                 hdr_len += sizeof(struct udphdr);
3837                 }
3838
3839                 if (shinfo->gso_type & SKB_GSO_DODGY)
3840                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3841                                                 shinfo->gso_size);
3842
3843                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3844         }
3845 }
3846
3847 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3848                                  struct net_device *dev,
3849                                  struct netdev_queue *txq)
3850 {
3851         spinlock_t *root_lock = qdisc_lock(q);
3852         struct sk_buff *to_free = NULL;
3853         bool contended;
3854         int rc;
3855
3856         qdisc_calculate_pkt_len(skb, q);
3857
3858         if (q->flags & TCQ_F_NOLOCK) {
3859                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3860                     qdisc_run_begin(q)) {
3861                         /* Retest nolock_qdisc_is_empty() within the protection
3862                          * of q->seqlock to protect from racing with requeuing.
3863                          */
3864                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3865                                 rc = q->enqueue(skb, q, &to_free) &
3866                                         NET_XMIT_MASK;
3867                                 __qdisc_run(q);
3868                                 qdisc_run_end(q);
3869
3870                                 goto no_lock_out;
3871                         }
3872
3873                         qdisc_bstats_cpu_update(q, skb);
3874                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3875                             !nolock_qdisc_is_empty(q))
3876                                 __qdisc_run(q);
3877
3878                         qdisc_run_end(q);
3879                         return NET_XMIT_SUCCESS;
3880                 }
3881
3882                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3883                 qdisc_run(q);
3884
3885 no_lock_out:
3886                 if (unlikely(to_free))
3887                         kfree_skb_list(to_free);
3888                 return rc;
3889         }
3890
3891         /*
3892          * Heuristic to force contended enqueues to serialize on a
3893          * separate lock before trying to get qdisc main lock.
3894          * This permits qdisc->running owner to get the lock more
3895          * often and dequeue packets faster.
3896          */
3897         contended = qdisc_is_running(q);
3898         if (unlikely(contended))
3899                 spin_lock(&q->busylock);
3900
3901         spin_lock(root_lock);
3902         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3903                 __qdisc_drop(skb, &to_free);
3904                 rc = NET_XMIT_DROP;
3905         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3906                    qdisc_run_begin(q)) {
3907                 /*
3908                  * This is a work-conserving queue; there are no old skbs
3909                  * waiting to be sent out; and the qdisc is not running -
3910                  * xmit the skb directly.
3911                  */
3912
3913                 qdisc_bstats_update(q, skb);
3914
3915                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3916                         if (unlikely(contended)) {
3917                                 spin_unlock(&q->busylock);
3918                                 contended = false;
3919                         }
3920                         __qdisc_run(q);
3921                 }
3922
3923                 qdisc_run_end(q);
3924                 rc = NET_XMIT_SUCCESS;
3925         } else {
3926                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3927                 if (qdisc_run_begin(q)) {
3928                         if (unlikely(contended)) {
3929                                 spin_unlock(&q->busylock);
3930                                 contended = false;
3931                         }
3932                         __qdisc_run(q);
3933                         qdisc_run_end(q);
3934                 }
3935         }
3936         spin_unlock(root_lock);
3937         if (unlikely(to_free))
3938                 kfree_skb_list(to_free);
3939         if (unlikely(contended))
3940                 spin_unlock(&q->busylock);
3941         return rc;
3942 }
3943
3944 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3945 static void skb_update_prio(struct sk_buff *skb)
3946 {
3947         const struct netprio_map *map;
3948         const struct sock *sk;
3949         unsigned int prioidx;
3950
3951         if (skb->priority)
3952                 return;
3953         map = rcu_dereference_bh(skb->dev->priomap);
3954         if (!map)
3955                 return;
3956         sk = skb_to_full_sk(skb);
3957         if (!sk)
3958                 return;
3959
3960         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3961
3962         if (prioidx < map->priomap_len)
3963                 skb->priority = map->priomap[prioidx];
3964 }
3965 #else
3966 #define skb_update_prio(skb)
3967 #endif
3968
3969 /**
3970  *      dev_loopback_xmit - loop back @skb
3971  *      @net: network namespace this loopback is happening in
3972  *      @sk:  sk needed to be a netfilter okfn
3973  *      @skb: buffer to transmit
3974  */
3975 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3976 {
3977         skb_reset_mac_header(skb);
3978         __skb_pull(skb, skb_network_offset(skb));
3979         skb->pkt_type = PACKET_LOOPBACK;
3980         skb->ip_summed = CHECKSUM_UNNECESSARY;
3981         WARN_ON(!skb_dst(skb));
3982         skb_dst_force(skb);
3983         netif_rx_ni(skb);
3984         return 0;
3985 }
3986 EXPORT_SYMBOL(dev_loopback_xmit);
3987
3988 #ifdef CONFIG_NET_EGRESS
3989 static struct sk_buff *
3990 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3991 {
3992         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3993         struct tcf_result cl_res;
3994
3995         if (!miniq)
3996                 return skb;
3997
3998         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3999         qdisc_skb_cb(skb)->mru = 0;
4000         qdisc_skb_cb(skb)->post_ct = false;
4001         mini_qdisc_bstats_cpu_update(miniq, skb);
4002
4003         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4004         case TC_ACT_OK:
4005         case TC_ACT_RECLASSIFY:
4006                 skb->tc_index = TC_H_MIN(cl_res.classid);
4007                 break;
4008         case TC_ACT_SHOT:
4009                 mini_qdisc_qstats_cpu_drop(miniq);
4010                 *ret = NET_XMIT_DROP;
4011                 kfree_skb(skb);
4012                 return NULL;
4013         case TC_ACT_STOLEN:
4014         case TC_ACT_QUEUED:
4015         case TC_ACT_TRAP:
4016                 *ret = NET_XMIT_SUCCESS;
4017                 consume_skb(skb);
4018                 return NULL;
4019         case TC_ACT_REDIRECT:
4020                 /* No need to push/pop skb's mac_header here on egress! */
4021                 skb_do_redirect(skb);
4022                 *ret = NET_XMIT_SUCCESS;
4023                 return NULL;
4024         default:
4025                 break;
4026         }
4027
4028         return skb;
4029 }
4030 #endif /* CONFIG_NET_EGRESS */
4031
4032 #ifdef CONFIG_XPS
4033 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4034                                struct xps_dev_maps *dev_maps, unsigned int tci)
4035 {
4036         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4037         struct xps_map *map;
4038         int queue_index = -1;
4039
4040         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4041                 return queue_index;
4042
4043         tci *= dev_maps->num_tc;
4044         tci += tc;
4045
4046         map = rcu_dereference(dev_maps->attr_map[tci]);
4047         if (map) {
4048                 if (map->len == 1)
4049                         queue_index = map->queues[0];
4050                 else
4051                         queue_index = map->queues[reciprocal_scale(
4052                                                 skb_get_hash(skb), map->len)];
4053                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4054                         queue_index = -1;
4055         }
4056         return queue_index;
4057 }
4058 #endif
4059
4060 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4061                          struct sk_buff *skb)
4062 {
4063 #ifdef CONFIG_XPS
4064         struct xps_dev_maps *dev_maps;
4065         struct sock *sk = skb->sk;
4066         int queue_index = -1;
4067
4068         if (!static_key_false(&xps_needed))
4069                 return -1;
4070
4071         rcu_read_lock();
4072         if (!static_key_false(&xps_rxqs_needed))
4073                 goto get_cpus_map;
4074
4075         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4076         if (dev_maps) {
4077                 int tci = sk_rx_queue_get(sk);
4078
4079                 if (tci >= 0)
4080                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4081                                                           tci);
4082         }
4083
4084 get_cpus_map:
4085         if (queue_index < 0) {
4086                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4087                 if (dev_maps) {
4088                         unsigned int tci = skb->sender_cpu - 1;
4089
4090                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4091                                                           tci);
4092                 }
4093         }
4094         rcu_read_unlock();
4095
4096         return queue_index;
4097 #else
4098         return -1;
4099 #endif
4100 }
4101
4102 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4103                      struct net_device *sb_dev)
4104 {
4105         return 0;
4106 }
4107 EXPORT_SYMBOL(dev_pick_tx_zero);
4108
4109 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4110                        struct net_device *sb_dev)
4111 {
4112         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4113 }
4114 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4115
4116 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4117                      struct net_device *sb_dev)
4118 {
4119         struct sock *sk = skb->sk;
4120         int queue_index = sk_tx_queue_get(sk);
4121
4122         sb_dev = sb_dev ? : dev;
4123
4124         if (queue_index < 0 || skb->ooo_okay ||
4125             queue_index >= dev->real_num_tx_queues) {
4126                 int new_index = get_xps_queue(dev, sb_dev, skb);
4127
4128                 if (new_index < 0)
4129                         new_index = skb_tx_hash(dev, sb_dev, skb);
4130
4131                 if (queue_index != new_index && sk &&
4132                     sk_fullsock(sk) &&
4133                     rcu_access_pointer(sk->sk_dst_cache))
4134                         sk_tx_queue_set(sk, new_index);
4135
4136                 queue_index = new_index;
4137         }
4138
4139         return queue_index;
4140 }
4141 EXPORT_SYMBOL(netdev_pick_tx);
4142
4143 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4144                                          struct sk_buff *skb,
4145                                          struct net_device *sb_dev)
4146 {
4147         int queue_index = 0;
4148
4149 #ifdef CONFIG_XPS
4150         u32 sender_cpu = skb->sender_cpu - 1;
4151
4152         if (sender_cpu >= (u32)NR_CPUS)
4153                 skb->sender_cpu = raw_smp_processor_id() + 1;
4154 #endif
4155
4156         if (dev->real_num_tx_queues != 1) {
4157                 const struct net_device_ops *ops = dev->netdev_ops;
4158
4159                 if (ops->ndo_select_queue)
4160                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4161                 else
4162                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4163
4164                 queue_index = netdev_cap_txqueue(dev, queue_index);
4165         }
4166
4167         skb_set_queue_mapping(skb, queue_index);
4168         return netdev_get_tx_queue(dev, queue_index);
4169 }
4170
4171 /**
4172  *      __dev_queue_xmit - transmit a buffer
4173  *      @skb: buffer to transmit
4174  *      @sb_dev: suboordinate device used for L2 forwarding offload
4175  *
4176  *      Queue a buffer for transmission to a network device. The caller must
4177  *      have set the device and priority and built the buffer before calling
4178  *      this function. The function can be called from an interrupt.
4179  *
4180  *      A negative errno code is returned on a failure. A success does not
4181  *      guarantee the frame will be transmitted as it may be dropped due
4182  *      to congestion or traffic shaping.
4183  *
4184  * -----------------------------------------------------------------------------------
4185  *      I notice this method can also return errors from the queue disciplines,
4186  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4187  *      be positive.
4188  *
4189  *      Regardless of the return value, the skb is consumed, so it is currently
4190  *      difficult to retry a send to this method.  (You can bump the ref count
4191  *      before sending to hold a reference for retry if you are careful.)
4192  *
4193  *      When calling this method, interrupts MUST be enabled.  This is because
4194  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4195  *          --BLG
4196  */
4197 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4198 {
4199         struct net_device *dev = skb->dev;
4200         struct netdev_queue *txq;
4201         struct Qdisc *q;
4202         int rc = -ENOMEM;
4203         bool again = false;
4204
4205         skb_reset_mac_header(skb);
4206
4207         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4208                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4209
4210         /* Disable soft irqs for various locks below. Also
4211          * stops preemption for RCU.
4212          */
4213         rcu_read_lock_bh();
4214
4215         skb_update_prio(skb);
4216
4217         qdisc_pkt_len_init(skb);
4218 #ifdef CONFIG_NET_CLS_ACT
4219         skb->tc_at_ingress = 0;
4220 # ifdef CONFIG_NET_EGRESS
4221         if (static_branch_unlikely(&egress_needed_key)) {
4222                 skb = sch_handle_egress(skb, &rc, dev);
4223                 if (!skb)
4224                         goto out;
4225         }
4226 # endif
4227 #endif
4228         /* If device/qdisc don't need skb->dst, release it right now while
4229          * its hot in this cpu cache.
4230          */
4231         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4232                 skb_dst_drop(skb);
4233         else
4234                 skb_dst_force(skb);
4235
4236         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4237         q = rcu_dereference_bh(txq->qdisc);
4238
4239         trace_net_dev_queue(skb);
4240         if (q->enqueue) {
4241                 rc = __dev_xmit_skb(skb, q, dev, txq);
4242                 goto out;
4243         }
4244
4245         /* The device has no queue. Common case for software devices:
4246          * loopback, all the sorts of tunnels...
4247
4248          * Really, it is unlikely that netif_tx_lock protection is necessary
4249          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4250          * counters.)
4251          * However, it is possible, that they rely on protection
4252          * made by us here.
4253
4254          * Check this and shot the lock. It is not prone from deadlocks.
4255          *Either shot noqueue qdisc, it is even simpler 8)
4256          */
4257         if (dev->flags & IFF_UP) {
4258                 int cpu = smp_processor_id(); /* ok because BHs are off */
4259
4260                 if (txq->xmit_lock_owner != cpu) {
4261                         if (dev_xmit_recursion())
4262                                 goto recursion_alert;
4263
4264                         skb = validate_xmit_skb(skb, dev, &again);
4265                         if (!skb)
4266                                 goto out;
4267
4268                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4269                         HARD_TX_LOCK(dev, txq, cpu);
4270
4271                         if (!netif_xmit_stopped(txq)) {
4272                                 dev_xmit_recursion_inc();
4273                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4274                                 dev_xmit_recursion_dec();
4275                                 if (dev_xmit_complete(rc)) {
4276                                         HARD_TX_UNLOCK(dev, txq);
4277                                         goto out;
4278                                 }
4279                         }
4280                         HARD_TX_UNLOCK(dev, txq);
4281                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4282                                              dev->name);
4283                 } else {
4284                         /* Recursion is detected! It is possible,
4285                          * unfortunately
4286                          */
4287 recursion_alert:
4288                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4289                                              dev->name);
4290                 }
4291         }
4292
4293         rc = -ENETDOWN;
4294         rcu_read_unlock_bh();
4295
4296         atomic_long_inc(&dev->tx_dropped);
4297         kfree_skb_list(skb);
4298         return rc;
4299 out:
4300         rcu_read_unlock_bh();
4301         return rc;
4302 }
4303
4304 int dev_queue_xmit(struct sk_buff *skb)
4305 {
4306         return __dev_queue_xmit(skb, NULL);
4307 }
4308 EXPORT_SYMBOL(dev_queue_xmit);
4309
4310 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4311 {
4312         return __dev_queue_xmit(skb, sb_dev);
4313 }
4314 EXPORT_SYMBOL(dev_queue_xmit_accel);
4315
4316 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4317 {
4318         struct net_device *dev = skb->dev;
4319         struct sk_buff *orig_skb = skb;
4320         struct netdev_queue *txq;
4321         int ret = NETDEV_TX_BUSY;
4322         bool again = false;
4323
4324         if (unlikely(!netif_running(dev) ||
4325                      !netif_carrier_ok(dev)))
4326                 goto drop;
4327
4328         skb = validate_xmit_skb_list(skb, dev, &again);
4329         if (skb != orig_skb)
4330                 goto drop;
4331
4332         skb_set_queue_mapping(skb, queue_id);
4333         txq = skb_get_tx_queue(dev, skb);
4334         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4335
4336         local_bh_disable();
4337
4338         dev_xmit_recursion_inc();
4339         HARD_TX_LOCK(dev, txq, smp_processor_id());
4340         if (!netif_xmit_frozen_or_drv_stopped(txq))
4341                 ret = netdev_start_xmit(skb, dev, txq, false);
4342         HARD_TX_UNLOCK(dev, txq);
4343         dev_xmit_recursion_dec();
4344
4345         local_bh_enable();
4346         return ret;
4347 drop:
4348         atomic_long_inc(&dev->tx_dropped);
4349         kfree_skb_list(skb);
4350         return NET_XMIT_DROP;
4351 }
4352 EXPORT_SYMBOL(__dev_direct_xmit);
4353
4354 /*************************************************************************
4355  *                      Receiver routines
4356  *************************************************************************/
4357
4358 int netdev_max_backlog __read_mostly = 1000;
4359 EXPORT_SYMBOL(netdev_max_backlog);
4360
4361 int netdev_tstamp_prequeue __read_mostly = 1;
4362 int netdev_budget __read_mostly = 300;
4363 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4364 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4365 int weight_p __read_mostly = 64;           /* old backlog weight */
4366 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4367 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4368 int dev_rx_weight __read_mostly = 64;
4369 int dev_tx_weight __read_mostly = 64;
4370 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4371 int gro_normal_batch __read_mostly = 8;
4372
4373 /* Called with irq disabled */
4374 static inline void ____napi_schedule(struct softnet_data *sd,
4375                                      struct napi_struct *napi)
4376 {
4377         struct task_struct *thread;
4378
4379         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4380                 /* Paired with smp_mb__before_atomic() in
4381                  * napi_enable()/dev_set_threaded().
4382                  * Use READ_ONCE() to guarantee a complete
4383                  * read on napi->thread. Only call
4384                  * wake_up_process() when it's not NULL.
4385                  */
4386                 thread = READ_ONCE(napi->thread);
4387                 if (thread) {
4388                         /* Avoid doing set_bit() if the thread is in
4389                          * INTERRUPTIBLE state, cause napi_thread_wait()
4390                          * makes sure to proceed with napi polling
4391                          * if the thread is explicitly woken from here.
4392                          */
4393                         if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4394                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4395                         wake_up_process(thread);
4396                         return;
4397                 }
4398         }
4399
4400         list_add_tail(&napi->poll_list, &sd->poll_list);
4401         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4402 }
4403
4404 #ifdef CONFIG_RPS
4405
4406 /* One global table that all flow-based protocols share. */
4407 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4408 EXPORT_SYMBOL(rps_sock_flow_table);
4409 u32 rps_cpu_mask __read_mostly;
4410 EXPORT_SYMBOL(rps_cpu_mask);
4411
4412 struct static_key_false rps_needed __read_mostly;
4413 EXPORT_SYMBOL(rps_needed);
4414 struct static_key_false rfs_needed __read_mostly;
4415 EXPORT_SYMBOL(rfs_needed);
4416
4417 static struct rps_dev_flow *
4418 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4419             struct rps_dev_flow *rflow, u16 next_cpu)
4420 {
4421         if (next_cpu < nr_cpu_ids) {
4422 #ifdef CONFIG_RFS_ACCEL
4423                 struct netdev_rx_queue *rxqueue;
4424                 struct rps_dev_flow_table *flow_table;
4425                 struct rps_dev_flow *old_rflow;
4426                 u32 flow_id;
4427                 u16 rxq_index;
4428                 int rc;
4429
4430                 /* Should we steer this flow to a different hardware queue? */
4431                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4432                     !(dev->features & NETIF_F_NTUPLE))
4433                         goto out;
4434                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4435                 if (rxq_index == skb_get_rx_queue(skb))
4436                         goto out;
4437
4438                 rxqueue = dev->_rx + rxq_index;
4439                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4440                 if (!flow_table)
4441                         goto out;
4442                 flow_id = skb_get_hash(skb) & flow_table->mask;
4443                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4444                                                         rxq_index, flow_id);
4445                 if (rc < 0)
4446                         goto out;
4447                 old_rflow = rflow;
4448                 rflow = &flow_table->flows[flow_id];
4449                 rflow->filter = rc;
4450                 if (old_rflow->filter == rflow->filter)
4451                         old_rflow->filter = RPS_NO_FILTER;
4452         out:
4453 #endif
4454                 rflow->last_qtail =
4455                         per_cpu(softnet_data, next_cpu).input_queue_head;
4456         }
4457
4458         rflow->cpu = next_cpu;
4459         return rflow;
4460 }
4461
4462 /*
4463  * get_rps_cpu is called from netif_receive_skb and returns the target
4464  * CPU from the RPS map of the receiving queue for a given skb.
4465  * rcu_read_lock must be held on entry.
4466  */
4467 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4468                        struct rps_dev_flow **rflowp)
4469 {
4470         const struct rps_sock_flow_table *sock_flow_table;
4471         struct netdev_rx_queue *rxqueue = dev->_rx;
4472         struct rps_dev_flow_table *flow_table;
4473         struct rps_map *map;
4474         int cpu = -1;
4475         u32 tcpu;
4476         u32 hash;
4477
4478         if (skb_rx_queue_recorded(skb)) {
4479                 u16 index = skb_get_rx_queue(skb);
4480
4481                 if (unlikely(index >= dev->real_num_rx_queues)) {
4482                         WARN_ONCE(dev->real_num_rx_queues > 1,
4483                                   "%s received packet on queue %u, but number "
4484                                   "of RX queues is %u\n",
4485                                   dev->name, index, dev->real_num_rx_queues);
4486                         goto done;
4487                 }
4488                 rxqueue += index;
4489         }
4490
4491         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4492
4493         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4494         map = rcu_dereference(rxqueue->rps_map);
4495         if (!flow_table && !map)
4496                 goto done;
4497
4498         skb_reset_network_header(skb);
4499         hash = skb_get_hash(skb);
4500         if (!hash)
4501                 goto done;
4502
4503         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4504         if (flow_table && sock_flow_table) {
4505                 struct rps_dev_flow *rflow;
4506                 u32 next_cpu;
4507                 u32 ident;
4508
4509                 /* First check into global flow table if there is a match */
4510                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4511                 if ((ident ^ hash) & ~rps_cpu_mask)
4512                         goto try_rps;
4513
4514                 next_cpu = ident & rps_cpu_mask;
4515
4516                 /* OK, now we know there is a match,
4517                  * we can look at the local (per receive queue) flow table
4518                  */
4519                 rflow = &flow_table->flows[hash & flow_table->mask];
4520                 tcpu = rflow->cpu;
4521
4522                 /*
4523                  * If the desired CPU (where last recvmsg was done) is
4524                  * different from current CPU (one in the rx-queue flow
4525                  * table entry), switch if one of the following holds:
4526                  *   - Current CPU is unset (>= nr_cpu_ids).
4527                  *   - Current CPU is offline.
4528                  *   - The current CPU's queue tail has advanced beyond the
4529                  *     last packet that was enqueued using this table entry.
4530                  *     This guarantees that all previous packets for the flow
4531                  *     have been dequeued, thus preserving in order delivery.
4532                  */
4533                 if (unlikely(tcpu != next_cpu) &&
4534                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4535                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4536                       rflow->last_qtail)) >= 0)) {
4537                         tcpu = next_cpu;
4538                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4539                 }
4540
4541                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4542                         *rflowp = rflow;
4543                         cpu = tcpu;
4544                         goto done;
4545                 }
4546         }
4547
4548 try_rps:
4549
4550         if (map) {
4551                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4552                 if (cpu_online(tcpu)) {
4553                         cpu = tcpu;
4554                         goto done;
4555                 }
4556         }
4557
4558 done:
4559         return cpu;
4560 }
4561
4562 #ifdef CONFIG_RFS_ACCEL
4563
4564 /**
4565  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4566  * @dev: Device on which the filter was set
4567  * @rxq_index: RX queue index
4568  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4569  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4570  *
4571  * Drivers that implement ndo_rx_flow_steer() should periodically call
4572  * this function for each installed filter and remove the filters for
4573  * which it returns %true.
4574  */
4575 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4576                          u32 flow_id, u16 filter_id)
4577 {
4578         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4579         struct rps_dev_flow_table *flow_table;
4580         struct rps_dev_flow *rflow;
4581         bool expire = true;
4582         unsigned int cpu;
4583
4584         rcu_read_lock();
4585         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4586         if (flow_table && flow_id <= flow_table->mask) {
4587                 rflow = &flow_table->flows[flow_id];
4588                 cpu = READ_ONCE(rflow->cpu);
4589                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4590                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4591                            rflow->last_qtail) <
4592                      (int)(10 * flow_table->mask)))
4593                         expire = false;
4594         }
4595         rcu_read_unlock();
4596         return expire;
4597 }
4598 EXPORT_SYMBOL(rps_may_expire_flow);
4599
4600 #endif /* CONFIG_RFS_ACCEL */
4601
4602 /* Called from hardirq (IPI) context */
4603 static void rps_trigger_softirq(void *data)
4604 {
4605         struct softnet_data *sd = data;
4606
4607         ____napi_schedule(sd, &sd->backlog);
4608         sd->received_rps++;
4609 }
4610
4611 #endif /* CONFIG_RPS */
4612
4613 /*
4614  * Check if this softnet_data structure is another cpu one
4615  * If yes, queue it to our IPI list and return 1
4616  * If no, return 0
4617  */
4618 static int rps_ipi_queued(struct softnet_data *sd)
4619 {
4620 #ifdef CONFIG_RPS
4621         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4622
4623         if (sd != mysd) {
4624                 sd->rps_ipi_next = mysd->rps_ipi_list;
4625                 mysd->rps_ipi_list = sd;
4626
4627                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4628                 return 1;
4629         }
4630 #endif /* CONFIG_RPS */
4631         return 0;
4632 }
4633
4634 #ifdef CONFIG_NET_FLOW_LIMIT
4635 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4636 #endif
4637
4638 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4639 {
4640 #ifdef CONFIG_NET_FLOW_LIMIT
4641         struct sd_flow_limit *fl;
4642         struct softnet_data *sd;
4643         unsigned int old_flow, new_flow;
4644
4645         if (qlen < (netdev_max_backlog >> 1))
4646                 return false;
4647
4648         sd = this_cpu_ptr(&softnet_data);
4649
4650         rcu_read_lock();
4651         fl = rcu_dereference(sd->flow_limit);
4652         if (fl) {
4653                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4654                 old_flow = fl->history[fl->history_head];
4655                 fl->history[fl->history_head] = new_flow;
4656
4657                 fl->history_head++;
4658                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4659
4660                 if (likely(fl->buckets[old_flow]))
4661                         fl->buckets[old_flow]--;
4662
4663                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4664                         fl->count++;
4665                         rcu_read_unlock();
4666                         return true;
4667                 }
4668         }
4669         rcu_read_unlock();
4670 #endif
4671         return false;
4672 }
4673
4674 /*
4675  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4676  * queue (may be a remote CPU queue).
4677  */
4678 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4679                               unsigned int *qtail)
4680 {
4681         struct softnet_data *sd;
4682         unsigned long flags;
4683         unsigned int qlen;
4684
4685         sd = &per_cpu(softnet_data, cpu);
4686
4687         local_irq_save(flags);
4688
4689         rps_lock(sd);
4690         if (!netif_running(skb->dev))
4691                 goto drop;
4692         qlen = skb_queue_len(&sd->input_pkt_queue);
4693         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4694                 if (qlen) {
4695 enqueue:
4696                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4697                         input_queue_tail_incr_save(sd, qtail);
4698                         rps_unlock(sd);
4699                         local_irq_restore(flags);
4700                         return NET_RX_SUCCESS;
4701                 }
4702
4703                 /* Schedule NAPI for backlog device
4704                  * We can use non atomic operation since we own the queue lock
4705                  */
4706                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4707                         if (!rps_ipi_queued(sd))
4708                                 ____napi_schedule(sd, &sd->backlog);
4709                 }
4710                 goto enqueue;
4711         }
4712
4713 drop:
4714         sd->dropped++;
4715         rps_unlock(sd);
4716
4717         local_irq_restore(flags);
4718
4719         atomic_long_inc(&skb->dev->rx_dropped);
4720         kfree_skb(skb);
4721         return NET_RX_DROP;
4722 }
4723
4724 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4725 {
4726         struct net_device *dev = skb->dev;
4727         struct netdev_rx_queue *rxqueue;
4728
4729         rxqueue = dev->_rx;
4730
4731         if (skb_rx_queue_recorded(skb)) {
4732                 u16 index = skb_get_rx_queue(skb);
4733
4734                 if (unlikely(index >= dev->real_num_rx_queues)) {
4735                         WARN_ONCE(dev->real_num_rx_queues > 1,
4736                                   "%s received packet on queue %u, but number "
4737                                   "of RX queues is %u\n",
4738                                   dev->name, index, dev->real_num_rx_queues);
4739
4740                         return rxqueue; /* Return first rxqueue */
4741                 }
4742                 rxqueue += index;
4743         }
4744         return rxqueue;
4745 }
4746
4747 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4748                                      struct xdp_buff *xdp,
4749                                      struct bpf_prog *xdp_prog)
4750 {
4751         void *orig_data, *orig_data_end, *hard_start;
4752         struct netdev_rx_queue *rxqueue;
4753         u32 metalen, act = XDP_DROP;
4754         bool orig_bcast, orig_host;
4755         u32 mac_len, frame_sz;
4756         __be16 orig_eth_type;
4757         struct ethhdr *eth;
4758         int off;
4759
4760         /* Reinjected packets coming from act_mirred or similar should
4761          * not get XDP generic processing.
4762          */
4763         if (skb_is_redirected(skb))
4764                 return XDP_PASS;
4765
4766         /* XDP packets must be linear and must have sufficient headroom
4767          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4768          * native XDP provides, thus we need to do it here as well.
4769          */
4770         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4771             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4772                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4773                 int troom = skb->tail + skb->data_len - skb->end;
4774
4775                 /* In case we have to go down the path and also linearize,
4776                  * then lets do the pskb_expand_head() work just once here.
4777                  */
4778                 if (pskb_expand_head(skb,
4779                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4780                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4781                         goto do_drop;
4782                 if (skb_linearize(skb))
4783                         goto do_drop;
4784         }
4785
4786         /* The XDP program wants to see the packet starting at the MAC
4787          * header.
4788          */
4789         mac_len = skb->data - skb_mac_header(skb);
4790         hard_start = skb->data - skb_headroom(skb);
4791
4792         /* SKB "head" area always have tailroom for skb_shared_info */
4793         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4794         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4795
4796         rxqueue = netif_get_rxqueue(skb);
4797         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4798         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4799                          skb_headlen(skb) + mac_len, true);
4800
4801         orig_data_end = xdp->data_end;
4802         orig_data = xdp->data;
4803         eth = (struct ethhdr *)xdp->data;
4804         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4805         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4806         orig_eth_type = eth->h_proto;
4807
4808         act = bpf_prog_run_xdp(xdp_prog, xdp);
4809
4810         /* check if bpf_xdp_adjust_head was used */
4811         off = xdp->data - orig_data;
4812         if (off) {
4813                 if (off > 0)
4814                         __skb_pull(skb, off);
4815                 else if (off < 0)
4816                         __skb_push(skb, -off);
4817
4818                 skb->mac_header += off;
4819                 skb_reset_network_header(skb);
4820         }
4821
4822         /* check if bpf_xdp_adjust_tail was used */
4823         off = xdp->data_end - orig_data_end;
4824         if (off != 0) {
4825                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4826                 skb->len += off; /* positive on grow, negative on shrink */
4827         }
4828
4829         /* check if XDP changed eth hdr such SKB needs update */
4830         eth = (struct ethhdr *)xdp->data;
4831         if ((orig_eth_type != eth->h_proto) ||
4832             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4833                                                   skb->dev->dev_addr)) ||
4834             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4835                 __skb_push(skb, ETH_HLEN);
4836                 skb->pkt_type = PACKET_HOST;
4837                 skb->protocol = eth_type_trans(skb, skb->dev);
4838         }
4839
4840         switch (act) {
4841         case XDP_REDIRECT:
4842         case XDP_TX:
4843                 __skb_push(skb, mac_len);
4844                 break;
4845         case XDP_PASS:
4846                 metalen = xdp->data - xdp->data_meta;
4847                 if (metalen)
4848                         skb_metadata_set(skb, metalen);
4849                 break;
4850         default:
4851                 bpf_warn_invalid_xdp_action(act);
4852                 fallthrough;
4853         case XDP_ABORTED:
4854                 trace_xdp_exception(skb->dev, xdp_prog, act);
4855                 fallthrough;
4856         case XDP_DROP:
4857         do_drop:
4858                 kfree_skb(skb);
4859                 break;
4860         }
4861
4862         return act;
4863 }
4864
4865 /* When doing generic XDP we have to bypass the qdisc layer and the
4866  * network taps in order to match in-driver-XDP behavior.
4867  */
4868 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4869 {
4870         struct net_device *dev = skb->dev;
4871         struct netdev_queue *txq;
4872         bool free_skb = true;
4873         int cpu, rc;
4874
4875         txq = netdev_core_pick_tx(dev, skb, NULL);
4876         cpu = smp_processor_id();
4877         HARD_TX_LOCK(dev, txq, cpu);
4878         if (!netif_xmit_stopped(txq)) {
4879                 rc = netdev_start_xmit(skb, dev, txq, 0);
4880                 if (dev_xmit_complete(rc))
4881                         free_skb = false;
4882         }
4883         HARD_TX_UNLOCK(dev, txq);
4884         if (free_skb) {
4885                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4886                 kfree_skb(skb);
4887         }
4888 }
4889
4890 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4891
4892 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4893 {
4894         if (xdp_prog) {
4895                 struct xdp_buff xdp;
4896                 u32 act;
4897                 int err;
4898
4899                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4900                 if (act != XDP_PASS) {
4901                         switch (act) {
4902                         case XDP_REDIRECT:
4903                                 err = xdp_do_generic_redirect(skb->dev, skb,
4904                                                               &xdp, xdp_prog);
4905                                 if (err)
4906                                         goto out_redir;
4907                                 break;
4908                         case XDP_TX:
4909                                 generic_xdp_tx(skb, xdp_prog);
4910                                 break;
4911                         }
4912                         return XDP_DROP;
4913                 }
4914         }
4915         return XDP_PASS;
4916 out_redir:
4917         kfree_skb(skb);
4918         return XDP_DROP;
4919 }
4920 EXPORT_SYMBOL_GPL(do_xdp_generic);
4921
4922 static int netif_rx_internal(struct sk_buff *skb)
4923 {
4924         int ret;
4925
4926         net_timestamp_check(netdev_tstamp_prequeue, skb);
4927
4928         trace_netif_rx(skb);
4929
4930 #ifdef CONFIG_RPS
4931         if (static_branch_unlikely(&rps_needed)) {
4932                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4933                 int cpu;
4934
4935                 preempt_disable();
4936                 rcu_read_lock();
4937
4938                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4939                 if (cpu < 0)
4940                         cpu = smp_processor_id();
4941
4942                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4943
4944                 rcu_read_unlock();
4945                 preempt_enable();
4946         } else
4947 #endif
4948         {
4949                 unsigned int qtail;
4950
4951                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4952                 put_cpu();
4953         }
4954         return ret;
4955 }
4956
4957 /**
4958  *      netif_rx        -       post buffer to the network code
4959  *      @skb: buffer to post
4960  *
4961  *      This function receives a packet from a device driver and queues it for
4962  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4963  *      may be dropped during processing for congestion control or by the
4964  *      protocol layers.
4965  *
4966  *      return values:
4967  *      NET_RX_SUCCESS  (no congestion)
4968  *      NET_RX_DROP     (packet was dropped)
4969  *
4970  */
4971
4972 int netif_rx(struct sk_buff *skb)
4973 {
4974         int ret;
4975
4976         trace_netif_rx_entry(skb);
4977
4978         ret = netif_rx_internal(skb);
4979         trace_netif_rx_exit(ret);
4980
4981         return ret;
4982 }
4983 EXPORT_SYMBOL(netif_rx);
4984
4985 int netif_rx_ni(struct sk_buff *skb)
4986 {
4987         int err;
4988
4989         trace_netif_rx_ni_entry(skb);
4990
4991         preempt_disable();
4992         err = netif_rx_internal(skb);
4993         if (local_softirq_pending())
4994                 do_softirq();
4995         preempt_enable();
4996         trace_netif_rx_ni_exit(err);
4997
4998         return err;
4999 }
5000 EXPORT_SYMBOL(netif_rx_ni);
5001
5002 int netif_rx_any_context(struct sk_buff *skb)
5003 {
5004         /*
5005          * If invoked from contexts which do not invoke bottom half
5006          * processing either at return from interrupt or when softrqs are
5007          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
5008          * directly.
5009          */
5010         if (in_interrupt())
5011                 return netif_rx(skb);
5012         else
5013                 return netif_rx_ni(skb);
5014 }
5015 EXPORT_SYMBOL(netif_rx_any_context);
5016
5017 static __latent_entropy void net_tx_action(struct softirq_action *h)
5018 {
5019         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5020
5021         if (sd->completion_queue) {
5022                 struct sk_buff *clist;
5023
5024                 local_irq_disable();
5025                 clist = sd->completion_queue;
5026                 sd->completion_queue = NULL;
5027                 local_irq_enable();
5028
5029                 while (clist) {
5030                         struct sk_buff *skb = clist;
5031
5032                         clist = clist->next;
5033
5034                         WARN_ON(refcount_read(&skb->users));
5035                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5036                                 trace_consume_skb(skb);
5037                         else
5038                                 trace_kfree_skb(skb, net_tx_action);
5039
5040                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5041                                 __kfree_skb(skb);
5042                         else
5043                                 __kfree_skb_defer(skb);
5044                 }
5045         }
5046
5047         if (sd->output_queue) {
5048                 struct Qdisc *head;
5049
5050                 local_irq_disable();
5051                 head = sd->output_queue;
5052                 sd->output_queue = NULL;
5053                 sd->output_queue_tailp = &sd->output_queue;
5054                 local_irq_enable();
5055
5056                 rcu_read_lock();
5057
5058                 while (head) {
5059                         struct Qdisc *q = head;
5060                         spinlock_t *root_lock = NULL;
5061
5062                         head = head->next_sched;
5063
5064                         /* We need to make sure head->next_sched is read
5065                          * before clearing __QDISC_STATE_SCHED
5066                          */
5067                         smp_mb__before_atomic();
5068
5069                         if (!(q->flags & TCQ_F_NOLOCK)) {
5070                                 root_lock = qdisc_lock(q);
5071                                 spin_lock(root_lock);
5072                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5073                                                      &q->state))) {
5074                                 /* There is a synchronize_net() between
5075                                  * STATE_DEACTIVATED flag being set and
5076                                  * qdisc_reset()/some_qdisc_is_busy() in
5077                                  * dev_deactivate(), so we can safely bail out
5078                                  * early here to avoid data race between
5079                                  * qdisc_deactivate() and some_qdisc_is_busy()
5080                                  * for lockless qdisc.
5081                                  */
5082                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5083                                 continue;
5084                         }
5085
5086                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5087                         qdisc_run(q);
5088                         if (root_lock)
5089                                 spin_unlock(root_lock);
5090                 }
5091
5092                 rcu_read_unlock();
5093         }
5094
5095         xfrm_dev_backlog(sd);
5096 }
5097
5098 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5099 /* This hook is defined here for ATM LANE */
5100 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5101                              unsigned char *addr) __read_mostly;
5102 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5103 #endif
5104
5105 static inline struct sk_buff *
5106 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5107                    struct net_device *orig_dev, bool *another)
5108 {
5109 #ifdef CONFIG_NET_CLS_ACT
5110         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5111         struct tcf_result cl_res;
5112
5113         /* If there's at least one ingress present somewhere (so
5114          * we get here via enabled static key), remaining devices
5115          * that are not configured with an ingress qdisc will bail
5116          * out here.
5117          */
5118         if (!miniq)
5119                 return skb;
5120
5121         if (*pt_prev) {
5122                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5123                 *pt_prev = NULL;
5124         }
5125
5126         qdisc_skb_cb(skb)->pkt_len = skb->len;
5127         qdisc_skb_cb(skb)->mru = 0;
5128         qdisc_skb_cb(skb)->post_ct = false;
5129         skb->tc_at_ingress = 1;
5130         mini_qdisc_bstats_cpu_update(miniq, skb);
5131
5132         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5133                                      &cl_res, false)) {
5134         case TC_ACT_OK:
5135         case TC_ACT_RECLASSIFY:
5136                 skb->tc_index = TC_H_MIN(cl_res.classid);
5137                 break;
5138         case TC_ACT_SHOT:
5139                 mini_qdisc_qstats_cpu_drop(miniq);
5140                 kfree_skb(skb);
5141                 return NULL;
5142         case TC_ACT_STOLEN:
5143         case TC_ACT_QUEUED:
5144         case TC_ACT_TRAP:
5145                 consume_skb(skb);
5146                 return NULL;
5147         case TC_ACT_REDIRECT:
5148                 /* skb_mac_header check was done by cls/act_bpf, so
5149                  * we can safely push the L2 header back before
5150                  * redirecting to another netdev
5151                  */
5152                 __skb_push(skb, skb->mac_len);
5153                 if (skb_do_redirect(skb) == -EAGAIN) {
5154                         __skb_pull(skb, skb->mac_len);
5155                         *another = true;
5156                         break;
5157                 }
5158                 return NULL;
5159         case TC_ACT_CONSUMED:
5160                 return NULL;
5161         default:
5162                 break;
5163         }
5164 #endif /* CONFIG_NET_CLS_ACT */
5165         return skb;
5166 }
5167
5168 /**
5169  *      netdev_is_rx_handler_busy - check if receive handler is registered
5170  *      @dev: device to check
5171  *
5172  *      Check if a receive handler is already registered for a given device.
5173  *      Return true if there one.
5174  *
5175  *      The caller must hold the rtnl_mutex.
5176  */
5177 bool netdev_is_rx_handler_busy(struct net_device *dev)
5178 {
5179         ASSERT_RTNL();
5180         return dev && rtnl_dereference(dev->rx_handler);
5181 }
5182 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5183
5184 /**
5185  *      netdev_rx_handler_register - register receive handler
5186  *      @dev: device to register a handler for
5187  *      @rx_handler: receive handler to register
5188  *      @rx_handler_data: data pointer that is used by rx handler
5189  *
5190  *      Register a receive handler for a device. This handler will then be
5191  *      called from __netif_receive_skb. A negative errno code is returned
5192  *      on a failure.
5193  *
5194  *      The caller must hold the rtnl_mutex.
5195  *
5196  *      For a general description of rx_handler, see enum rx_handler_result.
5197  */
5198 int netdev_rx_handler_register(struct net_device *dev,
5199                                rx_handler_func_t *rx_handler,
5200                                void *rx_handler_data)
5201 {
5202         if (netdev_is_rx_handler_busy(dev))
5203                 return -EBUSY;
5204
5205         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5206                 return -EINVAL;
5207
5208         /* Note: rx_handler_data must be set before rx_handler */
5209         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5210         rcu_assign_pointer(dev->rx_handler, rx_handler);
5211
5212         return 0;
5213 }
5214 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5215
5216 /**
5217  *      netdev_rx_handler_unregister - unregister receive handler
5218  *      @dev: device to unregister a handler from
5219  *
5220  *      Unregister a receive handler from a device.
5221  *
5222  *      The caller must hold the rtnl_mutex.
5223  */
5224 void netdev_rx_handler_unregister(struct net_device *dev)
5225 {
5226
5227         ASSERT_RTNL();
5228         RCU_INIT_POINTER(dev->rx_handler, NULL);
5229         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5230          * section has a guarantee to see a non NULL rx_handler_data
5231          * as well.
5232          */
5233         synchronize_net();
5234         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5235 }
5236 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5237
5238 /*
5239  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5240  * the special handling of PFMEMALLOC skbs.
5241  */
5242 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5243 {
5244         switch (skb->protocol) {
5245         case htons(ETH_P_ARP):
5246         case htons(ETH_P_IP):
5247         case htons(ETH_P_IPV6):
5248         case htons(ETH_P_8021Q):
5249         case htons(ETH_P_8021AD):
5250                 return true;
5251         default:
5252                 return false;
5253         }
5254 }
5255
5256 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5257                              int *ret, struct net_device *orig_dev)
5258 {
5259         if (nf_hook_ingress_active(skb)) {
5260                 int ingress_retval;
5261
5262                 if (*pt_prev) {
5263                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5264                         *pt_prev = NULL;
5265                 }
5266
5267                 rcu_read_lock();
5268                 ingress_retval = nf_hook_ingress(skb);
5269                 rcu_read_unlock();
5270                 return ingress_retval;
5271         }
5272         return 0;
5273 }
5274
5275 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5276                                     struct packet_type **ppt_prev)
5277 {
5278         struct packet_type *ptype, *pt_prev;
5279         rx_handler_func_t *rx_handler;
5280         struct sk_buff *skb = *pskb;
5281         struct net_device *orig_dev;
5282         bool deliver_exact = false;
5283         int ret = NET_RX_DROP;
5284         __be16 type;
5285
5286         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5287
5288         trace_netif_receive_skb(skb);
5289
5290         orig_dev = skb->dev;
5291
5292         skb_reset_network_header(skb);
5293         if (!skb_transport_header_was_set(skb))
5294                 skb_reset_transport_header(skb);
5295         skb_reset_mac_len(skb);
5296
5297         pt_prev = NULL;
5298
5299 another_round:
5300         skb->skb_iif = skb->dev->ifindex;
5301
5302         __this_cpu_inc(softnet_data.processed);
5303
5304         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5305                 int ret2;
5306
5307                 migrate_disable();
5308                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5309                 migrate_enable();
5310
5311                 if (ret2 != XDP_PASS) {
5312                         ret = NET_RX_DROP;
5313                         goto out;
5314                 }
5315                 skb_reset_mac_len(skb);
5316         }
5317
5318         if (eth_type_vlan(skb->protocol)) {
5319                 skb = skb_vlan_untag(skb);
5320                 if (unlikely(!skb))
5321                         goto out;
5322         }
5323
5324         if (skb_skip_tc_classify(skb))
5325                 goto skip_classify;
5326
5327         if (pfmemalloc)
5328                 goto skip_taps;
5329
5330         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5331                 if (pt_prev)
5332                         ret = deliver_skb(skb, pt_prev, orig_dev);
5333                 pt_prev = ptype;
5334         }
5335
5336         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5337                 if (pt_prev)
5338                         ret = deliver_skb(skb, pt_prev, orig_dev);
5339                 pt_prev = ptype;
5340         }
5341
5342 skip_taps:
5343 #ifdef CONFIG_NET_INGRESS
5344         if (static_branch_unlikely(&ingress_needed_key)) {
5345                 bool another = false;
5346
5347                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5348                                          &another);
5349                 if (another)
5350                         goto another_round;
5351                 if (!skb)
5352                         goto out;
5353
5354                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5355                         goto out;
5356         }
5357 #endif
5358         skb_reset_redirect(skb);
5359 skip_classify:
5360         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5361                 goto drop;
5362
5363         if (skb_vlan_tag_present(skb)) {
5364                 if (pt_prev) {
5365                         ret = deliver_skb(skb, pt_prev, orig_dev);
5366                         pt_prev = NULL;
5367                 }
5368                 if (vlan_do_receive(&skb))
5369                         goto another_round;
5370                 else if (unlikely(!skb))
5371                         goto out;
5372         }
5373
5374         rx_handler = rcu_dereference(skb->dev->rx_handler);
5375         if (rx_handler) {
5376                 if (pt_prev) {
5377                         ret = deliver_skb(skb, pt_prev, orig_dev);
5378                         pt_prev = NULL;
5379                 }
5380                 switch (rx_handler(&skb)) {
5381                 case RX_HANDLER_CONSUMED:
5382                         ret = NET_RX_SUCCESS;
5383                         goto out;
5384                 case RX_HANDLER_ANOTHER:
5385                         goto another_round;
5386                 case RX_HANDLER_EXACT:
5387                         deliver_exact = true;
5388                         break;
5389                 case RX_HANDLER_PASS:
5390                         break;
5391                 default:
5392                         BUG();
5393                 }
5394         }
5395
5396         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5397 check_vlan_id:
5398                 if (skb_vlan_tag_get_id(skb)) {
5399                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5400                          * find vlan device.
5401                          */
5402                         skb->pkt_type = PACKET_OTHERHOST;
5403                 } else if (eth_type_vlan(skb->protocol)) {
5404                         /* Outer header is 802.1P with vlan 0, inner header is
5405                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5406                          * not find vlan dev for vlan id 0.
5407                          */
5408                         __vlan_hwaccel_clear_tag(skb);
5409                         skb = skb_vlan_untag(skb);
5410                         if (unlikely(!skb))
5411                                 goto out;
5412                         if (vlan_do_receive(&skb))
5413                                 /* After stripping off 802.1P header with vlan 0
5414                                  * vlan dev is found for inner header.
5415                                  */
5416                                 goto another_round;
5417                         else if (unlikely(!skb))
5418                                 goto out;
5419                         else
5420                                 /* We have stripped outer 802.1P vlan 0 header.
5421                                  * But could not find vlan dev.
5422                                  * check again for vlan id to set OTHERHOST.
5423                                  */
5424                                 goto check_vlan_id;
5425                 }
5426                 /* Note: we might in the future use prio bits
5427                  * and set skb->priority like in vlan_do_receive()
5428                  * For the time being, just ignore Priority Code Point
5429                  */
5430                 __vlan_hwaccel_clear_tag(skb);
5431         }
5432
5433         type = skb->protocol;
5434
5435         /* deliver only exact match when indicated */
5436         if (likely(!deliver_exact)) {
5437                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5438                                        &ptype_base[ntohs(type) &
5439                                                    PTYPE_HASH_MASK]);
5440         }
5441
5442         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5443                                &orig_dev->ptype_specific);
5444
5445         if (unlikely(skb->dev != orig_dev)) {
5446                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5447                                        &skb->dev->ptype_specific);
5448         }
5449
5450         if (pt_prev) {
5451                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5452                         goto drop;
5453                 *ppt_prev = pt_prev;
5454         } else {
5455 drop:
5456                 if (!deliver_exact)
5457                         atomic_long_inc(&skb->dev->rx_dropped);
5458                 else
5459                         atomic_long_inc(&skb->dev->rx_nohandler);
5460                 kfree_skb(skb);
5461                 /* Jamal, now you will not able to escape explaining
5462                  * me how you were going to use this. :-)
5463                  */
5464                 ret = NET_RX_DROP;
5465         }
5466
5467 out:
5468         /* The invariant here is that if *ppt_prev is not NULL
5469          * then skb should also be non-NULL.
5470          *
5471          * Apparently *ppt_prev assignment above holds this invariant due to
5472          * skb dereferencing near it.
5473          */
5474         *pskb = skb;
5475         return ret;
5476 }
5477
5478 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5479 {
5480         struct net_device *orig_dev = skb->dev;
5481         struct packet_type *pt_prev = NULL;
5482         int ret;
5483
5484         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5485         if (pt_prev)
5486                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5487                                          skb->dev, pt_prev, orig_dev);
5488         return ret;
5489 }
5490
5491 /**
5492  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5493  *      @skb: buffer to process
5494  *
5495  *      More direct receive version of netif_receive_skb().  It should
5496  *      only be used by callers that have a need to skip RPS and Generic XDP.
5497  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5498  *
5499  *      This function may only be called from softirq context and interrupts
5500  *      should be enabled.
5501  *
5502  *      Return values (usually ignored):
5503  *      NET_RX_SUCCESS: no congestion
5504  *      NET_RX_DROP: packet was dropped
5505  */
5506 int netif_receive_skb_core(struct sk_buff *skb)
5507 {
5508         int ret;
5509
5510         rcu_read_lock();
5511         ret = __netif_receive_skb_one_core(skb, false);
5512         rcu_read_unlock();
5513
5514         return ret;
5515 }
5516 EXPORT_SYMBOL(netif_receive_skb_core);
5517
5518 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5519                                                   struct packet_type *pt_prev,
5520                                                   struct net_device *orig_dev)
5521 {
5522         struct sk_buff *skb, *next;
5523
5524         if (!pt_prev)
5525                 return;
5526         if (list_empty(head))
5527                 return;
5528         if (pt_prev->list_func != NULL)
5529                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5530                                    ip_list_rcv, head, pt_prev, orig_dev);
5531         else
5532                 list_for_each_entry_safe(skb, next, head, list) {
5533                         skb_list_del_init(skb);
5534                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5535                 }
5536 }
5537
5538 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5539 {
5540         /* Fast-path assumptions:
5541          * - There is no RX handler.
5542          * - Only one packet_type matches.
5543          * If either of these fails, we will end up doing some per-packet
5544          * processing in-line, then handling the 'last ptype' for the whole
5545          * sublist.  This can't cause out-of-order delivery to any single ptype,
5546          * because the 'last ptype' must be constant across the sublist, and all
5547          * other ptypes are handled per-packet.
5548          */
5549         /* Current (common) ptype of sublist */
5550         struct packet_type *pt_curr = NULL;
5551         /* Current (common) orig_dev of sublist */
5552         struct net_device *od_curr = NULL;
5553         struct list_head sublist;
5554         struct sk_buff *skb, *next;
5555
5556         INIT_LIST_HEAD(&sublist);
5557         list_for_each_entry_safe(skb, next, head, list) {
5558                 struct net_device *orig_dev = skb->dev;
5559                 struct packet_type *pt_prev = NULL;
5560
5561                 skb_list_del_init(skb);
5562                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5563                 if (!pt_prev)
5564                         continue;
5565                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5566                         /* dispatch old sublist */
5567                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5568                         /* start new sublist */
5569                         INIT_LIST_HEAD(&sublist);
5570                         pt_curr = pt_prev;
5571                         od_curr = orig_dev;
5572                 }
5573                 list_add_tail(&skb->list, &sublist);
5574         }
5575
5576         /* dispatch final sublist */
5577         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5578 }
5579
5580 static int __netif_receive_skb(struct sk_buff *skb)
5581 {
5582         int ret;
5583
5584         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5585                 unsigned int noreclaim_flag;
5586
5587                 /*
5588                  * PFMEMALLOC skbs are special, they should
5589                  * - be delivered to SOCK_MEMALLOC sockets only
5590                  * - stay away from userspace
5591                  * - have bounded memory usage
5592                  *
5593                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5594                  * context down to all allocation sites.
5595                  */
5596                 noreclaim_flag = memalloc_noreclaim_save();
5597                 ret = __netif_receive_skb_one_core(skb, true);
5598                 memalloc_noreclaim_restore(noreclaim_flag);
5599         } else
5600                 ret = __netif_receive_skb_one_core(skb, false);
5601
5602         return ret;
5603 }
5604
5605 static void __netif_receive_skb_list(struct list_head *head)
5606 {
5607         unsigned long noreclaim_flag = 0;
5608         struct sk_buff *skb, *next;
5609         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5610
5611         list_for_each_entry_safe(skb, next, head, list) {
5612                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5613                         struct list_head sublist;
5614
5615                         /* Handle the previous sublist */
5616                         list_cut_before(&sublist, head, &skb->list);
5617                         if (!list_empty(&sublist))
5618                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5619                         pfmemalloc = !pfmemalloc;
5620                         /* See comments in __netif_receive_skb */
5621                         if (pfmemalloc)
5622                                 noreclaim_flag = memalloc_noreclaim_save();
5623                         else
5624                                 memalloc_noreclaim_restore(noreclaim_flag);
5625                 }
5626         }
5627         /* Handle the remaining sublist */
5628         if (!list_empty(head))
5629                 __netif_receive_skb_list_core(head, pfmemalloc);
5630         /* Restore pflags */
5631         if (pfmemalloc)
5632                 memalloc_noreclaim_restore(noreclaim_flag);
5633 }
5634
5635 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5636 {
5637         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5638         struct bpf_prog *new = xdp->prog;
5639         int ret = 0;
5640
5641         if (new) {
5642                 u32 i;
5643
5644                 mutex_lock(&new->aux->used_maps_mutex);
5645
5646                 /* generic XDP does not work with DEVMAPs that can
5647                  * have a bpf_prog installed on an entry
5648                  */
5649                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5650                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5651                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5652                                 mutex_unlock(&new->aux->used_maps_mutex);
5653                                 return -EINVAL;
5654                         }
5655                 }
5656
5657                 mutex_unlock(&new->aux->used_maps_mutex);
5658         }
5659
5660         switch (xdp->command) {
5661         case XDP_SETUP_PROG:
5662                 rcu_assign_pointer(dev->xdp_prog, new);
5663                 if (old)
5664                         bpf_prog_put(old);
5665
5666                 if (old && !new) {
5667                         static_branch_dec(&generic_xdp_needed_key);
5668                 } else if (new && !old) {
5669                         static_branch_inc(&generic_xdp_needed_key);
5670                         dev_disable_lro(dev);
5671                         dev_disable_gro_hw(dev);
5672                 }
5673                 break;
5674
5675         default:
5676                 ret = -EINVAL;
5677                 break;
5678         }
5679
5680         return ret;
5681 }
5682
5683 static int netif_receive_skb_internal(struct sk_buff *skb)
5684 {
5685         int ret;
5686
5687         net_timestamp_check(netdev_tstamp_prequeue, skb);
5688
5689         if (skb_defer_rx_timestamp(skb))
5690                 return NET_RX_SUCCESS;
5691
5692         rcu_read_lock();
5693 #ifdef CONFIG_RPS
5694         if (static_branch_unlikely(&rps_needed)) {
5695                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5696                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5697
5698                 if (cpu >= 0) {
5699                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5700                         rcu_read_unlock();
5701                         return ret;
5702                 }
5703         }
5704 #endif
5705         ret = __netif_receive_skb(skb);
5706         rcu_read_unlock();
5707         return ret;
5708 }
5709
5710 static void netif_receive_skb_list_internal(struct list_head *head)
5711 {
5712         struct sk_buff *skb, *next;
5713         struct list_head sublist;
5714
5715         INIT_LIST_HEAD(&sublist);
5716         list_for_each_entry_safe(skb, next, head, list) {
5717                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5718                 skb_list_del_init(skb);
5719                 if (!skb_defer_rx_timestamp(skb))
5720                         list_add_tail(&skb->list, &sublist);
5721         }
5722         list_splice_init(&sublist, head);
5723
5724         rcu_read_lock();
5725 #ifdef CONFIG_RPS
5726         if (static_branch_unlikely(&rps_needed)) {
5727                 list_for_each_entry_safe(skb, next, head, list) {
5728                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5729                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5730
5731                         if (cpu >= 0) {
5732                                 /* Will be handled, remove from list */
5733                                 skb_list_del_init(skb);
5734                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5735                         }
5736                 }
5737         }
5738 #endif
5739         __netif_receive_skb_list(head);
5740         rcu_read_unlock();
5741 }
5742
5743 /**
5744  *      netif_receive_skb - process receive buffer from network
5745  *      @skb: buffer to process
5746  *
5747  *      netif_receive_skb() is the main receive data processing function.
5748  *      It always succeeds. The buffer may be dropped during processing
5749  *      for congestion control or by the protocol layers.
5750  *
5751  *      This function may only be called from softirq context and interrupts
5752  *      should be enabled.
5753  *
5754  *      Return values (usually ignored):
5755  *      NET_RX_SUCCESS: no congestion
5756  *      NET_RX_DROP: packet was dropped
5757  */
5758 int netif_receive_skb(struct sk_buff *skb)
5759 {
5760         int ret;
5761
5762         trace_netif_receive_skb_entry(skb);
5763
5764         ret = netif_receive_skb_internal(skb);
5765         trace_netif_receive_skb_exit(ret);
5766
5767         return ret;
5768 }
5769 EXPORT_SYMBOL(netif_receive_skb);
5770
5771 /**
5772  *      netif_receive_skb_list - process many receive buffers from network
5773  *      @head: list of skbs to process.
5774  *
5775  *      Since return value of netif_receive_skb() is normally ignored, and
5776  *      wouldn't be meaningful for a list, this function returns void.
5777  *
5778  *      This function may only be called from softirq context and interrupts
5779  *      should be enabled.
5780  */
5781 void netif_receive_skb_list(struct list_head *head)
5782 {
5783         struct sk_buff *skb;
5784
5785         if (list_empty(head))
5786                 return;
5787         if (trace_netif_receive_skb_list_entry_enabled()) {
5788                 list_for_each_entry(skb, head, list)
5789                         trace_netif_receive_skb_list_entry(skb);
5790         }
5791         netif_receive_skb_list_internal(head);
5792         trace_netif_receive_skb_list_exit(0);
5793 }
5794 EXPORT_SYMBOL(netif_receive_skb_list);
5795
5796 static DEFINE_PER_CPU(struct work_struct, flush_works);
5797
5798 /* Network device is going away, flush any packets still pending */
5799 static void flush_backlog(struct work_struct *work)
5800 {
5801         struct sk_buff *skb, *tmp;
5802         struct softnet_data *sd;
5803
5804         local_bh_disable();
5805         sd = this_cpu_ptr(&softnet_data);
5806
5807         local_irq_disable();
5808         rps_lock(sd);
5809         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5810                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5811                         __skb_unlink(skb, &sd->input_pkt_queue);
5812                         dev_kfree_skb_irq(skb);
5813                         input_queue_head_incr(sd);
5814                 }
5815         }
5816         rps_unlock(sd);
5817         local_irq_enable();
5818
5819         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5820                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5821                         __skb_unlink(skb, &sd->process_queue);
5822                         kfree_skb(skb);
5823                         input_queue_head_incr(sd);
5824                 }
5825         }
5826         local_bh_enable();
5827 }
5828
5829 static bool flush_required(int cpu)
5830 {
5831 #if IS_ENABLED(CONFIG_RPS)
5832         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5833         bool do_flush;
5834
5835         local_irq_disable();
5836         rps_lock(sd);
5837
5838         /* as insertion into process_queue happens with the rps lock held,
5839          * process_queue access may race only with dequeue
5840          */
5841         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5842                    !skb_queue_empty_lockless(&sd->process_queue);
5843         rps_unlock(sd);
5844         local_irq_enable();
5845
5846         return do_flush;
5847 #endif
5848         /* without RPS we can't safely check input_pkt_queue: during a
5849          * concurrent remote skb_queue_splice() we can detect as empty both
5850          * input_pkt_queue and process_queue even if the latter could end-up
5851          * containing a lot of packets.
5852          */
5853         return true;
5854 }
5855
5856 static void flush_all_backlogs(void)
5857 {
5858         static cpumask_t flush_cpus;
5859         unsigned int cpu;
5860
5861         /* since we are under rtnl lock protection we can use static data
5862          * for the cpumask and avoid allocating on stack the possibly
5863          * large mask
5864          */
5865         ASSERT_RTNL();
5866
5867         get_online_cpus();
5868
5869         cpumask_clear(&flush_cpus);
5870         for_each_online_cpu(cpu) {
5871                 if (flush_required(cpu)) {
5872                         queue_work_on(cpu, system_highpri_wq,
5873                                       per_cpu_ptr(&flush_works, cpu));
5874                         cpumask_set_cpu(cpu, &flush_cpus);
5875                 }
5876         }
5877
5878         /* we can have in flight packet[s] on the cpus we are not flushing,
5879          * synchronize_net() in unregister_netdevice_many() will take care of
5880          * them
5881          */
5882         for_each_cpu(cpu, &flush_cpus)
5883                 flush_work(per_cpu_ptr(&flush_works, cpu));
5884
5885         put_online_cpus();
5886 }
5887
5888 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5889 static void gro_normal_list(struct napi_struct *napi)
5890 {
5891         if (!napi->rx_count)
5892                 return;
5893         netif_receive_skb_list_internal(&napi->rx_list);
5894         INIT_LIST_HEAD(&napi->rx_list);
5895         napi->rx_count = 0;
5896 }
5897
5898 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5899  * pass the whole batch up to the stack.
5900  */
5901 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5902 {
5903         list_add_tail(&skb->list, &napi->rx_list);
5904         napi->rx_count += segs;
5905         if (napi->rx_count >= gro_normal_batch)
5906                 gro_normal_list(napi);
5907 }
5908
5909 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5910 {
5911         struct packet_offload *ptype;
5912         __be16 type = skb->protocol;
5913         struct list_head *head = &offload_base;
5914         int err = -ENOENT;
5915
5916         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5917
5918         if (NAPI_GRO_CB(skb)->count == 1) {
5919                 skb_shinfo(skb)->gso_size = 0;
5920                 goto out;
5921         }
5922
5923         rcu_read_lock();
5924         list_for_each_entry_rcu(ptype, head, list) {
5925                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5926                         continue;
5927
5928                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5929                                          ipv6_gro_complete, inet_gro_complete,
5930                                          skb, 0);
5931                 break;
5932         }
5933         rcu_read_unlock();
5934
5935         if (err) {
5936                 WARN_ON(&ptype->list == head);
5937                 kfree_skb(skb);
5938                 return NET_RX_SUCCESS;
5939         }
5940
5941 out:
5942         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5943         return NET_RX_SUCCESS;
5944 }
5945
5946 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5947                                    bool flush_old)
5948 {
5949         struct list_head *head = &napi->gro_hash[index].list;
5950         struct sk_buff *skb, *p;
5951
5952         list_for_each_entry_safe_reverse(skb, p, head, list) {
5953                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5954                         return;
5955                 skb_list_del_init(skb);
5956                 napi_gro_complete(napi, skb);
5957                 napi->gro_hash[index].count--;
5958         }
5959
5960         if (!napi->gro_hash[index].count)
5961                 __clear_bit(index, &napi->gro_bitmask);
5962 }
5963
5964 /* napi->gro_hash[].list contains packets ordered by age.
5965  * youngest packets at the head of it.
5966  * Complete skbs in reverse order to reduce latencies.
5967  */
5968 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5969 {
5970         unsigned long bitmask = napi->gro_bitmask;
5971         unsigned int i, base = ~0U;
5972
5973         while ((i = ffs(bitmask)) != 0) {
5974                 bitmask >>= i;
5975                 base += i;
5976                 __napi_gro_flush_chain(napi, base, flush_old);
5977         }
5978 }
5979 EXPORT_SYMBOL(napi_gro_flush);
5980
5981 static void gro_list_prepare(const struct list_head *head,
5982                              const struct sk_buff *skb)
5983 {
5984         unsigned int maclen = skb->dev->hard_header_len;
5985         u32 hash = skb_get_hash_raw(skb);
5986         struct sk_buff *p;
5987
5988         list_for_each_entry(p, head, list) {
5989                 unsigned long diffs;
5990
5991                 NAPI_GRO_CB(p)->flush = 0;
5992
5993                 if (hash != skb_get_hash_raw(p)) {
5994                         NAPI_GRO_CB(p)->same_flow = 0;
5995                         continue;
5996                 }
5997
5998                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5999                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
6000                 if (skb_vlan_tag_present(p))
6001                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
6002                 diffs |= skb_metadata_dst_cmp(p, skb);
6003                 diffs |= skb_metadata_differs(p, skb);
6004                 if (maclen == ETH_HLEN)
6005                         diffs |= compare_ether_header(skb_mac_header(p),
6006                                                       skb_mac_header(skb));
6007                 else if (!diffs)
6008                         diffs = memcmp(skb_mac_header(p),
6009                                        skb_mac_header(skb),
6010                                        maclen);
6011                 NAPI_GRO_CB(p)->same_flow = !diffs;
6012         }
6013 }
6014
6015 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6016 {
6017         const struct skb_shared_info *pinfo = skb_shinfo(skb);
6018         const skb_frag_t *frag0 = &pinfo->frags[0];
6019
6020         NAPI_GRO_CB(skb)->data_offset = 0;
6021         NAPI_GRO_CB(skb)->frag0 = NULL;
6022         NAPI_GRO_CB(skb)->frag0_len = 0;
6023
6024         if (!skb_headlen(skb) && pinfo->nr_frags &&
6025             !PageHighMem(skb_frag_page(frag0)) &&
6026             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6027                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6028                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6029                                                     skb_frag_size(frag0),
6030                                                     skb->end - skb->tail);
6031         }
6032 }
6033
6034 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6035 {
6036         struct skb_shared_info *pinfo = skb_shinfo(skb);
6037
6038         BUG_ON(skb->end - skb->tail < grow);
6039
6040         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6041
6042         skb->data_len -= grow;
6043         skb->tail += grow;
6044
6045         skb_frag_off_add(&pinfo->frags[0], grow);
6046         skb_frag_size_sub(&pinfo->frags[0], grow);
6047
6048         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6049                 skb_frag_unref(skb, 0);
6050                 memmove(pinfo->frags, pinfo->frags + 1,
6051                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6052         }
6053 }
6054
6055 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6056 {
6057         struct sk_buff *oldest;
6058
6059         oldest = list_last_entry(head, struct sk_buff, list);
6060
6061         /* We are called with head length >= MAX_GRO_SKBS, so this is
6062          * impossible.
6063          */
6064         if (WARN_ON_ONCE(!oldest))
6065                 return;
6066
6067         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6068          * SKB to the chain.
6069          */
6070         skb_list_del_init(oldest);
6071         napi_gro_complete(napi, oldest);
6072 }
6073
6074 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6075 {
6076         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6077         struct gro_list *gro_list = &napi->gro_hash[bucket];
6078         struct list_head *head = &offload_base;
6079         struct packet_offload *ptype;
6080         __be16 type = skb->protocol;
6081         struct sk_buff *pp = NULL;
6082         enum gro_result ret;
6083         int same_flow;
6084         int grow;
6085
6086         if (netif_elide_gro(skb->dev))
6087                 goto normal;
6088
6089         gro_list_prepare(&gro_list->list, skb);
6090
6091         rcu_read_lock();
6092         list_for_each_entry_rcu(ptype, head, list) {
6093                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6094                         continue;
6095
6096                 skb_set_network_header(skb, skb_gro_offset(skb));
6097                 skb_reset_mac_len(skb);
6098                 NAPI_GRO_CB(skb)->same_flow = 0;
6099                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6100                 NAPI_GRO_CB(skb)->free = 0;
6101                 NAPI_GRO_CB(skb)->encap_mark = 0;
6102                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6103                 NAPI_GRO_CB(skb)->is_fou = 0;
6104                 NAPI_GRO_CB(skb)->is_atomic = 1;
6105                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6106
6107                 /* Setup for GRO checksum validation */
6108                 switch (skb->ip_summed) {
6109                 case CHECKSUM_COMPLETE:
6110                         NAPI_GRO_CB(skb)->csum = skb->csum;
6111                         NAPI_GRO_CB(skb)->csum_valid = 1;
6112                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6113                         break;
6114                 case CHECKSUM_UNNECESSARY:
6115                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6116                         NAPI_GRO_CB(skb)->csum_valid = 0;
6117                         break;
6118                 default:
6119                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6120                         NAPI_GRO_CB(skb)->csum_valid = 0;
6121                 }
6122
6123                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6124                                         ipv6_gro_receive, inet_gro_receive,
6125                                         &gro_list->list, skb);
6126                 break;
6127         }
6128         rcu_read_unlock();
6129
6130         if (&ptype->list == head)
6131                 goto normal;
6132
6133         if (PTR_ERR(pp) == -EINPROGRESS) {
6134                 ret = GRO_CONSUMED;
6135                 goto ok;
6136         }
6137
6138         same_flow = NAPI_GRO_CB(skb)->same_flow;
6139         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6140
6141         if (pp) {
6142                 skb_list_del_init(pp);
6143                 napi_gro_complete(napi, pp);
6144                 gro_list->count--;
6145         }
6146
6147         if (same_flow)
6148                 goto ok;
6149
6150         if (NAPI_GRO_CB(skb)->flush)
6151                 goto normal;
6152
6153         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6154                 gro_flush_oldest(napi, &gro_list->list);
6155         else
6156                 gro_list->count++;
6157
6158         NAPI_GRO_CB(skb)->count = 1;
6159         NAPI_GRO_CB(skb)->age = jiffies;
6160         NAPI_GRO_CB(skb)->last = skb;
6161         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6162         list_add(&skb->list, &gro_list->list);
6163         ret = GRO_HELD;
6164
6165 pull:
6166         grow = skb_gro_offset(skb) - skb_headlen(skb);
6167         if (grow > 0)
6168                 gro_pull_from_frag0(skb, grow);
6169 ok:
6170         if (gro_list->count) {
6171                 if (!test_bit(bucket, &napi->gro_bitmask))
6172                         __set_bit(bucket, &napi->gro_bitmask);
6173         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6174                 __clear_bit(bucket, &napi->gro_bitmask);
6175         }
6176
6177         return ret;
6178
6179 normal:
6180         ret = GRO_NORMAL;
6181         goto pull;
6182 }
6183
6184 struct packet_offload *gro_find_receive_by_type(__be16 type)
6185 {
6186         struct list_head *offload_head = &offload_base;
6187         struct packet_offload *ptype;
6188
6189         list_for_each_entry_rcu(ptype, offload_head, list) {
6190                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6191                         continue;
6192                 return ptype;
6193         }
6194         return NULL;
6195 }
6196 EXPORT_SYMBOL(gro_find_receive_by_type);
6197
6198 struct packet_offload *gro_find_complete_by_type(__be16 type)
6199 {
6200         struct list_head *offload_head = &offload_base;
6201         struct packet_offload *ptype;
6202
6203         list_for_each_entry_rcu(ptype, offload_head, list) {
6204                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6205                         continue;
6206                 return ptype;
6207         }
6208         return NULL;
6209 }
6210 EXPORT_SYMBOL(gro_find_complete_by_type);
6211
6212 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6213                                     struct sk_buff *skb,
6214                                     gro_result_t ret)
6215 {
6216         switch (ret) {
6217         case GRO_NORMAL:
6218                 gro_normal_one(napi, skb, 1);
6219                 break;
6220
6221         case GRO_MERGED_FREE:
6222                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6223                         napi_skb_free_stolen_head(skb);
6224                 else
6225                         __kfree_skb_defer(skb);
6226                 break;
6227
6228         case GRO_HELD:
6229         case GRO_MERGED:
6230         case GRO_CONSUMED:
6231                 break;
6232         }
6233
6234         return ret;
6235 }
6236
6237 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6238 {
6239         gro_result_t ret;
6240
6241         skb_mark_napi_id(skb, napi);
6242         trace_napi_gro_receive_entry(skb);
6243
6244         skb_gro_reset_offset(skb, 0);
6245
6246         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6247         trace_napi_gro_receive_exit(ret);
6248
6249         return ret;
6250 }
6251 EXPORT_SYMBOL(napi_gro_receive);
6252
6253 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6254 {
6255         if (unlikely(skb->pfmemalloc)) {
6256                 consume_skb(skb);
6257                 return;
6258         }
6259         __skb_pull(skb, skb_headlen(skb));
6260         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6261         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6262         __vlan_hwaccel_clear_tag(skb);
6263         skb->dev = napi->dev;
6264         skb->skb_iif = 0;
6265
6266         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6267         skb->pkt_type = PACKET_HOST;
6268
6269         skb->encapsulation = 0;
6270         skb_shinfo(skb)->gso_type = 0;
6271         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6272         skb_ext_reset(skb);
6273
6274         napi->skb = skb;
6275 }
6276
6277 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6278 {
6279         struct sk_buff *skb = napi->skb;
6280
6281         if (!skb) {
6282                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6283                 if (skb) {
6284                         napi->skb = skb;
6285                         skb_mark_napi_id(skb, napi);
6286                 }
6287         }
6288         return skb;
6289 }
6290 EXPORT_SYMBOL(napi_get_frags);
6291
6292 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6293                                       struct sk_buff *skb,
6294                                       gro_result_t ret)
6295 {
6296         switch (ret) {
6297         case GRO_NORMAL:
6298         case GRO_HELD:
6299                 __skb_push(skb, ETH_HLEN);
6300                 skb->protocol = eth_type_trans(skb, skb->dev);
6301                 if (ret == GRO_NORMAL)
6302                         gro_normal_one(napi, skb, 1);
6303                 break;
6304
6305         case GRO_MERGED_FREE:
6306                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6307                         napi_skb_free_stolen_head(skb);
6308                 else
6309                         napi_reuse_skb(napi, skb);
6310                 break;
6311
6312         case GRO_MERGED:
6313         case GRO_CONSUMED:
6314                 break;
6315         }
6316
6317         return ret;
6318 }
6319
6320 /* Upper GRO stack assumes network header starts at gro_offset=0
6321  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6322  * We copy ethernet header into skb->data to have a common layout.
6323  */
6324 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6325 {
6326         struct sk_buff *skb = napi->skb;
6327         const struct ethhdr *eth;
6328         unsigned int hlen = sizeof(*eth);
6329
6330         napi->skb = NULL;
6331
6332         skb_reset_mac_header(skb);
6333         skb_gro_reset_offset(skb, hlen);
6334
6335         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6336                 eth = skb_gro_header_slow(skb, hlen, 0);
6337                 if (unlikely(!eth)) {
6338                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6339                                              __func__, napi->dev->name);
6340                         napi_reuse_skb(napi, skb);
6341                         return NULL;
6342                 }
6343         } else {
6344                 eth = (const struct ethhdr *)skb->data;
6345                 gro_pull_from_frag0(skb, hlen);
6346                 NAPI_GRO_CB(skb)->frag0 += hlen;
6347                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6348         }
6349         __skb_pull(skb, hlen);
6350
6351         /*
6352          * This works because the only protocols we care about don't require
6353          * special handling.
6354          * We'll fix it up properly in napi_frags_finish()
6355          */
6356         skb->protocol = eth->h_proto;
6357
6358         return skb;
6359 }
6360
6361 gro_result_t napi_gro_frags(struct napi_struct *napi)
6362 {
6363         gro_result_t ret;
6364         struct sk_buff *skb = napi_frags_skb(napi);
6365
6366         trace_napi_gro_frags_entry(skb);
6367
6368         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6369         trace_napi_gro_frags_exit(ret);
6370
6371         return ret;
6372 }
6373 EXPORT_SYMBOL(napi_gro_frags);
6374
6375 /* Compute the checksum from gro_offset and return the folded value
6376  * after adding in any pseudo checksum.
6377  */
6378 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6379 {
6380         __wsum wsum;
6381         __sum16 sum;
6382
6383         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6384
6385         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6386         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6387         /* See comments in __skb_checksum_complete(). */
6388         if (likely(!sum)) {
6389                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6390                     !skb->csum_complete_sw)
6391                         netdev_rx_csum_fault(skb->dev, skb);
6392         }
6393
6394         NAPI_GRO_CB(skb)->csum = wsum;
6395         NAPI_GRO_CB(skb)->csum_valid = 1;
6396
6397         return sum;
6398 }
6399 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6400
6401 static void net_rps_send_ipi(struct softnet_data *remsd)
6402 {
6403 #ifdef CONFIG_RPS
6404         while (remsd) {
6405                 struct softnet_data *next = remsd->rps_ipi_next;
6406
6407                 if (cpu_online(remsd->cpu))
6408                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6409                 remsd = next;
6410         }
6411 #endif
6412 }
6413
6414 /*
6415  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6416  * Note: called with local irq disabled, but exits with local irq enabled.
6417  */
6418 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6419 {
6420 #ifdef CONFIG_RPS
6421         struct softnet_data *remsd = sd->rps_ipi_list;
6422
6423         if (remsd) {
6424                 sd->rps_ipi_list = NULL;
6425
6426                 local_irq_enable();
6427
6428                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6429                 net_rps_send_ipi(remsd);
6430         } else
6431 #endif
6432                 local_irq_enable();
6433 }
6434
6435 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6436 {
6437 #ifdef CONFIG_RPS
6438         return sd->rps_ipi_list != NULL;
6439 #else
6440         return false;
6441 #endif
6442 }
6443
6444 static int process_backlog(struct napi_struct *napi, int quota)
6445 {
6446         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6447         bool again = true;
6448         int work = 0;
6449
6450         /* Check if we have pending ipi, its better to send them now,
6451          * not waiting net_rx_action() end.
6452          */
6453         if (sd_has_rps_ipi_waiting(sd)) {
6454                 local_irq_disable();
6455                 net_rps_action_and_irq_enable(sd);
6456         }
6457
6458         napi->weight = dev_rx_weight;
6459         while (again) {
6460                 struct sk_buff *skb;
6461
6462                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6463                         rcu_read_lock();
6464                         __netif_receive_skb(skb);
6465                         rcu_read_unlock();
6466                         input_queue_head_incr(sd);
6467                         if (++work >= quota)
6468                                 return work;
6469
6470                 }
6471
6472                 local_irq_disable();
6473                 rps_lock(sd);
6474                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6475                         /*
6476                          * Inline a custom version of __napi_complete().
6477                          * only current cpu owns and manipulates this napi,
6478                          * and NAPI_STATE_SCHED is the only possible flag set
6479                          * on backlog.
6480                          * We can use a plain write instead of clear_bit(),
6481                          * and we dont need an smp_mb() memory barrier.
6482                          */
6483                         napi->state = 0;
6484                         again = false;
6485                 } else {
6486                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6487                                                    &sd->process_queue);
6488                 }
6489                 rps_unlock(sd);
6490                 local_irq_enable();
6491         }
6492
6493         return work;
6494 }
6495
6496 /**
6497  * __napi_schedule - schedule for receive
6498  * @n: entry to schedule
6499  *
6500  * The entry's receive function will be scheduled to run.
6501  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6502  */
6503 void __napi_schedule(struct napi_struct *n)
6504 {
6505         unsigned long flags;
6506
6507         local_irq_save(flags);
6508         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6509         local_irq_restore(flags);
6510 }
6511 EXPORT_SYMBOL(__napi_schedule);
6512
6513 /**
6514  *      napi_schedule_prep - check if napi can be scheduled
6515  *      @n: napi context
6516  *
6517  * Test if NAPI routine is already running, and if not mark
6518  * it as running.  This is used as a condition variable to
6519  * insure only one NAPI poll instance runs.  We also make
6520  * sure there is no pending NAPI disable.
6521  */
6522 bool napi_schedule_prep(struct napi_struct *n)
6523 {
6524         unsigned long val, new;
6525
6526         do {
6527                 val = READ_ONCE(n->state);
6528                 if (unlikely(val & NAPIF_STATE_DISABLE))
6529                         return false;
6530                 new = val | NAPIF_STATE_SCHED;
6531
6532                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6533                  * This was suggested by Alexander Duyck, as compiler
6534                  * emits better code than :
6535                  * if (val & NAPIF_STATE_SCHED)
6536                  *     new |= NAPIF_STATE_MISSED;
6537                  */
6538                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6539                                                    NAPIF_STATE_MISSED;
6540         } while (cmpxchg(&n->state, val, new) != val);
6541
6542         return !(val & NAPIF_STATE_SCHED);
6543 }
6544 EXPORT_SYMBOL(napi_schedule_prep);
6545
6546 /**
6547  * __napi_schedule_irqoff - schedule for receive
6548  * @n: entry to schedule
6549  *
6550  * Variant of __napi_schedule() assuming hard irqs are masked.
6551  *
6552  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6553  * because the interrupt disabled assumption might not be true
6554  * due to force-threaded interrupts and spinlock substitution.
6555  */
6556 void __napi_schedule_irqoff(struct napi_struct *n)
6557 {
6558         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6559                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6560         else
6561                 __napi_schedule(n);
6562 }
6563 EXPORT_SYMBOL(__napi_schedule_irqoff);
6564
6565 bool napi_complete_done(struct napi_struct *n, int work_done)
6566 {
6567         unsigned long flags, val, new, timeout = 0;
6568         bool ret = true;
6569
6570         /*
6571          * 1) Don't let napi dequeue from the cpu poll list
6572          *    just in case its running on a different cpu.
6573          * 2) If we are busy polling, do nothing here, we have
6574          *    the guarantee we will be called later.
6575          */
6576         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6577                                  NAPIF_STATE_IN_BUSY_POLL)))
6578                 return false;
6579
6580         if (work_done) {
6581                 if (n->gro_bitmask)
6582                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6583                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6584         }
6585         if (n->defer_hard_irqs_count > 0) {
6586                 n->defer_hard_irqs_count--;
6587                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6588                 if (timeout)
6589                         ret = false;
6590         }
6591         if (n->gro_bitmask) {
6592                 /* When the NAPI instance uses a timeout and keeps postponing
6593                  * it, we need to bound somehow the time packets are kept in
6594                  * the GRO layer
6595                  */
6596                 napi_gro_flush(n, !!timeout);
6597         }
6598
6599         gro_normal_list(n);
6600
6601         if (unlikely(!list_empty(&n->poll_list))) {
6602                 /* If n->poll_list is not empty, we need to mask irqs */
6603                 local_irq_save(flags);
6604                 list_del_init(&n->poll_list);
6605                 local_irq_restore(flags);
6606         }
6607
6608         do {
6609                 val = READ_ONCE(n->state);
6610
6611                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6612
6613                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6614                               NAPIF_STATE_SCHED_THREADED |
6615                               NAPIF_STATE_PREFER_BUSY_POLL);
6616
6617                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6618                  * because we will call napi->poll() one more time.
6619                  * This C code was suggested by Alexander Duyck to help gcc.
6620                  */
6621                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6622                                                     NAPIF_STATE_SCHED;
6623         } while (cmpxchg(&n->state, val, new) != val);
6624
6625         if (unlikely(val & NAPIF_STATE_MISSED)) {
6626                 __napi_schedule(n);
6627                 return false;
6628         }
6629
6630         if (timeout)
6631                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6632                               HRTIMER_MODE_REL_PINNED);
6633         return ret;
6634 }
6635 EXPORT_SYMBOL(napi_complete_done);
6636
6637 /* must be called under rcu_read_lock(), as we dont take a reference */
6638 static struct napi_struct *napi_by_id(unsigned int napi_id)
6639 {
6640         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6641         struct napi_struct *napi;
6642
6643         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6644                 if (napi->napi_id == napi_id)
6645                         return napi;
6646
6647         return NULL;
6648 }
6649
6650 #if defined(CONFIG_NET_RX_BUSY_POLL)
6651
6652 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6653 {
6654         if (!skip_schedule) {
6655                 gro_normal_list(napi);
6656                 __napi_schedule(napi);
6657                 return;
6658         }
6659
6660         if (napi->gro_bitmask) {
6661                 /* flush too old packets
6662                  * If HZ < 1000, flush all packets.
6663                  */
6664                 napi_gro_flush(napi, HZ >= 1000);
6665         }
6666
6667         gro_normal_list(napi);
6668         clear_bit(NAPI_STATE_SCHED, &napi->state);
6669 }
6670
6671 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6672                            u16 budget)
6673 {
6674         bool skip_schedule = false;
6675         unsigned long timeout;
6676         int rc;
6677
6678         /* Busy polling means there is a high chance device driver hard irq
6679          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6680          * set in napi_schedule_prep().
6681          * Since we are about to call napi->poll() once more, we can safely
6682          * clear NAPI_STATE_MISSED.
6683          *
6684          * Note: x86 could use a single "lock and ..." instruction
6685          * to perform these two clear_bit()
6686          */
6687         clear_bit(NAPI_STATE_MISSED, &napi->state);
6688         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6689
6690         local_bh_disable();
6691
6692         if (prefer_busy_poll) {
6693                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6694                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6695                 if (napi->defer_hard_irqs_count && timeout) {
6696                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6697                         skip_schedule = true;
6698                 }
6699         }
6700
6701         /* All we really want here is to re-enable device interrupts.
6702          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6703          */
6704         rc = napi->poll(napi, budget);
6705         /* We can't gro_normal_list() here, because napi->poll() might have
6706          * rearmed the napi (napi_complete_done()) in which case it could
6707          * already be running on another CPU.
6708          */
6709         trace_napi_poll(napi, rc, budget);
6710         netpoll_poll_unlock(have_poll_lock);
6711         if (rc == budget)
6712                 __busy_poll_stop(napi, skip_schedule);
6713         local_bh_enable();
6714 }
6715
6716 void napi_busy_loop(unsigned int napi_id,
6717                     bool (*loop_end)(void *, unsigned long),
6718                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6719 {
6720         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6721         int (*napi_poll)(struct napi_struct *napi, int budget);
6722         void *have_poll_lock = NULL;
6723         struct napi_struct *napi;
6724
6725 restart:
6726         napi_poll = NULL;
6727
6728         rcu_read_lock();
6729
6730         napi = napi_by_id(napi_id);
6731         if (!napi)
6732                 goto out;
6733
6734         preempt_disable();
6735         for (;;) {
6736                 int work = 0;
6737
6738                 local_bh_disable();
6739                 if (!napi_poll) {
6740                         unsigned long val = READ_ONCE(napi->state);
6741
6742                         /* If multiple threads are competing for this napi,
6743                          * we avoid dirtying napi->state as much as we can.
6744                          */
6745                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6746                                    NAPIF_STATE_IN_BUSY_POLL)) {
6747                                 if (prefer_busy_poll)
6748                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6749                                 goto count;
6750                         }
6751                         if (cmpxchg(&napi->state, val,
6752                                     val | NAPIF_STATE_IN_BUSY_POLL |
6753                                           NAPIF_STATE_SCHED) != val) {
6754                                 if (prefer_busy_poll)
6755                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6756                                 goto count;
6757                         }
6758                         have_poll_lock = netpoll_poll_lock(napi);
6759                         napi_poll = napi->poll;
6760                 }
6761                 work = napi_poll(napi, budget);
6762                 trace_napi_poll(napi, work, budget);
6763                 gro_normal_list(napi);
6764 count:
6765                 if (work > 0)
6766                         __NET_ADD_STATS(dev_net(napi->dev),
6767                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6768                 local_bh_enable();
6769
6770                 if (!loop_end || loop_end(loop_end_arg, start_time))
6771                         break;
6772
6773                 if (unlikely(need_resched())) {
6774                         if (napi_poll)
6775                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6776                         preempt_enable();
6777                         rcu_read_unlock();
6778                         cond_resched();
6779                         if (loop_end(loop_end_arg, start_time))
6780                                 return;
6781                         goto restart;
6782                 }
6783                 cpu_relax();
6784         }
6785         if (napi_poll)
6786                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6787         preempt_enable();
6788 out:
6789         rcu_read_unlock();
6790 }
6791 EXPORT_SYMBOL(napi_busy_loop);
6792
6793 #endif /* CONFIG_NET_RX_BUSY_POLL */
6794
6795 static void napi_hash_add(struct napi_struct *napi)
6796 {
6797         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6798                 return;
6799
6800         spin_lock(&napi_hash_lock);
6801
6802         /* 0..NR_CPUS range is reserved for sender_cpu use */
6803         do {
6804                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6805                         napi_gen_id = MIN_NAPI_ID;
6806         } while (napi_by_id(napi_gen_id));
6807         napi->napi_id = napi_gen_id;
6808
6809         hlist_add_head_rcu(&napi->napi_hash_node,
6810                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6811
6812         spin_unlock(&napi_hash_lock);
6813 }
6814
6815 /* Warning : caller is responsible to make sure rcu grace period
6816  * is respected before freeing memory containing @napi
6817  */
6818 static void napi_hash_del(struct napi_struct *napi)
6819 {
6820         spin_lock(&napi_hash_lock);
6821
6822         hlist_del_init_rcu(&napi->napi_hash_node);
6823
6824         spin_unlock(&napi_hash_lock);
6825 }
6826
6827 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6828 {
6829         struct napi_struct *napi;
6830
6831         napi = container_of(timer, struct napi_struct, timer);
6832
6833         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6834          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6835          */
6836         if (!napi_disable_pending(napi) &&
6837             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6838                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6839                 __napi_schedule_irqoff(napi);
6840         }
6841
6842         return HRTIMER_NORESTART;
6843 }
6844
6845 static void init_gro_hash(struct napi_struct *napi)
6846 {
6847         int i;
6848
6849         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6850                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6851                 napi->gro_hash[i].count = 0;
6852         }
6853         napi->gro_bitmask = 0;
6854 }
6855
6856 int dev_set_threaded(struct net_device *dev, bool threaded)
6857 {
6858         struct napi_struct *napi;
6859         int err = 0;
6860
6861         if (dev->threaded == threaded)
6862                 return 0;
6863
6864         if (threaded) {
6865                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6866                         if (!napi->thread) {
6867                                 err = napi_kthread_create(napi);
6868                                 if (err) {
6869                                         threaded = false;
6870                                         break;
6871                                 }
6872                         }
6873                 }
6874         }
6875
6876         dev->threaded = threaded;
6877
6878         /* Make sure kthread is created before THREADED bit
6879          * is set.
6880          */
6881         smp_mb__before_atomic();
6882
6883         /* Setting/unsetting threaded mode on a napi might not immediately
6884          * take effect, if the current napi instance is actively being
6885          * polled. In this case, the switch between threaded mode and
6886          * softirq mode will happen in the next round of napi_schedule().
6887          * This should not cause hiccups/stalls to the live traffic.
6888          */
6889         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6890                 if (threaded)
6891                         set_bit(NAPI_STATE_THREADED, &napi->state);
6892                 else
6893                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6894         }
6895
6896         return err;
6897 }
6898 EXPORT_SYMBOL(dev_set_threaded);
6899
6900 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6901                     int (*poll)(struct napi_struct *, int), int weight)
6902 {
6903         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6904                 return;
6905
6906         INIT_LIST_HEAD(&napi->poll_list);
6907         INIT_HLIST_NODE(&napi->napi_hash_node);
6908         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6909         napi->timer.function = napi_watchdog;
6910         init_gro_hash(napi);
6911         napi->skb = NULL;
6912         INIT_LIST_HEAD(&napi->rx_list);
6913         napi->rx_count = 0;
6914         napi->poll = poll;
6915         if (weight > NAPI_POLL_WEIGHT)
6916                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6917                                 weight);
6918         napi->weight = weight;
6919         napi->dev = dev;
6920 #ifdef CONFIG_NETPOLL
6921         napi->poll_owner = -1;
6922 #endif
6923         set_bit(NAPI_STATE_SCHED, &napi->state);
6924         set_bit(NAPI_STATE_NPSVC, &napi->state);
6925         list_add_rcu(&napi->dev_list, &dev->napi_list);
6926         napi_hash_add(napi);
6927         /* Create kthread for this napi if dev->threaded is set.
6928          * Clear dev->threaded if kthread creation failed so that
6929          * threaded mode will not be enabled in napi_enable().
6930          */
6931         if (dev->threaded && napi_kthread_create(napi))
6932                 dev->threaded = 0;
6933 }
6934 EXPORT_SYMBOL(netif_napi_add);
6935
6936 void napi_disable(struct napi_struct *n)
6937 {
6938         might_sleep();
6939         set_bit(NAPI_STATE_DISABLE, &n->state);
6940
6941         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6942                 msleep(1);
6943         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6944                 msleep(1);
6945
6946         hrtimer_cancel(&n->timer);
6947
6948         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6949         clear_bit(NAPI_STATE_DISABLE, &n->state);
6950         clear_bit(NAPI_STATE_THREADED, &n->state);
6951 }
6952 EXPORT_SYMBOL(napi_disable);
6953
6954 /**
6955  *      napi_enable - enable NAPI scheduling
6956  *      @n: NAPI context
6957  *
6958  * Resume NAPI from being scheduled on this context.
6959  * Must be paired with napi_disable.
6960  */
6961 void napi_enable(struct napi_struct *n)
6962 {
6963         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6964         smp_mb__before_atomic();
6965         clear_bit(NAPI_STATE_SCHED, &n->state);
6966         clear_bit(NAPI_STATE_NPSVC, &n->state);
6967         if (n->dev->threaded && n->thread)
6968                 set_bit(NAPI_STATE_THREADED, &n->state);
6969 }
6970 EXPORT_SYMBOL(napi_enable);
6971
6972 static void flush_gro_hash(struct napi_struct *napi)
6973 {
6974         int i;
6975
6976         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6977                 struct sk_buff *skb, *n;
6978
6979                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6980                         kfree_skb(skb);
6981                 napi->gro_hash[i].count = 0;
6982         }
6983 }
6984
6985 /* Must be called in process context */
6986 void __netif_napi_del(struct napi_struct *napi)
6987 {
6988         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6989                 return;
6990
6991         napi_hash_del(napi);
6992         list_del_rcu(&napi->dev_list);
6993         napi_free_frags(napi);
6994
6995         flush_gro_hash(napi);
6996         napi->gro_bitmask = 0;
6997
6998         if (napi->thread) {
6999                 kthread_stop(napi->thread);
7000                 napi->thread = NULL;
7001         }
7002 }
7003 EXPORT_SYMBOL(__netif_napi_del);
7004
7005 static int __napi_poll(struct napi_struct *n, bool *repoll)
7006 {
7007         int work, weight;
7008
7009         weight = n->weight;
7010
7011         /* This NAPI_STATE_SCHED test is for avoiding a race
7012          * with netpoll's poll_napi().  Only the entity which
7013          * obtains the lock and sees NAPI_STATE_SCHED set will
7014          * actually make the ->poll() call.  Therefore we avoid
7015          * accidentally calling ->poll() when NAPI is not scheduled.
7016          */
7017         work = 0;
7018         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7019                 work = n->poll(n, weight);
7020                 trace_napi_poll(n, work, weight);
7021         }
7022
7023         if (unlikely(work > weight))
7024                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7025                             n->poll, work, weight);
7026
7027         if (likely(work < weight))
7028                 return work;
7029
7030         /* Drivers must not modify the NAPI state if they
7031          * consume the entire weight.  In such cases this code
7032          * still "owns" the NAPI instance and therefore can
7033          * move the instance around on the list at-will.
7034          */
7035         if (unlikely(napi_disable_pending(n))) {
7036                 napi_complete(n);
7037                 return work;
7038         }
7039
7040         /* The NAPI context has more processing work, but busy-polling
7041          * is preferred. Exit early.
7042          */
7043         if (napi_prefer_busy_poll(n)) {
7044                 if (napi_complete_done(n, work)) {
7045                         /* If timeout is not set, we need to make sure
7046                          * that the NAPI is re-scheduled.
7047                          */
7048                         napi_schedule(n);
7049                 }
7050                 return work;
7051         }
7052
7053         if (n->gro_bitmask) {
7054                 /* flush too old packets
7055                  * If HZ < 1000, flush all packets.
7056                  */
7057                 napi_gro_flush(n, HZ >= 1000);
7058         }
7059
7060         gro_normal_list(n);
7061
7062         /* Some drivers may have called napi_schedule
7063          * prior to exhausting their budget.
7064          */
7065         if (unlikely(!list_empty(&n->poll_list))) {
7066                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7067                              n->dev ? n->dev->name : "backlog");
7068                 return work;
7069         }
7070
7071         *repoll = true;
7072
7073         return work;
7074 }
7075
7076 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7077 {
7078         bool do_repoll = false;
7079         void *have;
7080         int work;
7081
7082         list_del_init(&n->poll_list);
7083
7084         have = netpoll_poll_lock(n);
7085
7086         work = __napi_poll(n, &do_repoll);
7087
7088         if (do_repoll)
7089                 list_add_tail(&n->poll_list, repoll);
7090
7091         netpoll_poll_unlock(have);
7092
7093         return work;
7094 }
7095
7096 static int napi_thread_wait(struct napi_struct *napi)
7097 {
7098         bool woken = false;
7099
7100         set_current_state(TASK_INTERRUPTIBLE);
7101
7102         while (!kthread_should_stop()) {
7103                 /* Testing SCHED_THREADED bit here to make sure the current
7104                  * kthread owns this napi and could poll on this napi.
7105                  * Testing SCHED bit is not enough because SCHED bit might be
7106                  * set by some other busy poll thread or by napi_disable().
7107                  */
7108                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7109                         WARN_ON(!list_empty(&napi->poll_list));
7110                         __set_current_state(TASK_RUNNING);
7111                         return 0;
7112                 }
7113
7114                 schedule();
7115                 /* woken being true indicates this thread owns this napi. */
7116                 woken = true;
7117                 set_current_state(TASK_INTERRUPTIBLE);
7118         }
7119         __set_current_state(TASK_RUNNING);
7120
7121         return -1;
7122 }
7123
7124 static int napi_threaded_poll(void *data)
7125 {
7126         struct napi_struct *napi = data;
7127         void *have;
7128
7129         while (!napi_thread_wait(napi)) {
7130                 for (;;) {
7131                         bool repoll = false;
7132
7133                         local_bh_disable();
7134
7135                         have = netpoll_poll_lock(napi);
7136                         __napi_poll(napi, &repoll);
7137                         netpoll_poll_unlock(have);
7138
7139                         local_bh_enable();
7140
7141                         if (!repoll)
7142                                 break;
7143
7144                         cond_resched();
7145                 }
7146         }
7147         return 0;
7148 }
7149
7150 static __latent_entropy void net_rx_action(struct softirq_action *h)
7151 {
7152         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7153         unsigned long time_limit = jiffies +
7154                 usecs_to_jiffies(netdev_budget_usecs);
7155         int budget = netdev_budget;
7156         LIST_HEAD(list);
7157         LIST_HEAD(repoll);
7158
7159         local_irq_disable();
7160         list_splice_init(&sd->poll_list, &list);
7161         local_irq_enable();
7162
7163         for (;;) {
7164                 struct napi_struct *n;
7165
7166                 if (list_empty(&list)) {
7167                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7168                                 return;
7169                         break;
7170                 }
7171
7172                 n = list_first_entry(&list, struct napi_struct, poll_list);
7173                 budget -= napi_poll(n, &repoll);
7174
7175                 /* If softirq window is exhausted then punt.
7176                  * Allow this to run for 2 jiffies since which will allow
7177                  * an average latency of 1.5/HZ.
7178                  */
7179                 if (unlikely(budget <= 0 ||
7180                              time_after_eq(jiffies, time_limit))) {
7181                         sd->time_squeeze++;
7182                         break;
7183                 }
7184         }
7185
7186         local_irq_disable();
7187
7188         list_splice_tail_init(&sd->poll_list, &list);
7189         list_splice_tail(&repoll, &list);
7190         list_splice(&list, &sd->poll_list);
7191         if (!list_empty(&sd->poll_list))
7192                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7193
7194         net_rps_action_and_irq_enable(sd);
7195 }
7196
7197 struct netdev_adjacent {
7198         struct net_device *dev;
7199
7200         /* upper master flag, there can only be one master device per list */
7201         bool master;
7202
7203         /* lookup ignore flag */
7204         bool ignore;
7205
7206         /* counter for the number of times this device was added to us */
7207         u16 ref_nr;
7208
7209         /* private field for the users */
7210         void *private;
7211
7212         struct list_head list;
7213         struct rcu_head rcu;
7214 };
7215
7216 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7217                                                  struct list_head *adj_list)
7218 {
7219         struct netdev_adjacent *adj;
7220
7221         list_for_each_entry(adj, adj_list, list) {
7222                 if (adj->dev == adj_dev)
7223                         return adj;
7224         }
7225         return NULL;
7226 }
7227
7228 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7229                                     struct netdev_nested_priv *priv)
7230 {
7231         struct net_device *dev = (struct net_device *)priv->data;
7232
7233         return upper_dev == dev;
7234 }
7235
7236 /**
7237  * netdev_has_upper_dev - Check if device is linked to an upper device
7238  * @dev: device
7239  * @upper_dev: upper device to check
7240  *
7241  * Find out if a device is linked to specified upper device and return true
7242  * in case it is. Note that this checks only immediate upper device,
7243  * not through a complete stack of devices. The caller must hold the RTNL lock.
7244  */
7245 bool netdev_has_upper_dev(struct net_device *dev,
7246                           struct net_device *upper_dev)
7247 {
7248         struct netdev_nested_priv priv = {
7249                 .data = (void *)upper_dev,
7250         };
7251
7252         ASSERT_RTNL();
7253
7254         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7255                                              &priv);
7256 }
7257 EXPORT_SYMBOL(netdev_has_upper_dev);
7258
7259 /**
7260  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7261  * @dev: device
7262  * @upper_dev: upper device to check
7263  *
7264  * Find out if a device is linked to specified upper device and return true
7265  * in case it is. Note that this checks the entire upper device chain.
7266  * The caller must hold rcu lock.
7267  */
7268
7269 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7270                                   struct net_device *upper_dev)
7271 {
7272         struct netdev_nested_priv priv = {
7273                 .data = (void *)upper_dev,
7274         };
7275
7276         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7277                                                &priv);
7278 }
7279 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7280
7281 /**
7282  * netdev_has_any_upper_dev - Check if device is linked to some device
7283  * @dev: device
7284  *
7285  * Find out if a device is linked to an upper device and return true in case
7286  * it is. The caller must hold the RTNL lock.
7287  */
7288 bool netdev_has_any_upper_dev(struct net_device *dev)
7289 {
7290         ASSERT_RTNL();
7291
7292         return !list_empty(&dev->adj_list.upper);
7293 }
7294 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7295
7296 /**
7297  * netdev_master_upper_dev_get - Get master upper device
7298  * @dev: device
7299  *
7300  * Find a master upper device and return pointer to it or NULL in case
7301  * it's not there. The caller must hold the RTNL lock.
7302  */
7303 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7304 {
7305         struct netdev_adjacent *upper;
7306
7307         ASSERT_RTNL();
7308
7309         if (list_empty(&dev->adj_list.upper))
7310                 return NULL;
7311
7312         upper = list_first_entry(&dev->adj_list.upper,
7313                                  struct netdev_adjacent, list);
7314         if (likely(upper->master))
7315                 return upper->dev;
7316         return NULL;
7317 }
7318 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7319
7320 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7321 {
7322         struct netdev_adjacent *upper;
7323
7324         ASSERT_RTNL();
7325
7326         if (list_empty(&dev->adj_list.upper))
7327                 return NULL;
7328
7329         upper = list_first_entry(&dev->adj_list.upper,
7330                                  struct netdev_adjacent, list);
7331         if (likely(upper->master) && !upper->ignore)
7332                 return upper->dev;
7333         return NULL;
7334 }
7335
7336 /**
7337  * netdev_has_any_lower_dev - Check if device is linked to some device
7338  * @dev: device
7339  *
7340  * Find out if a device is linked to a lower device and return true in case
7341  * it is. The caller must hold the RTNL lock.
7342  */
7343 static bool netdev_has_any_lower_dev(struct net_device *dev)
7344 {
7345         ASSERT_RTNL();
7346
7347         return !list_empty(&dev->adj_list.lower);
7348 }
7349
7350 void *netdev_adjacent_get_private(struct list_head *adj_list)
7351 {
7352         struct netdev_adjacent *adj;
7353
7354         adj = list_entry(adj_list, struct netdev_adjacent, list);
7355
7356         return adj->private;
7357 }
7358 EXPORT_SYMBOL(netdev_adjacent_get_private);
7359
7360 /**
7361  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7362  * @dev: device
7363  * @iter: list_head ** of the current position
7364  *
7365  * Gets the next device from the dev's upper list, starting from iter
7366  * position. The caller must hold RCU read lock.
7367  */
7368 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7369                                                  struct list_head **iter)
7370 {
7371         struct netdev_adjacent *upper;
7372
7373         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7374
7375         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7376
7377         if (&upper->list == &dev->adj_list.upper)
7378                 return NULL;
7379
7380         *iter = &upper->list;
7381
7382         return upper->dev;
7383 }
7384 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7385
7386 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7387                                                   struct list_head **iter,
7388                                                   bool *ignore)
7389 {
7390         struct netdev_adjacent *upper;
7391
7392         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7393
7394         if (&upper->list == &dev->adj_list.upper)
7395                 return NULL;
7396
7397         *iter = &upper->list;
7398         *ignore = upper->ignore;
7399
7400         return upper->dev;
7401 }
7402
7403 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7404                                                     struct list_head **iter)
7405 {
7406         struct netdev_adjacent *upper;
7407
7408         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7409
7410         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7411
7412         if (&upper->list == &dev->adj_list.upper)
7413                 return NULL;
7414
7415         *iter = &upper->list;
7416
7417         return upper->dev;
7418 }
7419
7420 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7421                                        int (*fn)(struct net_device *dev,
7422                                          struct netdev_nested_priv *priv),
7423                                        struct netdev_nested_priv *priv)
7424 {
7425         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7426         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7427         int ret, cur = 0;
7428         bool ignore;
7429
7430         now = dev;
7431         iter = &dev->adj_list.upper;
7432
7433         while (1) {
7434                 if (now != dev) {
7435                         ret = fn(now, priv);
7436                         if (ret)
7437                                 return ret;
7438                 }
7439
7440                 next = NULL;
7441                 while (1) {
7442                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7443                         if (!udev)
7444                                 break;
7445                         if (ignore)
7446                                 continue;
7447
7448                         next = udev;
7449                         niter = &udev->adj_list.upper;
7450                         dev_stack[cur] = now;
7451                         iter_stack[cur++] = iter;
7452                         break;
7453                 }
7454
7455                 if (!next) {
7456                         if (!cur)
7457                                 return 0;
7458                         next = dev_stack[--cur];
7459                         niter = iter_stack[cur];
7460                 }
7461
7462                 now = next;
7463                 iter = niter;
7464         }
7465
7466         return 0;
7467 }
7468
7469 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7470                                   int (*fn)(struct net_device *dev,
7471                                             struct netdev_nested_priv *priv),
7472                                   struct netdev_nested_priv *priv)
7473 {
7474         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7475         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7476         int ret, cur = 0;
7477
7478         now = dev;
7479         iter = &dev->adj_list.upper;
7480
7481         while (1) {
7482                 if (now != dev) {
7483                         ret = fn(now, priv);
7484                         if (ret)
7485                                 return ret;
7486                 }
7487
7488                 next = NULL;
7489                 while (1) {
7490                         udev = netdev_next_upper_dev_rcu(now, &iter);
7491                         if (!udev)
7492                                 break;
7493
7494                         next = udev;
7495                         niter = &udev->adj_list.upper;
7496                         dev_stack[cur] = now;
7497                         iter_stack[cur++] = iter;
7498                         break;
7499                 }
7500
7501                 if (!next) {
7502                         if (!cur)
7503                                 return 0;
7504                         next = dev_stack[--cur];
7505                         niter = iter_stack[cur];
7506                 }
7507
7508                 now = next;
7509                 iter = niter;
7510         }
7511
7512         return 0;
7513 }
7514 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7515
7516 static bool __netdev_has_upper_dev(struct net_device *dev,
7517                                    struct net_device *upper_dev)
7518 {
7519         struct netdev_nested_priv priv = {
7520                 .flags = 0,
7521                 .data = (void *)upper_dev,
7522         };
7523
7524         ASSERT_RTNL();
7525
7526         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7527                                            &priv);
7528 }
7529
7530 /**
7531  * netdev_lower_get_next_private - Get the next ->private from the
7532  *                                 lower neighbour list
7533  * @dev: device
7534  * @iter: list_head ** of the current position
7535  *
7536  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7537  * list, starting from iter position. The caller must hold either hold the
7538  * RTNL lock or its own locking that guarantees that the neighbour lower
7539  * list will remain unchanged.
7540  */
7541 void *netdev_lower_get_next_private(struct net_device *dev,
7542                                     struct list_head **iter)
7543 {
7544         struct netdev_adjacent *lower;
7545
7546         lower = list_entry(*iter, struct netdev_adjacent, list);
7547
7548         if (&lower->list == &dev->adj_list.lower)
7549                 return NULL;
7550
7551         *iter = lower->list.next;
7552
7553         return lower->private;
7554 }
7555 EXPORT_SYMBOL(netdev_lower_get_next_private);
7556
7557 /**
7558  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7559  *                                     lower neighbour list, RCU
7560  *                                     variant
7561  * @dev: device
7562  * @iter: list_head ** of the current position
7563  *
7564  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7565  * list, starting from iter position. The caller must hold RCU read lock.
7566  */
7567 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7568                                         struct list_head **iter)
7569 {
7570         struct netdev_adjacent *lower;
7571
7572         WARN_ON_ONCE(!rcu_read_lock_held());
7573
7574         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7575
7576         if (&lower->list == &dev->adj_list.lower)
7577                 return NULL;
7578
7579         *iter = &lower->list;
7580
7581         return lower->private;
7582 }
7583 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7584
7585 /**
7586  * netdev_lower_get_next - Get the next device from the lower neighbour
7587  *                         list
7588  * @dev: device
7589  * @iter: list_head ** of the current position
7590  *
7591  * Gets the next netdev_adjacent from the dev's lower neighbour
7592  * list, starting from iter position. The caller must hold RTNL lock or
7593  * its own locking that guarantees that the neighbour lower
7594  * list will remain unchanged.
7595  */
7596 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7597 {
7598         struct netdev_adjacent *lower;
7599
7600         lower = list_entry(*iter, struct netdev_adjacent, list);
7601
7602         if (&lower->list == &dev->adj_list.lower)
7603                 return NULL;
7604
7605         *iter = lower->list.next;
7606
7607         return lower->dev;
7608 }
7609 EXPORT_SYMBOL(netdev_lower_get_next);
7610
7611 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7612                                                 struct list_head **iter)
7613 {
7614         struct netdev_adjacent *lower;
7615
7616         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7617
7618         if (&lower->list == &dev->adj_list.lower)
7619                 return NULL;
7620
7621         *iter = &lower->list;
7622
7623         return lower->dev;
7624 }
7625
7626 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7627                                                   struct list_head **iter,
7628                                                   bool *ignore)
7629 {
7630         struct netdev_adjacent *lower;
7631
7632         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7633
7634         if (&lower->list == &dev->adj_list.lower)
7635                 return NULL;
7636
7637         *iter = &lower->list;
7638         *ignore = lower->ignore;
7639
7640         return lower->dev;
7641 }
7642
7643 int netdev_walk_all_lower_dev(struct net_device *dev,
7644                               int (*fn)(struct net_device *dev,
7645                                         struct netdev_nested_priv *priv),
7646                               struct netdev_nested_priv *priv)
7647 {
7648         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7649         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7650         int ret, cur = 0;
7651
7652         now = dev;
7653         iter = &dev->adj_list.lower;
7654
7655         while (1) {
7656                 if (now != dev) {
7657                         ret = fn(now, priv);
7658                         if (ret)
7659                                 return ret;
7660                 }
7661
7662                 next = NULL;
7663                 while (1) {
7664                         ldev = netdev_next_lower_dev(now, &iter);
7665                         if (!ldev)
7666                                 break;
7667
7668                         next = ldev;
7669                         niter = &ldev->adj_list.lower;
7670                         dev_stack[cur] = now;
7671                         iter_stack[cur++] = iter;
7672                         break;
7673                 }
7674
7675                 if (!next) {
7676                         if (!cur)
7677                                 return 0;
7678                         next = dev_stack[--cur];
7679                         niter = iter_stack[cur];
7680                 }
7681
7682                 now = next;
7683                 iter = niter;
7684         }
7685
7686         return 0;
7687 }
7688 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7689
7690 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7691                                        int (*fn)(struct net_device *dev,
7692                                          struct netdev_nested_priv *priv),
7693                                        struct netdev_nested_priv *priv)
7694 {
7695         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7696         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7697         int ret, cur = 0;
7698         bool ignore;
7699
7700         now = dev;
7701         iter = &dev->adj_list.lower;
7702
7703         while (1) {
7704                 if (now != dev) {
7705                         ret = fn(now, priv);
7706                         if (ret)
7707                                 return ret;
7708                 }
7709
7710                 next = NULL;
7711                 while (1) {
7712                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7713                         if (!ldev)
7714                                 break;
7715                         if (ignore)
7716                                 continue;
7717
7718                         next = ldev;
7719                         niter = &ldev->adj_list.lower;
7720                         dev_stack[cur] = now;
7721                         iter_stack[cur++] = iter;
7722                         break;
7723                 }
7724
7725                 if (!next) {
7726                         if (!cur)
7727                                 return 0;
7728                         next = dev_stack[--cur];
7729                         niter = iter_stack[cur];
7730                 }
7731
7732                 now = next;
7733                 iter = niter;
7734         }
7735
7736         return 0;
7737 }
7738
7739 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7740                                              struct list_head **iter)
7741 {
7742         struct netdev_adjacent *lower;
7743
7744         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7745         if (&lower->list == &dev->adj_list.lower)
7746                 return NULL;
7747
7748         *iter = &lower->list;
7749
7750         return lower->dev;
7751 }
7752 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7753
7754 static u8 __netdev_upper_depth(struct net_device *dev)
7755 {
7756         struct net_device *udev;
7757         struct list_head *iter;
7758         u8 max_depth = 0;
7759         bool ignore;
7760
7761         for (iter = &dev->adj_list.upper,
7762              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7763              udev;
7764              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7765                 if (ignore)
7766                         continue;
7767                 if (max_depth < udev->upper_level)
7768                         max_depth = udev->upper_level;
7769         }
7770
7771         return max_depth;
7772 }
7773
7774 static u8 __netdev_lower_depth(struct net_device *dev)
7775 {
7776         struct net_device *ldev;
7777         struct list_head *iter;
7778         u8 max_depth = 0;
7779         bool ignore;
7780
7781         for (iter = &dev->adj_list.lower,
7782              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7783              ldev;
7784              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7785                 if (ignore)
7786                         continue;
7787                 if (max_depth < ldev->lower_level)
7788                         max_depth = ldev->lower_level;
7789         }
7790
7791         return max_depth;
7792 }
7793
7794 static int __netdev_update_upper_level(struct net_device *dev,
7795                                        struct netdev_nested_priv *__unused)
7796 {
7797         dev->upper_level = __netdev_upper_depth(dev) + 1;
7798         return 0;
7799 }
7800
7801 static int __netdev_update_lower_level(struct net_device *dev,
7802                                        struct netdev_nested_priv *priv)
7803 {
7804         dev->lower_level = __netdev_lower_depth(dev) + 1;
7805
7806 #ifdef CONFIG_LOCKDEP
7807         if (!priv)
7808                 return 0;
7809
7810         if (priv->flags & NESTED_SYNC_IMM)
7811                 dev->nested_level = dev->lower_level - 1;
7812         if (priv->flags & NESTED_SYNC_TODO)
7813                 net_unlink_todo(dev);
7814 #endif
7815         return 0;
7816 }
7817
7818 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7819                                   int (*fn)(struct net_device *dev,
7820                                             struct netdev_nested_priv *priv),
7821                                   struct netdev_nested_priv *priv)
7822 {
7823         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7824         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7825         int ret, cur = 0;
7826
7827         now = dev;
7828         iter = &dev->adj_list.lower;
7829
7830         while (1) {
7831                 if (now != dev) {
7832                         ret = fn(now, priv);
7833                         if (ret)
7834                                 return ret;
7835                 }
7836
7837                 next = NULL;
7838                 while (1) {
7839                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7840                         if (!ldev)
7841                                 break;
7842
7843                         next = ldev;
7844                         niter = &ldev->adj_list.lower;
7845                         dev_stack[cur] = now;
7846                         iter_stack[cur++] = iter;
7847                         break;
7848                 }
7849
7850                 if (!next) {
7851                         if (!cur)
7852                                 return 0;
7853                         next = dev_stack[--cur];
7854                         niter = iter_stack[cur];
7855                 }
7856
7857                 now = next;
7858                 iter = niter;
7859         }
7860
7861         return 0;
7862 }
7863 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7864
7865 /**
7866  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7867  *                                     lower neighbour list, RCU
7868  *                                     variant
7869  * @dev: device
7870  *
7871  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7872  * list. The caller must hold RCU read lock.
7873  */
7874 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7875 {
7876         struct netdev_adjacent *lower;
7877
7878         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7879                         struct netdev_adjacent, list);
7880         if (lower)
7881                 return lower->private;
7882         return NULL;
7883 }
7884 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7885
7886 /**
7887  * netdev_master_upper_dev_get_rcu - Get master upper device
7888  * @dev: device
7889  *
7890  * Find a master upper device and return pointer to it or NULL in case
7891  * it's not there. The caller must hold the RCU read lock.
7892  */
7893 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7894 {
7895         struct netdev_adjacent *upper;
7896
7897         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7898                                        struct netdev_adjacent, list);
7899         if (upper && likely(upper->master))
7900                 return upper->dev;
7901         return NULL;
7902 }
7903 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7904
7905 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7906                               struct net_device *adj_dev,
7907                               struct list_head *dev_list)
7908 {
7909         char linkname[IFNAMSIZ+7];
7910
7911         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7912                 "upper_%s" : "lower_%s", adj_dev->name);
7913         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7914                                  linkname);
7915 }
7916 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7917                                char *name,
7918                                struct list_head *dev_list)
7919 {
7920         char linkname[IFNAMSIZ+7];
7921
7922         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7923                 "upper_%s" : "lower_%s", name);
7924         sysfs_remove_link(&(dev->dev.kobj), linkname);
7925 }
7926
7927 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7928                                                  struct net_device *adj_dev,
7929                                                  struct list_head *dev_list)
7930 {
7931         return (dev_list == &dev->adj_list.upper ||
7932                 dev_list == &dev->adj_list.lower) &&
7933                 net_eq(dev_net(dev), dev_net(adj_dev));
7934 }
7935
7936 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7937                                         struct net_device *adj_dev,
7938                                         struct list_head *dev_list,
7939                                         void *private, bool master)
7940 {
7941         struct netdev_adjacent *adj;
7942         int ret;
7943
7944         adj = __netdev_find_adj(adj_dev, dev_list);
7945
7946         if (adj) {
7947                 adj->ref_nr += 1;
7948                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7949                          dev->name, adj_dev->name, adj->ref_nr);
7950
7951                 return 0;
7952         }
7953
7954         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7955         if (!adj)
7956                 return -ENOMEM;
7957
7958         adj->dev = adj_dev;
7959         adj->master = master;
7960         adj->ref_nr = 1;
7961         adj->private = private;
7962         adj->ignore = false;
7963         dev_hold(adj_dev);
7964
7965         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7966                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7967
7968         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7969                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7970                 if (ret)
7971                         goto free_adj;
7972         }
7973
7974         /* Ensure that master link is always the first item in list. */
7975         if (master) {
7976                 ret = sysfs_create_link(&(dev->dev.kobj),
7977                                         &(adj_dev->dev.kobj), "master");
7978                 if (ret)
7979                         goto remove_symlinks;
7980
7981                 list_add_rcu(&adj->list, dev_list);
7982         } else {
7983                 list_add_tail_rcu(&adj->list, dev_list);
7984         }
7985
7986         return 0;
7987
7988 remove_symlinks:
7989         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7990                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7991 free_adj:
7992         kfree(adj);
7993         dev_put(adj_dev);
7994
7995         return ret;
7996 }
7997
7998 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7999                                          struct net_device *adj_dev,
8000                                          u16 ref_nr,
8001                                          struct list_head *dev_list)
8002 {
8003         struct netdev_adjacent *adj;
8004
8005         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8006                  dev->name, adj_dev->name, ref_nr);
8007
8008         adj = __netdev_find_adj(adj_dev, dev_list);
8009
8010         if (!adj) {
8011                 pr_err("Adjacency does not exist for device %s from %s\n",
8012                        dev->name, adj_dev->name);
8013                 WARN_ON(1);
8014                 return;
8015         }
8016
8017         if (adj->ref_nr > ref_nr) {
8018                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8019                          dev->name, adj_dev->name, ref_nr,
8020                          adj->ref_nr - ref_nr);
8021                 adj->ref_nr -= ref_nr;
8022                 return;
8023         }
8024
8025         if (adj->master)
8026                 sysfs_remove_link(&(dev->dev.kobj), "master");
8027
8028         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8029                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8030
8031         list_del_rcu(&adj->list);
8032         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8033                  adj_dev->name, dev->name, adj_dev->name);
8034         dev_put(adj_dev);
8035         kfree_rcu(adj, rcu);
8036 }
8037
8038 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8039                                             struct net_device *upper_dev,
8040                                             struct list_head *up_list,
8041                                             struct list_head *down_list,
8042                                             void *private, bool master)
8043 {
8044         int ret;
8045
8046         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8047                                            private, master);
8048         if (ret)
8049                 return ret;
8050
8051         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8052                                            private, false);
8053         if (ret) {
8054                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8055                 return ret;
8056         }
8057
8058         return 0;
8059 }
8060
8061 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8062                                                struct net_device *upper_dev,
8063                                                u16 ref_nr,
8064                                                struct list_head *up_list,
8065                                                struct list_head *down_list)
8066 {
8067         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8068         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8069 }
8070
8071 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8072                                                 struct net_device *upper_dev,
8073                                                 void *private, bool master)
8074 {
8075         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8076                                                 &dev->adj_list.upper,
8077                                                 &upper_dev->adj_list.lower,
8078                                                 private, master);
8079 }
8080
8081 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8082                                                    struct net_device *upper_dev)
8083 {
8084         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8085                                            &dev->adj_list.upper,
8086                                            &upper_dev->adj_list.lower);
8087 }
8088
8089 static int __netdev_upper_dev_link(struct net_device *dev,
8090                                    struct net_device *upper_dev, bool master,
8091                                    void *upper_priv, void *upper_info,
8092                                    struct netdev_nested_priv *priv,
8093                                    struct netlink_ext_ack *extack)
8094 {
8095         struct netdev_notifier_changeupper_info changeupper_info = {
8096                 .info = {
8097                         .dev = dev,
8098                         .extack = extack,
8099                 },
8100                 .upper_dev = upper_dev,
8101                 .master = master,
8102                 .linking = true,
8103                 .upper_info = upper_info,
8104         };
8105         struct net_device *master_dev;
8106         int ret = 0;
8107
8108         ASSERT_RTNL();
8109
8110         if (dev == upper_dev)
8111                 return -EBUSY;
8112
8113         /* To prevent loops, check if dev is not upper device to upper_dev. */
8114         if (__netdev_has_upper_dev(upper_dev, dev))
8115                 return -EBUSY;
8116
8117         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8118                 return -EMLINK;
8119
8120         if (!master) {
8121                 if (__netdev_has_upper_dev(dev, upper_dev))
8122                         return -EEXIST;
8123         } else {
8124                 master_dev = __netdev_master_upper_dev_get(dev);
8125                 if (master_dev)
8126                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8127         }
8128
8129         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8130                                             &changeupper_info.info);
8131         ret = notifier_to_errno(ret);
8132         if (ret)
8133                 return ret;
8134
8135         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8136                                                    master);
8137         if (ret)
8138                 return ret;
8139
8140         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8141                                             &changeupper_info.info);
8142         ret = notifier_to_errno(ret);
8143         if (ret)
8144                 goto rollback;
8145
8146         __netdev_update_upper_level(dev, NULL);
8147         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8148
8149         __netdev_update_lower_level(upper_dev, priv);
8150         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8151                                     priv);
8152
8153         return 0;
8154
8155 rollback:
8156         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8157
8158         return ret;
8159 }
8160
8161 /**
8162  * netdev_upper_dev_link - Add a link to the upper device
8163  * @dev: device
8164  * @upper_dev: new upper device
8165  * @extack: netlink extended ack
8166  *
8167  * Adds a link to device which is upper to this one. The caller must hold
8168  * the RTNL lock. On a failure a negative errno code is returned.
8169  * On success the reference counts are adjusted and the function
8170  * returns zero.
8171  */
8172 int netdev_upper_dev_link(struct net_device *dev,
8173                           struct net_device *upper_dev,
8174                           struct netlink_ext_ack *extack)
8175 {
8176         struct netdev_nested_priv priv = {
8177                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8178                 .data = NULL,
8179         };
8180
8181         return __netdev_upper_dev_link(dev, upper_dev, false,
8182                                        NULL, NULL, &priv, extack);
8183 }
8184 EXPORT_SYMBOL(netdev_upper_dev_link);
8185
8186 /**
8187  * netdev_master_upper_dev_link - Add a master link to the upper device
8188  * @dev: device
8189  * @upper_dev: new upper device
8190  * @upper_priv: upper device private
8191  * @upper_info: upper info to be passed down via notifier
8192  * @extack: netlink extended ack
8193  *
8194  * Adds a link to device which is upper to this one. In this case, only
8195  * one master upper device can be linked, although other non-master devices
8196  * might be linked as well. The caller must hold the RTNL lock.
8197  * On a failure a negative errno code is returned. On success the reference
8198  * counts are adjusted and the function returns zero.
8199  */
8200 int netdev_master_upper_dev_link(struct net_device *dev,
8201                                  struct net_device *upper_dev,
8202                                  void *upper_priv, void *upper_info,
8203                                  struct netlink_ext_ack *extack)
8204 {
8205         struct netdev_nested_priv priv = {
8206                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8207                 .data = NULL,
8208         };
8209
8210         return __netdev_upper_dev_link(dev, upper_dev, true,
8211                                        upper_priv, upper_info, &priv, extack);
8212 }
8213 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8214
8215 static void __netdev_upper_dev_unlink(struct net_device *dev,
8216                                       struct net_device *upper_dev,
8217                                       struct netdev_nested_priv *priv)
8218 {
8219         struct netdev_notifier_changeupper_info changeupper_info = {
8220                 .info = {
8221                         .dev = dev,
8222                 },
8223                 .upper_dev = upper_dev,
8224                 .linking = false,
8225         };
8226
8227         ASSERT_RTNL();
8228
8229         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8230
8231         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8232                                       &changeupper_info.info);
8233
8234         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8235
8236         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8237                                       &changeupper_info.info);
8238
8239         __netdev_update_upper_level(dev, NULL);
8240         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8241
8242         __netdev_update_lower_level(upper_dev, priv);
8243         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8244                                     priv);
8245 }
8246
8247 /**
8248  * netdev_upper_dev_unlink - Removes a link to upper device
8249  * @dev: device
8250  * @upper_dev: new upper device
8251  *
8252  * Removes a link to device which is upper to this one. The caller must hold
8253  * the RTNL lock.
8254  */
8255 void netdev_upper_dev_unlink(struct net_device *dev,
8256                              struct net_device *upper_dev)
8257 {
8258         struct netdev_nested_priv priv = {
8259                 .flags = NESTED_SYNC_TODO,
8260                 .data = NULL,
8261         };
8262
8263         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8264 }
8265 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8266
8267 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8268                                       struct net_device *lower_dev,
8269                                       bool val)
8270 {
8271         struct netdev_adjacent *adj;
8272
8273         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8274         if (adj)
8275                 adj->ignore = val;
8276
8277         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8278         if (adj)
8279                 adj->ignore = val;
8280 }
8281
8282 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8283                                         struct net_device *lower_dev)
8284 {
8285         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8286 }
8287
8288 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8289                                        struct net_device *lower_dev)
8290 {
8291         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8292 }
8293
8294 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8295                                    struct net_device *new_dev,
8296                                    struct net_device *dev,
8297                                    struct netlink_ext_ack *extack)
8298 {
8299         struct netdev_nested_priv priv = {
8300                 .flags = 0,
8301                 .data = NULL,
8302         };
8303         int err;
8304
8305         if (!new_dev)
8306                 return 0;
8307
8308         if (old_dev && new_dev != old_dev)
8309                 netdev_adjacent_dev_disable(dev, old_dev);
8310         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8311                                       extack);
8312         if (err) {
8313                 if (old_dev && new_dev != old_dev)
8314                         netdev_adjacent_dev_enable(dev, old_dev);
8315                 return err;
8316         }
8317
8318         return 0;
8319 }
8320 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8321
8322 void netdev_adjacent_change_commit(struct net_device *old_dev,
8323                                    struct net_device *new_dev,
8324                                    struct net_device *dev)
8325 {
8326         struct netdev_nested_priv priv = {
8327                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8328                 .data = NULL,
8329         };
8330
8331         if (!new_dev || !old_dev)
8332                 return;
8333
8334         if (new_dev == old_dev)
8335                 return;
8336
8337         netdev_adjacent_dev_enable(dev, old_dev);
8338         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8339 }
8340 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8341
8342 void netdev_adjacent_change_abort(struct net_device *old_dev,
8343                                   struct net_device *new_dev,
8344                                   struct net_device *dev)
8345 {
8346         struct netdev_nested_priv priv = {
8347                 .flags = 0,
8348                 .data = NULL,
8349         };
8350
8351         if (!new_dev)
8352                 return;
8353
8354         if (old_dev && new_dev != old_dev)
8355                 netdev_adjacent_dev_enable(dev, old_dev);
8356
8357         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8358 }
8359 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8360
8361 /**
8362  * netdev_bonding_info_change - Dispatch event about slave change
8363  * @dev: device
8364  * @bonding_info: info to dispatch
8365  *
8366  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8367  * The caller must hold the RTNL lock.
8368  */
8369 void netdev_bonding_info_change(struct net_device *dev,
8370                                 struct netdev_bonding_info *bonding_info)
8371 {
8372         struct netdev_notifier_bonding_info info = {
8373                 .info.dev = dev,
8374         };
8375
8376         memcpy(&info.bonding_info, bonding_info,
8377                sizeof(struct netdev_bonding_info));
8378         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8379                                       &info.info);
8380 }
8381 EXPORT_SYMBOL(netdev_bonding_info_change);
8382
8383 /**
8384  * netdev_get_xmit_slave - Get the xmit slave of master device
8385  * @dev: device
8386  * @skb: The packet
8387  * @all_slaves: assume all the slaves are active
8388  *
8389  * The reference counters are not incremented so the caller must be
8390  * careful with locks. The caller must hold RCU lock.
8391  * %NULL is returned if no slave is found.
8392  */
8393
8394 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8395                                          struct sk_buff *skb,
8396                                          bool all_slaves)
8397 {
8398         const struct net_device_ops *ops = dev->netdev_ops;
8399
8400         if (!ops->ndo_get_xmit_slave)
8401                 return NULL;
8402         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8403 }
8404 EXPORT_SYMBOL(netdev_get_xmit_slave);
8405
8406 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8407                                                   struct sock *sk)
8408 {
8409         const struct net_device_ops *ops = dev->netdev_ops;
8410
8411         if (!ops->ndo_sk_get_lower_dev)
8412                 return NULL;
8413         return ops->ndo_sk_get_lower_dev(dev, sk);
8414 }
8415
8416 /**
8417  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8418  * @dev: device
8419  * @sk: the socket
8420  *
8421  * %NULL is returned if no lower device is found.
8422  */
8423
8424 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8425                                             struct sock *sk)
8426 {
8427         struct net_device *lower;
8428
8429         lower = netdev_sk_get_lower_dev(dev, sk);
8430         while (lower) {
8431                 dev = lower;
8432                 lower = netdev_sk_get_lower_dev(dev, sk);
8433         }
8434
8435         return dev;
8436 }
8437 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8438
8439 static void netdev_adjacent_add_links(struct net_device *dev)
8440 {
8441         struct netdev_adjacent *iter;
8442
8443         struct net *net = dev_net(dev);
8444
8445         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8446                 if (!net_eq(net, dev_net(iter->dev)))
8447                         continue;
8448                 netdev_adjacent_sysfs_add(iter->dev, dev,
8449                                           &iter->dev->adj_list.lower);
8450                 netdev_adjacent_sysfs_add(dev, iter->dev,
8451                                           &dev->adj_list.upper);
8452         }
8453
8454         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8455                 if (!net_eq(net, dev_net(iter->dev)))
8456                         continue;
8457                 netdev_adjacent_sysfs_add(iter->dev, dev,
8458                                           &iter->dev->adj_list.upper);
8459                 netdev_adjacent_sysfs_add(dev, iter->dev,
8460                                           &dev->adj_list.lower);
8461         }
8462 }
8463
8464 static void netdev_adjacent_del_links(struct net_device *dev)
8465 {
8466         struct netdev_adjacent *iter;
8467
8468         struct net *net = dev_net(dev);
8469
8470         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8471                 if (!net_eq(net, dev_net(iter->dev)))
8472                         continue;
8473                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8474                                           &iter->dev->adj_list.lower);
8475                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8476                                           &dev->adj_list.upper);
8477         }
8478
8479         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8480                 if (!net_eq(net, dev_net(iter->dev)))
8481                         continue;
8482                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8483                                           &iter->dev->adj_list.upper);
8484                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8485                                           &dev->adj_list.lower);
8486         }
8487 }
8488
8489 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8490 {
8491         struct netdev_adjacent *iter;
8492
8493         struct net *net = dev_net(dev);
8494
8495         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8496                 if (!net_eq(net, dev_net(iter->dev)))
8497                         continue;
8498                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8499                                           &iter->dev->adj_list.lower);
8500                 netdev_adjacent_sysfs_add(iter->dev, dev,
8501                                           &iter->dev->adj_list.lower);
8502         }
8503
8504         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8505                 if (!net_eq(net, dev_net(iter->dev)))
8506                         continue;
8507                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8508                                           &iter->dev->adj_list.upper);
8509                 netdev_adjacent_sysfs_add(iter->dev, dev,
8510                                           &iter->dev->adj_list.upper);
8511         }
8512 }
8513
8514 void *netdev_lower_dev_get_private(struct net_device *dev,
8515                                    struct net_device *lower_dev)
8516 {
8517         struct netdev_adjacent *lower;
8518
8519         if (!lower_dev)
8520                 return NULL;
8521         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8522         if (!lower)
8523                 return NULL;
8524
8525         return lower->private;
8526 }
8527 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8528
8529
8530 /**
8531  * netdev_lower_state_changed - Dispatch event about lower device state change
8532  * @lower_dev: device
8533  * @lower_state_info: state to dispatch
8534  *
8535  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8536  * The caller must hold the RTNL lock.
8537  */
8538 void netdev_lower_state_changed(struct net_device *lower_dev,
8539                                 void *lower_state_info)
8540 {
8541         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8542                 .info.dev = lower_dev,
8543         };
8544
8545         ASSERT_RTNL();
8546         changelowerstate_info.lower_state_info = lower_state_info;
8547         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8548                                       &changelowerstate_info.info);
8549 }
8550 EXPORT_SYMBOL(netdev_lower_state_changed);
8551
8552 static void dev_change_rx_flags(struct net_device *dev, int flags)
8553 {
8554         const struct net_device_ops *ops = dev->netdev_ops;
8555
8556         if (ops->ndo_change_rx_flags)
8557                 ops->ndo_change_rx_flags(dev, flags);
8558 }
8559
8560 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8561 {
8562         unsigned int old_flags = dev->flags;
8563         kuid_t uid;
8564         kgid_t gid;
8565
8566         ASSERT_RTNL();
8567
8568         dev->flags |= IFF_PROMISC;
8569         dev->promiscuity += inc;
8570         if (dev->promiscuity == 0) {
8571                 /*
8572                  * Avoid overflow.
8573                  * If inc causes overflow, untouch promisc and return error.
8574                  */
8575                 if (inc < 0)
8576                         dev->flags &= ~IFF_PROMISC;
8577                 else {
8578                         dev->promiscuity -= inc;
8579                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8580                                 dev->name);
8581                         return -EOVERFLOW;
8582                 }
8583         }
8584         if (dev->flags != old_flags) {
8585                 pr_info("device %s %s promiscuous mode\n",
8586                         dev->name,
8587                         dev->flags & IFF_PROMISC ? "entered" : "left");
8588                 if (audit_enabled) {
8589                         current_uid_gid(&uid, &gid);
8590                         audit_log(audit_context(), GFP_ATOMIC,
8591                                   AUDIT_ANOM_PROMISCUOUS,
8592                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8593                                   dev->name, (dev->flags & IFF_PROMISC),
8594                                   (old_flags & IFF_PROMISC),
8595                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8596                                   from_kuid(&init_user_ns, uid),
8597                                   from_kgid(&init_user_ns, gid),
8598                                   audit_get_sessionid(current));
8599                 }
8600
8601                 dev_change_rx_flags(dev, IFF_PROMISC);
8602         }
8603         if (notify)
8604                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8605         return 0;
8606 }
8607
8608 /**
8609  *      dev_set_promiscuity     - update promiscuity count on a device
8610  *      @dev: device
8611  *      @inc: modifier
8612  *
8613  *      Add or remove promiscuity from a device. While the count in the device
8614  *      remains above zero the interface remains promiscuous. Once it hits zero
8615  *      the device reverts back to normal filtering operation. A negative inc
8616  *      value is used to drop promiscuity on the device.
8617  *      Return 0 if successful or a negative errno code on error.
8618  */
8619 int dev_set_promiscuity(struct net_device *dev, int inc)
8620 {
8621         unsigned int old_flags = dev->flags;
8622         int err;
8623
8624         err = __dev_set_promiscuity(dev, inc, true);
8625         if (err < 0)
8626                 return err;
8627         if (dev->flags != old_flags)
8628                 dev_set_rx_mode(dev);
8629         return err;
8630 }
8631 EXPORT_SYMBOL(dev_set_promiscuity);
8632
8633 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8634 {
8635         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8636
8637         ASSERT_RTNL();
8638
8639         dev->flags |= IFF_ALLMULTI;
8640         dev->allmulti += inc;
8641         if (dev->allmulti == 0) {
8642                 /*
8643                  * Avoid overflow.
8644                  * If inc causes overflow, untouch allmulti and return error.
8645                  */
8646                 if (inc < 0)
8647                         dev->flags &= ~IFF_ALLMULTI;
8648                 else {
8649                         dev->allmulti -= inc;
8650                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8651                                 dev->name);
8652                         return -EOVERFLOW;
8653                 }
8654         }
8655         if (dev->flags ^ old_flags) {
8656                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8657                 dev_set_rx_mode(dev);
8658                 if (notify)
8659                         __dev_notify_flags(dev, old_flags,
8660                                            dev->gflags ^ old_gflags);
8661         }
8662         return 0;
8663 }
8664
8665 /**
8666  *      dev_set_allmulti        - update allmulti count on a device
8667  *      @dev: device
8668  *      @inc: modifier
8669  *
8670  *      Add or remove reception of all multicast frames to a device. While the
8671  *      count in the device remains above zero the interface remains listening
8672  *      to all interfaces. Once it hits zero the device reverts back to normal
8673  *      filtering operation. A negative @inc value is used to drop the counter
8674  *      when releasing a resource needing all multicasts.
8675  *      Return 0 if successful or a negative errno code on error.
8676  */
8677
8678 int dev_set_allmulti(struct net_device *dev, int inc)
8679 {
8680         return __dev_set_allmulti(dev, inc, true);
8681 }
8682 EXPORT_SYMBOL(dev_set_allmulti);
8683
8684 /*
8685  *      Upload unicast and multicast address lists to device and
8686  *      configure RX filtering. When the device doesn't support unicast
8687  *      filtering it is put in promiscuous mode while unicast addresses
8688  *      are present.
8689  */
8690 void __dev_set_rx_mode(struct net_device *dev)
8691 {
8692         const struct net_device_ops *ops = dev->netdev_ops;
8693
8694         /* dev_open will call this function so the list will stay sane. */
8695         if (!(dev->flags&IFF_UP))
8696                 return;
8697
8698         if (!netif_device_present(dev))
8699                 return;
8700
8701         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8702                 /* Unicast addresses changes may only happen under the rtnl,
8703                  * therefore calling __dev_set_promiscuity here is safe.
8704                  */
8705                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8706                         __dev_set_promiscuity(dev, 1, false);
8707                         dev->uc_promisc = true;
8708                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8709                         __dev_set_promiscuity(dev, -1, false);
8710                         dev->uc_promisc = false;
8711                 }
8712         }
8713
8714         if (ops->ndo_set_rx_mode)
8715                 ops->ndo_set_rx_mode(dev);
8716 }
8717
8718 void dev_set_rx_mode(struct net_device *dev)
8719 {
8720         netif_addr_lock_bh(dev);
8721         __dev_set_rx_mode(dev);
8722         netif_addr_unlock_bh(dev);
8723 }
8724
8725 /**
8726  *      dev_get_flags - get flags reported to userspace
8727  *      @dev: device
8728  *
8729  *      Get the combination of flag bits exported through APIs to userspace.
8730  */
8731 unsigned int dev_get_flags(const struct net_device *dev)
8732 {
8733         unsigned int flags;
8734
8735         flags = (dev->flags & ~(IFF_PROMISC |
8736                                 IFF_ALLMULTI |
8737                                 IFF_RUNNING |
8738                                 IFF_LOWER_UP |
8739                                 IFF_DORMANT)) |
8740                 (dev->gflags & (IFF_PROMISC |
8741                                 IFF_ALLMULTI));
8742
8743         if (netif_running(dev)) {
8744                 if (netif_oper_up(dev))
8745                         flags |= IFF_RUNNING;
8746                 if (netif_carrier_ok(dev))
8747                         flags |= IFF_LOWER_UP;
8748                 if (netif_dormant(dev))
8749                         flags |= IFF_DORMANT;
8750         }
8751
8752         return flags;
8753 }
8754 EXPORT_SYMBOL(dev_get_flags);
8755
8756 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8757                        struct netlink_ext_ack *extack)
8758 {
8759         unsigned int old_flags = dev->flags;
8760         int ret;
8761
8762         ASSERT_RTNL();
8763
8764         /*
8765          *      Set the flags on our device.
8766          */
8767
8768         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8769                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8770                                IFF_AUTOMEDIA)) |
8771                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8772                                     IFF_ALLMULTI));
8773
8774         /*
8775          *      Load in the correct multicast list now the flags have changed.
8776          */
8777
8778         if ((old_flags ^ flags) & IFF_MULTICAST)
8779                 dev_change_rx_flags(dev, IFF_MULTICAST);
8780
8781         dev_set_rx_mode(dev);
8782
8783         /*
8784          *      Have we downed the interface. We handle IFF_UP ourselves
8785          *      according to user attempts to set it, rather than blindly
8786          *      setting it.
8787          */
8788
8789         ret = 0;
8790         if ((old_flags ^ flags) & IFF_UP) {
8791                 if (old_flags & IFF_UP)
8792                         __dev_close(dev);
8793                 else
8794                         ret = __dev_open(dev, extack);
8795         }
8796
8797         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8798                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8799                 unsigned int old_flags = dev->flags;
8800
8801                 dev->gflags ^= IFF_PROMISC;
8802
8803                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8804                         if (dev->flags != old_flags)
8805                                 dev_set_rx_mode(dev);
8806         }
8807
8808         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8809          * is important. Some (broken) drivers set IFF_PROMISC, when
8810          * IFF_ALLMULTI is requested not asking us and not reporting.
8811          */
8812         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8813                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8814
8815                 dev->gflags ^= IFF_ALLMULTI;
8816                 __dev_set_allmulti(dev, inc, false);
8817         }
8818
8819         return ret;
8820 }
8821
8822 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8823                         unsigned int gchanges)
8824 {
8825         unsigned int changes = dev->flags ^ old_flags;
8826
8827         if (gchanges)
8828                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8829
8830         if (changes & IFF_UP) {
8831                 if (dev->flags & IFF_UP)
8832                         call_netdevice_notifiers(NETDEV_UP, dev);
8833                 else
8834                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8835         }
8836
8837         if (dev->flags & IFF_UP &&
8838             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8839                 struct netdev_notifier_change_info change_info = {
8840                         .info = {
8841                                 .dev = dev,
8842                         },
8843                         .flags_changed = changes,
8844                 };
8845
8846                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8847         }
8848 }
8849
8850 /**
8851  *      dev_change_flags - change device settings
8852  *      @dev: device
8853  *      @flags: device state flags
8854  *      @extack: netlink extended ack
8855  *
8856  *      Change settings on device based state flags. The flags are
8857  *      in the userspace exported format.
8858  */
8859 int dev_change_flags(struct net_device *dev, unsigned int flags,
8860                      struct netlink_ext_ack *extack)
8861 {
8862         int ret;
8863         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8864
8865         ret = __dev_change_flags(dev, flags, extack);
8866         if (ret < 0)
8867                 return ret;
8868
8869         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8870         __dev_notify_flags(dev, old_flags, changes);
8871         return ret;
8872 }
8873 EXPORT_SYMBOL(dev_change_flags);
8874
8875 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8876 {
8877         const struct net_device_ops *ops = dev->netdev_ops;
8878
8879         if (ops->ndo_change_mtu)
8880                 return ops->ndo_change_mtu(dev, new_mtu);
8881
8882         /* Pairs with all the lockless reads of dev->mtu in the stack */
8883         WRITE_ONCE(dev->mtu, new_mtu);
8884         return 0;
8885 }
8886 EXPORT_SYMBOL(__dev_set_mtu);
8887
8888 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8889                      struct netlink_ext_ack *extack)
8890 {
8891         /* MTU must be positive, and in range */
8892         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8893                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8894                 return -EINVAL;
8895         }
8896
8897         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8898                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8899                 return -EINVAL;
8900         }
8901         return 0;
8902 }
8903
8904 /**
8905  *      dev_set_mtu_ext - Change maximum transfer unit
8906  *      @dev: device
8907  *      @new_mtu: new transfer unit
8908  *      @extack: netlink extended ack
8909  *
8910  *      Change the maximum transfer size of the network device.
8911  */
8912 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8913                     struct netlink_ext_ack *extack)
8914 {
8915         int err, orig_mtu;
8916
8917         if (new_mtu == dev->mtu)
8918                 return 0;
8919
8920         err = dev_validate_mtu(dev, new_mtu, extack);
8921         if (err)
8922                 return err;
8923
8924         if (!netif_device_present(dev))
8925                 return -ENODEV;
8926
8927         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8928         err = notifier_to_errno(err);
8929         if (err)
8930                 return err;
8931
8932         orig_mtu = dev->mtu;
8933         err = __dev_set_mtu(dev, new_mtu);
8934
8935         if (!err) {
8936                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8937                                                    orig_mtu);
8938                 err = notifier_to_errno(err);
8939                 if (err) {
8940                         /* setting mtu back and notifying everyone again,
8941                          * so that they have a chance to revert changes.
8942                          */
8943                         __dev_set_mtu(dev, orig_mtu);
8944                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8945                                                      new_mtu);
8946                 }
8947         }
8948         return err;
8949 }
8950
8951 int dev_set_mtu(struct net_device *dev, int new_mtu)
8952 {
8953         struct netlink_ext_ack extack;
8954         int err;
8955
8956         memset(&extack, 0, sizeof(extack));
8957         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8958         if (err && extack._msg)
8959                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8960         return err;
8961 }
8962 EXPORT_SYMBOL(dev_set_mtu);
8963
8964 /**
8965  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8966  *      @dev: device
8967  *      @new_len: new tx queue length
8968  */
8969 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8970 {
8971         unsigned int orig_len = dev->tx_queue_len;
8972         int res;
8973
8974         if (new_len != (unsigned int)new_len)
8975                 return -ERANGE;
8976
8977         if (new_len != orig_len) {
8978                 dev->tx_queue_len = new_len;
8979                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8980                 res = notifier_to_errno(res);
8981                 if (res)
8982                         goto err_rollback;
8983                 res = dev_qdisc_change_tx_queue_len(dev);
8984                 if (res)
8985                         goto err_rollback;
8986         }
8987
8988         return 0;
8989
8990 err_rollback:
8991         netdev_err(dev, "refused to change device tx_queue_len\n");
8992         dev->tx_queue_len = orig_len;
8993         return res;
8994 }
8995
8996 /**
8997  *      dev_set_group - Change group this device belongs to
8998  *      @dev: device
8999  *      @new_group: group this device should belong to
9000  */
9001 void dev_set_group(struct net_device *dev, int new_group)
9002 {
9003         dev->group = new_group;
9004 }
9005 EXPORT_SYMBOL(dev_set_group);
9006
9007 /**
9008  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9009  *      @dev: device
9010  *      @addr: new address
9011  *      @extack: netlink extended ack
9012  */
9013 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9014                               struct netlink_ext_ack *extack)
9015 {
9016         struct netdev_notifier_pre_changeaddr_info info = {
9017                 .info.dev = dev,
9018                 .info.extack = extack,
9019                 .dev_addr = addr,
9020         };
9021         int rc;
9022
9023         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9024         return notifier_to_errno(rc);
9025 }
9026 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9027
9028 /**
9029  *      dev_set_mac_address - Change Media Access Control Address
9030  *      @dev: device
9031  *      @sa: new address
9032  *      @extack: netlink extended ack
9033  *
9034  *      Change the hardware (MAC) address of the device
9035  */
9036 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9037                         struct netlink_ext_ack *extack)
9038 {
9039         const struct net_device_ops *ops = dev->netdev_ops;
9040         int err;
9041
9042         if (!ops->ndo_set_mac_address)
9043                 return -EOPNOTSUPP;
9044         if (sa->sa_family != dev->type)
9045                 return -EINVAL;
9046         if (!netif_device_present(dev))
9047                 return -ENODEV;
9048         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9049         if (err)
9050                 return err;
9051         err = ops->ndo_set_mac_address(dev, sa);
9052         if (err)
9053                 return err;
9054         dev->addr_assign_type = NET_ADDR_SET;
9055         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9056         add_device_randomness(dev->dev_addr, dev->addr_len);
9057         return 0;
9058 }
9059 EXPORT_SYMBOL(dev_set_mac_address);
9060
9061 static DECLARE_RWSEM(dev_addr_sem);
9062
9063 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9064                              struct netlink_ext_ack *extack)
9065 {
9066         int ret;
9067
9068         down_write(&dev_addr_sem);
9069         ret = dev_set_mac_address(dev, sa, extack);
9070         up_write(&dev_addr_sem);
9071         return ret;
9072 }
9073 EXPORT_SYMBOL(dev_set_mac_address_user);
9074
9075 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9076 {
9077         size_t size = sizeof(sa->sa_data);
9078         struct net_device *dev;
9079         int ret = 0;
9080
9081         down_read(&dev_addr_sem);
9082         rcu_read_lock();
9083
9084         dev = dev_get_by_name_rcu(net, dev_name);
9085         if (!dev) {
9086                 ret = -ENODEV;
9087                 goto unlock;
9088         }
9089         if (!dev->addr_len)
9090                 memset(sa->sa_data, 0, size);
9091         else
9092                 memcpy(sa->sa_data, dev->dev_addr,
9093                        min_t(size_t, size, dev->addr_len));
9094         sa->sa_family = dev->type;
9095
9096 unlock:
9097         rcu_read_unlock();
9098         up_read(&dev_addr_sem);
9099         return ret;
9100 }
9101 EXPORT_SYMBOL(dev_get_mac_address);
9102
9103 /**
9104  *      dev_change_carrier - Change device carrier
9105  *      @dev: device
9106  *      @new_carrier: new value
9107  *
9108  *      Change device carrier
9109  */
9110 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9111 {
9112         const struct net_device_ops *ops = dev->netdev_ops;
9113
9114         if (!ops->ndo_change_carrier)
9115                 return -EOPNOTSUPP;
9116         if (!netif_device_present(dev))
9117                 return -ENODEV;
9118         return ops->ndo_change_carrier(dev, new_carrier);
9119 }
9120 EXPORT_SYMBOL(dev_change_carrier);
9121
9122 /**
9123  *      dev_get_phys_port_id - Get device physical port ID
9124  *      @dev: device
9125  *      @ppid: port ID
9126  *
9127  *      Get device physical port ID
9128  */
9129 int dev_get_phys_port_id(struct net_device *dev,
9130                          struct netdev_phys_item_id *ppid)
9131 {
9132         const struct net_device_ops *ops = dev->netdev_ops;
9133
9134         if (!ops->ndo_get_phys_port_id)
9135                 return -EOPNOTSUPP;
9136         return ops->ndo_get_phys_port_id(dev, ppid);
9137 }
9138 EXPORT_SYMBOL(dev_get_phys_port_id);
9139
9140 /**
9141  *      dev_get_phys_port_name - Get device physical port name
9142  *      @dev: device
9143  *      @name: port name
9144  *      @len: limit of bytes to copy to name
9145  *
9146  *      Get device physical port name
9147  */
9148 int dev_get_phys_port_name(struct net_device *dev,
9149                            char *name, size_t len)
9150 {
9151         const struct net_device_ops *ops = dev->netdev_ops;
9152         int err;
9153
9154         if (ops->ndo_get_phys_port_name) {
9155                 err = ops->ndo_get_phys_port_name(dev, name, len);
9156                 if (err != -EOPNOTSUPP)
9157                         return err;
9158         }
9159         return devlink_compat_phys_port_name_get(dev, name, len);
9160 }
9161 EXPORT_SYMBOL(dev_get_phys_port_name);
9162
9163 /**
9164  *      dev_get_port_parent_id - Get the device's port parent identifier
9165  *      @dev: network device
9166  *      @ppid: pointer to a storage for the port's parent identifier
9167  *      @recurse: allow/disallow recursion to lower devices
9168  *
9169  *      Get the devices's port parent identifier
9170  */
9171 int dev_get_port_parent_id(struct net_device *dev,
9172                            struct netdev_phys_item_id *ppid,
9173                            bool recurse)
9174 {
9175         const struct net_device_ops *ops = dev->netdev_ops;
9176         struct netdev_phys_item_id first = { };
9177         struct net_device *lower_dev;
9178         struct list_head *iter;
9179         int err;
9180
9181         if (ops->ndo_get_port_parent_id) {
9182                 err = ops->ndo_get_port_parent_id(dev, ppid);
9183                 if (err != -EOPNOTSUPP)
9184                         return err;
9185         }
9186
9187         err = devlink_compat_switch_id_get(dev, ppid);
9188         if (!err || err != -EOPNOTSUPP)
9189                 return err;
9190
9191         if (!recurse)
9192                 return -EOPNOTSUPP;
9193
9194         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9195                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9196                 if (err)
9197                         break;
9198                 if (!first.id_len)
9199                         first = *ppid;
9200                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9201                         return -EOPNOTSUPP;
9202         }
9203
9204         return err;
9205 }
9206 EXPORT_SYMBOL(dev_get_port_parent_id);
9207
9208 /**
9209  *      netdev_port_same_parent_id - Indicate if two network devices have
9210  *      the same port parent identifier
9211  *      @a: first network device
9212  *      @b: second network device
9213  */
9214 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9215 {
9216         struct netdev_phys_item_id a_id = { };
9217         struct netdev_phys_item_id b_id = { };
9218
9219         if (dev_get_port_parent_id(a, &a_id, true) ||
9220             dev_get_port_parent_id(b, &b_id, true))
9221                 return false;
9222
9223         return netdev_phys_item_id_same(&a_id, &b_id);
9224 }
9225 EXPORT_SYMBOL(netdev_port_same_parent_id);
9226
9227 /**
9228  *      dev_change_proto_down - update protocol port state information
9229  *      @dev: device
9230  *      @proto_down: new value
9231  *
9232  *      This info can be used by switch drivers to set the phys state of the
9233  *      port.
9234  */
9235 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9236 {
9237         const struct net_device_ops *ops = dev->netdev_ops;
9238
9239         if (!ops->ndo_change_proto_down)
9240                 return -EOPNOTSUPP;
9241         if (!netif_device_present(dev))
9242                 return -ENODEV;
9243         return ops->ndo_change_proto_down(dev, proto_down);
9244 }
9245 EXPORT_SYMBOL(dev_change_proto_down);
9246
9247 /**
9248  *      dev_change_proto_down_generic - generic implementation for
9249  *      ndo_change_proto_down that sets carrier according to
9250  *      proto_down.
9251  *
9252  *      @dev: device
9253  *      @proto_down: new value
9254  */
9255 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9256 {
9257         if (proto_down)
9258                 netif_carrier_off(dev);
9259         else
9260                 netif_carrier_on(dev);
9261         dev->proto_down = proto_down;
9262         return 0;
9263 }
9264 EXPORT_SYMBOL(dev_change_proto_down_generic);
9265
9266 /**
9267  *      dev_change_proto_down_reason - proto down reason
9268  *
9269  *      @dev: device
9270  *      @mask: proto down mask
9271  *      @value: proto down value
9272  */
9273 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9274                                   u32 value)
9275 {
9276         int b;
9277
9278         if (!mask) {
9279                 dev->proto_down_reason = value;
9280         } else {
9281                 for_each_set_bit(b, &mask, 32) {
9282                         if (value & (1 << b))
9283                                 dev->proto_down_reason |= BIT(b);
9284                         else
9285                                 dev->proto_down_reason &= ~BIT(b);
9286                 }
9287         }
9288 }
9289 EXPORT_SYMBOL(dev_change_proto_down_reason);
9290
9291 struct bpf_xdp_link {
9292         struct bpf_link link;
9293         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9294         int flags;
9295 };
9296
9297 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9298 {
9299         if (flags & XDP_FLAGS_HW_MODE)
9300                 return XDP_MODE_HW;
9301         if (flags & XDP_FLAGS_DRV_MODE)
9302                 return XDP_MODE_DRV;
9303         if (flags & XDP_FLAGS_SKB_MODE)
9304                 return XDP_MODE_SKB;
9305         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9306 }
9307
9308 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9309 {
9310         switch (mode) {
9311         case XDP_MODE_SKB:
9312                 return generic_xdp_install;
9313         case XDP_MODE_DRV:
9314         case XDP_MODE_HW:
9315                 return dev->netdev_ops->ndo_bpf;
9316         default:
9317                 return NULL;
9318         }
9319 }
9320
9321 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9322                                          enum bpf_xdp_mode mode)
9323 {
9324         return dev->xdp_state[mode].link;
9325 }
9326
9327 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9328                                      enum bpf_xdp_mode mode)
9329 {
9330         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9331
9332         if (link)
9333                 return link->link.prog;
9334         return dev->xdp_state[mode].prog;
9335 }
9336
9337 static u8 dev_xdp_prog_count(struct net_device *dev)
9338 {
9339         u8 count = 0;
9340         int i;
9341
9342         for (i = 0; i < __MAX_XDP_MODE; i++)
9343                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9344                         count++;
9345         return count;
9346 }
9347
9348 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9349 {
9350         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9351
9352         return prog ? prog->aux->id : 0;
9353 }
9354
9355 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9356                              struct bpf_xdp_link *link)
9357 {
9358         dev->xdp_state[mode].link = link;
9359         dev->xdp_state[mode].prog = NULL;
9360 }
9361
9362 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9363                              struct bpf_prog *prog)
9364 {
9365         dev->xdp_state[mode].link = NULL;
9366         dev->xdp_state[mode].prog = prog;
9367 }
9368
9369 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9370                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9371                            u32 flags, struct bpf_prog *prog)
9372 {
9373         struct netdev_bpf xdp;
9374         int err;
9375
9376         memset(&xdp, 0, sizeof(xdp));
9377         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9378         xdp.extack = extack;
9379         xdp.flags = flags;
9380         xdp.prog = prog;
9381
9382         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9383          * "moved" into driver), so they don't increment it on their own, but
9384          * they do decrement refcnt when program is detached or replaced.
9385          * Given net_device also owns link/prog, we need to bump refcnt here
9386          * to prevent drivers from underflowing it.
9387          */
9388         if (prog)
9389                 bpf_prog_inc(prog);
9390         err = bpf_op(dev, &xdp);
9391         if (err) {
9392                 if (prog)
9393                         bpf_prog_put(prog);
9394                 return err;
9395         }
9396
9397         if (mode != XDP_MODE_HW)
9398                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9399
9400         return 0;
9401 }
9402
9403 static void dev_xdp_uninstall(struct net_device *dev)
9404 {
9405         struct bpf_xdp_link *link;
9406         struct bpf_prog *prog;
9407         enum bpf_xdp_mode mode;
9408         bpf_op_t bpf_op;
9409
9410         ASSERT_RTNL();
9411
9412         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9413                 prog = dev_xdp_prog(dev, mode);
9414                 if (!prog)
9415                         continue;
9416
9417                 bpf_op = dev_xdp_bpf_op(dev, mode);
9418                 if (!bpf_op)
9419                         continue;
9420
9421                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9422
9423                 /* auto-detach link from net device */
9424                 link = dev_xdp_link(dev, mode);
9425                 if (link)
9426                         link->dev = NULL;
9427                 else
9428                         bpf_prog_put(prog);
9429
9430                 dev_xdp_set_link(dev, mode, NULL);
9431         }
9432 }
9433
9434 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9435                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9436                           struct bpf_prog *old_prog, u32 flags)
9437 {
9438         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9439         struct bpf_prog *cur_prog;
9440         enum bpf_xdp_mode mode;
9441         bpf_op_t bpf_op;
9442         int err;
9443
9444         ASSERT_RTNL();
9445
9446         /* either link or prog attachment, never both */
9447         if (link && (new_prog || old_prog))
9448                 return -EINVAL;
9449         /* link supports only XDP mode flags */
9450         if (link && (flags & ~XDP_FLAGS_MODES)) {
9451                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9452                 return -EINVAL;
9453         }
9454         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9455         if (num_modes > 1) {
9456                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9457                 return -EINVAL;
9458         }
9459         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9460         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9461                 NL_SET_ERR_MSG(extack,
9462                                "More than one program loaded, unset mode is ambiguous");
9463                 return -EINVAL;
9464         }
9465         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9466         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9467                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9468                 return -EINVAL;
9469         }
9470
9471         mode = dev_xdp_mode(dev, flags);
9472         /* can't replace attached link */
9473         if (dev_xdp_link(dev, mode)) {
9474                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9475                 return -EBUSY;
9476         }
9477
9478         cur_prog = dev_xdp_prog(dev, mode);
9479         /* can't replace attached prog with link */
9480         if (link && cur_prog) {
9481                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9482                 return -EBUSY;
9483         }
9484         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9485                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9486                 return -EEXIST;
9487         }
9488
9489         /* put effective new program into new_prog */
9490         if (link)
9491                 new_prog = link->link.prog;
9492
9493         if (new_prog) {
9494                 bool offload = mode == XDP_MODE_HW;
9495                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9496                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9497
9498                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9499                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9500                         return -EBUSY;
9501                 }
9502                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9503                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9504                         return -EEXIST;
9505                 }
9506                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9507                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9508                         return -EINVAL;
9509                 }
9510                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9511                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9512                         return -EINVAL;
9513                 }
9514                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9515                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9516                         return -EINVAL;
9517                 }
9518         }
9519
9520         /* don't call drivers if the effective program didn't change */
9521         if (new_prog != cur_prog) {
9522                 bpf_op = dev_xdp_bpf_op(dev, mode);
9523                 if (!bpf_op) {
9524                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9525                         return -EOPNOTSUPP;
9526                 }
9527
9528                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9529                 if (err)
9530                         return err;
9531         }
9532
9533         if (link)
9534                 dev_xdp_set_link(dev, mode, link);
9535         else
9536                 dev_xdp_set_prog(dev, mode, new_prog);
9537         if (cur_prog)
9538                 bpf_prog_put(cur_prog);
9539
9540         return 0;
9541 }
9542
9543 static int dev_xdp_attach_link(struct net_device *dev,
9544                                struct netlink_ext_ack *extack,
9545                                struct bpf_xdp_link *link)
9546 {
9547         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9548 }
9549
9550 static int dev_xdp_detach_link(struct net_device *dev,
9551                                struct netlink_ext_ack *extack,
9552                                struct bpf_xdp_link *link)
9553 {
9554         enum bpf_xdp_mode mode;
9555         bpf_op_t bpf_op;
9556
9557         ASSERT_RTNL();
9558
9559         mode = dev_xdp_mode(dev, link->flags);
9560         if (dev_xdp_link(dev, mode) != link)
9561                 return -EINVAL;
9562
9563         bpf_op = dev_xdp_bpf_op(dev, mode);
9564         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9565         dev_xdp_set_link(dev, mode, NULL);
9566         return 0;
9567 }
9568
9569 static void bpf_xdp_link_release(struct bpf_link *link)
9570 {
9571         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9572
9573         rtnl_lock();
9574
9575         /* if racing with net_device's tear down, xdp_link->dev might be
9576          * already NULL, in which case link was already auto-detached
9577          */
9578         if (xdp_link->dev) {
9579                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9580                 xdp_link->dev = NULL;
9581         }
9582
9583         rtnl_unlock();
9584 }
9585
9586 static int bpf_xdp_link_detach(struct bpf_link *link)
9587 {
9588         bpf_xdp_link_release(link);
9589         return 0;
9590 }
9591
9592 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9593 {
9594         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9595
9596         kfree(xdp_link);
9597 }
9598
9599 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9600                                      struct seq_file *seq)
9601 {
9602         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9603         u32 ifindex = 0;
9604
9605         rtnl_lock();
9606         if (xdp_link->dev)
9607                 ifindex = xdp_link->dev->ifindex;
9608         rtnl_unlock();
9609
9610         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9611 }
9612
9613 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9614                                        struct bpf_link_info *info)
9615 {
9616         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9617         u32 ifindex = 0;
9618
9619         rtnl_lock();
9620         if (xdp_link->dev)
9621                 ifindex = xdp_link->dev->ifindex;
9622         rtnl_unlock();
9623
9624         info->xdp.ifindex = ifindex;
9625         return 0;
9626 }
9627
9628 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9629                                struct bpf_prog *old_prog)
9630 {
9631         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9632         enum bpf_xdp_mode mode;
9633         bpf_op_t bpf_op;
9634         int err = 0;
9635
9636         rtnl_lock();
9637
9638         /* link might have been auto-released already, so fail */
9639         if (!xdp_link->dev) {
9640                 err = -ENOLINK;
9641                 goto out_unlock;
9642         }
9643
9644         if (old_prog && link->prog != old_prog) {
9645                 err = -EPERM;
9646                 goto out_unlock;
9647         }
9648         old_prog = link->prog;
9649         if (old_prog == new_prog) {
9650                 /* no-op, don't disturb drivers */
9651                 bpf_prog_put(new_prog);
9652                 goto out_unlock;
9653         }
9654
9655         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9656         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9657         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9658                               xdp_link->flags, new_prog);
9659         if (err)
9660                 goto out_unlock;
9661
9662         old_prog = xchg(&link->prog, new_prog);
9663         bpf_prog_put(old_prog);
9664
9665 out_unlock:
9666         rtnl_unlock();
9667         return err;
9668 }
9669
9670 static const struct bpf_link_ops bpf_xdp_link_lops = {
9671         .release = bpf_xdp_link_release,
9672         .dealloc = bpf_xdp_link_dealloc,
9673         .detach = bpf_xdp_link_detach,
9674         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9675         .fill_link_info = bpf_xdp_link_fill_link_info,
9676         .update_prog = bpf_xdp_link_update,
9677 };
9678
9679 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9680 {
9681         struct net *net = current->nsproxy->net_ns;
9682         struct bpf_link_primer link_primer;
9683         struct bpf_xdp_link *link;
9684         struct net_device *dev;
9685         int err, fd;
9686
9687         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9688         if (!dev)
9689                 return -EINVAL;
9690
9691         link = kzalloc(sizeof(*link), GFP_USER);
9692         if (!link) {
9693                 err = -ENOMEM;
9694                 goto out_put_dev;
9695         }
9696
9697         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9698         link->dev = dev;
9699         link->flags = attr->link_create.flags;
9700
9701         err = bpf_link_prime(&link->link, &link_primer);
9702         if (err) {
9703                 kfree(link);
9704                 goto out_put_dev;
9705         }
9706
9707         rtnl_lock();
9708         err = dev_xdp_attach_link(dev, NULL, link);
9709         rtnl_unlock();
9710
9711         if (err) {
9712                 bpf_link_cleanup(&link_primer);
9713                 goto out_put_dev;
9714         }
9715
9716         fd = bpf_link_settle(&link_primer);
9717         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9718         dev_put(dev);
9719         return fd;
9720
9721 out_put_dev:
9722         dev_put(dev);
9723         return err;
9724 }
9725
9726 /**
9727  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9728  *      @dev: device
9729  *      @extack: netlink extended ack
9730  *      @fd: new program fd or negative value to clear
9731  *      @expected_fd: old program fd that userspace expects to replace or clear
9732  *      @flags: xdp-related flags
9733  *
9734  *      Set or clear a bpf program for a device
9735  */
9736 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9737                       int fd, int expected_fd, u32 flags)
9738 {
9739         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9740         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9741         int err;
9742
9743         ASSERT_RTNL();
9744
9745         if (fd >= 0) {
9746                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9747                                                  mode != XDP_MODE_SKB);
9748                 if (IS_ERR(new_prog))
9749                         return PTR_ERR(new_prog);
9750         }
9751
9752         if (expected_fd >= 0) {
9753                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9754                                                  mode != XDP_MODE_SKB);
9755                 if (IS_ERR(old_prog)) {
9756                         err = PTR_ERR(old_prog);
9757                         old_prog = NULL;
9758                         goto err_out;
9759                 }
9760         }
9761
9762         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9763
9764 err_out:
9765         if (err && new_prog)
9766                 bpf_prog_put(new_prog);
9767         if (old_prog)
9768                 bpf_prog_put(old_prog);
9769         return err;
9770 }
9771
9772 /**
9773  *      dev_new_index   -       allocate an ifindex
9774  *      @net: the applicable net namespace
9775  *
9776  *      Returns a suitable unique value for a new device interface
9777  *      number.  The caller must hold the rtnl semaphore or the
9778  *      dev_base_lock to be sure it remains unique.
9779  */
9780 static int dev_new_index(struct net *net)
9781 {
9782         int ifindex = net->ifindex;
9783
9784         for (;;) {
9785                 if (++ifindex <= 0)
9786                         ifindex = 1;
9787                 if (!__dev_get_by_index(net, ifindex))
9788                         return net->ifindex = ifindex;
9789         }
9790 }
9791
9792 /* Delayed registration/unregisteration */
9793 static LIST_HEAD(net_todo_list);
9794 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9795
9796 static void net_set_todo(struct net_device *dev)
9797 {
9798         list_add_tail(&dev->todo_list, &net_todo_list);
9799         dev_net(dev)->dev_unreg_count++;
9800 }
9801
9802 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9803         struct net_device *upper, netdev_features_t features)
9804 {
9805         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9806         netdev_features_t feature;
9807         int feature_bit;
9808
9809         for_each_netdev_feature(upper_disables, feature_bit) {
9810                 feature = __NETIF_F_BIT(feature_bit);
9811                 if (!(upper->wanted_features & feature)
9812                     && (features & feature)) {
9813                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9814                                    &feature, upper->name);
9815                         features &= ~feature;
9816                 }
9817         }
9818
9819         return features;
9820 }
9821
9822 static void netdev_sync_lower_features(struct net_device *upper,
9823         struct net_device *lower, netdev_features_t features)
9824 {
9825         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9826         netdev_features_t feature;
9827         int feature_bit;
9828
9829         for_each_netdev_feature(upper_disables, feature_bit) {
9830                 feature = __NETIF_F_BIT(feature_bit);
9831                 if (!(features & feature) && (lower->features & feature)) {
9832                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9833                                    &feature, lower->name);
9834                         lower->wanted_features &= ~feature;
9835                         __netdev_update_features(lower);
9836
9837                         if (unlikely(lower->features & feature))
9838                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9839                                             &feature, lower->name);
9840                         else
9841                                 netdev_features_change(lower);
9842                 }
9843         }
9844 }
9845
9846 static netdev_features_t netdev_fix_features(struct net_device *dev,
9847         netdev_features_t features)
9848 {
9849         /* Fix illegal checksum combinations */
9850         if ((features & NETIF_F_HW_CSUM) &&
9851             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9852                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9853                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9854         }
9855
9856         /* TSO requires that SG is present as well. */
9857         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9858                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9859                 features &= ~NETIF_F_ALL_TSO;
9860         }
9861
9862         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9863                                         !(features & NETIF_F_IP_CSUM)) {
9864                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9865                 features &= ~NETIF_F_TSO;
9866                 features &= ~NETIF_F_TSO_ECN;
9867         }
9868
9869         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9870                                          !(features & NETIF_F_IPV6_CSUM)) {
9871                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9872                 features &= ~NETIF_F_TSO6;
9873         }
9874
9875         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9876         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9877                 features &= ~NETIF_F_TSO_MANGLEID;
9878
9879         /* TSO ECN requires that TSO is present as well. */
9880         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9881                 features &= ~NETIF_F_TSO_ECN;
9882
9883         /* Software GSO depends on SG. */
9884         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9885                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9886                 features &= ~NETIF_F_GSO;
9887         }
9888
9889         /* GSO partial features require GSO partial be set */
9890         if ((features & dev->gso_partial_features) &&
9891             !(features & NETIF_F_GSO_PARTIAL)) {
9892                 netdev_dbg(dev,
9893                            "Dropping partially supported GSO features since no GSO partial.\n");
9894                 features &= ~dev->gso_partial_features;
9895         }
9896
9897         if (!(features & NETIF_F_RXCSUM)) {
9898                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9899                  * successfully merged by hardware must also have the
9900                  * checksum verified by hardware.  If the user does not
9901                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9902                  */
9903                 if (features & NETIF_F_GRO_HW) {
9904                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9905                         features &= ~NETIF_F_GRO_HW;
9906                 }
9907         }
9908
9909         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9910         if (features & NETIF_F_RXFCS) {
9911                 if (features & NETIF_F_LRO) {
9912                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9913                         features &= ~NETIF_F_LRO;
9914                 }
9915
9916                 if (features & NETIF_F_GRO_HW) {
9917                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9918                         features &= ~NETIF_F_GRO_HW;
9919                 }
9920         }
9921
9922         if (features & NETIF_F_HW_TLS_TX) {
9923                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9924                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9925                 bool hw_csum = features & NETIF_F_HW_CSUM;
9926
9927                 if (!ip_csum && !hw_csum) {
9928                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9929                         features &= ~NETIF_F_HW_TLS_TX;
9930                 }
9931         }
9932
9933         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9934                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9935                 features &= ~NETIF_F_HW_TLS_RX;
9936         }
9937
9938         return features;
9939 }
9940
9941 int __netdev_update_features(struct net_device *dev)
9942 {
9943         struct net_device *upper, *lower;
9944         netdev_features_t features;
9945         struct list_head *iter;
9946         int err = -1;
9947
9948         ASSERT_RTNL();
9949
9950         features = netdev_get_wanted_features(dev);
9951
9952         if (dev->netdev_ops->ndo_fix_features)
9953                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9954
9955         /* driver might be less strict about feature dependencies */
9956         features = netdev_fix_features(dev, features);
9957
9958         /* some features can't be enabled if they're off on an upper device */
9959         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9960                 features = netdev_sync_upper_features(dev, upper, features);
9961
9962         if (dev->features == features)
9963                 goto sync_lower;
9964
9965         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9966                 &dev->features, &features);
9967
9968         if (dev->netdev_ops->ndo_set_features)
9969                 err = dev->netdev_ops->ndo_set_features(dev, features);
9970         else
9971                 err = 0;
9972
9973         if (unlikely(err < 0)) {
9974                 netdev_err(dev,
9975                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9976                         err, &features, &dev->features);
9977                 /* return non-0 since some features might have changed and
9978                  * it's better to fire a spurious notification than miss it
9979                  */
9980                 return -1;
9981         }
9982
9983 sync_lower:
9984         /* some features must be disabled on lower devices when disabled
9985          * on an upper device (think: bonding master or bridge)
9986          */
9987         netdev_for_each_lower_dev(dev, lower, iter)
9988                 netdev_sync_lower_features(dev, lower, features);
9989
9990         if (!err) {
9991                 netdev_features_t diff = features ^ dev->features;
9992
9993                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9994                         /* udp_tunnel_{get,drop}_rx_info both need
9995                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9996                          * device, or they won't do anything.
9997                          * Thus we need to update dev->features
9998                          * *before* calling udp_tunnel_get_rx_info,
9999                          * but *after* calling udp_tunnel_drop_rx_info.
10000                          */
10001                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10002                                 dev->features = features;
10003                                 udp_tunnel_get_rx_info(dev);
10004                         } else {
10005                                 udp_tunnel_drop_rx_info(dev);
10006                         }
10007                 }
10008
10009                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10010                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10011                                 dev->features = features;
10012                                 err |= vlan_get_rx_ctag_filter_info(dev);
10013                         } else {
10014                                 vlan_drop_rx_ctag_filter_info(dev);
10015                         }
10016                 }
10017
10018                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10019                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10020                                 dev->features = features;
10021                                 err |= vlan_get_rx_stag_filter_info(dev);
10022                         } else {
10023                                 vlan_drop_rx_stag_filter_info(dev);
10024                         }
10025                 }
10026
10027                 dev->features = features;
10028         }
10029
10030         return err < 0 ? 0 : 1;
10031 }
10032
10033 /**
10034  *      netdev_update_features - recalculate device features
10035  *      @dev: the device to check
10036  *
10037  *      Recalculate dev->features set and send notifications if it
10038  *      has changed. Should be called after driver or hardware dependent
10039  *      conditions might have changed that influence the features.
10040  */
10041 void netdev_update_features(struct net_device *dev)
10042 {
10043         if (__netdev_update_features(dev))
10044                 netdev_features_change(dev);
10045 }
10046 EXPORT_SYMBOL(netdev_update_features);
10047
10048 /**
10049  *      netdev_change_features - recalculate device features
10050  *      @dev: the device to check
10051  *
10052  *      Recalculate dev->features set and send notifications even
10053  *      if they have not changed. Should be called instead of
10054  *      netdev_update_features() if also dev->vlan_features might
10055  *      have changed to allow the changes to be propagated to stacked
10056  *      VLAN devices.
10057  */
10058 void netdev_change_features(struct net_device *dev)
10059 {
10060         __netdev_update_features(dev);
10061         netdev_features_change(dev);
10062 }
10063 EXPORT_SYMBOL(netdev_change_features);
10064
10065 /**
10066  *      netif_stacked_transfer_operstate -      transfer operstate
10067  *      @rootdev: the root or lower level device to transfer state from
10068  *      @dev: the device to transfer operstate to
10069  *
10070  *      Transfer operational state from root to device. This is normally
10071  *      called when a stacking relationship exists between the root
10072  *      device and the device(a leaf device).
10073  */
10074 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10075                                         struct net_device *dev)
10076 {
10077         if (rootdev->operstate == IF_OPER_DORMANT)
10078                 netif_dormant_on(dev);
10079         else
10080                 netif_dormant_off(dev);
10081
10082         if (rootdev->operstate == IF_OPER_TESTING)
10083                 netif_testing_on(dev);
10084         else
10085                 netif_testing_off(dev);
10086
10087         if (netif_carrier_ok(rootdev))
10088                 netif_carrier_on(dev);
10089         else
10090                 netif_carrier_off(dev);
10091 }
10092 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10093
10094 static int netif_alloc_rx_queues(struct net_device *dev)
10095 {
10096         unsigned int i, count = dev->num_rx_queues;
10097         struct netdev_rx_queue *rx;
10098         size_t sz = count * sizeof(*rx);
10099         int err = 0;
10100
10101         BUG_ON(count < 1);
10102
10103         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10104         if (!rx)
10105                 return -ENOMEM;
10106
10107         dev->_rx = rx;
10108
10109         for (i = 0; i < count; i++) {
10110                 rx[i].dev = dev;
10111
10112                 /* XDP RX-queue setup */
10113                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10114                 if (err < 0)
10115                         goto err_rxq_info;
10116         }
10117         return 0;
10118
10119 err_rxq_info:
10120         /* Rollback successful reg's and free other resources */
10121         while (i--)
10122                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10123         kvfree(dev->_rx);
10124         dev->_rx = NULL;
10125         return err;
10126 }
10127
10128 static void netif_free_rx_queues(struct net_device *dev)
10129 {
10130         unsigned int i, count = dev->num_rx_queues;
10131
10132         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10133         if (!dev->_rx)
10134                 return;
10135
10136         for (i = 0; i < count; i++)
10137                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10138
10139         kvfree(dev->_rx);
10140 }
10141
10142 static void netdev_init_one_queue(struct net_device *dev,
10143                                   struct netdev_queue *queue, void *_unused)
10144 {
10145         /* Initialize queue lock */
10146         spin_lock_init(&queue->_xmit_lock);
10147         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10148         queue->xmit_lock_owner = -1;
10149         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10150         queue->dev = dev;
10151 #ifdef CONFIG_BQL
10152         dql_init(&queue->dql, HZ);
10153 #endif
10154 }
10155
10156 static void netif_free_tx_queues(struct net_device *dev)
10157 {
10158         kvfree(dev->_tx);
10159 }
10160
10161 static int netif_alloc_netdev_queues(struct net_device *dev)
10162 {
10163         unsigned int count = dev->num_tx_queues;
10164         struct netdev_queue *tx;
10165         size_t sz = count * sizeof(*tx);
10166
10167         if (count < 1 || count > 0xffff)
10168                 return -EINVAL;
10169
10170         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10171         if (!tx)
10172                 return -ENOMEM;
10173
10174         dev->_tx = tx;
10175
10176         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10177         spin_lock_init(&dev->tx_global_lock);
10178
10179         return 0;
10180 }
10181
10182 void netif_tx_stop_all_queues(struct net_device *dev)
10183 {
10184         unsigned int i;
10185
10186         for (i = 0; i < dev->num_tx_queues; i++) {
10187                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10188
10189                 netif_tx_stop_queue(txq);
10190         }
10191 }
10192 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10193
10194 /**
10195  *      register_netdevice      - register a network device
10196  *      @dev: device to register
10197  *
10198  *      Take a completed network device structure and add it to the kernel
10199  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10200  *      chain. 0 is returned on success. A negative errno code is returned
10201  *      on a failure to set up the device, or if the name is a duplicate.
10202  *
10203  *      Callers must hold the rtnl semaphore. You may want
10204  *      register_netdev() instead of this.
10205  *
10206  *      BUGS:
10207  *      The locking appears insufficient to guarantee two parallel registers
10208  *      will not get the same name.
10209  */
10210
10211 int register_netdevice(struct net_device *dev)
10212 {
10213         int ret;
10214         struct net *net = dev_net(dev);
10215
10216         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10217                      NETDEV_FEATURE_COUNT);
10218         BUG_ON(dev_boot_phase);
10219         ASSERT_RTNL();
10220
10221         might_sleep();
10222
10223         /* When net_device's are persistent, this will be fatal. */
10224         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10225         BUG_ON(!net);
10226
10227         ret = ethtool_check_ops(dev->ethtool_ops);
10228         if (ret)
10229                 return ret;
10230
10231         spin_lock_init(&dev->addr_list_lock);
10232         netdev_set_addr_lockdep_class(dev);
10233
10234         ret = dev_get_valid_name(net, dev, dev->name);
10235         if (ret < 0)
10236                 goto out;
10237
10238         ret = -ENOMEM;
10239         dev->name_node = netdev_name_node_head_alloc(dev);
10240         if (!dev->name_node)
10241                 goto out;
10242
10243         /* Init, if this function is available */
10244         if (dev->netdev_ops->ndo_init) {
10245                 ret = dev->netdev_ops->ndo_init(dev);
10246                 if (ret) {
10247                         if (ret > 0)
10248                                 ret = -EIO;
10249                         goto err_free_name;
10250                 }
10251         }
10252
10253         if (((dev->hw_features | dev->features) &
10254              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10255             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10256              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10257                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10258                 ret = -EINVAL;
10259                 goto err_uninit;
10260         }
10261
10262         ret = -EBUSY;
10263         if (!dev->ifindex)
10264                 dev->ifindex = dev_new_index(net);
10265         else if (__dev_get_by_index(net, dev->ifindex))
10266                 goto err_uninit;
10267
10268         /* Transfer changeable features to wanted_features and enable
10269          * software offloads (GSO and GRO).
10270          */
10271         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10272         dev->features |= NETIF_F_SOFT_FEATURES;
10273
10274         if (dev->udp_tunnel_nic_info) {
10275                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10276                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10277         }
10278
10279         dev->wanted_features = dev->features & dev->hw_features;
10280
10281         if (!(dev->flags & IFF_LOOPBACK))
10282                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10283
10284         /* If IPv4 TCP segmentation offload is supported we should also
10285          * allow the device to enable segmenting the frame with the option
10286          * of ignoring a static IP ID value.  This doesn't enable the
10287          * feature itself but allows the user to enable it later.
10288          */
10289         if (dev->hw_features & NETIF_F_TSO)
10290                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10291         if (dev->vlan_features & NETIF_F_TSO)
10292                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10293         if (dev->mpls_features & NETIF_F_TSO)
10294                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10295         if (dev->hw_enc_features & NETIF_F_TSO)
10296                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10297
10298         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10299          */
10300         dev->vlan_features |= NETIF_F_HIGHDMA;
10301
10302         /* Make NETIF_F_SG inheritable to tunnel devices.
10303          */
10304         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10305
10306         /* Make NETIF_F_SG inheritable to MPLS.
10307          */
10308         dev->mpls_features |= NETIF_F_SG;
10309
10310         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10311         ret = notifier_to_errno(ret);
10312         if (ret)
10313                 goto err_uninit;
10314
10315         ret = netdev_register_kobject(dev);
10316         if (ret) {
10317                 dev->reg_state = NETREG_UNREGISTERED;
10318                 goto err_uninit;
10319         }
10320         dev->reg_state = NETREG_REGISTERED;
10321
10322         __netdev_update_features(dev);
10323
10324         /*
10325          *      Default initial state at registry is that the
10326          *      device is present.
10327          */
10328
10329         set_bit(__LINK_STATE_PRESENT, &dev->state);
10330
10331         linkwatch_init_dev(dev);
10332
10333         dev_init_scheduler(dev);
10334         dev_hold(dev);
10335         list_netdevice(dev);
10336         add_device_randomness(dev->dev_addr, dev->addr_len);
10337
10338         /* If the device has permanent device address, driver should
10339          * set dev_addr and also addr_assign_type should be set to
10340          * NET_ADDR_PERM (default value).
10341          */
10342         if (dev->addr_assign_type == NET_ADDR_PERM)
10343                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10344
10345         /* Notify protocols, that a new device appeared. */
10346         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10347         ret = notifier_to_errno(ret);
10348         if (ret) {
10349                 /* Expect explicit free_netdev() on failure */
10350                 dev->needs_free_netdev = false;
10351                 unregister_netdevice_queue(dev, NULL);
10352                 goto out;
10353         }
10354         /*
10355          *      Prevent userspace races by waiting until the network
10356          *      device is fully setup before sending notifications.
10357          */
10358         if (!dev->rtnl_link_ops ||
10359             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10360                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10361
10362 out:
10363         return ret;
10364
10365 err_uninit:
10366         if (dev->netdev_ops->ndo_uninit)
10367                 dev->netdev_ops->ndo_uninit(dev);
10368         if (dev->priv_destructor)
10369                 dev->priv_destructor(dev);
10370 err_free_name:
10371         netdev_name_node_free(dev->name_node);
10372         goto out;
10373 }
10374 EXPORT_SYMBOL(register_netdevice);
10375
10376 /**
10377  *      init_dummy_netdev       - init a dummy network device for NAPI
10378  *      @dev: device to init
10379  *
10380  *      This takes a network device structure and initialize the minimum
10381  *      amount of fields so it can be used to schedule NAPI polls without
10382  *      registering a full blown interface. This is to be used by drivers
10383  *      that need to tie several hardware interfaces to a single NAPI
10384  *      poll scheduler due to HW limitations.
10385  */
10386 int init_dummy_netdev(struct net_device *dev)
10387 {
10388         /* Clear everything. Note we don't initialize spinlocks
10389          * are they aren't supposed to be taken by any of the
10390          * NAPI code and this dummy netdev is supposed to be
10391          * only ever used for NAPI polls
10392          */
10393         memset(dev, 0, sizeof(struct net_device));
10394
10395         /* make sure we BUG if trying to hit standard
10396          * register/unregister code path
10397          */
10398         dev->reg_state = NETREG_DUMMY;
10399
10400         /* NAPI wants this */
10401         INIT_LIST_HEAD(&dev->napi_list);
10402
10403         /* a dummy interface is started by default */
10404         set_bit(__LINK_STATE_PRESENT, &dev->state);
10405         set_bit(__LINK_STATE_START, &dev->state);
10406
10407         /* napi_busy_loop stats accounting wants this */
10408         dev_net_set(dev, &init_net);
10409
10410         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10411          * because users of this 'device' dont need to change
10412          * its refcount.
10413          */
10414
10415         return 0;
10416 }
10417 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10418
10419
10420 /**
10421  *      register_netdev - register a network device
10422  *      @dev: device to register
10423  *
10424  *      Take a completed network device structure and add it to the kernel
10425  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10426  *      chain. 0 is returned on success. A negative errno code is returned
10427  *      on a failure to set up the device, or if the name is a duplicate.
10428  *
10429  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10430  *      and expands the device name if you passed a format string to
10431  *      alloc_netdev.
10432  */
10433 int register_netdev(struct net_device *dev)
10434 {
10435         int err;
10436
10437         if (rtnl_lock_killable())
10438                 return -EINTR;
10439         err = register_netdevice(dev);
10440         rtnl_unlock();
10441         return err;
10442 }
10443 EXPORT_SYMBOL(register_netdev);
10444
10445 int netdev_refcnt_read(const struct net_device *dev)
10446 {
10447 #ifdef CONFIG_PCPU_DEV_REFCNT
10448         int i, refcnt = 0;
10449
10450         for_each_possible_cpu(i)
10451                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10452         return refcnt;
10453 #else
10454         return refcount_read(&dev->dev_refcnt);
10455 #endif
10456 }
10457 EXPORT_SYMBOL(netdev_refcnt_read);
10458
10459 int netdev_unregister_timeout_secs __read_mostly = 10;
10460
10461 #define WAIT_REFS_MIN_MSECS 1
10462 #define WAIT_REFS_MAX_MSECS 250
10463 /**
10464  * netdev_wait_allrefs - wait until all references are gone.
10465  * @dev: target net_device
10466  *
10467  * This is called when unregistering network devices.
10468  *
10469  * Any protocol or device that holds a reference should register
10470  * for netdevice notification, and cleanup and put back the
10471  * reference if they receive an UNREGISTER event.
10472  * We can get stuck here if buggy protocols don't correctly
10473  * call dev_put.
10474  */
10475 static void netdev_wait_allrefs(struct net_device *dev)
10476 {
10477         unsigned long rebroadcast_time, warning_time;
10478         int wait = 0, refcnt;
10479
10480         linkwatch_forget_dev(dev);
10481
10482         rebroadcast_time = warning_time = jiffies;
10483         refcnt = netdev_refcnt_read(dev);
10484
10485         while (refcnt != 1) {
10486                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10487                         rtnl_lock();
10488
10489                         /* Rebroadcast unregister notification */
10490                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10491
10492                         __rtnl_unlock();
10493                         rcu_barrier();
10494                         rtnl_lock();
10495
10496                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10497                                      &dev->state)) {
10498                                 /* We must not have linkwatch events
10499                                  * pending on unregister. If this
10500                                  * happens, we simply run the queue
10501                                  * unscheduled, resulting in a noop
10502                                  * for this device.
10503                                  */
10504                                 linkwatch_run_queue();
10505                         }
10506
10507                         __rtnl_unlock();
10508
10509                         rebroadcast_time = jiffies;
10510                 }
10511
10512                 if (!wait) {
10513                         rcu_barrier();
10514                         wait = WAIT_REFS_MIN_MSECS;
10515                 } else {
10516                         msleep(wait);
10517                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10518                 }
10519
10520                 refcnt = netdev_refcnt_read(dev);
10521
10522                 if (refcnt != 1 &&
10523                     time_after(jiffies, warning_time +
10524                                netdev_unregister_timeout_secs * HZ)) {
10525                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10526                                  dev->name, refcnt);
10527                         warning_time = jiffies;
10528                 }
10529         }
10530 }
10531
10532 /* The sequence is:
10533  *
10534  *      rtnl_lock();
10535  *      ...
10536  *      register_netdevice(x1);
10537  *      register_netdevice(x2);
10538  *      ...
10539  *      unregister_netdevice(y1);
10540  *      unregister_netdevice(y2);
10541  *      ...
10542  *      rtnl_unlock();
10543  *      free_netdev(y1);
10544  *      free_netdev(y2);
10545  *
10546  * We are invoked by rtnl_unlock().
10547  * This allows us to deal with problems:
10548  * 1) We can delete sysfs objects which invoke hotplug
10549  *    without deadlocking with linkwatch via keventd.
10550  * 2) Since we run with the RTNL semaphore not held, we can sleep
10551  *    safely in order to wait for the netdev refcnt to drop to zero.
10552  *
10553  * We must not return until all unregister events added during
10554  * the interval the lock was held have been completed.
10555  */
10556 void netdev_run_todo(void)
10557 {
10558         struct list_head list;
10559 #ifdef CONFIG_LOCKDEP
10560         struct list_head unlink_list;
10561
10562         list_replace_init(&net_unlink_list, &unlink_list);
10563
10564         while (!list_empty(&unlink_list)) {
10565                 struct net_device *dev = list_first_entry(&unlink_list,
10566                                                           struct net_device,
10567                                                           unlink_list);
10568                 list_del_init(&dev->unlink_list);
10569                 dev->nested_level = dev->lower_level - 1;
10570         }
10571 #endif
10572
10573         /* Snapshot list, allow later requests */
10574         list_replace_init(&net_todo_list, &list);
10575
10576         __rtnl_unlock();
10577
10578
10579         /* Wait for rcu callbacks to finish before next phase */
10580         if (!list_empty(&list))
10581                 rcu_barrier();
10582
10583         while (!list_empty(&list)) {
10584                 struct net_device *dev
10585                         = list_first_entry(&list, struct net_device, todo_list);
10586                 list_del(&dev->todo_list);
10587
10588                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10589                         pr_err("network todo '%s' but state %d\n",
10590                                dev->name, dev->reg_state);
10591                         dump_stack();
10592                         continue;
10593                 }
10594
10595                 dev->reg_state = NETREG_UNREGISTERED;
10596
10597                 netdev_wait_allrefs(dev);
10598
10599                 /* paranoia */
10600                 BUG_ON(netdev_refcnt_read(dev) != 1);
10601                 BUG_ON(!list_empty(&dev->ptype_all));
10602                 BUG_ON(!list_empty(&dev->ptype_specific));
10603                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10604                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10605 #if IS_ENABLED(CONFIG_DECNET)
10606                 WARN_ON(dev->dn_ptr);
10607 #endif
10608                 if (dev->priv_destructor)
10609                         dev->priv_destructor(dev);
10610                 if (dev->needs_free_netdev)
10611                         free_netdev(dev);
10612
10613                 /* Report a network device has been unregistered */
10614                 rtnl_lock();
10615                 dev_net(dev)->dev_unreg_count--;
10616                 __rtnl_unlock();
10617                 wake_up(&netdev_unregistering_wq);
10618
10619                 /* Free network device */
10620                 kobject_put(&dev->dev.kobj);
10621         }
10622 }
10623
10624 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10625  * all the same fields in the same order as net_device_stats, with only
10626  * the type differing, but rtnl_link_stats64 may have additional fields
10627  * at the end for newer counters.
10628  */
10629 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10630                              const struct net_device_stats *netdev_stats)
10631 {
10632 #if BITS_PER_LONG == 64
10633         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10634         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10635         /* zero out counters that only exist in rtnl_link_stats64 */
10636         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10637                sizeof(*stats64) - sizeof(*netdev_stats));
10638 #else
10639         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10640         const unsigned long *src = (const unsigned long *)netdev_stats;
10641         u64 *dst = (u64 *)stats64;
10642
10643         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10644         for (i = 0; i < n; i++)
10645                 dst[i] = src[i];
10646         /* zero out counters that only exist in rtnl_link_stats64 */
10647         memset((char *)stats64 + n * sizeof(u64), 0,
10648                sizeof(*stats64) - n * sizeof(u64));
10649 #endif
10650 }
10651 EXPORT_SYMBOL(netdev_stats_to_stats64);
10652
10653 /**
10654  *      dev_get_stats   - get network device statistics
10655  *      @dev: device to get statistics from
10656  *      @storage: place to store stats
10657  *
10658  *      Get network statistics from device. Return @storage.
10659  *      The device driver may provide its own method by setting
10660  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10661  *      otherwise the internal statistics structure is used.
10662  */
10663 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10664                                         struct rtnl_link_stats64 *storage)
10665 {
10666         const struct net_device_ops *ops = dev->netdev_ops;
10667
10668         if (ops->ndo_get_stats64) {
10669                 memset(storage, 0, sizeof(*storage));
10670                 ops->ndo_get_stats64(dev, storage);
10671         } else if (ops->ndo_get_stats) {
10672                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10673         } else {
10674                 netdev_stats_to_stats64(storage, &dev->stats);
10675         }
10676         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10677         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10678         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10679         return storage;
10680 }
10681 EXPORT_SYMBOL(dev_get_stats);
10682
10683 /**
10684  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10685  *      @s: place to store stats
10686  *      @netstats: per-cpu network stats to read from
10687  *
10688  *      Read per-cpu network statistics and populate the related fields in @s.
10689  */
10690 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10691                            const struct pcpu_sw_netstats __percpu *netstats)
10692 {
10693         int cpu;
10694
10695         for_each_possible_cpu(cpu) {
10696                 const struct pcpu_sw_netstats *stats;
10697                 struct pcpu_sw_netstats tmp;
10698                 unsigned int start;
10699
10700                 stats = per_cpu_ptr(netstats, cpu);
10701                 do {
10702                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10703                         tmp.rx_packets = stats->rx_packets;
10704                         tmp.rx_bytes   = stats->rx_bytes;
10705                         tmp.tx_packets = stats->tx_packets;
10706                         tmp.tx_bytes   = stats->tx_bytes;
10707                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10708
10709                 s->rx_packets += tmp.rx_packets;
10710                 s->rx_bytes   += tmp.rx_bytes;
10711                 s->tx_packets += tmp.tx_packets;
10712                 s->tx_bytes   += tmp.tx_bytes;
10713         }
10714 }
10715 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10716
10717 /**
10718  *      dev_get_tstats64 - ndo_get_stats64 implementation
10719  *      @dev: device to get statistics from
10720  *      @s: place to store stats
10721  *
10722  *      Populate @s from dev->stats and dev->tstats. Can be used as
10723  *      ndo_get_stats64() callback.
10724  */
10725 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10726 {
10727         netdev_stats_to_stats64(s, &dev->stats);
10728         dev_fetch_sw_netstats(s, dev->tstats);
10729 }
10730 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10731
10732 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10733 {
10734         struct netdev_queue *queue = dev_ingress_queue(dev);
10735
10736 #ifdef CONFIG_NET_CLS_ACT
10737         if (queue)
10738                 return queue;
10739         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10740         if (!queue)
10741                 return NULL;
10742         netdev_init_one_queue(dev, queue, NULL);
10743         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10744         queue->qdisc_sleeping = &noop_qdisc;
10745         rcu_assign_pointer(dev->ingress_queue, queue);
10746 #endif
10747         return queue;
10748 }
10749
10750 static const struct ethtool_ops default_ethtool_ops;
10751
10752 void netdev_set_default_ethtool_ops(struct net_device *dev,
10753                                     const struct ethtool_ops *ops)
10754 {
10755         if (dev->ethtool_ops == &default_ethtool_ops)
10756                 dev->ethtool_ops = ops;
10757 }
10758 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10759
10760 void netdev_freemem(struct net_device *dev)
10761 {
10762         char *addr = (char *)dev - dev->padded;
10763
10764         kvfree(addr);
10765 }
10766
10767 /**
10768  * alloc_netdev_mqs - allocate network device
10769  * @sizeof_priv: size of private data to allocate space for
10770  * @name: device name format string
10771  * @name_assign_type: origin of device name
10772  * @setup: callback to initialize device
10773  * @txqs: the number of TX subqueues to allocate
10774  * @rxqs: the number of RX subqueues to allocate
10775  *
10776  * Allocates a struct net_device with private data area for driver use
10777  * and performs basic initialization.  Also allocates subqueue structs
10778  * for each queue on the device.
10779  */
10780 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10781                 unsigned char name_assign_type,
10782                 void (*setup)(struct net_device *),
10783                 unsigned int txqs, unsigned int rxqs)
10784 {
10785         struct net_device *dev;
10786         unsigned int alloc_size;
10787         struct net_device *p;
10788
10789         BUG_ON(strlen(name) >= sizeof(dev->name));
10790
10791         if (txqs < 1) {
10792                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10793                 return NULL;
10794         }
10795
10796         if (rxqs < 1) {
10797                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10798                 return NULL;
10799         }
10800
10801         alloc_size = sizeof(struct net_device);
10802         if (sizeof_priv) {
10803                 /* ensure 32-byte alignment of private area */
10804                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10805                 alloc_size += sizeof_priv;
10806         }
10807         /* ensure 32-byte alignment of whole construct */
10808         alloc_size += NETDEV_ALIGN - 1;
10809
10810         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10811         if (!p)
10812                 return NULL;
10813
10814         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10815         dev->padded = (char *)dev - (char *)p;
10816
10817 #ifdef CONFIG_PCPU_DEV_REFCNT
10818         dev->pcpu_refcnt = alloc_percpu(int);
10819         if (!dev->pcpu_refcnt)
10820                 goto free_dev;
10821         dev_hold(dev);
10822 #else
10823         refcount_set(&dev->dev_refcnt, 1);
10824 #endif
10825
10826         if (dev_addr_init(dev))
10827                 goto free_pcpu;
10828
10829         dev_mc_init(dev);
10830         dev_uc_init(dev);
10831
10832         dev_net_set(dev, &init_net);
10833
10834         dev->gso_max_size = GSO_MAX_SIZE;
10835         dev->gso_max_segs = GSO_MAX_SEGS;
10836         dev->upper_level = 1;
10837         dev->lower_level = 1;
10838 #ifdef CONFIG_LOCKDEP
10839         dev->nested_level = 0;
10840         INIT_LIST_HEAD(&dev->unlink_list);
10841 #endif
10842
10843         INIT_LIST_HEAD(&dev->napi_list);
10844         INIT_LIST_HEAD(&dev->unreg_list);
10845         INIT_LIST_HEAD(&dev->close_list);
10846         INIT_LIST_HEAD(&dev->link_watch_list);
10847         INIT_LIST_HEAD(&dev->adj_list.upper);
10848         INIT_LIST_HEAD(&dev->adj_list.lower);
10849         INIT_LIST_HEAD(&dev->ptype_all);
10850         INIT_LIST_HEAD(&dev->ptype_specific);
10851         INIT_LIST_HEAD(&dev->net_notifier_list);
10852 #ifdef CONFIG_NET_SCHED
10853         hash_init(dev->qdisc_hash);
10854 #endif
10855         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10856         setup(dev);
10857
10858         if (!dev->tx_queue_len) {
10859                 dev->priv_flags |= IFF_NO_QUEUE;
10860                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10861         }
10862
10863         dev->num_tx_queues = txqs;
10864         dev->real_num_tx_queues = txqs;
10865         if (netif_alloc_netdev_queues(dev))
10866                 goto free_all;
10867
10868         dev->num_rx_queues = rxqs;
10869         dev->real_num_rx_queues = rxqs;
10870         if (netif_alloc_rx_queues(dev))
10871                 goto free_all;
10872
10873         strcpy(dev->name, name);
10874         dev->name_assign_type = name_assign_type;
10875         dev->group = INIT_NETDEV_GROUP;
10876         if (!dev->ethtool_ops)
10877                 dev->ethtool_ops = &default_ethtool_ops;
10878
10879         nf_hook_ingress_init(dev);
10880
10881         return dev;
10882
10883 free_all:
10884         free_netdev(dev);
10885         return NULL;
10886
10887 free_pcpu:
10888 #ifdef CONFIG_PCPU_DEV_REFCNT
10889         free_percpu(dev->pcpu_refcnt);
10890 free_dev:
10891 #endif
10892         netdev_freemem(dev);
10893         return NULL;
10894 }
10895 EXPORT_SYMBOL(alloc_netdev_mqs);
10896
10897 /**
10898  * free_netdev - free network device
10899  * @dev: device
10900  *
10901  * This function does the last stage of destroying an allocated device
10902  * interface. The reference to the device object is released. If this
10903  * is the last reference then it will be freed.Must be called in process
10904  * context.
10905  */
10906 void free_netdev(struct net_device *dev)
10907 {
10908         struct napi_struct *p, *n;
10909
10910         might_sleep();
10911
10912         /* When called immediately after register_netdevice() failed the unwind
10913          * handling may still be dismantling the device. Handle that case by
10914          * deferring the free.
10915          */
10916         if (dev->reg_state == NETREG_UNREGISTERING) {
10917                 ASSERT_RTNL();
10918                 dev->needs_free_netdev = true;
10919                 return;
10920         }
10921
10922         netif_free_tx_queues(dev);
10923         netif_free_rx_queues(dev);
10924
10925         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10926
10927         /* Flush device addresses */
10928         dev_addr_flush(dev);
10929
10930         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10931                 netif_napi_del(p);
10932
10933 #ifdef CONFIG_PCPU_DEV_REFCNT
10934         free_percpu(dev->pcpu_refcnt);
10935         dev->pcpu_refcnt = NULL;
10936 #endif
10937         free_percpu(dev->xdp_bulkq);
10938         dev->xdp_bulkq = NULL;
10939
10940         /*  Compatibility with error handling in drivers */
10941         if (dev->reg_state == NETREG_UNINITIALIZED) {
10942                 netdev_freemem(dev);
10943                 return;
10944         }
10945
10946         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10947         dev->reg_state = NETREG_RELEASED;
10948
10949         /* will free via device release */
10950         put_device(&dev->dev);
10951 }
10952 EXPORT_SYMBOL(free_netdev);
10953
10954 /**
10955  *      synchronize_net -  Synchronize with packet receive processing
10956  *
10957  *      Wait for packets currently being received to be done.
10958  *      Does not block later packets from starting.
10959  */
10960 void synchronize_net(void)
10961 {
10962         might_sleep();
10963         if (rtnl_is_locked())
10964                 synchronize_rcu_expedited();
10965         else
10966                 synchronize_rcu();
10967 }
10968 EXPORT_SYMBOL(synchronize_net);
10969
10970 /**
10971  *      unregister_netdevice_queue - remove device from the kernel
10972  *      @dev: device
10973  *      @head: list
10974  *
10975  *      This function shuts down a device interface and removes it
10976  *      from the kernel tables.
10977  *      If head not NULL, device is queued to be unregistered later.
10978  *
10979  *      Callers must hold the rtnl semaphore.  You may want
10980  *      unregister_netdev() instead of this.
10981  */
10982
10983 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10984 {
10985         ASSERT_RTNL();
10986
10987         if (head) {
10988                 list_move_tail(&dev->unreg_list, head);
10989         } else {
10990                 LIST_HEAD(single);
10991
10992                 list_add(&dev->unreg_list, &single);
10993                 unregister_netdevice_many(&single);
10994         }
10995 }
10996 EXPORT_SYMBOL(unregister_netdevice_queue);
10997
10998 /**
10999  *      unregister_netdevice_many - unregister many devices
11000  *      @head: list of devices
11001  *
11002  *  Note: As most callers use a stack allocated list_head,
11003  *  we force a list_del() to make sure stack wont be corrupted later.
11004  */
11005 void unregister_netdevice_many(struct list_head *head)
11006 {
11007         struct net_device *dev, *tmp;
11008         LIST_HEAD(close_head);
11009
11010         BUG_ON(dev_boot_phase);
11011         ASSERT_RTNL();
11012
11013         if (list_empty(head))
11014                 return;
11015
11016         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11017                 /* Some devices call without registering
11018                  * for initialization unwind. Remove those
11019                  * devices and proceed with the remaining.
11020                  */
11021                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11022                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11023                                  dev->name, dev);
11024
11025                         WARN_ON(1);
11026                         list_del(&dev->unreg_list);
11027                         continue;
11028                 }
11029                 dev->dismantle = true;
11030                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11031         }
11032
11033         /* If device is running, close it first. */
11034         list_for_each_entry(dev, head, unreg_list)
11035                 list_add_tail(&dev->close_list, &close_head);
11036         dev_close_many(&close_head, true);
11037
11038         list_for_each_entry(dev, head, unreg_list) {
11039                 /* And unlink it from device chain. */
11040                 unlist_netdevice(dev);
11041
11042                 dev->reg_state = NETREG_UNREGISTERING;
11043         }
11044         flush_all_backlogs();
11045
11046         synchronize_net();
11047
11048         list_for_each_entry(dev, head, unreg_list) {
11049                 struct sk_buff *skb = NULL;
11050
11051                 /* Shutdown queueing discipline. */
11052                 dev_shutdown(dev);
11053
11054                 dev_xdp_uninstall(dev);
11055
11056                 /* Notify protocols, that we are about to destroy
11057                  * this device. They should clean all the things.
11058                  */
11059                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11060
11061                 if (!dev->rtnl_link_ops ||
11062                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11063                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11064                                                      GFP_KERNEL, NULL, 0);
11065
11066                 /*
11067                  *      Flush the unicast and multicast chains
11068                  */
11069                 dev_uc_flush(dev);
11070                 dev_mc_flush(dev);
11071
11072                 netdev_name_node_alt_flush(dev);
11073                 netdev_name_node_free(dev->name_node);
11074
11075                 if (dev->netdev_ops->ndo_uninit)
11076                         dev->netdev_ops->ndo_uninit(dev);
11077
11078                 if (skb)
11079                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11080
11081                 /* Notifier chain MUST detach us all upper devices. */
11082                 WARN_ON(netdev_has_any_upper_dev(dev));
11083                 WARN_ON(netdev_has_any_lower_dev(dev));
11084
11085                 /* Remove entries from kobject tree */
11086                 netdev_unregister_kobject(dev);
11087 #ifdef CONFIG_XPS
11088                 /* Remove XPS queueing entries */
11089                 netif_reset_xps_queues_gt(dev, 0);
11090 #endif
11091         }
11092
11093         synchronize_net();
11094
11095         list_for_each_entry(dev, head, unreg_list) {
11096                 dev_put(dev);
11097                 net_set_todo(dev);
11098         }
11099
11100         list_del(head);
11101 }
11102 EXPORT_SYMBOL(unregister_netdevice_many);
11103
11104 /**
11105  *      unregister_netdev - remove device from the kernel
11106  *      @dev: device
11107  *
11108  *      This function shuts down a device interface and removes it
11109  *      from the kernel tables.
11110  *
11111  *      This is just a wrapper for unregister_netdevice that takes
11112  *      the rtnl semaphore.  In general you want to use this and not
11113  *      unregister_netdevice.
11114  */
11115 void unregister_netdev(struct net_device *dev)
11116 {
11117         rtnl_lock();
11118         unregister_netdevice(dev);
11119         rtnl_unlock();
11120 }
11121 EXPORT_SYMBOL(unregister_netdev);
11122
11123 /**
11124  *      __dev_change_net_namespace - move device to different nethost namespace
11125  *      @dev: device
11126  *      @net: network namespace
11127  *      @pat: If not NULL name pattern to try if the current device name
11128  *            is already taken in the destination network namespace.
11129  *      @new_ifindex: If not zero, specifies device index in the target
11130  *                    namespace.
11131  *
11132  *      This function shuts down a device interface and moves it
11133  *      to a new network namespace. On success 0 is returned, on
11134  *      a failure a netagive errno code is returned.
11135  *
11136  *      Callers must hold the rtnl semaphore.
11137  */
11138
11139 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11140                                const char *pat, int new_ifindex)
11141 {
11142         struct net *net_old = dev_net(dev);
11143         int err, new_nsid;
11144
11145         ASSERT_RTNL();
11146
11147         /* Don't allow namespace local devices to be moved. */
11148         err = -EINVAL;
11149         if (dev->features & NETIF_F_NETNS_LOCAL)
11150                 goto out;
11151
11152         /* Ensure the device has been registrered */
11153         if (dev->reg_state != NETREG_REGISTERED)
11154                 goto out;
11155
11156         /* Get out if there is nothing todo */
11157         err = 0;
11158         if (net_eq(net_old, net))
11159                 goto out;
11160
11161         /* Pick the destination device name, and ensure
11162          * we can use it in the destination network namespace.
11163          */
11164         err = -EEXIST;
11165         if (__dev_get_by_name(net, dev->name)) {
11166                 /* We get here if we can't use the current device name */
11167                 if (!pat)
11168                         goto out;
11169                 err = dev_get_valid_name(net, dev, pat);
11170                 if (err < 0)
11171                         goto out;
11172         }
11173
11174         /* Check that new_ifindex isn't used yet. */
11175         err = -EBUSY;
11176         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11177                 goto out;
11178
11179         /*
11180          * And now a mini version of register_netdevice unregister_netdevice.
11181          */
11182
11183         /* If device is running close it first. */
11184         dev_close(dev);
11185
11186         /* And unlink it from device chain */
11187         unlist_netdevice(dev);
11188
11189         synchronize_net();
11190
11191         /* Shutdown queueing discipline. */
11192         dev_shutdown(dev);
11193
11194         /* Notify protocols, that we are about to destroy
11195          * this device. They should clean all the things.
11196          *
11197          * Note that dev->reg_state stays at NETREG_REGISTERED.
11198          * This is wanted because this way 8021q and macvlan know
11199          * the device is just moving and can keep their slaves up.
11200          */
11201         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11202         rcu_barrier();
11203
11204         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11205         /* If there is an ifindex conflict assign a new one */
11206         if (!new_ifindex) {
11207                 if (__dev_get_by_index(net, dev->ifindex))
11208                         new_ifindex = dev_new_index(net);
11209                 else
11210                         new_ifindex = dev->ifindex;
11211         }
11212
11213         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11214                             new_ifindex);
11215
11216         /*
11217          *      Flush the unicast and multicast chains
11218          */
11219         dev_uc_flush(dev);
11220         dev_mc_flush(dev);
11221
11222         /* Send a netdev-removed uevent to the old namespace */
11223         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11224         netdev_adjacent_del_links(dev);
11225
11226         /* Move per-net netdevice notifiers that are following the netdevice */
11227         move_netdevice_notifiers_dev_net(dev, net);
11228
11229         /* Actually switch the network namespace */
11230         dev_net_set(dev, net);
11231         dev->ifindex = new_ifindex;
11232
11233         /* Send a netdev-add uevent to the new namespace */
11234         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11235         netdev_adjacent_add_links(dev);
11236
11237         /* Fixup kobjects */
11238         err = device_rename(&dev->dev, dev->name);
11239         WARN_ON(err);
11240
11241         /* Adapt owner in case owning user namespace of target network
11242          * namespace is different from the original one.
11243          */
11244         err = netdev_change_owner(dev, net_old, net);
11245         WARN_ON(err);
11246
11247         /* Add the device back in the hashes */
11248         list_netdevice(dev);
11249
11250         /* Notify protocols, that a new device appeared. */
11251         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11252
11253         /*
11254          *      Prevent userspace races by waiting until the network
11255          *      device is fully setup before sending notifications.
11256          */
11257         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11258
11259         synchronize_net();
11260         err = 0;
11261 out:
11262         return err;
11263 }
11264 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11265
11266 static int dev_cpu_dead(unsigned int oldcpu)
11267 {
11268         struct sk_buff **list_skb;
11269         struct sk_buff *skb;
11270         unsigned int cpu;
11271         struct softnet_data *sd, *oldsd, *remsd = NULL;
11272
11273         local_irq_disable();
11274         cpu = smp_processor_id();
11275         sd = &per_cpu(softnet_data, cpu);
11276         oldsd = &per_cpu(softnet_data, oldcpu);
11277
11278         /* Find end of our completion_queue. */
11279         list_skb = &sd->completion_queue;
11280         while (*list_skb)
11281                 list_skb = &(*list_skb)->next;
11282         /* Append completion queue from offline CPU. */
11283         *list_skb = oldsd->completion_queue;
11284         oldsd->completion_queue = NULL;
11285
11286         /* Append output queue from offline CPU. */
11287         if (oldsd->output_queue) {
11288                 *sd->output_queue_tailp = oldsd->output_queue;
11289                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11290                 oldsd->output_queue = NULL;
11291                 oldsd->output_queue_tailp = &oldsd->output_queue;
11292         }
11293         /* Append NAPI poll list from offline CPU, with one exception :
11294          * process_backlog() must be called by cpu owning percpu backlog.
11295          * We properly handle process_queue & input_pkt_queue later.
11296          */
11297         while (!list_empty(&oldsd->poll_list)) {
11298                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11299                                                             struct napi_struct,
11300                                                             poll_list);
11301
11302                 list_del_init(&napi->poll_list);
11303                 if (napi->poll == process_backlog)
11304                         napi->state = 0;
11305                 else
11306                         ____napi_schedule(sd, napi);
11307         }
11308
11309         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11310         local_irq_enable();
11311
11312 #ifdef CONFIG_RPS
11313         remsd = oldsd->rps_ipi_list;
11314         oldsd->rps_ipi_list = NULL;
11315 #endif
11316         /* send out pending IPI's on offline CPU */
11317         net_rps_send_ipi(remsd);
11318
11319         /* Process offline CPU's input_pkt_queue */
11320         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11321                 netif_rx_ni(skb);
11322                 input_queue_head_incr(oldsd);
11323         }
11324         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11325                 netif_rx_ni(skb);
11326                 input_queue_head_incr(oldsd);
11327         }
11328
11329         return 0;
11330 }
11331
11332 /**
11333  *      netdev_increment_features - increment feature set by one
11334  *      @all: current feature set
11335  *      @one: new feature set
11336  *      @mask: mask feature set
11337  *
11338  *      Computes a new feature set after adding a device with feature set
11339  *      @one to the master device with current feature set @all.  Will not
11340  *      enable anything that is off in @mask. Returns the new feature set.
11341  */
11342 netdev_features_t netdev_increment_features(netdev_features_t all,
11343         netdev_features_t one, netdev_features_t mask)
11344 {
11345         if (mask & NETIF_F_HW_CSUM)
11346                 mask |= NETIF_F_CSUM_MASK;
11347         mask |= NETIF_F_VLAN_CHALLENGED;
11348
11349         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11350         all &= one | ~NETIF_F_ALL_FOR_ALL;
11351
11352         /* If one device supports hw checksumming, set for all. */
11353         if (all & NETIF_F_HW_CSUM)
11354                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11355
11356         return all;
11357 }
11358 EXPORT_SYMBOL(netdev_increment_features);
11359
11360 static struct hlist_head * __net_init netdev_create_hash(void)
11361 {
11362         int i;
11363         struct hlist_head *hash;
11364
11365         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11366         if (hash != NULL)
11367                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11368                         INIT_HLIST_HEAD(&hash[i]);
11369
11370         return hash;
11371 }
11372
11373 /* Initialize per network namespace state */
11374 static int __net_init netdev_init(struct net *net)
11375 {
11376         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11377                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11378
11379         if (net != &init_net)
11380                 INIT_LIST_HEAD(&net->dev_base_head);
11381
11382         net->dev_name_head = netdev_create_hash();
11383         if (net->dev_name_head == NULL)
11384                 goto err_name;
11385
11386         net->dev_index_head = netdev_create_hash();
11387         if (net->dev_index_head == NULL)
11388                 goto err_idx;
11389
11390         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11391
11392         return 0;
11393
11394 err_idx:
11395         kfree(net->dev_name_head);
11396 err_name:
11397         return -ENOMEM;
11398 }
11399
11400 /**
11401  *      netdev_drivername - network driver for the device
11402  *      @dev: network device
11403  *
11404  *      Determine network driver for device.
11405  */
11406 const char *netdev_drivername(const struct net_device *dev)
11407 {
11408         const struct device_driver *driver;
11409         const struct device *parent;
11410         const char *empty = "";
11411
11412         parent = dev->dev.parent;
11413         if (!parent)
11414                 return empty;
11415
11416         driver = parent->driver;
11417         if (driver && driver->name)
11418                 return driver->name;
11419         return empty;
11420 }
11421
11422 static void __netdev_printk(const char *level, const struct net_device *dev,
11423                             struct va_format *vaf)
11424 {
11425         if (dev && dev->dev.parent) {
11426                 dev_printk_emit(level[1] - '0',
11427                                 dev->dev.parent,
11428                                 "%s %s %s%s: %pV",
11429                                 dev_driver_string(dev->dev.parent),
11430                                 dev_name(dev->dev.parent),
11431                                 netdev_name(dev), netdev_reg_state(dev),
11432                                 vaf);
11433         } else if (dev) {
11434                 printk("%s%s%s: %pV",
11435                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11436         } else {
11437                 printk("%s(NULL net_device): %pV", level, vaf);
11438         }
11439 }
11440
11441 void netdev_printk(const char *level, const struct net_device *dev,
11442                    const char *format, ...)
11443 {
11444         struct va_format vaf;
11445         va_list args;
11446
11447         va_start(args, format);
11448
11449         vaf.fmt = format;
11450         vaf.va = &args;
11451
11452         __netdev_printk(level, dev, &vaf);
11453
11454         va_end(args);
11455 }
11456 EXPORT_SYMBOL(netdev_printk);
11457
11458 #define define_netdev_printk_level(func, level)                 \
11459 void func(const struct net_device *dev, const char *fmt, ...)   \
11460 {                                                               \
11461         struct va_format vaf;                                   \
11462         va_list args;                                           \
11463                                                                 \
11464         va_start(args, fmt);                                    \
11465                                                                 \
11466         vaf.fmt = fmt;                                          \
11467         vaf.va = &args;                                         \
11468                                                                 \
11469         __netdev_printk(level, dev, &vaf);                      \
11470                                                                 \
11471         va_end(args);                                           \
11472 }                                                               \
11473 EXPORT_SYMBOL(func);
11474
11475 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11476 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11477 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11478 define_netdev_printk_level(netdev_err, KERN_ERR);
11479 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11480 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11481 define_netdev_printk_level(netdev_info, KERN_INFO);
11482
11483 static void __net_exit netdev_exit(struct net *net)
11484 {
11485         kfree(net->dev_name_head);
11486         kfree(net->dev_index_head);
11487         if (net != &init_net)
11488                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11489 }
11490
11491 static struct pernet_operations __net_initdata netdev_net_ops = {
11492         .init = netdev_init,
11493         .exit = netdev_exit,
11494 };
11495
11496 static void __net_exit default_device_exit(struct net *net)
11497 {
11498         struct net_device *dev, *aux;
11499         /*
11500          * Push all migratable network devices back to the
11501          * initial network namespace
11502          */
11503         rtnl_lock();
11504         for_each_netdev_safe(net, dev, aux) {
11505                 int err;
11506                 char fb_name[IFNAMSIZ];
11507
11508                 /* Ignore unmoveable devices (i.e. loopback) */
11509                 if (dev->features & NETIF_F_NETNS_LOCAL)
11510                         continue;
11511
11512                 /* Leave virtual devices for the generic cleanup */
11513                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11514                         continue;
11515
11516                 /* Push remaining network devices to init_net */
11517                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11518                 if (__dev_get_by_name(&init_net, fb_name))
11519                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11520                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11521                 if (err) {
11522                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11523                                  __func__, dev->name, err);
11524                         BUG();
11525                 }
11526         }
11527         rtnl_unlock();
11528 }
11529
11530 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11531 {
11532         /* Return with the rtnl_lock held when there are no network
11533          * devices unregistering in any network namespace in net_list.
11534          */
11535         struct net *net;
11536         bool unregistering;
11537         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11538
11539         add_wait_queue(&netdev_unregistering_wq, &wait);
11540         for (;;) {
11541                 unregistering = false;
11542                 rtnl_lock();
11543                 list_for_each_entry(net, net_list, exit_list) {
11544                         if (net->dev_unreg_count > 0) {
11545                                 unregistering = true;
11546                                 break;
11547                         }
11548                 }
11549                 if (!unregistering)
11550                         break;
11551                 __rtnl_unlock();
11552
11553                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11554         }
11555         remove_wait_queue(&netdev_unregistering_wq, &wait);
11556 }
11557
11558 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11559 {
11560         /* At exit all network devices most be removed from a network
11561          * namespace.  Do this in the reverse order of registration.
11562          * Do this across as many network namespaces as possible to
11563          * improve batching efficiency.
11564          */
11565         struct net_device *dev;
11566         struct net *net;
11567         LIST_HEAD(dev_kill_list);
11568
11569         /* To prevent network device cleanup code from dereferencing
11570          * loopback devices or network devices that have been freed
11571          * wait here for all pending unregistrations to complete,
11572          * before unregistring the loopback device and allowing the
11573          * network namespace be freed.
11574          *
11575          * The netdev todo list containing all network devices
11576          * unregistrations that happen in default_device_exit_batch
11577          * will run in the rtnl_unlock() at the end of
11578          * default_device_exit_batch.
11579          */
11580         rtnl_lock_unregistering(net_list);
11581         list_for_each_entry(net, net_list, exit_list) {
11582                 for_each_netdev_reverse(net, dev) {
11583                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11584                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11585                         else
11586                                 unregister_netdevice_queue(dev, &dev_kill_list);
11587                 }
11588         }
11589         unregister_netdevice_many(&dev_kill_list);
11590         rtnl_unlock();
11591 }
11592
11593 static struct pernet_operations __net_initdata default_device_ops = {
11594         .exit = default_device_exit,
11595         .exit_batch = default_device_exit_batch,
11596 };
11597
11598 /*
11599  *      Initialize the DEV module. At boot time this walks the device list and
11600  *      unhooks any devices that fail to initialise (normally hardware not
11601  *      present) and leaves us with a valid list of present and active devices.
11602  *
11603  */
11604
11605 /*
11606  *       This is called single threaded during boot, so no need
11607  *       to take the rtnl semaphore.
11608  */
11609 static int __init net_dev_init(void)
11610 {
11611         int i, rc = -ENOMEM;
11612
11613         BUG_ON(!dev_boot_phase);
11614
11615         if (dev_proc_init())
11616                 goto out;
11617
11618         if (netdev_kobject_init())
11619                 goto out;
11620
11621         INIT_LIST_HEAD(&ptype_all);
11622         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11623                 INIT_LIST_HEAD(&ptype_base[i]);
11624
11625         INIT_LIST_HEAD(&offload_base);
11626
11627         if (register_pernet_subsys(&netdev_net_ops))
11628                 goto out;
11629
11630         /*
11631          *      Initialise the packet receive queues.
11632          */
11633
11634         for_each_possible_cpu(i) {
11635                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11636                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11637
11638                 INIT_WORK(flush, flush_backlog);
11639
11640                 skb_queue_head_init(&sd->input_pkt_queue);
11641                 skb_queue_head_init(&sd->process_queue);
11642 #ifdef CONFIG_XFRM_OFFLOAD
11643                 skb_queue_head_init(&sd->xfrm_backlog);
11644 #endif
11645                 INIT_LIST_HEAD(&sd->poll_list);
11646                 sd->output_queue_tailp = &sd->output_queue;
11647 #ifdef CONFIG_RPS
11648                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11649                 sd->cpu = i;
11650 #endif
11651
11652                 init_gro_hash(&sd->backlog);
11653                 sd->backlog.poll = process_backlog;
11654                 sd->backlog.weight = weight_p;
11655         }
11656
11657         dev_boot_phase = 0;
11658
11659         /* The loopback device is special if any other network devices
11660          * is present in a network namespace the loopback device must
11661          * be present. Since we now dynamically allocate and free the
11662          * loopback device ensure this invariant is maintained by
11663          * keeping the loopback device as the first device on the
11664          * list of network devices.  Ensuring the loopback devices
11665          * is the first device that appears and the last network device
11666          * that disappears.
11667          */
11668         if (register_pernet_device(&loopback_net_ops))
11669                 goto out;
11670
11671         if (register_pernet_device(&default_device_ops))
11672                 goto out;
11673
11674         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11675         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11676
11677         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11678                                        NULL, dev_cpu_dead);
11679         WARN_ON(rc < 0);
11680         rc = 0;
11681 out:
11682         return rc;
11683 }
11684
11685 subsys_initcall(net_dev_init);