net: fix refcount bug in sk_psock_get (2)
[platform/kernel/linux-rpi.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156 #define MAX_GRO_SKBS 8
157
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;       /* Taps */
165 static struct list_head offload_base __read_mostly;
166
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169                                          struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171                                            struct net_device *dev,
172                                            struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 static DEFINE_MUTEX(ifalias_mutex);
198
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205 static DECLARE_RWSEM(devnet_rename_sem);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209         while (++net->dev_base_seq == 0)
210                 ;
211 }
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235         spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240                                                        const char *name)
241 {
242         struct netdev_name_node *name_node;
243
244         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245         if (!name_node)
246                 return NULL;
247         INIT_HLIST_NODE(&name_node->hlist);
248         name_node->dev = dev;
249         name_node->name = name;
250         return name_node;
251 }
252
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = netdev_name_node_alloc(dev, dev->name);
259         if (!name_node)
260                 return NULL;
261         INIT_LIST_HEAD(&name_node->list);
262         return name_node;
263 }
264
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267         kfree(name_node);
268 }
269
270 static void netdev_name_node_add(struct net *net,
271                                  struct netdev_name_node *name_node)
272 {
273         hlist_add_head_rcu(&name_node->hlist,
274                            dev_name_hash(net, name_node->name));
275 }
276
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279         hlist_del_rcu(&name_node->hlist);
280 }
281
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283                                                         const char *name)
284 {
285         struct hlist_head *head = dev_name_hash(net, name);
286         struct netdev_name_node *name_node;
287
288         hlist_for_each_entry(name_node, head, hlist)
289                 if (!strcmp(name_node->name, name))
290                         return name_node;
291         return NULL;
292 }
293
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295                                                             const char *name)
296 {
297         struct hlist_head *head = dev_name_hash(net, name);
298         struct netdev_name_node *name_node;
299
300         hlist_for_each_entry_rcu(name_node, head, hlist)
301                 if (!strcmp(name_node->name, name))
302                         return name_node;
303         return NULL;
304 }
305
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308         struct netdev_name_node *name_node;
309         struct net *net = dev_net(dev);
310
311         name_node = netdev_name_node_lookup(net, name);
312         if (name_node)
313                 return -EEXIST;
314         name_node = netdev_name_node_alloc(dev, name);
315         if (!name_node)
316                 return -ENOMEM;
317         netdev_name_node_add(net, name_node);
318         /* The node that holds dev->name acts as a head of per-device list. */
319         list_add_tail(&name_node->list, &dev->name_node->list);
320
321         return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327         list_del(&name_node->list);
328         netdev_name_node_del(name_node);
329         kfree(name_node->name);
330         netdev_name_node_free(name_node);
331 }
332
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335         struct netdev_name_node *name_node;
336         struct net *net = dev_net(dev);
337
338         name_node = netdev_name_node_lookup(net, name);
339         if (!name_node)
340                 return -ENOENT;
341         /* lookup might have found our primary name or a name belonging
342          * to another device.
343          */
344         if (name_node == dev->name_node || name_node->dev != dev)
345                 return -EINVAL;
346
347         __netdev_name_node_alt_destroy(name_node);
348
349         return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352
353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355         struct netdev_name_node *name_node, *tmp;
356
357         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358                 __netdev_name_node_alt_destroy(name_node);
359 }
360
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
363 {
364         struct net *net = dev_net(dev);
365
366         ASSERT_RTNL();
367
368         write_lock(&dev_base_lock);
369         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370         netdev_name_node_add(net, dev->name_node);
371         hlist_add_head_rcu(&dev->index_hlist,
372                            dev_index_hash(net, dev->ifindex));
373         write_unlock(&dev_base_lock);
374
375         dev_base_seq_inc(net);
376 }
377
378 /* Device list removal
379  * caller must respect a RCU grace period before freeing/reusing dev
380  */
381 static void unlist_netdevice(struct net_device *dev, bool lock)
382 {
383         ASSERT_RTNL();
384
385         /* Unlink dev from the device chain */
386         if (lock)
387                 write_lock(&dev_base_lock);
388         list_del_rcu(&dev->dev_list);
389         netdev_name_node_del(dev->name_node);
390         hlist_del_rcu(&dev->index_hlist);
391         if (lock)
392                 write_unlock(&dev_base_lock);
393
394         dev_base_seq_inc(dev_net(dev));
395 }
396
397 /*
398  *      Our notifier list
399  */
400
401 static RAW_NOTIFIER_HEAD(netdev_chain);
402
403 /*
404  *      Device drivers call our routines to queue packets here. We empty the
405  *      queue in the local softnet handler.
406  */
407
408 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
409 EXPORT_PER_CPU_SYMBOL(softnet_data);
410
411 #ifdef CONFIG_LOCKDEP
412 /*
413  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
414  * according to dev->type
415  */
416 static const unsigned short netdev_lock_type[] = {
417          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
418          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
419          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
420          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
421          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
422          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
423          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
424          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
425          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
426          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
427          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
428          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
429          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
430          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
431          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
432
433 static const char *const netdev_lock_name[] = {
434         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
435         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
436         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
437         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
438         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
439         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
440         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
441         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
442         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
443         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
444         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
445         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
446         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
447         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
448         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
449
450 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
451 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
452
453 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
454 {
455         int i;
456
457         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
458                 if (netdev_lock_type[i] == dev_type)
459                         return i;
460         /* the last key is used by default */
461         return ARRAY_SIZE(netdev_lock_type) - 1;
462 }
463
464 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
465                                                  unsigned short dev_type)
466 {
467         int i;
468
469         i = netdev_lock_pos(dev_type);
470         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
471                                    netdev_lock_name[i]);
472 }
473
474 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
475 {
476         int i;
477
478         i = netdev_lock_pos(dev->type);
479         lockdep_set_class_and_name(&dev->addr_list_lock,
480                                    &netdev_addr_lock_key[i],
481                                    netdev_lock_name[i]);
482 }
483 #else
484 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
485                                                  unsigned short dev_type)
486 {
487 }
488
489 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
490 {
491 }
492 #endif
493
494 /*******************************************************************************
495  *
496  *              Protocol management and registration routines
497  *
498  *******************************************************************************/
499
500
501 /*
502  *      Add a protocol ID to the list. Now that the input handler is
503  *      smarter we can dispense with all the messy stuff that used to be
504  *      here.
505  *
506  *      BEWARE!!! Protocol handlers, mangling input packets,
507  *      MUST BE last in hash buckets and checking protocol handlers
508  *      MUST start from promiscuous ptype_all chain in net_bh.
509  *      It is true now, do not change it.
510  *      Explanation follows: if protocol handler, mangling packet, will
511  *      be the first on list, it is not able to sense, that packet
512  *      is cloned and should be copied-on-write, so that it will
513  *      change it and subsequent readers will get broken packet.
514  *                                                      --ANK (980803)
515  */
516
517 static inline struct list_head *ptype_head(const struct packet_type *pt)
518 {
519         if (pt->type == htons(ETH_P_ALL))
520                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
521         else
522                 return pt->dev ? &pt->dev->ptype_specific :
523                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
524 }
525
526 /**
527  *      dev_add_pack - add packet handler
528  *      @pt: packet type declaration
529  *
530  *      Add a protocol handler to the networking stack. The passed &packet_type
531  *      is linked into kernel lists and may not be freed until it has been
532  *      removed from the kernel lists.
533  *
534  *      This call does not sleep therefore it can not
535  *      guarantee all CPU's that are in middle of receiving packets
536  *      will see the new packet type (until the next received packet).
537  */
538
539 void dev_add_pack(struct packet_type *pt)
540 {
541         struct list_head *head = ptype_head(pt);
542
543         spin_lock(&ptype_lock);
544         list_add_rcu(&pt->list, head);
545         spin_unlock(&ptype_lock);
546 }
547 EXPORT_SYMBOL(dev_add_pack);
548
549 /**
550  *      __dev_remove_pack        - remove packet handler
551  *      @pt: packet type declaration
552  *
553  *      Remove a protocol handler that was previously added to the kernel
554  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
555  *      from the kernel lists and can be freed or reused once this function
556  *      returns.
557  *
558  *      The packet type might still be in use by receivers
559  *      and must not be freed until after all the CPU's have gone
560  *      through a quiescent state.
561  */
562 void __dev_remove_pack(struct packet_type *pt)
563 {
564         struct list_head *head = ptype_head(pt);
565         struct packet_type *pt1;
566
567         spin_lock(&ptype_lock);
568
569         list_for_each_entry(pt1, head, list) {
570                 if (pt == pt1) {
571                         list_del_rcu(&pt->list);
572                         goto out;
573                 }
574         }
575
576         pr_warn("dev_remove_pack: %p not found\n", pt);
577 out:
578         spin_unlock(&ptype_lock);
579 }
580 EXPORT_SYMBOL(__dev_remove_pack);
581
582 /**
583  *      dev_remove_pack  - remove packet handler
584  *      @pt: packet type declaration
585  *
586  *      Remove a protocol handler that was previously added to the kernel
587  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
588  *      from the kernel lists and can be freed or reused once this function
589  *      returns.
590  *
591  *      This call sleeps to guarantee that no CPU is looking at the packet
592  *      type after return.
593  */
594 void dev_remove_pack(struct packet_type *pt)
595 {
596         __dev_remove_pack(pt);
597
598         synchronize_net();
599 }
600 EXPORT_SYMBOL(dev_remove_pack);
601
602
603 /**
604  *      dev_add_offload - register offload handlers
605  *      @po: protocol offload declaration
606  *
607  *      Add protocol offload handlers to the networking stack. The passed
608  *      &proto_offload is linked into kernel lists and may not be freed until
609  *      it has been removed from the kernel lists.
610  *
611  *      This call does not sleep therefore it can not
612  *      guarantee all CPU's that are in middle of receiving packets
613  *      will see the new offload handlers (until the next received packet).
614  */
615 void dev_add_offload(struct packet_offload *po)
616 {
617         struct packet_offload *elem;
618
619         spin_lock(&offload_lock);
620         list_for_each_entry(elem, &offload_base, list) {
621                 if (po->priority < elem->priority)
622                         break;
623         }
624         list_add_rcu(&po->list, elem->list.prev);
625         spin_unlock(&offload_lock);
626 }
627 EXPORT_SYMBOL(dev_add_offload);
628
629 /**
630  *      __dev_remove_offload     - remove offload handler
631  *      @po: packet offload declaration
632  *
633  *      Remove a protocol offload handler that was previously added to the
634  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
635  *      is removed from the kernel lists and can be freed or reused once this
636  *      function returns.
637  *
638  *      The packet type might still be in use by receivers
639  *      and must not be freed until after all the CPU's have gone
640  *      through a quiescent state.
641  */
642 static void __dev_remove_offload(struct packet_offload *po)
643 {
644         struct list_head *head = &offload_base;
645         struct packet_offload *po1;
646
647         spin_lock(&offload_lock);
648
649         list_for_each_entry(po1, head, list) {
650                 if (po == po1) {
651                         list_del_rcu(&po->list);
652                         goto out;
653                 }
654         }
655
656         pr_warn("dev_remove_offload: %p not found\n", po);
657 out:
658         spin_unlock(&offload_lock);
659 }
660
661 /**
662  *      dev_remove_offload       - remove packet offload handler
663  *      @po: packet offload declaration
664  *
665  *      Remove a packet offload handler that was previously added to the kernel
666  *      offload handlers by dev_add_offload(). The passed &offload_type is
667  *      removed from the kernel lists and can be freed or reused once this
668  *      function returns.
669  *
670  *      This call sleeps to guarantee that no CPU is looking at the packet
671  *      type after return.
672  */
673 void dev_remove_offload(struct packet_offload *po)
674 {
675         __dev_remove_offload(po);
676
677         synchronize_net();
678 }
679 EXPORT_SYMBOL(dev_remove_offload);
680
681 /*******************************************************************************
682  *
683  *                          Device Interface Subroutines
684  *
685  *******************************************************************************/
686
687 /**
688  *      dev_get_iflink  - get 'iflink' value of a interface
689  *      @dev: targeted interface
690  *
691  *      Indicates the ifindex the interface is linked to.
692  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
693  */
694
695 int dev_get_iflink(const struct net_device *dev)
696 {
697         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
698                 return dev->netdev_ops->ndo_get_iflink(dev);
699
700         return dev->ifindex;
701 }
702 EXPORT_SYMBOL(dev_get_iflink);
703
704 /**
705  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
706  *      @dev: targeted interface
707  *      @skb: The packet.
708  *
709  *      For better visibility of tunnel traffic OVS needs to retrieve
710  *      egress tunnel information for a packet. Following API allows
711  *      user to get this info.
712  */
713 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
714 {
715         struct ip_tunnel_info *info;
716
717         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
718                 return -EINVAL;
719
720         info = skb_tunnel_info_unclone(skb);
721         if (!info)
722                 return -ENOMEM;
723         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
724                 return -EINVAL;
725
726         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
727 }
728 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
729
730 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
731 {
732         int k = stack->num_paths++;
733
734         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
735                 return NULL;
736
737         return &stack->path[k];
738 }
739
740 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
741                           struct net_device_path_stack *stack)
742 {
743         const struct net_device *last_dev;
744         struct net_device_path_ctx ctx = {
745                 .dev    = dev,
746         };
747         struct net_device_path *path;
748         int ret = 0;
749
750         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
751         stack->num_paths = 0;
752         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
753                 last_dev = ctx.dev;
754                 path = dev_fwd_path(stack);
755                 if (!path)
756                         return -1;
757
758                 memset(path, 0, sizeof(struct net_device_path));
759                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
760                 if (ret < 0)
761                         return -1;
762
763                 if (WARN_ON_ONCE(last_dev == ctx.dev))
764                         return -1;
765         }
766         path = dev_fwd_path(stack);
767         if (!path)
768                 return -1;
769         path->type = DEV_PATH_ETHERNET;
770         path->dev = ctx.dev;
771
772         return ret;
773 }
774 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
775
776 /**
777  *      __dev_get_by_name       - find a device by its name
778  *      @net: the applicable net namespace
779  *      @name: name to find
780  *
781  *      Find an interface by name. Must be called under RTNL semaphore
782  *      or @dev_base_lock. If the name is found a pointer to the device
783  *      is returned. If the name is not found then %NULL is returned. The
784  *      reference counters are not incremented so the caller must be
785  *      careful with locks.
786  */
787
788 struct net_device *__dev_get_by_name(struct net *net, const char *name)
789 {
790         struct netdev_name_node *node_name;
791
792         node_name = netdev_name_node_lookup(net, name);
793         return node_name ? node_name->dev : NULL;
794 }
795 EXPORT_SYMBOL(__dev_get_by_name);
796
797 /**
798  * dev_get_by_name_rcu  - find a device by its name
799  * @net: the applicable net namespace
800  * @name: name to find
801  *
802  * Find an interface by name.
803  * If the name is found a pointer to the device is returned.
804  * If the name is not found then %NULL is returned.
805  * The reference counters are not incremented so the caller must be
806  * careful with locks. The caller must hold RCU lock.
807  */
808
809 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
810 {
811         struct netdev_name_node *node_name;
812
813         node_name = netdev_name_node_lookup_rcu(net, name);
814         return node_name ? node_name->dev : NULL;
815 }
816 EXPORT_SYMBOL(dev_get_by_name_rcu);
817
818 /**
819  *      dev_get_by_name         - find a device by its name
820  *      @net: the applicable net namespace
821  *      @name: name to find
822  *
823  *      Find an interface by name. This can be called from any
824  *      context and does its own locking. The returned handle has
825  *      the usage count incremented and the caller must use dev_put() to
826  *      release it when it is no longer needed. %NULL is returned if no
827  *      matching device is found.
828  */
829
830 struct net_device *dev_get_by_name(struct net *net, const char *name)
831 {
832         struct net_device *dev;
833
834         rcu_read_lock();
835         dev = dev_get_by_name_rcu(net, name);
836         dev_hold(dev);
837         rcu_read_unlock();
838         return dev;
839 }
840 EXPORT_SYMBOL(dev_get_by_name);
841
842 /**
843  *      __dev_get_by_index - find a device by its ifindex
844  *      @net: the applicable net namespace
845  *      @ifindex: index of device
846  *
847  *      Search for an interface by index. Returns %NULL if the device
848  *      is not found or a pointer to the device. The device has not
849  *      had its reference counter increased so the caller must be careful
850  *      about locking. The caller must hold either the RTNL semaphore
851  *      or @dev_base_lock.
852  */
853
854 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
855 {
856         struct net_device *dev;
857         struct hlist_head *head = dev_index_hash(net, ifindex);
858
859         hlist_for_each_entry(dev, head, index_hlist)
860                 if (dev->ifindex == ifindex)
861                         return dev;
862
863         return NULL;
864 }
865 EXPORT_SYMBOL(__dev_get_by_index);
866
867 /**
868  *      dev_get_by_index_rcu - find a device by its ifindex
869  *      @net: the applicable net namespace
870  *      @ifindex: index of device
871  *
872  *      Search for an interface by index. Returns %NULL if the device
873  *      is not found or a pointer to the device. The device has not
874  *      had its reference counter increased so the caller must be careful
875  *      about locking. The caller must hold RCU lock.
876  */
877
878 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
879 {
880         struct net_device *dev;
881         struct hlist_head *head = dev_index_hash(net, ifindex);
882
883         hlist_for_each_entry_rcu(dev, head, index_hlist)
884                 if (dev->ifindex == ifindex)
885                         return dev;
886
887         return NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_index_rcu);
890
891
892 /**
893  *      dev_get_by_index - find a device by its ifindex
894  *      @net: the applicable net namespace
895  *      @ifindex: index of device
896  *
897  *      Search for an interface by index. Returns NULL if the device
898  *      is not found or a pointer to the device. The device returned has
899  *      had a reference added and the pointer is safe until the user calls
900  *      dev_put to indicate they have finished with it.
901  */
902
903 struct net_device *dev_get_by_index(struct net *net, int ifindex)
904 {
905         struct net_device *dev;
906
907         rcu_read_lock();
908         dev = dev_get_by_index_rcu(net, ifindex);
909         dev_hold(dev);
910         rcu_read_unlock();
911         return dev;
912 }
913 EXPORT_SYMBOL(dev_get_by_index);
914
915 /**
916  *      dev_get_by_napi_id - find a device by napi_id
917  *      @napi_id: ID of the NAPI struct
918  *
919  *      Search for an interface by NAPI ID. Returns %NULL if the device
920  *      is not found or a pointer to the device. The device has not had
921  *      its reference counter increased so the caller must be careful
922  *      about locking. The caller must hold RCU lock.
923  */
924
925 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
926 {
927         struct napi_struct *napi;
928
929         WARN_ON_ONCE(!rcu_read_lock_held());
930
931         if (napi_id < MIN_NAPI_ID)
932                 return NULL;
933
934         napi = napi_by_id(napi_id);
935
936         return napi ? napi->dev : NULL;
937 }
938 EXPORT_SYMBOL(dev_get_by_napi_id);
939
940 /**
941  *      netdev_get_name - get a netdevice name, knowing its ifindex.
942  *      @net: network namespace
943  *      @name: a pointer to the buffer where the name will be stored.
944  *      @ifindex: the ifindex of the interface to get the name from.
945  */
946 int netdev_get_name(struct net *net, char *name, int ifindex)
947 {
948         struct net_device *dev;
949         int ret;
950
951         down_read(&devnet_rename_sem);
952         rcu_read_lock();
953
954         dev = dev_get_by_index_rcu(net, ifindex);
955         if (!dev) {
956                 ret = -ENODEV;
957                 goto out;
958         }
959
960         strcpy(name, dev->name);
961
962         ret = 0;
963 out:
964         rcu_read_unlock();
965         up_read(&devnet_rename_sem);
966         return ret;
967 }
968
969 /**
970  *      dev_getbyhwaddr_rcu - find a device by its hardware address
971  *      @net: the applicable net namespace
972  *      @type: media type of device
973  *      @ha: hardware address
974  *
975  *      Search for an interface by MAC address. Returns NULL if the device
976  *      is not found or a pointer to the device.
977  *      The caller must hold RCU or RTNL.
978  *      The returned device has not had its ref count increased
979  *      and the caller must therefore be careful about locking
980  *
981  */
982
983 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
984                                        const char *ha)
985 {
986         struct net_device *dev;
987
988         for_each_netdev_rcu(net, dev)
989                 if (dev->type == type &&
990                     !memcmp(dev->dev_addr, ha, dev->addr_len))
991                         return dev;
992
993         return NULL;
994 }
995 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
996
997 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
998 {
999         struct net_device *dev, *ret = NULL;
1000
1001         rcu_read_lock();
1002         for_each_netdev_rcu(net, dev)
1003                 if (dev->type == type) {
1004                         dev_hold(dev);
1005                         ret = dev;
1006                         break;
1007                 }
1008         rcu_read_unlock();
1009         return ret;
1010 }
1011 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1012
1013 /**
1014  *      __dev_get_by_flags - find any device with given flags
1015  *      @net: the applicable net namespace
1016  *      @if_flags: IFF_* values
1017  *      @mask: bitmask of bits in if_flags to check
1018  *
1019  *      Search for any interface with the given flags. Returns NULL if a device
1020  *      is not found or a pointer to the device. Must be called inside
1021  *      rtnl_lock(), and result refcount is unchanged.
1022  */
1023
1024 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1025                                       unsigned short mask)
1026 {
1027         struct net_device *dev, *ret;
1028
1029         ASSERT_RTNL();
1030
1031         ret = NULL;
1032         for_each_netdev(net, dev) {
1033                 if (((dev->flags ^ if_flags) & mask) == 0) {
1034                         ret = dev;
1035                         break;
1036                 }
1037         }
1038         return ret;
1039 }
1040 EXPORT_SYMBOL(__dev_get_by_flags);
1041
1042 /**
1043  *      dev_valid_name - check if name is okay for network device
1044  *      @name: name string
1045  *
1046  *      Network device names need to be valid file names to
1047  *      allow sysfs to work.  We also disallow any kind of
1048  *      whitespace.
1049  */
1050 bool dev_valid_name(const char *name)
1051 {
1052         if (*name == '\0')
1053                 return false;
1054         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1055                 return false;
1056         if (!strcmp(name, ".") || !strcmp(name, ".."))
1057                 return false;
1058
1059         while (*name) {
1060                 if (*name == '/' || *name == ':' || isspace(*name))
1061                         return false;
1062                 name++;
1063         }
1064         return true;
1065 }
1066 EXPORT_SYMBOL(dev_valid_name);
1067
1068 /**
1069  *      __dev_alloc_name - allocate a name for a device
1070  *      @net: network namespace to allocate the device name in
1071  *      @name: name format string
1072  *      @buf:  scratch buffer and result name string
1073  *
1074  *      Passed a format string - eg "lt%d" it will try and find a suitable
1075  *      id. It scans list of devices to build up a free map, then chooses
1076  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1077  *      while allocating the name and adding the device in order to avoid
1078  *      duplicates.
1079  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1080  *      Returns the number of the unit assigned or a negative errno code.
1081  */
1082
1083 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1084 {
1085         int i = 0;
1086         const char *p;
1087         const int max_netdevices = 8*PAGE_SIZE;
1088         unsigned long *inuse;
1089         struct net_device *d;
1090
1091         if (!dev_valid_name(name))
1092                 return -EINVAL;
1093
1094         p = strchr(name, '%');
1095         if (p) {
1096                 /*
1097                  * Verify the string as this thing may have come from
1098                  * the user.  There must be either one "%d" and no other "%"
1099                  * characters.
1100                  */
1101                 if (p[1] != 'd' || strchr(p + 2, '%'))
1102                         return -EINVAL;
1103
1104                 /* Use one page as a bit array of possible slots */
1105                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1106                 if (!inuse)
1107                         return -ENOMEM;
1108
1109                 for_each_netdev(net, d) {
1110                         struct netdev_name_node *name_node;
1111                         list_for_each_entry(name_node, &d->name_node->list, list) {
1112                                 if (!sscanf(name_node->name, name, &i))
1113                                         continue;
1114                                 if (i < 0 || i >= max_netdevices)
1115                                         continue;
1116
1117                                 /*  avoid cases where sscanf is not exact inverse of printf */
1118                                 snprintf(buf, IFNAMSIZ, name, i);
1119                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1120                                         set_bit(i, inuse);
1121                         }
1122                         if (!sscanf(d->name, name, &i))
1123                                 continue;
1124                         if (i < 0 || i >= max_netdevices)
1125                                 continue;
1126
1127                         /*  avoid cases where sscanf is not exact inverse of printf */
1128                         snprintf(buf, IFNAMSIZ, name, i);
1129                         if (!strncmp(buf, d->name, IFNAMSIZ))
1130                                 set_bit(i, inuse);
1131                 }
1132
1133                 i = find_first_zero_bit(inuse, max_netdevices);
1134                 free_page((unsigned long) inuse);
1135         }
1136
1137         snprintf(buf, IFNAMSIZ, name, i);
1138         if (!__dev_get_by_name(net, buf))
1139                 return i;
1140
1141         /* It is possible to run out of possible slots
1142          * when the name is long and there isn't enough space left
1143          * for the digits, or if all bits are used.
1144          */
1145         return -ENFILE;
1146 }
1147
1148 static int dev_alloc_name_ns(struct net *net,
1149                              struct net_device *dev,
1150                              const char *name)
1151 {
1152         char buf[IFNAMSIZ];
1153         int ret;
1154
1155         BUG_ON(!net);
1156         ret = __dev_alloc_name(net, name, buf);
1157         if (ret >= 0)
1158                 strlcpy(dev->name, buf, IFNAMSIZ);
1159         return ret;
1160 }
1161
1162 /**
1163  *      dev_alloc_name - allocate a name for a device
1164  *      @dev: device
1165  *      @name: name format string
1166  *
1167  *      Passed a format string - eg "lt%d" it will try and find a suitable
1168  *      id. It scans list of devices to build up a free map, then chooses
1169  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1170  *      while allocating the name and adding the device in order to avoid
1171  *      duplicates.
1172  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1173  *      Returns the number of the unit assigned or a negative errno code.
1174  */
1175
1176 int dev_alloc_name(struct net_device *dev, const char *name)
1177 {
1178         return dev_alloc_name_ns(dev_net(dev), dev, name);
1179 }
1180 EXPORT_SYMBOL(dev_alloc_name);
1181
1182 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1183                               const char *name)
1184 {
1185         BUG_ON(!net);
1186
1187         if (!dev_valid_name(name))
1188                 return -EINVAL;
1189
1190         if (strchr(name, '%'))
1191                 return dev_alloc_name_ns(net, dev, name);
1192         else if (__dev_get_by_name(net, name))
1193                 return -EEXIST;
1194         else if (dev->name != name)
1195                 strlcpy(dev->name, name, IFNAMSIZ);
1196
1197         return 0;
1198 }
1199
1200 /**
1201  *      dev_change_name - change name of a device
1202  *      @dev: device
1203  *      @newname: name (or format string) must be at least IFNAMSIZ
1204  *
1205  *      Change name of a device, can pass format strings "eth%d".
1206  *      for wildcarding.
1207  */
1208 int dev_change_name(struct net_device *dev, const char *newname)
1209 {
1210         unsigned char old_assign_type;
1211         char oldname[IFNAMSIZ];
1212         int err = 0;
1213         int ret;
1214         struct net *net;
1215
1216         ASSERT_RTNL();
1217         BUG_ON(!dev_net(dev));
1218
1219         net = dev_net(dev);
1220
1221         /* Some auto-enslaved devices e.g. failover slaves are
1222          * special, as userspace might rename the device after
1223          * the interface had been brought up and running since
1224          * the point kernel initiated auto-enslavement. Allow
1225          * live name change even when these slave devices are
1226          * up and running.
1227          *
1228          * Typically, users of these auto-enslaving devices
1229          * don't actually care about slave name change, as
1230          * they are supposed to operate on master interface
1231          * directly.
1232          */
1233         if (dev->flags & IFF_UP &&
1234             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1235                 return -EBUSY;
1236
1237         down_write(&devnet_rename_sem);
1238
1239         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1240                 up_write(&devnet_rename_sem);
1241                 return 0;
1242         }
1243
1244         memcpy(oldname, dev->name, IFNAMSIZ);
1245
1246         err = dev_get_valid_name(net, dev, newname);
1247         if (err < 0) {
1248                 up_write(&devnet_rename_sem);
1249                 return err;
1250         }
1251
1252         if (oldname[0] && !strchr(oldname, '%'))
1253                 netdev_info(dev, "renamed from %s\n", oldname);
1254
1255         old_assign_type = dev->name_assign_type;
1256         dev->name_assign_type = NET_NAME_RENAMED;
1257
1258 rollback:
1259         ret = device_rename(&dev->dev, dev->name);
1260         if (ret) {
1261                 memcpy(dev->name, oldname, IFNAMSIZ);
1262                 dev->name_assign_type = old_assign_type;
1263                 up_write(&devnet_rename_sem);
1264                 return ret;
1265         }
1266
1267         up_write(&devnet_rename_sem);
1268
1269         netdev_adjacent_rename_links(dev, oldname);
1270
1271         write_lock(&dev_base_lock);
1272         netdev_name_node_del(dev->name_node);
1273         write_unlock(&dev_base_lock);
1274
1275         synchronize_rcu();
1276
1277         write_lock(&dev_base_lock);
1278         netdev_name_node_add(net, dev->name_node);
1279         write_unlock(&dev_base_lock);
1280
1281         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1282         ret = notifier_to_errno(ret);
1283
1284         if (ret) {
1285                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1286                 if (err >= 0) {
1287                         err = ret;
1288                         down_write(&devnet_rename_sem);
1289                         memcpy(dev->name, oldname, IFNAMSIZ);
1290                         memcpy(oldname, newname, IFNAMSIZ);
1291                         dev->name_assign_type = old_assign_type;
1292                         old_assign_type = NET_NAME_RENAMED;
1293                         goto rollback;
1294                 } else {
1295                         pr_err("%s: name change rollback failed: %d\n",
1296                                dev->name, ret);
1297                 }
1298         }
1299
1300         return err;
1301 }
1302
1303 /**
1304  *      dev_set_alias - change ifalias of a device
1305  *      @dev: device
1306  *      @alias: name up to IFALIASZ
1307  *      @len: limit of bytes to copy from info
1308  *
1309  *      Set ifalias for a device,
1310  */
1311 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1312 {
1313         struct dev_ifalias *new_alias = NULL;
1314
1315         if (len >= IFALIASZ)
1316                 return -EINVAL;
1317
1318         if (len) {
1319                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1320                 if (!new_alias)
1321                         return -ENOMEM;
1322
1323                 memcpy(new_alias->ifalias, alias, len);
1324                 new_alias->ifalias[len] = 0;
1325         }
1326
1327         mutex_lock(&ifalias_mutex);
1328         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1329                                         mutex_is_locked(&ifalias_mutex));
1330         mutex_unlock(&ifalias_mutex);
1331
1332         if (new_alias)
1333                 kfree_rcu(new_alias, rcuhead);
1334
1335         return len;
1336 }
1337 EXPORT_SYMBOL(dev_set_alias);
1338
1339 /**
1340  *      dev_get_alias - get ifalias of a device
1341  *      @dev: device
1342  *      @name: buffer to store name of ifalias
1343  *      @len: size of buffer
1344  *
1345  *      get ifalias for a device.  Caller must make sure dev cannot go
1346  *      away,  e.g. rcu read lock or own a reference count to device.
1347  */
1348 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1349 {
1350         const struct dev_ifalias *alias;
1351         int ret = 0;
1352
1353         rcu_read_lock();
1354         alias = rcu_dereference(dev->ifalias);
1355         if (alias)
1356                 ret = snprintf(name, len, "%s", alias->ifalias);
1357         rcu_read_unlock();
1358
1359         return ret;
1360 }
1361
1362 /**
1363  *      netdev_features_change - device changes features
1364  *      @dev: device to cause notification
1365  *
1366  *      Called to indicate a device has changed features.
1367  */
1368 void netdev_features_change(struct net_device *dev)
1369 {
1370         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1371 }
1372 EXPORT_SYMBOL(netdev_features_change);
1373
1374 /**
1375  *      netdev_state_change - device changes state
1376  *      @dev: device to cause notification
1377  *
1378  *      Called to indicate a device has changed state. This function calls
1379  *      the notifier chains for netdev_chain and sends a NEWLINK message
1380  *      to the routing socket.
1381  */
1382 void netdev_state_change(struct net_device *dev)
1383 {
1384         if (dev->flags & IFF_UP) {
1385                 struct netdev_notifier_change_info change_info = {
1386                         .info.dev = dev,
1387                 };
1388
1389                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1390                                               &change_info.info);
1391                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1392         }
1393 }
1394 EXPORT_SYMBOL(netdev_state_change);
1395
1396 /**
1397  * __netdev_notify_peers - notify network peers about existence of @dev,
1398  * to be called when rtnl lock is already held.
1399  * @dev: network device
1400  *
1401  * Generate traffic such that interested network peers are aware of
1402  * @dev, such as by generating a gratuitous ARP. This may be used when
1403  * a device wants to inform the rest of the network about some sort of
1404  * reconfiguration such as a failover event or virtual machine
1405  * migration.
1406  */
1407 void __netdev_notify_peers(struct net_device *dev)
1408 {
1409         ASSERT_RTNL();
1410         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1411         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1412 }
1413 EXPORT_SYMBOL(__netdev_notify_peers);
1414
1415 /**
1416  * netdev_notify_peers - notify network peers about existence of @dev
1417  * @dev: network device
1418  *
1419  * Generate traffic such that interested network peers are aware of
1420  * @dev, such as by generating a gratuitous ARP. This may be used when
1421  * a device wants to inform the rest of the network about some sort of
1422  * reconfiguration such as a failover event or virtual machine
1423  * migration.
1424  */
1425 void netdev_notify_peers(struct net_device *dev)
1426 {
1427         rtnl_lock();
1428         __netdev_notify_peers(dev);
1429         rtnl_unlock();
1430 }
1431 EXPORT_SYMBOL(netdev_notify_peers);
1432
1433 static int napi_threaded_poll(void *data);
1434
1435 static int napi_kthread_create(struct napi_struct *n)
1436 {
1437         int err = 0;
1438
1439         /* Create and wake up the kthread once to put it in
1440          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1441          * warning and work with loadavg.
1442          */
1443         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1444                                 n->dev->name, n->napi_id);
1445         if (IS_ERR(n->thread)) {
1446                 err = PTR_ERR(n->thread);
1447                 pr_err("kthread_run failed with err %d\n", err);
1448                 n->thread = NULL;
1449         }
1450
1451         return err;
1452 }
1453
1454 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1455 {
1456         const struct net_device_ops *ops = dev->netdev_ops;
1457         int ret;
1458
1459         ASSERT_RTNL();
1460
1461         if (!netif_device_present(dev)) {
1462                 /* may be detached because parent is runtime-suspended */
1463                 if (dev->dev.parent)
1464                         pm_runtime_resume(dev->dev.parent);
1465                 if (!netif_device_present(dev))
1466                         return -ENODEV;
1467         }
1468
1469         /* Block netpoll from trying to do any rx path servicing.
1470          * If we don't do this there is a chance ndo_poll_controller
1471          * or ndo_poll may be running while we open the device
1472          */
1473         netpoll_poll_disable(dev);
1474
1475         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1476         ret = notifier_to_errno(ret);
1477         if (ret)
1478                 return ret;
1479
1480         set_bit(__LINK_STATE_START, &dev->state);
1481
1482         if (ops->ndo_validate_addr)
1483                 ret = ops->ndo_validate_addr(dev);
1484
1485         if (!ret && ops->ndo_open)
1486                 ret = ops->ndo_open(dev);
1487
1488         netpoll_poll_enable(dev);
1489
1490         if (ret)
1491                 clear_bit(__LINK_STATE_START, &dev->state);
1492         else {
1493                 dev->flags |= IFF_UP;
1494                 dev_set_rx_mode(dev);
1495                 dev_activate(dev);
1496                 add_device_randomness(dev->dev_addr, dev->addr_len);
1497         }
1498
1499         return ret;
1500 }
1501
1502 /**
1503  *      dev_open        - prepare an interface for use.
1504  *      @dev: device to open
1505  *      @extack: netlink extended ack
1506  *
1507  *      Takes a device from down to up state. The device's private open
1508  *      function is invoked and then the multicast lists are loaded. Finally
1509  *      the device is moved into the up state and a %NETDEV_UP message is
1510  *      sent to the netdev notifier chain.
1511  *
1512  *      Calling this function on an active interface is a nop. On a failure
1513  *      a negative errno code is returned.
1514  */
1515 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1516 {
1517         int ret;
1518
1519         if (dev->flags & IFF_UP)
1520                 return 0;
1521
1522         ret = __dev_open(dev, extack);
1523         if (ret < 0)
1524                 return ret;
1525
1526         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1527         call_netdevice_notifiers(NETDEV_UP, dev);
1528
1529         return ret;
1530 }
1531 EXPORT_SYMBOL(dev_open);
1532
1533 static void __dev_close_many(struct list_head *head)
1534 {
1535         struct net_device *dev;
1536
1537         ASSERT_RTNL();
1538         might_sleep();
1539
1540         list_for_each_entry(dev, head, close_list) {
1541                 /* Temporarily disable netpoll until the interface is down */
1542                 netpoll_poll_disable(dev);
1543
1544                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1545
1546                 clear_bit(__LINK_STATE_START, &dev->state);
1547
1548                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1549                  * can be even on different cpu. So just clear netif_running().
1550                  *
1551                  * dev->stop() will invoke napi_disable() on all of it's
1552                  * napi_struct instances on this device.
1553                  */
1554                 smp_mb__after_atomic(); /* Commit netif_running(). */
1555         }
1556
1557         dev_deactivate_many(head);
1558
1559         list_for_each_entry(dev, head, close_list) {
1560                 const struct net_device_ops *ops = dev->netdev_ops;
1561
1562                 /*
1563                  *      Call the device specific close. This cannot fail.
1564                  *      Only if device is UP
1565                  *
1566                  *      We allow it to be called even after a DETACH hot-plug
1567                  *      event.
1568                  */
1569                 if (ops->ndo_stop)
1570                         ops->ndo_stop(dev);
1571
1572                 dev->flags &= ~IFF_UP;
1573                 netpoll_poll_enable(dev);
1574         }
1575 }
1576
1577 static void __dev_close(struct net_device *dev)
1578 {
1579         LIST_HEAD(single);
1580
1581         list_add(&dev->close_list, &single);
1582         __dev_close_many(&single);
1583         list_del(&single);
1584 }
1585
1586 void dev_close_many(struct list_head *head, bool unlink)
1587 {
1588         struct net_device *dev, *tmp;
1589
1590         /* Remove the devices that don't need to be closed */
1591         list_for_each_entry_safe(dev, tmp, head, close_list)
1592                 if (!(dev->flags & IFF_UP))
1593                         list_del_init(&dev->close_list);
1594
1595         __dev_close_many(head);
1596
1597         list_for_each_entry_safe(dev, tmp, head, close_list) {
1598                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1599                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1600                 if (unlink)
1601                         list_del_init(&dev->close_list);
1602         }
1603 }
1604 EXPORT_SYMBOL(dev_close_many);
1605
1606 /**
1607  *      dev_close - shutdown an interface.
1608  *      @dev: device to shutdown
1609  *
1610  *      This function moves an active device into down state. A
1611  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1612  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1613  *      chain.
1614  */
1615 void dev_close(struct net_device *dev)
1616 {
1617         if (dev->flags & IFF_UP) {
1618                 LIST_HEAD(single);
1619
1620                 list_add(&dev->close_list, &single);
1621                 dev_close_many(&single, true);
1622                 list_del(&single);
1623         }
1624 }
1625 EXPORT_SYMBOL(dev_close);
1626
1627
1628 /**
1629  *      dev_disable_lro - disable Large Receive Offload on a device
1630  *      @dev: device
1631  *
1632  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1633  *      called under RTNL.  This is needed if received packets may be
1634  *      forwarded to another interface.
1635  */
1636 void dev_disable_lro(struct net_device *dev)
1637 {
1638         struct net_device *lower_dev;
1639         struct list_head *iter;
1640
1641         dev->wanted_features &= ~NETIF_F_LRO;
1642         netdev_update_features(dev);
1643
1644         if (unlikely(dev->features & NETIF_F_LRO))
1645                 netdev_WARN(dev, "failed to disable LRO!\n");
1646
1647         netdev_for_each_lower_dev(dev, lower_dev, iter)
1648                 dev_disable_lro(lower_dev);
1649 }
1650 EXPORT_SYMBOL(dev_disable_lro);
1651
1652 /**
1653  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1654  *      @dev: device
1655  *
1656  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1657  *      called under RTNL.  This is needed if Generic XDP is installed on
1658  *      the device.
1659  */
1660 static void dev_disable_gro_hw(struct net_device *dev)
1661 {
1662         dev->wanted_features &= ~NETIF_F_GRO_HW;
1663         netdev_update_features(dev);
1664
1665         if (unlikely(dev->features & NETIF_F_GRO_HW))
1666                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1667 }
1668
1669 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1670 {
1671 #define N(val)                                          \
1672         case NETDEV_##val:                              \
1673                 return "NETDEV_" __stringify(val);
1674         switch (cmd) {
1675         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1676         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1677         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1678         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1679         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1680         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1681         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1682         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1683         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1684         N(PRE_CHANGEADDR)
1685         }
1686 #undef N
1687         return "UNKNOWN_NETDEV_EVENT";
1688 }
1689 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1690
1691 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1692                                    struct net_device *dev)
1693 {
1694         struct netdev_notifier_info info = {
1695                 .dev = dev,
1696         };
1697
1698         return nb->notifier_call(nb, val, &info);
1699 }
1700
1701 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1702                                              struct net_device *dev)
1703 {
1704         int err;
1705
1706         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1707         err = notifier_to_errno(err);
1708         if (err)
1709                 return err;
1710
1711         if (!(dev->flags & IFF_UP))
1712                 return 0;
1713
1714         call_netdevice_notifier(nb, NETDEV_UP, dev);
1715         return 0;
1716 }
1717
1718 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1719                                                 struct net_device *dev)
1720 {
1721         if (dev->flags & IFF_UP) {
1722                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723                                         dev);
1724                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1725         }
1726         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1727 }
1728
1729 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1730                                                  struct net *net)
1731 {
1732         struct net_device *dev;
1733         int err;
1734
1735         for_each_netdev(net, dev) {
1736                 err = call_netdevice_register_notifiers(nb, dev);
1737                 if (err)
1738                         goto rollback;
1739         }
1740         return 0;
1741
1742 rollback:
1743         for_each_netdev_continue_reverse(net, dev)
1744                 call_netdevice_unregister_notifiers(nb, dev);
1745         return err;
1746 }
1747
1748 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1749                                                     struct net *net)
1750 {
1751         struct net_device *dev;
1752
1753         for_each_netdev(net, dev)
1754                 call_netdevice_unregister_notifiers(nb, dev);
1755 }
1756
1757 static int dev_boot_phase = 1;
1758
1759 /**
1760  * register_netdevice_notifier - register a network notifier block
1761  * @nb: notifier
1762  *
1763  * Register a notifier to be called when network device events occur.
1764  * The notifier passed is linked into the kernel structures and must
1765  * not be reused until it has been unregistered. A negative errno code
1766  * is returned on a failure.
1767  *
1768  * When registered all registration and up events are replayed
1769  * to the new notifier to allow device to have a race free
1770  * view of the network device list.
1771  */
1772
1773 int register_netdevice_notifier(struct notifier_block *nb)
1774 {
1775         struct net *net;
1776         int err;
1777
1778         /* Close race with setup_net() and cleanup_net() */
1779         down_write(&pernet_ops_rwsem);
1780         rtnl_lock();
1781         err = raw_notifier_chain_register(&netdev_chain, nb);
1782         if (err)
1783                 goto unlock;
1784         if (dev_boot_phase)
1785                 goto unlock;
1786         for_each_net(net) {
1787                 err = call_netdevice_register_net_notifiers(nb, net);
1788                 if (err)
1789                         goto rollback;
1790         }
1791
1792 unlock:
1793         rtnl_unlock();
1794         up_write(&pernet_ops_rwsem);
1795         return err;
1796
1797 rollback:
1798         for_each_net_continue_reverse(net)
1799                 call_netdevice_unregister_net_notifiers(nb, net);
1800
1801         raw_notifier_chain_unregister(&netdev_chain, nb);
1802         goto unlock;
1803 }
1804 EXPORT_SYMBOL(register_netdevice_notifier);
1805
1806 /**
1807  * unregister_netdevice_notifier - unregister a network notifier block
1808  * @nb: notifier
1809  *
1810  * Unregister a notifier previously registered by
1811  * register_netdevice_notifier(). The notifier is unlinked into the
1812  * kernel structures and may then be reused. A negative errno code
1813  * is returned on a failure.
1814  *
1815  * After unregistering unregister and down device events are synthesized
1816  * for all devices on the device list to the removed notifier to remove
1817  * the need for special case cleanup code.
1818  */
1819
1820 int unregister_netdevice_notifier(struct notifier_block *nb)
1821 {
1822         struct net *net;
1823         int err;
1824
1825         /* Close race with setup_net() and cleanup_net() */
1826         down_write(&pernet_ops_rwsem);
1827         rtnl_lock();
1828         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1829         if (err)
1830                 goto unlock;
1831
1832         for_each_net(net)
1833                 call_netdevice_unregister_net_notifiers(nb, net);
1834
1835 unlock:
1836         rtnl_unlock();
1837         up_write(&pernet_ops_rwsem);
1838         return err;
1839 }
1840 EXPORT_SYMBOL(unregister_netdevice_notifier);
1841
1842 static int __register_netdevice_notifier_net(struct net *net,
1843                                              struct notifier_block *nb,
1844                                              bool ignore_call_fail)
1845 {
1846         int err;
1847
1848         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1849         if (err)
1850                 return err;
1851         if (dev_boot_phase)
1852                 return 0;
1853
1854         err = call_netdevice_register_net_notifiers(nb, net);
1855         if (err && !ignore_call_fail)
1856                 goto chain_unregister;
1857
1858         return 0;
1859
1860 chain_unregister:
1861         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862         return err;
1863 }
1864
1865 static int __unregister_netdevice_notifier_net(struct net *net,
1866                                                struct notifier_block *nb)
1867 {
1868         int err;
1869
1870         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1871         if (err)
1872                 return err;
1873
1874         call_netdevice_unregister_net_notifiers(nb, net);
1875         return 0;
1876 }
1877
1878 /**
1879  * register_netdevice_notifier_net - register a per-netns network notifier block
1880  * @net: network namespace
1881  * @nb: notifier
1882  *
1883  * Register a notifier to be called when network device events occur.
1884  * The notifier passed is linked into the kernel structures and must
1885  * not be reused until it has been unregistered. A negative errno code
1886  * is returned on a failure.
1887  *
1888  * When registered all registration and up events are replayed
1889  * to the new notifier to allow device to have a race free
1890  * view of the network device list.
1891  */
1892
1893 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1894 {
1895         int err;
1896
1897         rtnl_lock();
1898         err = __register_netdevice_notifier_net(net, nb, false);
1899         rtnl_unlock();
1900         return err;
1901 }
1902 EXPORT_SYMBOL(register_netdevice_notifier_net);
1903
1904 /**
1905  * unregister_netdevice_notifier_net - unregister a per-netns
1906  *                                     network notifier block
1907  * @net: network namespace
1908  * @nb: notifier
1909  *
1910  * Unregister a notifier previously registered by
1911  * register_netdevice_notifier(). The notifier is unlinked into the
1912  * kernel structures and may then be reused. A negative errno code
1913  * is returned on a failure.
1914  *
1915  * After unregistering unregister and down device events are synthesized
1916  * for all devices on the device list to the removed notifier to remove
1917  * the need for special case cleanup code.
1918  */
1919
1920 int unregister_netdevice_notifier_net(struct net *net,
1921                                       struct notifier_block *nb)
1922 {
1923         int err;
1924
1925         rtnl_lock();
1926         err = __unregister_netdevice_notifier_net(net, nb);
1927         rtnl_unlock();
1928         return err;
1929 }
1930 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1931
1932 int register_netdevice_notifier_dev_net(struct net_device *dev,
1933                                         struct notifier_block *nb,
1934                                         struct netdev_net_notifier *nn)
1935 {
1936         int err;
1937
1938         rtnl_lock();
1939         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1940         if (!err) {
1941                 nn->nb = nb;
1942                 list_add(&nn->list, &dev->net_notifier_list);
1943         }
1944         rtnl_unlock();
1945         return err;
1946 }
1947 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1948
1949 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1950                                           struct notifier_block *nb,
1951                                           struct netdev_net_notifier *nn)
1952 {
1953         int err;
1954
1955         rtnl_lock();
1956         list_del(&nn->list);
1957         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1958         rtnl_unlock();
1959         return err;
1960 }
1961 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1962
1963 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1964                                              struct net *net)
1965 {
1966         struct netdev_net_notifier *nn;
1967
1968         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1969                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1970                 __register_netdevice_notifier_net(net, nn->nb, true);
1971         }
1972 }
1973
1974 /**
1975  *      call_netdevice_notifiers_info - call all network notifier blocks
1976  *      @val: value passed unmodified to notifier function
1977  *      @info: notifier information data
1978  *
1979  *      Call all network notifier blocks.  Parameters and return value
1980  *      are as for raw_notifier_call_chain().
1981  */
1982
1983 static int call_netdevice_notifiers_info(unsigned long val,
1984                                          struct netdev_notifier_info *info)
1985 {
1986         struct net *net = dev_net(info->dev);
1987         int ret;
1988
1989         ASSERT_RTNL();
1990
1991         /* Run per-netns notifier block chain first, then run the global one.
1992          * Hopefully, one day, the global one is going to be removed after
1993          * all notifier block registrators get converted to be per-netns.
1994          */
1995         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1996         if (ret & NOTIFY_STOP_MASK)
1997                 return ret;
1998         return raw_notifier_call_chain(&netdev_chain, val, info);
1999 }
2000
2001 static int call_netdevice_notifiers_extack(unsigned long val,
2002                                            struct net_device *dev,
2003                                            struct netlink_ext_ack *extack)
2004 {
2005         struct netdev_notifier_info info = {
2006                 .dev = dev,
2007                 .extack = extack,
2008         };
2009
2010         return call_netdevice_notifiers_info(val, &info);
2011 }
2012
2013 /**
2014  *      call_netdevice_notifiers - call all network notifier blocks
2015  *      @val: value passed unmodified to notifier function
2016  *      @dev: net_device pointer passed unmodified to notifier function
2017  *
2018  *      Call all network notifier blocks.  Parameters and return value
2019  *      are as for raw_notifier_call_chain().
2020  */
2021
2022 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2023 {
2024         return call_netdevice_notifiers_extack(val, dev, NULL);
2025 }
2026 EXPORT_SYMBOL(call_netdevice_notifiers);
2027
2028 /**
2029  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2030  *      @val: value passed unmodified to notifier function
2031  *      @dev: net_device pointer passed unmodified to notifier function
2032  *      @arg: additional u32 argument passed to the notifier function
2033  *
2034  *      Call all network notifier blocks.  Parameters and return value
2035  *      are as for raw_notifier_call_chain().
2036  */
2037 static int call_netdevice_notifiers_mtu(unsigned long val,
2038                                         struct net_device *dev, u32 arg)
2039 {
2040         struct netdev_notifier_info_ext info = {
2041                 .info.dev = dev,
2042                 .ext.mtu = arg,
2043         };
2044
2045         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2046
2047         return call_netdevice_notifiers_info(val, &info.info);
2048 }
2049
2050 #ifdef CONFIG_NET_INGRESS
2051 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2052
2053 void net_inc_ingress_queue(void)
2054 {
2055         static_branch_inc(&ingress_needed_key);
2056 }
2057 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2058
2059 void net_dec_ingress_queue(void)
2060 {
2061         static_branch_dec(&ingress_needed_key);
2062 }
2063 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2064 #endif
2065
2066 #ifdef CONFIG_NET_EGRESS
2067 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2068
2069 void net_inc_egress_queue(void)
2070 {
2071         static_branch_inc(&egress_needed_key);
2072 }
2073 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2074
2075 void net_dec_egress_queue(void)
2076 {
2077         static_branch_dec(&egress_needed_key);
2078 }
2079 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2080 #endif
2081
2082 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2083 #ifdef CONFIG_JUMP_LABEL
2084 static atomic_t netstamp_needed_deferred;
2085 static atomic_t netstamp_wanted;
2086 static void netstamp_clear(struct work_struct *work)
2087 {
2088         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2089         int wanted;
2090
2091         wanted = atomic_add_return(deferred, &netstamp_wanted);
2092         if (wanted > 0)
2093                 static_branch_enable(&netstamp_needed_key);
2094         else
2095                 static_branch_disable(&netstamp_needed_key);
2096 }
2097 static DECLARE_WORK(netstamp_work, netstamp_clear);
2098 #endif
2099
2100 void net_enable_timestamp(void)
2101 {
2102 #ifdef CONFIG_JUMP_LABEL
2103         int wanted;
2104
2105         while (1) {
2106                 wanted = atomic_read(&netstamp_wanted);
2107                 if (wanted <= 0)
2108                         break;
2109                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2110                         return;
2111         }
2112         atomic_inc(&netstamp_needed_deferred);
2113         schedule_work(&netstamp_work);
2114 #else
2115         static_branch_inc(&netstamp_needed_key);
2116 #endif
2117 }
2118 EXPORT_SYMBOL(net_enable_timestamp);
2119
2120 void net_disable_timestamp(void)
2121 {
2122 #ifdef CONFIG_JUMP_LABEL
2123         int wanted;
2124
2125         while (1) {
2126                 wanted = atomic_read(&netstamp_wanted);
2127                 if (wanted <= 1)
2128                         break;
2129                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2130                         return;
2131         }
2132         atomic_dec(&netstamp_needed_deferred);
2133         schedule_work(&netstamp_work);
2134 #else
2135         static_branch_dec(&netstamp_needed_key);
2136 #endif
2137 }
2138 EXPORT_SYMBOL(net_disable_timestamp);
2139
2140 static inline void net_timestamp_set(struct sk_buff *skb)
2141 {
2142         skb->tstamp = 0;
2143         if (static_branch_unlikely(&netstamp_needed_key))
2144                 __net_timestamp(skb);
2145 }
2146
2147 #define net_timestamp_check(COND, SKB)                          \
2148         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2149                 if ((COND) && !(SKB)->tstamp)                   \
2150                         __net_timestamp(SKB);                   \
2151         }                                                       \
2152
2153 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2154 {
2155         return __is_skb_forwardable(dev, skb, true);
2156 }
2157 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2158
2159 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2160                               bool check_mtu)
2161 {
2162         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2163
2164         if (likely(!ret)) {
2165                 skb->protocol = eth_type_trans(skb, dev);
2166                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2167         }
2168
2169         return ret;
2170 }
2171
2172 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2173 {
2174         return __dev_forward_skb2(dev, skb, true);
2175 }
2176 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2177
2178 /**
2179  * dev_forward_skb - loopback an skb to another netif
2180  *
2181  * @dev: destination network device
2182  * @skb: buffer to forward
2183  *
2184  * return values:
2185  *      NET_RX_SUCCESS  (no congestion)
2186  *      NET_RX_DROP     (packet was dropped, but freed)
2187  *
2188  * dev_forward_skb can be used for injecting an skb from the
2189  * start_xmit function of one device into the receive queue
2190  * of another device.
2191  *
2192  * The receiving device may be in another namespace, so
2193  * we have to clear all information in the skb that could
2194  * impact namespace isolation.
2195  */
2196 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2197 {
2198         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2199 }
2200 EXPORT_SYMBOL_GPL(dev_forward_skb);
2201
2202 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2203 {
2204         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2205 }
2206
2207 static inline int deliver_skb(struct sk_buff *skb,
2208                               struct packet_type *pt_prev,
2209                               struct net_device *orig_dev)
2210 {
2211         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2212                 return -ENOMEM;
2213         refcount_inc(&skb->users);
2214         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2215 }
2216
2217 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2218                                           struct packet_type **pt,
2219                                           struct net_device *orig_dev,
2220                                           __be16 type,
2221                                           struct list_head *ptype_list)
2222 {
2223         struct packet_type *ptype, *pt_prev = *pt;
2224
2225         list_for_each_entry_rcu(ptype, ptype_list, list) {
2226                 if (ptype->type != type)
2227                         continue;
2228                 if (pt_prev)
2229                         deliver_skb(skb, pt_prev, orig_dev);
2230                 pt_prev = ptype;
2231         }
2232         *pt = pt_prev;
2233 }
2234
2235 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2236 {
2237         if (!ptype->af_packet_priv || !skb->sk)
2238                 return false;
2239
2240         if (ptype->id_match)
2241                 return ptype->id_match(ptype, skb->sk);
2242         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2243                 return true;
2244
2245         return false;
2246 }
2247
2248 /**
2249  * dev_nit_active - return true if any network interface taps are in use
2250  *
2251  * @dev: network device to check for the presence of taps
2252  */
2253 bool dev_nit_active(struct net_device *dev)
2254 {
2255         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2256 }
2257 EXPORT_SYMBOL_GPL(dev_nit_active);
2258
2259 /*
2260  *      Support routine. Sends outgoing frames to any network
2261  *      taps currently in use.
2262  */
2263
2264 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2265 {
2266         struct packet_type *ptype;
2267         struct sk_buff *skb2 = NULL;
2268         struct packet_type *pt_prev = NULL;
2269         struct list_head *ptype_list = &ptype_all;
2270
2271         rcu_read_lock();
2272 again:
2273         list_for_each_entry_rcu(ptype, ptype_list, list) {
2274                 if (ptype->ignore_outgoing)
2275                         continue;
2276
2277                 /* Never send packets back to the socket
2278                  * they originated from - MvS (miquels@drinkel.ow.org)
2279                  */
2280                 if (skb_loop_sk(ptype, skb))
2281                         continue;
2282
2283                 if (pt_prev) {
2284                         deliver_skb(skb2, pt_prev, skb->dev);
2285                         pt_prev = ptype;
2286                         continue;
2287                 }
2288
2289                 /* need to clone skb, done only once */
2290                 skb2 = skb_clone(skb, GFP_ATOMIC);
2291                 if (!skb2)
2292                         goto out_unlock;
2293
2294                 net_timestamp_set(skb2);
2295
2296                 /* skb->nh should be correctly
2297                  * set by sender, so that the second statement is
2298                  * just protection against buggy protocols.
2299                  */
2300                 skb_reset_mac_header(skb2);
2301
2302                 if (skb_network_header(skb2) < skb2->data ||
2303                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2304                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2305                                              ntohs(skb2->protocol),
2306                                              dev->name);
2307                         skb_reset_network_header(skb2);
2308                 }
2309
2310                 skb2->transport_header = skb2->network_header;
2311                 skb2->pkt_type = PACKET_OUTGOING;
2312                 pt_prev = ptype;
2313         }
2314
2315         if (ptype_list == &ptype_all) {
2316                 ptype_list = &dev->ptype_all;
2317                 goto again;
2318         }
2319 out_unlock:
2320         if (pt_prev) {
2321                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2322                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2323                 else
2324                         kfree_skb(skb2);
2325         }
2326         rcu_read_unlock();
2327 }
2328 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2329
2330 /**
2331  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2332  * @dev: Network device
2333  * @txq: number of queues available
2334  *
2335  * If real_num_tx_queues is changed the tc mappings may no longer be
2336  * valid. To resolve this verify the tc mapping remains valid and if
2337  * not NULL the mapping. With no priorities mapping to this
2338  * offset/count pair it will no longer be used. In the worst case TC0
2339  * is invalid nothing can be done so disable priority mappings. If is
2340  * expected that drivers will fix this mapping if they can before
2341  * calling netif_set_real_num_tx_queues.
2342  */
2343 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2344 {
2345         int i;
2346         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347
2348         /* If TC0 is invalidated disable TC mapping */
2349         if (tc->offset + tc->count > txq) {
2350                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2351                 dev->num_tc = 0;
2352                 return;
2353         }
2354
2355         /* Invalidated prio to tc mappings set to TC0 */
2356         for (i = 1; i < TC_BITMASK + 1; i++) {
2357                 int q = netdev_get_prio_tc_map(dev, i);
2358
2359                 tc = &dev->tc_to_txq[q];
2360                 if (tc->offset + tc->count > txq) {
2361                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2362                                 i, q);
2363                         netdev_set_prio_tc_map(dev, i, 0);
2364                 }
2365         }
2366 }
2367
2368 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2369 {
2370         if (dev->num_tc) {
2371                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2372                 int i;
2373
2374                 /* walk through the TCs and see if it falls into any of them */
2375                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2376                         if ((txq - tc->offset) < tc->count)
2377                                 return i;
2378                 }
2379
2380                 /* didn't find it, just return -1 to indicate no match */
2381                 return -1;
2382         }
2383
2384         return 0;
2385 }
2386 EXPORT_SYMBOL(netdev_txq_to_tc);
2387
2388 #ifdef CONFIG_XPS
2389 static struct static_key xps_needed __read_mostly;
2390 static struct static_key xps_rxqs_needed __read_mostly;
2391 static DEFINE_MUTEX(xps_map_mutex);
2392 #define xmap_dereference(P)             \
2393         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2394
2395 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2396                              struct xps_dev_maps *old_maps, int tci, u16 index)
2397 {
2398         struct xps_map *map = NULL;
2399         int pos;
2400
2401         if (dev_maps)
2402                 map = xmap_dereference(dev_maps->attr_map[tci]);
2403         if (!map)
2404                 return false;
2405
2406         for (pos = map->len; pos--;) {
2407                 if (map->queues[pos] != index)
2408                         continue;
2409
2410                 if (map->len > 1) {
2411                         map->queues[pos] = map->queues[--map->len];
2412                         break;
2413                 }
2414
2415                 if (old_maps)
2416                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2417                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2418                 kfree_rcu(map, rcu);
2419                 return false;
2420         }
2421
2422         return true;
2423 }
2424
2425 static bool remove_xps_queue_cpu(struct net_device *dev,
2426                                  struct xps_dev_maps *dev_maps,
2427                                  int cpu, u16 offset, u16 count)
2428 {
2429         int num_tc = dev_maps->num_tc;
2430         bool active = false;
2431         int tci;
2432
2433         for (tci = cpu * num_tc; num_tc--; tci++) {
2434                 int i, j;
2435
2436                 for (i = count, j = offset; i--; j++) {
2437                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2438                                 break;
2439                 }
2440
2441                 active |= i < 0;
2442         }
2443
2444         return active;
2445 }
2446
2447 static void reset_xps_maps(struct net_device *dev,
2448                            struct xps_dev_maps *dev_maps,
2449                            enum xps_map_type type)
2450 {
2451         static_key_slow_dec_cpuslocked(&xps_needed);
2452         if (type == XPS_RXQS)
2453                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2454
2455         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2456
2457         kfree_rcu(dev_maps, rcu);
2458 }
2459
2460 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2461                            u16 offset, u16 count)
2462 {
2463         struct xps_dev_maps *dev_maps;
2464         bool active = false;
2465         int i, j;
2466
2467         dev_maps = xmap_dereference(dev->xps_maps[type]);
2468         if (!dev_maps)
2469                 return;
2470
2471         for (j = 0; j < dev_maps->nr_ids; j++)
2472                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2473         if (!active)
2474                 reset_xps_maps(dev, dev_maps, type);
2475
2476         if (type == XPS_CPUS) {
2477                 for (i = offset + (count - 1); count--; i--)
2478                         netdev_queue_numa_node_write(
2479                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2480         }
2481 }
2482
2483 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2484                                    u16 count)
2485 {
2486         if (!static_key_false(&xps_needed))
2487                 return;
2488
2489         cpus_read_lock();
2490         mutex_lock(&xps_map_mutex);
2491
2492         if (static_key_false(&xps_rxqs_needed))
2493                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2494
2495         clean_xps_maps(dev, XPS_CPUS, offset, count);
2496
2497         mutex_unlock(&xps_map_mutex);
2498         cpus_read_unlock();
2499 }
2500
2501 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2502 {
2503         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2504 }
2505
2506 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2507                                       u16 index, bool is_rxqs_map)
2508 {
2509         struct xps_map *new_map;
2510         int alloc_len = XPS_MIN_MAP_ALLOC;
2511         int i, pos;
2512
2513         for (pos = 0; map && pos < map->len; pos++) {
2514                 if (map->queues[pos] != index)
2515                         continue;
2516                 return map;
2517         }
2518
2519         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2520         if (map) {
2521                 if (pos < map->alloc_len)
2522                         return map;
2523
2524                 alloc_len = map->alloc_len * 2;
2525         }
2526
2527         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2528          *  map
2529          */
2530         if (is_rxqs_map)
2531                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2532         else
2533                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2534                                        cpu_to_node(attr_index));
2535         if (!new_map)
2536                 return NULL;
2537
2538         for (i = 0; i < pos; i++)
2539                 new_map->queues[i] = map->queues[i];
2540         new_map->alloc_len = alloc_len;
2541         new_map->len = pos;
2542
2543         return new_map;
2544 }
2545
2546 /* Copy xps maps at a given index */
2547 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2548                               struct xps_dev_maps *new_dev_maps, int index,
2549                               int tc, bool skip_tc)
2550 {
2551         int i, tci = index * dev_maps->num_tc;
2552         struct xps_map *map;
2553
2554         /* copy maps belonging to foreign traffic classes */
2555         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2556                 if (i == tc && skip_tc)
2557                         continue;
2558
2559                 /* fill in the new device map from the old device map */
2560                 map = xmap_dereference(dev_maps->attr_map[tci]);
2561                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2562         }
2563 }
2564
2565 /* Must be called under cpus_read_lock */
2566 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2567                           u16 index, enum xps_map_type type)
2568 {
2569         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2570         const unsigned long *online_mask = NULL;
2571         bool active = false, copy = false;
2572         int i, j, tci, numa_node_id = -2;
2573         int maps_sz, num_tc = 1, tc = 0;
2574         struct xps_map *map, *new_map;
2575         unsigned int nr_ids;
2576
2577         if (dev->num_tc) {
2578                 /* Do not allow XPS on subordinate device directly */
2579                 num_tc = dev->num_tc;
2580                 if (num_tc < 0)
2581                         return -EINVAL;
2582
2583                 /* If queue belongs to subordinate dev use its map */
2584                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2585
2586                 tc = netdev_txq_to_tc(dev, index);
2587                 if (tc < 0)
2588                         return -EINVAL;
2589         }
2590
2591         mutex_lock(&xps_map_mutex);
2592
2593         dev_maps = xmap_dereference(dev->xps_maps[type]);
2594         if (type == XPS_RXQS) {
2595                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2596                 nr_ids = dev->num_rx_queues;
2597         } else {
2598                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2599                 if (num_possible_cpus() > 1)
2600                         online_mask = cpumask_bits(cpu_online_mask);
2601                 nr_ids = nr_cpu_ids;
2602         }
2603
2604         if (maps_sz < L1_CACHE_BYTES)
2605                 maps_sz = L1_CACHE_BYTES;
2606
2607         /* The old dev_maps could be larger or smaller than the one we're
2608          * setting up now, as dev->num_tc or nr_ids could have been updated in
2609          * between. We could try to be smart, but let's be safe instead and only
2610          * copy foreign traffic classes if the two map sizes match.
2611          */
2612         if (dev_maps &&
2613             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2614                 copy = true;
2615
2616         /* allocate memory for queue storage */
2617         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2618              j < nr_ids;) {
2619                 if (!new_dev_maps) {
2620                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2621                         if (!new_dev_maps) {
2622                                 mutex_unlock(&xps_map_mutex);
2623                                 return -ENOMEM;
2624                         }
2625
2626                         new_dev_maps->nr_ids = nr_ids;
2627                         new_dev_maps->num_tc = num_tc;
2628                 }
2629
2630                 tci = j * num_tc + tc;
2631                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2632
2633                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2634                 if (!map)
2635                         goto error;
2636
2637                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2638         }
2639
2640         if (!new_dev_maps)
2641                 goto out_no_new_maps;
2642
2643         if (!dev_maps) {
2644                 /* Increment static keys at most once per type */
2645                 static_key_slow_inc_cpuslocked(&xps_needed);
2646                 if (type == XPS_RXQS)
2647                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2648         }
2649
2650         for (j = 0; j < nr_ids; j++) {
2651                 bool skip_tc = false;
2652
2653                 tci = j * num_tc + tc;
2654                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2655                     netif_attr_test_online(j, online_mask, nr_ids)) {
2656                         /* add tx-queue to CPU/rx-queue maps */
2657                         int pos = 0;
2658
2659                         skip_tc = true;
2660
2661                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2662                         while ((pos < map->len) && (map->queues[pos] != index))
2663                                 pos++;
2664
2665                         if (pos == map->len)
2666                                 map->queues[map->len++] = index;
2667 #ifdef CONFIG_NUMA
2668                         if (type == XPS_CPUS) {
2669                                 if (numa_node_id == -2)
2670                                         numa_node_id = cpu_to_node(j);
2671                                 else if (numa_node_id != cpu_to_node(j))
2672                                         numa_node_id = -1;
2673                         }
2674 #endif
2675                 }
2676
2677                 if (copy)
2678                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2679                                           skip_tc);
2680         }
2681
2682         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2683
2684         /* Cleanup old maps */
2685         if (!dev_maps)
2686                 goto out_no_old_maps;
2687
2688         for (j = 0; j < dev_maps->nr_ids; j++) {
2689                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2690                         map = xmap_dereference(dev_maps->attr_map[tci]);
2691                         if (!map)
2692                                 continue;
2693
2694                         if (copy) {
2695                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2696                                 if (map == new_map)
2697                                         continue;
2698                         }
2699
2700                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2701                         kfree_rcu(map, rcu);
2702                 }
2703         }
2704
2705         old_dev_maps = dev_maps;
2706
2707 out_no_old_maps:
2708         dev_maps = new_dev_maps;
2709         active = true;
2710
2711 out_no_new_maps:
2712         if (type == XPS_CPUS)
2713                 /* update Tx queue numa node */
2714                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2715                                              (numa_node_id >= 0) ?
2716                                              numa_node_id : NUMA_NO_NODE);
2717
2718         if (!dev_maps)
2719                 goto out_no_maps;
2720
2721         /* removes tx-queue from unused CPUs/rx-queues */
2722         for (j = 0; j < dev_maps->nr_ids; j++) {
2723                 tci = j * dev_maps->num_tc;
2724
2725                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2726                         if (i == tc &&
2727                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2728                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2729                                 continue;
2730
2731                         active |= remove_xps_queue(dev_maps,
2732                                                    copy ? old_dev_maps : NULL,
2733                                                    tci, index);
2734                 }
2735         }
2736
2737         if (old_dev_maps)
2738                 kfree_rcu(old_dev_maps, rcu);
2739
2740         /* free map if not active */
2741         if (!active)
2742                 reset_xps_maps(dev, dev_maps, type);
2743
2744 out_no_maps:
2745         mutex_unlock(&xps_map_mutex);
2746
2747         return 0;
2748 error:
2749         /* remove any maps that we added */
2750         for (j = 0; j < nr_ids; j++) {
2751                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2752                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2753                         map = copy ?
2754                               xmap_dereference(dev_maps->attr_map[tci]) :
2755                               NULL;
2756                         if (new_map && new_map != map)
2757                                 kfree(new_map);
2758                 }
2759         }
2760
2761         mutex_unlock(&xps_map_mutex);
2762
2763         kfree(new_dev_maps);
2764         return -ENOMEM;
2765 }
2766 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2767
2768 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2769                         u16 index)
2770 {
2771         int ret;
2772
2773         cpus_read_lock();
2774         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2775         cpus_read_unlock();
2776
2777         return ret;
2778 }
2779 EXPORT_SYMBOL(netif_set_xps_queue);
2780
2781 #endif
2782 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2783 {
2784         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2785
2786         /* Unbind any subordinate channels */
2787         while (txq-- != &dev->_tx[0]) {
2788                 if (txq->sb_dev)
2789                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2790         }
2791 }
2792
2793 void netdev_reset_tc(struct net_device *dev)
2794 {
2795 #ifdef CONFIG_XPS
2796         netif_reset_xps_queues_gt(dev, 0);
2797 #endif
2798         netdev_unbind_all_sb_channels(dev);
2799
2800         /* Reset TC configuration of device */
2801         dev->num_tc = 0;
2802         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2803         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2804 }
2805 EXPORT_SYMBOL(netdev_reset_tc);
2806
2807 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2808 {
2809         if (tc >= dev->num_tc)
2810                 return -EINVAL;
2811
2812 #ifdef CONFIG_XPS
2813         netif_reset_xps_queues(dev, offset, count);
2814 #endif
2815         dev->tc_to_txq[tc].count = count;
2816         dev->tc_to_txq[tc].offset = offset;
2817         return 0;
2818 }
2819 EXPORT_SYMBOL(netdev_set_tc_queue);
2820
2821 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2822 {
2823         if (num_tc > TC_MAX_QUEUE)
2824                 return -EINVAL;
2825
2826 #ifdef CONFIG_XPS
2827         netif_reset_xps_queues_gt(dev, 0);
2828 #endif
2829         netdev_unbind_all_sb_channels(dev);
2830
2831         dev->num_tc = num_tc;
2832         return 0;
2833 }
2834 EXPORT_SYMBOL(netdev_set_num_tc);
2835
2836 void netdev_unbind_sb_channel(struct net_device *dev,
2837                               struct net_device *sb_dev)
2838 {
2839         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2840
2841 #ifdef CONFIG_XPS
2842         netif_reset_xps_queues_gt(sb_dev, 0);
2843 #endif
2844         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2845         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2846
2847         while (txq-- != &dev->_tx[0]) {
2848                 if (txq->sb_dev == sb_dev)
2849                         txq->sb_dev = NULL;
2850         }
2851 }
2852 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2853
2854 int netdev_bind_sb_channel_queue(struct net_device *dev,
2855                                  struct net_device *sb_dev,
2856                                  u8 tc, u16 count, u16 offset)
2857 {
2858         /* Make certain the sb_dev and dev are already configured */
2859         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2860                 return -EINVAL;
2861
2862         /* We cannot hand out queues we don't have */
2863         if ((offset + count) > dev->real_num_tx_queues)
2864                 return -EINVAL;
2865
2866         /* Record the mapping */
2867         sb_dev->tc_to_txq[tc].count = count;
2868         sb_dev->tc_to_txq[tc].offset = offset;
2869
2870         /* Provide a way for Tx queue to find the tc_to_txq map or
2871          * XPS map for itself.
2872          */
2873         while (count--)
2874                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2875
2876         return 0;
2877 }
2878 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2879
2880 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2881 {
2882         /* Do not use a multiqueue device to represent a subordinate channel */
2883         if (netif_is_multiqueue(dev))
2884                 return -ENODEV;
2885
2886         /* We allow channels 1 - 32767 to be used for subordinate channels.
2887          * Channel 0 is meant to be "native" mode and used only to represent
2888          * the main root device. We allow writing 0 to reset the device back
2889          * to normal mode after being used as a subordinate channel.
2890          */
2891         if (channel > S16_MAX)
2892                 return -EINVAL;
2893
2894         dev->num_tc = -channel;
2895
2896         return 0;
2897 }
2898 EXPORT_SYMBOL(netdev_set_sb_channel);
2899
2900 /*
2901  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2902  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2903  */
2904 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2905 {
2906         bool disabling;
2907         int rc;
2908
2909         disabling = txq < dev->real_num_tx_queues;
2910
2911         if (txq < 1 || txq > dev->num_tx_queues)
2912                 return -EINVAL;
2913
2914         if (dev->reg_state == NETREG_REGISTERED ||
2915             dev->reg_state == NETREG_UNREGISTERING) {
2916                 ASSERT_RTNL();
2917
2918                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2919                                                   txq);
2920                 if (rc)
2921                         return rc;
2922
2923                 if (dev->num_tc)
2924                         netif_setup_tc(dev, txq);
2925
2926                 dev_qdisc_change_real_num_tx(dev, txq);
2927
2928                 dev->real_num_tx_queues = txq;
2929
2930                 if (disabling) {
2931                         synchronize_net();
2932                         qdisc_reset_all_tx_gt(dev, txq);
2933 #ifdef CONFIG_XPS
2934                         netif_reset_xps_queues_gt(dev, txq);
2935 #endif
2936                 }
2937         } else {
2938                 dev->real_num_tx_queues = txq;
2939         }
2940
2941         return 0;
2942 }
2943 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2944
2945 #ifdef CONFIG_SYSFS
2946 /**
2947  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2948  *      @dev: Network device
2949  *      @rxq: Actual number of RX queues
2950  *
2951  *      This must be called either with the rtnl_lock held or before
2952  *      registration of the net device.  Returns 0 on success, or a
2953  *      negative error code.  If called before registration, it always
2954  *      succeeds.
2955  */
2956 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2957 {
2958         int rc;
2959
2960         if (rxq < 1 || rxq > dev->num_rx_queues)
2961                 return -EINVAL;
2962
2963         if (dev->reg_state == NETREG_REGISTERED) {
2964                 ASSERT_RTNL();
2965
2966                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2967                                                   rxq);
2968                 if (rc)
2969                         return rc;
2970         }
2971
2972         dev->real_num_rx_queues = rxq;
2973         return 0;
2974 }
2975 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2976 #endif
2977
2978 /**
2979  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2980  *      @dev: Network device
2981  *      @txq: Actual number of TX queues
2982  *      @rxq: Actual number of RX queues
2983  *
2984  *      Set the real number of both TX and RX queues.
2985  *      Does nothing if the number of queues is already correct.
2986  */
2987 int netif_set_real_num_queues(struct net_device *dev,
2988                               unsigned int txq, unsigned int rxq)
2989 {
2990         unsigned int old_rxq = dev->real_num_rx_queues;
2991         int err;
2992
2993         if (txq < 1 || txq > dev->num_tx_queues ||
2994             rxq < 1 || rxq > dev->num_rx_queues)
2995                 return -EINVAL;
2996
2997         /* Start from increases, so the error path only does decreases -
2998          * decreases can't fail.
2999          */
3000         if (rxq > dev->real_num_rx_queues) {
3001                 err = netif_set_real_num_rx_queues(dev, rxq);
3002                 if (err)
3003                         return err;
3004         }
3005         if (txq > dev->real_num_tx_queues) {
3006                 err = netif_set_real_num_tx_queues(dev, txq);
3007                 if (err)
3008                         goto undo_rx;
3009         }
3010         if (rxq < dev->real_num_rx_queues)
3011                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3012         if (txq < dev->real_num_tx_queues)
3013                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3014
3015         return 0;
3016 undo_rx:
3017         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3018         return err;
3019 }
3020 EXPORT_SYMBOL(netif_set_real_num_queues);
3021
3022 /**
3023  * netif_get_num_default_rss_queues - default number of RSS queues
3024  *
3025  * This routine should set an upper limit on the number of RSS queues
3026  * used by default by multiqueue devices.
3027  */
3028 int netif_get_num_default_rss_queues(void)
3029 {
3030         return is_kdump_kernel() ?
3031                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3032 }
3033 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3034
3035 static void __netif_reschedule(struct Qdisc *q)
3036 {
3037         struct softnet_data *sd;
3038         unsigned long flags;
3039
3040         local_irq_save(flags);
3041         sd = this_cpu_ptr(&softnet_data);
3042         q->next_sched = NULL;
3043         *sd->output_queue_tailp = q;
3044         sd->output_queue_tailp = &q->next_sched;
3045         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3046         local_irq_restore(flags);
3047 }
3048
3049 void __netif_schedule(struct Qdisc *q)
3050 {
3051         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3052                 __netif_reschedule(q);
3053 }
3054 EXPORT_SYMBOL(__netif_schedule);
3055
3056 struct dev_kfree_skb_cb {
3057         enum skb_free_reason reason;
3058 };
3059
3060 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3061 {
3062         return (struct dev_kfree_skb_cb *)skb->cb;
3063 }
3064
3065 void netif_schedule_queue(struct netdev_queue *txq)
3066 {
3067         rcu_read_lock();
3068         if (!netif_xmit_stopped(txq)) {
3069                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3070
3071                 __netif_schedule(q);
3072         }
3073         rcu_read_unlock();
3074 }
3075 EXPORT_SYMBOL(netif_schedule_queue);
3076
3077 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3078 {
3079         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3080                 struct Qdisc *q;
3081
3082                 rcu_read_lock();
3083                 q = rcu_dereference(dev_queue->qdisc);
3084                 __netif_schedule(q);
3085                 rcu_read_unlock();
3086         }
3087 }
3088 EXPORT_SYMBOL(netif_tx_wake_queue);
3089
3090 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3091 {
3092         unsigned long flags;
3093
3094         if (unlikely(!skb))
3095                 return;
3096
3097         if (likely(refcount_read(&skb->users) == 1)) {
3098                 smp_rmb();
3099                 refcount_set(&skb->users, 0);
3100         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3101                 return;
3102         }
3103         get_kfree_skb_cb(skb)->reason = reason;
3104         local_irq_save(flags);
3105         skb->next = __this_cpu_read(softnet_data.completion_queue);
3106         __this_cpu_write(softnet_data.completion_queue, skb);
3107         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3108         local_irq_restore(flags);
3109 }
3110 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3111
3112 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3113 {
3114         if (in_hardirq() || irqs_disabled())
3115                 __dev_kfree_skb_irq(skb, reason);
3116         else
3117                 dev_kfree_skb(skb);
3118 }
3119 EXPORT_SYMBOL(__dev_kfree_skb_any);
3120
3121
3122 /**
3123  * netif_device_detach - mark device as removed
3124  * @dev: network device
3125  *
3126  * Mark device as removed from system and therefore no longer available.
3127  */
3128 void netif_device_detach(struct net_device *dev)
3129 {
3130         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3131             netif_running(dev)) {
3132                 netif_tx_stop_all_queues(dev);
3133         }
3134 }
3135 EXPORT_SYMBOL(netif_device_detach);
3136
3137 /**
3138  * netif_device_attach - mark device as attached
3139  * @dev: network device
3140  *
3141  * Mark device as attached from system and restart if needed.
3142  */
3143 void netif_device_attach(struct net_device *dev)
3144 {
3145         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3146             netif_running(dev)) {
3147                 netif_tx_wake_all_queues(dev);
3148                 __netdev_watchdog_up(dev);
3149         }
3150 }
3151 EXPORT_SYMBOL(netif_device_attach);
3152
3153 /*
3154  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3155  * to be used as a distribution range.
3156  */
3157 static u16 skb_tx_hash(const struct net_device *dev,
3158                        const struct net_device *sb_dev,
3159                        struct sk_buff *skb)
3160 {
3161         u32 hash;
3162         u16 qoffset = 0;
3163         u16 qcount = dev->real_num_tx_queues;
3164
3165         if (dev->num_tc) {
3166                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3167
3168                 qoffset = sb_dev->tc_to_txq[tc].offset;
3169                 qcount = sb_dev->tc_to_txq[tc].count;
3170                 if (unlikely(!qcount)) {
3171                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3172                                              sb_dev->name, qoffset, tc);
3173                         qoffset = 0;
3174                         qcount = dev->real_num_tx_queues;
3175                 }
3176         }
3177
3178         if (skb_rx_queue_recorded(skb)) {
3179                 hash = skb_get_rx_queue(skb);
3180                 if (hash >= qoffset)
3181                         hash -= qoffset;
3182                 while (unlikely(hash >= qcount))
3183                         hash -= qcount;
3184                 return hash + qoffset;
3185         }
3186
3187         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3188 }
3189
3190 static void skb_warn_bad_offload(const struct sk_buff *skb)
3191 {
3192         static const netdev_features_t null_features;
3193         struct net_device *dev = skb->dev;
3194         const char *name = "";
3195
3196         if (!net_ratelimit())
3197                 return;
3198
3199         if (dev) {
3200                 if (dev->dev.parent)
3201                         name = dev_driver_string(dev->dev.parent);
3202                 else
3203                         name = netdev_name(dev);
3204         }
3205         skb_dump(KERN_WARNING, skb, false);
3206         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3207              name, dev ? &dev->features : &null_features,
3208              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3209 }
3210
3211 /*
3212  * Invalidate hardware checksum when packet is to be mangled, and
3213  * complete checksum manually on outgoing path.
3214  */
3215 int skb_checksum_help(struct sk_buff *skb)
3216 {
3217         __wsum csum;
3218         int ret = 0, offset;
3219
3220         if (skb->ip_summed == CHECKSUM_COMPLETE)
3221                 goto out_set_summed;
3222
3223         if (unlikely(skb_is_gso(skb))) {
3224                 skb_warn_bad_offload(skb);
3225                 return -EINVAL;
3226         }
3227
3228         /* Before computing a checksum, we should make sure no frag could
3229          * be modified by an external entity : checksum could be wrong.
3230          */
3231         if (skb_has_shared_frag(skb)) {
3232                 ret = __skb_linearize(skb);
3233                 if (ret)
3234                         goto out;
3235         }
3236
3237         offset = skb_checksum_start_offset(skb);
3238         ret = -EINVAL;
3239         if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
3240                 goto out;
3241
3242         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3243
3244         offset += skb->csum_offset;
3245         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb)))
3246                 goto out;
3247
3248         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3249         if (ret)
3250                 goto out;
3251
3252         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3253 out_set_summed:
3254         skb->ip_summed = CHECKSUM_NONE;
3255 out:
3256         return ret;
3257 }
3258 EXPORT_SYMBOL(skb_checksum_help);
3259
3260 int skb_crc32c_csum_help(struct sk_buff *skb)
3261 {
3262         __le32 crc32c_csum;
3263         int ret = 0, offset, start;
3264
3265         if (skb->ip_summed != CHECKSUM_PARTIAL)
3266                 goto out;
3267
3268         if (unlikely(skb_is_gso(skb)))
3269                 goto out;
3270
3271         /* Before computing a checksum, we should make sure no frag could
3272          * be modified by an external entity : checksum could be wrong.
3273          */
3274         if (unlikely(skb_has_shared_frag(skb))) {
3275                 ret = __skb_linearize(skb);
3276                 if (ret)
3277                         goto out;
3278         }
3279         start = skb_checksum_start_offset(skb);
3280         offset = start + offsetof(struct sctphdr, checksum);
3281         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3282                 ret = -EINVAL;
3283                 goto out;
3284         }
3285
3286         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3287         if (ret)
3288                 goto out;
3289
3290         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3291                                                   skb->len - start, ~(__u32)0,
3292                                                   crc32c_csum_stub));
3293         *(__le32 *)(skb->data + offset) = crc32c_csum;
3294         skb->ip_summed = CHECKSUM_NONE;
3295         skb->csum_not_inet = 0;
3296 out:
3297         return ret;
3298 }
3299
3300 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3301 {
3302         __be16 type = skb->protocol;
3303
3304         /* Tunnel gso handlers can set protocol to ethernet. */
3305         if (type == htons(ETH_P_TEB)) {
3306                 struct ethhdr *eth;
3307
3308                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3309                         return 0;
3310
3311                 eth = (struct ethhdr *)skb->data;
3312                 type = eth->h_proto;
3313         }
3314
3315         return __vlan_get_protocol(skb, type, depth);
3316 }
3317
3318 /**
3319  *      skb_mac_gso_segment - mac layer segmentation handler.
3320  *      @skb: buffer to segment
3321  *      @features: features for the output path (see dev->features)
3322  */
3323 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3324                                     netdev_features_t features)
3325 {
3326         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3327         struct packet_offload *ptype;
3328         int vlan_depth = skb->mac_len;
3329         __be16 type = skb_network_protocol(skb, &vlan_depth);
3330
3331         if (unlikely(!type))
3332                 return ERR_PTR(-EINVAL);
3333
3334         __skb_pull(skb, vlan_depth);
3335
3336         rcu_read_lock();
3337         list_for_each_entry_rcu(ptype, &offload_base, list) {
3338                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3339                         segs = ptype->callbacks.gso_segment(skb, features);
3340                         break;
3341                 }
3342         }
3343         rcu_read_unlock();
3344
3345         __skb_push(skb, skb->data - skb_mac_header(skb));
3346
3347         return segs;
3348 }
3349 EXPORT_SYMBOL(skb_mac_gso_segment);
3350
3351
3352 /* openvswitch calls this on rx path, so we need a different check.
3353  */
3354 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3355 {
3356         if (tx_path)
3357                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3358                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3359
3360         return skb->ip_summed == CHECKSUM_NONE;
3361 }
3362
3363 /**
3364  *      __skb_gso_segment - Perform segmentation on skb.
3365  *      @skb: buffer to segment
3366  *      @features: features for the output path (see dev->features)
3367  *      @tx_path: whether it is called in TX path
3368  *
3369  *      This function segments the given skb and returns a list of segments.
3370  *
3371  *      It may return NULL if the skb requires no segmentation.  This is
3372  *      only possible when GSO is used for verifying header integrity.
3373  *
3374  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3375  */
3376 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3377                                   netdev_features_t features, bool tx_path)
3378 {
3379         struct sk_buff *segs;
3380
3381         if (unlikely(skb_needs_check(skb, tx_path))) {
3382                 int err;
3383
3384                 /* We're going to init ->check field in TCP or UDP header */
3385                 err = skb_cow_head(skb, 0);
3386                 if (err < 0)
3387                         return ERR_PTR(err);
3388         }
3389
3390         /* Only report GSO partial support if it will enable us to
3391          * support segmentation on this frame without needing additional
3392          * work.
3393          */
3394         if (features & NETIF_F_GSO_PARTIAL) {
3395                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3396                 struct net_device *dev = skb->dev;
3397
3398                 partial_features |= dev->features & dev->gso_partial_features;
3399                 if (!skb_gso_ok(skb, features | partial_features))
3400                         features &= ~NETIF_F_GSO_PARTIAL;
3401         }
3402
3403         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3404                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3405
3406         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3407         SKB_GSO_CB(skb)->encap_level = 0;
3408
3409         skb_reset_mac_header(skb);
3410         skb_reset_mac_len(skb);
3411
3412         segs = skb_mac_gso_segment(skb, features);
3413
3414         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3415                 skb_warn_bad_offload(skb);
3416
3417         return segs;
3418 }
3419 EXPORT_SYMBOL(__skb_gso_segment);
3420
3421 /* Take action when hardware reception checksum errors are detected. */
3422 #ifdef CONFIG_BUG
3423 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3424 {
3425         pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3426         skb_dump(KERN_ERR, skb, true);
3427         dump_stack();
3428 }
3429
3430 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3431 {
3432         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3433 }
3434 EXPORT_SYMBOL(netdev_rx_csum_fault);
3435 #endif
3436
3437 /* XXX: check that highmem exists at all on the given machine. */
3438 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3439 {
3440 #ifdef CONFIG_HIGHMEM
3441         int i;
3442
3443         if (!(dev->features & NETIF_F_HIGHDMA)) {
3444                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3445                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3446
3447                         if (PageHighMem(skb_frag_page(frag)))
3448                                 return 1;
3449                 }
3450         }
3451 #endif
3452         return 0;
3453 }
3454
3455 /* If MPLS offload request, verify we are testing hardware MPLS features
3456  * instead of standard features for the netdev.
3457  */
3458 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3459 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3460                                            netdev_features_t features,
3461                                            __be16 type)
3462 {
3463         if (eth_p_mpls(type))
3464                 features &= skb->dev->mpls_features;
3465
3466         return features;
3467 }
3468 #else
3469 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3470                                            netdev_features_t features,
3471                                            __be16 type)
3472 {
3473         return features;
3474 }
3475 #endif
3476
3477 static netdev_features_t harmonize_features(struct sk_buff *skb,
3478         netdev_features_t features)
3479 {
3480         __be16 type;
3481
3482         type = skb_network_protocol(skb, NULL);
3483         features = net_mpls_features(skb, features, type);
3484
3485         if (skb->ip_summed != CHECKSUM_NONE &&
3486             !can_checksum_protocol(features, type)) {
3487                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3488         }
3489         if (illegal_highdma(skb->dev, skb))
3490                 features &= ~NETIF_F_SG;
3491
3492         return features;
3493 }
3494
3495 netdev_features_t passthru_features_check(struct sk_buff *skb,
3496                                           struct net_device *dev,
3497                                           netdev_features_t features)
3498 {
3499         return features;
3500 }
3501 EXPORT_SYMBOL(passthru_features_check);
3502
3503 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3504                                              struct net_device *dev,
3505                                              netdev_features_t features)
3506 {
3507         return vlan_features_check(skb, features);
3508 }
3509
3510 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3511                                             struct net_device *dev,
3512                                             netdev_features_t features)
3513 {
3514         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3515
3516         if (gso_segs > dev->gso_max_segs)
3517                 return features & ~NETIF_F_GSO_MASK;
3518
3519         if (!skb_shinfo(skb)->gso_type) {
3520                 skb_warn_bad_offload(skb);
3521                 return features & ~NETIF_F_GSO_MASK;
3522         }
3523
3524         /* Support for GSO partial features requires software
3525          * intervention before we can actually process the packets
3526          * so we need to strip support for any partial features now
3527          * and we can pull them back in after we have partially
3528          * segmented the frame.
3529          */
3530         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3531                 features &= ~dev->gso_partial_features;
3532
3533         /* Make sure to clear the IPv4 ID mangling feature if the
3534          * IPv4 header has the potential to be fragmented.
3535          */
3536         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3537                 struct iphdr *iph = skb->encapsulation ?
3538                                     inner_ip_hdr(skb) : ip_hdr(skb);
3539
3540                 if (!(iph->frag_off & htons(IP_DF)))
3541                         features &= ~NETIF_F_TSO_MANGLEID;
3542         }
3543
3544         return features;
3545 }
3546
3547 netdev_features_t netif_skb_features(struct sk_buff *skb)
3548 {
3549         struct net_device *dev = skb->dev;
3550         netdev_features_t features = dev->features;
3551
3552         if (skb_is_gso(skb))
3553                 features = gso_features_check(skb, dev, features);
3554
3555         /* If encapsulation offload request, verify we are testing
3556          * hardware encapsulation features instead of standard
3557          * features for the netdev
3558          */
3559         if (skb->encapsulation)
3560                 features &= dev->hw_enc_features;
3561
3562         if (skb_vlan_tagged(skb))
3563                 features = netdev_intersect_features(features,
3564                                                      dev->vlan_features |
3565                                                      NETIF_F_HW_VLAN_CTAG_TX |
3566                                                      NETIF_F_HW_VLAN_STAG_TX);
3567
3568         if (dev->netdev_ops->ndo_features_check)
3569                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3570                                                                 features);
3571         else
3572                 features &= dflt_features_check(skb, dev, features);
3573
3574         return harmonize_features(skb, features);
3575 }
3576 EXPORT_SYMBOL(netif_skb_features);
3577
3578 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3579                     struct netdev_queue *txq, bool more)
3580 {
3581         unsigned int len;
3582         int rc;
3583
3584         if (dev_nit_active(dev))
3585                 dev_queue_xmit_nit(skb, dev);
3586
3587         len = skb->len;
3588         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3589         trace_net_dev_start_xmit(skb, dev);
3590         rc = netdev_start_xmit(skb, dev, txq, more);
3591         trace_net_dev_xmit(skb, rc, dev, len);
3592
3593         return rc;
3594 }
3595
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597                                     struct netdev_queue *txq, int *ret)
3598 {
3599         struct sk_buff *skb = first;
3600         int rc = NETDEV_TX_OK;
3601
3602         while (skb) {
3603                 struct sk_buff *next = skb->next;
3604
3605                 skb_mark_not_on_list(skb);
3606                 rc = xmit_one(skb, dev, txq, next != NULL);
3607                 if (unlikely(!dev_xmit_complete(rc))) {
3608                         skb->next = next;
3609                         goto out;
3610                 }
3611
3612                 skb = next;
3613                 if (netif_tx_queue_stopped(txq) && skb) {
3614                         rc = NETDEV_TX_BUSY;
3615                         break;
3616                 }
3617         }
3618
3619 out:
3620         *ret = rc;
3621         return skb;
3622 }
3623
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625                                           netdev_features_t features)
3626 {
3627         if (skb_vlan_tag_present(skb) &&
3628             !vlan_hw_offload_capable(features, skb->vlan_proto))
3629                 skb = __vlan_hwaccel_push_inside(skb);
3630         return skb;
3631 }
3632
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634                             const netdev_features_t features)
3635 {
3636         if (unlikely(skb_csum_is_sctp(skb)))
3637                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638                         skb_crc32c_csum_help(skb);
3639
3640         if (features & NETIF_F_HW_CSUM)
3641                 return 0;
3642
3643         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644                 switch (skb->csum_offset) {
3645                 case offsetof(struct tcphdr, check):
3646                 case offsetof(struct udphdr, check):
3647                         return 0;
3648                 }
3649         }
3650
3651         return skb_checksum_help(skb);
3652 }
3653 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654
3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656 {
3657         netdev_features_t features;
3658
3659         features = netif_skb_features(skb);
3660         skb = validate_xmit_vlan(skb, features);
3661         if (unlikely(!skb))
3662                 goto out_null;
3663
3664         skb = sk_validate_xmit_skb(skb, dev);
3665         if (unlikely(!skb))
3666                 goto out_null;
3667
3668         if (netif_needs_gso(skb, features)) {
3669                 struct sk_buff *segs;
3670
3671                 segs = skb_gso_segment(skb, features);
3672                 if (IS_ERR(segs)) {
3673                         goto out_kfree_skb;
3674                 } else if (segs) {
3675                         consume_skb(skb);
3676                         skb = segs;
3677                 }
3678         } else {
3679                 if (skb_needs_linearize(skb, features) &&
3680                     __skb_linearize(skb))
3681                         goto out_kfree_skb;
3682
3683                 /* If packet is not checksummed and device does not
3684                  * support checksumming for this protocol, complete
3685                  * checksumming here.
3686                  */
3687                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688                         if (skb->encapsulation)
3689                                 skb_set_inner_transport_header(skb,
3690                                                                skb_checksum_start_offset(skb));
3691                         else
3692                                 skb_set_transport_header(skb,
3693                                                          skb_checksum_start_offset(skb));
3694                         if (skb_csum_hwoffload_help(skb, features))
3695                                 goto out_kfree_skb;
3696                 }
3697         }
3698
3699         skb = validate_xmit_xfrm(skb, features, again);
3700
3701         return skb;
3702
3703 out_kfree_skb:
3704         kfree_skb(skb);
3705 out_null:
3706         atomic_long_inc(&dev->tx_dropped);
3707         return NULL;
3708 }
3709
3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711 {
3712         struct sk_buff *next, *head = NULL, *tail;
3713
3714         for (; skb != NULL; skb = next) {
3715                 next = skb->next;
3716                 skb_mark_not_on_list(skb);
3717
3718                 /* in case skb wont be segmented, point to itself */
3719                 skb->prev = skb;
3720
3721                 skb = validate_xmit_skb(skb, dev, again);
3722                 if (!skb)
3723                         continue;
3724
3725                 if (!head)
3726                         head = skb;
3727                 else
3728                         tail->next = skb;
3729                 /* If skb was segmented, skb->prev points to
3730                  * the last segment. If not, it still contains skb.
3731                  */
3732                 tail = skb->prev;
3733         }
3734         return head;
3735 }
3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737
3738 static void qdisc_pkt_len_init(struct sk_buff *skb)
3739 {
3740         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741
3742         qdisc_skb_cb(skb)->pkt_len = skb->len;
3743
3744         /* To get more precise estimation of bytes sent on wire,
3745          * we add to pkt_len the headers size of all segments
3746          */
3747         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748                 unsigned int hdr_len;
3749                 u16 gso_segs = shinfo->gso_segs;
3750
3751                 /* mac layer + network layer */
3752                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753
3754                 /* + transport layer */
3755                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756                         const struct tcphdr *th;
3757                         struct tcphdr _tcphdr;
3758
3759                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3760                                                 sizeof(_tcphdr), &_tcphdr);
3761                         if (likely(th))
3762                                 hdr_len += __tcp_hdrlen(th);
3763                 } else {
3764                         struct udphdr _udphdr;
3765
3766                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3767                                                sizeof(_udphdr), &_udphdr))
3768                                 hdr_len += sizeof(struct udphdr);
3769                 }
3770
3771                 if (shinfo->gso_type & SKB_GSO_DODGY)
3772                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773                                                 shinfo->gso_size);
3774
3775                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776         }
3777 }
3778
3779 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780                              struct sk_buff **to_free,
3781                              struct netdev_queue *txq)
3782 {
3783         int rc;
3784
3785         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786         if (rc == NET_XMIT_SUCCESS)
3787                 trace_qdisc_enqueue(q, txq, skb);
3788         return rc;
3789 }
3790
3791 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792                                  struct net_device *dev,
3793                                  struct netdev_queue *txq)
3794 {
3795         spinlock_t *root_lock = qdisc_lock(q);
3796         struct sk_buff *to_free = NULL;
3797         bool contended;
3798         int rc;
3799
3800         qdisc_calculate_pkt_len(skb, q);
3801
3802         if (q->flags & TCQ_F_NOLOCK) {
3803                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804                     qdisc_run_begin(q)) {
3805                         /* Retest nolock_qdisc_is_empty() within the protection
3806                          * of q->seqlock to protect from racing with requeuing.
3807                          */
3808                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3809                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810                                 __qdisc_run(q);
3811                                 qdisc_run_end(q);
3812
3813                                 goto no_lock_out;
3814                         }
3815
3816                         qdisc_bstats_cpu_update(q, skb);
3817                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818                             !nolock_qdisc_is_empty(q))
3819                                 __qdisc_run(q);
3820
3821                         qdisc_run_end(q);
3822                         return NET_XMIT_SUCCESS;
3823                 }
3824
3825                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826                 qdisc_run(q);
3827
3828 no_lock_out:
3829                 if (unlikely(to_free))
3830                         kfree_skb_list(to_free);
3831                 return rc;
3832         }
3833
3834         /*
3835          * Heuristic to force contended enqueues to serialize on a
3836          * separate lock before trying to get qdisc main lock.
3837          * This permits qdisc->running owner to get the lock more
3838          * often and dequeue packets faster.
3839          */
3840         contended = qdisc_is_running(q);
3841         if (unlikely(contended))
3842                 spin_lock(&q->busylock);
3843
3844         spin_lock(root_lock);
3845         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3846                 __qdisc_drop(skb, &to_free);
3847                 rc = NET_XMIT_DROP;
3848         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3849                    qdisc_run_begin(q)) {
3850                 /*
3851                  * This is a work-conserving queue; there are no old skbs
3852                  * waiting to be sent out; and the qdisc is not running -
3853                  * xmit the skb directly.
3854                  */
3855
3856                 qdisc_bstats_update(q, skb);
3857
3858                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3859                         if (unlikely(contended)) {
3860                                 spin_unlock(&q->busylock);
3861                                 contended = false;
3862                         }
3863                         __qdisc_run(q);
3864                 }
3865
3866                 qdisc_run_end(q);
3867                 rc = NET_XMIT_SUCCESS;
3868         } else {
3869                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3870                 if (qdisc_run_begin(q)) {
3871                         if (unlikely(contended)) {
3872                                 spin_unlock(&q->busylock);
3873                                 contended = false;
3874                         }
3875                         __qdisc_run(q);
3876                         qdisc_run_end(q);
3877                 }
3878         }
3879         spin_unlock(root_lock);
3880         if (unlikely(to_free))
3881                 kfree_skb_list(to_free);
3882         if (unlikely(contended))
3883                 spin_unlock(&q->busylock);
3884         return rc;
3885 }
3886
3887 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3888 static void skb_update_prio(struct sk_buff *skb)
3889 {
3890         const struct netprio_map *map;
3891         const struct sock *sk;
3892         unsigned int prioidx;
3893
3894         if (skb->priority)
3895                 return;
3896         map = rcu_dereference_bh(skb->dev->priomap);
3897         if (!map)
3898                 return;
3899         sk = skb_to_full_sk(skb);
3900         if (!sk)
3901                 return;
3902
3903         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3904
3905         if (prioidx < map->priomap_len)
3906                 skb->priority = map->priomap[prioidx];
3907 }
3908 #else
3909 #define skb_update_prio(skb)
3910 #endif
3911
3912 /**
3913  *      dev_loopback_xmit - loop back @skb
3914  *      @net: network namespace this loopback is happening in
3915  *      @sk:  sk needed to be a netfilter okfn
3916  *      @skb: buffer to transmit
3917  */
3918 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3919 {
3920         skb_reset_mac_header(skb);
3921         __skb_pull(skb, skb_network_offset(skb));
3922         skb->pkt_type = PACKET_LOOPBACK;
3923         if (skb->ip_summed == CHECKSUM_NONE)
3924                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3925         WARN_ON(!skb_dst(skb));
3926         skb_dst_force(skb);
3927         netif_rx_ni(skb);
3928         return 0;
3929 }
3930 EXPORT_SYMBOL(dev_loopback_xmit);
3931
3932 #ifdef CONFIG_NET_EGRESS
3933 static struct sk_buff *
3934 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3935 {
3936         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3937         struct tcf_result cl_res;
3938
3939         if (!miniq)
3940                 return skb;
3941
3942         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3943         tc_skb_cb(skb)->mru = 0;
3944         tc_skb_cb(skb)->post_ct = false;
3945         mini_qdisc_bstats_cpu_update(miniq, skb);
3946
3947         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3948         case TC_ACT_OK:
3949         case TC_ACT_RECLASSIFY:
3950                 skb->tc_index = TC_H_MIN(cl_res.classid);
3951                 break;
3952         case TC_ACT_SHOT:
3953                 mini_qdisc_qstats_cpu_drop(miniq);
3954                 *ret = NET_XMIT_DROP;
3955                 kfree_skb(skb);
3956                 return NULL;
3957         case TC_ACT_STOLEN:
3958         case TC_ACT_QUEUED:
3959         case TC_ACT_TRAP:
3960                 *ret = NET_XMIT_SUCCESS;
3961                 consume_skb(skb);
3962                 return NULL;
3963         case TC_ACT_REDIRECT:
3964                 /* No need to push/pop skb's mac_header here on egress! */
3965                 skb_do_redirect(skb);
3966                 *ret = NET_XMIT_SUCCESS;
3967                 return NULL;
3968         default:
3969                 break;
3970         }
3971
3972         return skb;
3973 }
3974 #endif /* CONFIG_NET_EGRESS */
3975
3976 #ifdef CONFIG_XPS
3977 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3978                                struct xps_dev_maps *dev_maps, unsigned int tci)
3979 {
3980         int tc = netdev_get_prio_tc_map(dev, skb->priority);
3981         struct xps_map *map;
3982         int queue_index = -1;
3983
3984         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3985                 return queue_index;
3986
3987         tci *= dev_maps->num_tc;
3988         tci += tc;
3989
3990         map = rcu_dereference(dev_maps->attr_map[tci]);
3991         if (map) {
3992                 if (map->len == 1)
3993                         queue_index = map->queues[0];
3994                 else
3995                         queue_index = map->queues[reciprocal_scale(
3996                                                 skb_get_hash(skb), map->len)];
3997                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3998                         queue_index = -1;
3999         }
4000         return queue_index;
4001 }
4002 #endif
4003
4004 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4005                          struct sk_buff *skb)
4006 {
4007 #ifdef CONFIG_XPS
4008         struct xps_dev_maps *dev_maps;
4009         struct sock *sk = skb->sk;
4010         int queue_index = -1;
4011
4012         if (!static_key_false(&xps_needed))
4013                 return -1;
4014
4015         rcu_read_lock();
4016         if (!static_key_false(&xps_rxqs_needed))
4017                 goto get_cpus_map;
4018
4019         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4020         if (dev_maps) {
4021                 int tci = sk_rx_queue_get(sk);
4022
4023                 if (tci >= 0)
4024                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4025                                                           tci);
4026         }
4027
4028 get_cpus_map:
4029         if (queue_index < 0) {
4030                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4031                 if (dev_maps) {
4032                         unsigned int tci = skb->sender_cpu - 1;
4033
4034                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4035                                                           tci);
4036                 }
4037         }
4038         rcu_read_unlock();
4039
4040         return queue_index;
4041 #else
4042         return -1;
4043 #endif
4044 }
4045
4046 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4047                      struct net_device *sb_dev)
4048 {
4049         return 0;
4050 }
4051 EXPORT_SYMBOL(dev_pick_tx_zero);
4052
4053 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4054                        struct net_device *sb_dev)
4055 {
4056         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4057 }
4058 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4059
4060 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4061                      struct net_device *sb_dev)
4062 {
4063         struct sock *sk = skb->sk;
4064         int queue_index = sk_tx_queue_get(sk);
4065
4066         sb_dev = sb_dev ? : dev;
4067
4068         if (queue_index < 0 || skb->ooo_okay ||
4069             queue_index >= dev->real_num_tx_queues) {
4070                 int new_index = get_xps_queue(dev, sb_dev, skb);
4071
4072                 if (new_index < 0)
4073                         new_index = skb_tx_hash(dev, sb_dev, skb);
4074
4075                 if (queue_index != new_index && sk &&
4076                     sk_fullsock(sk) &&
4077                     rcu_access_pointer(sk->sk_dst_cache))
4078                         sk_tx_queue_set(sk, new_index);
4079
4080                 queue_index = new_index;
4081         }
4082
4083         return queue_index;
4084 }
4085 EXPORT_SYMBOL(netdev_pick_tx);
4086
4087 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4088                                          struct sk_buff *skb,
4089                                          struct net_device *sb_dev)
4090 {
4091         int queue_index = 0;
4092
4093 #ifdef CONFIG_XPS
4094         u32 sender_cpu = skb->sender_cpu - 1;
4095
4096         if (sender_cpu >= (u32)NR_CPUS)
4097                 skb->sender_cpu = raw_smp_processor_id() + 1;
4098 #endif
4099
4100         if (dev->real_num_tx_queues != 1) {
4101                 const struct net_device_ops *ops = dev->netdev_ops;
4102
4103                 if (ops->ndo_select_queue)
4104                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4105                 else
4106                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4107
4108                 queue_index = netdev_cap_txqueue(dev, queue_index);
4109         }
4110
4111         skb_set_queue_mapping(skb, queue_index);
4112         return netdev_get_tx_queue(dev, queue_index);
4113 }
4114
4115 /**
4116  *      __dev_queue_xmit - transmit a buffer
4117  *      @skb: buffer to transmit
4118  *      @sb_dev: suboordinate device used for L2 forwarding offload
4119  *
4120  *      Queue a buffer for transmission to a network device. The caller must
4121  *      have set the device and priority and built the buffer before calling
4122  *      this function. The function can be called from an interrupt.
4123  *
4124  *      A negative errno code is returned on a failure. A success does not
4125  *      guarantee the frame will be transmitted as it may be dropped due
4126  *      to congestion or traffic shaping.
4127  *
4128  * -----------------------------------------------------------------------------------
4129  *      I notice this method can also return errors from the queue disciplines,
4130  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4131  *      be positive.
4132  *
4133  *      Regardless of the return value, the skb is consumed, so it is currently
4134  *      difficult to retry a send to this method.  (You can bump the ref count
4135  *      before sending to hold a reference for retry if you are careful.)
4136  *
4137  *      When calling this method, interrupts MUST be enabled.  This is because
4138  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4139  *          --BLG
4140  */
4141 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4142 {
4143         struct net_device *dev = skb->dev;
4144         struct netdev_queue *txq;
4145         struct Qdisc *q;
4146         int rc = -ENOMEM;
4147         bool again = false;
4148
4149         skb_reset_mac_header(skb);
4150
4151         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4152                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4153
4154         /* Disable soft irqs for various locks below. Also
4155          * stops preemption for RCU.
4156          */
4157         rcu_read_lock_bh();
4158
4159         skb_update_prio(skb);
4160
4161         qdisc_pkt_len_init(skb);
4162 #ifdef CONFIG_NET_CLS_ACT
4163         skb->tc_at_ingress = 0;
4164 # ifdef CONFIG_NET_EGRESS
4165         if (static_branch_unlikely(&egress_needed_key)) {
4166                 skb = sch_handle_egress(skb, &rc, dev);
4167                 if (!skb)
4168                         goto out;
4169         }
4170 # endif
4171 #endif
4172         /* If device/qdisc don't need skb->dst, release it right now while
4173          * its hot in this cpu cache.
4174          */
4175         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4176                 skb_dst_drop(skb);
4177         else
4178                 skb_dst_force(skb);
4179
4180         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4181         q = rcu_dereference_bh(txq->qdisc);
4182
4183         trace_net_dev_queue(skb);
4184         if (q->enqueue) {
4185                 rc = __dev_xmit_skb(skb, q, dev, txq);
4186                 goto out;
4187         }
4188
4189         /* The device has no queue. Common case for software devices:
4190          * loopback, all the sorts of tunnels...
4191
4192          * Really, it is unlikely that netif_tx_lock protection is necessary
4193          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4194          * counters.)
4195          * However, it is possible, that they rely on protection
4196          * made by us here.
4197
4198          * Check this and shot the lock. It is not prone from deadlocks.
4199          *Either shot noqueue qdisc, it is even simpler 8)
4200          */
4201         if (dev->flags & IFF_UP) {
4202                 int cpu = smp_processor_id(); /* ok because BHs are off */
4203
4204                 /* Other cpus might concurrently change txq->xmit_lock_owner
4205                  * to -1 or to their cpu id, but not to our id.
4206                  */
4207                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4208                         if (dev_xmit_recursion())
4209                                 goto recursion_alert;
4210
4211                         skb = validate_xmit_skb(skb, dev, &again);
4212                         if (!skb)
4213                                 goto out;
4214
4215                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4216                         HARD_TX_LOCK(dev, txq, cpu);
4217
4218                         if (!netif_xmit_stopped(txq)) {
4219                                 dev_xmit_recursion_inc();
4220                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4221                                 dev_xmit_recursion_dec();
4222                                 if (dev_xmit_complete(rc)) {
4223                                         HARD_TX_UNLOCK(dev, txq);
4224                                         goto out;
4225                                 }
4226                         }
4227                         HARD_TX_UNLOCK(dev, txq);
4228                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4229                                              dev->name);
4230                 } else {
4231                         /* Recursion is detected! It is possible,
4232                          * unfortunately
4233                          */
4234 recursion_alert:
4235                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4236                                              dev->name);
4237                 }
4238         }
4239
4240         rc = -ENETDOWN;
4241         rcu_read_unlock_bh();
4242
4243         atomic_long_inc(&dev->tx_dropped);
4244         kfree_skb_list(skb);
4245         return rc;
4246 out:
4247         rcu_read_unlock_bh();
4248         return rc;
4249 }
4250
4251 int dev_queue_xmit(struct sk_buff *skb)
4252 {
4253         return __dev_queue_xmit(skb, NULL);
4254 }
4255 EXPORT_SYMBOL(dev_queue_xmit);
4256
4257 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4258 {
4259         return __dev_queue_xmit(skb, sb_dev);
4260 }
4261 EXPORT_SYMBOL(dev_queue_xmit_accel);
4262
4263 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4264 {
4265         struct net_device *dev = skb->dev;
4266         struct sk_buff *orig_skb = skb;
4267         struct netdev_queue *txq;
4268         int ret = NETDEV_TX_BUSY;
4269         bool again = false;
4270
4271         if (unlikely(!netif_running(dev) ||
4272                      !netif_carrier_ok(dev)))
4273                 goto drop;
4274
4275         skb = validate_xmit_skb_list(skb, dev, &again);
4276         if (skb != orig_skb)
4277                 goto drop;
4278
4279         skb_set_queue_mapping(skb, queue_id);
4280         txq = skb_get_tx_queue(dev, skb);
4281         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4282
4283         local_bh_disable();
4284
4285         dev_xmit_recursion_inc();
4286         HARD_TX_LOCK(dev, txq, smp_processor_id());
4287         if (!netif_xmit_frozen_or_drv_stopped(txq))
4288                 ret = netdev_start_xmit(skb, dev, txq, false);
4289         HARD_TX_UNLOCK(dev, txq);
4290         dev_xmit_recursion_dec();
4291
4292         local_bh_enable();
4293         return ret;
4294 drop:
4295         atomic_long_inc(&dev->tx_dropped);
4296         kfree_skb_list(skb);
4297         return NET_XMIT_DROP;
4298 }
4299 EXPORT_SYMBOL(__dev_direct_xmit);
4300
4301 /*************************************************************************
4302  *                      Receiver routines
4303  *************************************************************************/
4304
4305 int netdev_max_backlog __read_mostly = 1000;
4306 EXPORT_SYMBOL(netdev_max_backlog);
4307
4308 int netdev_tstamp_prequeue __read_mostly = 1;
4309 int netdev_budget __read_mostly = 300;
4310 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4311 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4312 int weight_p __read_mostly = 64;           /* old backlog weight */
4313 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4314 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4315 int dev_rx_weight __read_mostly = 64;
4316 int dev_tx_weight __read_mostly = 64;
4317 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4318 int gro_normal_batch __read_mostly = 8;
4319
4320 /* Called with irq disabled */
4321 static inline void ____napi_schedule(struct softnet_data *sd,
4322                                      struct napi_struct *napi)
4323 {
4324         struct task_struct *thread;
4325
4326         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4327                 /* Paired with smp_mb__before_atomic() in
4328                  * napi_enable()/dev_set_threaded().
4329                  * Use READ_ONCE() to guarantee a complete
4330                  * read on napi->thread. Only call
4331                  * wake_up_process() when it's not NULL.
4332                  */
4333                 thread = READ_ONCE(napi->thread);
4334                 if (thread) {
4335                         /* Avoid doing set_bit() if the thread is in
4336                          * INTERRUPTIBLE state, cause napi_thread_wait()
4337                          * makes sure to proceed with napi polling
4338                          * if the thread is explicitly woken from here.
4339                          */
4340                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4341                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4342                         wake_up_process(thread);
4343                         return;
4344                 }
4345         }
4346
4347         list_add_tail(&napi->poll_list, &sd->poll_list);
4348         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4349 }
4350
4351 #ifdef CONFIG_RPS
4352
4353 /* One global table that all flow-based protocols share. */
4354 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4355 EXPORT_SYMBOL(rps_sock_flow_table);
4356 u32 rps_cpu_mask __read_mostly;
4357 EXPORT_SYMBOL(rps_cpu_mask);
4358
4359 struct static_key_false rps_needed __read_mostly;
4360 EXPORT_SYMBOL(rps_needed);
4361 struct static_key_false rfs_needed __read_mostly;
4362 EXPORT_SYMBOL(rfs_needed);
4363
4364 static struct rps_dev_flow *
4365 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4366             struct rps_dev_flow *rflow, u16 next_cpu)
4367 {
4368         if (next_cpu < nr_cpu_ids) {
4369 #ifdef CONFIG_RFS_ACCEL
4370                 struct netdev_rx_queue *rxqueue;
4371                 struct rps_dev_flow_table *flow_table;
4372                 struct rps_dev_flow *old_rflow;
4373                 u32 flow_id;
4374                 u16 rxq_index;
4375                 int rc;
4376
4377                 /* Should we steer this flow to a different hardware queue? */
4378                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4379                     !(dev->features & NETIF_F_NTUPLE))
4380                         goto out;
4381                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4382                 if (rxq_index == skb_get_rx_queue(skb))
4383                         goto out;
4384
4385                 rxqueue = dev->_rx + rxq_index;
4386                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4387                 if (!flow_table)
4388                         goto out;
4389                 flow_id = skb_get_hash(skb) & flow_table->mask;
4390                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4391                                                         rxq_index, flow_id);
4392                 if (rc < 0)
4393                         goto out;
4394                 old_rflow = rflow;
4395                 rflow = &flow_table->flows[flow_id];
4396                 rflow->filter = rc;
4397                 if (old_rflow->filter == rflow->filter)
4398                         old_rflow->filter = RPS_NO_FILTER;
4399         out:
4400 #endif
4401                 rflow->last_qtail =
4402                         per_cpu(softnet_data, next_cpu).input_queue_head;
4403         }
4404
4405         rflow->cpu = next_cpu;
4406         return rflow;
4407 }
4408
4409 /*
4410  * get_rps_cpu is called from netif_receive_skb and returns the target
4411  * CPU from the RPS map of the receiving queue for a given skb.
4412  * rcu_read_lock must be held on entry.
4413  */
4414 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4415                        struct rps_dev_flow **rflowp)
4416 {
4417         const struct rps_sock_flow_table *sock_flow_table;
4418         struct netdev_rx_queue *rxqueue = dev->_rx;
4419         struct rps_dev_flow_table *flow_table;
4420         struct rps_map *map;
4421         int cpu = -1;
4422         u32 tcpu;
4423         u32 hash;
4424
4425         if (skb_rx_queue_recorded(skb)) {
4426                 u16 index = skb_get_rx_queue(skb);
4427
4428                 if (unlikely(index >= dev->real_num_rx_queues)) {
4429                         WARN_ONCE(dev->real_num_rx_queues > 1,
4430                                   "%s received packet on queue %u, but number "
4431                                   "of RX queues is %u\n",
4432                                   dev->name, index, dev->real_num_rx_queues);
4433                         goto done;
4434                 }
4435                 rxqueue += index;
4436         }
4437
4438         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4439
4440         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4441         map = rcu_dereference(rxqueue->rps_map);
4442         if (!flow_table && !map)
4443                 goto done;
4444
4445         skb_reset_network_header(skb);
4446         hash = skb_get_hash(skb);
4447         if (!hash)
4448                 goto done;
4449
4450         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4451         if (flow_table && sock_flow_table) {
4452                 struct rps_dev_flow *rflow;
4453                 u32 next_cpu;
4454                 u32 ident;
4455
4456                 /* First check into global flow table if there is a match */
4457                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4458                 if ((ident ^ hash) & ~rps_cpu_mask)
4459                         goto try_rps;
4460
4461                 next_cpu = ident & rps_cpu_mask;
4462
4463                 /* OK, now we know there is a match,
4464                  * we can look at the local (per receive queue) flow table
4465                  */
4466                 rflow = &flow_table->flows[hash & flow_table->mask];
4467                 tcpu = rflow->cpu;
4468
4469                 /*
4470                  * If the desired CPU (where last recvmsg was done) is
4471                  * different from current CPU (one in the rx-queue flow
4472                  * table entry), switch if one of the following holds:
4473                  *   - Current CPU is unset (>= nr_cpu_ids).
4474                  *   - Current CPU is offline.
4475                  *   - The current CPU's queue tail has advanced beyond the
4476                  *     last packet that was enqueued using this table entry.
4477                  *     This guarantees that all previous packets for the flow
4478                  *     have been dequeued, thus preserving in order delivery.
4479                  */
4480                 if (unlikely(tcpu != next_cpu) &&
4481                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4482                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4483                       rflow->last_qtail)) >= 0)) {
4484                         tcpu = next_cpu;
4485                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4486                 }
4487
4488                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4489                         *rflowp = rflow;
4490                         cpu = tcpu;
4491                         goto done;
4492                 }
4493         }
4494
4495 try_rps:
4496
4497         if (map) {
4498                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4499                 if (cpu_online(tcpu)) {
4500                         cpu = tcpu;
4501                         goto done;
4502                 }
4503         }
4504
4505 done:
4506         return cpu;
4507 }
4508
4509 #ifdef CONFIG_RFS_ACCEL
4510
4511 /**
4512  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4513  * @dev: Device on which the filter was set
4514  * @rxq_index: RX queue index
4515  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4516  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4517  *
4518  * Drivers that implement ndo_rx_flow_steer() should periodically call
4519  * this function for each installed filter and remove the filters for
4520  * which it returns %true.
4521  */
4522 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4523                          u32 flow_id, u16 filter_id)
4524 {
4525         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4526         struct rps_dev_flow_table *flow_table;
4527         struct rps_dev_flow *rflow;
4528         bool expire = true;
4529         unsigned int cpu;
4530
4531         rcu_read_lock();
4532         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4533         if (flow_table && flow_id <= flow_table->mask) {
4534                 rflow = &flow_table->flows[flow_id];
4535                 cpu = READ_ONCE(rflow->cpu);
4536                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4537                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4538                            rflow->last_qtail) <
4539                      (int)(10 * flow_table->mask)))
4540                         expire = false;
4541         }
4542         rcu_read_unlock();
4543         return expire;
4544 }
4545 EXPORT_SYMBOL(rps_may_expire_flow);
4546
4547 #endif /* CONFIG_RFS_ACCEL */
4548
4549 /* Called from hardirq (IPI) context */
4550 static void rps_trigger_softirq(void *data)
4551 {
4552         struct softnet_data *sd = data;
4553
4554         ____napi_schedule(sd, &sd->backlog);
4555         sd->received_rps++;
4556 }
4557
4558 #endif /* CONFIG_RPS */
4559
4560 /*
4561  * Check if this softnet_data structure is another cpu one
4562  * If yes, queue it to our IPI list and return 1
4563  * If no, return 0
4564  */
4565 static int rps_ipi_queued(struct softnet_data *sd)
4566 {
4567 #ifdef CONFIG_RPS
4568         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4569
4570         if (sd != mysd) {
4571                 sd->rps_ipi_next = mysd->rps_ipi_list;
4572                 mysd->rps_ipi_list = sd;
4573
4574                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4575                 return 1;
4576         }
4577 #endif /* CONFIG_RPS */
4578         return 0;
4579 }
4580
4581 #ifdef CONFIG_NET_FLOW_LIMIT
4582 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4583 #endif
4584
4585 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4586 {
4587 #ifdef CONFIG_NET_FLOW_LIMIT
4588         struct sd_flow_limit *fl;
4589         struct softnet_data *sd;
4590         unsigned int old_flow, new_flow;
4591
4592         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4593                 return false;
4594
4595         sd = this_cpu_ptr(&softnet_data);
4596
4597         rcu_read_lock();
4598         fl = rcu_dereference(sd->flow_limit);
4599         if (fl) {
4600                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4601                 old_flow = fl->history[fl->history_head];
4602                 fl->history[fl->history_head] = new_flow;
4603
4604                 fl->history_head++;
4605                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4606
4607                 if (likely(fl->buckets[old_flow]))
4608                         fl->buckets[old_flow]--;
4609
4610                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4611                         fl->count++;
4612                         rcu_read_unlock();
4613                         return true;
4614                 }
4615         }
4616         rcu_read_unlock();
4617 #endif
4618         return false;
4619 }
4620
4621 /*
4622  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4623  * queue (may be a remote CPU queue).
4624  */
4625 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4626                               unsigned int *qtail)
4627 {
4628         struct softnet_data *sd;
4629         unsigned long flags;
4630         unsigned int qlen;
4631
4632         sd = &per_cpu(softnet_data, cpu);
4633
4634         local_irq_save(flags);
4635
4636         rps_lock(sd);
4637         if (!netif_running(skb->dev))
4638                 goto drop;
4639         qlen = skb_queue_len(&sd->input_pkt_queue);
4640         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4641                 if (qlen) {
4642 enqueue:
4643                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4644                         input_queue_tail_incr_save(sd, qtail);
4645                         rps_unlock(sd);
4646                         local_irq_restore(flags);
4647                         return NET_RX_SUCCESS;
4648                 }
4649
4650                 /* Schedule NAPI for backlog device
4651                  * We can use non atomic operation since we own the queue lock
4652                  */
4653                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4654                         if (!rps_ipi_queued(sd))
4655                                 ____napi_schedule(sd, &sd->backlog);
4656                 }
4657                 goto enqueue;
4658         }
4659
4660 drop:
4661         sd->dropped++;
4662         rps_unlock(sd);
4663
4664         local_irq_restore(flags);
4665
4666         atomic_long_inc(&skb->dev->rx_dropped);
4667         kfree_skb(skb);
4668         return NET_RX_DROP;
4669 }
4670
4671 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4672 {
4673         struct net_device *dev = skb->dev;
4674         struct netdev_rx_queue *rxqueue;
4675
4676         rxqueue = dev->_rx;
4677
4678         if (skb_rx_queue_recorded(skb)) {
4679                 u16 index = skb_get_rx_queue(skb);
4680
4681                 if (unlikely(index >= dev->real_num_rx_queues)) {
4682                         WARN_ONCE(dev->real_num_rx_queues > 1,
4683                                   "%s received packet on queue %u, but number "
4684                                   "of RX queues is %u\n",
4685                                   dev->name, index, dev->real_num_rx_queues);
4686
4687                         return rxqueue; /* Return first rxqueue */
4688                 }
4689                 rxqueue += index;
4690         }
4691         return rxqueue;
4692 }
4693
4694 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4695                              struct bpf_prog *xdp_prog)
4696 {
4697         void *orig_data, *orig_data_end, *hard_start;
4698         struct netdev_rx_queue *rxqueue;
4699         bool orig_bcast, orig_host;
4700         u32 mac_len, frame_sz;
4701         __be16 orig_eth_type;
4702         struct ethhdr *eth;
4703         u32 metalen, act;
4704         int off;
4705
4706         /* The XDP program wants to see the packet starting at the MAC
4707          * header.
4708          */
4709         mac_len = skb->data - skb_mac_header(skb);
4710         hard_start = skb->data - skb_headroom(skb);
4711
4712         /* SKB "head" area always have tailroom for skb_shared_info */
4713         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4714         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4715
4716         rxqueue = netif_get_rxqueue(skb);
4717         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4718         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4719                          skb_headlen(skb) + mac_len, true);
4720
4721         orig_data_end = xdp->data_end;
4722         orig_data = xdp->data;
4723         eth = (struct ethhdr *)xdp->data;
4724         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4725         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4726         orig_eth_type = eth->h_proto;
4727
4728         act = bpf_prog_run_xdp(xdp_prog, xdp);
4729
4730         /* check if bpf_xdp_adjust_head was used */
4731         off = xdp->data - orig_data;
4732         if (off) {
4733                 if (off > 0)
4734                         __skb_pull(skb, off);
4735                 else if (off < 0)
4736                         __skb_push(skb, -off);
4737
4738                 skb->mac_header += off;
4739                 skb_reset_network_header(skb);
4740         }
4741
4742         /* check if bpf_xdp_adjust_tail was used */
4743         off = xdp->data_end - orig_data_end;
4744         if (off != 0) {
4745                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4746                 skb->len += off; /* positive on grow, negative on shrink */
4747         }
4748
4749         /* check if XDP changed eth hdr such SKB needs update */
4750         eth = (struct ethhdr *)xdp->data;
4751         if ((orig_eth_type != eth->h_proto) ||
4752             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4753                                                   skb->dev->dev_addr)) ||
4754             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4755                 __skb_push(skb, ETH_HLEN);
4756                 skb->pkt_type = PACKET_HOST;
4757                 skb->protocol = eth_type_trans(skb, skb->dev);
4758         }
4759
4760         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4761          * before calling us again on redirect path. We do not call do_redirect
4762          * as we leave that up to the caller.
4763          *
4764          * Caller is responsible for managing lifetime of skb (i.e. calling
4765          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4766          */
4767         switch (act) {
4768         case XDP_REDIRECT:
4769         case XDP_TX:
4770                 __skb_push(skb, mac_len);
4771                 break;
4772         case XDP_PASS:
4773                 metalen = xdp->data - xdp->data_meta;
4774                 if (metalen)
4775                         skb_metadata_set(skb, metalen);
4776                 break;
4777         }
4778
4779         return act;
4780 }
4781
4782 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4783                                      struct xdp_buff *xdp,
4784                                      struct bpf_prog *xdp_prog)
4785 {
4786         u32 act = XDP_DROP;
4787
4788         /* Reinjected packets coming from act_mirred or similar should
4789          * not get XDP generic processing.
4790          */
4791         if (skb_is_redirected(skb))
4792                 return XDP_PASS;
4793
4794         /* XDP packets must be linear and must have sufficient headroom
4795          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4796          * native XDP provides, thus we need to do it here as well.
4797          */
4798         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4799             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4800                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4801                 int troom = skb->tail + skb->data_len - skb->end;
4802
4803                 /* In case we have to go down the path and also linearize,
4804                  * then lets do the pskb_expand_head() work just once here.
4805                  */
4806                 if (pskb_expand_head(skb,
4807                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4808                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4809                         goto do_drop;
4810                 if (skb_linearize(skb))
4811                         goto do_drop;
4812         }
4813
4814         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4815         switch (act) {
4816         case XDP_REDIRECT:
4817         case XDP_TX:
4818         case XDP_PASS:
4819                 break;
4820         default:
4821                 bpf_warn_invalid_xdp_action(act);
4822                 fallthrough;
4823         case XDP_ABORTED:
4824                 trace_xdp_exception(skb->dev, xdp_prog, act);
4825                 fallthrough;
4826         case XDP_DROP:
4827         do_drop:
4828                 kfree_skb(skb);
4829                 break;
4830         }
4831
4832         return act;
4833 }
4834
4835 /* When doing generic XDP we have to bypass the qdisc layer and the
4836  * network taps in order to match in-driver-XDP behavior.
4837  */
4838 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4839 {
4840         struct net_device *dev = skb->dev;
4841         struct netdev_queue *txq;
4842         bool free_skb = true;
4843         int cpu, rc;
4844
4845         txq = netdev_core_pick_tx(dev, skb, NULL);
4846         cpu = smp_processor_id();
4847         HARD_TX_LOCK(dev, txq, cpu);
4848         if (!netif_xmit_stopped(txq)) {
4849                 rc = netdev_start_xmit(skb, dev, txq, 0);
4850                 if (dev_xmit_complete(rc))
4851                         free_skb = false;
4852         }
4853         HARD_TX_UNLOCK(dev, txq);
4854         if (free_skb) {
4855                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4856                 kfree_skb(skb);
4857         }
4858 }
4859
4860 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4861
4862 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4863 {
4864         if (xdp_prog) {
4865                 struct xdp_buff xdp;
4866                 u32 act;
4867                 int err;
4868
4869                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4870                 if (act != XDP_PASS) {
4871                         switch (act) {
4872                         case XDP_REDIRECT:
4873                                 err = xdp_do_generic_redirect(skb->dev, skb,
4874                                                               &xdp, xdp_prog);
4875                                 if (err)
4876                                         goto out_redir;
4877                                 break;
4878                         case XDP_TX:
4879                                 generic_xdp_tx(skb, xdp_prog);
4880                                 break;
4881                         }
4882                         return XDP_DROP;
4883                 }
4884         }
4885         return XDP_PASS;
4886 out_redir:
4887         kfree_skb(skb);
4888         return XDP_DROP;
4889 }
4890 EXPORT_SYMBOL_GPL(do_xdp_generic);
4891
4892 static int netif_rx_internal(struct sk_buff *skb)
4893 {
4894         int ret;
4895
4896         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4897
4898         trace_netif_rx(skb);
4899
4900 #ifdef CONFIG_RPS
4901         if (static_branch_unlikely(&rps_needed)) {
4902                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4903                 int cpu;
4904
4905                 preempt_disable();
4906                 rcu_read_lock();
4907
4908                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4909                 if (cpu < 0)
4910                         cpu = smp_processor_id();
4911
4912                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4913
4914                 rcu_read_unlock();
4915                 preempt_enable();
4916         } else
4917 #endif
4918         {
4919                 unsigned int qtail;
4920
4921                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4922                 put_cpu();
4923         }
4924         return ret;
4925 }
4926
4927 /**
4928  *      netif_rx        -       post buffer to the network code
4929  *      @skb: buffer to post
4930  *
4931  *      This function receives a packet from a device driver and queues it for
4932  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4933  *      may be dropped during processing for congestion control or by the
4934  *      protocol layers.
4935  *
4936  *      return values:
4937  *      NET_RX_SUCCESS  (no congestion)
4938  *      NET_RX_DROP     (packet was dropped)
4939  *
4940  */
4941
4942 int netif_rx(struct sk_buff *skb)
4943 {
4944         int ret;
4945
4946         trace_netif_rx_entry(skb);
4947
4948         ret = netif_rx_internal(skb);
4949         trace_netif_rx_exit(ret);
4950
4951         return ret;
4952 }
4953 EXPORT_SYMBOL(netif_rx);
4954
4955 int netif_rx_ni(struct sk_buff *skb)
4956 {
4957         int err;
4958
4959         trace_netif_rx_ni_entry(skb);
4960
4961         preempt_disable();
4962         err = netif_rx_internal(skb);
4963         if (local_softirq_pending())
4964                 do_softirq();
4965         preempt_enable();
4966         trace_netif_rx_ni_exit(err);
4967
4968         return err;
4969 }
4970 EXPORT_SYMBOL(netif_rx_ni);
4971
4972 int netif_rx_any_context(struct sk_buff *skb)
4973 {
4974         /*
4975          * If invoked from contexts which do not invoke bottom half
4976          * processing either at return from interrupt or when softrqs are
4977          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4978          * directly.
4979          */
4980         if (in_interrupt())
4981                 return netif_rx(skb);
4982         else
4983                 return netif_rx_ni(skb);
4984 }
4985 EXPORT_SYMBOL(netif_rx_any_context);
4986
4987 static __latent_entropy void net_tx_action(struct softirq_action *h)
4988 {
4989         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4990
4991         if (sd->completion_queue) {
4992                 struct sk_buff *clist;
4993
4994                 local_irq_disable();
4995                 clist = sd->completion_queue;
4996                 sd->completion_queue = NULL;
4997                 local_irq_enable();
4998
4999                 while (clist) {
5000                         struct sk_buff *skb = clist;
5001
5002                         clist = clist->next;
5003
5004                         WARN_ON(refcount_read(&skb->users));
5005                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5006                                 trace_consume_skb(skb);
5007                         else
5008                                 trace_kfree_skb(skb, net_tx_action,
5009                                                 SKB_DROP_REASON_NOT_SPECIFIED);
5010
5011                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5012                                 __kfree_skb(skb);
5013                         else
5014                                 __kfree_skb_defer(skb);
5015                 }
5016         }
5017
5018         if (sd->output_queue) {
5019                 struct Qdisc *head;
5020
5021                 local_irq_disable();
5022                 head = sd->output_queue;
5023                 sd->output_queue = NULL;
5024                 sd->output_queue_tailp = &sd->output_queue;
5025                 local_irq_enable();
5026
5027                 rcu_read_lock();
5028
5029                 while (head) {
5030                         struct Qdisc *q = head;
5031                         spinlock_t *root_lock = NULL;
5032
5033                         head = head->next_sched;
5034
5035                         /* We need to make sure head->next_sched is read
5036                          * before clearing __QDISC_STATE_SCHED
5037                          */
5038                         smp_mb__before_atomic();
5039
5040                         if (!(q->flags & TCQ_F_NOLOCK)) {
5041                                 root_lock = qdisc_lock(q);
5042                                 spin_lock(root_lock);
5043                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5044                                                      &q->state))) {
5045                                 /* There is a synchronize_net() between
5046                                  * STATE_DEACTIVATED flag being set and
5047                                  * qdisc_reset()/some_qdisc_is_busy() in
5048                                  * dev_deactivate(), so we can safely bail out
5049                                  * early here to avoid data race between
5050                                  * qdisc_deactivate() and some_qdisc_is_busy()
5051                                  * for lockless qdisc.
5052                                  */
5053                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5054                                 continue;
5055                         }
5056
5057                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5058                         qdisc_run(q);
5059                         if (root_lock)
5060                                 spin_unlock(root_lock);
5061                 }
5062
5063                 rcu_read_unlock();
5064         }
5065
5066         xfrm_dev_backlog(sd);
5067 }
5068
5069 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5070 /* This hook is defined here for ATM LANE */
5071 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5072                              unsigned char *addr) __read_mostly;
5073 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5074 #endif
5075
5076 static inline struct sk_buff *
5077 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5078                    struct net_device *orig_dev, bool *another)
5079 {
5080 #ifdef CONFIG_NET_CLS_ACT
5081         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5082         struct tcf_result cl_res;
5083
5084         /* If there's at least one ingress present somewhere (so
5085          * we get here via enabled static key), remaining devices
5086          * that are not configured with an ingress qdisc will bail
5087          * out here.
5088          */
5089         if (!miniq)
5090                 return skb;
5091
5092         if (*pt_prev) {
5093                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5094                 *pt_prev = NULL;
5095         }
5096
5097         qdisc_skb_cb(skb)->pkt_len = skb->len;
5098         tc_skb_cb(skb)->mru = 0;
5099         tc_skb_cb(skb)->post_ct = false;
5100         skb->tc_at_ingress = 1;
5101         mini_qdisc_bstats_cpu_update(miniq, skb);
5102
5103         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5104         case TC_ACT_OK:
5105         case TC_ACT_RECLASSIFY:
5106                 skb->tc_index = TC_H_MIN(cl_res.classid);
5107                 break;
5108         case TC_ACT_SHOT:
5109                 mini_qdisc_qstats_cpu_drop(miniq);
5110                 kfree_skb(skb);
5111                 return NULL;
5112         case TC_ACT_STOLEN:
5113         case TC_ACT_QUEUED:
5114         case TC_ACT_TRAP:
5115                 consume_skb(skb);
5116                 return NULL;
5117         case TC_ACT_REDIRECT:
5118                 /* skb_mac_header check was done by cls/act_bpf, so
5119                  * we can safely push the L2 header back before
5120                  * redirecting to another netdev
5121                  */
5122                 __skb_push(skb, skb->mac_len);
5123                 if (skb_do_redirect(skb) == -EAGAIN) {
5124                         __skb_pull(skb, skb->mac_len);
5125                         *another = true;
5126                         break;
5127                 }
5128                 return NULL;
5129         case TC_ACT_CONSUMED:
5130                 return NULL;
5131         default:
5132                 break;
5133         }
5134 #endif /* CONFIG_NET_CLS_ACT */
5135         return skb;
5136 }
5137
5138 /**
5139  *      netdev_is_rx_handler_busy - check if receive handler is registered
5140  *      @dev: device to check
5141  *
5142  *      Check if a receive handler is already registered for a given device.
5143  *      Return true if there one.
5144  *
5145  *      The caller must hold the rtnl_mutex.
5146  */
5147 bool netdev_is_rx_handler_busy(struct net_device *dev)
5148 {
5149         ASSERT_RTNL();
5150         return dev && rtnl_dereference(dev->rx_handler);
5151 }
5152 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5153
5154 /**
5155  *      netdev_rx_handler_register - register receive handler
5156  *      @dev: device to register a handler for
5157  *      @rx_handler: receive handler to register
5158  *      @rx_handler_data: data pointer that is used by rx handler
5159  *
5160  *      Register a receive handler for a device. This handler will then be
5161  *      called from __netif_receive_skb. A negative errno code is returned
5162  *      on a failure.
5163  *
5164  *      The caller must hold the rtnl_mutex.
5165  *
5166  *      For a general description of rx_handler, see enum rx_handler_result.
5167  */
5168 int netdev_rx_handler_register(struct net_device *dev,
5169                                rx_handler_func_t *rx_handler,
5170                                void *rx_handler_data)
5171 {
5172         if (netdev_is_rx_handler_busy(dev))
5173                 return -EBUSY;
5174
5175         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5176                 return -EINVAL;
5177
5178         /* Note: rx_handler_data must be set before rx_handler */
5179         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5180         rcu_assign_pointer(dev->rx_handler, rx_handler);
5181
5182         return 0;
5183 }
5184 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5185
5186 /**
5187  *      netdev_rx_handler_unregister - unregister receive handler
5188  *      @dev: device to unregister a handler from
5189  *
5190  *      Unregister a receive handler from a device.
5191  *
5192  *      The caller must hold the rtnl_mutex.
5193  */
5194 void netdev_rx_handler_unregister(struct net_device *dev)
5195 {
5196
5197         ASSERT_RTNL();
5198         RCU_INIT_POINTER(dev->rx_handler, NULL);
5199         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5200          * section has a guarantee to see a non NULL rx_handler_data
5201          * as well.
5202          */
5203         synchronize_net();
5204         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5205 }
5206 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5207
5208 /*
5209  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5210  * the special handling of PFMEMALLOC skbs.
5211  */
5212 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5213 {
5214         switch (skb->protocol) {
5215         case htons(ETH_P_ARP):
5216         case htons(ETH_P_IP):
5217         case htons(ETH_P_IPV6):
5218         case htons(ETH_P_8021Q):
5219         case htons(ETH_P_8021AD):
5220                 return true;
5221         default:
5222                 return false;
5223         }
5224 }
5225
5226 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5227                              int *ret, struct net_device *orig_dev)
5228 {
5229         if (nf_hook_ingress_active(skb)) {
5230                 int ingress_retval;
5231
5232                 if (*pt_prev) {
5233                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5234                         *pt_prev = NULL;
5235                 }
5236
5237                 rcu_read_lock();
5238                 ingress_retval = nf_hook_ingress(skb);
5239                 rcu_read_unlock();
5240                 return ingress_retval;
5241         }
5242         return 0;
5243 }
5244
5245 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5246                                     struct packet_type **ppt_prev)
5247 {
5248         struct packet_type *ptype, *pt_prev;
5249         rx_handler_func_t *rx_handler;
5250         struct sk_buff *skb = *pskb;
5251         struct net_device *orig_dev;
5252         bool deliver_exact = false;
5253         int ret = NET_RX_DROP;
5254         __be16 type;
5255
5256         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5257
5258         trace_netif_receive_skb(skb);
5259
5260         orig_dev = skb->dev;
5261
5262         skb_reset_network_header(skb);
5263         if (!skb_transport_header_was_set(skb))
5264                 skb_reset_transport_header(skb);
5265         skb_reset_mac_len(skb);
5266
5267         pt_prev = NULL;
5268
5269 another_round:
5270         skb->skb_iif = skb->dev->ifindex;
5271
5272         __this_cpu_inc(softnet_data.processed);
5273
5274         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5275                 int ret2;
5276
5277                 migrate_disable();
5278                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5279                 migrate_enable();
5280
5281                 if (ret2 != XDP_PASS) {
5282                         ret = NET_RX_DROP;
5283                         goto out;
5284                 }
5285         }
5286
5287         if (eth_type_vlan(skb->protocol)) {
5288                 skb = skb_vlan_untag(skb);
5289                 if (unlikely(!skb))
5290                         goto out;
5291         }
5292
5293         if (skb_skip_tc_classify(skb))
5294                 goto skip_classify;
5295
5296         if (pfmemalloc)
5297                 goto skip_taps;
5298
5299         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5300                 if (pt_prev)
5301                         ret = deliver_skb(skb, pt_prev, orig_dev);
5302                 pt_prev = ptype;
5303         }
5304
5305         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5306                 if (pt_prev)
5307                         ret = deliver_skb(skb, pt_prev, orig_dev);
5308                 pt_prev = ptype;
5309         }
5310
5311 skip_taps:
5312 #ifdef CONFIG_NET_INGRESS
5313         if (static_branch_unlikely(&ingress_needed_key)) {
5314                 bool another = false;
5315
5316                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5317                                          &another);
5318                 if (another)
5319                         goto another_round;
5320                 if (!skb)
5321                         goto out;
5322
5323                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5324                         goto out;
5325         }
5326 #endif
5327         skb_reset_redirect(skb);
5328 skip_classify:
5329         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5330                 goto drop;
5331
5332         if (skb_vlan_tag_present(skb)) {
5333                 if (pt_prev) {
5334                         ret = deliver_skb(skb, pt_prev, orig_dev);
5335                         pt_prev = NULL;
5336                 }
5337                 if (vlan_do_receive(&skb))
5338                         goto another_round;
5339                 else if (unlikely(!skb))
5340                         goto out;
5341         }
5342
5343         rx_handler = rcu_dereference(skb->dev->rx_handler);
5344         if (rx_handler) {
5345                 if (pt_prev) {
5346                         ret = deliver_skb(skb, pt_prev, orig_dev);
5347                         pt_prev = NULL;
5348                 }
5349                 switch (rx_handler(&skb)) {
5350                 case RX_HANDLER_CONSUMED:
5351                         ret = NET_RX_SUCCESS;
5352                         goto out;
5353                 case RX_HANDLER_ANOTHER:
5354                         goto another_round;
5355                 case RX_HANDLER_EXACT:
5356                         deliver_exact = true;
5357                         break;
5358                 case RX_HANDLER_PASS:
5359                         break;
5360                 default:
5361                         BUG();
5362                 }
5363         }
5364
5365         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5366 check_vlan_id:
5367                 if (skb_vlan_tag_get_id(skb)) {
5368                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5369                          * find vlan device.
5370                          */
5371                         skb->pkt_type = PACKET_OTHERHOST;
5372                 } else if (eth_type_vlan(skb->protocol)) {
5373                         /* Outer header is 802.1P with vlan 0, inner header is
5374                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5375                          * not find vlan dev for vlan id 0.
5376                          */
5377                         __vlan_hwaccel_clear_tag(skb);
5378                         skb = skb_vlan_untag(skb);
5379                         if (unlikely(!skb))
5380                                 goto out;
5381                         if (vlan_do_receive(&skb))
5382                                 /* After stripping off 802.1P header with vlan 0
5383                                  * vlan dev is found for inner header.
5384                                  */
5385                                 goto another_round;
5386                         else if (unlikely(!skb))
5387                                 goto out;
5388                         else
5389                                 /* We have stripped outer 802.1P vlan 0 header.
5390                                  * But could not find vlan dev.
5391                                  * check again for vlan id to set OTHERHOST.
5392                                  */
5393                                 goto check_vlan_id;
5394                 }
5395                 /* Note: we might in the future use prio bits
5396                  * and set skb->priority like in vlan_do_receive()
5397                  * For the time being, just ignore Priority Code Point
5398                  */
5399                 __vlan_hwaccel_clear_tag(skb);
5400         }
5401
5402         type = skb->protocol;
5403
5404         /* deliver only exact match when indicated */
5405         if (likely(!deliver_exact)) {
5406                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5407                                        &ptype_base[ntohs(type) &
5408                                                    PTYPE_HASH_MASK]);
5409         }
5410
5411         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5412                                &orig_dev->ptype_specific);
5413
5414         if (unlikely(skb->dev != orig_dev)) {
5415                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5416                                        &skb->dev->ptype_specific);
5417         }
5418
5419         if (pt_prev) {
5420                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5421                         goto drop;
5422                 *ppt_prev = pt_prev;
5423         } else {
5424 drop:
5425                 if (!deliver_exact)
5426                         atomic_long_inc(&skb->dev->rx_dropped);
5427                 else
5428                         atomic_long_inc(&skb->dev->rx_nohandler);
5429                 kfree_skb(skb);
5430                 /* Jamal, now you will not able to escape explaining
5431                  * me how you were going to use this. :-)
5432                  */
5433                 ret = NET_RX_DROP;
5434         }
5435
5436 out:
5437         /* The invariant here is that if *ppt_prev is not NULL
5438          * then skb should also be non-NULL.
5439          *
5440          * Apparently *ppt_prev assignment above holds this invariant due to
5441          * skb dereferencing near it.
5442          */
5443         *pskb = skb;
5444         return ret;
5445 }
5446
5447 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5448 {
5449         struct net_device *orig_dev = skb->dev;
5450         struct packet_type *pt_prev = NULL;
5451         int ret;
5452
5453         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5454         if (pt_prev)
5455                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5456                                          skb->dev, pt_prev, orig_dev);
5457         return ret;
5458 }
5459
5460 /**
5461  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5462  *      @skb: buffer to process
5463  *
5464  *      More direct receive version of netif_receive_skb().  It should
5465  *      only be used by callers that have a need to skip RPS and Generic XDP.
5466  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5467  *
5468  *      This function may only be called from softirq context and interrupts
5469  *      should be enabled.
5470  *
5471  *      Return values (usually ignored):
5472  *      NET_RX_SUCCESS: no congestion
5473  *      NET_RX_DROP: packet was dropped
5474  */
5475 int netif_receive_skb_core(struct sk_buff *skb)
5476 {
5477         int ret;
5478
5479         rcu_read_lock();
5480         ret = __netif_receive_skb_one_core(skb, false);
5481         rcu_read_unlock();
5482
5483         return ret;
5484 }
5485 EXPORT_SYMBOL(netif_receive_skb_core);
5486
5487 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5488                                                   struct packet_type *pt_prev,
5489                                                   struct net_device *orig_dev)
5490 {
5491         struct sk_buff *skb, *next;
5492
5493         if (!pt_prev)
5494                 return;
5495         if (list_empty(head))
5496                 return;
5497         if (pt_prev->list_func != NULL)
5498                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5499                                    ip_list_rcv, head, pt_prev, orig_dev);
5500         else
5501                 list_for_each_entry_safe(skb, next, head, list) {
5502                         skb_list_del_init(skb);
5503                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5504                 }
5505 }
5506
5507 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5508 {
5509         /* Fast-path assumptions:
5510          * - There is no RX handler.
5511          * - Only one packet_type matches.
5512          * If either of these fails, we will end up doing some per-packet
5513          * processing in-line, then handling the 'last ptype' for the whole
5514          * sublist.  This can't cause out-of-order delivery to any single ptype,
5515          * because the 'last ptype' must be constant across the sublist, and all
5516          * other ptypes are handled per-packet.
5517          */
5518         /* Current (common) ptype of sublist */
5519         struct packet_type *pt_curr = NULL;
5520         /* Current (common) orig_dev of sublist */
5521         struct net_device *od_curr = NULL;
5522         struct list_head sublist;
5523         struct sk_buff *skb, *next;
5524
5525         INIT_LIST_HEAD(&sublist);
5526         list_for_each_entry_safe(skb, next, head, list) {
5527                 struct net_device *orig_dev = skb->dev;
5528                 struct packet_type *pt_prev = NULL;
5529
5530                 skb_list_del_init(skb);
5531                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5532                 if (!pt_prev)
5533                         continue;
5534                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5535                         /* dispatch old sublist */
5536                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5537                         /* start new sublist */
5538                         INIT_LIST_HEAD(&sublist);
5539                         pt_curr = pt_prev;
5540                         od_curr = orig_dev;
5541                 }
5542                 list_add_tail(&skb->list, &sublist);
5543         }
5544
5545         /* dispatch final sublist */
5546         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5547 }
5548
5549 static int __netif_receive_skb(struct sk_buff *skb)
5550 {
5551         int ret;
5552
5553         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5554                 unsigned int noreclaim_flag;
5555
5556                 /*
5557                  * PFMEMALLOC skbs are special, they should
5558                  * - be delivered to SOCK_MEMALLOC sockets only
5559                  * - stay away from userspace
5560                  * - have bounded memory usage
5561                  *
5562                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5563                  * context down to all allocation sites.
5564                  */
5565                 noreclaim_flag = memalloc_noreclaim_save();
5566                 ret = __netif_receive_skb_one_core(skb, true);
5567                 memalloc_noreclaim_restore(noreclaim_flag);
5568         } else
5569                 ret = __netif_receive_skb_one_core(skb, false);
5570
5571         return ret;
5572 }
5573
5574 static void __netif_receive_skb_list(struct list_head *head)
5575 {
5576         unsigned long noreclaim_flag = 0;
5577         struct sk_buff *skb, *next;
5578         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5579
5580         list_for_each_entry_safe(skb, next, head, list) {
5581                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5582                         struct list_head sublist;
5583
5584                         /* Handle the previous sublist */
5585                         list_cut_before(&sublist, head, &skb->list);
5586                         if (!list_empty(&sublist))
5587                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5588                         pfmemalloc = !pfmemalloc;
5589                         /* See comments in __netif_receive_skb */
5590                         if (pfmemalloc)
5591                                 noreclaim_flag = memalloc_noreclaim_save();
5592                         else
5593                                 memalloc_noreclaim_restore(noreclaim_flag);
5594                 }
5595         }
5596         /* Handle the remaining sublist */
5597         if (!list_empty(head))
5598                 __netif_receive_skb_list_core(head, pfmemalloc);
5599         /* Restore pflags */
5600         if (pfmemalloc)
5601                 memalloc_noreclaim_restore(noreclaim_flag);
5602 }
5603
5604 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5605 {
5606         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5607         struct bpf_prog *new = xdp->prog;
5608         int ret = 0;
5609
5610         switch (xdp->command) {
5611         case XDP_SETUP_PROG:
5612                 rcu_assign_pointer(dev->xdp_prog, new);
5613                 if (old)
5614                         bpf_prog_put(old);
5615
5616                 if (old && !new) {
5617                         static_branch_dec(&generic_xdp_needed_key);
5618                 } else if (new && !old) {
5619                         static_branch_inc(&generic_xdp_needed_key);
5620                         dev_disable_lro(dev);
5621                         dev_disable_gro_hw(dev);
5622                 }
5623                 break;
5624
5625         default:
5626                 ret = -EINVAL;
5627                 break;
5628         }
5629
5630         return ret;
5631 }
5632
5633 static int netif_receive_skb_internal(struct sk_buff *skb)
5634 {
5635         int ret;
5636
5637         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5638
5639         if (skb_defer_rx_timestamp(skb))
5640                 return NET_RX_SUCCESS;
5641
5642         rcu_read_lock();
5643 #ifdef CONFIG_RPS
5644         if (static_branch_unlikely(&rps_needed)) {
5645                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5646                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5647
5648                 if (cpu >= 0) {
5649                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5650                         rcu_read_unlock();
5651                         return ret;
5652                 }
5653         }
5654 #endif
5655         ret = __netif_receive_skb(skb);
5656         rcu_read_unlock();
5657         return ret;
5658 }
5659
5660 static void netif_receive_skb_list_internal(struct list_head *head)
5661 {
5662         struct sk_buff *skb, *next;
5663         struct list_head sublist;
5664
5665         INIT_LIST_HEAD(&sublist);
5666         list_for_each_entry_safe(skb, next, head, list) {
5667                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5668                 skb_list_del_init(skb);
5669                 if (!skb_defer_rx_timestamp(skb))
5670                         list_add_tail(&skb->list, &sublist);
5671         }
5672         list_splice_init(&sublist, head);
5673
5674         rcu_read_lock();
5675 #ifdef CONFIG_RPS
5676         if (static_branch_unlikely(&rps_needed)) {
5677                 list_for_each_entry_safe(skb, next, head, list) {
5678                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5679                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5680
5681                         if (cpu >= 0) {
5682                                 /* Will be handled, remove from list */
5683                                 skb_list_del_init(skb);
5684                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5685                         }
5686                 }
5687         }
5688 #endif
5689         __netif_receive_skb_list(head);
5690         rcu_read_unlock();
5691 }
5692
5693 /**
5694  *      netif_receive_skb - process receive buffer from network
5695  *      @skb: buffer to process
5696  *
5697  *      netif_receive_skb() is the main receive data processing function.
5698  *      It always succeeds. The buffer may be dropped during processing
5699  *      for congestion control or by the protocol layers.
5700  *
5701  *      This function may only be called from softirq context and interrupts
5702  *      should be enabled.
5703  *
5704  *      Return values (usually ignored):
5705  *      NET_RX_SUCCESS: no congestion
5706  *      NET_RX_DROP: packet was dropped
5707  */
5708 int netif_receive_skb(struct sk_buff *skb)
5709 {
5710         int ret;
5711
5712         trace_netif_receive_skb_entry(skb);
5713
5714         ret = netif_receive_skb_internal(skb);
5715         trace_netif_receive_skb_exit(ret);
5716
5717         return ret;
5718 }
5719 EXPORT_SYMBOL(netif_receive_skb);
5720
5721 /**
5722  *      netif_receive_skb_list - process many receive buffers from network
5723  *      @head: list of skbs to process.
5724  *
5725  *      Since return value of netif_receive_skb() is normally ignored, and
5726  *      wouldn't be meaningful for a list, this function returns void.
5727  *
5728  *      This function may only be called from softirq context and interrupts
5729  *      should be enabled.
5730  */
5731 void netif_receive_skb_list(struct list_head *head)
5732 {
5733         struct sk_buff *skb;
5734
5735         if (list_empty(head))
5736                 return;
5737         if (trace_netif_receive_skb_list_entry_enabled()) {
5738                 list_for_each_entry(skb, head, list)
5739                         trace_netif_receive_skb_list_entry(skb);
5740         }
5741         netif_receive_skb_list_internal(head);
5742         trace_netif_receive_skb_list_exit(0);
5743 }
5744 EXPORT_SYMBOL(netif_receive_skb_list);
5745
5746 static DEFINE_PER_CPU(struct work_struct, flush_works);
5747
5748 /* Network device is going away, flush any packets still pending */
5749 static void flush_backlog(struct work_struct *work)
5750 {
5751         struct sk_buff *skb, *tmp;
5752         struct softnet_data *sd;
5753
5754         local_bh_disable();
5755         sd = this_cpu_ptr(&softnet_data);
5756
5757         local_irq_disable();
5758         rps_lock(sd);
5759         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5760                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5761                         __skb_unlink(skb, &sd->input_pkt_queue);
5762                         dev_kfree_skb_irq(skb);
5763                         input_queue_head_incr(sd);
5764                 }
5765         }
5766         rps_unlock(sd);
5767         local_irq_enable();
5768
5769         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5770                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5771                         __skb_unlink(skb, &sd->process_queue);
5772                         kfree_skb(skb);
5773                         input_queue_head_incr(sd);
5774                 }
5775         }
5776         local_bh_enable();
5777 }
5778
5779 static bool flush_required(int cpu)
5780 {
5781 #if IS_ENABLED(CONFIG_RPS)
5782         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5783         bool do_flush;
5784
5785         local_irq_disable();
5786         rps_lock(sd);
5787
5788         /* as insertion into process_queue happens with the rps lock held,
5789          * process_queue access may race only with dequeue
5790          */
5791         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5792                    !skb_queue_empty_lockless(&sd->process_queue);
5793         rps_unlock(sd);
5794         local_irq_enable();
5795
5796         return do_flush;
5797 #endif
5798         /* without RPS we can't safely check input_pkt_queue: during a
5799          * concurrent remote skb_queue_splice() we can detect as empty both
5800          * input_pkt_queue and process_queue even if the latter could end-up
5801          * containing a lot of packets.
5802          */
5803         return true;
5804 }
5805
5806 static void flush_all_backlogs(void)
5807 {
5808         static cpumask_t flush_cpus;
5809         unsigned int cpu;
5810
5811         /* since we are under rtnl lock protection we can use static data
5812          * for the cpumask and avoid allocating on stack the possibly
5813          * large mask
5814          */
5815         ASSERT_RTNL();
5816
5817         cpus_read_lock();
5818
5819         cpumask_clear(&flush_cpus);
5820         for_each_online_cpu(cpu) {
5821                 if (flush_required(cpu)) {
5822                         queue_work_on(cpu, system_highpri_wq,
5823                                       per_cpu_ptr(&flush_works, cpu));
5824                         cpumask_set_cpu(cpu, &flush_cpus);
5825                 }
5826         }
5827
5828         /* we can have in flight packet[s] on the cpus we are not flushing,
5829          * synchronize_net() in unregister_netdevice_many() will take care of
5830          * them
5831          */
5832         for_each_cpu(cpu, &flush_cpus)
5833                 flush_work(per_cpu_ptr(&flush_works, cpu));
5834
5835         cpus_read_unlock();
5836 }
5837
5838 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5839 static void gro_normal_list(struct napi_struct *napi)
5840 {
5841         if (!napi->rx_count)
5842                 return;
5843         netif_receive_skb_list_internal(&napi->rx_list);
5844         INIT_LIST_HEAD(&napi->rx_list);
5845         napi->rx_count = 0;
5846 }
5847
5848 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5849  * pass the whole batch up to the stack.
5850  */
5851 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5852 {
5853         list_add_tail(&skb->list, &napi->rx_list);
5854         napi->rx_count += segs;
5855         if (napi->rx_count >= gro_normal_batch)
5856                 gro_normal_list(napi);
5857 }
5858
5859 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5860 {
5861         struct packet_offload *ptype;
5862         __be16 type = skb->protocol;
5863         struct list_head *head = &offload_base;
5864         int err = -ENOENT;
5865
5866         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5867
5868         if (NAPI_GRO_CB(skb)->count == 1) {
5869                 skb_shinfo(skb)->gso_size = 0;
5870                 goto out;
5871         }
5872
5873         rcu_read_lock();
5874         list_for_each_entry_rcu(ptype, head, list) {
5875                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5876                         continue;
5877
5878                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5879                                          ipv6_gro_complete, inet_gro_complete,
5880                                          skb, 0);
5881                 break;
5882         }
5883         rcu_read_unlock();
5884
5885         if (err) {
5886                 WARN_ON(&ptype->list == head);
5887                 kfree_skb(skb);
5888                 return NET_RX_SUCCESS;
5889         }
5890
5891 out:
5892         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5893         return NET_RX_SUCCESS;
5894 }
5895
5896 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5897                                    bool flush_old)
5898 {
5899         struct list_head *head = &napi->gro_hash[index].list;
5900         struct sk_buff *skb, *p;
5901
5902         list_for_each_entry_safe_reverse(skb, p, head, list) {
5903                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5904                         return;
5905                 skb_list_del_init(skb);
5906                 napi_gro_complete(napi, skb);
5907                 napi->gro_hash[index].count--;
5908         }
5909
5910         if (!napi->gro_hash[index].count)
5911                 __clear_bit(index, &napi->gro_bitmask);
5912 }
5913
5914 /* napi->gro_hash[].list contains packets ordered by age.
5915  * youngest packets at the head of it.
5916  * Complete skbs in reverse order to reduce latencies.
5917  */
5918 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5919 {
5920         unsigned long bitmask = napi->gro_bitmask;
5921         unsigned int i, base = ~0U;
5922
5923         while ((i = ffs(bitmask)) != 0) {
5924                 bitmask >>= i;
5925                 base += i;
5926                 __napi_gro_flush_chain(napi, base, flush_old);
5927         }
5928 }
5929 EXPORT_SYMBOL(napi_gro_flush);
5930
5931 static void gro_list_prepare(const struct list_head *head,
5932                              const struct sk_buff *skb)
5933 {
5934         unsigned int maclen = skb->dev->hard_header_len;
5935         u32 hash = skb_get_hash_raw(skb);
5936         struct sk_buff *p;
5937
5938         list_for_each_entry(p, head, list) {
5939                 unsigned long diffs;
5940
5941                 NAPI_GRO_CB(p)->flush = 0;
5942
5943                 if (hash != skb_get_hash_raw(p)) {
5944                         NAPI_GRO_CB(p)->same_flow = 0;
5945                         continue;
5946                 }
5947
5948                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5949                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5950                 if (skb_vlan_tag_present(p))
5951                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5952                 diffs |= skb_metadata_differs(p, skb);
5953                 if (maclen == ETH_HLEN)
5954                         diffs |= compare_ether_header(skb_mac_header(p),
5955                                                       skb_mac_header(skb));
5956                 else if (!diffs)
5957                         diffs = memcmp(skb_mac_header(p),
5958                                        skb_mac_header(skb),
5959                                        maclen);
5960
5961                 /* in most common scenarions 'slow_gro' is 0
5962                  * otherwise we are already on some slower paths
5963                  * either skip all the infrequent tests altogether or
5964                  * avoid trying too hard to skip each of them individually
5965                  */
5966                 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5967 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5968                         struct tc_skb_ext *skb_ext;
5969                         struct tc_skb_ext *p_ext;
5970 #endif
5971
5972                         diffs |= p->sk != skb->sk;
5973                         diffs |= skb_metadata_dst_cmp(p, skb);
5974                         diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5975
5976 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5977                         skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5978                         p_ext = skb_ext_find(p, TC_SKB_EXT);
5979
5980                         diffs |= (!!p_ext) ^ (!!skb_ext);
5981                         if (!diffs && unlikely(skb_ext))
5982                                 diffs |= p_ext->chain ^ skb_ext->chain;
5983 #endif
5984                 }
5985
5986                 NAPI_GRO_CB(p)->same_flow = !diffs;
5987         }
5988 }
5989
5990 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5991 {
5992         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5993         const skb_frag_t *frag0 = &pinfo->frags[0];
5994
5995         NAPI_GRO_CB(skb)->data_offset = 0;
5996         NAPI_GRO_CB(skb)->frag0 = NULL;
5997         NAPI_GRO_CB(skb)->frag0_len = 0;
5998
5999         if (!skb_headlen(skb) && pinfo->nr_frags &&
6000             !PageHighMem(skb_frag_page(frag0)) &&
6001             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6002                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6003                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6004                                                     skb_frag_size(frag0),
6005                                                     skb->end - skb->tail);
6006         }
6007 }
6008
6009 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6010 {
6011         struct skb_shared_info *pinfo = skb_shinfo(skb);
6012
6013         BUG_ON(skb->end - skb->tail < grow);
6014
6015         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6016
6017         skb->data_len -= grow;
6018         skb->tail += grow;
6019
6020         skb_frag_off_add(&pinfo->frags[0], grow);
6021         skb_frag_size_sub(&pinfo->frags[0], grow);
6022
6023         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6024                 skb_frag_unref(skb, 0);
6025                 memmove(pinfo->frags, pinfo->frags + 1,
6026                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6027         }
6028 }
6029
6030 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6031 {
6032         struct sk_buff *oldest;
6033
6034         oldest = list_last_entry(head, struct sk_buff, list);
6035
6036         /* We are called with head length >= MAX_GRO_SKBS, so this is
6037          * impossible.
6038          */
6039         if (WARN_ON_ONCE(!oldest))
6040                 return;
6041
6042         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6043          * SKB to the chain.
6044          */
6045         skb_list_del_init(oldest);
6046         napi_gro_complete(napi, oldest);
6047 }
6048
6049 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6050 {
6051         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6052         struct gro_list *gro_list = &napi->gro_hash[bucket];
6053         struct list_head *head = &offload_base;
6054         struct packet_offload *ptype;
6055         __be16 type = skb->protocol;
6056         struct sk_buff *pp = NULL;
6057         enum gro_result ret;
6058         int same_flow;
6059         int grow;
6060
6061         if (netif_elide_gro(skb->dev))
6062                 goto normal;
6063
6064         gro_list_prepare(&gro_list->list, skb);
6065
6066         rcu_read_lock();
6067         list_for_each_entry_rcu(ptype, head, list) {
6068                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6069                         continue;
6070
6071                 skb_set_network_header(skb, skb_gro_offset(skb));
6072                 skb_reset_mac_len(skb);
6073                 NAPI_GRO_CB(skb)->same_flow = 0;
6074                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6075                 NAPI_GRO_CB(skb)->free = 0;
6076                 NAPI_GRO_CB(skb)->encap_mark = 0;
6077                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6078                 NAPI_GRO_CB(skb)->is_fou = 0;
6079                 NAPI_GRO_CB(skb)->is_atomic = 1;
6080                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6081
6082                 /* Setup for GRO checksum validation */
6083                 switch (skb->ip_summed) {
6084                 case CHECKSUM_COMPLETE:
6085                         NAPI_GRO_CB(skb)->csum = skb->csum;
6086                         NAPI_GRO_CB(skb)->csum_valid = 1;
6087                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6088                         break;
6089                 case CHECKSUM_UNNECESSARY:
6090                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6091                         NAPI_GRO_CB(skb)->csum_valid = 0;
6092                         break;
6093                 default:
6094                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6095                         NAPI_GRO_CB(skb)->csum_valid = 0;
6096                 }
6097
6098                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6099                                         ipv6_gro_receive, inet_gro_receive,
6100                                         &gro_list->list, skb);
6101                 break;
6102         }
6103         rcu_read_unlock();
6104
6105         if (&ptype->list == head)
6106                 goto normal;
6107
6108         if (PTR_ERR(pp) == -EINPROGRESS) {
6109                 ret = GRO_CONSUMED;
6110                 goto ok;
6111         }
6112
6113         same_flow = NAPI_GRO_CB(skb)->same_flow;
6114         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6115
6116         if (pp) {
6117                 skb_list_del_init(pp);
6118                 napi_gro_complete(napi, pp);
6119                 gro_list->count--;
6120         }
6121
6122         if (same_flow)
6123                 goto ok;
6124
6125         if (NAPI_GRO_CB(skb)->flush)
6126                 goto normal;
6127
6128         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6129                 gro_flush_oldest(napi, &gro_list->list);
6130         else
6131                 gro_list->count++;
6132
6133         NAPI_GRO_CB(skb)->count = 1;
6134         NAPI_GRO_CB(skb)->age = jiffies;
6135         NAPI_GRO_CB(skb)->last = skb;
6136         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6137         list_add(&skb->list, &gro_list->list);
6138         ret = GRO_HELD;
6139
6140 pull:
6141         grow = skb_gro_offset(skb) - skb_headlen(skb);
6142         if (grow > 0)
6143                 gro_pull_from_frag0(skb, grow);
6144 ok:
6145         if (gro_list->count) {
6146                 if (!test_bit(bucket, &napi->gro_bitmask))
6147                         __set_bit(bucket, &napi->gro_bitmask);
6148         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6149                 __clear_bit(bucket, &napi->gro_bitmask);
6150         }
6151
6152         return ret;
6153
6154 normal:
6155         ret = GRO_NORMAL;
6156         goto pull;
6157 }
6158
6159 struct packet_offload *gro_find_receive_by_type(__be16 type)
6160 {
6161         struct list_head *offload_head = &offload_base;
6162         struct packet_offload *ptype;
6163
6164         list_for_each_entry_rcu(ptype, offload_head, list) {
6165                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6166                         continue;
6167                 return ptype;
6168         }
6169         return NULL;
6170 }
6171 EXPORT_SYMBOL(gro_find_receive_by_type);
6172
6173 struct packet_offload *gro_find_complete_by_type(__be16 type)
6174 {
6175         struct list_head *offload_head = &offload_base;
6176         struct packet_offload *ptype;
6177
6178         list_for_each_entry_rcu(ptype, offload_head, list) {
6179                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6180                         continue;
6181                 return ptype;
6182         }
6183         return NULL;
6184 }
6185 EXPORT_SYMBOL(gro_find_complete_by_type);
6186
6187 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6188                                     struct sk_buff *skb,
6189                                     gro_result_t ret)
6190 {
6191         switch (ret) {
6192         case GRO_NORMAL:
6193                 gro_normal_one(napi, skb, 1);
6194                 break;
6195
6196         case GRO_MERGED_FREE:
6197                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6198                         napi_skb_free_stolen_head(skb);
6199                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6200                         __kfree_skb(skb);
6201                 else
6202                         __kfree_skb_defer(skb);
6203                 break;
6204
6205         case GRO_HELD:
6206         case GRO_MERGED:
6207         case GRO_CONSUMED:
6208                 break;
6209         }
6210
6211         return ret;
6212 }
6213
6214 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6215 {
6216         gro_result_t ret;
6217
6218         skb_mark_napi_id(skb, napi);
6219         trace_napi_gro_receive_entry(skb);
6220
6221         skb_gro_reset_offset(skb, 0);
6222
6223         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6224         trace_napi_gro_receive_exit(ret);
6225
6226         return ret;
6227 }
6228 EXPORT_SYMBOL(napi_gro_receive);
6229
6230 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6231 {
6232         if (unlikely(skb->pfmemalloc)) {
6233                 consume_skb(skb);
6234                 return;
6235         }
6236         __skb_pull(skb, skb_headlen(skb));
6237         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6238         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6239         __vlan_hwaccel_clear_tag(skb);
6240         skb->dev = napi->dev;
6241         skb->skb_iif = 0;
6242
6243         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6244         skb->pkt_type = PACKET_HOST;
6245
6246         skb->encapsulation = 0;
6247         skb_shinfo(skb)->gso_type = 0;
6248         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6249         if (unlikely(skb->slow_gro)) {
6250                 skb_orphan(skb);
6251                 skb_ext_reset(skb);
6252                 nf_reset_ct(skb);
6253                 skb->slow_gro = 0;
6254         }
6255
6256         napi->skb = skb;
6257 }
6258
6259 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6260 {
6261         struct sk_buff *skb = napi->skb;
6262
6263         if (!skb) {
6264                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6265                 if (skb) {
6266                         napi->skb = skb;
6267                         skb_mark_napi_id(skb, napi);
6268                 }
6269         }
6270         return skb;
6271 }
6272 EXPORT_SYMBOL(napi_get_frags);
6273
6274 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6275                                       struct sk_buff *skb,
6276                                       gro_result_t ret)
6277 {
6278         switch (ret) {
6279         case GRO_NORMAL:
6280         case GRO_HELD:
6281                 __skb_push(skb, ETH_HLEN);
6282                 skb->protocol = eth_type_trans(skb, skb->dev);
6283                 if (ret == GRO_NORMAL)
6284                         gro_normal_one(napi, skb, 1);
6285                 break;
6286
6287         case GRO_MERGED_FREE:
6288                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6289                         napi_skb_free_stolen_head(skb);
6290                 else
6291                         napi_reuse_skb(napi, skb);
6292                 break;
6293
6294         case GRO_MERGED:
6295         case GRO_CONSUMED:
6296                 break;
6297         }
6298
6299         return ret;
6300 }
6301
6302 /* Upper GRO stack assumes network header starts at gro_offset=0
6303  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6304  * We copy ethernet header into skb->data to have a common layout.
6305  */
6306 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6307 {
6308         struct sk_buff *skb = napi->skb;
6309         const struct ethhdr *eth;
6310         unsigned int hlen = sizeof(*eth);
6311
6312         napi->skb = NULL;
6313
6314         skb_reset_mac_header(skb);
6315         skb_gro_reset_offset(skb, hlen);
6316
6317         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6318                 eth = skb_gro_header_slow(skb, hlen, 0);
6319                 if (unlikely(!eth)) {
6320                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6321                                              __func__, napi->dev->name);
6322                         napi_reuse_skb(napi, skb);
6323                         return NULL;
6324                 }
6325         } else {
6326                 eth = (const struct ethhdr *)skb->data;
6327                 gro_pull_from_frag0(skb, hlen);
6328                 NAPI_GRO_CB(skb)->frag0 += hlen;
6329                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6330         }
6331         __skb_pull(skb, hlen);
6332
6333         /*
6334          * This works because the only protocols we care about don't require
6335          * special handling.
6336          * We'll fix it up properly in napi_frags_finish()
6337          */
6338         skb->protocol = eth->h_proto;
6339
6340         return skb;
6341 }
6342
6343 gro_result_t napi_gro_frags(struct napi_struct *napi)
6344 {
6345         gro_result_t ret;
6346         struct sk_buff *skb = napi_frags_skb(napi);
6347
6348         trace_napi_gro_frags_entry(skb);
6349
6350         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6351         trace_napi_gro_frags_exit(ret);
6352
6353         return ret;
6354 }
6355 EXPORT_SYMBOL(napi_gro_frags);
6356
6357 /* Compute the checksum from gro_offset and return the folded value
6358  * after adding in any pseudo checksum.
6359  */
6360 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6361 {
6362         __wsum wsum;
6363         __sum16 sum;
6364
6365         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6366
6367         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6368         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6369         /* See comments in __skb_checksum_complete(). */
6370         if (likely(!sum)) {
6371                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6372                     !skb->csum_complete_sw)
6373                         netdev_rx_csum_fault(skb->dev, skb);
6374         }
6375
6376         NAPI_GRO_CB(skb)->csum = wsum;
6377         NAPI_GRO_CB(skb)->csum_valid = 1;
6378
6379         return sum;
6380 }
6381 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6382
6383 static void net_rps_send_ipi(struct softnet_data *remsd)
6384 {
6385 #ifdef CONFIG_RPS
6386         while (remsd) {
6387                 struct softnet_data *next = remsd->rps_ipi_next;
6388
6389                 if (cpu_online(remsd->cpu))
6390                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6391                 remsd = next;
6392         }
6393 #endif
6394 }
6395
6396 /*
6397  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6398  * Note: called with local irq disabled, but exits with local irq enabled.
6399  */
6400 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6401 {
6402 #ifdef CONFIG_RPS
6403         struct softnet_data *remsd = sd->rps_ipi_list;
6404
6405         if (remsd) {
6406                 sd->rps_ipi_list = NULL;
6407
6408                 local_irq_enable();
6409
6410                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6411                 net_rps_send_ipi(remsd);
6412         } else
6413 #endif
6414                 local_irq_enable();
6415 }
6416
6417 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6418 {
6419 #ifdef CONFIG_RPS
6420         return sd->rps_ipi_list != NULL;
6421 #else
6422         return false;
6423 #endif
6424 }
6425
6426 static int process_backlog(struct napi_struct *napi, int quota)
6427 {
6428         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6429         bool again = true;
6430         int work = 0;
6431
6432         /* Check if we have pending ipi, its better to send them now,
6433          * not waiting net_rx_action() end.
6434          */
6435         if (sd_has_rps_ipi_waiting(sd)) {
6436                 local_irq_disable();
6437                 net_rps_action_and_irq_enable(sd);
6438         }
6439
6440         napi->weight = READ_ONCE(dev_rx_weight);
6441         while (again) {
6442                 struct sk_buff *skb;
6443
6444                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6445                         rcu_read_lock();
6446                         __netif_receive_skb(skb);
6447                         rcu_read_unlock();
6448                         input_queue_head_incr(sd);
6449                         if (++work >= quota)
6450                                 return work;
6451
6452                 }
6453
6454                 local_irq_disable();
6455                 rps_lock(sd);
6456                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6457                         /*
6458                          * Inline a custom version of __napi_complete().
6459                          * only current cpu owns and manipulates this napi,
6460                          * and NAPI_STATE_SCHED is the only possible flag set
6461                          * on backlog.
6462                          * We can use a plain write instead of clear_bit(),
6463                          * and we dont need an smp_mb() memory barrier.
6464                          */
6465                         napi->state = 0;
6466                         again = false;
6467                 } else {
6468                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6469                                                    &sd->process_queue);
6470                 }
6471                 rps_unlock(sd);
6472                 local_irq_enable();
6473         }
6474
6475         return work;
6476 }
6477
6478 /**
6479  * __napi_schedule - schedule for receive
6480  * @n: entry to schedule
6481  *
6482  * The entry's receive function will be scheduled to run.
6483  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6484  */
6485 void __napi_schedule(struct napi_struct *n)
6486 {
6487         unsigned long flags;
6488
6489         local_irq_save(flags);
6490         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6491         local_irq_restore(flags);
6492 }
6493 EXPORT_SYMBOL(__napi_schedule);
6494
6495 /**
6496  *      napi_schedule_prep - check if napi can be scheduled
6497  *      @n: napi context
6498  *
6499  * Test if NAPI routine is already running, and if not mark
6500  * it as running.  This is used as a condition variable to
6501  * insure only one NAPI poll instance runs.  We also make
6502  * sure there is no pending NAPI disable.
6503  */
6504 bool napi_schedule_prep(struct napi_struct *n)
6505 {
6506         unsigned long val, new;
6507
6508         do {
6509                 val = READ_ONCE(n->state);
6510                 if (unlikely(val & NAPIF_STATE_DISABLE))
6511                         return false;
6512                 new = val | NAPIF_STATE_SCHED;
6513
6514                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6515                  * This was suggested by Alexander Duyck, as compiler
6516                  * emits better code than :
6517                  * if (val & NAPIF_STATE_SCHED)
6518                  *     new |= NAPIF_STATE_MISSED;
6519                  */
6520                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6521                                                    NAPIF_STATE_MISSED;
6522         } while (cmpxchg(&n->state, val, new) != val);
6523
6524         return !(val & NAPIF_STATE_SCHED);
6525 }
6526 EXPORT_SYMBOL(napi_schedule_prep);
6527
6528 /**
6529  * __napi_schedule_irqoff - schedule for receive
6530  * @n: entry to schedule
6531  *
6532  * Variant of __napi_schedule() assuming hard irqs are masked.
6533  *
6534  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6535  * because the interrupt disabled assumption might not be true
6536  * due to force-threaded interrupts and spinlock substitution.
6537  */
6538 void __napi_schedule_irqoff(struct napi_struct *n)
6539 {
6540         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6541                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6542         else
6543                 __napi_schedule(n);
6544 }
6545 EXPORT_SYMBOL(__napi_schedule_irqoff);
6546
6547 bool napi_complete_done(struct napi_struct *n, int work_done)
6548 {
6549         unsigned long flags, val, new, timeout = 0;
6550         bool ret = true;
6551
6552         /*
6553          * 1) Don't let napi dequeue from the cpu poll list
6554          *    just in case its running on a different cpu.
6555          * 2) If we are busy polling, do nothing here, we have
6556          *    the guarantee we will be called later.
6557          */
6558         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6559                                  NAPIF_STATE_IN_BUSY_POLL)))
6560                 return false;
6561
6562         if (work_done) {
6563                 if (n->gro_bitmask)
6564                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6565                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6566         }
6567         if (n->defer_hard_irqs_count > 0) {
6568                 n->defer_hard_irqs_count--;
6569                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6570                 if (timeout)
6571                         ret = false;
6572         }
6573         if (n->gro_bitmask) {
6574                 /* When the NAPI instance uses a timeout and keeps postponing
6575                  * it, we need to bound somehow the time packets are kept in
6576                  * the GRO layer
6577                  */
6578                 napi_gro_flush(n, !!timeout);
6579         }
6580
6581         gro_normal_list(n);
6582
6583         if (unlikely(!list_empty(&n->poll_list))) {
6584                 /* If n->poll_list is not empty, we need to mask irqs */
6585                 local_irq_save(flags);
6586                 list_del_init(&n->poll_list);
6587                 local_irq_restore(flags);
6588         }
6589
6590         do {
6591                 val = READ_ONCE(n->state);
6592
6593                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6594
6595                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6596                               NAPIF_STATE_SCHED_THREADED |
6597                               NAPIF_STATE_PREFER_BUSY_POLL);
6598
6599                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6600                  * because we will call napi->poll() one more time.
6601                  * This C code was suggested by Alexander Duyck to help gcc.
6602                  */
6603                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6604                                                     NAPIF_STATE_SCHED;
6605         } while (cmpxchg(&n->state, val, new) != val);
6606
6607         if (unlikely(val & NAPIF_STATE_MISSED)) {
6608                 __napi_schedule(n);
6609                 return false;
6610         }
6611
6612         if (timeout)
6613                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6614                               HRTIMER_MODE_REL_PINNED);
6615         return ret;
6616 }
6617 EXPORT_SYMBOL(napi_complete_done);
6618
6619 /* must be called under rcu_read_lock(), as we dont take a reference */
6620 static struct napi_struct *napi_by_id(unsigned int napi_id)
6621 {
6622         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6623         struct napi_struct *napi;
6624
6625         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6626                 if (napi->napi_id == napi_id)
6627                         return napi;
6628
6629         return NULL;
6630 }
6631
6632 #if defined(CONFIG_NET_RX_BUSY_POLL)
6633
6634 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6635 {
6636         if (!skip_schedule) {
6637                 gro_normal_list(napi);
6638                 __napi_schedule(napi);
6639                 return;
6640         }
6641
6642         if (napi->gro_bitmask) {
6643                 /* flush too old packets
6644                  * If HZ < 1000, flush all packets.
6645                  */
6646                 napi_gro_flush(napi, HZ >= 1000);
6647         }
6648
6649         gro_normal_list(napi);
6650         clear_bit(NAPI_STATE_SCHED, &napi->state);
6651 }
6652
6653 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6654                            u16 budget)
6655 {
6656         bool skip_schedule = false;
6657         unsigned long timeout;
6658         int rc;
6659
6660         /* Busy polling means there is a high chance device driver hard irq
6661          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6662          * set in napi_schedule_prep().
6663          * Since we are about to call napi->poll() once more, we can safely
6664          * clear NAPI_STATE_MISSED.
6665          *
6666          * Note: x86 could use a single "lock and ..." instruction
6667          * to perform these two clear_bit()
6668          */
6669         clear_bit(NAPI_STATE_MISSED, &napi->state);
6670         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6671
6672         local_bh_disable();
6673
6674         if (prefer_busy_poll) {
6675                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6676                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6677                 if (napi->defer_hard_irqs_count && timeout) {
6678                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6679                         skip_schedule = true;
6680                 }
6681         }
6682
6683         /* All we really want here is to re-enable device interrupts.
6684          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6685          */
6686         rc = napi->poll(napi, budget);
6687         /* We can't gro_normal_list() here, because napi->poll() might have
6688          * rearmed the napi (napi_complete_done()) in which case it could
6689          * already be running on another CPU.
6690          */
6691         trace_napi_poll(napi, rc, budget);
6692         netpoll_poll_unlock(have_poll_lock);
6693         if (rc == budget)
6694                 __busy_poll_stop(napi, skip_schedule);
6695         local_bh_enable();
6696 }
6697
6698 void napi_busy_loop(unsigned int napi_id,
6699                     bool (*loop_end)(void *, unsigned long),
6700                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6701 {
6702         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6703         int (*napi_poll)(struct napi_struct *napi, int budget);
6704         void *have_poll_lock = NULL;
6705         struct napi_struct *napi;
6706
6707 restart:
6708         napi_poll = NULL;
6709
6710         rcu_read_lock();
6711
6712         napi = napi_by_id(napi_id);
6713         if (!napi)
6714                 goto out;
6715
6716         preempt_disable();
6717         for (;;) {
6718                 int work = 0;
6719
6720                 local_bh_disable();
6721                 if (!napi_poll) {
6722                         unsigned long val = READ_ONCE(napi->state);
6723
6724                         /* If multiple threads are competing for this napi,
6725                          * we avoid dirtying napi->state as much as we can.
6726                          */
6727                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6728                                    NAPIF_STATE_IN_BUSY_POLL)) {
6729                                 if (prefer_busy_poll)
6730                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6731                                 goto count;
6732                         }
6733                         if (cmpxchg(&napi->state, val,
6734                                     val | NAPIF_STATE_IN_BUSY_POLL |
6735                                           NAPIF_STATE_SCHED) != val) {
6736                                 if (prefer_busy_poll)
6737                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6738                                 goto count;
6739                         }
6740                         have_poll_lock = netpoll_poll_lock(napi);
6741                         napi_poll = napi->poll;
6742                 }
6743                 work = napi_poll(napi, budget);
6744                 trace_napi_poll(napi, work, budget);
6745                 gro_normal_list(napi);
6746 count:
6747                 if (work > 0)
6748                         __NET_ADD_STATS(dev_net(napi->dev),
6749                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6750                 local_bh_enable();
6751
6752                 if (!loop_end || loop_end(loop_end_arg, start_time))
6753                         break;
6754
6755                 if (unlikely(need_resched())) {
6756                         if (napi_poll)
6757                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6758                         preempt_enable();
6759                         rcu_read_unlock();
6760                         cond_resched();
6761                         if (loop_end(loop_end_arg, start_time))
6762                                 return;
6763                         goto restart;
6764                 }
6765                 cpu_relax();
6766         }
6767         if (napi_poll)
6768                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6769         preempt_enable();
6770 out:
6771         rcu_read_unlock();
6772 }
6773 EXPORT_SYMBOL(napi_busy_loop);
6774
6775 #endif /* CONFIG_NET_RX_BUSY_POLL */
6776
6777 static void napi_hash_add(struct napi_struct *napi)
6778 {
6779         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6780                 return;
6781
6782         spin_lock(&napi_hash_lock);
6783
6784         /* 0..NR_CPUS range is reserved for sender_cpu use */
6785         do {
6786                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6787                         napi_gen_id = MIN_NAPI_ID;
6788         } while (napi_by_id(napi_gen_id));
6789         napi->napi_id = napi_gen_id;
6790
6791         hlist_add_head_rcu(&napi->napi_hash_node,
6792                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6793
6794         spin_unlock(&napi_hash_lock);
6795 }
6796
6797 /* Warning : caller is responsible to make sure rcu grace period
6798  * is respected before freeing memory containing @napi
6799  */
6800 static void napi_hash_del(struct napi_struct *napi)
6801 {
6802         spin_lock(&napi_hash_lock);
6803
6804         hlist_del_init_rcu(&napi->napi_hash_node);
6805
6806         spin_unlock(&napi_hash_lock);
6807 }
6808
6809 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6810 {
6811         struct napi_struct *napi;
6812
6813         napi = container_of(timer, struct napi_struct, timer);
6814
6815         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6816          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6817          */
6818         if (!napi_disable_pending(napi) &&
6819             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6820                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6821                 __napi_schedule_irqoff(napi);
6822         }
6823
6824         return HRTIMER_NORESTART;
6825 }
6826
6827 static void init_gro_hash(struct napi_struct *napi)
6828 {
6829         int i;
6830
6831         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6832                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6833                 napi->gro_hash[i].count = 0;
6834         }
6835         napi->gro_bitmask = 0;
6836 }
6837
6838 int dev_set_threaded(struct net_device *dev, bool threaded)
6839 {
6840         struct napi_struct *napi;
6841         int err = 0;
6842
6843         if (dev->threaded == threaded)
6844                 return 0;
6845
6846         if (threaded) {
6847                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6848                         if (!napi->thread) {
6849                                 err = napi_kthread_create(napi);
6850                                 if (err) {
6851                                         threaded = false;
6852                                         break;
6853                                 }
6854                         }
6855                 }
6856         }
6857
6858         dev->threaded = threaded;
6859
6860         /* Make sure kthread is created before THREADED bit
6861          * is set.
6862          */
6863         smp_mb__before_atomic();
6864
6865         /* Setting/unsetting threaded mode on a napi might not immediately
6866          * take effect, if the current napi instance is actively being
6867          * polled. In this case, the switch between threaded mode and
6868          * softirq mode will happen in the next round of napi_schedule().
6869          * This should not cause hiccups/stalls to the live traffic.
6870          */
6871         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6872                 if (threaded)
6873                         set_bit(NAPI_STATE_THREADED, &napi->state);
6874                 else
6875                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6876         }
6877
6878         return err;
6879 }
6880 EXPORT_SYMBOL(dev_set_threaded);
6881
6882 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6883                     int (*poll)(struct napi_struct *, int), int weight)
6884 {
6885         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6886                 return;
6887
6888         INIT_LIST_HEAD(&napi->poll_list);
6889         INIT_HLIST_NODE(&napi->napi_hash_node);
6890         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6891         napi->timer.function = napi_watchdog;
6892         init_gro_hash(napi);
6893         napi->skb = NULL;
6894         INIT_LIST_HEAD(&napi->rx_list);
6895         napi->rx_count = 0;
6896         napi->poll = poll;
6897         if (weight > NAPI_POLL_WEIGHT)
6898                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6899                                 weight);
6900         napi->weight = weight;
6901         napi->dev = dev;
6902 #ifdef CONFIG_NETPOLL
6903         napi->poll_owner = -1;
6904 #endif
6905         set_bit(NAPI_STATE_SCHED, &napi->state);
6906         set_bit(NAPI_STATE_NPSVC, &napi->state);
6907         list_add_rcu(&napi->dev_list, &dev->napi_list);
6908         napi_hash_add(napi);
6909         /* Create kthread for this napi if dev->threaded is set.
6910          * Clear dev->threaded if kthread creation failed so that
6911          * threaded mode will not be enabled in napi_enable().
6912          */
6913         if (dev->threaded && napi_kthread_create(napi))
6914                 dev->threaded = 0;
6915 }
6916 EXPORT_SYMBOL(netif_napi_add);
6917
6918 void napi_disable(struct napi_struct *n)
6919 {
6920         might_sleep();
6921         set_bit(NAPI_STATE_DISABLE, &n->state);
6922
6923         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6924                 msleep(1);
6925         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6926                 msleep(1);
6927
6928         hrtimer_cancel(&n->timer);
6929
6930         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6931         clear_bit(NAPI_STATE_DISABLE, &n->state);
6932         clear_bit(NAPI_STATE_THREADED, &n->state);
6933 }
6934 EXPORT_SYMBOL(napi_disable);
6935
6936 /**
6937  *      napi_enable - enable NAPI scheduling
6938  *      @n: NAPI context
6939  *
6940  * Resume NAPI from being scheduled on this context.
6941  * Must be paired with napi_disable.
6942  */
6943 void napi_enable(struct napi_struct *n)
6944 {
6945         unsigned long val, new;
6946
6947         do {
6948                 val = READ_ONCE(n->state);
6949                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6950
6951                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6952                 if (n->dev->threaded && n->thread)
6953                         new |= NAPIF_STATE_THREADED;
6954         } while (cmpxchg(&n->state, val, new) != val);
6955 }
6956 EXPORT_SYMBOL(napi_enable);
6957
6958 static void flush_gro_hash(struct napi_struct *napi)
6959 {
6960         int i;
6961
6962         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6963                 struct sk_buff *skb, *n;
6964
6965                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6966                         kfree_skb(skb);
6967                 napi->gro_hash[i].count = 0;
6968         }
6969 }
6970
6971 /* Must be called in process context */
6972 void __netif_napi_del(struct napi_struct *napi)
6973 {
6974         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6975                 return;
6976
6977         napi_hash_del(napi);
6978         list_del_rcu(&napi->dev_list);
6979         napi_free_frags(napi);
6980
6981         flush_gro_hash(napi);
6982         napi->gro_bitmask = 0;
6983
6984         if (napi->thread) {
6985                 kthread_stop(napi->thread);
6986                 napi->thread = NULL;
6987         }
6988 }
6989 EXPORT_SYMBOL(__netif_napi_del);
6990
6991 static int __napi_poll(struct napi_struct *n, bool *repoll)
6992 {
6993         int work, weight;
6994
6995         weight = n->weight;
6996
6997         /* This NAPI_STATE_SCHED test is for avoiding a race
6998          * with netpoll's poll_napi().  Only the entity which
6999          * obtains the lock and sees NAPI_STATE_SCHED set will
7000          * actually make the ->poll() call.  Therefore we avoid
7001          * accidentally calling ->poll() when NAPI is not scheduled.
7002          */
7003         work = 0;
7004         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7005                 work = n->poll(n, weight);
7006                 trace_napi_poll(n, work, weight);
7007         }
7008
7009         if (unlikely(work > weight))
7010                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7011                             n->poll, work, weight);
7012
7013         if (likely(work < weight))
7014                 return work;
7015
7016         /* Drivers must not modify the NAPI state if they
7017          * consume the entire weight.  In such cases this code
7018          * still "owns" the NAPI instance and therefore can
7019          * move the instance around on the list at-will.
7020          */
7021         if (unlikely(napi_disable_pending(n))) {
7022                 napi_complete(n);
7023                 return work;
7024         }
7025
7026         /* The NAPI context has more processing work, but busy-polling
7027          * is preferred. Exit early.
7028          */
7029         if (napi_prefer_busy_poll(n)) {
7030                 if (napi_complete_done(n, work)) {
7031                         /* If timeout is not set, we need to make sure
7032                          * that the NAPI is re-scheduled.
7033                          */
7034                         napi_schedule(n);
7035                 }
7036                 return work;
7037         }
7038
7039         if (n->gro_bitmask) {
7040                 /* flush too old packets
7041                  * If HZ < 1000, flush all packets.
7042                  */
7043                 napi_gro_flush(n, HZ >= 1000);
7044         }
7045
7046         gro_normal_list(n);
7047
7048         /* Some drivers may have called napi_schedule
7049          * prior to exhausting their budget.
7050          */
7051         if (unlikely(!list_empty(&n->poll_list))) {
7052                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7053                              n->dev ? n->dev->name : "backlog");
7054                 return work;
7055         }
7056
7057         *repoll = true;
7058
7059         return work;
7060 }
7061
7062 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7063 {
7064         bool do_repoll = false;
7065         void *have;
7066         int work;
7067
7068         list_del_init(&n->poll_list);
7069
7070         have = netpoll_poll_lock(n);
7071
7072         work = __napi_poll(n, &do_repoll);
7073
7074         if (do_repoll)
7075                 list_add_tail(&n->poll_list, repoll);
7076
7077         netpoll_poll_unlock(have);
7078
7079         return work;
7080 }
7081
7082 static int napi_thread_wait(struct napi_struct *napi)
7083 {
7084         bool woken = false;
7085
7086         set_current_state(TASK_INTERRUPTIBLE);
7087
7088         while (!kthread_should_stop()) {
7089                 /* Testing SCHED_THREADED bit here to make sure the current
7090                  * kthread owns this napi and could poll on this napi.
7091                  * Testing SCHED bit is not enough because SCHED bit might be
7092                  * set by some other busy poll thread or by napi_disable().
7093                  */
7094                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7095                         WARN_ON(!list_empty(&napi->poll_list));
7096                         __set_current_state(TASK_RUNNING);
7097                         return 0;
7098                 }
7099
7100                 schedule();
7101                 /* woken being true indicates this thread owns this napi. */
7102                 woken = true;
7103                 set_current_state(TASK_INTERRUPTIBLE);
7104         }
7105         __set_current_state(TASK_RUNNING);
7106
7107         return -1;
7108 }
7109
7110 static int napi_threaded_poll(void *data)
7111 {
7112         struct napi_struct *napi = data;
7113         void *have;
7114
7115         while (!napi_thread_wait(napi)) {
7116                 for (;;) {
7117                         bool repoll = false;
7118
7119                         local_bh_disable();
7120
7121                         have = netpoll_poll_lock(napi);
7122                         __napi_poll(napi, &repoll);
7123                         netpoll_poll_unlock(have);
7124
7125                         local_bh_enable();
7126
7127                         if (!repoll)
7128                                 break;
7129
7130                         cond_resched();
7131                 }
7132         }
7133         return 0;
7134 }
7135
7136 static __latent_entropy void net_rx_action(struct softirq_action *h)
7137 {
7138         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7139         unsigned long time_limit = jiffies +
7140                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
7141         int budget = READ_ONCE(netdev_budget);
7142         LIST_HEAD(list);
7143         LIST_HEAD(repoll);
7144
7145         local_irq_disable();
7146         list_splice_init(&sd->poll_list, &list);
7147         local_irq_enable();
7148
7149         for (;;) {
7150                 struct napi_struct *n;
7151
7152                 if (list_empty(&list)) {
7153                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7154                                 return;
7155                         break;
7156                 }
7157
7158                 n = list_first_entry(&list, struct napi_struct, poll_list);
7159                 budget -= napi_poll(n, &repoll);
7160
7161                 /* If softirq window is exhausted then punt.
7162                  * Allow this to run for 2 jiffies since which will allow
7163                  * an average latency of 1.5/HZ.
7164                  */
7165                 if (unlikely(budget <= 0 ||
7166                              time_after_eq(jiffies, time_limit))) {
7167                         sd->time_squeeze++;
7168                         break;
7169                 }
7170         }
7171
7172         local_irq_disable();
7173
7174         list_splice_tail_init(&sd->poll_list, &list);
7175         list_splice_tail(&repoll, &list);
7176         list_splice(&list, &sd->poll_list);
7177         if (!list_empty(&sd->poll_list))
7178                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7179
7180         net_rps_action_and_irq_enable(sd);
7181 }
7182
7183 struct netdev_adjacent {
7184         struct net_device *dev;
7185
7186         /* upper master flag, there can only be one master device per list */
7187         bool master;
7188
7189         /* lookup ignore flag */
7190         bool ignore;
7191
7192         /* counter for the number of times this device was added to us */
7193         u16 ref_nr;
7194
7195         /* private field for the users */
7196         void *private;
7197
7198         struct list_head list;
7199         struct rcu_head rcu;
7200 };
7201
7202 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7203                                                  struct list_head *adj_list)
7204 {
7205         struct netdev_adjacent *adj;
7206
7207         list_for_each_entry(adj, adj_list, list) {
7208                 if (adj->dev == adj_dev)
7209                         return adj;
7210         }
7211         return NULL;
7212 }
7213
7214 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7215                                     struct netdev_nested_priv *priv)
7216 {
7217         struct net_device *dev = (struct net_device *)priv->data;
7218
7219         return upper_dev == dev;
7220 }
7221
7222 /**
7223  * netdev_has_upper_dev - Check if device is linked to an upper device
7224  * @dev: device
7225  * @upper_dev: upper device to check
7226  *
7227  * Find out if a device is linked to specified upper device and return true
7228  * in case it is. Note that this checks only immediate upper device,
7229  * not through a complete stack of devices. The caller must hold the RTNL lock.
7230  */
7231 bool netdev_has_upper_dev(struct net_device *dev,
7232                           struct net_device *upper_dev)
7233 {
7234         struct netdev_nested_priv priv = {
7235                 .data = (void *)upper_dev,
7236         };
7237
7238         ASSERT_RTNL();
7239
7240         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7241                                              &priv);
7242 }
7243 EXPORT_SYMBOL(netdev_has_upper_dev);
7244
7245 /**
7246  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7247  * @dev: device
7248  * @upper_dev: upper device to check
7249  *
7250  * Find out if a device is linked to specified upper device and return true
7251  * in case it is. Note that this checks the entire upper device chain.
7252  * The caller must hold rcu lock.
7253  */
7254
7255 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7256                                   struct net_device *upper_dev)
7257 {
7258         struct netdev_nested_priv priv = {
7259                 .data = (void *)upper_dev,
7260         };
7261
7262         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7263                                                &priv);
7264 }
7265 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7266
7267 /**
7268  * netdev_has_any_upper_dev - Check if device is linked to some device
7269  * @dev: device
7270  *
7271  * Find out if a device is linked to an upper device and return true in case
7272  * it is. The caller must hold the RTNL lock.
7273  */
7274 bool netdev_has_any_upper_dev(struct net_device *dev)
7275 {
7276         ASSERT_RTNL();
7277
7278         return !list_empty(&dev->adj_list.upper);
7279 }
7280 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7281
7282 /**
7283  * netdev_master_upper_dev_get - Get master upper device
7284  * @dev: device
7285  *
7286  * Find a master upper device and return pointer to it or NULL in case
7287  * it's not there. The caller must hold the RTNL lock.
7288  */
7289 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7290 {
7291         struct netdev_adjacent *upper;
7292
7293         ASSERT_RTNL();
7294
7295         if (list_empty(&dev->adj_list.upper))
7296                 return NULL;
7297
7298         upper = list_first_entry(&dev->adj_list.upper,
7299                                  struct netdev_adjacent, list);
7300         if (likely(upper->master))
7301                 return upper->dev;
7302         return NULL;
7303 }
7304 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7305
7306 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7307 {
7308         struct netdev_adjacent *upper;
7309
7310         ASSERT_RTNL();
7311
7312         if (list_empty(&dev->adj_list.upper))
7313                 return NULL;
7314
7315         upper = list_first_entry(&dev->adj_list.upper,
7316                                  struct netdev_adjacent, list);
7317         if (likely(upper->master) && !upper->ignore)
7318                 return upper->dev;
7319         return NULL;
7320 }
7321
7322 /**
7323  * netdev_has_any_lower_dev - Check if device is linked to some device
7324  * @dev: device
7325  *
7326  * Find out if a device is linked to a lower device and return true in case
7327  * it is. The caller must hold the RTNL lock.
7328  */
7329 static bool netdev_has_any_lower_dev(struct net_device *dev)
7330 {
7331         ASSERT_RTNL();
7332
7333         return !list_empty(&dev->adj_list.lower);
7334 }
7335
7336 void *netdev_adjacent_get_private(struct list_head *adj_list)
7337 {
7338         struct netdev_adjacent *adj;
7339
7340         adj = list_entry(adj_list, struct netdev_adjacent, list);
7341
7342         return adj->private;
7343 }
7344 EXPORT_SYMBOL(netdev_adjacent_get_private);
7345
7346 /**
7347  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7348  * @dev: device
7349  * @iter: list_head ** of the current position
7350  *
7351  * Gets the next device from the dev's upper list, starting from iter
7352  * position. The caller must hold RCU read lock.
7353  */
7354 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7355                                                  struct list_head **iter)
7356 {
7357         struct netdev_adjacent *upper;
7358
7359         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7360
7361         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7362
7363         if (&upper->list == &dev->adj_list.upper)
7364                 return NULL;
7365
7366         *iter = &upper->list;
7367
7368         return upper->dev;
7369 }
7370 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7371
7372 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7373                                                   struct list_head **iter,
7374                                                   bool *ignore)
7375 {
7376         struct netdev_adjacent *upper;
7377
7378         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7379
7380         if (&upper->list == &dev->adj_list.upper)
7381                 return NULL;
7382
7383         *iter = &upper->list;
7384         *ignore = upper->ignore;
7385
7386         return upper->dev;
7387 }
7388
7389 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7390                                                     struct list_head **iter)
7391 {
7392         struct netdev_adjacent *upper;
7393
7394         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7395
7396         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7397
7398         if (&upper->list == &dev->adj_list.upper)
7399                 return NULL;
7400
7401         *iter = &upper->list;
7402
7403         return upper->dev;
7404 }
7405
7406 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7407                                        int (*fn)(struct net_device *dev,
7408                                          struct netdev_nested_priv *priv),
7409                                        struct netdev_nested_priv *priv)
7410 {
7411         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7412         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7413         int ret, cur = 0;
7414         bool ignore;
7415
7416         now = dev;
7417         iter = &dev->adj_list.upper;
7418
7419         while (1) {
7420                 if (now != dev) {
7421                         ret = fn(now, priv);
7422                         if (ret)
7423                                 return ret;
7424                 }
7425
7426                 next = NULL;
7427                 while (1) {
7428                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7429                         if (!udev)
7430                                 break;
7431                         if (ignore)
7432                                 continue;
7433
7434                         next = udev;
7435                         niter = &udev->adj_list.upper;
7436                         dev_stack[cur] = now;
7437                         iter_stack[cur++] = iter;
7438                         break;
7439                 }
7440
7441                 if (!next) {
7442                         if (!cur)
7443                                 return 0;
7444                         next = dev_stack[--cur];
7445                         niter = iter_stack[cur];
7446                 }
7447
7448                 now = next;
7449                 iter = niter;
7450         }
7451
7452         return 0;
7453 }
7454
7455 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7456                                   int (*fn)(struct net_device *dev,
7457                                             struct netdev_nested_priv *priv),
7458                                   struct netdev_nested_priv *priv)
7459 {
7460         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7461         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7462         int ret, cur = 0;
7463
7464         now = dev;
7465         iter = &dev->adj_list.upper;
7466
7467         while (1) {
7468                 if (now != dev) {
7469                         ret = fn(now, priv);
7470                         if (ret)
7471                                 return ret;
7472                 }
7473
7474                 next = NULL;
7475                 while (1) {
7476                         udev = netdev_next_upper_dev_rcu(now, &iter);
7477                         if (!udev)
7478                                 break;
7479
7480                         next = udev;
7481                         niter = &udev->adj_list.upper;
7482                         dev_stack[cur] = now;
7483                         iter_stack[cur++] = iter;
7484                         break;
7485                 }
7486
7487                 if (!next) {
7488                         if (!cur)
7489                                 return 0;
7490                         next = dev_stack[--cur];
7491                         niter = iter_stack[cur];
7492                 }
7493
7494                 now = next;
7495                 iter = niter;
7496         }
7497
7498         return 0;
7499 }
7500 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7501
7502 static bool __netdev_has_upper_dev(struct net_device *dev,
7503                                    struct net_device *upper_dev)
7504 {
7505         struct netdev_nested_priv priv = {
7506                 .flags = 0,
7507                 .data = (void *)upper_dev,
7508         };
7509
7510         ASSERT_RTNL();
7511
7512         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7513                                            &priv);
7514 }
7515
7516 /**
7517  * netdev_lower_get_next_private - Get the next ->private from the
7518  *                                 lower neighbour list
7519  * @dev: device
7520  * @iter: list_head ** of the current position
7521  *
7522  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7523  * list, starting from iter position. The caller must hold either hold the
7524  * RTNL lock or its own locking that guarantees that the neighbour lower
7525  * list will remain unchanged.
7526  */
7527 void *netdev_lower_get_next_private(struct net_device *dev,
7528                                     struct list_head **iter)
7529 {
7530         struct netdev_adjacent *lower;
7531
7532         lower = list_entry(*iter, struct netdev_adjacent, list);
7533
7534         if (&lower->list == &dev->adj_list.lower)
7535                 return NULL;
7536
7537         *iter = lower->list.next;
7538
7539         return lower->private;
7540 }
7541 EXPORT_SYMBOL(netdev_lower_get_next_private);
7542
7543 /**
7544  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7545  *                                     lower neighbour list, RCU
7546  *                                     variant
7547  * @dev: device
7548  * @iter: list_head ** of the current position
7549  *
7550  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7551  * list, starting from iter position. The caller must hold RCU read lock.
7552  */
7553 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7554                                         struct list_head **iter)
7555 {
7556         struct netdev_adjacent *lower;
7557
7558         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7559
7560         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7561
7562         if (&lower->list == &dev->adj_list.lower)
7563                 return NULL;
7564
7565         *iter = &lower->list;
7566
7567         return lower->private;
7568 }
7569 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7570
7571 /**
7572  * netdev_lower_get_next - Get the next device from the lower neighbour
7573  *                         list
7574  * @dev: device
7575  * @iter: list_head ** of the current position
7576  *
7577  * Gets the next netdev_adjacent from the dev's lower neighbour
7578  * list, starting from iter position. The caller must hold RTNL lock or
7579  * its own locking that guarantees that the neighbour lower
7580  * list will remain unchanged.
7581  */
7582 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7583 {
7584         struct netdev_adjacent *lower;
7585
7586         lower = list_entry(*iter, struct netdev_adjacent, list);
7587
7588         if (&lower->list == &dev->adj_list.lower)
7589                 return NULL;
7590
7591         *iter = lower->list.next;
7592
7593         return lower->dev;
7594 }
7595 EXPORT_SYMBOL(netdev_lower_get_next);
7596
7597 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7598                                                 struct list_head **iter)
7599 {
7600         struct netdev_adjacent *lower;
7601
7602         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7603
7604         if (&lower->list == &dev->adj_list.lower)
7605                 return NULL;
7606
7607         *iter = &lower->list;
7608
7609         return lower->dev;
7610 }
7611
7612 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7613                                                   struct list_head **iter,
7614                                                   bool *ignore)
7615 {
7616         struct netdev_adjacent *lower;
7617
7618         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7619
7620         if (&lower->list == &dev->adj_list.lower)
7621                 return NULL;
7622
7623         *iter = &lower->list;
7624         *ignore = lower->ignore;
7625
7626         return lower->dev;
7627 }
7628
7629 int netdev_walk_all_lower_dev(struct net_device *dev,
7630                               int (*fn)(struct net_device *dev,
7631                                         struct netdev_nested_priv *priv),
7632                               struct netdev_nested_priv *priv)
7633 {
7634         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7635         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7636         int ret, cur = 0;
7637
7638         now = dev;
7639         iter = &dev->adj_list.lower;
7640
7641         while (1) {
7642                 if (now != dev) {
7643                         ret = fn(now, priv);
7644                         if (ret)
7645                                 return ret;
7646                 }
7647
7648                 next = NULL;
7649                 while (1) {
7650                         ldev = netdev_next_lower_dev(now, &iter);
7651                         if (!ldev)
7652                                 break;
7653
7654                         next = ldev;
7655                         niter = &ldev->adj_list.lower;
7656                         dev_stack[cur] = now;
7657                         iter_stack[cur++] = iter;
7658                         break;
7659                 }
7660
7661                 if (!next) {
7662                         if (!cur)
7663                                 return 0;
7664                         next = dev_stack[--cur];
7665                         niter = iter_stack[cur];
7666                 }
7667
7668                 now = next;
7669                 iter = niter;
7670         }
7671
7672         return 0;
7673 }
7674 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7675
7676 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7677                                        int (*fn)(struct net_device *dev,
7678                                          struct netdev_nested_priv *priv),
7679                                        struct netdev_nested_priv *priv)
7680 {
7681         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7682         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7683         int ret, cur = 0;
7684         bool ignore;
7685
7686         now = dev;
7687         iter = &dev->adj_list.lower;
7688
7689         while (1) {
7690                 if (now != dev) {
7691                         ret = fn(now, priv);
7692                         if (ret)
7693                                 return ret;
7694                 }
7695
7696                 next = NULL;
7697                 while (1) {
7698                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7699                         if (!ldev)
7700                                 break;
7701                         if (ignore)
7702                                 continue;
7703
7704                         next = ldev;
7705                         niter = &ldev->adj_list.lower;
7706                         dev_stack[cur] = now;
7707                         iter_stack[cur++] = iter;
7708                         break;
7709                 }
7710
7711                 if (!next) {
7712                         if (!cur)
7713                                 return 0;
7714                         next = dev_stack[--cur];
7715                         niter = iter_stack[cur];
7716                 }
7717
7718                 now = next;
7719                 iter = niter;
7720         }
7721
7722         return 0;
7723 }
7724
7725 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7726                                              struct list_head **iter)
7727 {
7728         struct netdev_adjacent *lower;
7729
7730         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7731         if (&lower->list == &dev->adj_list.lower)
7732                 return NULL;
7733
7734         *iter = &lower->list;
7735
7736         return lower->dev;
7737 }
7738 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7739
7740 static u8 __netdev_upper_depth(struct net_device *dev)
7741 {
7742         struct net_device *udev;
7743         struct list_head *iter;
7744         u8 max_depth = 0;
7745         bool ignore;
7746
7747         for (iter = &dev->adj_list.upper,
7748              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7749              udev;
7750              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7751                 if (ignore)
7752                         continue;
7753                 if (max_depth < udev->upper_level)
7754                         max_depth = udev->upper_level;
7755         }
7756
7757         return max_depth;
7758 }
7759
7760 static u8 __netdev_lower_depth(struct net_device *dev)
7761 {
7762         struct net_device *ldev;
7763         struct list_head *iter;
7764         u8 max_depth = 0;
7765         bool ignore;
7766
7767         for (iter = &dev->adj_list.lower,
7768              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7769              ldev;
7770              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7771                 if (ignore)
7772                         continue;
7773                 if (max_depth < ldev->lower_level)
7774                         max_depth = ldev->lower_level;
7775         }
7776
7777         return max_depth;
7778 }
7779
7780 static int __netdev_update_upper_level(struct net_device *dev,
7781                                        struct netdev_nested_priv *__unused)
7782 {
7783         dev->upper_level = __netdev_upper_depth(dev) + 1;
7784         return 0;
7785 }
7786
7787 static int __netdev_update_lower_level(struct net_device *dev,
7788                                        struct netdev_nested_priv *priv)
7789 {
7790         dev->lower_level = __netdev_lower_depth(dev) + 1;
7791
7792 #ifdef CONFIG_LOCKDEP
7793         if (!priv)
7794                 return 0;
7795
7796         if (priv->flags & NESTED_SYNC_IMM)
7797                 dev->nested_level = dev->lower_level - 1;
7798         if (priv->flags & NESTED_SYNC_TODO)
7799                 net_unlink_todo(dev);
7800 #endif
7801         return 0;
7802 }
7803
7804 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7805                                   int (*fn)(struct net_device *dev,
7806                                             struct netdev_nested_priv *priv),
7807                                   struct netdev_nested_priv *priv)
7808 {
7809         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7810         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7811         int ret, cur = 0;
7812
7813         now = dev;
7814         iter = &dev->adj_list.lower;
7815
7816         while (1) {
7817                 if (now != dev) {
7818                         ret = fn(now, priv);
7819                         if (ret)
7820                                 return ret;
7821                 }
7822
7823                 next = NULL;
7824                 while (1) {
7825                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7826                         if (!ldev)
7827                                 break;
7828
7829                         next = ldev;
7830                         niter = &ldev->adj_list.lower;
7831                         dev_stack[cur] = now;
7832                         iter_stack[cur++] = iter;
7833                         break;
7834                 }
7835
7836                 if (!next) {
7837                         if (!cur)
7838                                 return 0;
7839                         next = dev_stack[--cur];
7840                         niter = iter_stack[cur];
7841                 }
7842
7843                 now = next;
7844                 iter = niter;
7845         }
7846
7847         return 0;
7848 }
7849 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7850
7851 /**
7852  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7853  *                                     lower neighbour list, RCU
7854  *                                     variant
7855  * @dev: device
7856  *
7857  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7858  * list. The caller must hold RCU read lock.
7859  */
7860 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7861 {
7862         struct netdev_adjacent *lower;
7863
7864         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7865                         struct netdev_adjacent, list);
7866         if (lower)
7867                 return lower->private;
7868         return NULL;
7869 }
7870 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7871
7872 /**
7873  * netdev_master_upper_dev_get_rcu - Get master upper device
7874  * @dev: device
7875  *
7876  * Find a master upper device and return pointer to it or NULL in case
7877  * it's not there. The caller must hold the RCU read lock.
7878  */
7879 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7880 {
7881         struct netdev_adjacent *upper;
7882
7883         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7884                                        struct netdev_adjacent, list);
7885         if (upper && likely(upper->master))
7886                 return upper->dev;
7887         return NULL;
7888 }
7889 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7890
7891 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7892                               struct net_device *adj_dev,
7893                               struct list_head *dev_list)
7894 {
7895         char linkname[IFNAMSIZ+7];
7896
7897         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7898                 "upper_%s" : "lower_%s", adj_dev->name);
7899         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7900                                  linkname);
7901 }
7902 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7903                                char *name,
7904                                struct list_head *dev_list)
7905 {
7906         char linkname[IFNAMSIZ+7];
7907
7908         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7909                 "upper_%s" : "lower_%s", name);
7910         sysfs_remove_link(&(dev->dev.kobj), linkname);
7911 }
7912
7913 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7914                                                  struct net_device *adj_dev,
7915                                                  struct list_head *dev_list)
7916 {
7917         return (dev_list == &dev->adj_list.upper ||
7918                 dev_list == &dev->adj_list.lower) &&
7919                 net_eq(dev_net(dev), dev_net(adj_dev));
7920 }
7921
7922 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7923                                         struct net_device *adj_dev,
7924                                         struct list_head *dev_list,
7925                                         void *private, bool master)
7926 {
7927         struct netdev_adjacent *adj;
7928         int ret;
7929
7930         adj = __netdev_find_adj(adj_dev, dev_list);
7931
7932         if (adj) {
7933                 adj->ref_nr += 1;
7934                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7935                          dev->name, adj_dev->name, adj->ref_nr);
7936
7937                 return 0;
7938         }
7939
7940         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7941         if (!adj)
7942                 return -ENOMEM;
7943
7944         adj->dev = adj_dev;
7945         adj->master = master;
7946         adj->ref_nr = 1;
7947         adj->private = private;
7948         adj->ignore = false;
7949         dev_hold(adj_dev);
7950
7951         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7952                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7953
7954         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7955                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7956                 if (ret)
7957                         goto free_adj;
7958         }
7959
7960         /* Ensure that master link is always the first item in list. */
7961         if (master) {
7962                 ret = sysfs_create_link(&(dev->dev.kobj),
7963                                         &(adj_dev->dev.kobj), "master");
7964                 if (ret)
7965                         goto remove_symlinks;
7966
7967                 list_add_rcu(&adj->list, dev_list);
7968         } else {
7969                 list_add_tail_rcu(&adj->list, dev_list);
7970         }
7971
7972         return 0;
7973
7974 remove_symlinks:
7975         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7976                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7977 free_adj:
7978         kfree(adj);
7979         dev_put(adj_dev);
7980
7981         return ret;
7982 }
7983
7984 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7985                                          struct net_device *adj_dev,
7986                                          u16 ref_nr,
7987                                          struct list_head *dev_list)
7988 {
7989         struct netdev_adjacent *adj;
7990
7991         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7992                  dev->name, adj_dev->name, ref_nr);
7993
7994         adj = __netdev_find_adj(adj_dev, dev_list);
7995
7996         if (!adj) {
7997                 pr_err("Adjacency does not exist for device %s from %s\n",
7998                        dev->name, adj_dev->name);
7999                 WARN_ON(1);
8000                 return;
8001         }
8002
8003         if (adj->ref_nr > ref_nr) {
8004                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8005                          dev->name, adj_dev->name, ref_nr,
8006                          adj->ref_nr - ref_nr);
8007                 adj->ref_nr -= ref_nr;
8008                 return;
8009         }
8010
8011         if (adj->master)
8012                 sysfs_remove_link(&(dev->dev.kobj), "master");
8013
8014         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8015                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8016
8017         list_del_rcu(&adj->list);
8018         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8019                  adj_dev->name, dev->name, adj_dev->name);
8020         dev_put(adj_dev);
8021         kfree_rcu(adj, rcu);
8022 }
8023
8024 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8025                                             struct net_device *upper_dev,
8026                                             struct list_head *up_list,
8027                                             struct list_head *down_list,
8028                                             void *private, bool master)
8029 {
8030         int ret;
8031
8032         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8033                                            private, master);
8034         if (ret)
8035                 return ret;
8036
8037         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8038                                            private, false);
8039         if (ret) {
8040                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8041                 return ret;
8042         }
8043
8044         return 0;
8045 }
8046
8047 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8048                                                struct net_device *upper_dev,
8049                                                u16 ref_nr,
8050                                                struct list_head *up_list,
8051                                                struct list_head *down_list)
8052 {
8053         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8054         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8055 }
8056
8057 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8058                                                 struct net_device *upper_dev,
8059                                                 void *private, bool master)
8060 {
8061         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8062                                                 &dev->adj_list.upper,
8063                                                 &upper_dev->adj_list.lower,
8064                                                 private, master);
8065 }
8066
8067 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8068                                                    struct net_device *upper_dev)
8069 {
8070         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8071                                            &dev->adj_list.upper,
8072                                            &upper_dev->adj_list.lower);
8073 }
8074
8075 static int __netdev_upper_dev_link(struct net_device *dev,
8076                                    struct net_device *upper_dev, bool master,
8077                                    void *upper_priv, void *upper_info,
8078                                    struct netdev_nested_priv *priv,
8079                                    struct netlink_ext_ack *extack)
8080 {
8081         struct netdev_notifier_changeupper_info changeupper_info = {
8082                 .info = {
8083                         .dev = dev,
8084                         .extack = extack,
8085                 },
8086                 .upper_dev = upper_dev,
8087                 .master = master,
8088                 .linking = true,
8089                 .upper_info = upper_info,
8090         };
8091         struct net_device *master_dev;
8092         int ret = 0;
8093
8094         ASSERT_RTNL();
8095
8096         if (dev == upper_dev)
8097                 return -EBUSY;
8098
8099         /* To prevent loops, check if dev is not upper device to upper_dev. */
8100         if (__netdev_has_upper_dev(upper_dev, dev))
8101                 return -EBUSY;
8102
8103         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8104                 return -EMLINK;
8105
8106         if (!master) {
8107                 if (__netdev_has_upper_dev(dev, upper_dev))
8108                         return -EEXIST;
8109         } else {
8110                 master_dev = __netdev_master_upper_dev_get(dev);
8111                 if (master_dev)
8112                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8113         }
8114
8115         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8116                                             &changeupper_info.info);
8117         ret = notifier_to_errno(ret);
8118         if (ret)
8119                 return ret;
8120
8121         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8122                                                    master);
8123         if (ret)
8124                 return ret;
8125
8126         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8127                                             &changeupper_info.info);
8128         ret = notifier_to_errno(ret);
8129         if (ret)
8130                 goto rollback;
8131
8132         __netdev_update_upper_level(dev, NULL);
8133         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8134
8135         __netdev_update_lower_level(upper_dev, priv);
8136         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8137                                     priv);
8138
8139         return 0;
8140
8141 rollback:
8142         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8143
8144         return ret;
8145 }
8146
8147 /**
8148  * netdev_upper_dev_link - Add a link to the upper device
8149  * @dev: device
8150  * @upper_dev: new upper device
8151  * @extack: netlink extended ack
8152  *
8153  * Adds a link to device which is upper to this one. The caller must hold
8154  * the RTNL lock. On a failure a negative errno code is returned.
8155  * On success the reference counts are adjusted and the function
8156  * returns zero.
8157  */
8158 int netdev_upper_dev_link(struct net_device *dev,
8159                           struct net_device *upper_dev,
8160                           struct netlink_ext_ack *extack)
8161 {
8162         struct netdev_nested_priv priv = {
8163                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8164                 .data = NULL,
8165         };
8166
8167         return __netdev_upper_dev_link(dev, upper_dev, false,
8168                                        NULL, NULL, &priv, extack);
8169 }
8170 EXPORT_SYMBOL(netdev_upper_dev_link);
8171
8172 /**
8173  * netdev_master_upper_dev_link - Add a master link to the upper device
8174  * @dev: device
8175  * @upper_dev: new upper device
8176  * @upper_priv: upper device private
8177  * @upper_info: upper info to be passed down via notifier
8178  * @extack: netlink extended ack
8179  *
8180  * Adds a link to device which is upper to this one. In this case, only
8181  * one master upper device can be linked, although other non-master devices
8182  * might be linked as well. The caller must hold the RTNL lock.
8183  * On a failure a negative errno code is returned. On success the reference
8184  * counts are adjusted and the function returns zero.
8185  */
8186 int netdev_master_upper_dev_link(struct net_device *dev,
8187                                  struct net_device *upper_dev,
8188                                  void *upper_priv, void *upper_info,
8189                                  struct netlink_ext_ack *extack)
8190 {
8191         struct netdev_nested_priv priv = {
8192                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8193                 .data = NULL,
8194         };
8195
8196         return __netdev_upper_dev_link(dev, upper_dev, true,
8197                                        upper_priv, upper_info, &priv, extack);
8198 }
8199 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8200
8201 static void __netdev_upper_dev_unlink(struct net_device *dev,
8202                                       struct net_device *upper_dev,
8203                                       struct netdev_nested_priv *priv)
8204 {
8205         struct netdev_notifier_changeupper_info changeupper_info = {
8206                 .info = {
8207                         .dev = dev,
8208                 },
8209                 .upper_dev = upper_dev,
8210                 .linking = false,
8211         };
8212
8213         ASSERT_RTNL();
8214
8215         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8216
8217         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8218                                       &changeupper_info.info);
8219
8220         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8221
8222         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8223                                       &changeupper_info.info);
8224
8225         __netdev_update_upper_level(dev, NULL);
8226         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8227
8228         __netdev_update_lower_level(upper_dev, priv);
8229         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8230                                     priv);
8231 }
8232
8233 /**
8234  * netdev_upper_dev_unlink - Removes a link to upper device
8235  * @dev: device
8236  * @upper_dev: new upper device
8237  *
8238  * Removes a link to device which is upper to this one. The caller must hold
8239  * the RTNL lock.
8240  */
8241 void netdev_upper_dev_unlink(struct net_device *dev,
8242                              struct net_device *upper_dev)
8243 {
8244         struct netdev_nested_priv priv = {
8245                 .flags = NESTED_SYNC_TODO,
8246                 .data = NULL,
8247         };
8248
8249         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8250 }
8251 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8252
8253 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8254                                       struct net_device *lower_dev,
8255                                       bool val)
8256 {
8257         struct netdev_adjacent *adj;
8258
8259         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8260         if (adj)
8261                 adj->ignore = val;
8262
8263         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8264         if (adj)
8265                 adj->ignore = val;
8266 }
8267
8268 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8269                                         struct net_device *lower_dev)
8270 {
8271         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8272 }
8273
8274 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8275                                        struct net_device *lower_dev)
8276 {
8277         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8278 }
8279
8280 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8281                                    struct net_device *new_dev,
8282                                    struct net_device *dev,
8283                                    struct netlink_ext_ack *extack)
8284 {
8285         struct netdev_nested_priv priv = {
8286                 .flags = 0,
8287                 .data = NULL,
8288         };
8289         int err;
8290
8291         if (!new_dev)
8292                 return 0;
8293
8294         if (old_dev && new_dev != old_dev)
8295                 netdev_adjacent_dev_disable(dev, old_dev);
8296         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8297                                       extack);
8298         if (err) {
8299                 if (old_dev && new_dev != old_dev)
8300                         netdev_adjacent_dev_enable(dev, old_dev);
8301                 return err;
8302         }
8303
8304         return 0;
8305 }
8306 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8307
8308 void netdev_adjacent_change_commit(struct net_device *old_dev,
8309                                    struct net_device *new_dev,
8310                                    struct net_device *dev)
8311 {
8312         struct netdev_nested_priv priv = {
8313                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8314                 .data = NULL,
8315         };
8316
8317         if (!new_dev || !old_dev)
8318                 return;
8319
8320         if (new_dev == old_dev)
8321                 return;
8322
8323         netdev_adjacent_dev_enable(dev, old_dev);
8324         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8325 }
8326 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8327
8328 void netdev_adjacent_change_abort(struct net_device *old_dev,
8329                                   struct net_device *new_dev,
8330                                   struct net_device *dev)
8331 {
8332         struct netdev_nested_priv priv = {
8333                 .flags = 0,
8334                 .data = NULL,
8335         };
8336
8337         if (!new_dev)
8338                 return;
8339
8340         if (old_dev && new_dev != old_dev)
8341                 netdev_adjacent_dev_enable(dev, old_dev);
8342
8343         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8344 }
8345 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8346
8347 /**
8348  * netdev_bonding_info_change - Dispatch event about slave change
8349  * @dev: device
8350  * @bonding_info: info to dispatch
8351  *
8352  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8353  * The caller must hold the RTNL lock.
8354  */
8355 void netdev_bonding_info_change(struct net_device *dev,
8356                                 struct netdev_bonding_info *bonding_info)
8357 {
8358         struct netdev_notifier_bonding_info info = {
8359                 .info.dev = dev,
8360         };
8361
8362         memcpy(&info.bonding_info, bonding_info,
8363                sizeof(struct netdev_bonding_info));
8364         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8365                                       &info.info);
8366 }
8367 EXPORT_SYMBOL(netdev_bonding_info_change);
8368
8369 /**
8370  * netdev_get_xmit_slave - Get the xmit slave of master device
8371  * @dev: device
8372  * @skb: The packet
8373  * @all_slaves: assume all the slaves are active
8374  *
8375  * The reference counters are not incremented so the caller must be
8376  * careful with locks. The caller must hold RCU lock.
8377  * %NULL is returned if no slave is found.
8378  */
8379
8380 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8381                                          struct sk_buff *skb,
8382                                          bool all_slaves)
8383 {
8384         const struct net_device_ops *ops = dev->netdev_ops;
8385
8386         if (!ops->ndo_get_xmit_slave)
8387                 return NULL;
8388         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8389 }
8390 EXPORT_SYMBOL(netdev_get_xmit_slave);
8391
8392 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8393                                                   struct sock *sk)
8394 {
8395         const struct net_device_ops *ops = dev->netdev_ops;
8396
8397         if (!ops->ndo_sk_get_lower_dev)
8398                 return NULL;
8399         return ops->ndo_sk_get_lower_dev(dev, sk);
8400 }
8401
8402 /**
8403  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8404  * @dev: device
8405  * @sk: the socket
8406  *
8407  * %NULL is returned if no lower device is found.
8408  */
8409
8410 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8411                                             struct sock *sk)
8412 {
8413         struct net_device *lower;
8414
8415         lower = netdev_sk_get_lower_dev(dev, sk);
8416         while (lower) {
8417                 dev = lower;
8418                 lower = netdev_sk_get_lower_dev(dev, sk);
8419         }
8420
8421         return dev;
8422 }
8423 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8424
8425 static void netdev_adjacent_add_links(struct net_device *dev)
8426 {
8427         struct netdev_adjacent *iter;
8428
8429         struct net *net = dev_net(dev);
8430
8431         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8432                 if (!net_eq(net, dev_net(iter->dev)))
8433                         continue;
8434                 netdev_adjacent_sysfs_add(iter->dev, dev,
8435                                           &iter->dev->adj_list.lower);
8436                 netdev_adjacent_sysfs_add(dev, iter->dev,
8437                                           &dev->adj_list.upper);
8438         }
8439
8440         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8441                 if (!net_eq(net, dev_net(iter->dev)))
8442                         continue;
8443                 netdev_adjacent_sysfs_add(iter->dev, dev,
8444                                           &iter->dev->adj_list.upper);
8445                 netdev_adjacent_sysfs_add(dev, iter->dev,
8446                                           &dev->adj_list.lower);
8447         }
8448 }
8449
8450 static void netdev_adjacent_del_links(struct net_device *dev)
8451 {
8452         struct netdev_adjacent *iter;
8453
8454         struct net *net = dev_net(dev);
8455
8456         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8457                 if (!net_eq(net, dev_net(iter->dev)))
8458                         continue;
8459                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8460                                           &iter->dev->adj_list.lower);
8461                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8462                                           &dev->adj_list.upper);
8463         }
8464
8465         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8466                 if (!net_eq(net, dev_net(iter->dev)))
8467                         continue;
8468                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8469                                           &iter->dev->adj_list.upper);
8470                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8471                                           &dev->adj_list.lower);
8472         }
8473 }
8474
8475 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8476 {
8477         struct netdev_adjacent *iter;
8478
8479         struct net *net = dev_net(dev);
8480
8481         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8482                 if (!net_eq(net, dev_net(iter->dev)))
8483                         continue;
8484                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8485                                           &iter->dev->adj_list.lower);
8486                 netdev_adjacent_sysfs_add(iter->dev, dev,
8487                                           &iter->dev->adj_list.lower);
8488         }
8489
8490         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8491                 if (!net_eq(net, dev_net(iter->dev)))
8492                         continue;
8493                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8494                                           &iter->dev->adj_list.upper);
8495                 netdev_adjacent_sysfs_add(iter->dev, dev,
8496                                           &iter->dev->adj_list.upper);
8497         }
8498 }
8499
8500 void *netdev_lower_dev_get_private(struct net_device *dev,
8501                                    struct net_device *lower_dev)
8502 {
8503         struct netdev_adjacent *lower;
8504
8505         if (!lower_dev)
8506                 return NULL;
8507         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8508         if (!lower)
8509                 return NULL;
8510
8511         return lower->private;
8512 }
8513 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8514
8515
8516 /**
8517  * netdev_lower_state_changed - Dispatch event about lower device state change
8518  * @lower_dev: device
8519  * @lower_state_info: state to dispatch
8520  *
8521  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8522  * The caller must hold the RTNL lock.
8523  */
8524 void netdev_lower_state_changed(struct net_device *lower_dev,
8525                                 void *lower_state_info)
8526 {
8527         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8528                 .info.dev = lower_dev,
8529         };
8530
8531         ASSERT_RTNL();
8532         changelowerstate_info.lower_state_info = lower_state_info;
8533         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8534                                       &changelowerstate_info.info);
8535 }
8536 EXPORT_SYMBOL(netdev_lower_state_changed);
8537
8538 static void dev_change_rx_flags(struct net_device *dev, int flags)
8539 {
8540         const struct net_device_ops *ops = dev->netdev_ops;
8541
8542         if (ops->ndo_change_rx_flags)
8543                 ops->ndo_change_rx_flags(dev, flags);
8544 }
8545
8546 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8547 {
8548         unsigned int old_flags = dev->flags;
8549         kuid_t uid;
8550         kgid_t gid;
8551
8552         ASSERT_RTNL();
8553
8554         dev->flags |= IFF_PROMISC;
8555         dev->promiscuity += inc;
8556         if (dev->promiscuity == 0) {
8557                 /*
8558                  * Avoid overflow.
8559                  * If inc causes overflow, untouch promisc and return error.
8560                  */
8561                 if (inc < 0)
8562                         dev->flags &= ~IFF_PROMISC;
8563                 else {
8564                         dev->promiscuity -= inc;
8565                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8566                                 dev->name);
8567                         return -EOVERFLOW;
8568                 }
8569         }
8570         if (dev->flags != old_flags) {
8571                 pr_info("device %s %s promiscuous mode\n",
8572                         dev->name,
8573                         dev->flags & IFF_PROMISC ? "entered" : "left");
8574                 if (audit_enabled) {
8575                         current_uid_gid(&uid, &gid);
8576                         audit_log(audit_context(), GFP_ATOMIC,
8577                                   AUDIT_ANOM_PROMISCUOUS,
8578                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8579                                   dev->name, (dev->flags & IFF_PROMISC),
8580                                   (old_flags & IFF_PROMISC),
8581                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8582                                   from_kuid(&init_user_ns, uid),
8583                                   from_kgid(&init_user_ns, gid),
8584                                   audit_get_sessionid(current));
8585                 }
8586
8587                 dev_change_rx_flags(dev, IFF_PROMISC);
8588         }
8589         if (notify)
8590                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8591         return 0;
8592 }
8593
8594 /**
8595  *      dev_set_promiscuity     - update promiscuity count on a device
8596  *      @dev: device
8597  *      @inc: modifier
8598  *
8599  *      Add or remove promiscuity from a device. While the count in the device
8600  *      remains above zero the interface remains promiscuous. Once it hits zero
8601  *      the device reverts back to normal filtering operation. A negative inc
8602  *      value is used to drop promiscuity on the device.
8603  *      Return 0 if successful or a negative errno code on error.
8604  */
8605 int dev_set_promiscuity(struct net_device *dev, int inc)
8606 {
8607         unsigned int old_flags = dev->flags;
8608         int err;
8609
8610         err = __dev_set_promiscuity(dev, inc, true);
8611         if (err < 0)
8612                 return err;
8613         if (dev->flags != old_flags)
8614                 dev_set_rx_mode(dev);
8615         return err;
8616 }
8617 EXPORT_SYMBOL(dev_set_promiscuity);
8618
8619 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8620 {
8621         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8622
8623         ASSERT_RTNL();
8624
8625         dev->flags |= IFF_ALLMULTI;
8626         dev->allmulti += inc;
8627         if (dev->allmulti == 0) {
8628                 /*
8629                  * Avoid overflow.
8630                  * If inc causes overflow, untouch allmulti and return error.
8631                  */
8632                 if (inc < 0)
8633                         dev->flags &= ~IFF_ALLMULTI;
8634                 else {
8635                         dev->allmulti -= inc;
8636                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8637                                 dev->name);
8638                         return -EOVERFLOW;
8639                 }
8640         }
8641         if (dev->flags ^ old_flags) {
8642                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8643                 dev_set_rx_mode(dev);
8644                 if (notify)
8645                         __dev_notify_flags(dev, old_flags,
8646                                            dev->gflags ^ old_gflags);
8647         }
8648         return 0;
8649 }
8650
8651 /**
8652  *      dev_set_allmulti        - update allmulti count on a device
8653  *      @dev: device
8654  *      @inc: modifier
8655  *
8656  *      Add or remove reception of all multicast frames to a device. While the
8657  *      count in the device remains above zero the interface remains listening
8658  *      to all interfaces. Once it hits zero the device reverts back to normal
8659  *      filtering operation. A negative @inc value is used to drop the counter
8660  *      when releasing a resource needing all multicasts.
8661  *      Return 0 if successful or a negative errno code on error.
8662  */
8663
8664 int dev_set_allmulti(struct net_device *dev, int inc)
8665 {
8666         return __dev_set_allmulti(dev, inc, true);
8667 }
8668 EXPORT_SYMBOL(dev_set_allmulti);
8669
8670 /*
8671  *      Upload unicast and multicast address lists to device and
8672  *      configure RX filtering. When the device doesn't support unicast
8673  *      filtering it is put in promiscuous mode while unicast addresses
8674  *      are present.
8675  */
8676 void __dev_set_rx_mode(struct net_device *dev)
8677 {
8678         const struct net_device_ops *ops = dev->netdev_ops;
8679
8680         /* dev_open will call this function so the list will stay sane. */
8681         if (!(dev->flags&IFF_UP))
8682                 return;
8683
8684         if (!netif_device_present(dev))
8685                 return;
8686
8687         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8688                 /* Unicast addresses changes may only happen under the rtnl,
8689                  * therefore calling __dev_set_promiscuity here is safe.
8690                  */
8691                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8692                         __dev_set_promiscuity(dev, 1, false);
8693                         dev->uc_promisc = true;
8694                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8695                         __dev_set_promiscuity(dev, -1, false);
8696                         dev->uc_promisc = false;
8697                 }
8698         }
8699
8700         if (ops->ndo_set_rx_mode)
8701                 ops->ndo_set_rx_mode(dev);
8702 }
8703
8704 void dev_set_rx_mode(struct net_device *dev)
8705 {
8706         netif_addr_lock_bh(dev);
8707         __dev_set_rx_mode(dev);
8708         netif_addr_unlock_bh(dev);
8709 }
8710
8711 /**
8712  *      dev_get_flags - get flags reported to userspace
8713  *      @dev: device
8714  *
8715  *      Get the combination of flag bits exported through APIs to userspace.
8716  */
8717 unsigned int dev_get_flags(const struct net_device *dev)
8718 {
8719         unsigned int flags;
8720
8721         flags = (dev->flags & ~(IFF_PROMISC |
8722                                 IFF_ALLMULTI |
8723                                 IFF_RUNNING |
8724                                 IFF_LOWER_UP |
8725                                 IFF_DORMANT)) |
8726                 (dev->gflags & (IFF_PROMISC |
8727                                 IFF_ALLMULTI));
8728
8729         if (netif_running(dev)) {
8730                 if (netif_oper_up(dev))
8731                         flags |= IFF_RUNNING;
8732                 if (netif_carrier_ok(dev))
8733                         flags |= IFF_LOWER_UP;
8734                 if (netif_dormant(dev))
8735                         flags |= IFF_DORMANT;
8736         }
8737
8738         return flags;
8739 }
8740 EXPORT_SYMBOL(dev_get_flags);
8741
8742 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8743                        struct netlink_ext_ack *extack)
8744 {
8745         unsigned int old_flags = dev->flags;
8746         int ret;
8747
8748         ASSERT_RTNL();
8749
8750         /*
8751          *      Set the flags on our device.
8752          */
8753
8754         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8755                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8756                                IFF_AUTOMEDIA)) |
8757                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8758                                     IFF_ALLMULTI));
8759
8760         /*
8761          *      Load in the correct multicast list now the flags have changed.
8762          */
8763
8764         if ((old_flags ^ flags) & IFF_MULTICAST)
8765                 dev_change_rx_flags(dev, IFF_MULTICAST);
8766
8767         dev_set_rx_mode(dev);
8768
8769         /*
8770          *      Have we downed the interface. We handle IFF_UP ourselves
8771          *      according to user attempts to set it, rather than blindly
8772          *      setting it.
8773          */
8774
8775         ret = 0;
8776         if ((old_flags ^ flags) & IFF_UP) {
8777                 if (old_flags & IFF_UP)
8778                         __dev_close(dev);
8779                 else
8780                         ret = __dev_open(dev, extack);
8781         }
8782
8783         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8784                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8785                 unsigned int old_flags = dev->flags;
8786
8787                 dev->gflags ^= IFF_PROMISC;
8788
8789                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8790                         if (dev->flags != old_flags)
8791                                 dev_set_rx_mode(dev);
8792         }
8793
8794         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8795          * is important. Some (broken) drivers set IFF_PROMISC, when
8796          * IFF_ALLMULTI is requested not asking us and not reporting.
8797          */
8798         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8799                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8800
8801                 dev->gflags ^= IFF_ALLMULTI;
8802                 __dev_set_allmulti(dev, inc, false);
8803         }
8804
8805         return ret;
8806 }
8807
8808 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8809                         unsigned int gchanges)
8810 {
8811         unsigned int changes = dev->flags ^ old_flags;
8812
8813         if (gchanges)
8814                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8815
8816         if (changes & IFF_UP) {
8817                 if (dev->flags & IFF_UP)
8818                         call_netdevice_notifiers(NETDEV_UP, dev);
8819                 else
8820                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8821         }
8822
8823         if (dev->flags & IFF_UP &&
8824             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8825                 struct netdev_notifier_change_info change_info = {
8826                         .info = {
8827                                 .dev = dev,
8828                         },
8829                         .flags_changed = changes,
8830                 };
8831
8832                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8833         }
8834 }
8835
8836 /**
8837  *      dev_change_flags - change device settings
8838  *      @dev: device
8839  *      @flags: device state flags
8840  *      @extack: netlink extended ack
8841  *
8842  *      Change settings on device based state flags. The flags are
8843  *      in the userspace exported format.
8844  */
8845 int dev_change_flags(struct net_device *dev, unsigned int flags,
8846                      struct netlink_ext_ack *extack)
8847 {
8848         int ret;
8849         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8850
8851         ret = __dev_change_flags(dev, flags, extack);
8852         if (ret < 0)
8853                 return ret;
8854
8855         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8856         __dev_notify_flags(dev, old_flags, changes);
8857         return ret;
8858 }
8859 EXPORT_SYMBOL(dev_change_flags);
8860
8861 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8862 {
8863         const struct net_device_ops *ops = dev->netdev_ops;
8864
8865         if (ops->ndo_change_mtu)
8866                 return ops->ndo_change_mtu(dev, new_mtu);
8867
8868         /* Pairs with all the lockless reads of dev->mtu in the stack */
8869         WRITE_ONCE(dev->mtu, new_mtu);
8870         return 0;
8871 }
8872 EXPORT_SYMBOL(__dev_set_mtu);
8873
8874 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8875                      struct netlink_ext_ack *extack)
8876 {
8877         /* MTU must be positive, and in range */
8878         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8879                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8880                 return -EINVAL;
8881         }
8882
8883         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8884                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8885                 return -EINVAL;
8886         }
8887         return 0;
8888 }
8889
8890 /**
8891  *      dev_set_mtu_ext - Change maximum transfer unit
8892  *      @dev: device
8893  *      @new_mtu: new transfer unit
8894  *      @extack: netlink extended ack
8895  *
8896  *      Change the maximum transfer size of the network device.
8897  */
8898 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8899                     struct netlink_ext_ack *extack)
8900 {
8901         int err, orig_mtu;
8902
8903         if (new_mtu == dev->mtu)
8904                 return 0;
8905
8906         err = dev_validate_mtu(dev, new_mtu, extack);
8907         if (err)
8908                 return err;
8909
8910         if (!netif_device_present(dev))
8911                 return -ENODEV;
8912
8913         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8914         err = notifier_to_errno(err);
8915         if (err)
8916                 return err;
8917
8918         orig_mtu = dev->mtu;
8919         err = __dev_set_mtu(dev, new_mtu);
8920
8921         if (!err) {
8922                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8923                                                    orig_mtu);
8924                 err = notifier_to_errno(err);
8925                 if (err) {
8926                         /* setting mtu back and notifying everyone again,
8927                          * so that they have a chance to revert changes.
8928                          */
8929                         __dev_set_mtu(dev, orig_mtu);
8930                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8931                                                      new_mtu);
8932                 }
8933         }
8934         return err;
8935 }
8936
8937 int dev_set_mtu(struct net_device *dev, int new_mtu)
8938 {
8939         struct netlink_ext_ack extack;
8940         int err;
8941
8942         memset(&extack, 0, sizeof(extack));
8943         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8944         if (err && extack._msg)
8945                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8946         return err;
8947 }
8948 EXPORT_SYMBOL(dev_set_mtu);
8949
8950 /**
8951  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8952  *      @dev: device
8953  *      @new_len: new tx queue length
8954  */
8955 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8956 {
8957         unsigned int orig_len = dev->tx_queue_len;
8958         int res;
8959
8960         if (new_len != (unsigned int)new_len)
8961                 return -ERANGE;
8962
8963         if (new_len != orig_len) {
8964                 dev->tx_queue_len = new_len;
8965                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8966                 res = notifier_to_errno(res);
8967                 if (res)
8968                         goto err_rollback;
8969                 res = dev_qdisc_change_tx_queue_len(dev);
8970                 if (res)
8971                         goto err_rollback;
8972         }
8973
8974         return 0;
8975
8976 err_rollback:
8977         netdev_err(dev, "refused to change device tx_queue_len\n");
8978         dev->tx_queue_len = orig_len;
8979         return res;
8980 }
8981
8982 /**
8983  *      dev_set_group - Change group this device belongs to
8984  *      @dev: device
8985  *      @new_group: group this device should belong to
8986  */
8987 void dev_set_group(struct net_device *dev, int new_group)
8988 {
8989         dev->group = new_group;
8990 }
8991 EXPORT_SYMBOL(dev_set_group);
8992
8993 /**
8994  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8995  *      @dev: device
8996  *      @addr: new address
8997  *      @extack: netlink extended ack
8998  */
8999 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9000                               struct netlink_ext_ack *extack)
9001 {
9002         struct netdev_notifier_pre_changeaddr_info info = {
9003                 .info.dev = dev,
9004                 .info.extack = extack,
9005                 .dev_addr = addr,
9006         };
9007         int rc;
9008
9009         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9010         return notifier_to_errno(rc);
9011 }
9012 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9013
9014 /**
9015  *      dev_set_mac_address - Change Media Access Control Address
9016  *      @dev: device
9017  *      @sa: new address
9018  *      @extack: netlink extended ack
9019  *
9020  *      Change the hardware (MAC) address of the device
9021  */
9022 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9023                         struct netlink_ext_ack *extack)
9024 {
9025         const struct net_device_ops *ops = dev->netdev_ops;
9026         int err;
9027
9028         if (!ops->ndo_set_mac_address)
9029                 return -EOPNOTSUPP;
9030         if (sa->sa_family != dev->type)
9031                 return -EINVAL;
9032         if (!netif_device_present(dev))
9033                 return -ENODEV;
9034         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9035         if (err)
9036                 return err;
9037         err = ops->ndo_set_mac_address(dev, sa);
9038         if (err)
9039                 return err;
9040         dev->addr_assign_type = NET_ADDR_SET;
9041         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9042         add_device_randomness(dev->dev_addr, dev->addr_len);
9043         return 0;
9044 }
9045 EXPORT_SYMBOL(dev_set_mac_address);
9046
9047 static DECLARE_RWSEM(dev_addr_sem);
9048
9049 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9050                              struct netlink_ext_ack *extack)
9051 {
9052         int ret;
9053
9054         down_write(&dev_addr_sem);
9055         ret = dev_set_mac_address(dev, sa, extack);
9056         up_write(&dev_addr_sem);
9057         return ret;
9058 }
9059 EXPORT_SYMBOL(dev_set_mac_address_user);
9060
9061 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9062 {
9063         size_t size = sizeof(sa->sa_data);
9064         struct net_device *dev;
9065         int ret = 0;
9066
9067         down_read(&dev_addr_sem);
9068         rcu_read_lock();
9069
9070         dev = dev_get_by_name_rcu(net, dev_name);
9071         if (!dev) {
9072                 ret = -ENODEV;
9073                 goto unlock;
9074         }
9075         if (!dev->addr_len)
9076                 memset(sa->sa_data, 0, size);
9077         else
9078                 memcpy(sa->sa_data, dev->dev_addr,
9079                        min_t(size_t, size, dev->addr_len));
9080         sa->sa_family = dev->type;
9081
9082 unlock:
9083         rcu_read_unlock();
9084         up_read(&dev_addr_sem);
9085         return ret;
9086 }
9087 EXPORT_SYMBOL(dev_get_mac_address);
9088
9089 /**
9090  *      dev_change_carrier - Change device carrier
9091  *      @dev: device
9092  *      @new_carrier: new value
9093  *
9094  *      Change device carrier
9095  */
9096 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9097 {
9098         const struct net_device_ops *ops = dev->netdev_ops;
9099
9100         if (!ops->ndo_change_carrier)
9101                 return -EOPNOTSUPP;
9102         if (!netif_device_present(dev))
9103                 return -ENODEV;
9104         return ops->ndo_change_carrier(dev, new_carrier);
9105 }
9106 EXPORT_SYMBOL(dev_change_carrier);
9107
9108 /**
9109  *      dev_get_phys_port_id - Get device physical port ID
9110  *      @dev: device
9111  *      @ppid: port ID
9112  *
9113  *      Get device physical port ID
9114  */
9115 int dev_get_phys_port_id(struct net_device *dev,
9116                          struct netdev_phys_item_id *ppid)
9117 {
9118         const struct net_device_ops *ops = dev->netdev_ops;
9119
9120         if (!ops->ndo_get_phys_port_id)
9121                 return -EOPNOTSUPP;
9122         return ops->ndo_get_phys_port_id(dev, ppid);
9123 }
9124 EXPORT_SYMBOL(dev_get_phys_port_id);
9125
9126 /**
9127  *      dev_get_phys_port_name - Get device physical port name
9128  *      @dev: device
9129  *      @name: port name
9130  *      @len: limit of bytes to copy to name
9131  *
9132  *      Get device physical port name
9133  */
9134 int dev_get_phys_port_name(struct net_device *dev,
9135                            char *name, size_t len)
9136 {
9137         const struct net_device_ops *ops = dev->netdev_ops;
9138         int err;
9139
9140         if (ops->ndo_get_phys_port_name) {
9141                 err = ops->ndo_get_phys_port_name(dev, name, len);
9142                 if (err != -EOPNOTSUPP)
9143                         return err;
9144         }
9145         return devlink_compat_phys_port_name_get(dev, name, len);
9146 }
9147 EXPORT_SYMBOL(dev_get_phys_port_name);
9148
9149 /**
9150  *      dev_get_port_parent_id - Get the device's port parent identifier
9151  *      @dev: network device
9152  *      @ppid: pointer to a storage for the port's parent identifier
9153  *      @recurse: allow/disallow recursion to lower devices
9154  *
9155  *      Get the devices's port parent identifier
9156  */
9157 int dev_get_port_parent_id(struct net_device *dev,
9158                            struct netdev_phys_item_id *ppid,
9159                            bool recurse)
9160 {
9161         const struct net_device_ops *ops = dev->netdev_ops;
9162         struct netdev_phys_item_id first = { };
9163         struct net_device *lower_dev;
9164         struct list_head *iter;
9165         int err;
9166
9167         if (ops->ndo_get_port_parent_id) {
9168                 err = ops->ndo_get_port_parent_id(dev, ppid);
9169                 if (err != -EOPNOTSUPP)
9170                         return err;
9171         }
9172
9173         err = devlink_compat_switch_id_get(dev, ppid);
9174         if (!err || err != -EOPNOTSUPP)
9175                 return err;
9176
9177         if (!recurse)
9178                 return -EOPNOTSUPP;
9179
9180         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9181                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9182                 if (err)
9183                         break;
9184                 if (!first.id_len)
9185                         first = *ppid;
9186                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9187                         return -EOPNOTSUPP;
9188         }
9189
9190         return err;
9191 }
9192 EXPORT_SYMBOL(dev_get_port_parent_id);
9193
9194 /**
9195  *      netdev_port_same_parent_id - Indicate if two network devices have
9196  *      the same port parent identifier
9197  *      @a: first network device
9198  *      @b: second network device
9199  */
9200 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9201 {
9202         struct netdev_phys_item_id a_id = { };
9203         struct netdev_phys_item_id b_id = { };
9204
9205         if (dev_get_port_parent_id(a, &a_id, true) ||
9206             dev_get_port_parent_id(b, &b_id, true))
9207                 return false;
9208
9209         return netdev_phys_item_id_same(&a_id, &b_id);
9210 }
9211 EXPORT_SYMBOL(netdev_port_same_parent_id);
9212
9213 /**
9214  *      dev_change_proto_down - update protocol port state information
9215  *      @dev: device
9216  *      @proto_down: new value
9217  *
9218  *      This info can be used by switch drivers to set the phys state of the
9219  *      port.
9220  */
9221 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9222 {
9223         const struct net_device_ops *ops = dev->netdev_ops;
9224
9225         if (!ops->ndo_change_proto_down)
9226                 return -EOPNOTSUPP;
9227         if (!netif_device_present(dev))
9228                 return -ENODEV;
9229         return ops->ndo_change_proto_down(dev, proto_down);
9230 }
9231 EXPORT_SYMBOL(dev_change_proto_down);
9232
9233 /**
9234  *      dev_change_proto_down_generic - generic implementation for
9235  *      ndo_change_proto_down that sets carrier according to
9236  *      proto_down.
9237  *
9238  *      @dev: device
9239  *      @proto_down: new value
9240  */
9241 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9242 {
9243         if (proto_down)
9244                 netif_carrier_off(dev);
9245         else
9246                 netif_carrier_on(dev);
9247         dev->proto_down = proto_down;
9248         return 0;
9249 }
9250 EXPORT_SYMBOL(dev_change_proto_down_generic);
9251
9252 /**
9253  *      dev_change_proto_down_reason - proto down reason
9254  *
9255  *      @dev: device
9256  *      @mask: proto down mask
9257  *      @value: proto down value
9258  */
9259 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9260                                   u32 value)
9261 {
9262         int b;
9263
9264         if (!mask) {
9265                 dev->proto_down_reason = value;
9266         } else {
9267                 for_each_set_bit(b, &mask, 32) {
9268                         if (value & (1 << b))
9269                                 dev->proto_down_reason |= BIT(b);
9270                         else
9271                                 dev->proto_down_reason &= ~BIT(b);
9272                 }
9273         }
9274 }
9275 EXPORT_SYMBOL(dev_change_proto_down_reason);
9276
9277 struct bpf_xdp_link {
9278         struct bpf_link link;
9279         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9280         int flags;
9281 };
9282
9283 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9284 {
9285         if (flags & XDP_FLAGS_HW_MODE)
9286                 return XDP_MODE_HW;
9287         if (flags & XDP_FLAGS_DRV_MODE)
9288                 return XDP_MODE_DRV;
9289         if (flags & XDP_FLAGS_SKB_MODE)
9290                 return XDP_MODE_SKB;
9291         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9292 }
9293
9294 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9295 {
9296         switch (mode) {
9297         case XDP_MODE_SKB:
9298                 return generic_xdp_install;
9299         case XDP_MODE_DRV:
9300         case XDP_MODE_HW:
9301                 return dev->netdev_ops->ndo_bpf;
9302         default:
9303                 return NULL;
9304         }
9305 }
9306
9307 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9308                                          enum bpf_xdp_mode mode)
9309 {
9310         return dev->xdp_state[mode].link;
9311 }
9312
9313 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9314                                      enum bpf_xdp_mode mode)
9315 {
9316         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9317
9318         if (link)
9319                 return link->link.prog;
9320         return dev->xdp_state[mode].prog;
9321 }
9322
9323 u8 dev_xdp_prog_count(struct net_device *dev)
9324 {
9325         u8 count = 0;
9326         int i;
9327
9328         for (i = 0; i < __MAX_XDP_MODE; i++)
9329                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9330                         count++;
9331         return count;
9332 }
9333 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9334
9335 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9336 {
9337         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9338
9339         return prog ? prog->aux->id : 0;
9340 }
9341
9342 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9343                              struct bpf_xdp_link *link)
9344 {
9345         dev->xdp_state[mode].link = link;
9346         dev->xdp_state[mode].prog = NULL;
9347 }
9348
9349 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9350                              struct bpf_prog *prog)
9351 {
9352         dev->xdp_state[mode].link = NULL;
9353         dev->xdp_state[mode].prog = prog;
9354 }
9355
9356 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9357                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9358                            u32 flags, struct bpf_prog *prog)
9359 {
9360         struct netdev_bpf xdp;
9361         int err;
9362
9363         memset(&xdp, 0, sizeof(xdp));
9364         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9365         xdp.extack = extack;
9366         xdp.flags = flags;
9367         xdp.prog = prog;
9368
9369         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9370          * "moved" into driver), so they don't increment it on their own, but
9371          * they do decrement refcnt when program is detached or replaced.
9372          * Given net_device also owns link/prog, we need to bump refcnt here
9373          * to prevent drivers from underflowing it.
9374          */
9375         if (prog)
9376                 bpf_prog_inc(prog);
9377         err = bpf_op(dev, &xdp);
9378         if (err) {
9379                 if (prog)
9380                         bpf_prog_put(prog);
9381                 return err;
9382         }
9383
9384         if (mode != XDP_MODE_HW)
9385                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9386
9387         return 0;
9388 }
9389
9390 static void dev_xdp_uninstall(struct net_device *dev)
9391 {
9392         struct bpf_xdp_link *link;
9393         struct bpf_prog *prog;
9394         enum bpf_xdp_mode mode;
9395         bpf_op_t bpf_op;
9396
9397         ASSERT_RTNL();
9398
9399         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9400                 prog = dev_xdp_prog(dev, mode);
9401                 if (!prog)
9402                         continue;
9403
9404                 bpf_op = dev_xdp_bpf_op(dev, mode);
9405                 if (!bpf_op)
9406                         continue;
9407
9408                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9409
9410                 /* auto-detach link from net device */
9411                 link = dev_xdp_link(dev, mode);
9412                 if (link)
9413                         link->dev = NULL;
9414                 else
9415                         bpf_prog_put(prog);
9416
9417                 dev_xdp_set_link(dev, mode, NULL);
9418         }
9419 }
9420
9421 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9422                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9423                           struct bpf_prog *old_prog, u32 flags)
9424 {
9425         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9426         struct bpf_prog *cur_prog;
9427         struct net_device *upper;
9428         struct list_head *iter;
9429         enum bpf_xdp_mode mode;
9430         bpf_op_t bpf_op;
9431         int err;
9432
9433         ASSERT_RTNL();
9434
9435         /* either link or prog attachment, never both */
9436         if (link && (new_prog || old_prog))
9437                 return -EINVAL;
9438         /* link supports only XDP mode flags */
9439         if (link && (flags & ~XDP_FLAGS_MODES)) {
9440                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9441                 return -EINVAL;
9442         }
9443         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9444         if (num_modes > 1) {
9445                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9446                 return -EINVAL;
9447         }
9448         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9449         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9450                 NL_SET_ERR_MSG(extack,
9451                                "More than one program loaded, unset mode is ambiguous");
9452                 return -EINVAL;
9453         }
9454         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9455         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9456                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9457                 return -EINVAL;
9458         }
9459
9460         mode = dev_xdp_mode(dev, flags);
9461         /* can't replace attached link */
9462         if (dev_xdp_link(dev, mode)) {
9463                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9464                 return -EBUSY;
9465         }
9466
9467         /* don't allow if an upper device already has a program */
9468         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9469                 if (dev_xdp_prog_count(upper) > 0) {
9470                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9471                         return -EEXIST;
9472                 }
9473         }
9474
9475         cur_prog = dev_xdp_prog(dev, mode);
9476         /* can't replace attached prog with link */
9477         if (link && cur_prog) {
9478                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9479                 return -EBUSY;
9480         }
9481         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9482                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9483                 return -EEXIST;
9484         }
9485
9486         /* put effective new program into new_prog */
9487         if (link)
9488                 new_prog = link->link.prog;
9489
9490         if (new_prog) {
9491                 bool offload = mode == XDP_MODE_HW;
9492                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9493                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9494
9495                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9496                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9497                         return -EBUSY;
9498                 }
9499                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9500                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9501                         return -EEXIST;
9502                 }
9503                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9504                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9505                         return -EINVAL;
9506                 }
9507                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9508                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9509                         return -EINVAL;
9510                 }
9511                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9512                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9513                         return -EINVAL;
9514                 }
9515         }
9516
9517         /* don't call drivers if the effective program didn't change */
9518         if (new_prog != cur_prog) {
9519                 bpf_op = dev_xdp_bpf_op(dev, mode);
9520                 if (!bpf_op) {
9521                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9522                         return -EOPNOTSUPP;
9523                 }
9524
9525                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9526                 if (err)
9527                         return err;
9528         }
9529
9530         if (link)
9531                 dev_xdp_set_link(dev, mode, link);
9532         else
9533                 dev_xdp_set_prog(dev, mode, new_prog);
9534         if (cur_prog)
9535                 bpf_prog_put(cur_prog);
9536
9537         return 0;
9538 }
9539
9540 static int dev_xdp_attach_link(struct net_device *dev,
9541                                struct netlink_ext_ack *extack,
9542                                struct bpf_xdp_link *link)
9543 {
9544         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9545 }
9546
9547 static int dev_xdp_detach_link(struct net_device *dev,
9548                                struct netlink_ext_ack *extack,
9549                                struct bpf_xdp_link *link)
9550 {
9551         enum bpf_xdp_mode mode;
9552         bpf_op_t bpf_op;
9553
9554         ASSERT_RTNL();
9555
9556         mode = dev_xdp_mode(dev, link->flags);
9557         if (dev_xdp_link(dev, mode) != link)
9558                 return -EINVAL;
9559
9560         bpf_op = dev_xdp_bpf_op(dev, mode);
9561         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9562         dev_xdp_set_link(dev, mode, NULL);
9563         return 0;
9564 }
9565
9566 static void bpf_xdp_link_release(struct bpf_link *link)
9567 {
9568         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9569
9570         rtnl_lock();
9571
9572         /* if racing with net_device's tear down, xdp_link->dev might be
9573          * already NULL, in which case link was already auto-detached
9574          */
9575         if (xdp_link->dev) {
9576                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9577                 xdp_link->dev = NULL;
9578         }
9579
9580         rtnl_unlock();
9581 }
9582
9583 static int bpf_xdp_link_detach(struct bpf_link *link)
9584 {
9585         bpf_xdp_link_release(link);
9586         return 0;
9587 }
9588
9589 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9590 {
9591         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9592
9593         kfree(xdp_link);
9594 }
9595
9596 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9597                                      struct seq_file *seq)
9598 {
9599         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9600         u32 ifindex = 0;
9601
9602         rtnl_lock();
9603         if (xdp_link->dev)
9604                 ifindex = xdp_link->dev->ifindex;
9605         rtnl_unlock();
9606
9607         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9608 }
9609
9610 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9611                                        struct bpf_link_info *info)
9612 {
9613         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9614         u32 ifindex = 0;
9615
9616         rtnl_lock();
9617         if (xdp_link->dev)
9618                 ifindex = xdp_link->dev->ifindex;
9619         rtnl_unlock();
9620
9621         info->xdp.ifindex = ifindex;
9622         return 0;
9623 }
9624
9625 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9626                                struct bpf_prog *old_prog)
9627 {
9628         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9629         enum bpf_xdp_mode mode;
9630         bpf_op_t bpf_op;
9631         int err = 0;
9632
9633         rtnl_lock();
9634
9635         /* link might have been auto-released already, so fail */
9636         if (!xdp_link->dev) {
9637                 err = -ENOLINK;
9638                 goto out_unlock;
9639         }
9640
9641         if (old_prog && link->prog != old_prog) {
9642                 err = -EPERM;
9643                 goto out_unlock;
9644         }
9645         old_prog = link->prog;
9646         if (old_prog->type != new_prog->type ||
9647             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9648                 err = -EINVAL;
9649                 goto out_unlock;
9650         }
9651
9652         if (old_prog == new_prog) {
9653                 /* no-op, don't disturb drivers */
9654                 bpf_prog_put(new_prog);
9655                 goto out_unlock;
9656         }
9657
9658         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9659         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9660         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9661                               xdp_link->flags, new_prog);
9662         if (err)
9663                 goto out_unlock;
9664
9665         old_prog = xchg(&link->prog, new_prog);
9666         bpf_prog_put(old_prog);
9667
9668 out_unlock:
9669         rtnl_unlock();
9670         return err;
9671 }
9672
9673 static const struct bpf_link_ops bpf_xdp_link_lops = {
9674         .release = bpf_xdp_link_release,
9675         .dealloc = bpf_xdp_link_dealloc,
9676         .detach = bpf_xdp_link_detach,
9677         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9678         .fill_link_info = bpf_xdp_link_fill_link_info,
9679         .update_prog = bpf_xdp_link_update,
9680 };
9681
9682 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9683 {
9684         struct net *net = current->nsproxy->net_ns;
9685         struct bpf_link_primer link_primer;
9686         struct bpf_xdp_link *link;
9687         struct net_device *dev;
9688         int err, fd;
9689
9690         rtnl_lock();
9691         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9692         if (!dev) {
9693                 rtnl_unlock();
9694                 return -EINVAL;
9695         }
9696
9697         link = kzalloc(sizeof(*link), GFP_USER);
9698         if (!link) {
9699                 err = -ENOMEM;
9700                 goto unlock;
9701         }
9702
9703         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9704         link->dev = dev;
9705         link->flags = attr->link_create.flags;
9706
9707         err = bpf_link_prime(&link->link, &link_primer);
9708         if (err) {
9709                 kfree(link);
9710                 goto unlock;
9711         }
9712
9713         err = dev_xdp_attach_link(dev, NULL, link);
9714         rtnl_unlock();
9715
9716         if (err) {
9717                 link->dev = NULL;
9718                 bpf_link_cleanup(&link_primer);
9719                 goto out_put_dev;
9720         }
9721
9722         fd = bpf_link_settle(&link_primer);
9723         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9724         dev_put(dev);
9725         return fd;
9726
9727 unlock:
9728         rtnl_unlock();
9729
9730 out_put_dev:
9731         dev_put(dev);
9732         return err;
9733 }
9734
9735 /**
9736  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9737  *      @dev: device
9738  *      @extack: netlink extended ack
9739  *      @fd: new program fd or negative value to clear
9740  *      @expected_fd: old program fd that userspace expects to replace or clear
9741  *      @flags: xdp-related flags
9742  *
9743  *      Set or clear a bpf program for a device
9744  */
9745 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9746                       int fd, int expected_fd, u32 flags)
9747 {
9748         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9749         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9750         int err;
9751
9752         ASSERT_RTNL();
9753
9754         if (fd >= 0) {
9755                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9756                                                  mode != XDP_MODE_SKB);
9757                 if (IS_ERR(new_prog))
9758                         return PTR_ERR(new_prog);
9759         }
9760
9761         if (expected_fd >= 0) {
9762                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9763                                                  mode != XDP_MODE_SKB);
9764                 if (IS_ERR(old_prog)) {
9765                         err = PTR_ERR(old_prog);
9766                         old_prog = NULL;
9767                         goto err_out;
9768                 }
9769         }
9770
9771         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9772
9773 err_out:
9774         if (err && new_prog)
9775                 bpf_prog_put(new_prog);
9776         if (old_prog)
9777                 bpf_prog_put(old_prog);
9778         return err;
9779 }
9780
9781 /**
9782  *      dev_new_index   -       allocate an ifindex
9783  *      @net: the applicable net namespace
9784  *
9785  *      Returns a suitable unique value for a new device interface
9786  *      number.  The caller must hold the rtnl semaphore or the
9787  *      dev_base_lock to be sure it remains unique.
9788  */
9789 static int dev_new_index(struct net *net)
9790 {
9791         int ifindex = net->ifindex;
9792
9793         for (;;) {
9794                 if (++ifindex <= 0)
9795                         ifindex = 1;
9796                 if (!__dev_get_by_index(net, ifindex))
9797                         return net->ifindex = ifindex;
9798         }
9799 }
9800
9801 /* Delayed registration/unregisteration */
9802 static LIST_HEAD(net_todo_list);
9803 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9804
9805 static void net_set_todo(struct net_device *dev)
9806 {
9807         list_add_tail(&dev->todo_list, &net_todo_list);
9808         dev_net(dev)->dev_unreg_count++;
9809 }
9810
9811 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9812         struct net_device *upper, netdev_features_t features)
9813 {
9814         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9815         netdev_features_t feature;
9816         int feature_bit;
9817
9818         for_each_netdev_feature(upper_disables, feature_bit) {
9819                 feature = __NETIF_F_BIT(feature_bit);
9820                 if (!(upper->wanted_features & feature)
9821                     && (features & feature)) {
9822                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9823                                    &feature, upper->name);
9824                         features &= ~feature;
9825                 }
9826         }
9827
9828         return features;
9829 }
9830
9831 static void netdev_sync_lower_features(struct net_device *upper,
9832         struct net_device *lower, netdev_features_t features)
9833 {
9834         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9835         netdev_features_t feature;
9836         int feature_bit;
9837
9838         for_each_netdev_feature(upper_disables, feature_bit) {
9839                 feature = __NETIF_F_BIT(feature_bit);
9840                 if (!(features & feature) && (lower->features & feature)) {
9841                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9842                                    &feature, lower->name);
9843                         lower->wanted_features &= ~feature;
9844                         __netdev_update_features(lower);
9845
9846                         if (unlikely(lower->features & feature))
9847                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9848                                             &feature, lower->name);
9849                         else
9850                                 netdev_features_change(lower);
9851                 }
9852         }
9853 }
9854
9855 static netdev_features_t netdev_fix_features(struct net_device *dev,
9856         netdev_features_t features)
9857 {
9858         /* Fix illegal checksum combinations */
9859         if ((features & NETIF_F_HW_CSUM) &&
9860             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9861                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9862                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9863         }
9864
9865         /* TSO requires that SG is present as well. */
9866         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9867                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9868                 features &= ~NETIF_F_ALL_TSO;
9869         }
9870
9871         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9872                                         !(features & NETIF_F_IP_CSUM)) {
9873                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9874                 features &= ~NETIF_F_TSO;
9875                 features &= ~NETIF_F_TSO_ECN;
9876         }
9877
9878         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9879                                          !(features & NETIF_F_IPV6_CSUM)) {
9880                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9881                 features &= ~NETIF_F_TSO6;
9882         }
9883
9884         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9885         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9886                 features &= ~NETIF_F_TSO_MANGLEID;
9887
9888         /* TSO ECN requires that TSO is present as well. */
9889         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9890                 features &= ~NETIF_F_TSO_ECN;
9891
9892         /* Software GSO depends on SG. */
9893         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9894                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9895                 features &= ~NETIF_F_GSO;
9896         }
9897
9898         /* GSO partial features require GSO partial be set */
9899         if ((features & dev->gso_partial_features) &&
9900             !(features & NETIF_F_GSO_PARTIAL)) {
9901                 netdev_dbg(dev,
9902                            "Dropping partially supported GSO features since no GSO partial.\n");
9903                 features &= ~dev->gso_partial_features;
9904         }
9905
9906         if (!(features & NETIF_F_RXCSUM)) {
9907                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9908                  * successfully merged by hardware must also have the
9909                  * checksum verified by hardware.  If the user does not
9910                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9911                  */
9912                 if (features & NETIF_F_GRO_HW) {
9913                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9914                         features &= ~NETIF_F_GRO_HW;
9915                 }
9916         }
9917
9918         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9919         if (features & NETIF_F_RXFCS) {
9920                 if (features & NETIF_F_LRO) {
9921                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9922                         features &= ~NETIF_F_LRO;
9923                 }
9924
9925                 if (features & NETIF_F_GRO_HW) {
9926                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9927                         features &= ~NETIF_F_GRO_HW;
9928                 }
9929         }
9930
9931         if (features & NETIF_F_HW_TLS_TX) {
9932                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9933                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9934                 bool hw_csum = features & NETIF_F_HW_CSUM;
9935
9936                 if (!ip_csum && !hw_csum) {
9937                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9938                         features &= ~NETIF_F_HW_TLS_TX;
9939                 }
9940         }
9941
9942         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9943                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9944                 features &= ~NETIF_F_HW_TLS_RX;
9945         }
9946
9947         return features;
9948 }
9949
9950 int __netdev_update_features(struct net_device *dev)
9951 {
9952         struct net_device *upper, *lower;
9953         netdev_features_t features;
9954         struct list_head *iter;
9955         int err = -1;
9956
9957         ASSERT_RTNL();
9958
9959         features = netdev_get_wanted_features(dev);
9960
9961         if (dev->netdev_ops->ndo_fix_features)
9962                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9963
9964         /* driver might be less strict about feature dependencies */
9965         features = netdev_fix_features(dev, features);
9966
9967         /* some features can't be enabled if they're off on an upper device */
9968         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9969                 features = netdev_sync_upper_features(dev, upper, features);
9970
9971         if (dev->features == features)
9972                 goto sync_lower;
9973
9974         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9975                 &dev->features, &features);
9976
9977         if (dev->netdev_ops->ndo_set_features)
9978                 err = dev->netdev_ops->ndo_set_features(dev, features);
9979         else
9980                 err = 0;
9981
9982         if (unlikely(err < 0)) {
9983                 netdev_err(dev,
9984                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9985                         err, &features, &dev->features);
9986                 /* return non-0 since some features might have changed and
9987                  * it's better to fire a spurious notification than miss it
9988                  */
9989                 return -1;
9990         }
9991
9992 sync_lower:
9993         /* some features must be disabled on lower devices when disabled
9994          * on an upper device (think: bonding master or bridge)
9995          */
9996         netdev_for_each_lower_dev(dev, lower, iter)
9997                 netdev_sync_lower_features(dev, lower, features);
9998
9999         if (!err) {
10000                 netdev_features_t diff = features ^ dev->features;
10001
10002                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10003                         /* udp_tunnel_{get,drop}_rx_info both need
10004                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10005                          * device, or they won't do anything.
10006                          * Thus we need to update dev->features
10007                          * *before* calling udp_tunnel_get_rx_info,
10008                          * but *after* calling udp_tunnel_drop_rx_info.
10009                          */
10010                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10011                                 dev->features = features;
10012                                 udp_tunnel_get_rx_info(dev);
10013                         } else {
10014                                 udp_tunnel_drop_rx_info(dev);
10015                         }
10016                 }
10017
10018                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10019                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10020                                 dev->features = features;
10021                                 err |= vlan_get_rx_ctag_filter_info(dev);
10022                         } else {
10023                                 vlan_drop_rx_ctag_filter_info(dev);
10024                         }
10025                 }
10026
10027                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10028                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10029                                 dev->features = features;
10030                                 err |= vlan_get_rx_stag_filter_info(dev);
10031                         } else {
10032                                 vlan_drop_rx_stag_filter_info(dev);
10033                         }
10034                 }
10035
10036                 dev->features = features;
10037         }
10038
10039         return err < 0 ? 0 : 1;
10040 }
10041
10042 /**
10043  *      netdev_update_features - recalculate device features
10044  *      @dev: the device to check
10045  *
10046  *      Recalculate dev->features set and send notifications if it
10047  *      has changed. Should be called after driver or hardware dependent
10048  *      conditions might have changed that influence the features.
10049  */
10050 void netdev_update_features(struct net_device *dev)
10051 {
10052         if (__netdev_update_features(dev))
10053                 netdev_features_change(dev);
10054 }
10055 EXPORT_SYMBOL(netdev_update_features);
10056
10057 /**
10058  *      netdev_change_features - recalculate device features
10059  *      @dev: the device to check
10060  *
10061  *      Recalculate dev->features set and send notifications even
10062  *      if they have not changed. Should be called instead of
10063  *      netdev_update_features() if also dev->vlan_features might
10064  *      have changed to allow the changes to be propagated to stacked
10065  *      VLAN devices.
10066  */
10067 void netdev_change_features(struct net_device *dev)
10068 {
10069         __netdev_update_features(dev);
10070         netdev_features_change(dev);
10071 }
10072 EXPORT_SYMBOL(netdev_change_features);
10073
10074 /**
10075  *      netif_stacked_transfer_operstate -      transfer operstate
10076  *      @rootdev: the root or lower level device to transfer state from
10077  *      @dev: the device to transfer operstate to
10078  *
10079  *      Transfer operational state from root to device. This is normally
10080  *      called when a stacking relationship exists between the root
10081  *      device and the device(a leaf device).
10082  */
10083 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10084                                         struct net_device *dev)
10085 {
10086         if (rootdev->operstate == IF_OPER_DORMANT)
10087                 netif_dormant_on(dev);
10088         else
10089                 netif_dormant_off(dev);
10090
10091         if (rootdev->operstate == IF_OPER_TESTING)
10092                 netif_testing_on(dev);
10093         else
10094                 netif_testing_off(dev);
10095
10096         if (netif_carrier_ok(rootdev))
10097                 netif_carrier_on(dev);
10098         else
10099                 netif_carrier_off(dev);
10100 }
10101 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10102
10103 static int netif_alloc_rx_queues(struct net_device *dev)
10104 {
10105         unsigned int i, count = dev->num_rx_queues;
10106         struct netdev_rx_queue *rx;
10107         size_t sz = count * sizeof(*rx);
10108         int err = 0;
10109
10110         BUG_ON(count < 1);
10111
10112         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10113         if (!rx)
10114                 return -ENOMEM;
10115
10116         dev->_rx = rx;
10117
10118         for (i = 0; i < count; i++) {
10119                 rx[i].dev = dev;
10120
10121                 /* XDP RX-queue setup */
10122                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10123                 if (err < 0)
10124                         goto err_rxq_info;
10125         }
10126         return 0;
10127
10128 err_rxq_info:
10129         /* Rollback successful reg's and free other resources */
10130         while (i--)
10131                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10132         kvfree(dev->_rx);
10133         dev->_rx = NULL;
10134         return err;
10135 }
10136
10137 static void netif_free_rx_queues(struct net_device *dev)
10138 {
10139         unsigned int i, count = dev->num_rx_queues;
10140
10141         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10142         if (!dev->_rx)
10143                 return;
10144
10145         for (i = 0; i < count; i++)
10146                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10147
10148         kvfree(dev->_rx);
10149 }
10150
10151 static void netdev_init_one_queue(struct net_device *dev,
10152                                   struct netdev_queue *queue, void *_unused)
10153 {
10154         /* Initialize queue lock */
10155         spin_lock_init(&queue->_xmit_lock);
10156         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10157         queue->xmit_lock_owner = -1;
10158         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10159         queue->dev = dev;
10160 #ifdef CONFIG_BQL
10161         dql_init(&queue->dql, HZ);
10162 #endif
10163 }
10164
10165 static void netif_free_tx_queues(struct net_device *dev)
10166 {
10167         kvfree(dev->_tx);
10168 }
10169
10170 static int netif_alloc_netdev_queues(struct net_device *dev)
10171 {
10172         unsigned int count = dev->num_tx_queues;
10173         struct netdev_queue *tx;
10174         size_t sz = count * sizeof(*tx);
10175
10176         if (count < 1 || count > 0xffff)
10177                 return -EINVAL;
10178
10179         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10180         if (!tx)
10181                 return -ENOMEM;
10182
10183         dev->_tx = tx;
10184
10185         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10186         spin_lock_init(&dev->tx_global_lock);
10187
10188         return 0;
10189 }
10190
10191 void netif_tx_stop_all_queues(struct net_device *dev)
10192 {
10193         unsigned int i;
10194
10195         for (i = 0; i < dev->num_tx_queues; i++) {
10196                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10197
10198                 netif_tx_stop_queue(txq);
10199         }
10200 }
10201 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10202
10203 /**
10204  *      register_netdevice      - register a network device
10205  *      @dev: device to register
10206  *
10207  *      Take a completed network device structure and add it to the kernel
10208  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10209  *      chain. 0 is returned on success. A negative errno code is returned
10210  *      on a failure to set up the device, or if the name is a duplicate.
10211  *
10212  *      Callers must hold the rtnl semaphore. You may want
10213  *      register_netdev() instead of this.
10214  *
10215  *      BUGS:
10216  *      The locking appears insufficient to guarantee two parallel registers
10217  *      will not get the same name.
10218  */
10219
10220 int register_netdevice(struct net_device *dev)
10221 {
10222         int ret;
10223         struct net *net = dev_net(dev);
10224
10225         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10226                      NETDEV_FEATURE_COUNT);
10227         BUG_ON(dev_boot_phase);
10228         ASSERT_RTNL();
10229
10230         might_sleep();
10231
10232         /* When net_device's are persistent, this will be fatal. */
10233         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10234         BUG_ON(!net);
10235
10236         ret = ethtool_check_ops(dev->ethtool_ops);
10237         if (ret)
10238                 return ret;
10239
10240         spin_lock_init(&dev->addr_list_lock);
10241         netdev_set_addr_lockdep_class(dev);
10242
10243         ret = dev_get_valid_name(net, dev, dev->name);
10244         if (ret < 0)
10245                 goto out;
10246
10247         ret = -ENOMEM;
10248         dev->name_node = netdev_name_node_head_alloc(dev);
10249         if (!dev->name_node)
10250                 goto out;
10251
10252         /* Init, if this function is available */
10253         if (dev->netdev_ops->ndo_init) {
10254                 ret = dev->netdev_ops->ndo_init(dev);
10255                 if (ret) {
10256                         if (ret > 0)
10257                                 ret = -EIO;
10258                         goto err_free_name;
10259                 }
10260         }
10261
10262         if (((dev->hw_features | dev->features) &
10263              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10264             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10265              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10266                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10267                 ret = -EINVAL;
10268                 goto err_uninit;
10269         }
10270
10271         ret = -EBUSY;
10272         if (!dev->ifindex)
10273                 dev->ifindex = dev_new_index(net);
10274         else if (__dev_get_by_index(net, dev->ifindex))
10275                 goto err_uninit;
10276
10277         /* Transfer changeable features to wanted_features and enable
10278          * software offloads (GSO and GRO).
10279          */
10280         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10281         dev->features |= NETIF_F_SOFT_FEATURES;
10282
10283         if (dev->udp_tunnel_nic_info) {
10284                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10285                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10286         }
10287
10288         dev->wanted_features = dev->features & dev->hw_features;
10289
10290         if (!(dev->flags & IFF_LOOPBACK))
10291                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10292
10293         /* If IPv4 TCP segmentation offload is supported we should also
10294          * allow the device to enable segmenting the frame with the option
10295          * of ignoring a static IP ID value.  This doesn't enable the
10296          * feature itself but allows the user to enable it later.
10297          */
10298         if (dev->hw_features & NETIF_F_TSO)
10299                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10300         if (dev->vlan_features & NETIF_F_TSO)
10301                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10302         if (dev->mpls_features & NETIF_F_TSO)
10303                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10304         if (dev->hw_enc_features & NETIF_F_TSO)
10305                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10306
10307         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10308          */
10309         dev->vlan_features |= NETIF_F_HIGHDMA;
10310
10311         /* Make NETIF_F_SG inheritable to tunnel devices.
10312          */
10313         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10314
10315         /* Make NETIF_F_SG inheritable to MPLS.
10316          */
10317         dev->mpls_features |= NETIF_F_SG;
10318
10319         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10320         ret = notifier_to_errno(ret);
10321         if (ret)
10322                 goto err_uninit;
10323
10324         ret = netdev_register_kobject(dev);
10325         write_lock(&dev_base_lock);
10326         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10327         write_unlock(&dev_base_lock);
10328         if (ret)
10329                 goto err_uninit;
10330
10331         __netdev_update_features(dev);
10332
10333         /*
10334          *      Default initial state at registry is that the
10335          *      device is present.
10336          */
10337
10338         set_bit(__LINK_STATE_PRESENT, &dev->state);
10339
10340         linkwatch_init_dev(dev);
10341
10342         dev_init_scheduler(dev);
10343         dev_hold(dev);
10344         list_netdevice(dev);
10345         add_device_randomness(dev->dev_addr, dev->addr_len);
10346
10347         /* If the device has permanent device address, driver should
10348          * set dev_addr and also addr_assign_type should be set to
10349          * NET_ADDR_PERM (default value).
10350          */
10351         if (dev->addr_assign_type == NET_ADDR_PERM)
10352                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10353
10354         /* Notify protocols, that a new device appeared. */
10355         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10356         ret = notifier_to_errno(ret);
10357         if (ret) {
10358                 /* Expect explicit free_netdev() on failure */
10359                 dev->needs_free_netdev = false;
10360                 unregister_netdevice_queue(dev, NULL);
10361                 goto out;
10362         }
10363         /*
10364          *      Prevent userspace races by waiting until the network
10365          *      device is fully setup before sending notifications.
10366          */
10367         if (!dev->rtnl_link_ops ||
10368             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10369                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10370
10371 out:
10372         return ret;
10373
10374 err_uninit:
10375         if (dev->netdev_ops->ndo_uninit)
10376                 dev->netdev_ops->ndo_uninit(dev);
10377         if (dev->priv_destructor)
10378                 dev->priv_destructor(dev);
10379 err_free_name:
10380         netdev_name_node_free(dev->name_node);
10381         goto out;
10382 }
10383 EXPORT_SYMBOL(register_netdevice);
10384
10385 /**
10386  *      init_dummy_netdev       - init a dummy network device for NAPI
10387  *      @dev: device to init
10388  *
10389  *      This takes a network device structure and initialize the minimum
10390  *      amount of fields so it can be used to schedule NAPI polls without
10391  *      registering a full blown interface. This is to be used by drivers
10392  *      that need to tie several hardware interfaces to a single NAPI
10393  *      poll scheduler due to HW limitations.
10394  */
10395 int init_dummy_netdev(struct net_device *dev)
10396 {
10397         /* Clear everything. Note we don't initialize spinlocks
10398          * are they aren't supposed to be taken by any of the
10399          * NAPI code and this dummy netdev is supposed to be
10400          * only ever used for NAPI polls
10401          */
10402         memset(dev, 0, sizeof(struct net_device));
10403
10404         /* make sure we BUG if trying to hit standard
10405          * register/unregister code path
10406          */
10407         dev->reg_state = NETREG_DUMMY;
10408
10409         /* NAPI wants this */
10410         INIT_LIST_HEAD(&dev->napi_list);
10411
10412         /* a dummy interface is started by default */
10413         set_bit(__LINK_STATE_PRESENT, &dev->state);
10414         set_bit(__LINK_STATE_START, &dev->state);
10415
10416         /* napi_busy_loop stats accounting wants this */
10417         dev_net_set(dev, &init_net);
10418
10419         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10420          * because users of this 'device' dont need to change
10421          * its refcount.
10422          */
10423
10424         return 0;
10425 }
10426 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10427
10428
10429 /**
10430  *      register_netdev - register a network device
10431  *      @dev: device to register
10432  *
10433  *      Take a completed network device structure and add it to the kernel
10434  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10435  *      chain. 0 is returned on success. A negative errno code is returned
10436  *      on a failure to set up the device, or if the name is a duplicate.
10437  *
10438  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10439  *      and expands the device name if you passed a format string to
10440  *      alloc_netdev.
10441  */
10442 int register_netdev(struct net_device *dev)
10443 {
10444         int err;
10445
10446         if (rtnl_lock_killable())
10447                 return -EINTR;
10448         err = register_netdevice(dev);
10449         rtnl_unlock();
10450         return err;
10451 }
10452 EXPORT_SYMBOL(register_netdev);
10453
10454 int netdev_refcnt_read(const struct net_device *dev)
10455 {
10456 #ifdef CONFIG_PCPU_DEV_REFCNT
10457         int i, refcnt = 0;
10458
10459         for_each_possible_cpu(i)
10460                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10461         return refcnt;
10462 #else
10463         return refcount_read(&dev->dev_refcnt);
10464 #endif
10465 }
10466 EXPORT_SYMBOL(netdev_refcnt_read);
10467
10468 int netdev_unregister_timeout_secs __read_mostly = 10;
10469
10470 #define WAIT_REFS_MIN_MSECS 1
10471 #define WAIT_REFS_MAX_MSECS 250
10472 /**
10473  * netdev_wait_allrefs - wait until all references are gone.
10474  * @dev: target net_device
10475  *
10476  * This is called when unregistering network devices.
10477  *
10478  * Any protocol or device that holds a reference should register
10479  * for netdevice notification, and cleanup and put back the
10480  * reference if they receive an UNREGISTER event.
10481  * We can get stuck here if buggy protocols don't correctly
10482  * call dev_put.
10483  */
10484 static void netdev_wait_allrefs(struct net_device *dev)
10485 {
10486         unsigned long rebroadcast_time, warning_time;
10487         int wait = 0, refcnt;
10488
10489         rebroadcast_time = warning_time = jiffies;
10490         refcnt = netdev_refcnt_read(dev);
10491
10492         while (refcnt != 1) {
10493                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10494                         rtnl_lock();
10495
10496                         /* Rebroadcast unregister notification */
10497                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10498
10499                         __rtnl_unlock();
10500                         rcu_barrier();
10501                         rtnl_lock();
10502
10503                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10504                                      &dev->state)) {
10505                                 /* We must not have linkwatch events
10506                                  * pending on unregister. If this
10507                                  * happens, we simply run the queue
10508                                  * unscheduled, resulting in a noop
10509                                  * for this device.
10510                                  */
10511                                 linkwatch_run_queue();
10512                         }
10513
10514                         __rtnl_unlock();
10515
10516                         rebroadcast_time = jiffies;
10517                 }
10518
10519                 if (!wait) {
10520                         rcu_barrier();
10521                         wait = WAIT_REFS_MIN_MSECS;
10522                 } else {
10523                         msleep(wait);
10524                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10525                 }
10526
10527                 refcnt = netdev_refcnt_read(dev);
10528
10529                 if (refcnt != 1 &&
10530                     time_after(jiffies, warning_time +
10531                                netdev_unregister_timeout_secs * HZ)) {
10532                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10533                                  dev->name, refcnt);
10534                         warning_time = jiffies;
10535                 }
10536         }
10537 }
10538
10539 /* The sequence is:
10540  *
10541  *      rtnl_lock();
10542  *      ...
10543  *      register_netdevice(x1);
10544  *      register_netdevice(x2);
10545  *      ...
10546  *      unregister_netdevice(y1);
10547  *      unregister_netdevice(y2);
10548  *      ...
10549  *      rtnl_unlock();
10550  *      free_netdev(y1);
10551  *      free_netdev(y2);
10552  *
10553  * We are invoked by rtnl_unlock().
10554  * This allows us to deal with problems:
10555  * 1) We can delete sysfs objects which invoke hotplug
10556  *    without deadlocking with linkwatch via keventd.
10557  * 2) Since we run with the RTNL semaphore not held, we can sleep
10558  *    safely in order to wait for the netdev refcnt to drop to zero.
10559  *
10560  * We must not return until all unregister events added during
10561  * the interval the lock was held have been completed.
10562  */
10563 void netdev_run_todo(void)
10564 {
10565         struct list_head list;
10566 #ifdef CONFIG_LOCKDEP
10567         struct list_head unlink_list;
10568
10569         list_replace_init(&net_unlink_list, &unlink_list);
10570
10571         while (!list_empty(&unlink_list)) {
10572                 struct net_device *dev = list_first_entry(&unlink_list,
10573                                                           struct net_device,
10574                                                           unlink_list);
10575                 list_del_init(&dev->unlink_list);
10576                 dev->nested_level = dev->lower_level - 1;
10577         }
10578 #endif
10579
10580         /* Snapshot list, allow later requests */
10581         list_replace_init(&net_todo_list, &list);
10582
10583         __rtnl_unlock();
10584
10585
10586         /* Wait for rcu callbacks to finish before next phase */
10587         if (!list_empty(&list))
10588                 rcu_barrier();
10589
10590         while (!list_empty(&list)) {
10591                 struct net_device *dev
10592                         = list_first_entry(&list, struct net_device, todo_list);
10593                 list_del(&dev->todo_list);
10594
10595                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10596                         pr_err("network todo '%s' but state %d\n",
10597                                dev->name, dev->reg_state);
10598                         dump_stack();
10599                         continue;
10600                 }
10601
10602                 write_lock(&dev_base_lock);
10603                 dev->reg_state = NETREG_UNREGISTERED;
10604                 write_unlock(&dev_base_lock);
10605                 linkwatch_forget_dev(dev);
10606
10607                 netdev_wait_allrefs(dev);
10608
10609                 /* paranoia */
10610                 BUG_ON(netdev_refcnt_read(dev) != 1);
10611                 BUG_ON(!list_empty(&dev->ptype_all));
10612                 BUG_ON(!list_empty(&dev->ptype_specific));
10613                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10614                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10615 #if IS_ENABLED(CONFIG_DECNET)
10616                 WARN_ON(dev->dn_ptr);
10617 #endif
10618                 if (dev->priv_destructor)
10619                         dev->priv_destructor(dev);
10620                 if (dev->needs_free_netdev)
10621                         free_netdev(dev);
10622
10623                 /* Report a network device has been unregistered */
10624                 rtnl_lock();
10625                 dev_net(dev)->dev_unreg_count--;
10626                 __rtnl_unlock();
10627                 wake_up(&netdev_unregistering_wq);
10628
10629                 /* Free network device */
10630                 kobject_put(&dev->dev.kobj);
10631         }
10632 }
10633
10634 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10635  * all the same fields in the same order as net_device_stats, with only
10636  * the type differing, but rtnl_link_stats64 may have additional fields
10637  * at the end for newer counters.
10638  */
10639 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10640                              const struct net_device_stats *netdev_stats)
10641 {
10642 #if BITS_PER_LONG == 64
10643         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10644         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10645         /* zero out counters that only exist in rtnl_link_stats64 */
10646         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10647                sizeof(*stats64) - sizeof(*netdev_stats));
10648 #else
10649         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10650         const unsigned long *src = (const unsigned long *)netdev_stats;
10651         u64 *dst = (u64 *)stats64;
10652
10653         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10654         for (i = 0; i < n; i++)
10655                 dst[i] = src[i];
10656         /* zero out counters that only exist in rtnl_link_stats64 */
10657         memset((char *)stats64 + n * sizeof(u64), 0,
10658                sizeof(*stats64) - n * sizeof(u64));
10659 #endif
10660 }
10661 EXPORT_SYMBOL(netdev_stats_to_stats64);
10662
10663 /**
10664  *      dev_get_stats   - get network device statistics
10665  *      @dev: device to get statistics from
10666  *      @storage: place to store stats
10667  *
10668  *      Get network statistics from device. Return @storage.
10669  *      The device driver may provide its own method by setting
10670  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10671  *      otherwise the internal statistics structure is used.
10672  */
10673 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10674                                         struct rtnl_link_stats64 *storage)
10675 {
10676         const struct net_device_ops *ops = dev->netdev_ops;
10677
10678         if (ops->ndo_get_stats64) {
10679                 memset(storage, 0, sizeof(*storage));
10680                 ops->ndo_get_stats64(dev, storage);
10681         } else if (ops->ndo_get_stats) {
10682                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10683         } else {
10684                 netdev_stats_to_stats64(storage, &dev->stats);
10685         }
10686         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10687         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10688         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10689         return storage;
10690 }
10691 EXPORT_SYMBOL(dev_get_stats);
10692
10693 /**
10694  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10695  *      @s: place to store stats
10696  *      @netstats: per-cpu network stats to read from
10697  *
10698  *      Read per-cpu network statistics and populate the related fields in @s.
10699  */
10700 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10701                            const struct pcpu_sw_netstats __percpu *netstats)
10702 {
10703         int cpu;
10704
10705         for_each_possible_cpu(cpu) {
10706                 const struct pcpu_sw_netstats *stats;
10707                 struct pcpu_sw_netstats tmp;
10708                 unsigned int start;
10709
10710                 stats = per_cpu_ptr(netstats, cpu);
10711                 do {
10712                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10713                         tmp.rx_packets = stats->rx_packets;
10714                         tmp.rx_bytes   = stats->rx_bytes;
10715                         tmp.tx_packets = stats->tx_packets;
10716                         tmp.tx_bytes   = stats->tx_bytes;
10717                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10718
10719                 s->rx_packets += tmp.rx_packets;
10720                 s->rx_bytes   += tmp.rx_bytes;
10721                 s->tx_packets += tmp.tx_packets;
10722                 s->tx_bytes   += tmp.tx_bytes;
10723         }
10724 }
10725 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10726
10727 /**
10728  *      dev_get_tstats64 - ndo_get_stats64 implementation
10729  *      @dev: device to get statistics from
10730  *      @s: place to store stats
10731  *
10732  *      Populate @s from dev->stats and dev->tstats. Can be used as
10733  *      ndo_get_stats64() callback.
10734  */
10735 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10736 {
10737         netdev_stats_to_stats64(s, &dev->stats);
10738         dev_fetch_sw_netstats(s, dev->tstats);
10739 }
10740 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10741
10742 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10743 {
10744         struct netdev_queue *queue = dev_ingress_queue(dev);
10745
10746 #ifdef CONFIG_NET_CLS_ACT
10747         if (queue)
10748                 return queue;
10749         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10750         if (!queue)
10751                 return NULL;
10752         netdev_init_one_queue(dev, queue, NULL);
10753         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10754         queue->qdisc_sleeping = &noop_qdisc;
10755         rcu_assign_pointer(dev->ingress_queue, queue);
10756 #endif
10757         return queue;
10758 }
10759
10760 static const struct ethtool_ops default_ethtool_ops;
10761
10762 void netdev_set_default_ethtool_ops(struct net_device *dev,
10763                                     const struct ethtool_ops *ops)
10764 {
10765         if (dev->ethtool_ops == &default_ethtool_ops)
10766                 dev->ethtool_ops = ops;
10767 }
10768 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10769
10770 void netdev_freemem(struct net_device *dev)
10771 {
10772         char *addr = (char *)dev - dev->padded;
10773
10774         kvfree(addr);
10775 }
10776
10777 /**
10778  * alloc_netdev_mqs - allocate network device
10779  * @sizeof_priv: size of private data to allocate space for
10780  * @name: device name format string
10781  * @name_assign_type: origin of device name
10782  * @setup: callback to initialize device
10783  * @txqs: the number of TX subqueues to allocate
10784  * @rxqs: the number of RX subqueues to allocate
10785  *
10786  * Allocates a struct net_device with private data area for driver use
10787  * and performs basic initialization.  Also allocates subqueue structs
10788  * for each queue on the device.
10789  */
10790 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10791                 unsigned char name_assign_type,
10792                 void (*setup)(struct net_device *),
10793                 unsigned int txqs, unsigned int rxqs)
10794 {
10795         struct net_device *dev;
10796         unsigned int alloc_size;
10797         struct net_device *p;
10798
10799         BUG_ON(strlen(name) >= sizeof(dev->name));
10800
10801         if (txqs < 1) {
10802                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10803                 return NULL;
10804         }
10805
10806         if (rxqs < 1) {
10807                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10808                 return NULL;
10809         }
10810
10811         alloc_size = sizeof(struct net_device);
10812         if (sizeof_priv) {
10813                 /* ensure 32-byte alignment of private area */
10814                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10815                 alloc_size += sizeof_priv;
10816         }
10817         /* ensure 32-byte alignment of whole construct */
10818         alloc_size += NETDEV_ALIGN - 1;
10819
10820         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10821         if (!p)
10822                 return NULL;
10823
10824         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10825         dev->padded = (char *)dev - (char *)p;
10826
10827 #ifdef CONFIG_PCPU_DEV_REFCNT
10828         dev->pcpu_refcnt = alloc_percpu(int);
10829         if (!dev->pcpu_refcnt)
10830                 goto free_dev;
10831         dev_hold(dev);
10832 #else
10833         refcount_set(&dev->dev_refcnt, 1);
10834 #endif
10835
10836         if (dev_addr_init(dev))
10837                 goto free_pcpu;
10838
10839         dev_mc_init(dev);
10840         dev_uc_init(dev);
10841
10842         dev_net_set(dev, &init_net);
10843
10844         dev->gso_max_size = GSO_MAX_SIZE;
10845         dev->gso_max_segs = GSO_MAX_SEGS;
10846         dev->upper_level = 1;
10847         dev->lower_level = 1;
10848 #ifdef CONFIG_LOCKDEP
10849         dev->nested_level = 0;
10850         INIT_LIST_HEAD(&dev->unlink_list);
10851 #endif
10852
10853         INIT_LIST_HEAD(&dev->napi_list);
10854         INIT_LIST_HEAD(&dev->unreg_list);
10855         INIT_LIST_HEAD(&dev->close_list);
10856         INIT_LIST_HEAD(&dev->link_watch_list);
10857         INIT_LIST_HEAD(&dev->adj_list.upper);
10858         INIT_LIST_HEAD(&dev->adj_list.lower);
10859         INIT_LIST_HEAD(&dev->ptype_all);
10860         INIT_LIST_HEAD(&dev->ptype_specific);
10861         INIT_LIST_HEAD(&dev->net_notifier_list);
10862 #ifdef CONFIG_NET_SCHED
10863         hash_init(dev->qdisc_hash);
10864 #endif
10865         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10866         setup(dev);
10867
10868         if (!dev->tx_queue_len) {
10869                 dev->priv_flags |= IFF_NO_QUEUE;
10870                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10871         }
10872
10873         dev->num_tx_queues = txqs;
10874         dev->real_num_tx_queues = txqs;
10875         if (netif_alloc_netdev_queues(dev))
10876                 goto free_all;
10877
10878         dev->num_rx_queues = rxqs;
10879         dev->real_num_rx_queues = rxqs;
10880         if (netif_alloc_rx_queues(dev))
10881                 goto free_all;
10882
10883         strcpy(dev->name, name);
10884         dev->name_assign_type = name_assign_type;
10885         dev->group = INIT_NETDEV_GROUP;
10886         if (!dev->ethtool_ops)
10887                 dev->ethtool_ops = &default_ethtool_ops;
10888
10889         nf_hook_ingress_init(dev);
10890
10891         return dev;
10892
10893 free_all:
10894         free_netdev(dev);
10895         return NULL;
10896
10897 free_pcpu:
10898 #ifdef CONFIG_PCPU_DEV_REFCNT
10899         free_percpu(dev->pcpu_refcnt);
10900 free_dev:
10901 #endif
10902         netdev_freemem(dev);
10903         return NULL;
10904 }
10905 EXPORT_SYMBOL(alloc_netdev_mqs);
10906
10907 /**
10908  * free_netdev - free network device
10909  * @dev: device
10910  *
10911  * This function does the last stage of destroying an allocated device
10912  * interface. The reference to the device object is released. If this
10913  * is the last reference then it will be freed.Must be called in process
10914  * context.
10915  */
10916 void free_netdev(struct net_device *dev)
10917 {
10918         struct napi_struct *p, *n;
10919
10920         might_sleep();
10921
10922         /* When called immediately after register_netdevice() failed the unwind
10923          * handling may still be dismantling the device. Handle that case by
10924          * deferring the free.
10925          */
10926         if (dev->reg_state == NETREG_UNREGISTERING) {
10927                 ASSERT_RTNL();
10928                 dev->needs_free_netdev = true;
10929                 return;
10930         }
10931
10932         netif_free_tx_queues(dev);
10933         netif_free_rx_queues(dev);
10934
10935         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10936
10937         /* Flush device addresses */
10938         dev_addr_flush(dev);
10939
10940         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10941                 netif_napi_del(p);
10942
10943 #ifdef CONFIG_PCPU_DEV_REFCNT
10944         free_percpu(dev->pcpu_refcnt);
10945         dev->pcpu_refcnt = NULL;
10946 #endif
10947         free_percpu(dev->xdp_bulkq);
10948         dev->xdp_bulkq = NULL;
10949
10950         /*  Compatibility with error handling in drivers */
10951         if (dev->reg_state == NETREG_UNINITIALIZED) {
10952                 netdev_freemem(dev);
10953                 return;
10954         }
10955
10956         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10957         dev->reg_state = NETREG_RELEASED;
10958
10959         /* will free via device release */
10960         put_device(&dev->dev);
10961 }
10962 EXPORT_SYMBOL(free_netdev);
10963
10964 /**
10965  *      synchronize_net -  Synchronize with packet receive processing
10966  *
10967  *      Wait for packets currently being received to be done.
10968  *      Does not block later packets from starting.
10969  */
10970 void synchronize_net(void)
10971 {
10972         might_sleep();
10973         if (rtnl_is_locked())
10974                 synchronize_rcu_expedited();
10975         else
10976                 synchronize_rcu();
10977 }
10978 EXPORT_SYMBOL(synchronize_net);
10979
10980 /**
10981  *      unregister_netdevice_queue - remove device from the kernel
10982  *      @dev: device
10983  *      @head: list
10984  *
10985  *      This function shuts down a device interface and removes it
10986  *      from the kernel tables.
10987  *      If head not NULL, device is queued to be unregistered later.
10988  *
10989  *      Callers must hold the rtnl semaphore.  You may want
10990  *      unregister_netdev() instead of this.
10991  */
10992
10993 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10994 {
10995         ASSERT_RTNL();
10996
10997         if (head) {
10998                 list_move_tail(&dev->unreg_list, head);
10999         } else {
11000                 LIST_HEAD(single);
11001
11002                 list_add(&dev->unreg_list, &single);
11003                 unregister_netdevice_many(&single);
11004         }
11005 }
11006 EXPORT_SYMBOL(unregister_netdevice_queue);
11007
11008 /**
11009  *      unregister_netdevice_many - unregister many devices
11010  *      @head: list of devices
11011  *
11012  *  Note: As most callers use a stack allocated list_head,
11013  *  we force a list_del() to make sure stack wont be corrupted later.
11014  */
11015 void unregister_netdevice_many(struct list_head *head)
11016 {
11017         struct net_device *dev, *tmp;
11018         LIST_HEAD(close_head);
11019
11020         BUG_ON(dev_boot_phase);
11021         ASSERT_RTNL();
11022
11023         if (list_empty(head))
11024                 return;
11025
11026         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11027                 /* Some devices call without registering
11028                  * for initialization unwind. Remove those
11029                  * devices and proceed with the remaining.
11030                  */
11031                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11032                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11033                                  dev->name, dev);
11034
11035                         WARN_ON(1);
11036                         list_del(&dev->unreg_list);
11037                         continue;
11038                 }
11039                 dev->dismantle = true;
11040                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11041         }
11042
11043         /* If device is running, close it first. */
11044         list_for_each_entry(dev, head, unreg_list)
11045                 list_add_tail(&dev->close_list, &close_head);
11046         dev_close_many(&close_head, true);
11047
11048         list_for_each_entry(dev, head, unreg_list) {
11049                 /* And unlink it from device chain. */
11050                 write_lock(&dev_base_lock);
11051                 unlist_netdevice(dev, false);
11052                 dev->reg_state = NETREG_UNREGISTERING;
11053                 write_unlock(&dev_base_lock);
11054         }
11055         flush_all_backlogs();
11056
11057         synchronize_net();
11058
11059         list_for_each_entry(dev, head, unreg_list) {
11060                 struct sk_buff *skb = NULL;
11061
11062                 /* Shutdown queueing discipline. */
11063                 dev_shutdown(dev);
11064
11065                 dev_xdp_uninstall(dev);
11066
11067                 /* Notify protocols, that we are about to destroy
11068                  * this device. They should clean all the things.
11069                  */
11070                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11071
11072                 if (!dev->rtnl_link_ops ||
11073                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11074                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11075                                                      GFP_KERNEL, NULL, 0);
11076
11077                 /*
11078                  *      Flush the unicast and multicast chains
11079                  */
11080                 dev_uc_flush(dev);
11081                 dev_mc_flush(dev);
11082
11083                 netdev_name_node_alt_flush(dev);
11084                 netdev_name_node_free(dev->name_node);
11085
11086                 if (dev->netdev_ops->ndo_uninit)
11087                         dev->netdev_ops->ndo_uninit(dev);
11088
11089                 if (skb)
11090                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11091
11092                 /* Notifier chain MUST detach us all upper devices. */
11093                 WARN_ON(netdev_has_any_upper_dev(dev));
11094                 WARN_ON(netdev_has_any_lower_dev(dev));
11095
11096                 /* Remove entries from kobject tree */
11097                 netdev_unregister_kobject(dev);
11098 #ifdef CONFIG_XPS
11099                 /* Remove XPS queueing entries */
11100                 netif_reset_xps_queues_gt(dev, 0);
11101 #endif
11102         }
11103
11104         synchronize_net();
11105
11106         list_for_each_entry(dev, head, unreg_list) {
11107                 dev_put(dev);
11108                 net_set_todo(dev);
11109         }
11110
11111         list_del(head);
11112 }
11113 EXPORT_SYMBOL(unregister_netdevice_many);
11114
11115 /**
11116  *      unregister_netdev - remove device from the kernel
11117  *      @dev: device
11118  *
11119  *      This function shuts down a device interface and removes it
11120  *      from the kernel tables.
11121  *
11122  *      This is just a wrapper for unregister_netdevice that takes
11123  *      the rtnl semaphore.  In general you want to use this and not
11124  *      unregister_netdevice.
11125  */
11126 void unregister_netdev(struct net_device *dev)
11127 {
11128         rtnl_lock();
11129         unregister_netdevice(dev);
11130         rtnl_unlock();
11131 }
11132 EXPORT_SYMBOL(unregister_netdev);
11133
11134 /**
11135  *      __dev_change_net_namespace - move device to different nethost namespace
11136  *      @dev: device
11137  *      @net: network namespace
11138  *      @pat: If not NULL name pattern to try if the current device name
11139  *            is already taken in the destination network namespace.
11140  *      @new_ifindex: If not zero, specifies device index in the target
11141  *                    namespace.
11142  *
11143  *      This function shuts down a device interface and moves it
11144  *      to a new network namespace. On success 0 is returned, on
11145  *      a failure a netagive errno code is returned.
11146  *
11147  *      Callers must hold the rtnl semaphore.
11148  */
11149
11150 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11151                                const char *pat, int new_ifindex)
11152 {
11153         struct net *net_old = dev_net(dev);
11154         int err, new_nsid;
11155
11156         ASSERT_RTNL();
11157
11158         /* Don't allow namespace local devices to be moved. */
11159         err = -EINVAL;
11160         if (dev->features & NETIF_F_NETNS_LOCAL)
11161                 goto out;
11162
11163         /* Ensure the device has been registrered */
11164         if (dev->reg_state != NETREG_REGISTERED)
11165                 goto out;
11166
11167         /* Get out if there is nothing todo */
11168         err = 0;
11169         if (net_eq(net_old, net))
11170                 goto out;
11171
11172         /* Pick the destination device name, and ensure
11173          * we can use it in the destination network namespace.
11174          */
11175         err = -EEXIST;
11176         if (__dev_get_by_name(net, dev->name)) {
11177                 /* We get here if we can't use the current device name */
11178                 if (!pat)
11179                         goto out;
11180                 err = dev_get_valid_name(net, dev, pat);
11181                 if (err < 0)
11182                         goto out;
11183         }
11184
11185         /* Check that new_ifindex isn't used yet. */
11186         err = -EBUSY;
11187         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11188                 goto out;
11189
11190         /*
11191          * And now a mini version of register_netdevice unregister_netdevice.
11192          */
11193
11194         /* If device is running close it first. */
11195         dev_close(dev);
11196
11197         /* And unlink it from device chain */
11198         unlist_netdevice(dev, true);
11199
11200         synchronize_net();
11201
11202         /* Shutdown queueing discipline. */
11203         dev_shutdown(dev);
11204
11205         /* Notify protocols, that we are about to destroy
11206          * this device. They should clean all the things.
11207          *
11208          * Note that dev->reg_state stays at NETREG_REGISTERED.
11209          * This is wanted because this way 8021q and macvlan know
11210          * the device is just moving and can keep their slaves up.
11211          */
11212         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11213         rcu_barrier();
11214
11215         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11216         /* If there is an ifindex conflict assign a new one */
11217         if (!new_ifindex) {
11218                 if (__dev_get_by_index(net, dev->ifindex))
11219                         new_ifindex = dev_new_index(net);
11220                 else
11221                         new_ifindex = dev->ifindex;
11222         }
11223
11224         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11225                             new_ifindex);
11226
11227         /*
11228          *      Flush the unicast and multicast chains
11229          */
11230         dev_uc_flush(dev);
11231         dev_mc_flush(dev);
11232
11233         /* Send a netdev-removed uevent to the old namespace */
11234         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11235         netdev_adjacent_del_links(dev);
11236
11237         /* Move per-net netdevice notifiers that are following the netdevice */
11238         move_netdevice_notifiers_dev_net(dev, net);
11239
11240         /* Actually switch the network namespace */
11241         dev_net_set(dev, net);
11242         dev->ifindex = new_ifindex;
11243
11244         /* Send a netdev-add uevent to the new namespace */
11245         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11246         netdev_adjacent_add_links(dev);
11247
11248         /* Fixup kobjects */
11249         err = device_rename(&dev->dev, dev->name);
11250         WARN_ON(err);
11251
11252         /* Adapt owner in case owning user namespace of target network
11253          * namespace is different from the original one.
11254          */
11255         err = netdev_change_owner(dev, net_old, net);
11256         WARN_ON(err);
11257
11258         /* Add the device back in the hashes */
11259         list_netdevice(dev);
11260
11261         /* Notify protocols, that a new device appeared. */
11262         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11263
11264         /*
11265          *      Prevent userspace races by waiting until the network
11266          *      device is fully setup before sending notifications.
11267          */
11268         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11269
11270         synchronize_net();
11271         err = 0;
11272 out:
11273         return err;
11274 }
11275 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11276
11277 static int dev_cpu_dead(unsigned int oldcpu)
11278 {
11279         struct sk_buff **list_skb;
11280         struct sk_buff *skb;
11281         unsigned int cpu;
11282         struct softnet_data *sd, *oldsd, *remsd = NULL;
11283
11284         local_irq_disable();
11285         cpu = smp_processor_id();
11286         sd = &per_cpu(softnet_data, cpu);
11287         oldsd = &per_cpu(softnet_data, oldcpu);
11288
11289         /* Find end of our completion_queue. */
11290         list_skb = &sd->completion_queue;
11291         while (*list_skb)
11292                 list_skb = &(*list_skb)->next;
11293         /* Append completion queue from offline CPU. */
11294         *list_skb = oldsd->completion_queue;
11295         oldsd->completion_queue = NULL;
11296
11297         /* Append output queue from offline CPU. */
11298         if (oldsd->output_queue) {
11299                 *sd->output_queue_tailp = oldsd->output_queue;
11300                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11301                 oldsd->output_queue = NULL;
11302                 oldsd->output_queue_tailp = &oldsd->output_queue;
11303         }
11304         /* Append NAPI poll list from offline CPU, with one exception :
11305          * process_backlog() must be called by cpu owning percpu backlog.
11306          * We properly handle process_queue & input_pkt_queue later.
11307          */
11308         while (!list_empty(&oldsd->poll_list)) {
11309                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11310                                                             struct napi_struct,
11311                                                             poll_list);
11312
11313                 list_del_init(&napi->poll_list);
11314                 if (napi->poll == process_backlog)
11315                         napi->state = 0;
11316                 else
11317                         ____napi_schedule(sd, napi);
11318         }
11319
11320         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11321         local_irq_enable();
11322
11323 #ifdef CONFIG_RPS
11324         remsd = oldsd->rps_ipi_list;
11325         oldsd->rps_ipi_list = NULL;
11326 #endif
11327         /* send out pending IPI's on offline CPU */
11328         net_rps_send_ipi(remsd);
11329
11330         /* Process offline CPU's input_pkt_queue */
11331         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11332                 netif_rx_ni(skb);
11333                 input_queue_head_incr(oldsd);
11334         }
11335         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11336                 netif_rx_ni(skb);
11337                 input_queue_head_incr(oldsd);
11338         }
11339
11340         return 0;
11341 }
11342
11343 /**
11344  *      netdev_increment_features - increment feature set by one
11345  *      @all: current feature set
11346  *      @one: new feature set
11347  *      @mask: mask feature set
11348  *
11349  *      Computes a new feature set after adding a device with feature set
11350  *      @one to the master device with current feature set @all.  Will not
11351  *      enable anything that is off in @mask. Returns the new feature set.
11352  */
11353 netdev_features_t netdev_increment_features(netdev_features_t all,
11354         netdev_features_t one, netdev_features_t mask)
11355 {
11356         if (mask & NETIF_F_HW_CSUM)
11357                 mask |= NETIF_F_CSUM_MASK;
11358         mask |= NETIF_F_VLAN_CHALLENGED;
11359
11360         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11361         all &= one | ~NETIF_F_ALL_FOR_ALL;
11362
11363         /* If one device supports hw checksumming, set for all. */
11364         if (all & NETIF_F_HW_CSUM)
11365                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11366
11367         return all;
11368 }
11369 EXPORT_SYMBOL(netdev_increment_features);
11370
11371 static struct hlist_head * __net_init netdev_create_hash(void)
11372 {
11373         int i;
11374         struct hlist_head *hash;
11375
11376         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11377         if (hash != NULL)
11378                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11379                         INIT_HLIST_HEAD(&hash[i]);
11380
11381         return hash;
11382 }
11383
11384 /* Initialize per network namespace state */
11385 static int __net_init netdev_init(struct net *net)
11386 {
11387         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11388                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11389
11390         INIT_LIST_HEAD(&net->dev_base_head);
11391
11392         net->dev_name_head = netdev_create_hash();
11393         if (net->dev_name_head == NULL)
11394                 goto err_name;
11395
11396         net->dev_index_head = netdev_create_hash();
11397         if (net->dev_index_head == NULL)
11398                 goto err_idx;
11399
11400         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11401
11402         return 0;
11403
11404 err_idx:
11405         kfree(net->dev_name_head);
11406 err_name:
11407         return -ENOMEM;
11408 }
11409
11410 /**
11411  *      netdev_drivername - network driver for the device
11412  *      @dev: network device
11413  *
11414  *      Determine network driver for device.
11415  */
11416 const char *netdev_drivername(const struct net_device *dev)
11417 {
11418         const struct device_driver *driver;
11419         const struct device *parent;
11420         const char *empty = "";
11421
11422         parent = dev->dev.parent;
11423         if (!parent)
11424                 return empty;
11425
11426         driver = parent->driver;
11427         if (driver && driver->name)
11428                 return driver->name;
11429         return empty;
11430 }
11431
11432 static void __netdev_printk(const char *level, const struct net_device *dev,
11433                             struct va_format *vaf)
11434 {
11435         if (dev && dev->dev.parent) {
11436                 dev_printk_emit(level[1] - '0',
11437                                 dev->dev.parent,
11438                                 "%s %s %s%s: %pV",
11439                                 dev_driver_string(dev->dev.parent),
11440                                 dev_name(dev->dev.parent),
11441                                 netdev_name(dev), netdev_reg_state(dev),
11442                                 vaf);
11443         } else if (dev) {
11444                 printk("%s%s%s: %pV",
11445                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11446         } else {
11447                 printk("%s(NULL net_device): %pV", level, vaf);
11448         }
11449 }
11450
11451 void netdev_printk(const char *level, const struct net_device *dev,
11452                    const char *format, ...)
11453 {
11454         struct va_format vaf;
11455         va_list args;
11456
11457         va_start(args, format);
11458
11459         vaf.fmt = format;
11460         vaf.va = &args;
11461
11462         __netdev_printk(level, dev, &vaf);
11463
11464         va_end(args);
11465 }
11466 EXPORT_SYMBOL(netdev_printk);
11467
11468 #define define_netdev_printk_level(func, level)                 \
11469 void func(const struct net_device *dev, const char *fmt, ...)   \
11470 {                                                               \
11471         struct va_format vaf;                                   \
11472         va_list args;                                           \
11473                                                                 \
11474         va_start(args, fmt);                                    \
11475                                                                 \
11476         vaf.fmt = fmt;                                          \
11477         vaf.va = &args;                                         \
11478                                                                 \
11479         __netdev_printk(level, dev, &vaf);                      \
11480                                                                 \
11481         va_end(args);                                           \
11482 }                                                               \
11483 EXPORT_SYMBOL(func);
11484
11485 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11486 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11487 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11488 define_netdev_printk_level(netdev_err, KERN_ERR);
11489 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11490 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11491 define_netdev_printk_level(netdev_info, KERN_INFO);
11492
11493 static void __net_exit netdev_exit(struct net *net)
11494 {
11495         kfree(net->dev_name_head);
11496         kfree(net->dev_index_head);
11497         if (net != &init_net)
11498                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11499 }
11500
11501 static struct pernet_operations __net_initdata netdev_net_ops = {
11502         .init = netdev_init,
11503         .exit = netdev_exit,
11504 };
11505
11506 static void __net_exit default_device_exit(struct net *net)
11507 {
11508         struct net_device *dev, *aux;
11509         /*
11510          * Push all migratable network devices back to the
11511          * initial network namespace
11512          */
11513         rtnl_lock();
11514         for_each_netdev_safe(net, dev, aux) {
11515                 int err;
11516                 char fb_name[IFNAMSIZ];
11517
11518                 /* Ignore unmoveable devices (i.e. loopback) */
11519                 if (dev->features & NETIF_F_NETNS_LOCAL)
11520                         continue;
11521
11522                 /* Leave virtual devices for the generic cleanup */
11523                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11524                         continue;
11525
11526                 /* Push remaining network devices to init_net */
11527                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11528                 if (__dev_get_by_name(&init_net, fb_name))
11529                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11530                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11531                 if (err) {
11532                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11533                                  __func__, dev->name, err);
11534                         BUG();
11535                 }
11536         }
11537         rtnl_unlock();
11538 }
11539
11540 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11541 {
11542         /* Return with the rtnl_lock held when there are no network
11543          * devices unregistering in any network namespace in net_list.
11544          */
11545         struct net *net;
11546         bool unregistering;
11547         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11548
11549         add_wait_queue(&netdev_unregistering_wq, &wait);
11550         for (;;) {
11551                 unregistering = false;
11552                 rtnl_lock();
11553                 list_for_each_entry(net, net_list, exit_list) {
11554                         if (net->dev_unreg_count > 0) {
11555                                 unregistering = true;
11556                                 break;
11557                         }
11558                 }
11559                 if (!unregistering)
11560                         break;
11561                 __rtnl_unlock();
11562
11563                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11564         }
11565         remove_wait_queue(&netdev_unregistering_wq, &wait);
11566 }
11567
11568 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11569 {
11570         /* At exit all network devices most be removed from a network
11571          * namespace.  Do this in the reverse order of registration.
11572          * Do this across as many network namespaces as possible to
11573          * improve batching efficiency.
11574          */
11575         struct net_device *dev;
11576         struct net *net;
11577         LIST_HEAD(dev_kill_list);
11578
11579         /* To prevent network device cleanup code from dereferencing
11580          * loopback devices or network devices that have been freed
11581          * wait here for all pending unregistrations to complete,
11582          * before unregistring the loopback device and allowing the
11583          * network namespace be freed.
11584          *
11585          * The netdev todo list containing all network devices
11586          * unregistrations that happen in default_device_exit_batch
11587          * will run in the rtnl_unlock() at the end of
11588          * default_device_exit_batch.
11589          */
11590         rtnl_lock_unregistering(net_list);
11591         list_for_each_entry(net, net_list, exit_list) {
11592                 for_each_netdev_reverse(net, dev) {
11593                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11594                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11595                         else
11596                                 unregister_netdevice_queue(dev, &dev_kill_list);
11597                 }
11598         }
11599         unregister_netdevice_many(&dev_kill_list);
11600         rtnl_unlock();
11601 }
11602
11603 static struct pernet_operations __net_initdata default_device_ops = {
11604         .exit = default_device_exit,
11605         .exit_batch = default_device_exit_batch,
11606 };
11607
11608 /*
11609  *      Initialize the DEV module. At boot time this walks the device list and
11610  *      unhooks any devices that fail to initialise (normally hardware not
11611  *      present) and leaves us with a valid list of present and active devices.
11612  *
11613  */
11614
11615 /*
11616  *       This is called single threaded during boot, so no need
11617  *       to take the rtnl semaphore.
11618  */
11619 static int __init net_dev_init(void)
11620 {
11621         int i, rc = -ENOMEM;
11622
11623         BUG_ON(!dev_boot_phase);
11624
11625         if (dev_proc_init())
11626                 goto out;
11627
11628         if (netdev_kobject_init())
11629                 goto out;
11630
11631         INIT_LIST_HEAD(&ptype_all);
11632         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11633                 INIT_LIST_HEAD(&ptype_base[i]);
11634
11635         INIT_LIST_HEAD(&offload_base);
11636
11637         if (register_pernet_subsys(&netdev_net_ops))
11638                 goto out;
11639
11640         /*
11641          *      Initialise the packet receive queues.
11642          */
11643
11644         for_each_possible_cpu(i) {
11645                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11646                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11647
11648                 INIT_WORK(flush, flush_backlog);
11649
11650                 skb_queue_head_init(&sd->input_pkt_queue);
11651                 skb_queue_head_init(&sd->process_queue);
11652 #ifdef CONFIG_XFRM_OFFLOAD
11653                 skb_queue_head_init(&sd->xfrm_backlog);
11654 #endif
11655                 INIT_LIST_HEAD(&sd->poll_list);
11656                 sd->output_queue_tailp = &sd->output_queue;
11657 #ifdef CONFIG_RPS
11658                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11659                 sd->cpu = i;
11660 #endif
11661
11662                 init_gro_hash(&sd->backlog);
11663                 sd->backlog.poll = process_backlog;
11664                 sd->backlog.weight = weight_p;
11665         }
11666
11667         dev_boot_phase = 0;
11668
11669         /* The loopback device is special if any other network devices
11670          * is present in a network namespace the loopback device must
11671          * be present. Since we now dynamically allocate and free the
11672          * loopback device ensure this invariant is maintained by
11673          * keeping the loopback device as the first device on the
11674          * list of network devices.  Ensuring the loopback devices
11675          * is the first device that appears and the last network device
11676          * that disappears.
11677          */
11678         if (register_pernet_device(&loopback_net_ops))
11679                 goto out;
11680
11681         if (register_pernet_device(&default_device_ops))
11682                 goto out;
11683
11684         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11685         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11686
11687         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11688                                        NULL, dev_cpu_dead);
11689         WARN_ON(rc < 0);
11690         rc = 0;
11691 out:
11692         return rc;
11693 }
11694
11695 subsys_initcall(net_dev_init);